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Abstract 

The ever-increasing demand for renewable energy and zero carbon dioxide emission have been the driving force 

for the development of thermoelectric generators with better power generation performance. Alongside with the 

effort to discover thermoelectric materials with higher figure-of-merit, the geometrical and structural 

optimisation of thermoelectric generators are also essential for maximized power generation and efficiency. 

This work demonstrates for the first time the application of artificial neural network, a deep learning technique, 

in forward modelling the maximum power generation and efficiency of a thermoelectric generator and its 

application in the generator design and optimisation. After training using a dataset containing 5000 3-D finite 

element method based simulations, the artificial neural networks with 5 layers and 400 neurons per layer 

demonstrate extremely high prediction accuracy over 98% and are able to operate under both constant 

temperature difference and heat flux conditions while taking into account of the contact electrical resistance, 

surface heat transfer and other thermoelectric effects. Coupling with genetic algorithm, the trained artificial 

neural networks can optimise the leg height, leg width, fill factor and interconnect height of the thermoelectric 

generator for different operating and contact resistance conditions. With almost identical optimised values 

obtained, our neural networks can realise geometrical optimisation within 40 s for each operating condition, 

which is averagely over 1,000 times faster than the optimisation performed by finite element method. The up-

front computational time for the neural network can be recovered when more than 2 optimisations are needed. 

The successful application of this data-driven approach in this work clearly represents a new and cost-effective 

avenue for conducting system level design and optimisation of thermoelectric generators and other energy 

harvesting technologies. 
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Nomenclature    

TEG Thermoelectric Generator GA Genetic Algorithm 

𝑍𝑇 Dimensionless figure of merit  ANN Artificial Neural Network 

𝑄𝑖𝑛 𝐴⁄  Heat flux density (mW/cm2) 𝐻𝑇𝐸 Height of the TEG leg (mm) 

𝑇ℎ Hot-side temperature (K) 𝐻𝐼𝐶 Height of the interconnect (mm) 

𝑇𝑐 Cold-side temperature (K) 𝑊𝑛 Width of the n-type leg (mm) 

𝑅𝐶  Electrical contact resistance (Ω) 𝑊𝑝 Width of the p-type leg (mm) 

𝜌𝐶 Contact resistivity (Ω·m2) 𝐴 Surface area (cm2) 
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𝐹𝐹 Fill factor 𝑃𝐷𝑚𝑎𝑥 Power density (mW/cm2) 

𝜎 Electrical Conductivity (S/m) 𝜂 Efficiency (%) 

𝑆 Seebeck coefficient (µV/K) 𝑘 Thermal Conductivity (W/m·K) 

𝐽 Current density vector (A/cm2) Π Peltier Coefficient (J/C) 

�⃗� Heat flux vector (mW/cm2) 𝐶𝑝 Heat Capacity (J/K) 

�⃗⃗� Electric field vector (V/m) 𝐷 Density (kg/m3) 

�⃗⃗� Velocity vector (m/s)   

 

1. Introduction 

The global energy consumption has doubled over the past three decades with over 80% of the consumed 

energy supplied by conventional combustion energy (e.g. coal, natural gas, oil) [1,2]. Producing a secure, 

sustainable and efficient energy supply that meets the demands of increasing global population and reducing the 

environmental impact of CO2 emissions are widely acknowledged to be among the most important societal 

challenges for the present generation [3]. Staying on the path to net-zero emission requires immediate and 

massive deployment of all clean and efficient energy technologies. As depicted in the net-zero emission by 2050 

scenario (NZE), renewable energy conversion technologies play a central part in emission reduction across all 

sectors and are account for 90% of all electricity generation [2]. One significant energy source that can be 

recycled is the waste heat generated during the conventional fossil-fuel based power generation process. In fact, 

60% of the fossil energy is wasted in the form of heat. Recovery of just 1% of the wasted energy would provide 

over 200 TWh of electricity annually (market value ca. $20 billion), and bring very significant associated 

benefits via reduction in CO2 emission [4]. 

Thermoelectric generators (TEGs), which are capable of harvesting waste heat and converting this thermal 

energy into electricity, have the potential to contribute significantly to the energy supply by reducing the 

inefficiency of current methods and reducing the dependency on fossil fuels. Based on the Seebeck effect, TEGs 

are formed by connecting n-type semiconductor materials and p-type semiconductor materials electrically in 

series and thermally in parallel across a temperature gradient to allowing current flow between the two legs 

[5,6]. Compared to other energy harvesting technologies, TEGs offer a simple configuration, maintenance-free 

solid-state operation, and lifetime high reliability that often significantly exceed those of the devices they power 

[7]. Despite its great potential, the relatively low energy conversion efficiency has limited the usage of TEG to 

applications such as electricity generation in extreme environments, waste heat recovery from automobile and 

industrial sites, and off-grid power supply [8]. To overcome this limitation, material and geometrical design 

optimisation have been researched extensively as the two main approaches to improve the TE efficiency. 

Developing materials with better thermoelectric properties (evaluated by the figure-of-merit, 𝑍𝑇) has been the 

main driving force in the TE society over the past decade [9,10]. Several material engineering strategies such as 

carrier concentration optimisation, nanostructuring, and band engineering have been proposed and materialised 

in significantly improved 𝑍𝑇 values [11,12]. Materials including SnSe [13,14], PbTe-SrTe [15], and mosaic 

crystals [16,17] have all been reported to have 𝑍𝑇 larger than 2, showing encouraging prospects for the large 

scale application of TEGs. With high performing TE materials being developed, the vital task shifts to the 

adequate translation of such high material properties into the actual performance of the TEG [18]. Despite the 
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exceptionally high efficiency of ca. 12% reported on a bismuth telluride/skutterudite segmented module [19], 

the research on this aspect is still lagging. It is rather rare for any TEG to demonstrate high efficiency, even 

when superior TE materials are integrated [12]. The main reason is the fact that output power of a TEG relies 

not only on the performance of the TE materials, but also critically on the TEG design including its geometrical 

configuration, contact resistance and its coupling with heat source/sink as well as environmental working 

conditions, which demands a comprehensive and holistic consideration in TEG design and optimisation [18,20].  

Considering such complexity in TEG design, dedicated optimisation methods are preferred over the 

conventional analytical approach to perform optimisation. A simplified conjugate-gradient method (SCGM) 

was proposed by Liu et al. to realize the parametric optimisation for both TEG power and efficiency [21]. The 

widely used Taguchi method was also adopted by Chen et al. in TEG system to find the optimum conditions for 

maximizing the performance [22]. He et al. introduced a Hill-climbing algorithm to achieve a maximum power 

output [23]. More recently, genetic algorithm (GA), a subset of evolutionary computation in artificial 

intelligence (AI), has also been extensively explored for the application in TEG design. GA is a derivative-free 

optimisation method which is an appealing option for solving optimisation problems. It uses stochastic and 

direct-search methods to find good approximate solutions to complex problems with little to no prior knowledge 

of the optimisation problem. Ge et al. employed a non-dominated sorting genetic algorithm (NSGA-II) to 

identify the best geometric ratio for a segmented TEG [24]. Chen et al. applied the multi-objective genetic 

algorithm (MOGA) to determine the optimum leg length and area of thermoelectric elements based on a constant 

volume [25]. A similar algorithm was adopted by the same group to maximise the power of a segmented 

skutterudite TEG under different temperatures [26].  

However, the performance of any of these optimisation methods is critically dependent on the coupled TEG 

model to accurately and efficiently identify the power output of TEGs. This is particularly challenging 

considering the non-linear thermoelectric effects and the intricate inter-dependence of each design parameter 

[27,28]. In general, TEG models can be established through both theoretical and numerical approaches. Table 1 

provides a list of reported works based on these two approaches. For example, an early theoretical model 

proposed by Min et al. [29] investigated the effect of thermoelement length on the module’s coefficient of 

performance. Gou et al. [30] developed a theoretical system model for a low-temperature waste heat 

thermoelectric generator setup. Newbrook et al. [31] built a simplified theoretical model for performance 

optimisation of a thin film based TEG. Although these theoretical models enable quick estimation of the TEG 

performance, the accuracy is limited by their grossly simplified assumptions and difficulty to incorporate related 

thermoelectric effects (e.g. Thomson effect) [32]. Numerical model based simulation also prevail due to its 

superiority in solving differential equations and ease of use [23]. Suter el al. [33] implemented a heat transfer 

model coupling one-dimensional (1-D) conduction through the thermoelement legs to study a thermoelectric 

stack. Similar 1-D model was also adopted by Shen et al. [32] to analyse the TEG performance with temperature-

dependence of TE materials considered. Zhu et al. also used a similar model to investigate and optimise the 

performance of a segmented TEG [34]. However, most of these self-programmed models are limited to 1-D and 

certain TEG structures. Three-dimensional (3-D) modelling techniques are available in commercial software 

(e.g. COMSOL and ANASYS) which enable simultaneous incorporation of all thermoelectric effects and can 

provide high prediction accuracy for TEG optimisation [35]. For example, a 3-D ANASYS TEG model was 

coupled with the MOGA in both works report by Chen et al. [25,26], demonstrating very good agreements with 

experimental results. Meng et al. [36] build up a TEG model in COMSOL as the direct problem solver to 

facilitate the multi-objective optimisation of a thermoelectric energy conversion-utilization system. Ge et al. 

applied a 3-D COMSOL model in their evolutionary algorithm based optimisation of a segmented TEG [24]. 

The simplified conjugate-gradient method proposed by Liu et al. [21] was also coupled with a COMSOL based 

TEG model. By allowing simultaneous coupling of nearly all related TE effects, these models have superior 
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reliability in calculating TEG power performance. Nevertheless, such high accuracy for 3-D models comes at a 

cost of high computational demand. For example, tens of thousands of 3-D simulations are normally required 

in GA to optimise the design of TEG [25]. Moreover, this optimisation is only limited to one operating condition 

(e.g. temperature difference or heat flux). When optimisations under various conditions are required to match 

different applications, the computational demand can be prohibitive for its wide adoption for TEG optimisation 

applications. Modelling method that combines both high prediction accuracy and fast speed is therefore key for 

TEG design and optimisation. 

 

Table 1 List of a literature review of TEG forward modelling methods. 

Forward modelling method TEG structure Ref 

Theoretical model Bulk [29] 

Theoretical model Bulk [30] 

Theoretical model Thin film [31] 

Numerical model (1-D) Bulk [32] 

Numerical model (1-D) Bulk [23] 

Numerical model (1-D) Bulk (stack) [33] 

Numerical model (1-D) Bulk (segmented) [34] 

Numerical model (3-D, ANSYS) Bulk [35] 

Numerical model (3-D, ANSYS) Bulk [25] 

Numerical model (3-D, ANSYS) Bulk (segmented) [26] 

Numerical model (3-D, COMSOL) Bulk (two-stage) [36] 

Numerical model (3-D, COMSOL) Bulk (segmented) [24] 

Numerical model (3-D, COMSOL) Bulk (two-stage) [21] 

Deep learning is a subset of machine learning technology with most of its models based on artificial neural 

networks (ANNs). It has received great attention world-wide for its efficiency in analysing a vast number of 

datasets and its revolutionary impact to the field of computer vision [37,38] and speech recognition [39]. 

Recently, deep learning has been proposed to replace the conventional intuition based design process in nano-

photonics [40,41], providing accurate and efficient design of optical storages [42], metasurfaces [43,44], and 

nanostructured colour filters [45,46]. In the energy sector, deep learning has been extensively used to model the 

energy consumption to forecast the energy demand [47,48] and electricity consumption [49]. It has also found 

application in solid-state systems to discover and predict the performance of new materials due to its outstanding 

capability of finding optimal solution from enormous data with much lower demand on computational resources 

[50,51]. Several pioneering works have also been reported on using machine learning to facilitate research on 

thermoelectric materials [52,53]. The idea of this data-driven approach is to predict the results based on 

approximation without explicitly solving the question. This is particular useful to model systems that involve a 

large number of parameters with complicated relations where analytical approaches are not readily available. 

Before the ANNs can perform the intended forward modelling, a training process needs to take place in which 

a dataset is required. This dataset, which normally involves a large number of input and output relations, can be 

generated by either numerical simulation or experimental results. However, this is a one-time investment and 

no significant computation will be needed once the network is properly trained. Despite such advantages, the 

application of deep learning in the forward modelling of TEG has never been reported. 

This work reports the first ever deep learning based forward modelling of TEG using fully-connected ANNs 

that demonstrates both high accuracy and efficiency. The novel neural network can be used to predict TEG 

performance under different operating conditions (i.e. constant temperature difference and constant heat flux) 
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without the need of prior knowledge to the thermoelectric device. After training using a dataset generated from 

3-D TEG model based on COMSOL simulations that take into account of the non-linear thermoelectric effects, 

temperature-dependent thermoelectric material properties, electrical contact resistance, and heat transfer with 

the ambient environment, the ANN is able to learn the complex underlying relations in the dataset and perform 

predictions in an accurate and fast manner. In addition, the application of such ANN in TEG design optimisation 

is also presented for the first time by coupling it with genetic algorithm. When multiple optimisations under 

different operating conditions are required, our ANN-enabled optimisation demonstrates superior cost-

effectiveness comparing against the conventional 3-D modelling enabled optimisation, suggesting a significant 

saving of computational time and energy. 

2. Method 

2.1. Physical model and boundary conditions 

Fig. 1a illustrates the TEG model investigated in this work, which contains a pair of n-type and p-type 

semiconductors. The thermoelectric materials used in this work are Bi2Te2.7Se0.3 for the n-type leg and 

Bi0.5Sb1.5Te3 for the p-type leg. The interconnect and capping materials are copper and quartz glass, respectively. 

The detailed thermoelectric properties such as Seebeck coefficient (𝑆), electrical and thermal conductivities (𝜎 

and 𝑘) and 𝑍𝑇 values of both materials are adopted from past studies [54,55] and presented in Fig. 1b – 1e. The 

correlations of the material properties as a function of temperature are tabulated in Table S1 in the 

Supplementary Information. 

 
Fig.1. (a) Schematic of the singe-pair thermoelectric generator modelled in this study. Temperature dependent (b) Electrical 
conductivity, (c) Seebeck coefficient, (d) thermal conductivity and (e) ZT of the n-type and p-type semiconductors used for 

the thermoelectric generator. Data generated from [54,55]. 

The thermal boundary conditions are set to a constant cold-side temperature (𝑇𝐶) of 300 K, and a convectional 

heat flux on all open internal surfaces with a heat transfer coefficient of 1 mW/(cm2·K) and external temperature 

of 293.15 K to include surface heat convection to air [56]. For electrical boundary conditions, the TEG model 

is connected to an external load to form a circuit. The inlet and outlet of the metal substrate serve as a terminal 

(variable V) and the ground (V = 0 V) for the model.  
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The operating conditions are of paramount importance for TEG performance. Generally, TEGs can be 

operated under the condition of either constant temperature difference or constant heat flux. Both conditions are 

investigated separately in this work by applying a constant hot-side temperature (𝑇ℎ) and constant heat flux 

density (𝑄𝑖𝑛 𝐴⁄ ). Electrical contact resistance (𝑅𝐶) , a crucial factor for TEG [57], was included in the model by 

introducing a contact resistivity (𝜌𝐶) between the thermoelectric material and the interconnect interfaces. The 

effect of varying geometrical parameters including the filling factor (𝐹𝐹), height of the TEG leg (𝐻𝑇𝐸), height 

of the interconnect (𝐻𝐼𝐶), and the widths of the n-type and p-type legs (𝑊𝑛 and 𝑊𝑝) on the TEG performance 

are investigated.  

2.2. ANN dataset generation 

Simulations based on the thermoelectric module in the COMSOL Multiphysics® software were used in this 

work to generate dataset for neural network training. This commercial simulation tool was chosen because of 

its high prediction accuracy and versatility in simulating different physical TEG models (e.g. segmented, 

asymmetrical). The simulated device is a single thermocouple shown in Fig. 1a. The details of the governing 

equations for this TEG model are provided in the Supplementary Information. Two datasets concerning the 

different operating conditions are generated separately. For each dataset, 5,000 random values were generated 

uniformly across the range for each parameter. The resolution of each parameter value is listed in Table 2. The 

distribution of each parameter is presented in Fig. S1 and Fig. S2 in the Supplementary Information.  
 

Table 2 Ranges and resolutions of the geometrical parameters and operating conditions used in this work. 

 

The obtained 5,000 parameter sets were subsequently simulated in COMSOL to obtain TEG power 

performance. Two performance factors, maximum output power density (𝑃𝐷𝑚𝑎𝑥) and efficiency (𝜂), were 

extracted from the simulation. For each parameter set, the electrical terminal was connected directly to a load 

resistance and swept from 1/100 to 100 times the internal resistance. The maximum output power was then 

extracted from a parabolic fit of the output power against the current out as shown in Fig. S3. The efficiency 

was calculated as the percentage ratio between the maximum output power and the input heat power.  

The impact of mesh sizes on the simulation accuracy was evaluated by simulating the same parameter set 

with difference meshs as shown in Fig. S4. The results showed that the maximum output power obtained from 

a “Finer” (6,824 elements) and “Extremely Finer” (60,236 elements) configurations are almost identical with 

0.09% difference. Finer mesh configuration was therefore employed to simulate all parameter sets for 
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minimizing computational time while maintaing the accuracy. The ANN dataset generation was completed after 

the simulated TEG power performance were included. The distributions of the power performance in the two 

datasets can be found in Fig. S1 and Fig. S2. 

2.3. ANN configuration and training 

The configuration of the forward modelling network adopted in this work is shown in Fig. 2. The network 

was constructed by fully connecting the input layer of geometrical parameters (𝐹𝐹, 𝐻𝑇𝐸 , 𝐻𝐼𝐶 , 𝑊𝑛 , 𝑊𝑝) and 

operating conditions (𝜌𝐶, 𝑄𝑖𝑛 𝐴⁄  or 𝑇ℎ) with output layer of power performance (𝑃𝐷𝑚𝑎𝑥 and 𝜂) through several 

hidden layers. Prior to training, a loss function must be established to allow back propagation. The loss function 

was defined as the mean squared error (MSE) between the predicted power performance and the true power 

performance (i.e. results from COMSOL simulation). In the training process, the datasets were divided into 

three sub-datasets for training (4,000), validation (500) and testing (500) purposes. The training data were fed 

to the ANN to optimise the network by updating the weights and bias of each neuron through back propagation; 

validation data were used to examine the network, serving as a check of the training and an indicator for any 

overfitting or under-fitting behavior during the training process; test data were completely new data to the 

network and were used to test the prediction accuracy of the network after training. All neural network 

algorithms were developed via the Python platform using the Pytorch module. Detailed information for the 
training process can be found in the Supplementary Information. 

 
Fig.2. Architecture of the forward modelling neural network for predicting power performance of the TEG model. The input 

layer contains geometrical parameters (𝐹𝐹, 𝐻𝑇𝐸, 𝐻𝐼𝐶, 𝑊𝑛, 𝑊𝑝) and operating conditions (𝜌𝐶, 𝑄𝑖𝑛 𝐴⁄  or 𝑇ℎ). The output layer 

contains power performance values (𝑃𝐷𝑚𝑎𝑥 and 𝜂). 
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2.4. Genetic algorithm 

Genetic algorithm (GA) was adopted in this work for geometrical parameter optimisation. Prior to the 

optimisation, the operation conditions (𝜌𝐶 , 𝑄𝑖𝑛 𝐴⁄  or 𝑇ℎ) can be freely selected to reflect the best matching 

practical scenarios. The optimisation flow chart is illustrated in Fig. 3. The optimisation is a refined iterative 

process in which an elite percentage of the geometrical parameter sets (𝐹𝐹, 𝐻𝑇𝐸, 𝐻𝐼𝐶, 𝑊𝑛, 𝑊𝑝) are retained 

through each iteration, allowing the samples to genetically evolve until the best option has been identified. A 

population size (i.e. candidate designs) of 100 was defined. Within each generation, 100 designs were firstly 

predicted by the ANN or COMSOL to obtain 100 power performance values. These values were compared with 

each other while the designs with highest power performances were selected into the next generation. Another 

100 candidate designs were subsequently generated based on the best solution obtained in the previous 

generation with certain mutations and crossovers. In this way, the process is evolved gradually toward better 

solutions. Details about GA in this work can be found in Supplementary Information.  

 

Fig.3. Optimisation flow chart of the genetic algorithm process. Both neural networks and COMSOL simulation have been 

used and compared for fitness function calculation. 
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3. Results and discussion 

3.1. ANN performance under constant temperature difference (𝑇ℎ) 

We will first evaluate the prediction performance of ANN for TEG operating under constant temperature 

difference. The selection of the hyperparameters (i.e. number of hidden layers and neurons per layer) is crucial 

to the performance of the network. A systematic study was therefore conducted to investigate the impact of the 

hyperparameters for this ANN. Fig. 4a presents the validation loss curves over epochs for neural networks with 

the neuron numbers per layer ranging from 20 to 400 and fixed layer number of 5 (Detailed investigation of 

layer numbers can be found in Supplementary Information). The decrements of the loss curves against epochs 

indicate the reduction of MSEs through back propagation. No overfitting was observed for all training 

processes. After 2000 epochs, all MSEs are stabilized, signaling the completion of the training process. It can 

be observed that an increase of the neuron numbers from 20 to 400 leads to a lower MSE, suggesting the 

increasing complexity could be beneficial to the ANN performance. This needs to be confirmed by predicting 

the parameter sets in the test dataset which the networks have never seen before. Here we define the relative 
error between the ANN predicted and true power performance (i.e. performance obtained from COMSOL 

simulation) to compare the performance of the ANN. The relative error can be calculated as: 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑃𝑡𝑟𝑢𝑒 − 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| 𝑃𝑡𝑟𝑢𝑒⁄  (5) 

where 𝑃𝑡𝑟𝑢𝑒  is the power performance obtained from COMSOL simulation which include both power 𝑃𝐷𝑚𝑎𝑥 

and 𝜂. 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the power performance obtained from ANN. The distribution and average of the relative 

error as a function of layer numbers are plotted in Fig. 4b. It is evident that the average relative error in the test 

dataset decreases significantly from 0.044 to 0.019 as neurons per layer increases from 20 to 400. The prediction 

accuracy of the ANNs can then be calculated by  

 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟) × 100% (6) 

A relative error of 0.019 therefore indicates a very high prediction accuracy over 98%. The distribution of the 
relative error also suggests that a majority of the errors are within 3%, indicating an extremely high prediction 

accuracy of the network. Therefore, the network of 5 layers and 400 neurons per layer was adopted for this 

operating condition. 
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Fig.4. The neural network training for forward modelling TEG power performance under the operation condition of constant 
temperature difference. The (a) validation loss curves and (b) the histogram of the probability and average relative errors of 
the ANNs with different neurons per layer. 

Fig. 5 plots the comparison between the true (simulated) power performance of 𝑃𝐷𝑚𝑎𝑥 and efficiency values 
in the test dataset with the ones predicted by the ANN. It can be clearly observed that the high prediction 

accuracy of our ANN prevails over three orders of magnitude, producing a high coefficient of determination 

value (R2) of over 0.999 for both 𝑃𝐷𝑚𝑎𝑥 and efficiency. This outstanding prediction accuracy over a large range 

is particular useful for its application in TEG optimisation. 

 
Fig.5. Scatter plot of the ANN predicted and the true (simulated) (a) 𝑃𝐷𝑚𝑎𝑥 and (b) efficiency 𝜂  under the operating 

condition of constant temperature difference. 

Once the forward TEG model is established, it can be used to investigate the impact of different parameters 

on the performance of TEG. As an example, the dashed lines in Fig. 6 presents the ANN predicted  𝑃𝐷𝑚𝑎𝑥 and 

𝜂 values as a function of 𝐻𝑇𝐸 and 𝐹𝐹 while the 𝐻𝐼𝐶, 𝑊𝑛 and 𝑊𝑝 values were fixed at 1.5 mm, 2.5 mm and 2.5 

mm, respectively. Under the operating condition of 𝑇ℎ = 400 𝐾 and 𝜌𝐶 = 10−8 Ω ∙ 𝑚2, larger 𝐹𝐹 is favourable 

for achieving larger 𝑃𝐷𝑚𝑎𝑥 as shown in Fig.6a. In our model, changing of 𝐹𝐹 is achieved by varying the total 

area of the model to ensure the 𝑊𝑛 amd 𝑊𝑝 remain unchanged. A large 𝐹𝐹 implies a small TEG area which 

leads to reduced interconnect electrical resistance and increased 𝑃𝐷𝑚𝑎𝑥 . The dependence of 𝐻𝑇𝐸  is more 

complicated. Small 𝐻𝑇𝐸 limits the power performance with small temperature gradient over the TE legs, while 

large 𝐻𝑇𝐸 deteriorates the power by increasing the electrical resistance. This results in an optimised 𝐻𝑇𝐸 for 

each 𝐹𝐹. On the other hand, the efficiency 𝜂 undergoes different trends with varying 𝐻𝑇𝐸 and 𝐹𝐹 as shown in 

Fig.6b. Although a large 𝐹𝐹 is still advantageous, its benefit reduces at larger 𝐹𝐹 values due to the concurrently 

increased 𝑄𝑖𝑛 . Unlike 𝑃𝐷𝑚𝑎𝑥, higher 𝜂 can be achieved with larger 𝐻𝑇𝐸  values when 𝐹𝐹 is larger than 0.1. 

COMSOL simulations were also conducted for the same parameter sets (dots in Fig. 6) and achieved high 

consistency with the results generated by ANN as shown in Fig. 6. This suggests that our ANN can be used to 

investigate TEG power dependence on different parameters with high accuracy.  
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Fig.6. (a) 𝑃𝐷𝑚𝑎𝑥 and (b) efficiency 𝜂 obtained from ANN (dashed lines) and COMSOL simulation (dots) as a function of 

𝐻𝑇𝐸 and 𝐹𝐹. The operating condition chosen is 𝑇ℎ of 400 K and 𝜌𝐶 of 10-8 Ω·m2. The 𝐻𝐼𝐶, 𝑊𝑛 and 𝑊𝑝 values were fixed 

at 1.5 mm, 2.5 mm and 2.5 mm, respectively. 

Once the network is trained and verified, it can be used for design optimisation. Two separate optimisations 
have been conducted to maximize power and efficiency respectively. In both cases, the operating condition of 

𝑇ℎ = 400 𝐾 and 𝜌𝐶 = 10−8 Ω ∙ 𝑚2, were chosen as an example. Fig. 7a and Fig.7b plot the GA convergence 
curves for power and efficiency optimisations, respectively. Both processes converge well after ca. 100 

generations. A maximum power density of 70 mW/cm2 was identified (Fig. 7a) while the maximum efficiency 

was found to be 3.2% (Fig. 7b). It is clear the designs (shown in the inset) reaching those two optimised values 

are significantly different.  

To verify the effectiveness of our GA optimisation process, parameter sweeps of both 𝐻𝑇𝐸 and 𝐹𝐹 were 

conducted as shown in Fig. 7c to 7f. Under a constant 𝑇ℎ of 400 K, the optimised 𝐻𝑇𝐸 is 1.3 mm to achieve the 

largest 𝑃𝐷𝑚𝑎𝑥. This is confirmed by sweeping its value from 0.5 mm to 5 mm and evaluating the performance 

of the TEG by ANN and simulation as shown in Fig. 7c. On the other hand, maximum efficiency 𝜂 requires the 

optimised 𝐻𝑇𝐸 to reach the upper limit (5 mm) of the pre-set range (Fig. 7d). The discrepancy of the optimised 

𝐻𝑇𝐸 values can be explained by the reducing 𝑄𝑖𝑛 as 𝐻𝑇𝐸 increases, leading to higher 𝜂 but smaller 𝑃𝐷𝑚𝑎𝑥. In 

both cases, results obtained from ANN (black lines) are highly consistent with that from simulation (blue dots). 

The optimisation of 𝐹𝐹 was also investigated. ANN coupled GA has found the largest 𝐹𝐹 (0.95) in the pre-set 

range for best 𝑃𝐷𝑚𝑎𝑥. Increasing 𝐹𝐹 results in larger 𝑃𝐷𝑚𝑎𝑥 (shown in Fig. 7e), which is largely due to the 

reduction of the TEG electrical resistance. Similarly, a large 𝐹𝐹 is also required for high efficiency 𝜂 (shown 

in Fig. 7f) as the 𝑃𝐷𝑚𝑎𝑥 increment from larger 𝐹𝐹 outweighs the increment of 𝑄𝑖𝑛. Again, all results generated 

by ANN illustrate good matches with that from the simulation, further confirming the accuracy of our ANN.  
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Fig.7. (a) Convergence curve of genetic algorithm for (a) 𝑃𝐷𝑚𝑎𝑥 and (b) 𝜂  under an operating condition of 𝑇ℎ is 400 K and 

𝜌𝐶 is 10-8 Ω·m2. Fig.12. Comparison of 𝑃𝐷𝑚𝑎𝑥 and efficiency 𝜂 obtained from ANN (black line) and COMSOL simulation 

(blue dots) as a function of (c, d) 𝐻𝑇𝐸 and (e, f) 𝐹𝐹. The optimised values are listed in the inset table and labelled by the 
red dots. 

The key advantage of the deep learning aided approach is its extremely high design efficiency. Here we 
provide a direct comparison between the developed ANN and the COMSOL simulation by coupling both 

approaches with GA to execute the same optimisation tasks. Fig.8a and 8b present the optimised 𝑃𝐷𝑚𝑎𝑥 and 

efficiency 𝜂 for different 𝑇ℎ  conditions. Both optimised values increase with larger 𝑇ℎ . It is evident that all 
optimised values from the two approaches are almost identical with similar geometrical parameters obtained 

(listed in Table S3). However, the average time for COMSOL simulation coupled optimisation was 57,600 s 

(ca. 16 hrs) while it only took an average of 40 s for ANN to complete one optimisation. Although ANN requires 

a one-time investment for dataset generation (125,106 s, ca. 35 hrs) and network training (248 s), it is a much 

more cost-effective way if optimisations under multiple 𝑇ℎ conditions are required. Figure 8c plots the time 

required for both methods to perform multiple number of optimisations. It is clear that the amount of time saved 

by using ANN easily recovers the up-front computational time for the network when more than 2 optimisations 

are needed. Similarly, in Fig. 8d and 8e, optimisation against different 𝜌𝐶 results in good agreements between 

the ANN and COMSOL simulation coupled optimisations. However, the former approach only requires an 

average of 35 s while the latter demands 40,000 s (ca. 11 hrs) for each optimisation. Significant time saving can 
be achieved if more than 3 optimisations are required as shown in Figure 8f. In both cases, improvement of 

computational efficiency of over 1,000 times were obtained. This superior design efficiency offered by ANN 

represents not only a significant saving of computational time but also computational energy.  
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Fig.8. Optimisation of (a) 𝑃𝐷𝑚𝑎𝑥 and (b) efficiency 𝜂 by GA coupled with ANN (blue dots) and COMSOL simulation (red 

dots) as a function of 𝑇ℎ, (c) required optimisation time of both methods for different 𝑇ℎ conditions; optimisation of (d) 

𝑃𝐷𝑚𝑎𝑥 and (e) efficiency 𝜂 by GA coupled with ANN and COMSOL as a function of 𝜌𝐶, (f) required optimisation time of 

both methods for different 𝜌𝐶 conditions.  

3.2. ANN performance under constant heat flux 

We now turn our focus on the operating condition of constant heat flux. As the efficiency can be directly 

converted from power output, only 𝑃𝐷𝑚𝑎𝑥 will be presented and discussed in this section. The hyperparameter 

optimisation was also conducted by varying the neuron numbers per layer.  As shown in Fig. 9a, the stabilized 

validation loss is smallest for network with most neurons per layer of 400. Similar to the previous condition, 

relative error was found to decrease from 0.0424 to 0.0177 with neurons per layer increasing from 20 to 400 as 

shown in Fig. 9b. This 5-layer and 400 neurons per layer network with a prediction accuracy over 98% was 

adopted for this condition. 

 
Fig.9. The neural network training for forward modelling TEG power performance. The (a) validation loss curves and (b) 
the histogram of the probability and average relative errors of the ANNs with different neurons per layer. 
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Fig. 10 compares the maximum power output 𝑃𝐷𝑚𝑎𝑥 from the ANN with the true (COMSOL simulated) 

values in the test dataset. Again, high consistency can be observed between the true values and the ANN 

predicted values with a high coefficient of determination value (R2) of 0.99943, showing great prediction 

accuracy over the entire power range.  

 
Fig.10. Scatter plot of the ANN predicted and the true (simulated) maximum power density under the operating condition 
of constant heat flux. 

The analytical study under the constant heat flux condition were also conducted using this network to 

investigate the impact of 𝐻𝑇𝐸  and 𝐹𝐹 . As an example, the operating condition was chosen to be 𝑄𝑖𝑛 𝐴⁄ =
300 𝑚𝑊 𝑐𝑚2⁄  and 𝜌𝐶 = 10−8 Ω ∙ 𝑚2 while the 𝐻𝐼𝐶, 𝑊𝑛 and 𝑊𝑝 values were fixed at 1.5 mm, 2.5 mm and 2.5 

mm, respectively. Fig. 11 presents the 𝑃𝐷𝑚𝑎𝑥 as a function of 𝐻𝑇𝐸 and 𝐹𝐹. It is clear that 𝑃𝐷𝑚𝑎𝑥 increases with 

increasing leg length due to larger temperature gradient created, implying an increase in 𝜂 as well. However, 

the rate of increment decreases at higher 𝐻𝑇𝐸 values due to the adverse impact of larger electrical resistance. 

On the other hand, smaller 𝐹𝐹 is preferred to achieve high power performance. A smaller 𝐹𝐹 implies a larger 

TEG area which leads to a larger temperature difference and 𝑃𝐷𝑚𝑎𝑥. In all cases, the simulation results (dots in 

Figure 11) show high consistence with the results generated by ANN (dashed lines in Figure 11).  

 

Fig.11. 𝑃𝐷𝑚𝑎𝑥 obtained from ANN (dashed lines) and COMSOL simulation (dots) as a function of 𝐻𝑇𝐸 and 𝐹𝐹. The 

operating condition chosen is 𝑄𝑖𝑛 𝐴⁄  of 300 mW/cm2 and 𝜌𝐶 of 10-8 Ω·m2. The 𝐻𝐼𝐶, 𝑊𝑛 and 𝑊𝑝 values were fixed at 1.5 

mm, 2.5 mm and 2.5 mm, respectively. 
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. 

After establishing the prediction accuracy of our network, we will now evaluate the application of the ANN 

in TEG optimisation by coupling it with GA. Similar operating condition of 𝑄𝑖𝑛 𝐴⁄ =
300 𝑚𝑊 𝑐𝑚2⁄  and 𝜌𝐶 = 10−8 Ω ∙ 𝑚2 were chosen as an example for optimisation. Fig. 12a shows the 

convergence curve of GA for 𝑃𝐷𝑚𝑎𝑥  which converges after 50 generations. The optimised geometrical 

parameters are listed in the inset table. Sweepings of 𝐻𝑇𝐸 and 𝐹𝐹 were subsequently performed to verify the 

optimised values. Fig. 12b displays the sweep of 𝐻𝑇𝐸. A shorter leg could lead to a beneficially smaller electrical 
resistance but also an adversely decreased temperature difference under this operating condition. It can be 

observed that the optimised value of 4.81 mm has been correctly identified by our GA. The sweeping of FF is 

plotted in Fig. 12c. A large 𝐹𝐹 implies a smaller TEG area which leads to a smaller temperature difference and 

maximum power output. On the other hand, a very small 𝐹𝐹 could induce large interconnect resistance that also 

deteriorates the power. An optimised 𝐹𝐹 of 0.11 was identified and was also verified by sweeping using both 

ANN and simulation. In addition, COMSOL simulations were also conducted using the same parameter sets. 

The simulated results (dots) show great match with the predicted results from ANN (line), further confirming 

the high accuracy of our network. 

 
Fig.12. (a) Convergence curve of genetic algorithm for maximum power output under an operating condition of 𝑄𝑖𝑛 𝐴⁄  is 

300 mW/cm2 and 𝜌𝐶 is 10-8 Ω·m2. Comparison of 𝑃𝐷𝑚𝑎𝑥 obtained from ANN (black line) and COMSOL simulation (blue 

dots) as a function of (b) 𝐻𝑇𝐸 and (c) 𝐹𝐹. The optimised values are listed in the inset table and labelled by the red dots. 
 

Efficiency comparison between the developed ANN and the conventional simulation was also conducted 

under the constant heat flux condition. Fig.13a and 13b present the optimised 𝑃𝐷𝑚𝑎𝑥 under different 𝑄𝑖𝑛 𝐴⁄  and 

𝜌𝐶 values. As expected, larger 𝑄𝑖𝑛 𝐴⁄  and smaller 𝜌𝐶 can produce larger optimised 𝑃𝐷𝑚𝑎𝑥. Highly consistent 
optimised values were obtained from the ANN and COMSOL simulation approaches (detailed list of optimised 

parameters can be found in Supplementary Information). The average optimisation time for ANN coupled GA 

is 40 s while is 60,000 s (ca. 16 hrs) for COMSOL coupled GA, representing a saving of computational time 

and resources over 1,000 times. This indicates significant time-savings when more than 2 optimisations are 

required (shown in Fig.13c). 
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Fig.13 𝑃𝐷𝑚𝑎𝑥 optimised by GA coupled with ANN (blue dots) and COMSOL simulation (red dots) as a function of (a) 

𝑄𝑖𝑛 𝐴⁄  and (b) 𝜌𝐶; (c) required optimisation time of both methods for different number of 𝑄𝑖𝑛 𝐴⁄  conditions. 

The successful implementation of ANN for TEG power performance prediction in this work has certainly 
suggested ANN as a powerful tool to assist future investigation and design of thermoelectric related devices. 

One main advantage of this technology is the needlessness of any prior knowledge to the device as the ANN 

will “learn” from the dataset. The quality of the dataset is therefore key to the ANN performance. In this work, 

3-D COMSOL simulation was used to generate the dataset as it takes into account most of the non-linear 
thermoelectric effects which are normally ignored in other modelling methods due to complexity. This provided 

simulation results that were close to real devices. Once trained using a dataset with limited number of parameter-

performance relations, this ANN can “learn” the “knowledge” and generate unlimited performance predictions 

with high accuracy. This is beneficial for analysing the relations between each parameter and the TEG 

performance. Although this work used a conventional TEG model as a demonstration, the ANN can be applied 

to investigate more complicated TEG structures (e.g. segmented, asymmetrical and multi-stage) as well as 

hybrid devices such as solar-TEG where parameter-performance relations are not available. It is also worth 

pointing out the limitation of our network. Even though our ANN has proved to be cost-effective in design 

when multiple optimisations are required, the up-front investment on computational resource is still high (i.e. 

ca. 35 hrs in this work). This is mainly due to the time needed to generate the dataset using COMSOL. It can 

be observed from Fig. S1h-I and Fig. S2h-i that the outputs of the dataset (i.e. TEG power performance) are not 
uniformly distributed as the inputs. In particular, number of outputs at high and low ends are much less than 

those in the middle due to the non-linear relation between the inputs and outputs. A relatively large dataset (i.e. 

5,000 in this work) is necessary to ensure high prediction accuracy over the entire TEG performance range 

(shown in Fig. 5 and Fig. 10). Further improvements in both the network design and training process are 

required to reduce the need for such large dataset. 

4. Conclusions 

The application of the artificial neural network, a deep learning technique, in forward modelling of the power 

performance of a thermoelectric generator has been demonstrated for the first time. After training using a dataset 

from 3-D COMSOL simulations, the neural networks demonstrate extremely high prediction accuracy over 

98% and are able to operate under both constant temperature difference and heat flux conditions while taking 

into account the electrical contact resistance, surface heat transfer and other thermoelectric effects. It can be 

used to replace the conventional theoretical and numerical modelling methods to predict and analyse the 

thermoelectric generator performance without the need of prior knowledge. Analytical studies using the 

developed networks have been successfully conducted to investigate the impact of different parameters to the  

power performance, and the results have shown high consistency with the those generated from COMSOL 

simulation. This method is also shown to be extremely efficient and cost-effective in TEG design optimisation 
when coupling with genetic algorithm. With almost identical optimised values obtained, our neural networks 

demonstrate superior optimisation efficiencies that are averagely over 1,000 times better than the COMSOL 

simulation coupled optimisation. The successful application of artificial neural networks reported here clearly 

points towards the capability of deep learning approach to be applied in modelling and optimisation of 

thermoelectric generators with different structures as well as energy harvesting technologies for other renewable 

energy sources such as solar and wind..  
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