Noname manuscript No.
(will be inserted by the editor)

Special Issue on Advances in Feature Engineering
Editorial

Tim Verdonck - Bart Baesens -
Maria Oskarsdoéttir -
Seppe vanden Broucke

Received: date / Accepted: date

Abstract In order to improve the performance of any machine learning model,
it is important to focus more on the data itself instead of continuously devel-
oping new algorithms. This is exactly the aim of feature engineering. It can
be defined as the clever engineering of data hereby exploiting the intrinsic
bias of the machine learning technique to our benefit, ideally both in terms of
accuracy and interpretability at the same time. Often times it will be applied
in combination with simple machine learning techniques such as regression
models or decision trees to boost their performance (whilst maintaining the
interpretability property which is so often needed in analytical modeling) but
it may also improve complex techniques such as XGBoost and neural networks.
Feature engineering aims at designing smart features in one of two possible
ways: either by adjusting existing features using various transformations or by
extracting or creating new meaningful features (a process often called “featur-
ization”) from different sources (e.g. transactional data, network data, time
series data, text data, etc.).

Keywords featurization - applied machine learning - interpretability - data
engineering

Tim Verdonck
Department of Mathematics, University of Antwerp
E-mail: tim.verdonck@uantwerp.be

Bart Baesens
Faculty of Business and Economics, KU Leuven

Maria Oskarsdéttir
Department of Computer Science, Reykjavik University

Seppe vanden Broucke
Faculty of Economics and Business Administration, Ghent University



2 Tim Verdonck et al.

1 Introduction

The main objective of machine learning is to extract patterns to turn data
into knowledge for decision making. Since the beginning of this century, tech-
nological advances have drastically changed the size of data sets as well as
the speed with which these must be analyzed. Modern data sets may have a
huge number of instances, a very large number of features, or both. In most
applications, data sets are compiled by combining data from different sources
and databases (containing both structured and unstructured data) where each
source of information has its strengths and weaknesses.

Before applying any machine learning algorithm, it is therefore necessary
to transform these raw data sources into applicable and meaningful features
that represent a certain property of the observations. Note that the features
typically appear as columns in the data matrix that is given to the machine
learning algorithm. This essential step, which is often referred to as feature
engineering is of utmost importance in the machine learning process. The
aim of feature engineering is twofold:

— Engineering (or preparing) the input data into features that the machine
learning algorithm can understand and hence fulfill its requirements.

— Engineering (or transforming) variables into features to help the machine
learning algorithms achieve better performance in terms of either predictive
performance, interpretability or both.

The success of machine learning often depends strongly on the success of
feature engineering. This is confirmed by Kaggle master Luca Massaron: The
features you use influence more than everything else the result. No algorithm
alone, to my knowledge, can supplement the information gain given by correct
feature engineering. Also Andrew Ng, founder of deeplearning.ai, has stated
that Applied machine learning is basically feature engineering.

It is clear from the definition that the feature engineering step may encom-
pass many different methodologies to reach its goals. Some feature engineer-
ing techniques rely mainly on domain knowledge, others on intuition or are
obtained through data analysis. Depending on the input data and available
features, other techniques might be more successful. The gained increase in
performance due to feature engineering is also sensitive to the choice of al-
gorithm that is applied afterwards. There is no gold standard containing the
best feature engineering techniques and therefore it is important to try out
various approaches on your data and observe their effect on model perfor-
mance. In general, the manual construction of features is often difficult and
time-consuming.

2 Feature Engineering: What and Why

Feature engineering techniques are typically applied after gathering and clean-
ing the input data. In the cleaning step, one typically deals with missing val-
ues, errors, outliers and duplicates. Note that some machine learners or data



Special Issue on Advances in Feature Engineering 3

scientists categorize certain cleaning steps (e.g. advanced anomaly detection
or imputation techniques) as feature engineering as well. There is also a dif-
ference between feature selection, feature extraction and feature engineering,
although they are sometimes used interchangeably. In the feature selection
step, redundant or unused features are removed and as a result a subset of the
original features is obtained. This can be done either before building the ma-
chine learning model or as part of the model building itself. Feature extraction
reduces the dimension of the data set by creating new features. In principal
component analysis for example, the new features are linear combinations of
the original ones. Such dimension reduction techniques (which transform the
original variables) are often also applied or investigated during the feature
engineering step. Many feature engineering techniques exist and it is not al-
ways clear which techniques fall under the definition of feature engineering
and which not.

3 Types of Feature Engineering

In what follows, we will give an overview of popular and often successful feature
engineering techniques, without claiming that this list is complete. In this
overview, we will also refer to the various articles that appear in this special
issue.

We will first discuss univariate and multivariate feature engineering tech-
niques for structured data. In these sections we focus on popular transforma-
tions and dimension reduction techniques. Note that structured data is data
that can be easily represented in a tabular format with the rows typically
representing the observations and the columns the variables or features. Then
we will discuss the construction of features based on domain knowledge and
some feature engineering techniques for time series data. We end this section
by describing feature engineering for unstructured data, such as network, text,
multimedia and geospatial data.

3.1 Univariate feature engineering

Univariate feature engineering for continuous variables can be handy for im-
proving symmetry, normality or model fit. In credit risk modeling for exam-
ple, a logarithmic transformation is often applied to size variables like loan
amounts, asset sizes and gross domestic product (GDP) since these variables
are typically non-negative and right skewed (Van Gestel et al, 2022). The
Box-Cox transformation is a well-known family of power transformation:

L a1 A#0
wa(x7A)_{lo§(x)A:O.

If A < 1 then large values of X are compressed, whereas small values are more
spread out and if lambda < 1, the inverse takes place. The first property makes



4 Tim Verdonck et al.

the power transformation interesting if the distribution of X is skewed to the
right, the second if X is skewed to the left (Which occurs less in practice). The
transformation f(z;A) is monotone increasing and differentiable with respect
to x and is monotone and continuous with respect to the parameter \. Box-
Cox can only be applied on strictly positive numbers. If this is not the case, the
data can first be shifted (adding a positive constant that makes all observations
positive). Alternatively, one can use the Yeo-Johnson power transformations,
which are defined as:

(1+ ) =1)/A, A#0, z 20,

) log(z + 1), A=0, 220,

z e flaA) = —((1=2)2A=1)/(2—= N, A\ #2, 2 <0,
—log(—z + 1), A=2 z<0.

The )\ parameter of the Box-Cox and Yeo-Johnson transformation is typi-
cally obtained using maximum likelihood, but can also be set based on expert
input or using experimentation (e.g., by optimizing the AUC).

Note that the maximum likelihood estimator is highly sensitive to outliers.
Therefore, Raymaekers and Rousseeuw (2021) propose in this special issue a
modification of both transformations as well as an estimator of the A parameter
that is robust to outliers.

Popular examples of univariate feature engineering for categorical data are
dummy coding, percentile coding, thermometer coding for ordinal categorical
variables (e.g., credit ratings), weights of evidence (WOE) coding, Owen Zhang
style leave-one-out encoding or hashing (the “hashing trick”) (Baesens et al,
2016).

In recent years, practitioners and scholars have also been adopting the
usage of representational learning techniques in order to transform categorical
variables (Guo and Berkhahn, 2016). Here, levels of a categorical variable are
mapped into a lower-dimensional (Euclidean) space, which describe the “entity
embeddings” of the categorical variable and are sparser than the representation
which would be obtained by simple one-hot dummy coding. The mapping itself
is typically learned by a neural network. The label can be used as a supervised
target, but unsupervised approaches can be used as well (t-SNE, discussed
below, for instance, can be regarded as an unsupervised approach to construct
an embedding as well). For a deeper discussion on this, we refer to Hancock’s
recent survey (Hancock and Khoshgoftaar, 2020).

3.1.1 Multivariate feature engineering

Principal component analysis (PCA) is a multivariate feature engineering tech-
nique that is aimed at reducing the dimensionality of the data by creating new
features that are linear combinations of the original variables. The idea of PCA
is to summarize the information in the large set of original variables by a small
number of new features called principal components (PCs), which maintain,
as much as possible, the variance in the original data. The PCs themselves are



Special Issue on Advances in Feature Engineering 5

uncorrelated and ordered such that the first few retain most of the variation
present in all of the original variables.

Essentially, PCA is a kind of matrix factorisation method where the idea
is to factorize or decompose a data matrix into a product of other matrices
which provide a more condensed, focused representation of the information in
the data. Besides PCA, other popular examples of matrix factorization meth-
ods are singular value decomposition (SVD), (non-negative) UV decomposi-
tion and tensor decomposition. Yet another example is Linear Discriminant
Analysis (LDA) which tries to find an optimal linear transformation of the
data such that each high dimensional observation is projected into a low di-
mension representation, while maintaining the original cluster structure and
achieving maximum class separability. The LDA method often boils down to
solving a trace-ratio problem to maximize the between-class scatter distance
while minimizing the within-class scatter distance. It was long assumed that
this problem has no closed-form solution, and one has to use time consuming
iterative algorithms. In their paper, Shi and Wu (2021) propose a closed-form
solution for the trace-ratio problem, and introduce two algorithms to solve it.

t-SNE stands for Distributed Stochastic Neighbor Embedding and was de-
veloped by Van der Maaten and Hinton (2008). Essentially t-SNE is also di-
mensionality reduction technique, comparable to PCA. Hence, it could also be
considered as a multivariate feature engineering alternative. However, PCA is
a linear dimension reduction technique that seeks to maximize variance and
preserves large pairwise distances. In other words, things that are different end
up far apart. This can lead to suboptimal reduction with non-linear data. On
the contrary, t-SNE seeks to preserve local similarities by focusing on small
pairwise distances. More specifically, t-SNE is a non-linear dimensionality re-
duction technique based on manifold learning. It assumes that the data points
lie on an embedded non-linear manifold within a higher-dimensional space. A
manifold is a topological space that locally resembles a Euclidean space near
each data point. Examples are a 2 dimensional manifold, locally resembling
a Euclidean plane near each point, or a 3D surface which can be described
by a collection of such 2 dimensional manifolds. A higher dimensional space
can thus be well “embedded” in a lower dimensional space. Other manifold
reduction techniques are multidimensional scaling, isomap, locally linear em-
bedding, auto-encoders and UMAP (Van Der Maaten et al, 2009). Especially
the latter has become a popular replacement of t-SNE in recent years.

In this special issue, Siirer et al (2021) present coefficient tree regression
(CTR), which discovers the group structure, engineers derived features accord-
ingly and fits the resulting regression model.

For removing redundant and irrelevant features in high-dimensional data,
Hancer (2021) present in this special issue an improved evolutionary wrapper-
filter approach which integrates an initialisation scheme and a local search
module based on fuzzy mutual estimator. The proposed approach yields a
lower computational cost and better classification performance.



6 Tim Verdonck et al.

3.2 Domain Specific Feature Engineering

Business problems in different industries typically require different features.
Therefore, domain or expert knowledge of the business problem is often im-
portant to create smart features that boost the performance of the machine
learning algorithm. Based on expert knowledge one can for example add in-
dicator features for a certain condition or construct a new interaction feature
by taking combinations of two or more existing ones.

As a concrete example, consider the problem of churn prediction for prepaid
contracts in Telco. Business experts know that a peak usage before the expiry
date is an early warning that a consumer is consuming all his/her remaining
credit and as thus an early warning for upcoming churn behavior. An example
of a red flag indicator that fraud investigators have found by working in the
field is severe car accident but no doctor present at the accident scene or two
insurance claims for severe surgery at the same day. An interesting feature
in human resources (HR) analytics is a binary indicator whether someone
recently changed his/her LinkedIn profile as this could be an early sign that
the employee is on the lookout for another job opportunity and hence at churn
risk.

A popular example of domain specific feature engineering are the RFM
features. RFM stands for Recency, Frequency and Monetary and has been
popularized by Cullinan (1977) in a marketing setting. The RFM features are
typically summarized from transactional data as follow: Recency measures the
time since the most recent transaction. Frequency measures the total number
of transactions in a given time span. And finally, monetary measures the value
of transactions within the period examined. Basically, the RFM famework
summarizes the transactions according to 3 dimensions. Each of these con-
structs can then be operationalized in various ways. For example, one can con-
sider the minimum/maximum/average/most recent monetary value of trans-
actions. Note that besides marketing analytics (Baesens et al, 2002; Blattberg
et al, 2008), these features have also been successfully used in fraud analytics
(Van Vlasselaer et al, 2015; Baesens et al, 2021).

Domain specific features can also be defined by considering combinations
or interactions of variables. An example could be in real estate analytics, where
a premium property feature can be defined based on the features number of
bedrooms (e.g., bigger than 3) and number of bathrooms (e.g. larger than 2).
At Kaggle competitions, it is often shown that combining certain pairs of vari-
ables or features yields more informative features than using them separately
in the model.

3.3 Feature Engineering for Time Series Data

Time series data is available in many domains such as finance, engineering,
health and economics. These data contain key information and are widely
used for forecasting (i.e. predicting future events and extrapolating how a sys-



Special Issue on Advances in Feature Engineering 7

tem evolves based on historical and current data). However, analyzing time
series is not a trivial exercise. Some popular forecasting techniques are Autore-
gressive Integrated Moving Average (ARIMA), Vector Autoregression (VAR)
and exponential smoothing. For more information, we refer to Hyndman and
Athanasopoulos (2018). Most machine learning algorithms cannot be directly
applied to time series data. A popular way to solve this issue is by transform-
ing the time series into a feature-vector representation and then applying a
traditional predictive model on this new representation. Setting this feature-
vector representation is a crucial step to learn from time series data and has
a major impact on the performance of the model. Constructing these features
manually is a very challenging and time-consuming task. Note that this fea-
ture engineering step can also improve the forecasting techniques that were
mentioned above.

In this special issue, Cerqueira et al (2021) present VEST (Vector of Statis-
tics from Time series), which is a framework for automatically extracting an
optimal representation from a univariate time series. This automatic feature
engineering approach first transforms the input time series into several distinct
representations, which are then summarized using statistics. After a feature
selection process, the final set of features across the available representations
is coupled with an autoregressive (AR) model.

Many real-world applications require analyzing several time series simul-
taneously. Such data are often collected using various sensors (e.g. measuring
temperature and pressure at different locations in a company or measuring
heart rate and blood oxygen of a person). In such settings, it is important that
some features are obtained by combining values from different series. Manual
feature engineering is even more intensive now and therefore De Brabandere
et al (2021) propose in this special issue an automated feature construction
system for multiple time series data, called TSFuse, which supports fusion and
explores the search space in a computationally efficient way.

3.4 Feature Engineering for Network Data

Similar techniques exist for networked data. Traditionally, instances in datasets
are treated as independent entities. However, in several instances it is appro-
priate to think of the instances as a network, having relationships or links
between them. Networks are a general language for describing and analyz-
ing entities with relations or interactions (Newman, 2018; Barabési, 2016).
Examples of networks include social networks, communication networks, neu-
ral networks in our brains, biological networks and networks in economics. A
prominent feature in networks is that nodes with similar properties are often
linked with each other, which means that the structure of the network can be
utilized when making inferences about the nodes. This has been successfully
achieved to predict churn in the telecommunication industry using call net-
works (Oskarsdéttir et al, 2017; Verbeke et al, 2014), for fraud detection in



8 Tim Verdonck et al.

social security and insurance (Van Vlasselaer et al, 2017; Oskarsdéttir et al,
2021) and for credit scoring (Oskarsdéttir et al, 2019).

The network structure, the position of the nodes within it and the interde-
pendencies between them can say a great deal about their properties. However,
feature engineering must be applied to extract this information so that it can
be used in machine learning models. The result of the featurization process
are new features that describe some of the nodes’ properties in relation to
their neighbors and position in the network. There are two main approaches
to featurize the network. This can either be done manually or automatically.

Manual feature engineering entails hand-crafting predefined features. Firstly,
there are centrality measures that quantify the nodes’ importance in the net-
work (Barabasi, 2016). These include the degree and PageRank (Page et al,
1999; Barabadsi, 2016) centralities, and in addition, in networks that are not too
big, betweenness and closeness. Secondly, there are features that describe the
properties of connected nodes, so called link-based features (Getoor, 2005).
Assume that a telecommunication provider wants to predict which of their
customers are most likely to churn, and in addition to basic customer vari-
ables they have the call network as well. One example of a link-based feature
is how many of a customers connections have already churned. Having many
such neighbors in the network might be an indication that the customer will
also churn, since most of the people they call have already left. Another set of
link-based features can be obtained by considering some statistic of the prop-
erties of neighbors, i.e. the mean or median age of the connected customers.
If the network is weighted the weighted average of neighbors properties can
be calculated. Thirdly, influence from nodes with a known label can be propa-
gated thought the network to quantify the influence of the property, i.e. churn.
Examples of such propagation algorithms, are spreading activation and per-
sonalized PageRank (Page et al, 1999; Dasgupta et al, 2008).

Networks can also be featurized automatically. The goal here is to start
from a network and learn a mapping function which maps each network node
to a d-dimensional vector of features, also known as an embedding or repre-
sentation of the nodes in the network. Again, the latter can then be given
to a traditional machine learning algorithm to perform classification, cluster-
ing, etc. The idea here is to maximize the likelihood of preserving network
neighborhoods of nodes in the low d-dimensional space. Random walk ap-
proaches such as DeepWalk (Perozzi et al, 2014) and node2vec (Grover and
Leskovec, 2016) are commonly used. More recently, there have been substantial
advances in applications where deep learning is applied to data generated from
non-Euclidean domains, represented as networks with complex relationships
and interdependencies between objects. Graph Neural Networks (GNNs) are a
class of deep learning methods designed to perform inference on data described
by networks. These methods are capable of both generating embeddings to use
in a downstream machine learning tasks and of learning directly from the net-
work. GNNs are neural networks that can be directly applied to networks, and
provide an easy way to do node-level, edge-level, and graph-level prediction
tasks (Hamilton et al, 2017; Zhou et al, 2020).



Special Issue on Advances in Feature Engineering 9

3.5 Feature Engineering for Multimedia Data

Another popular example of unstructured data is multimedia data. Multimedia
data is actually defined as data representing multiple types of medium to
capture information. Popular examples of multimedia data are audio, video
and image data.

The idea of feature engineering for unstructured data is to extract featurs
such that these can be fed into a classical machine learning technique (e.g.,
decision tree, neural network, XGBoost) for pattern recognition.

For image data, various featurization techniques exist, depending on the
particular goal or task at hand. In the area of computer vision research, for
example, “feature detection” describes the task of finding specific patterns
(features) which are unique to a particular image and limited in number and
size (so that they can be easily compared). Many algorithms to find such
features have been devised over the years, with ORB (Rublee et al, 2011) being
one notable, free-to-use non patented example. Many other techniques can be
applied as well to transform images to a more representative version. Fourier
Transformation (or Spectral Analysis), is a well-known image processing tool
which is used to decompose an image into its sine and cosine components. The
output of the transformation represents the image in the Fourier or frequency
domain, which might offer an “easier” representation for machine learning
techniques to learn from. Also very common is the application of filters for
edge detection, blurring, etc. In more recent years, however, many of such
hand-crafted approaches have been replaced by applying deep learning based
techniques on image data sets, which apply a stack of convolutional filters
which are learned during training to ultimately predict a target from. In a
sense, such convolutional neural networks perform a form of automated feature
engineering, though sadly in a form which is relatively black box. Still, over the
past years, interpretability techniques have been devised in order to extract
insights from the neural network. Also, it is quite common that the lower-level
outputs of a convolutional network are used to create a representational vector
of images — providing a sparser description which can then e.g. be utilized by
a traditional machine learning technique. Finally, it is also worth mentioning
that in many cases, the output of a deep learning model is used as a feature in
a model which is more white box. As an example, consider a neural network
which is trained to detect the presence of a swimming pool in satellite imagery,
though where its output is used as a variable in another, simpler model to e.g.
predict the price of a property. How the network detects a swimming pool
is perhaps of lesser importance (given a good performance), though how the
presence of a swimming pool impacts the price should be understandable and
interpretable.

For audio data, we find that a similar setting exists here. Fourier Trans-
formations are commonly applied here too, as well as frequency filters, beat
and pitch detection techniques, and so on. Nevertheless, here too we see more
and more a direct application of deep learning. Video then combines these two
data formats.



10 Tim Verdonck et al.

3.6 Feature Engineering for Text Data

Text is another form of unstructured data where understanding the context,
i.e. of sentences and documents, is necessary in order to interpret their mean-
ing. Text data typically contain much higher dimensions than traditional data
and are used in many applications such as spam filtering, marketing, senti-
ment analysis and fraud detection. Featuring engineering is a key step in text
mining, where numerical features are created from the raw text data. Different
techniques exist to achieve this.

The first traditional approach is the Bag-of-Words model, which builds
a vocabulary from a set of documents (corpus), and counts how often each
word appears in each document. However, such term frequency can give a
wrong representation of the text. The more advanced Term frequency—inverse
document frequency (TF-IDF) can be used to quantify the importance of
words relative to documents in a corpus, where the value of a word increases
proportionally by count but is inversely proportional to the frequency of the
word in the corpus (Rajaraman and Ullman, 2011). This approach is commonly
used in text-based recommender systems (Beel et al, 2016).

Word embedding models are a popular family of methods capable of trans-
forming raw text into real valued vectors that encode the meaning of the words
or their context. As a result, words that are closer in the resulting vector space
are usually similar in meaning (Jurafsky and Martin, 2000). They can be ob-
tained by using language modeling and feature learning techniques. The first
model of this family was word2vec which uses shallow neural network archi-
tectures to produce vector spaces of several hundreds of dimensions, where
two words with similar context usually appear close to each other in the vec-
tor space (Mikolov et al, 2013). This is achieved by either by starting from a
single word to predict its context (Skip-gram) or starting from the context to
predict a word (Continuous Bag-of-Words). The next word embedding model
to appear was GloVe (Global Vectors for Word Representation) which builds
word embeddings such that a combination of word vectors relates directly
to the probability of these words’ co-occurrence in the corpus thus stressing
the importance carried by the information of the frequency of co-occurrences
(Pennington et al, 2014). Finally, fastText was developed to make up for the
lack of generalizability of its predecessors (Bojanowski et al, 2017). FastText
is capable of generalizing to unknown words. In addition it needs less training
data.

In the last years, state of the art language models which use transfer learn-
ing from attention-based transformers have completely revolutionized the NLP
landscape. Popular models for such contextualized and dynamic word embed-
dings are ELMO (Peters et al, 2018) and BERT (Devlin et al, 2018).

Advanced machine learning models learning from text data are typically
very hard to interpret. In the context of high-dimensional data, rule-extraction
techniques typically leads to many rules without a comprehensible explanation.
To solve this issue, Ramon et al (2021) propose a rule-extraction methodology
based on higher-level, less-sparse metafeatures. They show that explanation



Special Issue on Advances in Feature Engineering 11

rules extracted with data-driven metafeatures yield better results than those
extracted using the textual features on which the model was trained.

Topic modeling is a text mining technique that extracts the most impor-
tant topics and their accompanying keywords whereas sentiment analysis de-
termines the emotion behind the words (whether it is positive or negative). In
this special issue, Loginova et al (2021) investigate the usefulness of adding
features extracted from textual data with sentiment analysis in forecasting di-
rectional bitcoin price returns. Their dataset includes various textual sources,
such as financial data from CryptoCompare, search queries from Google Trends
and textual data from forums, Reddit and news.

3.7 Feature Engineering for Geospatial Data

Finally, geospatial data contain information about the location of objects or
events (typically as coordinates on the earth). The location information is often
also combined with temporal and weather information. The location may be
static or dynamic and can be obtained from various sources (e.g. satellite
imagery, cell phone data, sensor data and social media data). Large amounts
of geospatial data are publicly available and this information is of interest in
many applications, certainly when it can be added to traditional business data.

Geospatial data can be featurized using either a point, raster or vector for-
mat. A point format represents a geographic location in terms of its longitude
and latitude. A raster format represents geographic data as a grid of values
which are rendered on a map as pixels. Each pixel then corresponds to an area
or cell on the Earth’s surface. Finally, the vector format uses vectors which
are composed of discrete geometric locations known as vertices that define the
shape (e.g., point, line or polygon) of a spatial object.

Some insurance companies nowadays obtain continuously personalized car
driving information (telematics data) about their policyholders. To include
such data in actuarial predictive models, feature engineering is needed. In
this special issue, Gao et al (2021) propose two neural networks to extract
driver risk information from telematics data respresented by speed-acceleration
heatmaps. The neural networks simultaneously perform feature engineering
and regression modeling.

4 Conclusions

In this paper accompanying the special issue on Advances in Feature Engineer-
ing in Machine Learning we have given a comprehensive overview of feature
engineering methods and practices in various fields of data science and ma-
chine learning, ranging from univariate and domain specific feature engineer-
ing, to advanced and sophisticated methods that are capable of transforming
information hidden in complex and unstructured data, such as networks, text
and locations, into representative and informative features, that can be used



12 Tim Verdonck et al.

in down stream machine learning tasks. Furthermore, we have presented the
state-of-the-art in feature engineering in various domains, such as for time se-
ries and telematics data, with the goal of achieving more accurate forecasting
results and enhanced explainability, to name a few. As such, we believe it could
prove useful for any student or practitioner who wants to dive into machine
learning and learn about its vital feature engineering step.

The current machine learning landscape is covered with advanced and in-
tricate deep learning architectures capable of learning from massive amounts
of complex and unstructured data with a wide range of applications in more
powerful ways than we could have ever imagined. The actual feature engi-
neering process is more and more becoming an inherent part of the models’
architecture, e.g., through convolutional layers. At the same time, the models
are more black box than ever before, which can cause more harm than good,
when care is not taken. Therefore we believe that significant effort should still
be put into feature engineering, to ensure that machine learning models remain
as explainable and interpretable as possible.

We would like to end by thanking Peter Flach and Hendrik Blockeel,
the previous and current Editor-in-Chief of Machine learning, and Dragos D.
Margineantu, the Action Editor for Special Issues, for giving us this opportu-
nity, as well as the authors, reviewers, and associate editors, without whose
valuable contributions, the special issue would not have been a reality.

References

Baesens B, Viaene S, Van den Poel D, Vanthienen J, Dedene G (2002) Bayesian
neural network learning for repeat purchase modelling in direct marketing.
European Journal of Operational Research 138(1):191-211

Baesens B, Roesch D, Scheule H (2016) Credit risk analytics: Measurement
techniques, applications, and examples in SAS. John Wiley & Sons

Baesens B, Hoppuer S, Verdonck T (2021) Data engineering for fraud detec-
tion. Decision Support Systems p 113492

Barabdsi AL (2016) Network science. Cambridge university press

Beel J, Gipp B, Langer S, Breitinger C (2016) paper recommender systems: A
literature survey. International Journal on Digital Libraries 17(4):305-338

Blattberg RC, Kim BD, Neslin SA (2008) Why database marketing? In:
Database marketing, Springer, pp 13-46

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors
with subword information. Transactions of the Association for Computa-
tional Linguistics 5:135-146

Cerqueira V, Moniz N, Soares C (2021) Vest: Automatic feature engineering
for forecasting. Machine Learning pp 1-23

Cullinan GJ (1977) Picking them by their batting averages’ recency-frequency-
monetary method of controlling circulation. Manual release 2103

Dasgupta K, Singh R, Viswanathan B, Chakraborty D, Mukherjea S, Nanavati
AA, Joshi A (2008) Social ties and their relevance to churn in mobile telecom



Special Issue on Advances in Feature Engineering 13

networks. In: Proceedings of the 11th international conference on Extending
database technology: Advances in database technology, pp 668677

De Brabandere A, Op De Beéck T, Hendrickx K, Meert W, Davis J (2021)
Automating feature construction for multi-view time series data. Machine
Learning pp 1-40

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:181004805

Gao G, Wang H, Wiithrich MV (2021) Boosting poisson regression models
with telematics car driving data. Machine Learning pp 1-30

Getoor L (2005) Link-based classification. In: Advanced methods for knowl-
edge discovery from complex data, Springer, pp 189-207

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp 855-864

Guo C, Berkhahn F (2016) Entity embeddings of categorical variables. CoRR
abs/1604.06737, URL http://arxiv.org/abs/1604.06737, 1604.06737

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on
large graphs. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp 1025-1035

Hancer E (2021) An improved evolutionary wrapper-filter feature selection
approach with a new initialisation scheme. Machine Learning pp 1-24

Hancock JT, Khoshgoftaar TM (2020) Survey on categorical data for neural
networks. Journal of Big Data 7:1-41

Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice.
OTexts

Jurafsky D, Martin JH (2000) Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech
recognition

Loginova E, Tsang WK, van Heijningen G, Kerkhove LP, Benoit DF (2021)
Forecasting directional bitcoin price returns using aspect-based sentiment
analysis on online communities data. Machine Learning pp 1-30

Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. Journal of
machine learning research 9(11)

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word
representations in vector space. arXiv preprint arXiv:13013781

Newman M (2018) Networks. Oxford university press

Oskarsdéttir M, Bravo C, Verbeke W, Sarraute C, Baesens B, Vanthienen J
(2017) Social network analytics for churn prediction in telco: Model build-
ing, evaluation and network architecture. Expert Systems with Applications
85:204-220

Oskarsdéttir M, Bravo C, Sarraute C, Vanthienen J, Baesens B (2019) The
value of big data for credit scoring: Enhancing financial inclusion using
mobile phone data and social network analytics. Applied Soft Computing
74:26-39



14 Tim Verdonck et al.

Oskarsdéttir M, Ahmed W, Antonio K, Baesens B, Dendievel R, Donas T,
Reynkens T (2021) Social network analytics for supervised fraud detection
in insurance. Risk Analysis

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word
representation. In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pp 1532-1543

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 701-710

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettle-
moyer L (2018) Deep contextualized word representations. arXiv preprint
arXiv:180205365

Rajaraman A, Ullman JD (2011) Data Mining, Cambridge University Press,
p 1-17. DOI 10.1017/CB09781139058452.002

Ramon Y, Martens D, Evgeniou T, Praet S (2021) Can metafeatures help im-
prove explanations of prediction models when using behavioral and textual
data? Machine Learning pp 1-40

Raymaekers J, Rousseeuw PJ (2021) Transforming variables to central nor-
mality. Machine Learning pp 1-23

Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: An efficient alter-
native to sift or surf. In: 2011 International conference on computer vision,
Teee, pp 2564-2571

Shi W, Wu G (2021) New algorithms for trace-ratio problem with application
to high-dimension and large-sample data dimensionality reduction. Machine
Learning pp 1-28

Siirer O, Apley DW, Malthouse EC (2021) Coefficient tree regression: Fast,
accurate and interpretable predictive modeling. Machine Learning pp 1-38

Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduc-
tion: a comparative. J Mach Learn Res 10(66-71):13

Van Gestel T, Martens D, Baesens B (2022) Predictive Analytics: Techniques
and Applications in Credit Risk Modelling. Oxford University Press

Van Vlasselaer V, Bravo C, Caelen O, Eliassi-Rad T, Akoglu L, Snoeck M,
Baesens B (2015) Apate: A novel approach for automated credit card trans-
action fraud detection using network-based extensions. Decision Support
Systems 75:38—48

Van Vlasselaer V, Eliassi-Rad T, Akoglu L, Snoeck M, Baesens B (2017)
Gotcha! network-based fraud detection for social security fraud. Manage-
ment Science 63(9):3090-3110

Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer
churn prediction. Applied Soft Computing 14:431-446

Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020)
Graph neural networks: A review of methods and applications. AT Open
1:57-81



