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Abstract—The ampacity of buried cables is significantly 

influenced by the thermal properties of the burial environment. 

When these thermal properties are not homogeneous it is 

usually necessary to utilize simulations with a relatively high 

computational cost that may also use commercial software. In 

this paper an alternative approach is proposed using conformal 

maps. Temperature is calculated in an annular domain which is 

a conformal mapping of the half plane space. Circumferential 

dependence is captured by expanding temperature as a Fourier 

series, a finite difference solver then determines temperature 

components radially. The model is as flexible as any two-

dimensional slice model of heat transfer through thermal 

conduction only. Two case studies are considered: three land-

based cables in planar configuration and a submarine export 

cable. The thermal properties of both burial environments are 

based on conditions which may be encountered in the field and 

exhibit a high level of stratification. Using a finite element 

analysis simulation as a benchmark, typical percentage 

differences in cable ampacities were 0.5%-1%. In addition to 

accuracy and flexibility the low computational cost of the 

proposed approach allows for large parameter sweeps, which 

may be required in a design phase, without requiring 

commercial software.  

 

Index Terms—buried power cables, heat transfer, conformal 

mapping, finite element simulation, thermal models 

I. INTRODUCTION 

URIED high voltage cable systems represent a key 

component of electrical networks. Power flow capacity 

is typically thermally constrained such that the conductor 

temperature does not exceed 90°C to prevent failure of the 

adjacent electrical insulation [1]. Given that the majority of 

the temperature rise is due to Joule heating, driven by the load 

current in the conductor, it is necessary to determine the 

permissible ampacity of the cable, also referred to as its 

rating. Determining the temperature rise due to such heating 

requires the calculation of heat transfer both within the cable 

and its surrounding environment [2]. The IEC standards 

provide analytical solutions of temperature, under both static 

and step load scenarios, for cables buried in thermally 

homogeneous environments [3, 4]. However, it is often the 

case that thermally limiting cable sections are not in thermally 

homogenous environments. An example would be export 

cables from offshore wind farms, where the thermal 

conductivity of the burial environment can be highly 

stratified [5].  

 Finite element analysis (FEA) has been widely used by the 

research community to determine cable temperatures in 

complex environments [6]. However, a downside is that the 

approach typically requires commercial software. 

Furthermore, in certain scenarios the computational time 

associated with running FEA simulations can be prohibitive. 

Examples include the analysis of large distributed 

temperature sensing (DTS) datasets or parametric sweeps 

during a design phase. This had led to the development of 

approaches which are judged to be sufficiently close to FEA 

simulations yet are accessible to a wide user base and offer 

savings in computational cost [7, 8, 9].  

 In this paper a flexible model for calculating heat transfer 

from buried cables, and consequently their ampacity, is 

introduced. The model makes use of conformal maps which 

have previously been used in the study of the thermal 

influence of backfill on cables [10]. In this earlier work the 

conformal transformation mapped the burial environment to 

a rectangular domain and then approximated the thermal 

resistance of domains based on their relative areas in the 

mapped space. The strength of using a conformal 

transformation is that solutions of the stationary heat equation 

are unchanged by the mapping. This enables temperature to 

be calculated in a mapped domain, where the calculation is 

often simpler. If required, the solution can then be mapped 

back to the geometry of the burial environment.  

 The conformal transformation used in this paper maps the 

burial environment to an annular region; this is advantageous 

for two key reasons. Firstly, it is conceptually consistent with 

existing approaches in the literature [11]. Secondly, as heat 

transfer is predominantly radial in the mapped space 

circumferential heat transfer can be represented by 

performing a Fourier expansion. This results in a simple, yet 

flexible, model which is amenable to a finite difference solver 

and can be implemented in any standard programming 

language. The proposed model is tested by comparing against 

FEA simulations across two case studies of cable systems in 

environments with heterogeneous thermal properties that are 

representative of real-world scenarios.  

II. CONFORMAL MAPPING 

 The conformal transformations used in this work are 

Möbius transformations that map the half plane with a circle 

removed to an annulus centered at the origin. Both geometries 

are defined in the complex plane. The circle in the half plane 

is centered at depth B, and is mapped to the inner circle of the 

annulus with unchanged radius R. The real line in the half 

plane is mapped to the outer circle of the annulus, which has 

radius 2�̃�. Hereafter the inner circle is treated as the cable 

surface. The real line in 𝑧 space and the outer circle in 𝑤 space 

shall be treated as the ground surface. The relationship 

between the 𝑧 and 𝑤 spaces is shown in Figure 1.  

Letting 𝑧 and 𝑤 represent complex coordinates in the half 

plane and annulus respectively the transformations are as 

follows 

𝑧 = 𝑥 + 𝑗𝑦 = 𝑗𝛾
𝑤 − 2𝑗�̃�

𝑤 + 2𝑗�̃�
 

(1) 

𝑤 = 𝑢 + 𝑗𝑣 = −2�̃�𝑗
𝑧 + 𝑗𝛾

𝑧 − 𝑗𝛾
 

(2) 
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(a) 𝑧 Half Plane Space 

 
(b) 𝑤 Annulus Space 

 

Fig. 1. Demonstration of the conformal mapping between the (a) 𝑧 and (b) 𝑤 

spaces. The solid blue and dashed green lines in (a) are mapped to the 

corresponding lines in (b) and visa versa. Note that the plot of the half plane 

in (a) is truncated for clarity; the half plane in its entirety is mapped to the 

annulus.  

 

To make the radius of the cable in both spaces to be equal to 

R requires,  

𝛾 = �̃� (1 −
𝑅2 

4�̃�2
), 

(3) 

and, for the hole to be centered at z = -jB requires,  

�̃� =
𝐵 + √𝐵2 − 𝑅2

2
, (4) 

The stationary form of the heat equation with no heat 

sources, and with heat transfer due to thermal conduction 

only, is 

∇⃗⃗ ⋅ 𝑞 = 0, 𝑞 = −𝑘∇⃗⃗ 𝜃 (5) 

where 𝑞  is the heat flux, 𝑘 is the thermal conductivity and  𝜃 

is the temperature. In a region of fixed thermal conductivity 

(5) is a Laplace equation for temperature 𝜃, the solution of 

which is unchanged under a conformal transformation. This 

property can be exploited to solve for temperature in a simple 

geometry which is a conformal transformation of a more 

complex geometry where it is desired to calculate 

temperature.  

A simple example that admits an analytical calculation 

would be to consider a case where the cable and ground 

surface are both isotherms and the thermal conductivity of the 

cable surroundings is a homogenous value 𝑘. In the 𝑤 space 

this problem is easily solved in cylindrical coordinates 

centered on the origin, as there is no circumferential 

dependence on temperature. The temperature can be 

calculated as follows 

𝜃(𝑟) = 𝜃G + (𝜃C − 𝜃G)
log 𝑟 − log 2�̃�

log𝑅 − log 2�̃�
. 

(6) 

where 𝑟 = √𝑢2 + 𝑣2. (6) can then be used to show   

𝜃C = 𝑞𝑇4 + 𝜃G (7) 

where 

𝑞 = −2𝑘𝜋𝑅
𝑑𝜃

𝑑𝑟
|𝑟=𝑅 (8) 

is the total amount of heat leaving the cable surface and 𝑇4 is 

the full form of the external thermal resistance of a single 

isolated buried cable in the IEC 60287-2 standards [12]. The 

conformal transformation (2) can then be used to map the 

temperature solution, (6), to the half plane as shown in 

Figure 2 which is representative of the real-world installation 

conditions of a cable. It is of interest to note that in both 

spaces the isothermal contours are circular, but they are only 

concentric in the annular space. A property of Möbius 

transformations is the mapping of circles and straight lines to 

circles and straight lines [13].   

 
(a) 𝑧 Half Plane Space 

 

 
(b) 𝑤 Annulus Space 

 

Fig. 2. Figure showing temperature in (a) 𝑧 and (b) 𝑤 spaces. The cable 

surface is set to 𝜃C, the ground surface is set to 𝜃G. The analytical calculation 

to determine temperature is performed in the 𝑤 space.  
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III. CABLE THERMAL MODEL 

 For many cable circuits the system may be significantly 

more complex than a single isolated cable buried in a 

thermally homogeneous environment. In this section a 

flexible thermal model is introduced that can capture 

significant inhomogeneities in the thermal properties of the 

burial environment. The section begins with the simplest case 

of a continuous load, i.e. a stationary problem, for a single 

isolated cable. The model is developed to consider a dynamic 

scenario for a single buried cable and finally multiple buried 

cables. Only conductive heat transfer is considered in this 

approach, convective and radiative heat transfer will 

introduce additional terms into the governing equation for 

temperature, capturing these processes is beyond the 

capability of the model presented in this paper.   

A. Continuous Load Model for an Isolated Buried Cable  

 In keeping with the simple example of the previous section, 

temperature will be solved for in the annular 𝑤 space. 

However, circumferential dependence of temperature is now 

possible due to inhomogeneous soil thermal conductivities, 

which would lead to non-concentric isotherms. Temperature 

and thermal conductivity in the 𝑤 space may be written as a 

Fourier series 

𝜃(𝑟, 𝜙) = ∑ 𝜃𝑛(𝑟)𝑒
𝑗𝑛𝜙

∞

𝑛=−∞

 (9) 

𝑘(𝑟, 𝜙) = ∑ 𝑘𝑚(𝑟)𝑒𝑗𝑛𝜙

∞

𝑚=−∞

 (10) 

where 𝜙 is the polar angle orientated anticlockwise with 

respect to the positive 𝑢 axis and 𝜃𝑛 and 𝑘𝑚 are radially 

dependent complex Fourier coefficients. It should be noted 

that although these coefficients are complex 𝜃 and 𝑘 are real 

which means that 

𝜃𝑛 = 𝜃−𝑛
∗ ,  𝑘𝑚 = 𝑘−𝑚

∗ . (11) 

𝑘𝑚 can be determined by mapping the thermal conductivity 

in the 𝑧 space, where it is a known function of 𝑥 and 𝑦, into 

the 𝑤 space, where it is a function of 𝑟 and 𝜙. 𝑘𝑚(𝑟) can then 

be calculated as 

𝑘𝑚(𝑟) =
1

2𝜋
∫ 𝑘(𝑟, 𝜙)𝑒−𝑗𝑚𝜙

2𝜋

0

 𝑑𝜙. (12) 

Figure 3 shows an example of the thermal conductivity in the 

half plane space, thermal conductivity in the mapped space, 

and the Fourier expansion of the thermal conductivity 

truncated at third order terms. The use of a truncated Fourier 

series will result in thermal conductivities that under and 

overshoot the true values in the mapped space. It is possible 

that for very large differences in thermal conductivities, over 

an order of magnitude, negative values of thermal 

conductivity could occur. This was not an issue in any of the 

burial environment thermal conductivities used in this work 

which are based on real world measurements [14-17]. In the 

unlikely event that negative values of thermal conductivity 

did occur they could be removed by increasing the order of 

the Fourier expansion or manually adjusting values making 

conservative assumptions.  

 In order to determine temperature it is necessary to solve 

for 𝜃𝑛 in the annulus space. The static form of the heat 

equation, (5), in cylindrical coordinates is 

 

 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑘

𝜕𝜃

𝜕𝑟
) +

1

𝑟

𝜕

𝜕𝜙
(
𝑘

𝑟

𝜕𝜃

𝜕𝜙
) = 0 (13) 

𝑘

𝑟

𝜕𝜃

𝜕𝑟
+

𝜕𝑘

𝜕𝑟

𝜕𝜃

𝜕𝑟
+ 𝑘

𝜕2𝜃

𝜕𝑟2
+

1

𝑟2

𝜕𝑘

𝜕𝜙

𝜕𝜃

𝜕𝜙
+

𝑘

𝑟2

𝜕2𝜃

𝜕𝜙2
= 0 (14) 

(9) and (10) are truncated at a specified order 𝑁 and then 

substituted into (14). Distinct powers of 𝑒𝑗𝑛𝜙 can then be 

isolated resulting in 2𝑁 + 1 coupled governing equations for 

the real and imaginary parts of 𝜃0 to 𝜃𝑁, note that 𝜃0 is by 

definition purely real. To avoid the need for internal boundary 

conditions within the burial environment, the thermal 

conductivity is expressed as a smooth function using logistic 

curves in the half plane space. The gradient of the curve was 

set to 1000 m-1 for all case studies considered, the model 

results were insensitive to the exact value provided the 

transition between distinct domains occurred at sufficiently 

small length scales. Logistic curves with a coarser gradient, 

20 m-1, are used in Figure 3 for clarity. 

  The governing equations for the different coefficients in 

radial coordinates are solved using a second order central 

finite difference scheme. For all cases considered in this work 

the cable surface and the ground surface are considered as 

isotherms with no circumferential dependence. As such the 

boundary conditions for the burial environment thermal 

model are 

𝜃0(𝑟 = 𝑅) = 𝜃C (15) 

𝜃0(𝑟 = 2�̃�) = 𝜃G (16) 

𝜃𝑛(𝑟 = 𝑅 or 𝑟 = 2�̃�) = 0 when 𝑛 ≠ 0. (17) 

However, it should be noted that this is not a restriction of the 

model; spatially dependent temperature or heat flux boundary 

conditions could be applied if required. The use of an 

isothermal cable surface allows a standard thermal ladder 

network to be used to model the cable interior.  

B. Dynamic Load Model for an Isolated Buried Cable 

When transient loads are considered the heat equation now 

reads 

𝐶v

𝜕𝜃

𝜕𝑡
+ ∇⃗⃗ ⋅ 𝑞 = 0 (18) 

where 𝐶v is the volumetric heat capacity, which may be 

spatially dependent. The total thermal mass of the burial 

environment should remain the same under the mapping. 

Formally 

∫𝐶v 𝑧  𝑑𝐴𝑧 = ∫𝐶v 𝑤  𝑑𝐴𝑤 . (19) 

Conformal maps do not conserve area, the relationship 

between area elements is 

𝑑𝐴𝑤 = 𝐽𝑑𝐴𝑧 (20) 

where 𝐽 is the Jacobian determinant of the transformation 

[13]. It follows that 

𝐶v 𝑤 =
𝐶v 𝑧

𝐽
. 

(21) 

𝐽 may be written as  

𝐽 =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
= |

𝑑𝑤

𝑑𝑧
|
2

 
(22) 

where the variables are defined as in (1) and (2). 

Differentiating (2) and (1),  
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(a) 𝑧 Half Plane Space 

 
 (b) 𝑤 Annulus Space 

 
(c) 𝑤 Annulus Space 

 

Fig. 3. Thermal conductivity as a function of position in: (a) 𝑧 space and (b) 

𝑤 spaces. (c) is a Fourier expansion of the thermal conductivity in 𝑤 space 

truncated at third order terms. Note that the plot of the half plane in (a) is 

truncated for clarity; the half plane in its entirety is mapped to the annulus. 

Logistic curves with a gradient of 20 m-1 are used to smooth the transition 

between regions of different thermal conductivity.  

 

𝑑𝑤

𝑑𝑧
= −2�̃�𝑗 (

1

𝑧 − 𝑗𝛾
−

𝑧 + 𝑗𝛾

(𝑧 − 𝑗𝛾)2
) =

−4𝛾�̃�

(𝑧 − 𝑗𝛾)2
 

(23) 

𝑑𝑧

𝑑𝑤
= 𝑗𝛾 (

1

𝑤 + 2𝑗�̃�
−

𝑤 − 2𝑗�̃�

(𝑤 + 2𝑗�̃�)
2) =

−4𝛾�̃�

(𝑤 + 2𝑗�̃�)
2. 

 (24) 

Combining these results with (22),  

𝐽 =
16 𝛾2 �̃�2

(|𝑧 − 𝑗𝛾|2)2
=

16 𝛾2 �̃�2

(𝑥2 + (𝑦 + 𝛾)2)2
 

(25) 

𝐽 =
(|𝑤 + 2𝑗�̃�|

2
)
2

16 𝛾2 �̃�2
=

(𝑢2 + 𝑣2 + 4�̃�2 + 4 𝑣 �̃�)
2

16 𝛾2 �̃�2
 

 (26) 

The Jacobian determinant calculated using (25) is plotted in 

Figure 4.   

 It can be clearly seen from (25) that 𝐽 tends to zero as the 

distances from the cable becomes large and, through (21), this 

results in exceptionally large values of 𝐶v 𝑤. When expressed 

as a truncated Fourier series this can result in unphysical 

negative values in the mapped space. To avoid this issue the 

volumetric heat capacity in the annular domain is instead set 

to 

𝐶v 𝑤 =
𝐶v 𝑧

𝐽
. 

(27) 

where  

𝐽(𝑢, 𝑣) = min(𝛽,max(𝐽(𝑢, 𝑣), 1/𝛽)) (28) 

𝛽 is a positive constant that is determined iteratively such that 

the volumetric heat capacity, calculated through (27), is 

always positive. The use of reciprocal limits is appropriate, as 

𝐽~1 in the vicinity of the cable and this is the location where 

it is most crucial to use accurate values of volumetric heat 

capacity. Initially 𝛽 is set to 1 and then increased in powers 

of 2 until negative values of the Fourier expansion are 

observed. It is then reset to its previous value. The value of 𝛽 

will be dependent on the truncation order. Typical thermal 

ladder networks of buried cables, which also solve for heat 

transfer in an annular space, do not consider this scaling of 

the volumetric heat capacity [11]. The approach proposed 

here is comparable to adjustments made to thermal 

capacitances of the soil made by Lux and co-authors [8].  

 

 
Fig. 4. The Jacobian determinant 𝐽 in the 𝑧 half plane space, 𝐵 = 1 and 𝑅 =
0.25.  

 

 The governing equations for the different temperature 

coefficients are then solved using backwards Euler time 

stepping and a second order central finite difference scheme 

in space.  

  

C. Dynamic Load Model for Multiple Buried Cables 

 In the case of multiple buried cables the impact of mutual 

heating may be significant. However, for a given cable of 

interest it is unnecessary to consider the thermal properties of 

surrounding cables when quantifying the impact of mutual 

heating, provided the cable separation is large in relation to 

its radius. Using this result, and the fact that the heat equation, 

(18), is linear, it is possible to solve for the temperature of 

each cable independently adding on the temperature rise 

above ambient at a given cable location due to the 

surrounding cables when calculating the temperature 

dependent heat sources. This same assumption is made when 
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calculating the impact of mutual heating in the IEC standards 

[4].  Other than considering the temperature dependency of 

the heat sources the temperature of each cable can be 

calculated in isolation. 

IV. CASE STUDIES 

 In this section two case studies are considered that are not 

amenable to the current methodology in the IEC 60287 

standards using the conformal mapping finite difference 

(CM FD) approach introduced in the previous section. A 

comparison is made against an equivalent finite element 

analysis (FEA) model. The thermal model of the cable 

interior for the CM FD models is a standard RC thermal 

ladder network. A schematic of the network for the cable of 

an armored cable is provided in Figure 5.  

For cases with multiple cables the conformal mapping 

approach calculates the temperature in cable interior for each 

cable sequentially following the approach described in 

Section III C. An important point is that, although they are 

not considered here, the conformal mapped model is 

adaptable to non-isothermal cable surfaces and ground 

surfaces, the consideration of which may be required in some 

cases [9]. The approach is as flexible as any two-dimensional 

finite element simulation of heat transfer by thermal 

conduction. Furthermore, for the implementation and cases 

studies considered in this report, the run time of all CM FD 

models is at least an order of magnitude lower than the 

equivalent FEA models. This is of significant value when 

analyzing operational data [7] or when calculating real time 

thermal ratings (RTTR) [8]. The ratings calculations 

undertaken here are intended as a comprehensive test of 

model performance.  

  
Fig. 5.  Schematic of the cable thermal network model for an armored cable. 

Heat sources from the conductor 𝑄c, dielectric 𝑄d, sheath 𝑄s and armour 𝑄a 

are taken from the IEC standards [3].  

 

A. Planar Cables with Layered Soils 

 Brownfield (ex-industrial) sites are frequently re-purposed 

for the location of the onshore substations that support 

offshore windfarms. These environments are characterized by 

highly heterogeneous materials into which the cable has to be 

buried. A typical burial stratigraphy would be “made ground” 

(remnants of the previous infrastructure material), modern 

soils and bedrock. In this example the three cables have been 

laid in a planar configuration in 1 m of sand (2 W/mK [14]), 

that overlies the local bedrock (Mudstone – 1.75 W/mK [15]) 

but is overlain by 2m of made ground. In this scenario the 

made ground is an extreme coal based slag, 0.33 W/mK [16], 

but typical cement based products would consistently have 

thermal conductivities below 1 W/mK [17]. The distribution 

of the thermal conductivities in both the “real” half plane and 

mapped spaces is shown in Figure 6 for the central cable, it 

should be noted that the distribution will be dependent on the 

cable under consideration.   

 The three cables are located within a sand filled layer in a 

planar configuration at a depth of 2.5 m, below the “Made 

Ground” within the sand layer. They are a 400 kV design with 

Milliken conductors and cross bonded sheaths. The cable 

separation is 200 mm. This means that three independent CM 

FD thermal simulations are performed, one per cable, as per 

the methodology introduced in Section III C.   

 
(a) 𝑧 Half Plane Space 

 
(b) 𝑤 Annulus Space 

 

Fig. 6. Thermal conductivity as a function of position in: (a) 𝑧 space and (b) 

𝑤 spaces for the central cable. Note that the plot of the half plane in (a) is 

truncated for clarity; the half plane in its entirety is mapped to the annulus. 

The burial environment consists of three distinct layers: 2m Made Ground 

𝑘 =0.33 W/mK, 1m Sand 𝑘 =2 W/mK and the remainder is Mudstone 

𝑘 =1.75 W/mK. The cables are laid in a trench with stone dust backfill, 

𝑘 =2.2 W/mK, which extends to the ground surface.    
 

 It is informative to observe the thermal conductivity 

distribution in the mapped space in order to make judgements 

on the relative importance of the distinct soil layers. In some 

scenarios this could even be used to provide justification for 

neglecting certain soil layers if it is clear visually they will 

have a negligible thermal impact in the mapped space. In this 

case study the horizontal lines in the half plane space are all 

mapped to circles which meet at the base of the annulus space 

(𝑢 = 0,𝑣 = −2�̃�). The “Made Ground” is clearly the largest 

area within the mapped space and so it is expected to make a 

significant difference to the heat transfer within the burial 

environment. Conversely the sand layer, despite being within 

the immediate vicinity of the cable outside of the trench, is 

less important.  

 The continuous rating for a Summer (15°C ambient) and 

Winter (5°C ambient) season have been sourced from the UK  

Met Office and represent the 2019 Mean Summer Air 

Temperature (15.1oC) and Mean Winter Air Temperature 

(5.2oC). A full convergence study was performed adjusting 

the number of finite difference nodes, referred to as 𝐿, and the 

Fourier series truncation order 𝑁. For a given 𝑁, 𝐿 was 

increased starting from 250 by powers of two until the 

difference in the continuous rating between calculations was 
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less than 0.1%. 𝑁 was then increased in steps of 1 until the 

difference in the rating was also 0.1%. In this case 

convergence was achieved at 𝑁 = 5 𝐿 = 500, the 

corresponding FEA node count was 16879. It can be clearly 

seen in Figure 7 that the error decreases with increasing 𝑁  as 

the expanded Fourier series is a more accurate representation 

of the true thermal conductivity distribution. Comparing 

against FEA simulations the error was 0.5% for the summer 

and winter continuous ratings. 

 The use of conformal maps also allows the temperature 

distribution within the burial environment to be determined, 

not just the cable temperature. A comparison is made in 

Figure 8. It can be clearly seen that the conformal approach 

is able to capture the temperature distribution around the 

cables including the steeper temperature gradients within the 

upper soil layer which are present due to its high thermal 

resistivity. If greater accuracy was desired the truncation 

order could be increased, or, alternatively, a fully two-

dimensional model could be used to solve for temperature in 

the annulus space. Although this would be of comparable 

computational cost to FEA it is likely preferable for some 

users as the annular space easily allows the use of uniformly 

distributed grids. 

 

 
Fig. 7. Comparison of the continuous rating calculate using FEA (dashed 

line) and the conformal mapping finite difference method for different 

truncation orders (𝑁) and finite difference node counts (𝐿). As the truncation 

order increases the conformal mapping method becomes closer to the FEA 

solution. It is a coincidence that the lower node count results in a lower error 

when compared to FEA.  

 

In addition to continuous ratings the 6h and 24h short term 

ratings have been determined at a range of pre-fault levels. 

These durations and pre-fault levels are typical for cable 

systems [18]. A full comparison is provided in Table 1. The 

highest error is 1.4% over all considered combinations.  

 
TABLE I 

6H AND 24H RATINGS FOR PLANAR CABLES IN LAYERED SOILS 

Season Preload Rating [A] 

6h 24h 

CM 

FD 
FEA 

CM 

FD 
FEA 

Summer 

15°C 

75% 3188 3230 2626 2645 

60% 3605 3655 2863 2887 

30% 4093 4151 3149 3178 

Winter 

5°C 

75% 3411 3456 2807 2828 

60% 3857 3911 3061 3086 

30% 4379 4442 3365 3397 

  

 While realistic it should be noted that the thermal 

conductivity variation is extreme, with a difference of nearly 

an order of magnitude between the soil domains. As such this 

case study should be seen as a “stress test” of the model, 

requiring a high truncation order to the Fourier expansions to 

achieve an accurate result. In the next case study a less 

significant variation is considered which allows for accurate 

calculations at a lower truncation order. 

 
(a) FEA Simulation 

 
(b) CM FD Simulation 

 
Fig. 8. Temperature surfaces of three cables in a planar configuration in 

layered soils for the winter continuous rating: (a) FEA simulation and (b) 

CM FD Simulation.  

B. Export Cable at Landfall in Layered Marine Sediments 

Cables shallowly buried on the continental shelf, whether 

connecting offshore renewable energy resources or trans-

national interconnectors frequently experience highly 

stratified marine sedimentary sequences. For mid- to high-

latitude shelves this is the consequence of the complex 

interplay of terrestrial and marine geological processes over 

the last few hundred thousand years.  The cable design in this 

example is based on a 3 phase AC windfarm export cable, and 

has been used in previously published work [7]. It is buried 

at -1.25m, in the center of a 0.5 m thick peat layer (0.8 W/mK) 

which is overlain by 0.5 m of quartz sands (2.2 W/mK) and  

0.5 m of silts (1.2 W/mK) and rests upon a mudstone bedrock 

(1.45 W/mK) [14]. The thermal conductivity distribution in 

both the “real” half plane space and the mapped spaces is 

shown in Figure 9. Seasonal ambient temperatures for the 

continuous ratings are set to 15°C for Summer and 10°C for 

Winter as these are typically used for cable rating in NW 

Europe [19]. 

 A convergence study was performed in an identical fashion 

to the previous case study. Convergence was achieved at a far 

lower truncation level, 𝑁 = 4. This is as expected due to the 

relative similarities of the thermal conductivities of the burial 

environment which vary significantly less than the order of 

magnitude differences in the previous study. This means that 

the isotherms in the annulus space will be closer to the typical 

concentric distribution, and any variations from this can be 

captured using at a relatively low truncation order. The errors, 
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compared to FEA calculations, were also lower with errors of 

0.2% for both the summer and winter continuous ratings. A 

surface plot of temperature within the burial environment is 

provided in Figure 10.  

 

 
(a) 𝑧 Half Plane Space 

 
(b) 𝑤 Annulus Space 

 

Fig. 9. Thermal conductivity as a function of position in: (a) 𝑧 space and (b) 

𝑤 spaces for the central phase. Note that the plot of the half plane in (a) is 

truncated for clarity; the half plane in its entirety is mapped to the annulus. 

The burial environment consists of four distinct layers: 0.5m Quartz Sands 

𝑘 =2.2 W/mK, 0.5m Silt 𝑘 =1.2 W/mK, 0.5m Peat 𝑘 =0.8 W/mK and the 

remainder is Mudstone 𝑘 =1.45 W/mK.      

 

 Short term ratings for the export cable system have also 

been calculated, the results are provided in Table 2. The 

largest error between the calculations was 0.4%. 

 
  TABLE II 

6H AND 24H RATINGS FOR EXPORT CABLE IN LAYERED MARINE 

SEDIMENTS 

Season Preload Rating [A] 

6h 24h 

CM 

FD 
FEA 

CM 

FD 
FEA 

Summer 

15°C 

75% 1157 1153 992 990 

60% 1269 1265 1049 1048 

30% 1401 1395 1118 1117 

Winter 

10°C 

75% 1198 1194 1026 1025 

60% 1314 1309 1085 1084 

30% 1450 1444 1156 1155 
 

 
(a) FEA Simulation 

 
(a) CM FD Simulation 

 
Fig. 10. Temperature surfaces of export cable in layered sediments for the 

winter continuous rating: (a) FEA simulation and (b) CM FD Simulation. 

The CM FD simulation uses a thermal network model for the cable with a 

single equivalent power core.    

V. CONCLUSION 

This paper has introduced a flexible low computational 

cost model for conductive heat transfer in complex burial 

environments using conformal maps which does not require 

commercial software. The approach has been validated 

against two case studies of buried cable systems with 

thermally inhomogeneous soil layers using finite element 

analysis simulations as a benchmark. Both continuous and 

short-term ratings were calculated. The highest observed 

error in the ampacity was 1.4%, with typical errors in the 

range of 0.5%-1%. For the case studies considered in this 

report, the run time of all CM FD models is an order of 

magnitude lower than the equivalent FEA models. This is of 

significant value when analyzing operational data [7] or when 

calculating real time thermal ratings (RTTR) [8]. The use of 

conformal maps also allows informative judgements to be 

made on the relative importance of domains with differing 

thermal properties on cable temperatures. 

Future work could consider non-isothermal cable surfaces 

which would require angular dependent terms within the 

cable thermal network model. This may be necessary to 

achieve the desired accuracy when the thermal properties in 

the immediate vicinity of the cable surface are 

circumferentially dependent. An obvious example would be 

when an export cable makes landfall and is located at the 

bottom of a thermally resistive pipe. 
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VII. APPENDIX 

MATLAB code for conformal mapping finite difference (CM 

FD) simulations has been made available on IEEE Xplore.  
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