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Abstract: Owing to their applications in devices such as in electromechanical sensors, actuators and 
nanogenerators, the consideration of size-dependent properties in the electromechanical response 
of composites is of great importance. In this study, a closed-form solution based on the linear pie-
zoelectricity, Kirchhoff’s plate theory and Navier’s solution was developed, to envisage the electro-
mechanical behaviors of hybrid graphene-reinforced piezoelectric composite (GRPC) plates, con-
sidering the flexoelectric effect. The governing equations and respective boundary conditions were 
obtained, using Hamilton’s variational principle for achieving static deflection and resonant fre-
quency. Moreover, the different parameters considering aspect ratio, thickness of plate, different 
loadings (inline, point, uniformly distributed load (UDL), uniformly varying load (UVL)), the com-
bination of different volume fraction of graphene and piezoelectric lead zirconate titanate are con-
sidered to attain the desired bending deflection and frequency response of GRPC. Different mode 
shapes and flexoelectric coefficients are also considered and the results reveal that the proper addi-
tion of graphene percentage and flexoelectric effect on the static and dynamic responses of GRPC 
plate is substantial. The obtained results expose that the flexoelectric effect on the piezoelastic re-
sponse of the bending of nanocomposite plates are worth paying attention to, in order to develop a 
nanoelectromechanical system (NEMS). Our fundamental study sheds the possibility of evolving 
lightweight and high-performance NEMS applications over the existing piezoelectric materials. 
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1. Introduction 
In recent years, the size-dependent properties, such as piezoelectric, flexoelectric and 

surface effects, find a unique niche in the various applications of engineering, such as 
energy harvesters, including nanoactuators, nanosensors, pulse power nanogenerators 
and transducers, and, most importantly, in the field of structural health monitoring, due 
to its extraordinary remarkable characteristics. The recent advancement in nanotechnolo-
gies has renewed the interest not only in size-dependent piezoelectricity but also in flex-
oelectricity, since the large strain gradients often present at the nanoscale that may lead 
to strong flexoelectric effects even in the non-piezoelectric materials. Piezoelectric effect 
was first noticed in the 1880 by P. Curie and J. Curie. Piezoelectric material exhibits the 
property to generate the electrical response to an applied homogeneous strain and vice 
versa. Moreover, the flexoelectric effect was observed by Mashkevich and Tolpygo [1] and 
defined as the spontaneous electric response to an applied strain gradient (inhomogene-
ous strain) and is allowed by symmetry in all materials [2–5]. Similar to piezoelectric ef-
fect, the flexoelectric effect is also characterized into two types: (i) direct flexoelectric ef-
fect, which is coupling between the electric response (in terms of polarization or electric 
field) and gradient of mechanical responses (stress gradient i.e., higher order stress or 
strain gradient); and (ii) converse flexoelectric effect, which refers to coupling between the 
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mechanical responses (stress/strain) and gradient of electric response (electric field gradi-
ent/polarization gradient). Contrary to the piezoelectricity, flexoelectricity exits only in all 
dielectric materials. In addition to this, for the active control of lightweight smart struc-
tures subjected to static/dynamic loading conditions, these piezoelectric structures with 
flexoelectric effect plays significant role [6–10]. For instance, the most common and exten-
sively used monolithic piezoelectric materials are lead zirconate titanate (PZT) and poly-
vinylidene fluoride (PVDF). According to recent advances in the composite material, the 
piezoelectric composites are emerged as new efficient materials that may be used as dis-
tributed sensors and actuators for the smart structures. In such piezoelectric composite 
material, the monolithic piezoelectric material (PZT/PVDF) is used as a fiber-reinforcing 
phase in the polymer matrix, such as epoxy. 

If the 20th century was the era of “plastics”, the 21st century appears set to become 
the era of “graphene”. Such a ground-breaking discovery of graphene material was made 
mainly by Russian scientists, Novoselov and Geim [11] by using the “Scotch tape method” 
in 2004. Graphene is a one atom thick sheet of sp2 hybridized carbon atoms with remark-
ably high elastic modulus, tensile strength and high specific surface area (~3 times that of 
CNTs), that has encouraged huge interests among research and industrial communities. 
It has been reported in many experimental studies that graphene-based composites show 
substantial enhancement in mechanical properties as that of CNT-based composites [12]. 
In this work, they reported that the use of small quantity of graphene in the conventional 
matrices is found to alter and improve the properties of resulting nanocomposite signifi-
cantly. Very few research studies [13–15] have been dedicated to the introduction of gra-
phene or its derivatives as the modifiers/interphase to the conventional bulk composites 
in order to improve their multifunctional properties. The thickness of the graphene is in 
the order of nanometer. Hence, the concepts of validation of continuum mechanics at such 
nanoscales are still doubtful. However, classical homogenization strategies for graphene-
reinforced composites are commonly implemented in the scientific literature with rela-
tively reasonable outcomes. Therefore, many researchers [16–18] considered graphene 
layers as continuum plate in different types of analysis. Hence, in this paper, we are con-
centrating on graphene as nanofillers in a piezoelectric composite which was not con-
veyed in scientific literatures earlier. 

Here, a review is presented on different structural elements considering the piezoe-
lectric and flexoelectric effect and is characterized with different modeling theories. The 
closed-form solution was derived by Ray et al. [6,19], for investigating the static behavior 
of simply supported piezoelectric plate subjected to the cylindrical bending, and they an-
alyzed its electrostatic behavior in terms of deformation, stresses, electric potential and 
electric displacement. They supposed the laminate structure with a substrate of graph-
ite/epoxy and coupled with PVDF. Ray and Pradhan [20] investigated the 1–3 piezoelec-
tric vertically reinforced laminated composite to improve the performance of hybrid 
damping, using the active constrained layer-damping treatment. Afterwards, Majdoub et 
al. [21] conveyed the flexoelectric effect for energy harvester, such as piezoelectric nano-
beam/ribbon due to substantial enrichment of the piezoelectric coefficient. Using the non-
local differential constitutive relations of Eringen, Pradhan [22] reformulated higher-order 
shear deformation theory and developed the equations of motion of the nonlocal theories 
to investigate buckling characteristics of nanoplates, considering single-layer graphene 
sheet, using Navier’s approach. Song et al. [23] studied the buckling, free and forced vi-
bration of multilayer-graphene-nanoplatelets-reinforced plates subjected to axial com-
pression and transverse loadings. Recently, an analytical model considering the flexoelec-
tric effect for unimorph piezoelectric energy harvesters at the nanoscale level was devel-
oped by Wang and Wang [24]. Their outcomes revealed that the flexoelectricity shows a 
significant effect for piezoelectric cantilever beams in the energy harvesting application. 
Feng et al. [25] examined the nonlinear bending behavior of a unique multilayer compo-
site beams reinforced with graphene platelets that are non-uniformly dispersed in the 
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thickness direction. They found that the bending performance of polymer matrix compo-
site significantly improved by adding a small amount of graphene platelets. Srivastava 
and Kumar [26] investigated the postbuckling response of the graphene-sheet-reinforced 
plate comprising the effect of van der Waals bonding amongst the graphene sheet and 
matrix. By using the FEM-based homogenization technique, the effective elastic constants 
of the nanocomposite were evaluated. Recently, Lin et al. [27] demonstrated that the non-
linear aeroelastic response and vibration characteristics of the functionally graded (FG) 
multilayer composite plate reinforced with graphene nanoplatelets, as well as piezoelec-
tric layers when subjected to electromechanical loadings. Naskar and co-authors [28–32] 
derived new micromechanical analysis for envisaging effective properties of fiber-rein-
forced composite and functionally graded material by using a novel stochastic representa-
tive volume element technique, considering spatial distribution with stochastic analysis 
and uncertainty quantifications. They have also carried out static and dynamic character-
istic including sensitivity and frequency analysis of laminated composite and FG material 
by using probabilistic and non-probabilistic uncertainty quantification approach. Re-
cently, Kundalwal and co-authors [10,33–35] studied the electromechanical response of 
graphene-based nanocomposite (GNC) and its different structural elements, such as 
beam, plate, wire and shell, by incorporating piezoelectric graphene nanofiber in polyi-
mide matrix. They predicted the overall effective properties of GNC, using analytical and 
numerical models. They showed the substantial enrichment in structural response of GNC 
structures by accounting these size-dependent properties and also revealed that one can-
not ignore these effects at nanoscale. They also presented a piezoelastic model which ex-
plains the effect of electric field on the effective bending rigidity and strain relaxation con-
cept developed in the nanostructure. Kundalwal et al. [34] studied the stress-transfer char-
acteristics and mechanical properties of multiscale composites, including nano- and mi-
cro-scale reinforcements via micromechanical pull out model and molecular dynamic 
(MD) simulations. 

Even if the static and dynamic problem of conventional materials with their different 
structures were broadly studied by using theoretical, experimental or numerical ap-
proach, no previous study has been reported to investigate the electromechanical behav-
ior of advanced layered hybrid piezoelectric composite structures. The effective proper-
ties of these advanced hybrid piezoelectric composites are predicted by using analytical 
and numerical models which are taken from Shingare and Naskar [36]. In this, they 
showed that electromechanical properties including elastic and piezoelectric properties of 
hybrid piezoelectric composite are enhanced due to addition of graphene nanofillers. 
Hence, the objective and the novelty of the current research work is to fill the research gap 
to study the electromechanical behavior of advanced hybrid graphene-based composite 
structures. In order to find the reliability of utilizing graphene as nanofiller in epoxy ma-
trix with conventional PZT fibers for various energy harvesters and structural NEMS ap-
plications, the research of investigation on the analysis of graphene-based hybrid compo-
site structures is required. Hence, the consideration of graphene nanofillers for modeling 
of hybrid composite structures is practically more relevant. To best of our knowledge, no 
work has appeared so far in that direction concerning the response of a hybrid piezoelec-
tric composite plate when subjected to static and dynamic loading by taking flexoelectric-
ity into account. Figure 1 shows the detailed framework and flowchart of our work, which 
was carried out to achieve the electromechanical behavior of graphene-reinforced piezo-
electric composite (GRPC) plate. Hereafter, the paper is presented as per the following 
sections. In Section 2, an analytical model is derived for simply supported hybrid gra-
phene-based piezoelectric composite plates with consideration of effects of flexoelectric-
ity. In Section 3, the results for hybrid flexoelectric GRPC plates are presented, to investi-
gate the static and modal/dynamic analysis, considering different parameters, such as as-
pect ratio, plate thickness, different loadings, the combination of different volume fraction 
of graphene and piezoelectric lead zirconate titanate (PZT) modes, as well as different 
flexoelectric coefficients. Section 4 offers concluding remarks and future direction. 
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Figure 1. The detailed flowchart of electromechanical analysis of hybrid graphene-reinforced pie-
zoelectric composite (GRPC) plate. 

2. Materials and Methods 
In the present article, the mathematical formulation for simply supported (SS) piezo-

electric GRPC plate subjected to the uniformly distributed load (UDL 0q ) is presented, to 
explore its static and modal analysis. Figure 2 shows the schematic of GRPC plate having 
thickness ( h ), length ( a ) and width (b). The principal material (x y z)− −  and problem 
(1 2 3)− − coordinate system was used to define the composite plate with thickness along 
the z-axis and the mid-plane of the undeformed plate coincides with the x y− plane. 

2.1. Assumptions of Kirchhoff’s Plate Theory 
• Straight lines normal to the mid-surface (transverse normal) before deformation re-

main straight after deformation. 
• The transverse normal are inextensible. 
• The thickness of the plate does not change during a deformation. 
• The transverse normal rotate in such a way that they remain normal to the middle 

surface after deformation. 

According to Kirchhoff’s plate theory, the displacement field are given by the follow-
ing [37]: 

w(x, y, t)
u(x, y, z, t) z

x
∂

= −
∂

, (1) 

w(x, y, t)
v(x, y, z, t) z

y
∂

= −
∂

, (2) 

w(x, y, z, t) w(x, y, t)= , (3) 
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Figure 2. Schematic of hybrid GRPC plate. Thickness, h; length, a; width, b. 

where u, v and w denote the in-plane displacement components corresponding to the x, 
y and z directions, respectively; t  denotes the time; and w  denotes the transverse dis-
placement of a point on the mid-plane ( z 0= ). The displacement field (Equations (1)–(3)) 
indicates that straight lines perpendicular to the x y−  plane before deformation remain 
straight and normal to the mid-surface after deformation. 

Subsequently, the nonzero strains are obtained as follows: 
2 2 2

xx yy xy2 2
w w wz , z , z
x y x y

∂ ∂ ∂ε = − ε = − ε = −
∂ ∂ ∂ ∂

, (4) 

Due to large ratio of in-plane dimension to thickness, it is considered that the electric 
field z(E )  exists only in the z − direction of the piezoelectric medium is constant along 

the plate thickness and zE components in the x y−  plane can be ignored when it is 
compared with those in the z − direction [38]. 

The constitutive equations for the dielectric material considering the flexoelectric ef-
fect at nanoscale can be written as follows [38]: 

ij ijkl kl ijk k
ij

U
C e E

∂
σ = = ε −

∂ε
, (5) 

ijm kijm k
ijm

U
f E

∂
τ = = −

∂η
, (6) 

i jki jk ij j ijkl jkl
i

U
D e E f

E
∂

= = ε + χ + η
∂

, (7) 

where ijklC , ijke  and klχ denote the elastic, piezoelectric and dielectric tensors, respec-

tively; ijklf  denotes the fourth-order tensor; ijσ  denotes the stress tensor; iD , iE , ijmτ  

and jklη  denote the electric displacement, electric field vector, the higher-order stress 
tensor and strain gradient tensor, respectively. 

The strain gradient tensor can be given as follows: 

jkl jk ,lη = ε , (8) 
Making use of Equations (5)–(7), the constitutive relations are re-written as follows: 

xx 11 xx 12 yy 31 zC C e Eσ = ε + ε − , (9) 

yy 12 xx 11 yy 31 zC C e Eσ = ε + ε − , (10) 
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xy 66 xy2Cτ = ε , (11) 

xxz 14 zf Eτ = − , (12) 

yyz 14 zf Eτ = − , (13) 

z 31 xx yy 33 z xy xxz yyzD e ( ) E ( )= ε + ε + χ + ε η + η , (14) 

where 14 3113 3223f f f= =  [39]. To simplify the mathematical formulation, other than

xxz yyzandη η  all strain gradients are considered to be zero, meanwhile the related strain 
gradients are much lesser that of those along the thickness direction of plate. 

Because of the absence of external zE , zD becomes equal to electric polarization. 

Therefore, it is undoubtedly seen that term xy xxz yyz( )ε η + η  in Equation (14) signifies the 
polarization generated in the plate because of the inhomogeneous strain. 

In the absence of free electric charge s( )ρ , zD  for the thin plate must satisfy 

Gauss’s law of electrostatics s( .D )∇ =ρ  and can be expressed as follows: 

zD 0
z

∂
=

∂
, (15) 

For open-circuit case, on the surface of plate zD  is zero. Hence, the internal zE  can 
be derived from Equation (15) as follows: 

2 2 2 2
31 14

z 2 2 2 2
33 33

e fw w w w
E z

x y x y
∂ ∂ ∂ ∂

= + + +
χ ∂ ∂ χ ∂ ∂

   
   
   

, (16) 

It is observed from Equation (16) that the term 31 33e χ  implies zE  which is caused 

due to the applied of homogeneous strains while term 14 33f χ  implies zE  which is 
caused due to the applied of inhomogeneous strains. In case of non-piezoelectric dielec-
trics, inhomogeneous strains-generated zE  predicts structural response which is im-
portant for considerate basis of electromechanical coupling behaviors of dielectrics. Con-
sidering the flexoelectric effect, the piezoelectric effect accompanying internal zE  in 
thickness direction of plate no longer remnants anti-symmetric corresponding to the mid-
dle plane. Above Equation (16) can be re-expressed as z 31 14 33E (e z f )G= + χ  with 

2 2

2 2

w w
G

x y
∂ ∂

= +
∂ ∂

 by taking the summation of the curvatures at an any point in the plate. 

It can be noticed that the response of zE  to G is deeply depends on the z-coordinate. 

Moreover, 31 14e z f+  depends not only on the plate thickness but also on its flexoelectric 
coefficient. If the effect of piezoelectricity is not considered, then present solution attrib-
utes to the effect of flexoelectricity. 

The governing equations for the plate problem can be derived, using dynamic ver-
sion of Hamilton’s variational principle, as follows [40]: 

( )t

0
U W K dt 0δ + − = , (17) 

where U  is the electric Gibbs free energy density. For the simplification of formulation, 
we considered open-circuit condition z(D 0)=  and hence, the relation of U can be re-
duced as follows: 

ij ij ijk ijk

1 1
U

2 2
= σ ε + τ η , (18) 

By ignoring the vibration along x y−  plane, the kinetic energy (K)  is described 
as follows: 



J. Compos. Sci. 2021, 5, 74 7 of 22 
 

 

21 w
K d

2 tΩ

∂
= ρ Ω

∂
 
 
  , (19) 

where Ω  denotes the total volume occupied by the GRPC plate, and ρ  is the mass den-
sity. Due to external load, the work done (W)  can be described as follows: 

a b

0
0 0

W q wdydx=   , (20) 

It is significant to note that the variational principles are the fundamental basis of 
investigating and determining coupled multi-physics problems in multifaceted materials. 
Thus, the governing Eq. can be written as follows: 

2 22 22 2 2
yx yyzxy yyxx xxz

02 2 2 2 2

M NM MM N w
h q 0

x x y x y y x y t

∂ ∂∂ ∂∂ ∂ ∂
+ + + + + − ρ + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
, (21) 

Boundary conditions prescribed on all four edges of SS rectangular GRPC plates can 
be given by the following [40]: 

at x 0 and x a := =  

xxw 0, M 0.= = , (22) 
at y 0 and y b:= =  

yyw 0, M 0.= = , (23)

where xx xy yx yyM ,M ,M and M  indicate the bending moments, and xxz yyzN and N  denote 
the axial higher-order stresses along the thickness, which can be obtained as follows: 

h/2 h /2 h /2

xx xx yy yy xy yx xy
h/2 h /2 h /2

M zdz, M zdz, M M zdz
− − −

= σ = σ = = τ   , (24)

h/2 h /2

xxz xxz yyz yyz
h/2 h /2

N dz, N dz
− −

= τ = τ  , (25)

By putting Equations (4) and (16) into Equations (9)–(13), one can get following ex-
plicit expressions for the stresses related to the transverse deflection. 

2 22 2 2 2

31 31 31 14
xx 11 122 2 2 2

33 33 33

e e e fw w w w
C z C z

x y x y

∂ ∂ ∂ ∂
σ = − + − + − +

χ ∂ χ ∂ χ ∂ ∂

     
     

    
, (26)

2 22 2 2 2

31 31 31 14
yy 12 112 2 2 2

33 33 33

e e e fw w w w
C z C z

x y x y

∂ ∂ ∂ ∂
σ = − + − + − +

χ ∂ χ ∂ χ ∂ ∂

     
     

    
, (27)

2

xy 66

w
2C z

x y

∂
τ = −

∂ ∂
, (28)

22 2 2 2

31 14 14
xxz yyz 2 2 2 2

33 33

e f fw w w w
z

x y x y

∂ ∂ ∂ ∂
τ = τ = − + − +

χ ∂ ∂ χ ∂ ∂

   
   
   

, (29)

The bending moments in terms of transverse deflection can be obtained by using 
Equations (24)–(27) in Equations (24) and (25), as follows: 

2 23 2 3 2

31 31
xx 11 122 2

33 33

e eh w h w
M C z C

12 x 12 y

∂ ∂
= − + − +

χ ∂ χ ∂

   
   
   

, (30)

2 23 2 3 2

31 31
yy 12 112 2

33 33

e eh w h w
M C C

12 x 12 y

∂ ∂
= − + − +

χ ∂ χ ∂

   
   
   

, (31)

3 2

xy xy 66

h w
M M 2C z

12 x y

∂
= = −

∂ ∂
, (32)
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2 2 2

14
xxz yyz 2 2

33

f w w
N N h

x y

∂ ∂
= = − +

χ ∂ ∂

 
 
 

, (33)

By observing Equations (26)–(33), it is obvious that the flexoelectric effect has signif-
icant influence on the distribution of stress and higher-order stresses. Therefore, the 
higher-order stress disappears as the effect of flexoelectricity is not considered, while it 
does not have any influence on conservative bending moments. Furthermore, the higher-
order stresses are raised by the introduction of flexoelectric effect. 

Making use of Equations (30)–(33) into Equation (21), one can find the following gov-
erning Equation (34) in terms of transverse deflection. 

( )
4 4 4 2

11 12 66 04 4 2 2 2

w w w w
D 2 D 2D h q

x y x y t

∂ ∂ ∂ ∂
+ + + + ρ =

∂ ∂ ∂ ∂ ∂

 
 
 

, (34)

where 
2 23

31 14
11 11

33 33

2 23

31 14
12 12

33 33

3

66 66

e fh
D C h

12

e fh
D C h

12

h
D C

12

= + +
χ χ

= + +
χ χ

=

 
 
 

  
  

 




, (35)

From Equation (35), it is obvious that the bending rigidity of plate is substantially 
influenced by effect of flexoelectricity and thickness of plate. 

2.2. Closed-Form Solution for Static Analysis of GRPC Plates 
To obtain the closed-form solution for static deflection of hybrid GRPC plates, the 

governing Equation (34) can be re-expressed as follows [40]: 

( )
4 4 4

11 12 66 04 4 2 2

w w w
D 2 D 2D q

x y x y

∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

 
 
 

, (36)

It can be noticed that the above equation follows the conventional classical Kirchhoff 
plate theory, considering piezoelectric effect only if we set the flexoelectric effect to zero. 

To solve Equation (36) of the SS GRPC plate, the following Fourier series is used to 
compute w(x, y)  according to conventional classical Kirchhoff plate theory. 

mn
m 1 n 1

w(x, y) A sin x sin y
∞ ∞

= =

= α + β , (37)

where mn

m n
, andA

a b
π π

α = β=  denote the coefficients to be evaluated for each m  and 

n.  It was already verified that Equation (37) satisfies the boundary conditions in Equa-
tions (22) and (23). The uniformly distributed load 0q (x, y)  can be represented as a Fou-
rier series: 

mn
m 1 n 1

q(x, y) Q sin x sin y
∞ ∞

= =

= α + β , (38)

mn

mn

Q
w(x, y) and

d
= , (39)

where mnQ  denotes the load coefficient for respective loading and can be expressed as 
follows: 
For (i) uniform distributed load: 
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0
mn 2

16q
Q m,n 1,3,5,...

mn
= =

π
, (40)

(ii) Linearly varying load: 

0
mn 2

8q cosm
Q m,n 1,3,5,...

mn

π
= =

π
, (41)

(iii) Point load: 

0 0
mn

m x m y4P
Q sin sin m,n 1,2,3,...

ab a b
π π

= = , (42)

(iv) Line load: 

0 0
mn

8q m x
Q sin m, 1, 3, 5,...;n 1, 2, 3,...

an a
π

= = =
π

, (43)

4 4 4 2

mn 11 12 12 66

m n mn
d D D 2(D D )

b a b ab
π

= + + +
        
        

        
, (44)

Making use of Equations (37) and (38) into Equation (36), one can derive the trans-
verse deflection of the SS plate. 

0

6

4 4 2
m 1,3,5... n 1,3,5...

11 12 12 66

16q
w(x, y)

sin x sin y

m n mn
mn D D 2(D D )

a b ab

∞ ∞

= =

=
π

α β
=

+ + +
      

      
      

 
, (45)

2.3. Closed-Form Solution for Modal Analysis Considering Free Vibration of GRPC Plates 
For the free vibration of GRPC plate, the governing equation can be obtained by us-

ing Equation (34): 

( )
4 4 4 2

11 12 664 4 2 2 2

w w w w
D 2 D 2D h 0

x y x y t
∂ ∂ ∂ ∂

+ + + + ρ =
∂ ∂ ∂ ∂ ∂

 
 
 

, (46)

Similar to classical Kirchhoff plate theory, the harmonic solution for w(x, y, t)  can 
be obtained as follows: 

mniw t
mn

m 1 n 1

m x m x
w(x, y, t) B sin sin e

a b

∞ ∞

= =

π π
= , (47)

where mnB  denotes a constant signifying the mode shape; m  and n denote the half 

wave numbers; mnw  denotes the resonant frequency; and i 1= − . 
By substituting Equation (47) into Equation (46), we get the resonant frequency of 

plate. 
4 4 2 2

2
11 12 66 mn

m n m n
D 2(D 2D ) hw 0

a b a b
π π π π

+ + + − ρ =
          
         

          
, (48)

Hereafter, for different order numbers m  and n , the resonant frequency can be ob-
tained as follows: 

2 4 4 2 2

mn 11 12 66

m n m n
w D 2(D 2D )

h a b a b

π π π
= + + +

ρ

          
                    

, (49)

From above expressions, it is clearly seen that the resonant frequency can be evalu-
ated using the traditional piezoelectric theory if the effect of flexoelectricity is eliminated. 
To demonstrate the effect of flexoelectricity on the free vibration characteristics, we can 
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consider the different value of modes with respect to the aspect ratio and thickness of 
plate, as presented in the subsequent section, Section 3. 

3. Results 
In this article, hybrid graphene reinforced piezoelectric composite (GRPC) plate with 

combination of PZT and graphene g p(v 0.2v )=  into epoxy matrix was selected to inves-

tigate how the flexoelectricity influences the static and modal analysis, in which gv  and 

pv  denote the volume fraction of graphene nanofillers and PZT fiber. The elastic, piezo-
electric and dielectric properties of GRPC are taken from Shingare and Naskar [36] and 
are summarized in Table 1. The mass density ( )ρ  of the hybrid GRPC is considered as 

3798.4 3kg / m . All the results are estimated for load q 0.1MPa.=  From the above math-
ematical formulation, it is observed that the transverse deflection of hybrid GRPC plate is 
directly proportional to the applied load and independent of the mass density, while the 
dynamic/modal response is independent of the applied load but proportional to the mass 
density of the material. 

Table 1. Effective properties of hybrid GRPC g p(v 0.2v )= . 

Material 11C (GPa)  12C (GPa)  66C (GPa)  2
31e (C /m )  9

33 10 (F / m)−χ ×  

GRPC 112.43 3.34 2.03 −6.9337 3.264 

3.1. Static Deflection of Hybrid Flexoelectric GRPC Plate 
In case of static analysis of hybrid GRPC plate, we considered the bending rigidity, 

center deflection and maximum deflection of hybrid plate with respect to different param-
eters, such as different graphene contents, flexoelectric coefficient, thickness and aspect 
ratio of plate. Figure 2 shows the variation of center deflection against the aspect ratio of 
hybrid GRPC plate, considering the different flexoelectric coefficient for m 1=  and 
n 1.=  From Figure 3, it can be observed that the center deflection of plate decreases as 
the value of flexoelectric coefficient increases. Due to lack of atomistic calculations or ex-
periments, the flexoelectric coefficients of hybrid GRPC are not readily available. How-
ever, in experimental measurement, it is observed that, for certain crystals and ceramics, 
the flexoelectric coefficient is estimated to have the order of 710 C / m−≈  [41,42]. There-

fore, the flexoelectric coefficient for hybrid GRPC is considered as 710 C / m−  for further 
calculation. 
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Figure 3. Effect of different flexoelectric coefficients on the center deflection of hybrid flexoelectric 
plate (m 1; n 1).= = . 

Figure 4 and Table 2 illustrate the effect of different values of m  and n on the de-
flection of hybrid GRPC plate, with and without considering flexoelectricity. From this, it 
can be observed that the deflection of the hybrid GRPC plate decreases as the value of m
and n  increases. Additionally, Table 2 shows the 3D representation of the deflection of 
the hybrid GRPC plate for a clear visualization of the deflection of the plate. 

  

 
Figure 4. Variation of center deflection of hybrid plate with respect to aspect ratio. (a) m = 1; n = 1; (b) m = 3; n = 3; (c) m = 
5; n = 5. 
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Table 2. Three-dimensional representation of deflection of hybrid flexoelectric plate, with and without considering flexo-
electricity for different values of m and n. 

(m, n) Without Flexoelectric Effect With Flexoelectric Effect 

m 1= ; 
n 1=  

  

m 3= ; 
n 3=  

  

Figure 5 shows the variation of center deflection against the aspect ratio of hybrid 
GRPC plate, considering the different combination of graphene and PZT for m 3=  and 
n 3.=  From this, in Figure 5, it can be observed that the center deflection of the plate 
decreases as the value of graphene content in the hybrid composite plate increases. Ac-
cording to the experimental studies, it is clear that the appropriate graphene volume frac-
tion in the composite should be less than 10%. Therefore, in this study, the volume fraction 
of graphene is considered as 0.2  times the volume fraction of PZT (i.e., 8% in composite). 
In view of experimental possibilities, we considered g p(v 0.2v )=  for further calculation 
of static and modal analysis, which consists of a graphene content of less than 10% volume 
fraction in the hybrid GRPC plate. Figure 6 summarizes the values of maximum deflec-
tions of hybrid GRPC plates for different in-plane dimensions (a b 45h;55h)= = . It can be 
clearly seen that the influence of flexoelectricity on the maximum deflection of a plate 
diminishes as its thickness increases, indicating that the flexoelectric effect is size depend-
ent. 
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Figure 5. Effect of different graphene content on the center deflection of hybrid flexoelectric plate 
(m 3; n 3).= =  

 
Figure 6. Variation of maximum deflection against the hybrid flexoelectric plate thickness 
(m 3; n 3).= =  

However, it can be concluded from the previous figures that the deflection of the 
plate with the flexoelectric effect is lower that of the conventional plate theory, without 
considering the flexoelectric effect for both cases of in-plane dimension. The variation be-
tween both cases is significant, which indicates the importance of flexoelectricity in the 
static bending of the hybrid GRPC plate. 

So far, to explore the effect of flexoelectricity and value of different values of m and 
n on the static deflection of the hybrid GRPC plate, four discrete types of loading condi-
tions, namely point load (P), inline, uniformly distributed load (UDL) and uniformly var-
ying load (UVL, i.e., hydrostatic load), are used. These cases represent the practical situa-
tion of different types of loadings on the thin plate. We considered the equivalent magni-
tude of loading in all situations. Our selection of in-plane dimensions of the plate is based 
on the fact that the theory of Kirchhoff plate provides better results when the aspect ratio 
of a plate is in the range of 5–80 [43]. As expected, the maximum deflection of the plate 
occurs at its center, irrespective of the type of loading in both the cases (with and without 
flexoelectricity). It is evident from this table that the consideration of the flexoelectric effect 
results in the lowering of the deflection of the hybrid GRPC plates, as compared to that of 
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conventional plates. The significant reductions in static deflection of hybrid GRPC plates 
with respect to the value of m and n are observed from Tables 3 and 4. From Tables 3 and 
4, it can be clearly seen that there is a significant influence of flexoelectricity on the center 
deflection of the plate. In this, the legend or graph with the blue color indicates the results 
for the hybrid flexoelectric plate, while the graph with the red color indicates the results 
for the conventional plate. Here, we considered different values of m and n, such as 
m 1, 3, 5,7 and n 1, 3, 5,7= = , and predicted the results for different loading conditions. It 
is evident from these tables that the consideration of the flexoelectric effect and different 
values of m and n results in the lowering the deflection of hybrid GRPC plates, as com-
pared to that of conventional plates (without considering flexoelectricity). For example, it 
may be observed from this table that the reductions in static deflections of hybrid GRPC 
plates are found to be ∼6.0%, corresponding to 4 nm thickness of nanoplate in all loading 
cases. In the case of the deflection of plate, point load condition gives maximum deflection 
of the SS hybrid GRPC plate when compared with other loadings (point load > In-line 
load > UDL > UVL), accounting for both cases (with and without flexoelectricity). 

Table 3. Deflection hybrid flexoelectric plate, with and without considering flexoelectricity for different loadings 
(m 1,3 ; n 1,3).= =  

Load m 1; n 1= =  m 3; n 3= =  

Point 

 
 

In-line 
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UDL 

  

UVL 

 

Table 4. Deflection hybrid flexoelectric plate, with and without considering flexoelectricity for different loadings 
(m 5,7 ; n 5,7).= =  

Load m 5 ; n 5= =  m 7 ; n 7= =  

Point 
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In-line 

  

UDL 

  

UVL 

  

Figure 7 illustrates the variation of normalized bending rigidity 0

11 11(D D )  of the 

hybrid flexoelectric GRPC plate with respect to its thickness (h) , where 11D  and 0

11D  
are the bending rigidities of hybrid flexoelectric plate, with and without effect of flexo-
electricity, respectively. Note that the value of 11D  depends only on the thickness of plate 
and is independent of its in-plane dimensions, as seen from Equation (32). It is clearly 
observed from Figure 6 that the effect of flexoelectricity on the normalized bending rigid-
ity is size-dependent, and it is more eminent for the plate with a smaller thickness. For 
example, in regard to the bending rigidity, the effect of flexoelectricity is ~3.8 times the 
bending rigidity, without considering the effect of flexoelectricity when the plate thick-
ness is considered as 10 nm. If we consider both flexoelectric and surface effects, then the 
bending rigidity becomes ~4.5 times the bending rigidity, without considering the effect 
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of flexoelectricity when the plate thickness is considered as 10 nm. Effective bending ri-
gidity of the plate, considering both flexoelectric and surface effects, is determined by refer-
ring to Reference [8]. However, for the sake of brevity, results with surface effects are not 
considered for the remaining results. This difference is noticeable, and it cannot be ignored 
for predicting the electromechanical coupling responses of nanostructures accurately. As 
the thickness of the plate increases, the effect of flexoelectricity diminishes promptly, and 
this effect vanishes as the normalized bending rigidity approaches the unity. It can be noted 
from the above discussion that the strain gradient from the constitutive equations related to 
flexoelectricity has an influence on the static deflection, with respect to the thickness of hy-
brid flexoelectric plates. This may be due to the fact that, since the flexoelectric effect is size 
dependent, i.e., the smaller the plate’s thickness, better the result. 

 
Figure 7. Variation of normalized bending rigidity against the hybrid flexoelectric plate thickness. 

3.2. Modal Analysis of Hybrid Flexoelectric GRPC Plate 
In this, the investigations were carried out to study the effect of flexoelectricity on the 

dynamic response of hybrid GRPC plates with respect to different parameters, such as 
different graphene contents, thickness and aspect ratio of the plate. Similar to Figure 5, 
Figure 8 shows the variation of the resonant frequency against the thickness of hybrid 
GRPC plate, considering the different combination of graphene and PZT for mode (1,1).  
From this Figure 8, it can be observed that the resonant frequency of plate increases as the 
value of graphene content in the hybrid composite plate increases. From this figure, it is 
concluded that effect of flexoelectricity decreases as the thickness of the hybrid plate in-
creases, because the flexoelectricity is a size-dependent phenomenon. 

Figure 9 illustrates the results of the effects of flexoelectricity on the dynamic re-
sponse of piezoelectric hybrid GRPC plates for the normalized fundamental frequency of 
mode (1,1)  for the conventional plate, and the hybrid flexoelectric plate is plotted against 
the plate thickness. From Figure 9, it can be observed that the hybrid flexoelectric plate 
envisages a larger resonant frequency over the conventional plate without flexoelectricity. 
Hence, the numerical results for plate resonant frequency can be enhanced by the flexo-
electricity effect. Figure 10 demonstrates the results of the effects of flexoelectricity on the 
dynamic response of hybrid flexoelectric plates for resonant frequency of mode (1,1) , and 
(2,2)  is plotted against the plate aspect ratio. In Figure 10, the legend or graph with the 
blue color indicates the results for hybrid flexoelectric plate, while the graph with the red 
color indicates the results for conventional plate. We kept the in-plane dimensions of the 
hybrid plate constant (a b 1200 nm)= =  and varied their modes. From Figure 10, it can be 
observed that the resonant frequency increases as the mode number increases for the same 
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in-plane dimension of the plate (a b 1200 nm).= =  The effect of flexoelectricity is note-
worthy in the case of the thin plate. It can be also concluded that the influence of flexo-
electricity on the resonant frequency of a plate diminishes as its thickness increases, which 
shows that the flexoelectric effect is size-dependent. It is obvious that the resonant fre-
quency is higher for the hybrid flexoelectric plate over that of the conventional plate when 
the plate thickness is less than 30 nm . The flexoelectricity does not much influence the 
resonant frequencies of plates having larger thickness ( 40 nm)> , and this is because of 
the effect of size-dependent flexoelectricity diminishes as the thickness of plate increases, 
despite the fact that the resonant frequency at mode (1,1)  is less, as compared to mode 
(2,2).  The same is true for another set of modes, (2,2)  and (3,3) , and so on. This is 
attributed to the fact that mode (1,1)  is a fundamental mode of vibration, which is the 
lowest natural frequency of the particular system. Normally, only the first few modes are 
vital from the practical application point of view; although, the results for the higher 
modes are also presented here. Modes are numbered according to the number of half and 
full waves (crest and trough) in the vibration. Differences between the numerical out-
comes of all modes may be due to the bending, contracting and expanding of plates under 
the different modes while the specific amount of energy is stored in each mode. It means 
that, if mode number increases, then the crest and trough in the vibration get increased, 
which results in more energy being stored in the structures. Therefore, this resonant fre-
quency is directly proportional to the mode numbers. Moreover, from Equation (44) it is 
clearly seen that the resonant frequency due to piezoelectric/flexoelectric effect strongly 
depends on the mode numbers m  and n.  Figures 9 and 10 also reveal that the resonant 
frequency is largely depends on the in-plane dimensions of plate; resonant frequency of 
the plate diminishes as its in-plane dimensions increase. Here, the results of resonant fre-
quencies of hybrid flexoelectric plates are presented to investigate the effect of flexoelec-
tricity and different modes by varying in-plane dimension with respect to plate thickness. 
Figure 11 demonstrates the effect of flexoelectricity on the resonant frequency of hybrid 
flexoelectric GRPC plate for different modes, such as (1,1), (2,2), (3,3), (4,4) and (5,5) , 
with respect to plate thickness. The results shown in Figures 9 and 10 are significant, thus 
indicating that the flexoelectricity plays an important role in the dynamics of thin plates 
and needs to be accounted properly. It can be observed that the resonant frequency de-
creases as the aspect ratio of plate increases. It is observed from looking at Figures 3–11 
that, as the thickness of the plate increases, the effect of flexoelectricity starts diminishing. 

 
Figure 8. Effect of different graphene content on the resonant frequency of hybrid flexoelectric 
plate with respect to plate thickness for mode (1,1).  
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Figure 9. Variation of resonant frequency ratio against the plate thickness. 

 
Figure 10. Variation of resonant frequency against plate aspect ratio under mode (1,1)  and mode 

(2,2) , considering effect of flexoelectricity (a b 1200 nm)= = . 
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Figure 11. Variation of resonant frequency against plate thickness under different modes, consid-
ering the effect of flexoelectricity (a b 45h)= = . 

4. Conclusions 
In this novel article, static and modal analyses of hybrid graphene-reinforced piezo-

electric composite (GRPC) plates with flexoelectric effect were investigated for the first 
time in the literature. Finally, we derived the closed-form solutions for hybrid flexoelectric 
GRPC plate based on Kirchhoff’s plate theory, Navier’s solution and extended linear the-
ory of piezoelectricity. In this, the governing equations and respective boundary condi-
tions were obtained, using Hamilton’s variational principle for achieving static deflection 
and natural frequency. Moreover, the different parameters, such as aspect ratio, thickness 
of plate, different loadings (uniformly distributed, uniformly varying, inline and point 
load), the combination of different volume fraction of graphene and piezoelectric lead zir-
conate titanate (PZT), were considered. In addition to this, different mode shapes and 
flexoelectric coefficients were also considered. It is found that the bending rigidity of hy-
brid flexoelectric plates having a thickness less than 50 nm increases significantly, and 
such an effect cannot be neglected for predicting the static response of thin structures. 
Similarly, the dynamics response of hybrid GRPC plates is enhanced due to the flexoelec-
tric effect as the plate thickness reduces. In addition to this, our results clearly indicate 
that the consideration of adding the proper percentage of graphene and flexoelectricity 
plays an important role in the reducing static bending deflection (overall highest displace-
ment) and increasing modal analysis in terms of resonant frequency of thin plates and 
cannot be neglected while modeling 2D nanostructures. 

The current study might provoke the investigators for building this novel hybrid 
GRPC and aid the purpose of validating the experimental approximations. Meanwhile 
one may use this closed-form solution for prediction of behavior of hybrid composite 
structures. Some of the improvements outlined in the current paper will guide the path 
for studying the structural health monitoring and energy harvester in MEMS/NEMS ap-
plication in the future. 
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