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STATE FOR LINEAR TIME-VARYING SYSTEMS,
WITH APPLICATIONS TO DISSIPATIVE SYSTEMS

P. RAPISARDA*

Abstract. An intrinsic definition of state is given for systems described by higher-order lin-
ear differential equations with time-varying coefficients. Based on this definition we characterize a
polynomial differential operator that acting on a system trajectory defines a corresponding state
one, and we illustrate a procedure to compute a state variable from the differential equations. We
prove that there exist representations of first order in such state variable and zeroth order in the
input and output variables. We also consider linear, time-varying dissipative systems, and we give
several characterisations of the property of cyclo-losslessness. We prove that for dissipative systems
the storage function is a quadratic function of the state.

Key words. State variable, differential-algebraic equations with time-varying coefficients, dis-
sipativity, storage function, bilinear and quadratic differential forms.

AMS subject classifications. 93A10, 93A30, 93B25, 93C05

1. Introduction. We consider systems described by higher-order linear differ-
ential equations with time-varying coefficients, called linear time-varying differential
systems in the following. These are the natural end-product of a modelling procedure
based on tearing a complex system in subsystems, zooming in each of them to model
it based on first principles, and combining the sub-models in a global mathematical
description (see [21]). In our setting, state variables are auxiliary ones computed from
the higher-order representation, and not given a priori. The characteristic property
of state is that it “splits” past and future: its value at a time instant ¢y determines
whether the concatenation of two system trajectories at tg is itself an admissible sys-
tem trajectory. In this paper, we show how a state variable can be computed from
the system equations using this definition, and we show how such variables arise when
considering energy supply and storage functionals.

We studied state construction for higher-order linear differential equations with
constant coefficients in [15, 17]; the present work differs from it in many respects.
Firstly, the analysis in [15, 17] heavily relied on the algebra of polynomial matrices, but
here we work directly with linear differential operators with time-varying coefficients.
Secondly, the technical issues involved are considerably different; fortunately, previous
work (most notably [8, 9, 23, 24]) was of great help in reducing such difficulties to
a complexity manageable by this author. Thirdly, we extend our analysis to the
study of bilinear and quadratic functionals of linear time-varying differential systems.
We work directly with such functionals, without relying on the algebra of bi-variate
polynomials as done in [20] for the linear time-invariant case. We prove that storage
functions are quadratic functions of the state also for the time-varying case.

The literature on linear time-varying systems is vast, but only some authors have
taken higher-order differential equations as a starting point (see [7, 8, 9, 23]), and even
fewer have considered the state realization problem in this framework (see [4, 11, 24]).
We briefly mention their contributions here, deferring to remarks interspersed in the
text more specific analyses of their relation with the results presented in this paper.

A common feature of past contributions is that the state realization problem is
studied not from a trajectory-based point of view, with the state property occupying
a central role as it does in this paper, but rather as the classical problem of devising
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auxiliary variables with respect to which first-order representations can be computed.
Only in sect. V.A of [24] does the state property appear, but as a consequence
of the existence of first order representations. The authors of [4] consider higher-
order differential equations with smooth time-varying coefficients, and compute a
minimal state representation for the single-input, single-output case using algebraic
manipulations of the differential equation. In [11], the authors use the algebra of non-
commutative polynomial rings to construct a state variable for the multiple-input,
multiple-output case. Their elegant approach connecting polynomial division and
state construction has the potential of bringing computer algebra techniques to bear
on the realisation problem. Our results about quadratic and bilinear forms in the
time-varying case are completely original in subject and technique.

Throughout the paper we make extensive use of behavioral system theory con-
cepts; the reader is referred to [19, 21] for an introduction. In sect. 2 we define the
solution space, system representations, and the concept of state. In sect. 3 we char-
acterize concatenability of system trajectories and we compute a state variable. We
consider system representations with auxiliary variables in sect. 4. In sect. 5 we prove
that the state variable defined in sect. 3 induces first order system representations.
In sect. 6 we give several characterizations of losslessness and we prove that storage
functions are quadratic functions of the state. Sect. 7 concludes the paper.

2. Basic definitions. We consider a system to be essentially characterized by its
behavior, i.e. the set of trajectories satisfying a system of linear differential equations
with time-varying coefficients. These equations may involve only the variables one is
interested in modelling, for example the voltage and current at the external ports of
an electrical circuit; these are called external variables and are denoted by w in the
following. A system representation involving only the external variables is

dL
where Ry, is a px ¢ matrix whose entries are meromorphic functionson R, k =0,..., L,

w is the g-dimensional vector of external variables, and w(-) denotes a trajectory in
the variables w. In the following we write (2.1) compactly as R (%) w(+) = 0, where

R (4) is the polynomial differential operator with meromorphic coefficients defined

by R (%) =Ro+...+ RL{Z—LL. This justifies the terminology kernel representation
for the set of solutions of (2.1).

In [3, 9, 22, 23] various concepts of solution for (2.1) have been discussed. In
this paper we follow [9, 23] and opt for piecewise smooth functions, i.e. the space
consisting of all functions w(-) of one real argument and taking values in R? for which
there exists a discrete set E(w) C R such that w(-) € C* (R \ E(w),R?). We denote
the set of such functions by the symbol C53 (R,R?). The reader is referred to sect.
1.3 of [9] for examples of the subtleties involved in defining the set of solutions of
differential equations with time-varying coefficients, and why C5 (R,R?) is a suitable
choice for engineering purposes. A solution may not be defined everywhere (see sect.
1.3 of [9]), and the notation dom(w) C R is used in the following to denote the domain
of w(-) € Cpy, (R, RY).

The set of solutions to (2.1) is called the (global) behavior defined by

B:= {w() €Cn(R,RY) | R <dd> w(7) = 0 for almost all T}
T

(2.2) = ker R (i) .
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In the rest of this paper we denote the set of meromorphic functions from R to
R by M, and the set of p x ¢ matrices with meromorphic entries by MP*9,

Sometimes it is necessary for modelling purposes to introduce auziliary variables
besides the external ones; for example, when modelling electrical circuits, voltages
and currents in the internal branches are needed to model the port variables. System
representations involving the auxiliary variables (denoted by ¢ in the following, and
equivalently called “latent” in the following) besides the external ones w are of the
form

dr dN
(2.3) Row(') ++RLdt7L’w() = M()f()—i-MthiNZ() ,
where Ry € M9*9, k=0,...,L, Mj € M9*™ j=0,...,N, and w(-) € Coy, (R, RY),
() € Cox(R,R™). Using standard terminology in behavioral system theory (see
e.g. [19]), we call (2.3) a hybrid representation (since it involves both external and
auxiliary variables). The equations (2.3) define the (global) full behavior

(24) By := {(w(-),£(})) € Co,(R,RI*™) | (2.3) holds almost everywhere (a.e.)} ,
and the (global) external behavior
(25)  Be:={w() € Cx5(R,RY) | I £(-) € C,(R,R™) s.t. (2.3) holds a.e.} .

In the case of electrical circuits, the full behavior consists of the trajectories of the
internal currents and voltages and of those at the ports, while the external behavior
consists of only the trajectories of the port variables.

A special case of the representation (2.3) occurs when R (%) = I,; in this case

dN
(2.6) w(t) = Mol(:) + ..+ My 2 6().

is called an image representation. A linear time-varying system is representable in
image form if and only if it is controllable. (For the definition of controllability, see
Def. 3.1 p. 1734 of [9] or Def. 3 p. 122 of [23]; and for the equivalence of controllability
and representability in image form, see Th. 7 p. 122 of [23].)

In the following the set of solutions of a system of differential equations with
time-varying coeflicients is called a linear time-varying differential behavior. We refer
the reader to sect. 6 of [9] and sect. 5.3 of [23] for a thorough treatment of how
hybrid and kernel representations are related to each other via the “elimination of
latent variables” theorem.

We now introduce a trajectory-based point of view on the concept of state. In
our definition of state we use the concatenation of two trajectories fj at tg, k = 1,2,
denoted by the symbol fi(+) 1{3 f2(+), whose value at t is defined by

L fl(t) ift < to s t e dom(fl)
27) (flt/(\)fz) (1) := {fQ(t) ift >ty, t € dom(fa)

State variables are a special kind of auxiliary variables associated with the prop-
erty of concatenability between full (internal and external) trajectories (see also [15]).
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DEFINITION 2.1. Let By be a full behavior with external variables w and auziliary
variables . The variables £ are a state for By if for all (wi(-), £1(+)), (wa(-), £2(-)) € By
and all tg € dom(wy (+), £1(-)) Ndom(wa(-),€2(-)) it holds that

(28) 51() t/; EQ() continuous at t0:| — [(wl(),ﬁl()) t/; (w2(),€2()) S Bf

If £ is a state variable, By is called a state system for B. defined by (2.5).

REMARK 1. Def. 2.1 is slightly different from the corresponding one for time-
invariant systems, see formula (3.3) p. 1058 in [15]. Since we work with piecewise
smooth functions with only a discrete set of discontinuities, we identify functions that
coincide outside a discrete set. Consequently, we only require continuity at t = tg,
instead of pointwise equality at t = ¢y (as in [15]). On this issue, see also the definition
of equivalence in formula (2.5) p. 2418 of [17].

In the next two sections we consider the characterization of state variables for
systems described by (2.1) and (2.6).

3. State from external variables: kernel representations. We first char-
acterize concatenability of two external trajectories of (2.1) as conditions on the tra-
jectories and their derivatives at the concatenation instant. Linearity implies that we
can reduce ourselves to the case when one of the two trajectories is identically zero.

PROPOSITION 3.1. Let B be a linear time-varying behavior, and let w(-),w'(:) € B
and to € R. Then (w() A w’(-)) € B if and only if (0 A w'(-) — w()> eB.
0 0
Proof. Straightforward from linearity. |
Using the equivalence stated in Prop. 3.1, we study the conditions under which
a trajectory is concatenable with zero.

Let I := [a,b] C R be a fixed interval. On C*°(I, R?) the differential operator P%
with P € M™*" has a (unique) formal adjoint defined by

(3.1) <p$j>* = (=1) (PT oid)" = (—1)7 zjj (z) P(i)T;::i :

=0

see e.g. Th. 3.1 p. 303 of [12]. It follows that every polynomial differential operator

R (4) with m x n meromorphic coefficients defined on T has an adjoint operator,

denoted by R(%)*, such that for every f € C®(I,R"), g € C=*(I,R™) with zero
boundary conditions, the equality

b . d b d * T
2 — dt = — dt
) [r(w(@)e) o= [ (=(5) 1) o
holds. A closed form expression for R (%)* follows from (3.1):

—_ = e v - _1 J 'Z g
R (dt) (Ro - +RLdtL> > (1) z; (i)R] =

§=0 =

We now characterize concatenability with zero at tg.
4
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THEOREM 3.2. Let (2.1) be a kernel representation of B. Define the polynomial
differential operator X, (%), m=0,...,L—1 by

(3.3) X, < d> i ch1 < J >ngj—m)w(k1j)(.) .

Let w(-) € B; the following equivalence holds:

d
(3.4) (O{\w)(~)€B<:>Xm<dt)w(t0)—0,m—0,...,L1.
0
Proof. Since the set of singularities of the coefficients Ry, k =0, ..., L is discrete,
there exists an interval I(¢p) := [a,b] containing ¢y on which Ry, k = 0,...,L are

all defined. In the following, we denote by Fo(I(to)) the set of all smooth functions
which are identically zero in a neighborhood of the extremes of the interval I(¢p).

The equality f: FOT(R(L)w(-)) dt =0 holds for all f(-) € Fo(I(to)) if and only if
IK (R (4y* f(.))Tw(-) dt = 0 for all f(-) € Fo(I(ty)). Note that <0t/\w) () € Bif

a

and only if for every f(-) € Fo(I(to)) it holds that
b . L (k) b . L “
o:/a f (;Rk(ot@@ ) dt/tof (;)Rkw ) dt

0
b L
(3.5) = / 7| Row + (Z Rkw%)ﬂ dt .
to
We now prove that for every k > 1

k=1

k-1
(3.6) f' (Rkw(k)>=% S 1 (TR w0 | 4 (1) (TR Y w
j=0
This follows from (—1)k=1 + (=1)* = 0 and
k-1
ISy (TR w0 | = 0P (TRt (TR ]
0

j:
+(—1)! [( FTR) P wk=2 4 (fTR,)Y w<'f—1>] ¥

= (=1)° (fTRk) w(k)+( 1)k- l(f R )(k) )
Use equation (3.6) to rewrite ftl; fr [Row + (Z,l;“:l Rkw(k))} dt as
/ T | Row + (Z Rkw(k)>] dt
k=1

b
:/ fTROw+Zdt

to

k—

1 .
1)j (fTRk)(j)w(k—l—j) + (_1)k (fTRk)(k)w dt ,
0

5

Jj=
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and conclude that

fTRow+Z fTRk)(k)w dt

k=1

:/b

(3.7) +

k—1

(—1) (fTRk) wF—1-7)

ol
i Mh
I
o

1j to

We now show that the first term in this expression equals f: FTR (L) w dt. From
the closed form expression for R (%)* it follows that

() - (§) () w
e S () (o)

1=

The formula for the higher derivative of a product reads

k k—i T )
(fTRk)(k) _ Z (f) (jtk_i f) R](CZ)T 7

=0

and consequently f™ R (%)* = fTRo + Z;S:l(fl)k (fTRk)(k), which yields the de-
sired equality. It follows that the first term in (3.7) equals 0. It follows that

(0 A w> (1) € B if and only if for every f(-) € Fo(I(to)) it holds that

L k-1 b
ZZ fTRk) D k1= _¢.
k=135=0 to

Use (fTRk)(j) =37 (0 )f J-i TR , 7 =1,..., and the fact that f(-) € Fo(I(to))
to conclude that w(-) € B is concatenable with zero at ty if and only if

L k-1 . ) b
P! (Z (Z) fU—”TR,(j)> wk—1-9)
k=1 j=0 i=0 to
L k-1 J . ,
== (-1 (Z (7) 550 R <to>> w9 = .
k=1 j=0 i=0

We proceed to rewrite the expression

L k-1 7 . )
S (-1 (Z (Z)NNR](;)) wlk=1-7)

k=1 5=0 =0
as a sum of terms involving f(-)™, m = 0,..., (L — 1)-th, multiplying sums of terms
involving the coefficients Ry and w(-)"™), m = 0,...,(L —1). For m := j —i = 0,
6
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FOET multiplies Yp_y S5 (-1 R w(-) R 1D, For m = j —i = 1, f(-)07
multiplies 2522 Zf;ll (jzl)(—1)jR,(€j71)w(-)(k_1_j). An induction argument shows
that the m-th derivative of f(-) multiplies

L k—1 ] ) ) ,
> (), R e
k=m+1j=m J

Given the arbitrariness of f(-) in Fo(I(¢o)), it follows that 0 A w(-) € B if and only if
0

L k-1 < j > G d
o> (. (1) RY ™™ (to)w* 19 (t9) = X, <) w(ty) =0,
k=m+1j=m J—m dt
m =0,...,L — 1. This proves the claim. 0

REMARK 2. In the time-invariant case R,(cjfm) =0 for j —m > 1. It follows

from Th. 3.2 that (O A w) () € B if and only if Zﬁzmﬂ(—1)7'Rkw(k’1*m)(t0) =0,
0

m =0,...,L— 1. This equivalence is Prop. 6.1 p. 1063 in [15]. |
In the following, if P; (&), i = 1,..., N, are polynomial differential operators
with the same number of columns, we denote by col (Pi (%))izl  the polynomial

,,,,,

differential operator obtained stacking the P; (%) ’s on top of each other.

COROLLARY 3.3. Let (2.1) be a kernel representation of B. Define X,, (%) by
(3.3). Let w(-) € B, and define the trajectory of the auxiliary variable x by

and the set of trajectories
(3.9 Bf = {(w(:),z(:)) | w(-) € B and z(-) is defined by (3.8)} .

The variable = is a state variable for By, and By is a state system for B.

Proof. Let w;(-) € B, i = 1,2, and define the corresponding trajectories x;(-),

1 = 1,2 by (3.8). It follows from Th. 3.2 and Prop. 3.1 that the full trajectories

(wi(+),z;(+)), i = 1,2 have the following property: if z1(-) and z2(-) are continuous at

to and if x1(tg) = x2(to), then the concatenability conditions on wi(-) and wy(-) are

satisfied. It follows that the external trajectory wi(+) A wo(+) € B, and consequently
0

that the concatenated trajectory (wi(-),z1(-)) A (wa(-), z2(-)) belongs to the set By

0

defined by (3.9). Consequently, the variable = defined by (3.8) satisfies the state
property (Def. 2.1) and By is a state system for the external behavior B. |

REMARK 3. We discuss in order of appearance in the literature several approaches
to the construction of state variables and state equations for linear time-varying sys-
tems.

In [24], state variables are introduced as auxiliary variables with respect to which
first-order representations for a behavior can be computed (see Th. 8 p. 394 ibid.), and

7
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the state property is shown to be satisfied as a consequence of this (see sect. V.A p.
396). In formula (9) p. 395 of [24], it is shown that a state variable = can be obtained
from that of external variables w applying to the latter a polynomial differential
operator which coincides with that constructed from the differential operators (3.3).
See also Rem. 5 below for a discussion on further parallels between the approach of
[24] and the one presented in this paper.

The authors of [4] consider representations of the behavior where the entries of
the coefficient matrices Ry are smooth functions. They also view state variables as
instrumental to achieving first-order representations, rather than starting from a first
principles perspective. The state variable defined in [4] is precisely that induced by
the polynomial differential operator (3.3), see formula (14) p. 723 ibid. The procedure
yields a minimal state variable for the single-input, single-output case.

The approach to computation of state variables illustrated in [11] also proceeds
from the realization problem rather than an intrinsic definition of state. The authors
use the concept of left division in the non-commutative polynomial ring M[D] of poly-
nomial differential operators with meromorphic coefficients, to arrive at formulas (10)
p. 1953 and (13) p. 1954 to the same polynomial differential operator as (3.3). From
the computational point of view, this approach is close to that of [15], in that the
polynomial differential operators inducing a state variable are shown to be obtainable
by repeated division of the polynomial matrices describing the system by the inde-
terminate corresponding to differentiation (see the definition of the “shift-and-cut”
map in sect. 5, pp. 1060-ff. of [15]). The advantage of the approach of [11] over
the aforementioned ones, including that illustrated in this paper, is that highlighting
the connection of polynomial division and state construction brings computer algebra
techniques to bear on the realisation problem. |

4. State from latent variables: image representations. If two full tra-
jectories (w;(+),4;(+)), i = 1,2 satisfying (2.6) are concatenable at tg, then also
wq(+) A wa(+) € B, the external behavior of (2.6). Since concatenability of full tra-

0
jectories implies concatenability of the corresponding external ones, it follows that a
state variable for By is also a state variable for the external behavior B.

Now consider (2.6) as a kernel representation [I, —M (%)] [IZ(())} = 0 of the

full behavior By. We now show that a state variable for By computed as in sect. 3 is
a function of ¢ only.

COROLLARY 4.1. If B is represented in image form (2.6) and (w(-),€(:)) € By,
then the auxiliary variable x with trajectories defined by

@t =x (5]

N k-1 .
=l (= 3 Sy (7 e ,

—~ — j—1
k=itl j=i i=0,..,.N—1
is a state variable for B, and the set of trajectories
(4.2) By = {(w(:),z(-)) | (w(-),€(-)) € By and z(-) is defined by (4.1)} ,

is a state system for B.
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Proof. Let (w(-),¢(-)) € By. Apply Th. 3.2 and Cor. 3.3 to conclude that the
variable with trajectory defined by

x () [10) =< > Y

<J - z) [quq _Mk](j_i)

k=i+1 j=1

— col ﬁ: Z (,j )M,ﬁji)g(k—l—ﬁ(.)

k=i+1 j=1

w19 (.
[g(klj)(.)

i=0,...,N—1

1

is a state variable for By. The argument stated at the beginning of the section shows
that a state variable for By is also a state variable for B; the claim follows.

d

REMARK 4. Insect. 7 of [15] we proved that for (observable) representations (4.1)
of a linear time-invariant differential system, concatenability of a full and an external
trajectory are equivalent; consequently, the time-invariant equivalent of (4.1) provides
a characterization of polynomial differential operators inducing a state variable. The
result of Cor. 4.1 only provides a sufficient condition, but it is strong enough to allow
us to study the relation between storage functions and state in sect. 6 of this paper.
The converse implication will be considered elsewhere.

5. State and first order representations. In this section we prove that given
a kernel representation of a behavior, it is possible to write down equations of first
order in the state variable computed in (3.8) and zeroth order in the external variable.

THEOREM 5.1. Let B be a behavior described in kernel form by (2.1), and let
w(-) € B. Denote by x the state variable defined by (3.8), with corresponding trajectory
x(-). There exist F,G € MPEXPL sych that

(5.1)

d

%x() = Fx()+ Gu(-) .

Proof. Denote by x,, the m-th component of = defined by (3.8), m =0,...,
In order to prove the claim, we prove the two equalities

(5.2)

dt

L

Zoo() =Y (D RPw() — Row()

k=1

— () = —2m_1() + (1) Rpw()

+ Z <—1>k‘1(kf m)R,i”’w<->.

F and G in (5.1) can be computed in a straightforward way from these identities.
To prove the first equality, since xq(-) = 25:1 Z?;g(—l)j (jjO)R,(CJ)w(k_l_j)(-) it

L-1.

follows that %zo(-) = Yo A0 (~1)7 [R,(j“)w(k—l—j)(-) n R,@w(k—j)(-)} . Define

j' = j+1; then

L k-1

> > (1

k=1 j=0

]Rj+1) (k 1—3) zL:zk: ]—1R

k=1j'=1
9
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and consequently

L k& L k-1
I R ML RTINS 9 S T
k=1j'=1 k=1 j5=0
Separating the term with j = k in the inner sum of the first term in (5.3) we obtain
L &k L L k-1
_ v k o v Y
ZZ ] 1RI(§]) (k 3 Z k lng )w()—'_ZZ(_l)j 1Rl(gj )w()(k ) )
k=1j'=1 k=1 k=2 j'=1
The second expression in (5.3) can be rewritten as
L k—1 L L k—1
S S PR = 3 R+ 30 S w0
k=1 ]:O k=1 k=2j=1

Consequently, +xo(-) = Zi:l( 1)k 1R(lC w(-) + Z L Rew® (1) equals

L

L
ST DR RPw() + ZRkw(k) + Row(-) = Row = Y _(~D* ' RPw(-) - Ryw(-) .

k=1 k=1

()10

The first equality in (5.2) is proved. As for the second equality in (5.2), observe that

o) = 2 ;(W(' jm)R?‘m“)wc)Wﬁ

j—

L k—1 . )
(5.4) + > Z(—l)j<_ J )Rgmw(.)(k—jy

J—m

Define j' := j + 1 and rewrite the first expression on the right-hand side as

L k—1

YD BICI (I I O L

k=m+1j=m
- - j' =1 (7' —m)
_ i — L\ pUT=m) k=)
k—Z-H j’§+l< : <j/ - 1= m) * vt

-/

Recall Pascal’s identity ( ;11 D=0") - (7,/:1) and conclude that

) —m ) —m

%xm() _ EL: Ek: (—1)7 [(j/i’m> _ (jﬂ/'_—:l)} RU' =™y k=)

k=m+1 j’=m+1

e (-j )Réj‘m)w<~><“>.
k=m+1j=m
10
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325 To arrive at the second equality in (5.2), consider first that for k& between m + 1
326 and L it holds that

k " k—1 .
e i’ J —-m J j—m —j
397 Z (—1)7 (.l g m) R(J ) ) 4 Z < )Rl(c] )w(.)(k 7)
j’'=m+1 J Jj=m
k k— m
308 — (_1)k1 (k—m) )™ k m)
328 (-1 (k B m) R, w(-) 0 Ryw(-)

329  Conclude from this equality that

330 %mm(-) = i {(—1)’“1 (k K )R,(fm)w(-) + (=™ (Tg) Rkw(-)(k—m)}

k=m+1
1 . o
531 (5.5) Z Z ( _m)Rg ™) gy (63
k=m+1 j'=m+1

332 We now prove that this expression equals —z,,_1(-) + zeroth-order terms in w(-).
333 To do this, defining j' := j + 1, we rewrite the expression (3.3) for z,,_1(-) as

334 ()= zL: zk: (_1)j'7 <]/ >R(] —m) w(- )(krfj/)
m—1 i'—m

k=m j'=m

335 =(-1)m? <m0 1) Z Z < ;) RY' ™™ () (k=1

-1 g g
337 + Z Z 1)7 —1< - m) Rl(cj m)w(_)(k—j )

k=m+1j'=m+1

338 The second and third term of this expression are the opposite of the second and third
339 term in (5.5). Conclude that

d -1

340 %xm() =2y 1() + (=)™t <m0 >me(-)

3 ko) ple-m)
. k— k—m
341 + Y (-1 ”(k_m)Rk w(-) .

k=m-+1

342 The claim of the theorem is proved. ]
343 In the following remarks we discuss alternative methods for the computation of

344 first order equations, and some further work opened up by the result of Th. 5.1

345 REMARK 5. In Th. 8 p. 394 of [24], a procedure is given to compute a special
346 (“output nulling”) first-order-in-z, zeroth-order-in-w representation for a behavior in
347 kernel form:

348 —z(-) = Fz(-) + Gw(")

319 (5.6) = Maz(-) + Nw(),
11
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where F'; M are real matrices with (F, M) an observable pair, and G, N are matri-
ces with meromorphic entries. In sect. V ibid. it is shown how to compute from
(5.6) an input-output-state representation associated with a time-varying quadruple
(A, B,C, D) with (A, C) observable.

In [4] it is shown that in the single-input, single-output case the state variable (3.8)
can be used to compute an observability canonical form representation (with matrix
entries being ratios of smooth functions) of the behavior, see formulas (37)-(38) p.
728 therein.

The authors of [11] consider the multiple-input, multiple-output case, and ob-
tain explicit formulas to compute a matrix quadruple (A, B, C, D) with meromorphic
entries describing the system in observability canonical form, see Th. 3.1 p. 1953. B

REMARK 6. We showed how representations of first order in the state and zeroth
order in the external variables can be computed in our approach. However, the result
of Th. 5.1 falls short of being completely satisfactory on various accounts; we now
summarise the most pressing directions for further research. The first one is how to
compute input-state-output representations in our approach (see also Rem. 5). The
second one is to characterize all state variables for kernel representations on the basis
of Def. 2.1 and Cor. 3.3. This development would open up further interesting research
questions, among them minimality and the computation of canonical representations
(e.g. observability, controllability). Further extensions are the computation of state
variables and representations starting from hybrid (but not image) representations
(2.3).

6. State and storage functions. We analyse the relation of the notion of
state proposed in this paper with the notion of storage function introduced in the
framework for dissipativity of [18] and further studied in [5, 20]. We consider quadratic
functionals defined on the external trajectories of a system, induced by S = ST €
R?%4 and defined by

w(-) = w(-) " Sw(-) = Qs(w(")) -
Our analysis of dissipative systems is local, based as it is on the interplay of solutions
and quadratic functionals on finite intervals [to,#1] C R. In this way we circumvent
the integrability difficulties inherent in considering dissipative systems over the half-
or full time set R. To make progress on the general case, it makes sense to consider
the simpler local one; see [5] for a different approach in an operator-theoretic setting.

In the following we consider systems in image form (2.6). In this case, one can
rewrite the quadratic functional w(-) — w(-) " Sw(-) =: Qs(w(-)) as a quadratic func-
tional acting on ¢(-) and its derivatives:

(o (&) 0) 5o (5) )

(61) 3 (Midiftﬂ'))Ts (1, 582) = @ttty

i,7=0

w()" Sw(’)

REMARK 7. By considering only systems representable in image form, we restrict
our investigation to controllable systems (see the discussion following eq. (2.6)). In
this we follow the approach of [20], where dissipativity for higher-order linear time-
invariant systems was introduced, and the relation between storage functions and
state functions was first elucidated.

12
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429
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However, the existence of passive, non-controllable electrical circuits (see [1, 6])
shows that there is no intrinsic relation between dissipativity and controllability. In
the context of systems described by higher-order constant-coefficient linear differen-
tial equations, in [6] the authors provided necessary and sufficient conditions on the
uncontrollable part of the behavior for a given system to be passive as defined in Def.
5 ibid.. Our concern is with higher-order linear, time-varying cyclo-dissipative sys-
tems; for the definition of cyclo-dissipativity, see Def. 6.1 in sect. 6.1 of the present
paper. How to characterise cyclo-dissipativity for the case of uncontrollable linear
time-invariant systems is discussed in Remarks 8 and 9 on pp. 1722-1724 of [20],
where an alternative definition is proposed.

In [14] the authors study uncontrollable cyclo-dissipative systems described by
higher-order constant-coefficient linear differential equations, in accordance with the
aforementioned definition in [20]. In Cor. 5.6 of [14] it is proved that, under an
“unmixing” assumption on the poles of the uncontrollable part of the behavior, the
storage function is a quadratic function of the state also in the uncontrollable case.
The extension of such results to the time-varying case is an open problem. |

6.1. Cyclo-dissipativity and cyclo-losslessness. The following definition is
analogous to Def. 8 p. 334 of [5].

DEFINITION 6.1. Let B = im M (&), with M (&) € M>™[L], as in (2.6).
Denote by X (%) the polynomial differential operator defined in (4.1).

B is cyclo-dissipative with respect to Qg if for every [to,t1] C R such that [tg, t1] C
NE_ dom (My), and every € € C*=([to, t1],R™) such that X (&) £(t;) =0, i=0,1, it
holds that

(6.2) /t1 w(r) " Sw(r)dr >0.

to

If this inequality holds, then Qg is called a supply rate for B.

Interpreting the supply rate Qg as input power, the inequality (6.2) states that a net
absorption of energy occurs along every system trajectory beginning and ending “at
rest”, expressed by the conditions X (%) £(t;) =0, i =0,1 on the state of the system
at the extremes of integration.

The following definition is analogous to Def. 13 p. 345 of [5].

DEFINITION 6.2. Let B = im M (&), with M (&) € MP*™[L] as in (2.6).
Denote by X (%) the polynomial differential operator defined in (4.1).

B is called cyclo-lossless with respect to the supply rate Qg if for every [to,t1] C R
such that [to,t1] C NE_ dom (My), and for every £(-) € C*®([to,t1],R™) such that
X (&) €(t;)=0,i=0,1, it holds that

(6.3) / 1 w(r) " Sw(r)dr =0.

to

It follows from Def.s 6.1 and 6.2 that a cyclo-lossless system is also cyclo-dissipative.
If we interpret the supply rate Qg as input power, then cyclo-losslessness is equivalent
to path independence of the integral of Qg.

Eq. (6.1) shows that when dealing with systems described in image form and
supply rates induced by constant matrices, it is natural to study quadratic functionals
of the latent variable ¢ and its higher-order derivatives. The next section introduces
some important concepts in this framework.

13
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6.2. Bilinear and quadratic differential forms. We introduce the notion of
bilinear- and quadratic differential form with time-varying coefficients (see [20] for the
time-invariant case).

Let ®; ; € M™*™2 4, j=0,...,L be a family of meromorphic matrix functions.

Let [to, 1] € N

i.j—o dom (®; ;), and associate with {®; ;}; j=o,.., the form

Bq> :C™® ([to,tl],Rnl) x C* ([to, t1],Rn2) — C*® ([to,tl],R)
L d,L T dj
(6.4) (€1(), &2()) = JZ::O <dti41(~>> ®ij <dtj€2(.)> :

It is straightforward to see that Bg is bilinear. If ny = ny =: m, then we also associate
to {®; ;}i j=o0,....r the quadratic form

Qq> :C™® ([to,tl],Rm) — C*® ([tojﬂ,R)

105y (B0 o (B0)

4,7=0

In the following when considering bilinear and quadratic differential forms we assume
that ®;; =&, i,5=0,...,L.
We associate to the bilinear differential form Bg in (6.4) its infinite coefficient

matriz (with only a finite number of nonzero entries!)

[ ®o0  Po1 .-~ Por Omxm |
P10 P11 ... P12 Opxm
6.5 5 _ . . e ’
(6.5) Sro Pra1 ... Prri Omxm
Ome Omxm s 0"7L><m Ome

in the sense that if £(-) € C* ([to, t1], R™) and we define jet(¢(-)) := col (;—;K()) o
then T
Lordie ()\ " Ne -
Ba(a(). ) = 3 (Tg) e (T ) =it )T dertta()

4,J=0

It is straightforward to verify that the association between bilinear and quadratic
differential forms and their coefficient matrices is bijective.

Define the entry-wise derivative of M € M™*™ hy (%M)m = % (M; ), 4,j =
1,...,m. On the coefficient matrix (6.5) we define the entry-wise differentiation
operation, defined by

d d d
%00 %P1 oo 7%Por Omxm
d
ZP1o0 P11 o0 P12 O
dt d d da
ZPro 7Pr1 oo ZPrr Omxm
14
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464

465
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467

168

469
470

476

477
A78
479
480
481

482
483

484

We also define the down- and right-shift operations, respectively denoted by op and
OR, respectively by

Ome 0m><7n e Omxm Omxm
Doo  Po1 .- Por Omxm
_ (I)I,O @1’1 @1’2 Omscm -
oD <<I>) = : . . : ,
Sro Pr1 ... Prr Omxm
and
Omxm  Poo Yo1 .. Por Omxm
Omxm P10 Yi1 ... P12 Omxm
on ()= | D : :
Omxm (I)L,O (I)L,l v CI)L,L 0m.><7n
Define the derivative of the bilinear differential form B¢, denoted by B&), by
L ; T :
d d | (d() & lo(-)
—Bg(01(-), l2(+)) := — . D, , ;
aetaera0r= 3 4 (G0) e (Y57
it is straightforward to verify that %Bq; is also a bilinear differential form. Use

Leibniz’s rule for differentiation to verify that the coefficient matrix of B&) is

“  d-~ ~ ~
o= Z8+0p(3) +or (T) .
6.3. Storage functions. We recall the notion of storage function.

DEFINITION 6.3. Assume that the system (2.6) is cyclo-dissipative with respect to
a supply rate Qg. A quadratic differential form Qg is a storage function if for every
w(-) € B and every [to,t1] C dom(w(-)) it holds that

(6.6) / ()T Sw(r)dr > Qu(w)(t) — Qu(w)(to) -

to

In the rest of this section we first give several characterizations of cyclo-losslessness
for systems in image form, and we prove the existence of a storage function for such
systems. Moreover, we prove that such storage function is a quadratic function of the
state of the system. Lastly, we show that the results for cyclo-lossless systems apply
also to cyclo-dissipative systems. We begin with the following instrumental result.

LEMMA 6.4. Let M (%) = My + M1% +...+ ML% be a polynomial differential
operator with ¢ x m meromorphic coefficients, and S = ST € RI%9. Define

N k-1 . .

dy (7 (i) d* 717

x () meor| 2 e (7)) e
k=i+1 j=1 i=0,....[—1

15
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185 For every [to,t1] C R, [to,t1] € NE_ dom (M), and every £;(-) € C*([to,t1],R™),
486 ¢ = 1,2, it holds that

487 /tt <M (Z) el(-)>T s <M (jt) ez(-)> it
) a0

480 (6.7) + t:l ol (M <C(lit> - (dt> " )) N

490 Proof. From the definition of M (di) it follows that

o () (g Koo (u())

492  now use integration by parts, as done in the proof of Th. 3.2, to conclude that

o [ (E)e) s(u(g)e)

t1 d
494 = ()" My S (M () ég(-)) dt
t dt
t1 L d — (b—1—§)T - d (4)
195 -7 M, SM lo(- dt
o m g (s () 60)
t1 L (k)
196 +/ Z(—l)kﬁl( )" <Mk SM < > Lo (- )) dt .
to k=1
197 We now show that the sum of the first and the last terms on the right-hand side of

198 the previous expression, i.e. j;tol Zf:o(—l)kél(-)T (M,]SM (£) 62(.))(k) dt, equals

499 /t:l ACH (M ((Z) SM ( d ) ¢ )) dt .

500 Apply Leibniz’s rule for differentiation to conclude that

501 (Mk SM( )fz( )>(k) = g (f) Mék*i)Ts%; (M (;t) 62(.)) :

502 It follows that

503 /ttl i(—n%(-f ( ToM ( d ) fo(. )>(k) dt

0 k=0
b k ; d d
50: ) MEDTSZ (A (S ) ta()) at.
04 /to Z 0 Z (Z) A = | 60)
k=0 =0
505 Define m := k — i, and rewrite the last expression as
h k dk=m d

Con k (m)T fhad .
506 /to Z 61 Z (k— )Mk Sdtk oy <M (dt) 52( )) dt .

k=0 m=0

16
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507 Recall that M (%)* = ZkL:O(fl)’c Zlfn 0( )M(m)T jt]: — and apply the binomial
508 coefficient identity (kfm) = (:1) to conclude that
ty
509 Iy
t

. k=0<—1)wl(.)r (MJ Sy ( % ) M)yk) )

510 = : /ACH (M (i>*SM (i) 2 (-)) dt

511 as claimed.
512 From the equality just proved it follows that

L) )
514 = /Ot1 ()" (M (jt) SM (i) &(-)) dt

515 /ttlzdt lkzl 1)70,(-)k=1=T (MTSM (dt) 62()>(j)] dt .

L

0 k=1

516 To prove the claim of the Lemma it remains to prove that

[ S Sy (s ()|

J
L k—1 d )
. ZZ 1)y (5 k=1=0)T <MTSM< >£2()> o
=1j=

519 equals (X (&) ¢4(- )) col (S;;M( L) Co(- ))l:O L ’fo
520 Leibniz’s rule for the differentiation of products to conclude that

wt
~

In order to do so, apply

L k-1 (k T . d (@)
521 Z -7 <M SM (dt) Oo(- ))
k=1j=
L k—1 d (@)
o HE=1=0T - .
22 =3 Pt Z() <M<dt)€2()) |
k=1 j=
523 In the last expression, observe that (M (%) 62(-))(0) is multiplied on the left by
T
L k-1 0 L k-1 ()dklﬂ)
- Vi (Nk=1=)T (T J
524 > (=14 DTMITS = (D) (-1 M, nenION NEE
k=1j=0 k=1j=0
525 (M () £5())" is multiplied on the left by
L k-1 . 4
526 SO (=1 ()T <‘i)M,§J)TS
k=2 j=1
L k-1 T
- o q(k=1=7)
527 MOPZ _——_p)| S

17
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and so forth. These equalities, together with formula (4.1) for state trajectories for
systems in image form, prove the claim of the lemma. 0

An argument symmetric to that used in the proof of Lemma 6.4 can be used to
prove the following result.

LEMMA 6.5. Let M (%) = Mo+ M1% +... —|—ML$—LL be a polynomial differential
operator with ¢ x m meromorphic coefficients, and S = ST € RI%9. Define

N k-1 . ;
d . 7 (i—) dkflfj
— 1) J
X (dt) = col E E (-1 (j —i)Mk pT—

k=i+1 j=i

i=0,...,L—1

For every [to,t1] C R such that [to,t1] € dom (M), k =0,...,L, and every {;(-) €
C>([to, t1],R™), i = 1,2, it holds that

[ (e (@) o) s (e (5)a0) @
“e (s () oo) L (o) eo)
(6.8) +/tt (M (jt>* SM <jt> el(.))Teg(.) dt .

We state a characterization of cyclo-losslessness.

THEOREM 6.6. Let B=im M (%) and S = ST € R1%9. Define X (%) by (4.1).
The following statements are equivalent:

1. B is cyclo-lossless with respect to the supply rate induced by S;

2. For every [to,t1] C R, [to,t1] C NE_ dom (My), the polynomial differential

operator

M <d>* SM (d> 0 (fto, ], R™) — € ([to, 1], R™)

dt dt
01t (2) s (L)

is the zero operator, i.e. M (%)* SM (£) () =0V £(-) € C= ([to, t1],R™);
3. There exists a bilinear differential form By such that for every pair of func-
tions £;(-) € C* ([to, t1],R™), i = 1,2 it holds that

(0 (2)00) s (m(2)80) = & Batt0.60).

4. There exists a bilinear differential form By such that for every [to,t1] C R
such that [to,t1] C ﬂﬁzodom (My),

T
M

: d - - -
M7 S[My My ... My Opem ...}=£\IJ+UD(\1/)+UR(\D).
O7n><q
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Assume that any one of the statements 1.) —4.) holds; then there exists P € MaEx4al

such that .
Belti60) = (x () 60) P(x(F)e0)-

Proof. We first prove the equivalence of statements 1.)—4.).

The equivalence between statements 1.) and 2.) is a straightforward consequence
of equation (6.7) in Lemma 6.4.

The equivalence of statements 2.) and 3.) follows from (6.7) and the fundamental
theorem of integral calculus. For future reference, note that the bilinear differential
form referred to in statement 3.) is

(6.9)  By(li(-),la(")) := <X <5t) 61(~)>Tcol (Sj;]\/[ @) 62('))1»—0,...,L_1 .

To prove the equivalence of statements 3.) and 4.), denote by Bg the bilinear differ-

ential form
B0 60 = (11 (£) 10) s (3 () 00)

then the (i, j)-th entry of ® equals Mi—'—SMj7 1,7 = 0,.... Since bilinear differential
forms and coefficient matrices are in bijective association with each other, the equality

Bg = %B\p holds if and only if the equality P = %{IVI +op (@) +or (‘I/) also holds.
We now prove the second part of the claim. It follows from Lemmas 6.4 and 6.5

and the equivalence of statements 1.) and 2.) that for every [to, ;] C dom NE_, (My),
and for every ¢; € C* ([to, t1], R™) it holds that

[ (e (@) o) s (o (5) o)
mei (s () e0) - (x (@) eo) 1
(6.10) = (X (C‘Zt) el(-)>T col <55;M (C‘Zt) 42(-)>i_0,m7L_1 o

Consider the bilinear differential form By defined in (6.9), and its coefficient ma-
trix W. Denote by X the coefficient matrix of X (%), that is the infinite matrix of

meromorphic functions (with only a finite number of nonzero entries) X defined by

d .
X (dt) E() = [XO X1 XL OqLXm .. ]Jet(f()) .
=X
Denote by F the coefficient matrix associated with col (S ;;- M (%)) Ly ie.
i=0,...,L—1

F jet(£(-)) := col (S;;M (jt) e(-)>izo o

3oy

The coefficient matrix of By equals ® = X T F; from (6.10) it follows that

By(i(-), £2()) = jet(a () T X TF jet(fa) = jet(6r () TF T X jet(£a(-))
19
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holds for every £;(-) € C*([to,t1],R™), i = 1,2; conclude that XTF=F'TX.

Using unimodular operations on X and F compute a factorization of X X TF of the
form X TF X' TGF ', where G is a nonsingular matrix with meromorphic entries
and X', F have full row rank. From the equality X'" GF " = F'TGT X' conclude that
the row space of F’ is contained in the row space of X !, and consequently in that of

. The claim follows. 0

We now consider cyclo-dissipative systems represented in image form. The differ-
ence between the integral of the supply rate (6.1) and the quadratic storage function
is the integral of a quadratic differential form, i.e. there exists a quadratic functional
Qa of £ and its derivatives such that

(6.11) /Q@ (O)dr — Qu (£ /QA

The functional Qa is called a dissipation rate. The dissipation equality (6.11) can be
rewritten as [ (Qa(¢) — Qa(¢))dr = Qu (), making evident that a system is cyclo-
dissipative with respect to the supply rate Q4 if and only if it is cyclo-lossless with
respect to the new supply rate Qe — Qa. The following result is a straightforward
consequence of this observation.

COROLLARY 6.7. Let B = im M(dt) and S = ST € R?%9. Define X (dt) by
(4.1). Assume that B is S-cyclo-dissipative, with a dissipation rate Qa that is a
quadratic function of £ and its derivatives. Then the storage function Qg such that
%qu = Qo — Qa is a quadratic function of the state, i.e. there exists P € M3E*ak

such that .
o= (x(2)) +(x(£)).

REMARK 8. The second part of Th. 6.6 (equivalently, Cor. 6.7) has been proved
in [16, 20] for linear, time-invariant systems and bilinear and quadratic functionals
with constant coefficients. The argument there was based on the algebraic framework
of one- and two-variable polynomial matrices representing such systems and function-
als. Th. 6.6 is a generalization of that result to systems described by higher-order
differential equations with time-varying coefficients. It is based on an argument that
only uses the definition of state and straightforward linear algebra concepts. When
applied to time-invariant systems and functionals, our proof uses a different technique
to prove the same result as [20, 16]. |

7. Conclusions. Starting from an intrinsic, trajectory-based definition of state,
we have provided a procedure to compute a state variable for systems described by
higher-order differential equations with time-varying coefficients. We have shown
that first-order representations of a system can be computed from such state vari-
able, and that the storage function of a cyclo-lossless system can be written as a
quadratic function of the state. Given the focus on state, our treatment of bilin-
ear and quadratic functional of system variables and their derivatives was limited in
scope to storage functions, and in methodology to working directly with differential
operators. Algebraic techniques for non-commutative polynomial rings open up the
possibility of developing a whole calculus of bilinear and quadratic differential forms
with time-varying coefficients based on their representation by polynomial matrices
with meromorphic coefficients, as was done in [20] for the case of functionals with
constant coefficients. This line of research will be pursued elsewhere.
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