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Abstract

This paper presents a machine learning assisted e�cient, yet comprehensive characterization of the
dynamics of coronaviruses in conjunction with �nite element (FE) approach. Without a�ecting the
accuracy of prediction in low-frequency vibration analysis, we have proposed an equivalent model for
the FE analysis, based on which the natural frequencies corresponding to �rst three non-rigid modes are
analyzed. To quantify the inherent system-uncertainty e�ciently, Monte Carlo Simulation is proposed
in conjunction with the machine learning based FE computational framework for obtaining complete
probabilistic descriptions considering both individual and compound e�ect of stochasticity. A variance
based sensitivity analysis is carried out to enumerate the relative signi�cance of di�erent material pa-
rameters corresponding to various constituting parts of the coronavirus structure. Using the modal
characteristics like natural frequencies and mode shapes of the virus structure including their stochas-
tic bounds, it is possible to readily identify coronaviruses by comparing the experimentally measured
dynamic responses in terms of the peaks of frequency response function. Results from this �rst of its
kind study on coronaviruses along with the proposed generic machine learning based approach will ac-
celerate the detection of viruses and create e�cient pathways towards future inventions leading to cure
and containment in the �eld of virology.
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1. Introduction

It is well known that a novel form of coronavirus (SARS-CoV-2) is responsible for the COVID-19

disease in a wide population across the globe in recent times [1, 2, 3]. Coronaviruses are a large family of

viruses, most of which circulate among animals like pigs, camels, bats and cats. Sometimes these viruses

can jump to humans, which is referred as a spillover event. Though majority of the known coronaviruses

cause only mild to moderate respiratory illnesses in humans, three of them (SARS coronavirus, MERS

coronavirus and the more recent novel coronavirus i.e. SARS-CoV-2) have been known to cause more

serious, even fatal diseases. In this paper we propose a machine learning assisted generic approach for

characterizing the probabilistic dynamics of coronaviruses leading to deep computational insights with

exploitable dimensions of detection and containment.

The treatment of COVID-19 through direct medical interventions is still in its infancy [4]. As

a result, several authors have proposed non-pharmaceutical interventions [5] as an indirect means of

controlling and containing COVID-19. Here we provide a concise and representative review of such

research investigations. To et al. conducted the viral culture for self-collected saliva of 12 patients and

found 91.7% samples to be novel corona virus infected [6]. They also reported that the investigation

of saliva is a promising approach of diagnosis, monitoring and infection control in patients. Shen

et al. in their review article reported various methods to detect the nucleic acid of the coronavirus

based on polymerase chain reaction (PCR), isothermal nucleic acid ampli�cation, and microarray based

approaches [7]. Corman et al. made use of synthetic nucleic acid technology to develop a validated

diagnostic work�ow for novel coronavirus [8]. Sivasankarapillai et al. have presented a review on

the use of nanomaterials and medicine concerning the prospective strategies for detection and cure of

coronaviruses [9]. Besides these conventional testing procedures for the novel coronavirus, few groups

have come up with machine learning and arti�cial intelligence (AI) based detection of coronavirus.

Narin et al. used chest X-ray radiographs to model the convolutional neural network for prediction of

novel coronavirus [10]. Gozes et al. developed AI assisted CT image analysis based on classi�cation to

predict the presence of coronavirus in the patients [11]. In this context, it may be noted that machine

learning and AI based approaches have attracted a wide range of attention from the scienti�c community

recently across di�erent �elds to explore physical systems in an extra-ordinarily detailed and insightful

way [12, 13, 14]. However, machine learning assisted investigations in the �led of virology is rather

limited, despite an immense potential in this �eld.

Most of the indirect approaches to identify and detect coronaviruses involve direct testing of sam-

2



Figure 1: Structural idealization of coronavirus and overview of the analysis. (A) A general overview of the
stages of infection by coronaviruses. (B) Detailed cross-sectional view of coronavirus showing the individual structural
components. (C) Idealization of coronavirus structure for low-frequency dynamic modelling. (D) A typical representation
of coronavirus under dynamic excitation. (E) Dynamic response of a coronavirus structure in terms of amplitude and
frequency, wherein the �rst peak response indicates the �rst natural frequency of the system. Noting that the material
properties and geometric dimensions of a coronavirus structure may vary randomly within a bound, the probabilistic
character of natural frequencies is indicated using a probability density function plot.

ples. The purpose of this paper is proposing a novel methodology to obtain resonance frequencies of

coronavirus by numerical methods in view of identifying it from its modal signature. Using vibrational

approaches to characterize molecules is an established technique in nanoscience [15]. Traditionally molec-

ular dynamics methods [16] have been used to compute resonance frequencies of complex molecules. It

is well-known that such methods can be computationally expensive for large and complex systems like a

coronavirus. Over the past two decades, simpli�ed methods based on the theory of elasticity and struc-

tural dynamics have been developed for understanding the vibration of a wide range of molecules. Such

approaches lead to achieving computational e�ciency up to certain extent, suitable for carrying out a

purely deterministic analysis involving only a few simulations. Examples include vibration of single and
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multilayer carbon nanotubes [17], graphene sheets along with other 2D materials [18, 19, 20, 21, 22, 23],

family of fullerene molecules [24] to mention a few. Analysis of nano-scale biological systems including

di�erent viruses have also seen the application of elastic continuum and structural mechanics based

approaches including �nite element method (FEM). Mubeen et al. used FEM based numerical analysis

to explore the cell dynamics and reported that the natural frequencies of the cell vary inversely with the

size of the cell [25]. Molavi et al. presented FEM and scaled-up experimentation based modal analysis

of spherical baker's yeast cells to determine the natural frequencies [26]. Varga et al. utilized atomic

force microscopy (AFM) to determine the elastic properties of endothelial and epithelial cells [27]. They

also calculated the correlation between nucleus and periphery of the signals which resulted in a higher

correlation factor for the endothelial cells. Ford [28] discussed two di�erent analytical models based

on liquid drop and elastic sphere to estimate the vibrational frequencies of virus particles, wherein it

was concluded that the frequency appears in the range of a few GHz for the particles with a radius of

around 50 nm. Zhang and Ru stated that viral capsids are the example of biopolymer spherical shells

[29]. They studied the e�ect of high structural heterogeneity on the natural frequencies and vibration

modes of biopolymer spherical shells. Carraso et al. reported that the mechanical strength of spherical

viruses is a consequence of the interaction between crystallographically visible short DNA patches and

the inner capsid wall [30]. Mateu presented a review article to elaborate on mechanics of the structural

elements of viruses [31]. Fraldi et al. explored a frequency response-based hypothesis for mechanically

targeting and selectively attacking cancer cells [32]. Jaganathan et al. proposed an unconventional

mode of cancer treatment where cancer cells are damaged by utilizing their resonant frequencies [33]. A

similar approach was utilized by Heckerman et al. [34] to treat the illness caused by pathogens. Yang

et al. stated that the virus is used to resonate in the con�ned-acoustic dipolar mode when interacted

with microwave at the same frequency [35]. Based on this understanding they demonstrated that the

airborne virus could be inactivated with a reasonable microwave power density.

From the brief discussion above, it is evident that idealized computational methods on vibrational

frequencies for both biological and non-biological molecules play a pivotal role in their understanding.

Motivated by this, here we focus on the dynamic characteristics of coronaviruses using �nite element

method. The vibrational frequencies can also be relevant to nuclear magnetic resonance studies of

coronaviruses [36, 37] for further structural understandings. A key objective of this paper is to identify

natural frequencies and mode shapes of the coronavirus structure using an equivalent mechanics-based

model. We would mathematically model the virus as an elastic spherical shell structure with attached
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spikes and soft in�ll, and thereby solve the resulting equations using the �nite element method. In

�gure 1 we depict the conceptual paradigm of the proposed analysis. Knowing the modal characteristics

like natural frequencies and mode shapes of the virus structure, it would be possible to readily identify

coronaviruses by comparing the experimentally measured dynamic response signals (note that the peaks

in a frequency response function indicate the natural frequencies, as depicted in �gure 1(E)). In this

context, it is important to note that the material properties of such viruses are expected to vary from

sample to sample within a certain bound, leading to a random variation of the natural frequencies.

Since the physics based �nite element model is computationally intensive, it is practically impossible to

carry out thousands of �nite element simulations corresponding to every possible random combination

of the system (i.e. the coronavirus structure) parameters for quantifying the natural frequencies in a

probabilistic framework. Moreover, it is crucial to quantify the sensitivity of each system parameter to

the natural frequencies for accessing their relative degree of importance. Such sensitivity analysis also

normally requires multiple simulations (∼ 104) of the coronavirus structure corresponding to di�erent

sets of input parameters. To mitigate this lacuna, here we would develop an e�cient machine learning

assisted integrated approach coupled with the �nite element simulation for achieving computational

feasibility in prediction the natural frequencies. Exploitation of machine learning would allow us to

carry out a rapid, e�cient, yet comprehensive dynamic characterization of coronaviruses, leading to

deep computational insights.

2. Results and discussion

In this section, we present the numerical results for the dynamic behaviour of coronaviruses focusing

primarily on �rst three modes of non-rigid vibration. It may be noted here that �rst few modes of

vibration in case of a structure with free boundary condition (such as the structure of coronaviruses

considered in this investigation) consist of rigid body motion, which is not of our interest in the present

context. We will start by a detailed description about the structure of coronaviruses including the

scheme of idealization adopted for numerical modelling in this paper. Thereafter numerical results for

vibration analysis would be presented following deterministic and probabilistic frameworks (including

sensitivity analysis), assisted by a machine learning based �nite element approach.

Figure 1(B) shows the cross-sectional structure of coronaviruses, the main components of which

are di�erent classes of protein and RNA [38]. From a structural mechanics view-point, an equivalent

spherical shell-like structure can be idealized having attached spikes (beams with top mass) and a soft

core, as depicted in �gure 1(C). The e�ective homogenized material properties of the spherical shell
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Figure 2: Deterministic characterization of the dynamics of coronavirus structure. (A - C) Vibration
mode shapes of the coronavirus structure for �rst three non-rigid modes considering 60 number of spikes in the structure
(The corresponding three non-dimensional natural frequencies are reported as 9.97×108, 1.03×109 and 1.09×109). (D-
F) Variation of non-dimensional natural frequencies of coronavirus structure with individual material properties. The
material properties are investigated in the range of [0.98X, 1.02X], where X represents the nominal values of a material
property. Here the material properties are non-dimensionalized using their respective nominal values (X). (G) Variation
of deterministic non-dimensional natural frequencies with respect to di�erent number of spikes.
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structure could be calculated based on a volumetric homogenization of the properties of constituent

proteins. The RNA and N protein inside the spherical shell could be modelled as an elastic soft core

with equivalent material properties like Young's moduli and mass density, signi�cantly lesser compared

to that of the shell structure. For mechanical analysis like low-frequency dynamic behaviour of a

structure, it is quite common in literature to adopt such an equivalent continuum based modelling for

achieving computational e�ciency without compromising the accuracy of results [39]. However, for

analysing the high-frequency vibration modes (not within the scope and objective of this investigation),

a more detailed modelling of the structure may be required. Most structural parts of a coronavirus are

made of di�erent kinds of protein. We have presented the natural frequencies in this article following

a non-dimensional framework, wherein the elastic properties reported in literature (such as [40]) or

obtained using experimental characterization could be used to determine the exact numerical values

(refer to the Methods section for further detail). It is worthy to note in this context that the main

aim of this paper is to propose a machine learning assisted computational framework for characterizing

the dynamic behaviour of coronaviruses including the e�ect of inevitable uncertainty and sensitivity

analysis. The proposed framework would be helpful in identifying the viruses in a practically relevant

uncertain environment along with quanti�cation of the detection probability. We focus more here on

the demonstration of methodological development rather than the exact material properties. For this

reason, we have presented the results in a non-dimensional form to have wider impact in terms of their

usability. Dimensions of di�erent components of the coronavirus structure are de�ned relative to the

diameter of the spherical shell (D = 50− 200nm) as, thickness of the spherical shell wall ∼ D/30, beam

length of the spikes ∼ D/6 − D/4, diameter of the cross-section of the beams ∼ D/40 and diameter

of beam top mass (considered as a solid sphere) ∼ D/20. For obtaining the numerical results, we have

considered D = 120 nm (within the speci�ed range) in this investigation.

We have used the �nite element approach to establish a physics based model for vibration analysis

of coronaviruses (for detailed description refer to section SM1 of the supplementary material). However,

before investigating the dynamic behaviour of coronaviruses, it is necessary to gain adequate con�dence

on the numerical modelling approach by means of carrying out validation studies. Since suitable lit-

erature concerning the vibration analysis of coronaviruses is not available, we resort to other spherical

bio/nano structures for the purpose of gaining con�dence on the adopted �nite element modelling. In

this context it may be noted that analysis of shell structures has been extensively reported in the lit-

erature of structural mechanics [41, 42, 43, 44, 45]. For validation, �rst we have modelled two di�erent
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spherical breast cells (normal and cancerous) with exactly same geometric dimensions and material

properties as the reference article following the current �nite element approach and compared the re-

sults of computed natural frequencies with the numerical values reported in literature [33]. A good

agreement between the results (refer to Table S2 of the supplementary material) corroborates the va-

lidity of our modelling approach. However, the dimension of a breast cell is 100 times bigger than that

of the virus under consideration. Thus, to investigate the validity of the current �nite element model

further, we consider another spherical system (fullerene C60) with dimension 100 times lesser than that

of the virus (since the corresponding results of vibration analysis for fullerene C60 are available in the

literature). We notice from the numerical results presented in Table S3 of the supplementary material

that a �nite element simulation carried out in ANSYS (with the idealization of a spherical structure

using brick elements) can produce close results to the fundamental natural frequencies obtained using

Raman Spectroscopy and molecular mechanics-based approaches [46, 47, 48, 49]. Thus, in the absence

of adequate numerical results for validating the natural frequencies, considering two di�erent systems

having diameters 100 times more and 100 times less than the diameter of coronaviruses, we show that a

�nite element approach can produce accurate results for a spherical bio/nano structure. It is expected

that the �nite element approach would produce accurate results for a spherical structure where the

dimension lies in between these two extreme cases. Previous experiences of the authors in this research

area also support the observation that the physics behind the low-frequency vibration of a spherical

structure is not a�ected signi�cantly by the change of scale. The two-fold validation presented here

provides us adequate con�dence to extend the �nite element model further for predicting the dynamic

behaviour of the present coronavirus structure. The numerical results concerning natural frequencies of

coronaviruses can be considered as the �rst of its kind to be reported in the literature.

Based on the preceding paragraphs, the assumptions in this work can be viewed separately in terms

of the equivalent continuum based modeling of the virus structure and the subsequent analysis method.

It is noted that a reduced-order modelling approach using equivalent continuum models (with the linear

de�nitions of strain and material properties) is su�cient to capture the physics of low-frequency vibration

of a spherical nano/bio structure. We have shown this assumption to be valid in a �nite element based

analysis for spherical structures considering dimensions in a range of 100 times more and 100 times less

than that of the virus. Further, one of the most critical e�ects that needs to be accounted in nanoscale

elastic analysis is the nonlocal e�ect. However, a well-documented fact may be noted that the non-local

e�ect becomes negligible beyond the dimension of 30nm [50]. Since the mean diameter of the current
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Figure 3: Frequency response function (FRF) of coronaviruses. (A) FRF plots for a location of the measuring
point when it is considered in a radially opposite direction. (B) FRF plots for a location of the measuring point when it
is considered in a radially orthogonal direction. Locations of the driving points and measuring points are clearly indicated
in the insets of each �gure. The FRFs are shown here for two di�erent structural con�gurations with 20 and 60 spikes,
wherein two damping ratios (DR) are considered in each case. Here the amplitude of vibration is plotted using logarithmic
scale. It can be noted that the frequencies corresponding to peak amplitudes represent natural frequencies of the system.

virus structure is considered as 120nm, the nonlocal e�ect is neglected in the current analysis.

The numerical results for vibration analysis of the coronavirus structure are presented hereafter

considering 60 spikes, unless otherwise explicitly mentioned. A �nite element method based modal

analysis is performed here to determine the mode shapes and natural frequencies of the coronavirus

structure for the �rst three non-rigid modes, as depicted in �gure 2(A-C). It can be noted here that

the �rst mode shape shows a radial breathing mode, while the two higher modes represent peripheral

deformation of the circular shell in two orthogonal directions. The corresponding three non-dimensional

natural frequencies are reported as 9.97×108, 1.03×109 and 1.09×109. Here all the numerical results

of natural frequencies are presented in a non-dimensional form for generality, following a scheme which

is widely adopted in the area of shell structures [51] (refer to the Methods section for further details).

Deterministic variation of non-dimensional natural frequencies of the coronavirus structure is investi-

gated for individual material properties in the range of [0.98X, 1.02X], where X represents the nominal

values of a material property (refer to �gure 2(D-F)). The relative slope of the plots gives an impression

of the sensitivity of each material property to the natural frequencies, while their nature (positive or

negative) shows whether the natural frequencies increase or decrease with the variation of the material

properties. To demonstrate the e�ect of di�erent number of spikes, the variation of natural frequencies

is plotted against the number of spikes in �gure 2(G), where a general trend of increasing frequencies

9



Figure 4: Machine learning assisted rapid dynamic analysis of coronavirus. (A-C) Scatter plots for the
�rst three non-dimensionalized natural frequencies considering three di�erent numbers of training samples (N). (D �
F) Sensitivity analysis for the �rst three natural frequencies to establish the relative importance of individual material
properties. Here E, µ, ρ, Es, µs, ρs, Ec, µc, ρc represent the Young's modulus, Poisson's ratio and mass density of the
spherical shell (denoted without any subscript), spikes (denoted by subscript s) and the equivalent soft core (denoted by
subscript c), respectively. (G�I) Probability density function plots for �rst three natural frequencies corresponding to the
individual stochastic e�ect of most sensitive material properties (E, µ, ρ, and Ec) and the compound stochastic variation
in all the material properties.

can be noticed as the number of spikes increases.

Figure 3 presents the dynamic response of two coronavirus structural con�gurations (with 20 and 60

spikes) in terms of frequency response function (FRF). The results are shown considering two damping
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ratios and two di�erent measuring points (as indicated in inset of the �gures). Here the frequencies

corresponding to peak amplitudes represent the natural frequencies of the system. It is interesting to

note that the frequencies corresponding to the structural con�gurations with 20 and 60 spikes exactly

match with the respective natural frequencies shown in �gure 2(G), corroborating an indirect validation

of the current study. Figure 3 shows that the amplitude of vibration increases with decreasing damping

ratio and the nature of FRF changes with di�erent measuring points. However, the natural frequencies

obtained using the peak amplitudes remain constant for any particular structural con�guration since it

is a function of the sti�ness and mass matrix of the system (not dependent on the value of damping

ratio, or location of driving and measuring points). Using experimental methods, it is possible to obtain

the dynamic response signals (FRF) of a virus, as presented in �gure 3 (, albeit numerically obtained

here) and the illustration in �gure 1(E). By comparing the frequencies corresponding to peak of the

FRFs with the computationally obtained known natural frequencies of the virus, it would be possible to

detect coronaviruses readily. It may be noted in this context that under certain circumstances the virus

would be suspended in a liquid droplet. The impact of such liquid (with various physical parameters)

surrounding the virus structure on the dynamic behaviour will be primarily in terms of a damping e�ect.

However, the natural frequencies of the virus, being mainly a function of the sti�ness and mass matrices

of the structure, is expected to be minimally a�ected by such damping e�ects of the surrounding liquids.

The observations of �gure 3 further corroborates the above discussion.

So far we have presented physics-based deterministic results of the vibration analysis of coronaviruses.

However, it may be noted that the material properties of such viruses are expected to vary from sample

to sample within a certain bound, leading to a random variation of the natural frequencies. Since the

physics based �nite element model is computationally intensive, it is practically impossible to carry out

thousands of �nite element simulations corresponding to every possible random combination of the sys-

tem (i.e. the coronavirus structure) parameters for quantifying the natural frequencies in a probabilistic

framework. Moreover, it is important to quantify the sensitivity of each system parameter to the natu-

ral frequencies for accessing their relative degree of importance while characterizing them mechanically.

Such sensitivity analysis also normally requires multiple simulations (∼ 104) of the coronavirus structure

corresponding to di�erent sets of input parameters. We have developed an e�cient machine learning

assisted integrated approach coupled with the �nite element simulation for achieving computational

e�ciency in prediction the natural frequencies (refer to section SM2 of the supplementary material).

In this approach, �rst a machine learning model of the computationally intensive coronavirus structure
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is developed based on a few optimally chosen samples. Once the machine learning model is formed, it

can be regarded as a computationally e�cient digital substitute of the actual simulation model. Based

on the machine learning model it is possible to predict the natural frequencies corresponding to any

combination of the system input parameters e�ciently, which in turn can be used for several compu-

tationally intensive investigations such as probabilistic quanti�cation and sensitivity analysis (refer to

section SM3 of the supplementary material).

For stochastic characterization and high dimensional data assisted sensitivity analysis, we have

developed a support vector regression based machine learning model in conjunction with �nite element

simulation for vibration analysis of coronaviruses [52, 53, 54]. Before using the machine learning model

for any further analysis, its prediction capability is checked extensively using statistical measures (such as

R2, refer to Table S3 of the supplementary material) and scatter plots. From the scatter plots presented

in �gure 4(A-C), it can be noticed that a sample size of N = 32 (drawn from the quasi-random Sobol

sequence with faster convergence rate compared to other sampling methods [55]) provides adequate

prediction capability (noting that closer proximity of the data points from the diagonal line indicates

a better formation of the machine learning model), the corresponding R2 of which is also found to be

close to 1. We have presented the results of sensitivity analysis and uncertainty quanti�cation of the

natural frequencies (�rst three non-rigid vibration modes) in the following paragraph using the machine

learning models formed based on 32 data samples.

To understand the relative importance of the material properties quantitatively on the �rst three

natural frequencies of a coronavirus structure, a sensitivity analysis is carried out as an integral part of

this investigation. A variance based sensitivity analysis method is used here exploiting the computational

advantage of the developed machine learning models [56, 57]. It can be observed from the results

presented in �gure 4(D-F) that the material properties of the spherical shell (E, µ and ρ) and the Young's

modulus of the equivalent soft core material (Ec) are the most sensitive parameters compared to the other

material properties. It is interesting to note that the observation on relative sensitivity of the material

properties are in good agreement with the results presented in �gure 2(D-F), considering the relative

slope of the curves corresponding to each individual material property. Having quantitative knowledge

on the relative sensitivity of each material parameters, we have explored the individual stochastic

in�uence of the most sensitive material properties �rst, followed by an investigation accounting the

compound random variation of all material properties. Figure 4(G-I) presents Monte Carlo simulation

(machine learning assisted) based probabilistic description of the three natural frequencies considering
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individual and compound e�ect of stochasticity in the material parameters. The results show that the

compound e�ect of stochasticity leads to the highest stochastic response bounds, followed by the four

individual material parameters in the order of their respective sensitivities. It is worthy to note that

in a realistic situation, the natural frequencies are expected to have a response bound as shown here,

instead of a single deterministic value. Thus the machine learning assisted computationally e�cient

approach for stochastic characterization of the natural frequencies would lead to an inclusive paradigm

for vibration based rapid detection and prospective containment of the coronaviruses in a practically-

relevant probabilistic framework. Interestingly, the probabilistic descriptions of the natural frequencies

could also inevitably result in a computational framework for quanti�cation of the crucial detection

probability of coronaviruses following the proposed approach.

3. Conclusions and perspective

We have explored the dynamic behaviour of coronaviruses following an e�cient machine learning

assisted framework coupled with �nite element approach. A physics-based modelling paradigm of the

virus structure concerning low-frequency non-rigid vibration modes is developed using the concept of

equivalent homogenized mechanical properties. To gain adequate con�dence, the �nite element approach

is validated with existing literature before using it in the present analysis. It is demonstrated that such

a reduced-order model could accurately capture the dynamics corresponding to low-frequency vibration

modes of spherical bio/nano structures. Based on �nite element model of the equivalent coronavirus

structure, an insightful deterministic vibration analysis is performed �rst considering di�erent number

of spikes. It is noticed that the �rst non-rigid vibration mode corresponds to a radial breathing mode,

while the subsequent modes involve peripheral deformations. Using the �nite element model, dynamic

response of two di�erent coronavirus structural con�gurations are presented in terms of frequency re-

sponse function (FRF) considering di�erent sets of driving and measuring points. It is numerically

demonstrated that the frequencies corresponding to peak amplitudes represent the natural frequencies

of the system. The results reveal that the nature and amplitude of FRF changes with di�erent measur-

ing points and damping ratios, while the natural frequencies obtained using the peak amplitudes remain

constant for any particular structural con�guration since it is a function of the sti�ness and mass matrix

of the system. Using experimental methods it is possible to obtain the dynamic responses (FRF) of a

virus, and thereby comparing the frequencies corresponding to peak of the FRFs with computationally

obtained known natural frequencies of the virus, it would be possible to detect coronaviruses readily.
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Normally the e�ective material properties of coronaviruses are expected to vary from sample to

sample randomly, leading to a probabilistic variation of the natural frequencies. To quantify this random

variation, Monte Carlo Simulation is carried out in conjunction with machine learning based �nite

element computational framework for obtaining the complete probabilistic description of the natural

frequencies. Since the physics based �nite element model is computationally intensive, it is practically

impossible to carry out thousands of �nite element simulations corresponding to every possible random

combination of the system (i.e. the coronavirus structure) parameters using a direct �nite element

approach. The coupled machine learning based �nite element model reduces the computational time

and cost signi�cantly without compromising the accuracy of results. In the probabilistic analysis, both

individual and compound e�ect of stochasticity in the material properties of the coronavirus structure are

considered, wherein the compound variation leads to the highest level of response bound followed by the

other material properties in an order of their respective sensitivity. The e�cient machine learning based

computational model is further exploited to quantify the sensitivity of material properties corresponding

to di�erent constituting components of the coronavirus structure. The sensitivity analysis would allow

the experimentalists to decide on the degree of quality control needed while determining the physical

properties of di�erent components of the virus accurately. It is noticed that the material properties of

the spherical shell and the Young's modulus of the equivalent soft core material are the most sensitive

parameters to the �rst three natural frequencies. Realization of such deep computational insights

involving large-scale data-driven analyses has only been possible here due to the seamless coupling of

�nite element modelling and machine learning. In general, the novelty and impact of this article lie in

the proposed e�cient machine learning assisted equivalent �nite element approach for comprehensively

characterizing the stochastic dynamics of coronaviruses (including insightful numerical results of the �rst

of its kind study) and their potential rapid detection under a practically-relevant uncertain environment

using the dynamic response signals. It is worthy to mention here that, based on the scope of this paper,

we have restricted the study to computational simulations. Experimental investigations could be carried

out in the future for a more accurate data-driven quanti�cation of uncertainty in the dynamic behaviour

of coronaviruses.

In summary, we have presented the dynamic behaviour of coronaviruses including the practically-

relevant e�ect of stochasticity in the system parameters. Based on an e�cient machine learning as-

sisted equivalent �nite element framework we develop coupled computational paradigm for obtaining

the dynamic response bounds of natural frequencies under a realistic stochastic environment. It is
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demonstrated that a coronavirus structure could potentially be identi�ed (including quanti�cation of

the detection probability) by comparing the stochastic response bound of natural frequencies with ex-

perimentally measured dynamic signals. It may be noted that the proposed coupled computational

framework is generic in nature and it can be extended to other viruses and critical biological systems

for e�cient, yet comprehensive characterization, leading to the pathways for their rapid detection along

with potential cure and containment.

Methods

Finite element modelling of equivalent coronavirus structure

Here we brie�y discuss the �nite element modeling approach of the equivalent coronavirus structure

(refer to �gure 1(C)) including the geometrical details. Positioning of the spikes in corona structure is

accomplished based on latitudes and longitudes of the spherical shell structure as depicted in section

SM1 of the supplementary material. In the �nite element analysis code, meshing of the coronavirus

structure is carried out by utilizing 3D hexahedron mesh element with a mesh size of 3.5 nm for the

spherical shell and spikes, whereas for the inner soft core 2D quadrilateral mesh with the mesh size

of 1.2 nm is used. Following the standard procedure of �nite element approach, the element-level

mass and sti�ness matrices are assembled to obtain the global mass and sti�ness matrices of the entire

coronavirus structure. The free vibration analysis is carried out by solving an eigenvalue problem

between the global mass and sti�ness matrices, where the natural frequencies and modeshapes are

obtained from the eigenvalues and eigenvectors, respectively. Here all the numerical results of natural

frequencies are presented in a non-dimensional form for generality, following a scheme which is widely

adopted in the area of shell structures [51]: ωn =
ω

D2

[√
12ρ(1− µ2)

Et2

]−1

. The geometric parameters D

and t denote diameter and wall-thickness of the spherical shell, while ρ, µ and E are the mass density,

Poisson's ratio and Young's modulus of the spherical shell. In order to present the natural frequencies

of coronaviruses in non-dimensional terms of the material properties of the spherical shell structure,

the material properties of the spikes and soft core are expressed as ρs = αsρ, µs = βsµ, Es = γsE,

ρc = αcρ, µc = βcµ and Ec = γcE, where the non-dimensional constants αs, βs, γs, αc, βc and γc

depend on the mechanical properties of the respective structural components. One can �nd out the

actual values of natural frequencies readily from the material properties of the coronavirus utilizing the

non-dimensionalization scheme described above.
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Machine learning based integrated numerical analysis scheme in virology

We have developed a machine learning assisted computational analysis scheme coupled with �nite

element modelling for investigating the computationally intensive probabilistic descriptions and sensi-

tivity of natural frequencies. A support vector regression based machine learning algorithm is adopted

here, the brief description of which is provided in section SM2 of the supplementary material. The

fundamental stages involved in a machine learning based analysis are described in �gure S3 of the sup-

plementary material. In the �rst stage, we have used Sobol sequence for generating the set of input

parameter (within a closed bound of ±2% with respect to nominal values of the material properties), the

natural frequencies corresponding to which are obtained using the physics-based �nite element model.

Based on the optimally designed training samples, the machine learning model is trained following sup-

port vector regression algorithm. This stage also involves multiple checks on the prediction capability

of the machine learning model, as described in section SM2 of the supplementary material. Once the

machine learning model is formed with adequate accuracy of prediction, it can be regarded as a digital

computationally e�cient substitute of the original expensive �nite element simulation model. In the

third stage, the machine learning model could be exploited to predict the responses corresponding to

any random set of input parameters, paving the way for carrying out computationally e�cient proba-

bilistic quanti�cation (using Monte Carlo simulation) and sensitivity analysis (refer to section SM3 of

the supplementary material). If θ is the considered input parameter then we de�ne the bound for Monte

Carlo simulation as θmin = θ(1−∆) and θmax = θ(1 + ∆), where ∆ = 0.02. The ith perturbed sample

of Monte Carlo simulation is drawn as θi = θmin + (θmax − θmin)Ri, i ∈ 1, 2, 3, ..., NMCS. Here Ri is a

random number generator following a particular probability distribution in the range of 0 to 1. The

probability density function plots in �gure 4(G-I) are obtained on the basis of the natural frequencies

evaluated corresponding to NMCS(∼ 104) dataset. The probabilistic descriptions of four most important

individual e�ects (identi�ed on the basis of variance based sensitivity analysis) and the compound e�ect

of stochasticity are presented here (refer to section SM3 of the supplementary material).
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