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Abstract As personalised immersive display systems have
been intensely explored in Virtual Reality (VR), plausible
3D audio corresponding to the visual content is required to
provide more realistic experiences to users. It is well known
that spatial audio synchronised with visual information im-
proves a sense of immersion but limited research progress
has been achieved in immersive audio-visual content pro-
duction and reproduction. In this paper, we propose an end-
to-end pipeline to simultaneously reconstruct 3D geometry
and acoustic properties of the environment from a pair of
omni-directional panoramic images. A semantic scene re-
construction and completion method using a deep convolu-
tional neural network is proposed to estimate the complete
semantic scene geometry in order to adopt spatial audio re-
production to the scene. Experiments provide objective and
subjective evaluations of the proposed pipeline for plausible
audio-visual VR reproduction of real scenes.
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1 Introduction

In Virtual Reality (VR) systems, personalised audio-visual
experiences are one of the most important issues to improve
the sense of presence because human perception relies on
audio and visual cues to understand and interact with the
environment [34, 49]. However, most existing approaches
have primarily focused on a single modality. Recent research
combines audio and vision into systems to enable semantic
scene understanding and human interaction [73, 84].

A full 3D reproduction of a real space in a virtual en-
vironment allows users to experience the space remotely.
It can be widely applied to various fields such as telecon-
ferencing [54], education [9, 63], health care [50], enter-
tainment [57] and media production [18, 40]. However, re-
search has mainly focused on improving the visual side of
scene reconstruction. In immersive VR systems, users do
not perceive the scene as realistic if sound is not matched
with the visual cues [27]. For example, sounds should be
provided with the correct early-reflections and reverbera-
tion effect which the user expects from the visual scene [4].
This also allows correct perception of distance to the sound
source [58]. Many studies performed evaluations of recon-
structed 3D visual scenes [44, 56], but the quality of the au-
dio has not been considered. Some researches investigated
virtual reality auralizations [64, 71] but they were not di-
rectly synchronised with real visual scenes. Recent research
has investigated scene-aware spatial audio reproduction in
2D panoramic video rendering using a mono-channel micro-
phone/speaker pair recording [51] and self-supervised deep
learning [60].

This paper provides a practical solution to capture room
structure and acoustic properties allowing spatial audio to be
adapted to the 3D model of a room environment and listener
location to give a plausible rendering to improve immersion.
We propose a full 3D reconstruction pipeline with acoustic
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property estimation from a pair of off-the-shelf consumer
omni-directional (360◦) camera captures of indoor scenes.
Two 360◦ panoramic images are used to reconstruct a com-
plete semantic scene geometry model and render the spa-
tial audio in the environment. A preliminary version of the
approach presented in this paper previously appeared at a
conference [43], which estimates an acoustic room model
from 360◦ images. However, the previous work approxi-
mates room geometry with large cuboids without any de-
tail and the pipeline is inefficient as it is composed of two
separate processes: 2D object recognition and 3D geometry
reconstruction. The object labels inferred from the 2D im-
age are projected to the reconstructed 3D model to segment
semantic objects. Our proposed pipeline is an integrated 3D
pipeline that is more accurate and works significantly faster
than [43] in building detailed 3D geometry with semantic in-
formation. It also reproduces more plausible spatial audio in
the reconstructed scene models.The main contributions and
advantages of this paper over the preliminary work are:

– Complete audio-visual VR scene reconstruction system
using a pair of consumer 360◦ image captures.

– Semantic scene reconstruction and completion from 360◦

stereo images taking advantage of existing standard RGB-
D datasets for network training.

– Real-time user interactive audio-visual VR scene render-
ing with spatial audio.

– Comprehensive objective and subjective evaluations of
estimated room geometry and acoustics.

2 Background and motivation

2.1 3D modelling from images

Indoor 3D geometry modelling from images has been ex-
tensively researched. A huge number of Multi-View Stereo
(MVS) [23], Simultaneous Localization and Mapping (SLAM)
[15] and Structure from Motion (SfM) [10] algorithms us-
ing multiple photos/videos have been developed. Low-cost
RGB-D (RGB + depth) cameras have also made a great im-
pact on real-time indoor scene reconstruction [59]. However,
due to the limited field-of-view (FoV) of imaging sensors,
these methods require multiple images or video streams to
cover the whole scene.

360◦ cameras (also known as panoramic or omnidirec-
tional cameras) which capture all directions at the same time
using fish-eye or wide FoV lenses have been recently intro-
duced to our daily life. These off-the-shelf low-cost 360◦

cameras used in many practical applications [6,61] can pro-
vide a good solution for this coverage problem. Song et al.
proposed a SfM method from a 360◦ camera [77]. Im et
al. proposed a dense depth map estimation pipeline using a
narrow-baseline video clip captured by a 360◦ camera [38].

We also proposed scene reconstruction methods using stereo
360◦ images from various types of 360◦ cameras [41, 43].
We followed this stereo-based method to acquire a depth
map for images captured by 360◦ cameras as this allows
simple set up and capture processes, as well as dynamic
scene captures.

2.2 3D semantic scene reconstruction and completion

Despite remarkable progress in image-based 3D reconstruc-
tion, the incomplete reconstruction problem caused by oc-
clusions due to the physical limitations of the capture pro-
cess still remains. 3D semantic scene reconstruction and com-
pletion was initially proposed by Song et al. [78]. From a
given single RGB-D image, they build a semantically la-
belled 3D voxel structure including occluded and non-surface
regions based on a fully convolutional neural network (CNN)
with 3D dilated convolutions jointly trained for semantic
object segmentation and scene completion. This work also
introduced the use of Flipped Truncated Signed Distance
Function (F-TSDF) to encode the depth map projected to 3D
before feeding it to the 3D CNN. Zhang et al. [88] proposed
to use Spatial Group Convolutions to reduce the amount
of computational resources for network training. Liu et al.
[53] improved it using a two step training protocol com-
posed of a 2D semantic segmentation CNN and a 3D se-
mantic scene completion CNN. Kim et al. [45] proposed
a 3-D scene graph for a semantic representation of rooms.
We proposed EdgeNet [20], an integrated architecture using
edge information detected from the corresponding RGB im-
age. EdgeNet was designed for normal perspective images.
In this paper we extend it to 360◦ images for whole scene re-
construction and completion. One problem of 360◦ scene re-
construction and completion is the lack of ground-truth 360◦

RGB-D data for training. There are a few 3D 360◦ datasets
such as Stanford 2D-3D-Semantics dataset [2] and Matter-
port 3D [16], but the number of scenes provided by those
datasets are not enough for training CNN architectures. On
the other hand, there are abundant normal RGB-D datasets
available with annotated ground-truth for training. In this re-
search, we propose to decompose the 360◦ view into 8 over-
lapping views to benefit from existing RGB-D datasets for
training and enable complete 360◦ scene reconstruction.

2.3 Acoustic modelling for spatial audio rendering

Various methods have been developed to describe the char-
acteristics of room acoustics through sets of parameters, which
enable reproduction of real-world spatial audio effects in
virtual scenes [62, 65, 86]. The parameters are typically ex-
tracted from measured acoustical Room Impulse Responses
(RIRs) [62, 83]. For VR scenes, RIRs can be synthesised
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from the room geometry [42]. However, modelling room
acoustics with an RIR is still incomplete as the RIR is only
valid for a single source-receiver configuration and it is im-
practical to measure or update all RIRs according to the
changes of geometry or source/user positions in interactive
rendering environments. It also takes time and resources to
set up a bulky loudspeaker, microphone and audio system
to make measurements. Recently, a few vision-based ap-
proaches to estimate room acoustics for spatial audio render-
ing have been proposed [48]. 3D models with material infor-
mation allow the emulation of real world acoustics [37]. Li
et al. proposed scene-aware spatial audio reproduction from
a single video recording [51] but it was only for 2D 360◦

video rendering. Schissler et al. built a dense 3D geometry
using a SfM method from RGB-D image frames and esti-
mate acoustic material properties for sound rendering using
a CNN [74], but it requires an RGB-D video stream of the
static scene to cover a complete structure estimation.

Many audio tool kits have been recently developed to
render spatial audio. G’Audio provides an object-based spa-
tial audio plug-in for a 3D environment but supports lim-
ited platforms [25]. Wwise Spatial Audio plug-in supports
a wide range of VR platforms including Unreal and Unity
to efficiently model sound propagation in a given 3D space
[46]. Google Resonance [28] and Steam Audio [17] also
provide free open-source plug-ins for immersive spatial au-
dio rendering which can handle multiple occlusions, reflec-
tion, reverb and HRTF effects in a VR environment. We use
Google Resonance and Steam Audio to embed estimated
acoustic parameters and render spatial audio in the recon-
structed 3D semantic scene models. However, our final ex-
periments are not intended as comparison between the Google
Resonance and Steam VR performance. Instead, we em-
ployed these two tools since they are two of the most rel-
evant ones, and they provide free open-source plug-ins for
immersive spatial audio rendering, which enabled us to cre-
ate our end-to-end pipeline. Detailed features of these two
toolkits are introduced in Section 3.4.

3 Proposed Pipeline

3.1 System Overview

The ultimate goal of this research is to develop a practical
system for reproduction of visually and acoustically plausi-
ble VR scenes from a simple capture of indoor scenes. Fig-
ure 1 shows the flow of the proposed pipeline.

A full surrounding scene is captured as a vertical stereo
image pair with 360◦ cameras. This pair of images is used
for depth estimation of the scene using stereo matching and
depth map enhancement. From the estimated depth map, an
initial voxel-based structure is generated and partitioned into
eight overlapped parts. The partitioned voxel structures are

Fig. 1 Overview of the proposed pipeline

individually submitted to the EdgeNet with the correspond-
ing edge maps for semantic segmentation and scene com-
pletion. The outputs of EdgeNet are recomposed into the
whole scene structure and acoustic property parameters for
the classified objects are assigned from the acoustic mate-
rial list. Finally, the reconstructed audio-visual VR scene is
rendered by setting sound source and player models on a
Unity [85] VR platform.

3.2 Capture system and depth map generation

One of requirements for practical audio-visual applications
is a simple and quick capture/recording process of the real
scene. Nowadays, inexpensive off-the-shelf 360◦ cameras
which produce high quality of scenes capture are widely
available [29, 39]. Ricoh Theta cameras [67] were used in
our system as they provide accurately rectified equi-rectangular
photos from two fisheye lens and also support first-order
Ambisonics (B-format) audio recording.

Two Ricoh Theta cameras were set on vertically aligned
mounts to capture the scene with full panoramic texture and
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(a) Camera set up (b) Spherical stereo geometry

Fig. 2 Spherical stereo geometry with 360◦ cameras

to extract depth information as shown in Fig. 2 (a). From
the pair of vertical stereo 360◦ images, depth of the scene
is estimated by dense correspondence matching [41]. Ac-
cording to the spherical stereo geometry in Fig. 2 (b), depth
information can be recovered from pixel disparity and stereo
camera baseline distance B without any camera calibration
as column and row positions in an equi-rectangular image
are directly mapped to the azimuth and elevation angles re-
spectively in the 3D spherical coordinate system. If the an-
gular disparity of two matching points (θt(p), θb(p′)) be-
tween two images is given as d(θ(p)) = θt(p)−θb(p′), the
distance (depth) rt(p) from the top camera to the the real 3D
scene point is calculated by triangulation as:

rt(p) = B/
(

sinθt(p)
tan(θt(p)−d(θ(p))

− cosθt(p)
)
. (1)

Any correspondence matching algorithm can be used for
the proposed pipeline. We used a simple feature-based bi-
directional block matching method in our experiments. How-
ever, scene depth recovery using correspondence matching
from stereoscopic images is subject to noisy depth from match-
ing failure and incomplete scene depth due to occlusions.

In order to increase the prediction performance in se-
mantic scene completion, the estimated depth map is en-
hanced under the assumption that most objects in an indoor
scene are piecewise-planar [32] and edge information is a
distinguishing feature for reliable stereo matching, provid-
ing good depth estimates on their neighbourhood [12]. The
Canny edge detector [26] is applied to the image to detect
candidate regions for piecewise-planar regions. Using the
dilated edges as a mask, the most reliable depth estimations
are extracted from the original depth map. Vertical edges are
eliminated from the mask as they are parallel to the epipolar
lines and do not contribute to the stereo matching perfor-
mance in the given vertical stereo camera set up. Coherent
regions with similar colours are searched by a simple flood
fill approach to detect featureless planar surfaces like sin-
gle colored walls and table tops. Planes are fitted to those

(a) Meeting Room (MR) (b) Kitchen (KT)

Fig. 3 Depth Enhancement (Top: Original Top image; Middle: Esti-
mated depth map; Bottom: Enhanced depth map)

regions using RANSAC [22] to eliminate noise from false
stereo matching. The original depth information is replaced
by the depth of the plane if the plane is closely aligned to
any principal axis. The original depth information is kept
for non-orthogonal plane regions.

Figure 3 shows examples of the depth enhancement re-
sults. The cabinets in the left part of the MR scene have se-
rious depth errors due to the vertical stripes on the surface,
but most errors are eliminated by the enhancement step. The
depth errors on the shiny surface of the fridge are also cor-
rected in the KT scene. The ceiling and floor regions in both
scenes have wide erroneous areas due the featureless surface
or saturated lighting, but they were approximated to smooth
planes.

3.3 Semantic scene reconstruction and completion

A 3D voxel structure of all visible surfaces can be recon-
structed by projecting points in the estimated depth map to
a 3D space, but this structure is incomplete due to invisible
regions in the scene. In this section we propose a semantic
scene reconstruction and completion for 360◦ scenes simul-
taneously filling occluded areas and segmenting the struc-
ture into semantic parts. This work is based on the semantic
scene completion using EdgeNet for a normal perspective
(narrow FoV) RGB-D image [20]. We extended this Ed-
geNet to 360◦ scene completion and understanding while
taking advantage of existing standard RGB-D datasets for
network training.

The voxel structure is partitioned into 8 partially over-
lapped views from the center of the scene. The FoV of the
partitioned view is set to 45◦ to match to the FoV of the
standard RGB-D sensor used for network training, and the
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viewpoint of the partition in each direction is positioned
1.7m behind the original camera position to get overlapped
coverage to compensate the boundary regions in each parti-
tion. Each partition is individually submitted to the seman-
tic scene completion network for prediction. In our experi-
ments, the whole 3D volume is represented by 480×480×
144 voxels with 0.02m voxel size, and each partition size
is set as 240× 240× 144 voxels. The resolution can be in-
creased according to the memory allowance.

3.3.1 Training datasets

The 3D CNN architecture used in our pipeline is trained on
the SUNCG training set [78] and fine-tuned on the NYU
depth v2 (NYU-v2) training set [75]. The SUNCG dataset
has 140K RGB-D views extracted from 45K synthetic scenes
with corresponding depth maps and ground truth. The NYU-
v2 dataset includes 464 real scene depth and RGB images
(795 views for training and 654 views for testing) captured
by a Kinect sensor. We generated ground truth by voxelizing
the 3D mesh annotations from [31] and mapped object cate-
gories based on [33] to label occupied voxels with semantic
object classes.

3.3.2 EdgeNet for semantic scene completion

Figure 4 illustrates the 3D CNN architecture to build a com-
plete and air-tight 3D structure with object labels from depth
and edge maps. This has been inspired by the U-Net de-
sign [69], and differs from other Semantic Scene Comple-
tion approaches by fusing both depth and edges after encod-
ing using F-TSDF [79]. The edge volume is generated from
the edge map as a voxel structure with the same dimension
as the depth volume. The activation function of EdgeNet is
a Softmax and each voxel of the output volume contains the
predicted probabilities of the 12 classes used for training.
The output resolution for each partition is 60×36×60 vox-
els.

The One Cycle Learning policy [76] combined with Cur-
riculum Learning [8] and Simulated Annealing [1] is used
for the training stage. In the fine-tuning stage, the network
is initialised with the SUNCG parameters and tuned using
standard training with a Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.01 and decay weight of
0.0005. The training time was about 4 days on SUNCG and
6 hours on NYU on an Nvidia GTX 1080 Ti GPU.

3.3.3 Recomposition

The output of the EdgeNet-based semantic scene completion
architecture is 8 object-labeled 3D volumes, that have over-
laps at their boundaries with their neighbours. In order to

combine the output partitions into one complete scene struc-
ture, a simple strategy of “summing a posteriori probability”
proposed by Kittler et al. [47] is applied for each class over
all classifier outputs.

All output partitions are located at their original posi-
tions and all voxels in the ranges are checked if they belong
to certain partitions or not. If a given voxel is not covered by
a certain partition, a posteriori probabilities for all classes
for that voxel and partition are set as 0 (out of FoV). Other-
wise, the sum of the a posteriori probabilities for all classes
for that voxel and classifier is set as 1. For a voxel with a
posteriori probability Pi j for class i predicted by a classifier
j, the sum of the probabilities for class i over all classifiers
n is given by:

Si =
n

∑
j=1

Pi j . (2)

The winning class C for this voxel is:

C = argmax
i
(Si) . (3)

3.4 Room acoustics and VR scene reproduction

This semantic scene structure is directly imported to Unity
to simulate room acoustics. We initially considered two well-
known tools to simulate spatial audio in the Unity engine:
Google Resonance [28] and Steam Audio [17]. They both
implement their spatial auralisation by employing binaural
RIRs (BRIRs) over virtual loudspeakers.

Google Resonance provides 22 types of acoustic materi-
als, and Steam Audio provides 11 preset acoustic materials
and 1 custom material property setting. Both Google Reso-
nance and Steam Audio calculate the early reflections using
Head Related Transfer Functions (HRTFs), belonging to the
closest Direction of Arrival (DOA) estimated via ray tracing.
The employed HRTFs are obtained through interpolation:
the available HRTFs corresponding to the DOAs which are
the nearest to the reflection DOA are used to perform HRTF
interpolation. We used the initial HRTF datasets built in the
Steam Audio Unity Plug-in1.

The main difference about the way Google Resonance
and Steam VR render spatial sound is that Google Reso-
nance uses a two-step approach: first it places the sources
onto a high-order Ambisonics field and then it reproduces
the obtained field through virtual loudspeakers [68], [30].
Instead, Steams follows a single-step approach: it generates
the BRIRs related to virtual loudspeakers directly. Steam
Audio was developed to generate an accurate acoustic sim-
ulation while Google Resonance aims to bring the spatial

1 https://valvesoftware.github.io/steam-
audio/doc/phonon unity.html



6 Hansung Kim et al.

  

C
on

v3
D

(8
,3

,1
)

Input

R
es

N
et

(8
,3

,1
)

M
a

xP
oo

lin
g3

D
(2

,2
)

240x144x200

M
ax

P
oo

lin
g3

D
(2

,2
)

120x72x120

C
on

v3
D

(3
2

,3
,1

)

M
ax

P
oo

lin
g3

D
(2

,2
)

60x36x60

R
es

N
et

(6
4,

3,
1)

R
es

N
e

t(
64

,3
,1

)

M
ax

P
oo

lin
g

3D
(2

,2
)

30x18x30

D
ila

te
d3

D
(1

28
,3

,1
)

D
ila

te
d3

D
(1

28
,3

,1
)

U
pC

on
v3

D
(6

4,
2,

2)

15x9x15

30x18x30

C
on

v3
D

(6
4,

3
,1

)

U
p

C
on

v3
D

(3
2

,2
,2

)

Concat.

60x36x60

C
on

v3
D

(3
2,

3
,1

)

Concat.

C
on

v3
D

(1
6

,1
,1

)

C
on

v3
D

(1
2,

1,
1)

60x36x60

C
on

v3
D

(1
6,

1,
1)

Concat.

Output

Depth 
F-TSDFT

240x144x200

Edges
F-TSDFT

B
at

ch
N

or
m

al
iz

at
io

n

R
eL

U

C
on

v3
D

(c
h

,s
z,

st
,d

il)

C
o

nv
3D

(c
h,

sz
,s

t,
di

l)

B
at

ch
N

or
m

al
iz

at
io

n

R
eL

U

+
input output

ResNet module with optional dilation

ResNet module (channels, size, strides, dilation=1)

Maxpooling3D(size, strides)

Dilated ResNet module (channels, size, strides,dilation=2)

Conv3DTranspose(channels, size, strides)

Conv3D(channels, size, strides) + Softmax + Categorical Cross Entropy Loss

Conv3D(channels, size, strides)

R
e

sN
et

(1
6,

3,
1

)

R
es

N
et

(3
2,

3,
1)

C
on

v3
D

(1
6,

3,
1

)

C
on

v3
D

(6
4,

3,
1

)

C
on

v3
D

(1
28

,3
,1

)

R
es

N
et

(6
4,

3,
1)

R
es

N
e

t(
64

,3
,1

)

R
es

N
e

t(
32

,3
,1

)

Fig. 4 U-shaped architecture for complete 3D semantic scene reconstruction

audio experience to mobile devices reducing the computa-
tional complexity.

We found that Google Resonance has several limitations
in our system implementation: (a) Google Resonance does
not work with voxel-based structure but only with mesh-
based surface structure; (b) the audio quality suffers when
rendering sound with simple frequency content, such as a
sine wave beep or a swept sine signal, which is generally
used for RIR measurement but not recommended for spa-
tialization2. Therefore, we used Steam Audio for our final
implementation though we still included results with Google
Resonance in the experiment to verify the performances of
both tool kits.

In order to render spatial audio from the estimated acous-
tic properties of the reconstructed 3D models, we map the
object labels to the acoustically closest material types in the
provided audio package as Table 1 as an approach to esti-
mate acoustic properties of materials from a visual input.

Although measuring RIRs in real environments is well-
established [80], extracting RIR information from VR en-
vironments has not previously been explored. Therefore, we
treat the virtual environment as a real one to measure BRIRs,
and emulate virtual binaural microphones and omnidirec-
tional sound sources in the reconstructed virtual environ-
ments, to record sounds. The general swept-sine method [21]
is employed to calculate RIRs for Steam Audio, and an ane-
choic gun-shot (normalised in the time domain) [19] is used
for Google Resonance. The BRIRs for reconstructed 3D en-
vironments are obtained by recording the responses at the
same positions as the Ground-truth BRIRs measured in the
real environment.

2 https://resonance-audio.github.io/resonance-
audio/develop/design-tips.html

Table 1 Object-Material matching table.

Object Material - Google Material - Steam
Empty Transparent Transparent
Ceiling Wood ceiling Wood
Floor Curtain heavy Carpet
Wall Plaster smooth Plaster

Window Thick Glass Glass
Bed Heavy curtain Carpet
Sofa Heavy curtain Carpet
Chair Plywood panel Wood
Table Plywood panel Wood
TV Thick Glass Glass

Furniture Plywood panel Wood
Object Metal Metal

Finally, a virtual camera and audio sources are placed
in the VR scene to render the reconstructed scene with spa-
tial audio. The reproduced VR scene is rendered with real-
time interaction on a VR headset or desktop applications. In
our experiments, HTC VIVE Pro [36], a VR headset playing
binaural spatial audio over headphones is used.

4 Experiments

In this section, we present our experiments to evaluate the
quality of visual geometry and acoustics reproduced by the
proposed pipeline. In the evaluation of immersive spatial au-
dio, both “authenticity” and “plausibity” of rendered sound
should be considered. Authenticity measures how identical
the generated sound is to the ground-truth sound [11], while
plausibility is subjectively judged by the listener with his/her
inner reference (listener’s expectation) [52]. Authenticity of
the rendered sound can be evaluated by comparing acoustic
parameters of the rendered sound with those of the ground-
truth sounds (objective evaluation). Plausibility can be eval-
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(a) Listening Room (LR)

(b) Studio Hall (ST)

(c) Usability Lab (UL)

Fig. 5 Dataset used in the experiments (Left: Captured Top image;
Right: Enhanced depth map)

uated by user studies. Both objective and subjective evalua-
tions have been carried out in this study.

The proposed pipeline has been tested on five differ-
ent rooms with various sizes and materials: Meeting Room
(MR), Usability Lab (UL), Kitchen (KT), Listening Room
(LR) and Studio Hall (ST). The MR and UL scenes are typi-
cal living room environments. KT is a long and narrow room
with kitchen equipment. LR is an acoustically controlled ex-
perimental room and ST is a large hall. Each scene was cap-
tured as a 360◦ vertical stereo pair. The MR and KT sets are
shown in Fig. 3, and the other datasets with their enhanced
depth maps are in Fig. 5.

All data sets, audio sources, results and supplementary
video in this section are available at:
http://3dkim.com/research/VR/index.html

4.1 Semantic scene reconstruction

Full 3D structures of the scenes with semantic object labels
were reconstructed through the proposed depth estimation
and semantic scene completion process. The results were
compared with the block-based scene reconstruction method
(Kim19) [43] which employs two separate process of 2D se-
mantic segmentation by SegNet [3] and room modelling by
cuboid fitting. Figure 6 shows the reconstructed scene mod-
els with semantic object labels indexed by the colour code in
Fig. 8. The first row in Fig. 6 shows the initial voxel clouds
generated by the estimated depth maps in the 3D space with
a voxel size of 0.02m, before encoding the volumes with F-
TSDF and submitting them to the proposed networks. It is
observed that the initial structures are incomplete due to the

occlusions and erroneous depth estimation. They also have
two large holes at the epipoles of vertical stereo (under and
over the camera location). The second and third rows visu-
alise the outputs by [43] and the proposed pipeline, respec-
tively. In the outputs of [43], the walls were indexed as Floor
as the whole room layout was represented as one cuboid,
but we assigned correct materials for walls and ceilings in
acoustic material mapping. In the results of [43], the side
cabinets in the MR scene do not adjoin the wall as the side
parts of those cabinets are not visible in the captured image.
It also missed the large table in the KT scene and produced
many redundant objects from scattered loud speakers in the
LR scene. Overall, the proposed 360 semantic scene recon-
struction method produced more objects correctly located in
the scene with geometrical details such as the tea tables be-
tween two sofas in the MR scene, the main table in the KT
scene and the curtain on the wall in the UL scene.

It is difficult to quantitatively evaluate the reconstruc-
tion performance for individual objects in the rooms be-
cause ground-truth models are not available. For a prelim-
inary evaluation, we made a CG model by manual measure-
ments for the MR scene. For the KT scene, a LiDAR scan
data was available, but the LiDAR appears also to fail with
transparent surfaces like the doors and windows. There is
a hole on the floor too. Though the reference models are
still incomplete due to approximation and occlusion, it is
observed that the estimated model by the proposed method
generates approximate geometry of the main objects in the
scene in Fig. 6. We also evaluated the room dimensions against
the manually measured room layouts in Table 2. Both [43]
and the proposed method built relatively accurate room lay-
outs. The proposed method shows slightly better estimations
for room width and length, but [43] was a bit better in the
room height estimation because the depth for the whole ceil-
ings and floors were inferred from limited number of fea-
tures in the proposed method. The estimation errors were
relatively large for the ST scene because the accuracy of
depth estimation for spherical stereo is inverse-proportional
to the distance. We used a fixed baseline distance for all
scenes but this can be improved by setting the baseline dis-
tance larger for a large scene. The height of the ST scene was
estimated incorrectly (14.46% of error) due to the uneven
ceiling with rails and panels in the scene. [43] showed large
errors in width and length for the UL scene due to the large
window and mirror in the scene but the proposed method
accurately matched the room layouts.

The semantic scene reconstruction was run on a GeForce
GTX TITAN X GPU with 12GB memory and the whole
process took around 2 mins per dataset. This is much faster
than [43] which requires two separate process for 8 mins (3
mins of 2D semantic segmentation and 5 mins of 3D geom-
etry reconstruction).
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Table 2 Comparison of reconstruction errors in room dimensions. The bold figures represent the minimum error in each dimension.

Data Ground-truth Kim19 [43] Proposed
Dimension (m) Dimension (m) Err in Dim (%) Dimension (m) Err in Dim (%)

MR 5.61×4.28×2.33 5.52×4.35×2.36 (1.60, 1.64, 1.29) 5.54×4.24×2.40 (1.25, 0.93, 3.00)
KT 6.64×3.46×2.67 6.95×3.41×2.70 (4.67, 1.45, 1.12) 6.42×3.52×2.68 (3.31, 1.73, 0.37)
LR 5.64×5.05×2.90 5.77×5.17×2.98 (2.30, 2.38, 2.76) 5.88×5.02×2.78 (4.26, 0.59, 4.14)
ST 17.08×14.55×6.50 16.53×14.87×5.70 (3.22, 2.20, 12.31) 17.54×15.46×5.56 (2.69, 6.25, 14.46)
UL 5.57×5.20×2.91 5.92×4.95×2.95 (6.28, 4.81, 1.37) 5.52×5.22×3.00 (0.90, 0.38, 3.09)

(a) MR (Left: Approximate CG model, Right: Estimated geometry)

(b) KT (Left: LiDAR scanning, Right: Estimated geometry)

Fig. 6 Comparison of geometry reconstruction

4.2 Room acoustics evaluation

For objective evaluation of the sound rendered in the re-
constructed 3D models, RIRs simulated in the reconstructed
models are compared with the ground-truth RIRs measured
in the real environments. The ground-truth RIRs were recorded
by using the swept-sine method [21] with a sampling fre-
quency of 48 kHz, employing a Genelec 8020B speakers as
sound source and a Soundfield MK5 B-format microphone.
For the objective evaluation, the W-channel (i.e. omni) of the
Soundfield microphone was used. In fact, only the timbrally-
encoded spatial effects of the room response were evaluated
through the objective metrics, leaving the complete spatial
evaluation to the subjective tests, which were run on a desk-
top application.

4.2.1 Evaluation Metrics

To evaluate the quality of the acoustics reproduced in the
reconstructed environments, we analysed the Early Decay
Time (EDT) and Reverberation Time (RT60) of the gener-
ated sounds, as objective measures of their early reflections
and late reverberation, respectively. EDT is a good metric to
evaluate the acoustics from adjacent reflectors that is sub-
jectively important, by considering the energy carried by the
early reflections [13, 70]. On the other hand, RT60 relates
to the average absorption, location of room boundaries and
size of the room, describing the reverberation from a phys-

ical point of view [13, 70]. EDT is calculated as six times
the time required for the energy to decay 10 dB after the di-
rect sound [7]. RT60 is measured as the time for the energy
to decay 60 dB. The average values over the 6 octave bands
between 250 Hz and 8 kHz are reported for both EDT and
RT60 in this research.

To understand the perceptual meaning of the observed
errors in the EDT and RT60 values, we defined their Just
Noticeable Differences (JNDs). The thresholds of JND were
chosen as 20 % for RT60 [55] and 5 % for EDT [87] as sug-
gested in the literature. However, it is important to note that
the same literature describes variable percentages depend-
ing on the type of sounds. For instance, in [55], JNDs for
RT60 were found up to about 30 % for musical signals. It
is also important to remark that, for media or entertainment
applications, authenticity is not the benchmark to target. It
is widely recognised that sound plausibility is more impor-
tant [11,52]. To the best of our knowledge, no threshold that
defines the plausibility limens for the object metrics em-
ployed has been identified in the literature. Previous stud-
ies typically focused on determining plausibility by observ-
ing the overall sound perception, without distinguishing be-
tween the perception of early reflections and late reverbera-
tion [58]. Furthermore, in the presence of visual stimuli, the
perceptual differences between real and synthetic acoustic
environment are not as strictly defined as they are for uni-
modal scenarios [5]. In this paper, we employed JNDs to be
coherent with the available literature though JNDs typically
refer to authenticity in audio-only scenarios, the strictest case.

4.2.2 Evaluation results

The EDTs and RT60s of rendered RIRs were compared against
the ground-truth data measured in the real environments and
visualised in Fig. 9 and 10, respectively. The proposed method
was compared along with three other models. First, “Kim19”
is a state-of-the-art method [43] illustrated in Fig. 6. Sec-
ond, “Empty” is an empty shoe box model which represents
only room boundaries with correct materials to verify the
role of objects within the scene for sound rendering. Third,
for “Wrong”, the geometry was reconstructed based on the
proposed method but incorrect acoustic material classifica-
tion was manually assigned to the three largest objects in the
scene to prove the importance of accurate material estima-
tion in sound rendering. There is no carpet in the KT scene,
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(a) MR (b) KT (c) LR (d) ST (e) UL

Fig. 7 Semantic room reconstruction results (Top: Initial voxel cloud, Middle: Reconstruction by [43], Bottom: Proposed method, The color index
is defined as in Fig. 8

Fig. 8 Colour index for semantic objects linked to the materials in Ta-
ble 1
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Fig. 9 EDTs for the five rooms, related to the estimated RIRs in VR
environment. The dashed lines show the JND limit of 5% [87].

and other scenes have less hard surfaces. Therefore, we as-
signed Carpet as the wrong material to the KT, and Glass to
the other scene to maximise the difference of acoustic effect.

In Fig. 9, the EDT results show that the proposed method
outperforms all other methods. In particular, for the KT and
LR scenes, the estimated values fall close to the JND band,
which means very small perceptual differences from the recorded
acoustics. “Empty” and “Wrong” give the worst performances
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Fig. 10 RT60s for the five rooms, related to the estimated RIRs in VR
environment. The dashed lines show the JND limit of 20% [55].

which show the strong relationship between interior objects
(both geometry and material) and room acoustics.

Regarding the RT60 results in Fig. 10, there are simi-
lar trends to the ones observed in the EDT evaluations. The
proposed method shows the best performance among the
tested methods. For the ST and MR scenes, RT60s by the
proposed method are inside the JND band, which means
that the proposed method has recreated authentic representa-
tions of the room reverberation. One interesting observation
in this RT60 test is that “Wrong” performs slightly better
than “Kim19 [43]” for KT, ST and UL scenes (i.e. 3 rooms
out of 5). This suggests the geometrical details reconstructed
by the proposed method can improve RT60 in spite of the
wrong materials comparing with the “Kim19 [43]” models
which have very simple box-shaped geometry.
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Figure 11 shows the RT60s depending on frequency. The
proposed method generates signals closest to the recorded
ground-truth, for every tested frequency. As also previously
observed in Fig. 10, the general trend is to have “Empty”
to be the worst and “Wrong” is then the second best for
KT, ST and UL scenes. The largest error for the proposed
method seems to appear in UL because the curtain which
actually absorbs sound in the UL scene has been classified
as ‘objects’ in the proposed method.

4.3 Subjective evaluation

The aim of this experiment is to evaluate the plausibility in
terms of the perceived spatial impression and quality of the
sound rendered by the proposed pipeline. The evaluation test
was performed by twenty participants with normal hearing
between the ages of 22 and 45, made up of 12 males and 8
females. None of them was experienced in 3D audio. Wired
Bose QC25 headphones were used for the sound reproduc-
tion and a 24” monitor screen to observe the related room
images in a 360◦ rendering mode for the test. All tests were
embedded into the MUSHRA interfaces3, developed in Max
MSP.

4.3.1 Listening Test Setup

Four rooms in the experimental dataset were selected for
subjective evaluation: MR, KT, ST and UL. The Listening
Room (LR) was excluded because people cannot expect sound
rendered in the room with acoustically insulated walls from
the given image. Two original sound sources were rendered
in the VR environments: an anechoic speech source from
the TIMIT dataset [24] and a clarinet sound in an anechoic
chamber from the OpenAirLib library [14].

In order to evaluate subjective attributes of the repro-
duced sound quality, two factors were tested as proposed
in [35]: “spatial impression” and “overall quality”. The par-
ticipants were presented with a PC interface having a 360◦

3 https://github.com/IoSR-Surrey/MUSHRA-MaxMSP

image viewer and an audio player with corresponding audio
tracks to rank each stimulus against the attribute, within a
range of integer numbers from 0 to 6. We did not provide
the full 3D VR scene to avoid the visual cues influencing
perception of the acoustic cues. The experiment was made
up of eight sessions, the combination of four rooms and two
audio sources, and two questions were given to the partici-
pants to rate the stimulus: (1) “How much the spatial impres-
sion matches what you expect from the given room image”;
(2) “How natural the generated sound is against any noise or
distortion”.

Six samples were provided per session on the MUSHRA
interface: two reference samples (‘Low’ and ‘High’) as an-
chors and randomly assigned four test samples (‘A’-‘D’) gen-
erated by different methods and audio tools. The participants
were free to listen to reference and test samples by click-
ing buttons on the interface to rate the test samples. The
low and high references were generated as anchors to help
the listeners. The ‘Low’ reference samples are the original
sound sources recorded in an anechoic environment which
does not include any of reverberation. The ‘High’ references
were binaural sounds generated from B-format (i.e., first-
order Ambisonics) recordings. This conversion was done
using the NoiseMakers Ambi-Head plug-in, in Reaper. The
first test sample “Kim19” was generated by Steam Audio
from the model estimated by the state-of-the-art algorithm
[43] used in the previous Sections 4.1 and 4.2. The second
sample “Google” was generated by the Google Resonance
package to evaluate its audio rendering performances. The
third sample “Wrong” is the one with wrong acoustic mate-
rials introduced in the previous Section 4.2 and rendered by
Steam Audio. Finally, the “Proposed” sample was rendered
by Steam Audio with the semantic 3D model reconstructed
by the proposed pipeline. We restricted the total number of
samples to six per session and excluded other variable com-
binations to prevent the listeners getting confused or tired.
The four test samples were randomly shuffled to the buttons
‘A’ to ‘D’ in every session so that the participant could not
find any consistency from the order.
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Fig. 12 Subjective scores for spatial impression (top three) and over-
all quality (bottom three). On each box, the horizontal red line rep-
resents the median of the distribution, the bottom and top edges of
the boxes are the 25th and 75th percentiles, respectively. The whiskers
show the most extreme non-outlier samples, whereas the outliers are
the red stars.

4.3.2 Spatial Impression

In this test, two reference samples were provided: the ‘High’
one, the binaural sound obtained from B-format, was rated
as 5; whereas, the ‘Low’ one, the anechoic recordings, rated
as 1. The participants were asked to rate four samples within
the score range 0-6. (They could give even 0 or 6 if they felt
any sample was worse or better than the references).

The spatial impression results are visualised in the top
row of Fig. 12. The overall rating shows the proposed method
to provide a better spatial impression compared to the other
three. The proposed method shows the same median val-
ues (i.e. 4 out of 6) as “Kim19” [43], but looking at their
75th percentile, the results related to the proposed method
are more stretched towards values greater than 4, as op-
posed to the results related to “Kim19” [43]. It is also im-
portant to show that participants clearly perceived the low-
est spatial impression when the wrong materials were given
(“Wrong”), again demonstrating the importance of correct
object and material recognition.

The second and third figures in the top row show the split
between the two content types: music and speech. The trend
observed in the overall score is mainly given by the speech
results. For the music, all methods seem to provide similar
spatial impression, but the data distribution is also stretched
towards higher values for the proposed method, as suggested
by the 75th percentile.

These plots could, mistakenly, lead to the conclusion
that the four tested methods produce results having similar
statistics. Therefore, we have run further statistical analy-
sis over the results. In Table 3, we report the results of the
one-way ANOVA test [81], which aims to identify whether

the different methods produced a statistically significant ef-
fect on the results. The test results confirm this hypothesis.
This can be observed by looking at the p-values that are
always (much) below 5 %: with a confidence greater than
95 %, the distributions are statistically different. In Table 4,
we also reported the results’ means, and p-values obtained
by running t-tests between each pair of methods [82]. The
reported mean values confirm what was already observed:
for the spatial impression, the proposed method performs the
best, on average, followed by (in order): “Kim19”, “Google”
and “Wrong”. Regarding the paired t-tests, we first com-
pared “Kim19” to “Google”, “Wrong” and “Proposed”; then
“Google” to “Wrong” and “Proposed”; finally, “Wrong” to
“Proposed”. We can see that the differences related to “Pro-
posed” are statistically significant when directly compared
to the distributions of the results of “Google” and “Wrong”.
This confirms that our pipeline composed by room geometry
estimation and Steam VR is able to render an acoustic field
that gives a better spatial impression than the other anal-
ysed pipelines. Nevertheless, these results also show that it
is not possible to claim, with 95% confidence, that the “Pro-
posed” results are significantly better than our previous work
in “Kim19”.

4.3.3 Overall Quality

In this test, the participants evaluated the stimulus only in
terms of sound quality, scoring them between 0 and 6. The
same eight sessions were tested with the same four test sam-
ples without references.

The results are reported in the bottom row of Fig. 12.
The observed trend is similar to the one discussed for the
spatial impression. In general, the participants seem to pre-
fer the quality provided by the proposed method. Nonethe-
less, Kim19 [43] also gives good performance, with the me-
dian being the same as the new method but its 75th percentile
is distributed towards lower values. The sounds reproduced
by Google Resonance seem to be perceived as having low
quality. This difference in quality is due to the fundamen-
tal differences between Google Resonance and Steam Au-
dio as discussed in Section Google Resonance employs an
Ambisonic field as intermediate step to create virtual loud-
speakers, whereas Steam directly generates the BRIRs. For
an infinite-order Ambisonic rendering via virtual loudspeak-
ers, the direct sound and early reflections would be sharp in
terms of their spatial image and the full room effect would
be conveyed via the surrounding virtual loudspeakers. How-
ever, the limited-order Ambisonic decoding (they suggest to
use 3rd-order to achieve the highest fidelity) not only blurs
the spatial image of the direct sound and early reflections but
causes temporal smearing of the impulse response at the ears
as a result of panning combined with variation in the prop-
agation time to each ear (relative to the calibrated/aligned
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Table 3 F-Values and related P-values of the one-way ANOVA tests among the different methods’ ratings, for overall rating, single music and
single speech results. H = 1 means that the test rejects the null hypothesis of the groups belonging to normal distributions with equal means (95 %
of confidence), also denoted by ∗.

Overall Ratings Music Speech
H F-Value P-Value H F-Value P-Value H F-Value P-Value

Spatial Impression 1 17.71 < 0.1%∗ 1 10.20 < 0.1%∗ 1 8.35 < 0.1%∗

Overall Quality 1 7.73 < 0.1%∗ 0 2.17 9.2% 1 8.60 < 0.1%∗

Table 4 Means of the results and the scores obtained by paired t-tests between the different methods’ ratings, for overall rating, single music and
single speech results. H = 1 means that the pair of results are statistically different (95 % of confidence). The first four rows’ label SI stands for
Spatial Impression, whereas the last four rows’ label OQ stands for Overall Quality.

Overall Ratings Music Speech
Kim19 Google Wrong Prop. Kim19 Google Wrong Prop. Kim19 Google Wrong Prop.

SI - Means 3.41 2.97 2.57 3.63 3.25 2.95 2.30 3.54 3.57 3.00 2.84 3.73
SI - t-test Kim19 - H = 1 H = 1 H = 0 - H = 0 H = 1 H = 0 - H = 1 H = 1 H = 0
SI - t-test Google - - H = 1 H = 1 - - H = 1 H = 1 - - H = 0 H = 1
SI - t-test Wrong - - - H = 1 - - - H = 1 - - - H = 1

OQ - Means 3.71 3.05 3.21 3.72 3.54 3.34 3.07 3.64 3.88 2.77 3.56 3.79
OQ - t-test Kim19 - H = 1 H = 1 H = 0 - H = 0 H = 1 H = 0 - H = 1 H = 1 H = 0
OQ - t-test Google - - H = 0 H = 1 - - H = 0 H = 0 - - H = 1 H = 1
OQ - t-test Wrong - - - H = 1 - - - H = 1 - - - H = 0

delay to the center of the listener). Using HRIRs for the fi-
nal stage of convolution to render the virtual loudspeakers
to binaural cannot simultaneously compensate for all active
directions of arrival. Since Steam has a single stage method,
it avoids this problem.

Therefore, Steam seems to be a better option when high
sound quality is required, while Google Resonance would
be more appropriate for light and fast rendering applica-
tions [66]. Moreover, Google Resonance usually performs
better when near-field sounds are reproduced, and when source
directionality is important. In fact, Steam only allows om-
nidirectional sources and its HRTF interpolation algorithm
seems less accurate in near-field scenarios. Nevertheless, these
important features are not related to the aim of our study
here. Therefore, their effect on the spatial sound quality did
not emerge from our listening tests.

The ANOVA test results without any multiple hypothe-
sis adjustment, e.g., Bonferroni [72,81], for the overall qual-
ity are in Table 3. For the overall ratings and speech the
p-values are always below 1 %, demonstrating that, with a
confidence greater than 95 %, the four method result distri-
butions are statistically different. Nevertheless, this cannot
be claimed for music results. In that case, a p-value of 9.2 %
cannot reject (with a 95 % of confidence) the null hypothe-
sis of the results’ normal distributions having same means.
Looking at the means in Table 4, we can see that overall, and
in particular with music, the proposed approach performs
the best. However, with speech, our previous “Kim19” is the
best, with “Proposed” ranked second. Regarding the paired
t-tests, similar to the spatial impression, the results related to
“Proposed” are typically statistically significant with respect

to “Google” and “Wrong”. Nevertheless, it is not possible to
claim, with 95% confidence, that “Proposed” and “Kim19”
give a statistically significant improvement.

However, by looking at these results together with the
spatial impression’s, we can conclude that, overall, “Pro-
posed” is the best pipeline among the tested ones, with “Kim19”
being very close to it, in particular providing the best overall
quality with speech.

4.4 Interactive VR scene rendering

The final VR scenes with spatial audio reproduced by the
proposed pipeline were played on a VR headset, HTC VIVE
Pro [36] with real-time user interaction. In this implementa-
tion, users can freely navigate with 6 degrees of freedom
(DoF) in the virtual scene by their own movements or using
the Vive controller. This implementation provides four dif-
ferent simulation modes shown in Fig. 13: (a) 360◦ panoramic
scene with the original sound without any acoustic effect;
(b) Bare-room auralisation only with 3D room layout with-
out any object; (c) Furnished auralisation with full 3D room
structure and acoustic properties (Proposed method); (d) Dense
geometry and texture visualisation with the same auralisa-
tion as (c) (Proposed method). The white sphere in the scenes
shows the location of the sound source. In mode (d), dense
geometry and texture have been overlaid on the transparent
voxel structure to increase the level of visual immersion. The
spatial audio was still rendered with the reconstructed voxel
structure, as in mode (c). We did not use the dense geometry
for spatial audio rendering in order to keep low computa-
tional complexity for real-time rendering. In Fig. 13 (a), the
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(a) 2D panoramic rendering with no-acoustic effect

(b) Bare room auralisation

(c) Furnished auralisation

(d) Dense geometry and texture rendering

Fig. 13 Interactive real-time VR scene rendering with spatial audio

360◦ textures are not exactly matched to the rendered 3D ge-
ometry because the panoramic image was simply projected
on a sphere as a 2D texture.

It is hard to quantitatively evaluate plausibility of audio-
visual VR content because the perception of the acoustic en-
vironment is influenced by visual cues [5]. We demonstrated
this interactive audio-visual system with the VR headset in
several public events and received informal verbal feedback.
The sounds rendered by the proposed pipeline were demon-
strated and compared with the original source and the sound
rendered in the empty room. Users consistently reported a
higher sense of immersion when the spatial audio was given
together with dense 3D geometry and texture.

5 Conclusion

We proposed a practical solution to reproduce plausible audio-
visual VR scenes from 360◦ images allowing spatial au-
dio to be adapted to the virtual model of a room environ-
ment. The first part of the proposed pipeline is a vision-
based method to estimate the complete room model with se-
mantic information. A voxel-based 3D model of the scene
is reconstructed and completed with semantic labels using

an ensemble of 3D CNNs trained using normal perspective
image datasets. This information is used to generate spatial
audio on Unity with audio tool kits, allowing perceptually
plausible sound for the scene.

The reproduced room geometry and spatial audio were
evaluated against actual data measured and recorded in the
original rooms. The proposed method obtained much faster
semantic scene reconstruction with geometric details and
achieved better agreement between the real and simulated
acoustics than the state-of-the-art algorithm through objec-
tive and subjective evaluations.

Future work will look at robust material recognition in
the acoustic room modelling to replace the current object-
to-material mapping method as the current object categories
are not enough to represent the full range of acoustic prop-
erties. For example, a solid “Wall” recognised from visual
cues cannot tell if it is a concrete wall or light partition wall.
A “Sofa” cannot tell if the material is fabric or leather. A
multi-modal sensory approach, e.g., combining audio-visual
sensors, can be a solution to create a stronger relationship
between objects and their acoustic properties.
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