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Abstract
As personalised immersive display systems have been intensely explored in virtual reality (VR), plausible 3D audio cor-
responding to the visual content is required to provide more realistic experiences to users. It is well known that spatial audio 
synchronised with visual information improves a sense of immersion but limited research progress has been achieved in 
immersive audio-visual content production and reproduction. In this paper, we propose an end-to-end pipeline to simultane-
ously reconstruct 3D geometry and acoustic properties of the environment from a pair of omnidirectional panoramic images. 
A semantic scene reconstruction and completion method using a deep convolutional neural network is proposed to estimate 
the complete semantic scene geometry in order to adapt spatial audio reproduction to the scene. Experiments provide objec-
tive and subjective evaluations of the proposed pipeline for plausible audio-visual VR reproduction of real scenes.

Keywords  Audio-visual scene reproduction · Scene understanding · 3D reconstruction and completion · Spatial audio

1  Introduction

In virtual reality (VR) systems, personalised audio-visual 
experiences are one of the most important issues to improve 
the sense of presence because human perception relies on 
audio and visual cues to understand and interact with the 
environment (Hicks et al. 2004; Larsson et al. 2010). How-
ever, most existing approaches have primarily focused on a 

single modality. Recent research combines audio and vision 
into systems to enable semantic scene understanding and 
human interaction (Turk 2014; Ruminski 2015).

A full 3D reproduction of a real space in a virtual envi-
ronment allows users to experience the space remotely. It can 
be widely applied to various fields such as teleconferencing 
(Mekuria et al. 2017), education (Bhama et al. 2017; Pol-
lard et al. 2020), health care (Laver et al. 2015), entertain-
ment (Narayanan et al. 2020) and media production (Cosker 
et al. 2013; Kim et al. 2012). However, research has mainly 
focused on improving the visual side of scene reconstruc-
tion. In immersive VR systems, users do not perceive the 
scene as realistic if sound is not matched with the visual cues 
(Gonzalez-Franco and Lanier 2017). For example, sounds 
should be provided with the correct early reflections and 
reverberation effect which the user expects from the visual 
scene (Bailey and Fazenda 2017). This also allows correct 
perception of distance to the sound source (Neidhardt et al. 
2018). Many studies performed evaluations of reconstructed 
3D visual scenes (Menzies et al. 2016; Kim et al. 2020), 
but the quality of the audio has not been considered. Some 
researches investigated virtual reality auralisations (Rossiter 
et al. 1995; Postma and Katz 2015) but they were not directly 
synchronised with real visual scenes. Recent research has 
investigated scene-aware spatial audio reproduction in 
2D panoramic video rendering using a mono-channel 

 *	 Hansung Kim 
	 h.kim@soton.ac.uk

	 Luca Remaggi 
	 luca_remaggi@cle.creative.com

	 Aloisio Dourado 
	 aloisio.dourado.bh@gmail.com

	 Teofilo de Campos 
	 t.decampos@oxfordalumni.org

	 Philip J. B. Jackson 
	 p.jackson@surrey.ac.uk

	 Adrian Hilton 
	 a.hilton@surrey.ac.uk

1	 ECS, University of Southampton, Southampton, UK
2	 Creative Labs UK, London, UK
3	 University of Brasilia, Brasilia, Brazil
4	 CVSSP, University of Surrey, Guildford, UK

http://orcid.org/0000-0003-4907-0491
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-021-00594-3&domain=pdf


	 Virtual Reality

1 3

microphone/speaker pair recording (Li et al. 2018) and self-
supervised deep learning (Pedro Morgado Nuno Vasconce-
los and Wang 2018).

This paper provides a practical solution to capture room 
structure and acoustic properties allowing spatial audio to 
be adapted to the 3D model of a room environment and 
listener location to give a plausible rendering to improve 
immersion. We propose a full 3D reconstruction pipeline 
with acoustic property estimation from a pair of off-the-shelf 
consumer omnidirectional (360°) camera captures of indoor 
scenes. Two 360° panoramic images are used to reconstruct 
a complete semantic scene geometry model and render the 
spatial audio in the environment. A preliminary version of 
the approach presented in this paper previously appeared at 
a conference (Kim et al. 2019), which estimates an acoustic 
room model from 360° images. However, the previous work 
approximates room geometry with large cuboids without any 
detail and the pipeline is inefficient as it is composed of two 
separate processes: 2D object recognition and 3D geometry 
reconstruction. The object labels inferred from the 2D image 
are projected to the reconstructed 3D model to segment 
semantic objects. Our proposed pipeline is an integrated 3D 
pipeline that is more accurate and works significantly faster 
than (Kim et al. 2019) in building detailed 3D geometry 
with semantic information. It also reproduces more plau-
sible spatial audio in the reconstructed scene models. The 
main contributions and advantages of this paper over the 
preliminary work are:

•	 Complete audio-visual VR scene reconstruction system 
using a pair of consumer 360° image captures.

•	 Semantic scene reconstruction and completion from 
360° stereo images taking advantage of existing standard 
RGB-D datasets for network training.

•	 Real-time user interactive audio-visual VR scene render-
ing with spatial audio.

•	 Comprehensive objective and subjective evaluations of 
estimated room geometry and acoustics.

2 � Background and motivation

2.1 � 3D modelling from images

Indoor 3D geometry modelling from images has been 
extensively researched. A huge number of multi-view ste-
reo (MVS) (Furukawa and Hernández 2015), simultaneous 
localisation and mapping (SLAM) (Cadena et al. 2016) and 
structure from motion (SfM) (Bianco et al. 2018) algorithms 
using multiple photos/videos have been developed. Low-
cost RGB-D (RGB + depth) cameras have also made a great 
impact on real-time indoor scene reconstruction (Newcombe 

et al. 2011). However, due to the limited field-of-view (FoV) 
of imaging sensors, these methods require multiple images 
or video streams to cover the whole scene.

360° cameras (also known as panoramic or omnidirec-
tional cameras) which capture all directions at the same time 
using fish-eye or wide FoV lenses have been recently intro-
duced to our daily life. These off-the-shelf low-cost 360° 
cameras used in many practical applications (Peng et al. 
2015; Barazzetti et al. 2018) can provide a good solution for 
this coverage problem. Song et al. proposed a SfM method 
from a 360° camera (Song et al. 2018). Im et al. proposed a 
dense depth map estimation pipeline using a narrow-baseline 
video clip captured by a 360° camera (Im et al. 2016). We 
also proposed scene reconstruction methods using stereo 
360° images from various types of 360° cameras (Kim and 
Hilton 2013; Kim et al. 2019). We followed this stereo-based 
method to acquire a depth map for images captured by 360° 
cameras as this allows simple set-up and capture processes, 
as well as dynamic scene captures.

2.2 � 3D semantic scene reconstruction 
and completion

Despite remarkable progress in image-based 3D recon-
struction, the incomplete reconstruction problem caused 
by occlusions due to the physical limitations of the capture 
process still remains. 3D semantic scene reconstruction and 
completion was initially proposed by Song et al. (2017). 
From a given single RGB-D image, they build a semanti-
cally labelled 3D voxel structure including occluded and 
non-surface regions based on a fully convolutional neural 
network (CNN) with 3D dilated convolutions jointly trained 
for semantic object segmentation and scene completion. This 
work also introduced the use of Flipped Truncated Signed 
Distance Function (F-TSDF) to encode the depth map pro-
jected to 3D before feeding it to the 3D CNN. Zhang et al. 
(2018) proposed to use Spatial Group Convolutions to 
reduce the amount of computational resources for network 
training. Liu et al. (2018) improved it using a two-step train-
ing protocol composed of a 2D semantic segmentation CNN 
and a 3D semantic scene completion CNN. Kim et al. (2020) 
proposed a 3-D scene graph for a semantic representation 
of rooms. We proposed EdgeNet (Dourado et al. 2021), an 
integrated architecture using edge information detected from 
the corresponding RGB image. EdgeNet was designed for 
normal perspective images. In this paper we extend it to 360° 
images for whole scene reconstruction and completion. One 
problem of 360° scene reconstruction and completion is the 
lack of ground truth 360° RGB-D data for training. There are 
a few 3D 360° datasets such as Stanford 2D-3D-Semantics 
dataset (Armeni et al. 2016) and Matterport 3D (Chang et al. 
2017), but the number of scenes provided by those datasets 
are not enough for training CNN architectures. On the other 
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hand, there are abundant normal RGB-D datasets available 
with annotated ground truth for training. In this research, we 
propose to decompose the 360° view into eight overlapping 
views to benefit from existing RGB-D datasets for training 
and enable complete 360° scene reconstruction.

2.3 � Acoustic modelling for spatial audio rendering

Various methods have been developed to describe the char-
acteristics of room acoustics through sets of parameters, 
which enable reproduction of real-world spatial audio 
effects in virtual scenes (Valimaki et al. 2012; Remaggi 
et al. 2015; Politis et al. 2018). The parameters are typi-
cally extracted from measured acoustical room impulse 
responses (RIRs) (Tervo et al. 2013; Politis et al. 2018). For 
VR scenes, RIRs can be synthesised from the room geom-
etry (Kim et al. 2017). However, modelling room acoustics 
with an RIR is still incomplete as the RIR is only valid for 
a single source-receiver configuration and it is impractical 
to measure or update all RIRs according to the changes of 
geometry or source/user positions in interactive rendering 
environments. It also takes time and resources to set up a 
bulky loudspeaker, microphone and audio system to make 
measurements. Recently, a few vision-based approaches to 
estimate room acoustics for spatial audio rendering have 
been proposed (Kon and Koike 2018). 3D models with mate-
rial information allow the emulation of real world acoustics 
(Hulusic et al. 2012). Li et al. proposed scene-aware spatial 
audio reproduction from a single video recording (Li et al. 
2018) but it was only for 2D 360° video rendering. Schissler 
et al. built a dense 3D geometry using a SfM method from 
RGB-D image frames and estimate acoustic material proper-
ties for sound rendering using a CNN (Schissler et al. 2018), 
but it requires an RGB-D video stream of the static scene to 
cover a complete structure estimation.

Many audio tool kits have been recently developed to ren-
der spatial audio. G’Audio provides an object-based spatial 
audio plug-in for a 3D environment but supports limited 
platforms (Gaudio: Gaudio vr audio 2021). Wwise Spa-
tial Audio plug-in supports a wide range of VR platforms 
including Unreal and Unity to efficiently model sound propa-
gation in a given 3D space (Kinetic 2021). Google Reso-
nance (Google: Google resonance audio 2021) and steam 
audio (Corporation 2021) also provide free open-source 
plug-ins for immersive spatial audio rendering which can 
handle multiple occlusions, reflection, reverb and HRTF 
effects in a VR environment. We use Google Resonance and 
Steam Audio to embed estimated acoustic parameters and 
render spatial audio in the reconstructed 3D semantic scene 
models. However, our final experiments are not intended as 
comparison between the Google Resonance and Steam VR 
performance. Instead, we employed these two tools since 
they are two of the most relevant ones, and they provide free 

open-source plug-ins for immersive spatial audio rendering, 
which enabled us to create our end-to-end pipeline. Detailed 
features of these two toolkits are introduced in Sect. 3.4.

3 � Proposed pipeline

3.1 � System overview

The ultimate goal of this research is to develop a practical 
system for reproduction of visually and acoustically plau-
sible VR scenes from a simple capture of indoor scenes. 
Figure 1 shows the flow of the proposed pipeline.

A full surrounding scene is captured as a vertical stereo 
image pair with 360° cameras. This pair of images is used 
for depth estimation of the scene using stereo matching and 
depth map enhancement. From the estimated depth map, 
an initial voxel-based structure is generated and partitioned 

Fig. 1   Overview of the proposed pipeline
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into eight overlapped parts. The partitioned voxel structures 
are individually submitted to the EdgeNet with the corre-
sponding edge maps for semantic segmentation and scene 
completion. The outputs of EdgeNet are recomposed into the 
whole scene structure and acoustic property parameters for 
the classified objects are assigned from the acoustic mate-
rial list. Finally, the reconstructed audio-visual VR scene 
is rendered by setting sound source and player models on a 
unity (Unity 2019) VR platform.

3.2 � Capture system and depth map generation

One of requirements for practical audio-visual applications 
is a simple and quick capture/recording process of the real 
scene. Nowadays, inexpensive off-the-shelf 360° cameras 
which produce high quality of scenes capture are widely 
available (Insta360: Insta360 one × 2019; GoPro: Gopro 
fusion 2019). Ricoh Theta cameras (Ricoh: Ricoh theta v 
2019) were used in our system as they provide accurately 
rectified equi-rectangular photographs from two fisheye lens 
and also support first-order Ambisonics (B-format) audio 
recording.

Two Ricoh Theta cameras were set on vertically aligned 
mounts to capture the scene with full panoramic texture and 
to extract depth information as shown in Fig. 2a. From the 
pair of vertical stereo 360° images, depth of the scene is esti-
mated by dense correspondence matching (Kim and Hilton 
2013). According to the spherical stereo geometry in Fig. 2b, 
depth information can be recovered from pixel disparity and 
stereo camera baseline distance B without any camera cali-
bration as column and row positions in an equi-rectangular 
image are directly mapped to the azimuth and elevation 
angles, respectively, in the 3D spherical coordinate system. 
If the angular disparity of two matching points ( �t(p) , �b(p�) ) 
between two images is given as d(�(p)) = �t(p) − �b(p

�) , the 
distance (depth) rt(p) from the top camera to the real 3D 
scene point is calculated by triangulation as:

Any correspondence matching algorithm can be used for the 
proposed pipeline. We used a simple feature-based bidirec-
tional block matching method in our experiments. However, 
scene depth recovery using correspondence matching from 
stereoscopic images is subject to noisy depth from matching 
failure and incomplete scene depth due to occlusions.

In order to increase the prediction performance in seman-
tic scene completion, the estimated depth map is enhanced 
under the assumption that most objects in an indoor scene 
are piecewise-planar (Gupta et al. 2010) and edge informa-
tion is a distinguishing feature for reliable stereo matching, 
providing good depth estimates on their neighbourhood 
(Bleyer and Breiteneder 2013). The Canny edge detector 
(Gonzalez and Woods 2017) is applied to the image to detect 
candidate regions for piecewise-planar regions. Using the 
dilated edges as a mask, the most reliable depth estima-
tions are extracted from the original depth map. Vertical 
edges are eliminated from the mask as they are parallel to 
the epipolar lines and do not contribute to the stereo match-
ing performance in the given vertical stereo camera set-up. 
Coherent regions with similar colours are searched by a sim-
ple flood fill approach to detect featureless planar surfaces 
like single-coloured walls and table tops. Planes are fitted 
to those regions using RANSAC (Fischler and Bolles 1981) 
to eliminate noise from false stereo matching. The original 
depth information is replaced by the depth of the plane if the 
plane is closely aligned to any principal axis. The original 
depth information is kept for non-orthogonal plane regions.

Figure  3 shows examples of the depth enhancement 
results. The cabinets in the left part of the MR scene have 

(1)rt(p) = B∕

(

sin �t(p)

tan(�t(p) − d(�(p))
− cos �t(p)

)

.

Fig. 2   Spherical stereo geometry with 360° cameras

Fig. 3   Depth enhancement (Top: original top image; Middle: esti-
mated depth map; Bottom: enhanced depth map)
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serious depth errors due to the vertical stripes on the surface, 
but most errors are eliminated by the enhancement step. The 
depth errors on the shiny surface of the fridge are also cor-
rected in the KT scene. The ceiling and floor regions in both 
scenes have wide erroneous areas due the featureless surface 
or saturated lighting, but they were approximated to smooth 
planes.

3.3 � Semantic scene reconstruction and completion

A 3D voxel structure of all visible surfaces can be recon-
structed by projecting points in the estimated depth map to 
a 3D space, but this structure is incomplete due to invisible 
regions in the scene. In this section we propose a semantic 
scene reconstruction and completion for 360° scenes simul-
taneously filling occluded areas and segmenting the struc-
ture into semantic parts. This work is based on the semantic 
scene completion using EdgeNet for a normal perspective 
(narrow FoV) RGB-D image (Dourado et al. 2021). We 
extended this EdgeNet to 360° scene completion and under-
standing while taking advantage of existing standard RGB-D 
datasets for network training.

The voxel structure is partitioned into eight partially 
overlapped views from the centre of the scene. The FoV 
of the partitioned view is set to 45° to match to the FoV 
of the standard RGB-D sensor used for network training, 
and the viewpoint of the partition in each direction is posi-
tioned 1.7 m behind the original camera position to get 
overlapped coverage to compensate the boundary regions 
in each partition. Each partition is individually submitted 

to the semantic scene completion network for prediction. 
In our experiments, the whole 3D volume is represented by 
480 × 480 × 144 voxels with 0.02 m voxel size, and each 
partition size is set as 240 × 240 × 144 voxels. The resolu-
tion can be increased according to the memory allowance.

3.3.1 � Training datasets

The 3D CNN architecture used in our pipeline is trained on 
the SUNCG training set (Song et al. 2017) and fine-tuned 
on the NYU depth v2 (NYU-v2) training set (Silberman 
et al. 2012). The SUNCG dataset has 140K RGB-D views 
extracted from 45K synthetic scenes with corresponding 
depth maps and ground truth. The NYU-v2 dataset includes 
464 real scene depth and RGB images (795 views for train-
ing and 654 views for testing) captured by a Kinect sensor. 
We generated ground truth by voxelising the 3D mesh anno-
tations from Guo et al. (2015) and mapped object categories 
based on Handa et al. (2015) to label occupied voxels with 
semantic object classes.

3.3.2 � EdgeNet for semantic scene completion

Figure 4 illustrates the 3D CNN architecture to build a com-
plete and airtight 3D structure with object labels from depth 
and edge maps. This has been inspired by the U-Net design 
(Ronneberger et al. 2015), and differs from other Seman-
tic Scene Completion approaches by fusing both depth and 
edges after encoding using F-TSDF (Song et al. 2018). The 
edge volume is generated from the edge map as a voxel 

+

Fig. 4   U-shaped architecture for complete 3D semantic scene reconstruction
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structure with the same dimension as the depth volume. The 
activation function of EdgeNet is a Softmax and each voxel 
of the output volume contains the predicted probabilities of 
the 12 classes used for training. The output resolution for 
each partition is 60 × 36 × 60 voxels.

The one cycle learning policy (Smith 2018) combined 
with curriculum learning (Bengio et al. 2009) and simulated 
annealing (Aarts and Korst 1989) is used for the training 
stage. In the fine-tuning stage, the network is initialised with 
the SUNCG parameters and tuned using standard training 
with a stochastic gradient descent (SGD) optimiser with a 
learning rate of 0.01 and decay weight of 0.0005. The train-
ing time was about 4 days on SUNCG and 6 hours on NYU 
on an Nvidia GTX 1080 Ti GPU.

3.3.3 � Recomposition

The output of the EdgeNet-based semantic scene completion 
architecture is eight object-labelled 3D volumes that have 
overlaps at their boundaries with their neighbours. In order 
to combine the output partitions into one complete scene 
structure, a simple strategy of “summing a posteriori prob-
ability” proposed by Kittler et al. (1998) is applied for each 
class over all classifier outputs.

All output partitions are located at their original positions 
and all voxels in the ranges are checked if they belong to 
certain partitions or not. If a given voxel is not covered by 
a certain partition, a posteriori probabilities for all classes 
for that voxel and partition are set as 0 (out of FoV). Other-
wise, the sum of the a posteriori probabilities for all classes 
for that voxel and classifier is set as 1. For a voxel with a 
posteriori probability Pij for class i predicted by a classifier 
j, the sum of the probabilities for class i over all classifiers 
n is given by:

The winning class C for this voxel is:

3.4 � Room acoustics and VR scene reproduction

This semantic scene structure is directly imported to Unity to 
simulate room acoustics. We initially considered two well-
known tools to simulate spatial audio in the Unity engine: 
Google Resonance (Google: Google resonance audio 2021) 
and steam audio (Corporation 2021). They both imple-
ment their spatial auralisation by employing binaural RIRs 
(BRIRs) over virtual loudspeakers.

(2)Si =

n
∑

j=1

Pij .

(3)C = argmax
i
(Si) .

Google Resonance provides 22 types of acoustic materi-
als, and Steam Audio provides 11 preset acoustic materials 
and 1 custom material property setting. Both Google Reso-
nance and Steam Audio calculate the early reflections using 
head-related transfer functions (HRTFs), belonging to the 
closest direction of arrival (DOA) estimated via ray tracing. 
The employed HRTFs are obtained through interpolation: 
the available HRTFs corresponding to the DOAs which are 
the nearest to the reflection DOA are used to perform HRTF 
interpolation. We used the initial HRTF datasets built in the 
Steam Audio Unity Plug-in.1

The main difference about the way Google Resonance 
and Steam VR render spatial sound is that Google Reso-
nance uses a two-step approach: first it places the sources 
onto a high-order Ambisonics field and then it reproduces 
the obtained field through virtual loudspeakers (Robotham 
et al. 2018; Gorzel et al. 2019). Instead, Steam follows a sin-
gle-step approach: it generates the BRIRs related to virtual 
loudspeakers directly. Steam Audio was developed to gener-
ate an accurate acoustic simulation while Google Resonance 
aims to bring the spatial audio experience to mobile devices 
reducing the computational complexity.

We found that Google Resonance has several limitations 
in our system implementation: (a) Google Resonance does 
not work with voxel-based structure but only with mesh-
based surface structure; (b) the audio quality suffers when 
rendering sound with simple frequency content, such as a 
sine wave beep or a swept sine signal, which is generally 
used for RIR measurement but not recommended for spa-
tialisation.2 Therefore, we used Steam Audio for our final 
implementation though we still included the results with 

Table 1   Object-material matching table

Object Material—Google Material—Steam

Empty Transparent Transparent
Ceiling Wood ceiling Wood
Floor Curtain heavy Carpet
Wall Plaster smooth Plaster
Window Thick Glass Glass
Bed Heavy curtain Carpet
Sofa Heavy curtain Carpet
Chair Plywood panel Wood
Table Plywood panel Wood
TV Thick Glass Glass
Furniture Plywood panel Wood
Object Metal Metal

1  https://​valve​softw​are.​github.​io/​steam-​audio/​doc/​phonon_​unity.​html.
2  https://​reson​ance-​audio.​github.​io/​reson​ance-​audio/​devel​op/​design-​
tips.​html.

https://valvesoftware.github.io/steam-audio/doc/phonon_unity.html.
https://resonance-audio.github.io/resonance-audio/develop/design-tips.html
https://resonance-audio.github.io/resonance-audio/develop/design-tips.html
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Google Resonance in the experiment to verify the perfor-
mances of both tool kits.

In order to render spatial audio from the estimated 
acoustic properties of the reconstructed 3D models, we 
map the object labels to the acoustically closest mate-
rial types in the provided audio package as Table 1 as an 
approach to estimate acoustic properties of materials from 
a visual input.

Although measuring RIRs in real environments is well-
established (Stan et al. 2002), extracting RIR information 
from VR environments has not previously been explored. 
Therefore, we treat the virtual environment as a real one to 
measure BRIRs and emulate virtual binaural microphones 
and omnidirectional sound sources in the reconstructed 
virtual environments, to record sounds. The general swept-
sine method (Farina 2000) is employed to calculate RIRs for 
Steam Audio, and an anechoic gun-shot (normalised in the 
time domain) (Cox 2013) is used for Google Resonance. The 
BRIRs for reconstructed 3D environments are obtained by 
recording the responses at the same positions as the ground 
truth BRIRs measured in the real environment.

Finally, a virtual camera and audio sources are placed in 
the VR scene to render the reconstructed scene with spatial 
audio. The reproduced VR scene is rendered with real-time 
interaction on a VR headset or desktop applications. In our 
experiments, HTC VIVE Pro (HTC: Vive pro 2018), a VR 
headset playing binaural spatial audio over headphones is 
used.

4 � Experiments

In this section, we present our experiments to evaluate the 
quality of visual geometry and acoustics reproduced by the 
proposed pipeline. In the evaluation of immersive spatial 
audio, both “authenticity” and “plausibity” of rendered 
sound should be considered. Authenticity measures how 
identical the generated sound is to the ground truth sound 
(Blauert 2005), while plausibility is subjectively judged by 
the listener with his/her inner reference (listener’s expecta-
tion) (Lindau and Weinzierl 2012). Authenticity of the ren-
dered sound can be evaluated by comparing acoustic param-
eters of the rendered sound with those of the ground truth 
sounds (objective evaluation). Plausibility can be evaluated 
by user studies. Both objective and subjective evaluations 
have been carried out in this study.

The proposed pipeline has been tested on five different 
rooms with various sizes and materials: Meeting Room 
(MR), Usability Lab (UL), Kitchen (KT), Listening Room 
(LR) and Studio Hall (ST). The MR and UL scenes are typi-
cal living room environments. KT is a long and narrow room 
with kitchen equipment. LR is an acoustically controlled 

experimental room and ST is a large hall. Each scene was 
captured as a 360° vertical stereo pair. The MR and KT 
sets are shown in Fig. 3, and the other datasets with their 
enhanced depth maps are in Fig. 5.

All datasets, audio sources, results and supplementary 
video in this section are available at: http://​3dkim.​com/​resea​
rch/​VR/​index.​html.

4.1 � Semantic scene reconstruction

Full 3D structures of the scenes with semantic object labels 
were reconstructed through the proposed depth estimation 
and semantic scene completion process. The results were 
compared with the block-based scene reconstruction method 

Fig. 5   Dataset used in the experiments (Left: captured top image; 
Right: enhanced depth map)

Fig. 6   Comparison of geometry reconstruction

http://3dkim.com/research/VR/index.html
http://3dkim.com/research/VR/index.html
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(Kim19) (Kim et al. 2019) which employs two separate pro-
cesses of 2D semantic segmentation by SegNet (Badrinaray-
anan et al. 2017) and room modelling by cuboid fitting. Fig-
ure 6 shows the reconstructed scene models with semantic 
object labels indexed by the colour code in Fig. 8. The first 
row in Fig. 6 shows the initial voxel clouds generated by 
the estimated depth maps in the 3D space with a voxel size 
of 0.02m, before encoding the volumes with F-TSDF and 
submitting them to the proposed networks. It is observed 
that the initial structures are incomplete due to the occlu-
sions and erroneous depth estimation. They also have two 
large holes at the epipoles of vertical stereo (under and over 
the camera location). The second and third rows visualise 
the outputs by Kim et al. (2019) and the proposed pipeline, 
respectively. In the outputs of Kim et al. (2019), the walls 
were indexed as Floor as the whole room layout was rep-
resented as one cuboid, but we assigned correct materials 
for walls and ceilings in acoustic material mapping. In the 
results of Kim et al. (2019), the side cabinets in the MR 
scene do not adjoin the wall as the side parts of those cabi-
nets are not visible in the captured image. It also missed the 
large table in the KT scene and produced many redundant 
objects from scattered loud speakers in the LR scene. Over-
all, the proposed 360 semantic scene reconstruction method 
produced more objects correctly located in the scene with 
geometrical details such as the tea tables between two sofas 
in the MR scene, the main table in the KT scene and the 
curtain on the wall in the UL scene.

It is difficult to quantitatively evaluate the reconstruction 
performance for individual objects in the rooms because 
ground truth models are not available. For a preliminary 
evaluation, we made a CG model by manual measurements 
for the MR scene. For the KT scene, a LiDAR scan data was 
available, but the LiDAR appears also to fail with transpar-
ent surfaces like the doors and windows. There is a hole on 
the floor too. Though the reference models are still incom-
plete due to approximation and occlusion, it is observed 
that the estimated model by the proposed method generates 
approximate geometry of the main objects in the scene in 
Fig. 6. We also evaluated the room dimensions against the 
manually measured room layouts in Table 2. Both Kim et al. 

(2019) and the proposed method built relatively accurate 
room layouts. The proposed method shows slightly better 
estimations for room width and length, but Kim et al. (2019) 
were a bit better in the room height estimation because the 
depth for the whole ceilings and floors were inferred from 
the limited number of features in the proposed method. 
The estimation errors were relatively large for the ST scene 
because the accuracy of depth estimation for spherical stereo 
is inversely proportional to the distance. We used a fixed 
baseline distance for all scenes but this can be improved by 
setting the baseline distance larger for a large scene. The 
height of the ST scene was estimated incorrectly (14.46% of 
error) due to the uneven ceiling with rails and panels in the 
scene. Kim et al. (2019) showed large errors in width and 
length for the UL scene due to the large window and mirror 
in the scene but the proposed method accurately matched 
the room layouts.

The semantic scene reconstruction was run on a GeForce 
GTX TITAN X GPU with 12GB memory and the whole 
process took around 2 mins per dataset. This is much faster 
than (Kim et al. 2019) which requires two separate processes 
for 8 mins (3 mins of 2D semantic segmentation and 5 mins 
of 3D geometry reconstruction) (Fig. 7).

4.2 � Room acoustics evaluation

For objective evaluation of the sound rendered in the recon-
structed 3D models, RIRs simulated in the reconstructed 
models are compared with the ground truth RIRs meas-
ured in the real environments. The ground truth RIRs were 
recorded by using the swept-sine method (Farina 2000) 
with a sampling frequency of 48 kHz, employing a Genelec 
8020B speakers as sound source and a Soundfield MK5 
B-format microphone. For the objective evaluation, the 
W-channel (i.e. omni) of the Soundfield microphone was 
used. In fact, only the spatial effects that are encoded in tim-
bral attributes of the room response were evaluated through 
the objective metrics, leaving the complete spatial evalu-
ation to the subjective tests, which were run on a desktop 
application.

Table 2   Comparison of reconstruction errors in room dimensions

The bold figures represent the minimum error in each dimension

Data Ground truth Kim19 (Kim et al. 2019) Proposed

Dimension (m) Dimension (m) Err in Dim (%) Dimension (m) Err in Dim (%)

MR 5.61 × 4.28 × 2.33 5.52 × 4.35 × 2.36 (1.60, 1.64, 1.29) 5.54 × 4.24 × 2.40 (1.25, 0.93, 3.00)
KT 6.64 × 3.46 × 2.67 6.95 × 3.41 × 2.70 (4.67, 1.45, 1.12) 6.42 × 3.52 × 2.68 (3.31, 1.73, 0.37)
LR 5.64 × 5.05 × 2.90 5.77 × 5.17 × 2.98 (2.30, 2.38, 2.76) 5.88 × 5.02 × 2.78 (4.26, 0.59, 4.14)
ST 17.08 × 14.55 × 6.50 16.53 × 14.87 × 5.70 (3.22, 2.20, 12.31) 17.54 × 15.46 × 5.56 (2.69, 6.25, 14.46)
UL 5.57 × 5.20 × 2.91 5.92 × 4.95 × 2.95 (6.28, 4.81, 1.37) 5.52 × 5.22 × 3.00 (0.90, 0.38, 3.09)
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4.2.1 � Evaluation metrics

To evaluate the quality of the acoustics reproduced in the 
reconstructed environments, we analysed the early decay 
time (EDT) and reverberation time (RT60) of the generated 
sounds, as objective measures of their early reflections and 
late reverberation, respectively. EDT is a good metric to 
evaluate the acoustics from adjacent reflectors that is sub-
jectively important, by considering the energy carried by the 
early reflections (Bradley 2011; Rossing 2014). On the other 
hand, RT60 relates to the average absorption, location of 
room boundaries and size of the room, describing the rever-
beration from a physical point of view (Bradley 2011; Ross-
ing 2014). EDT is calculated as six times the time required 
for the energy to decay 10 dB after the direct sound (Barron 
1995). RT60 is measured as the time for the energy to decay 
60 dB. The average values over the six octave bands between 
250 Hz and 8 kHz are reported for both EDT and RT60 in 
this research.

To understand the perceptual meaning of the observed 
errors in the EDT and RT60 values, we defined their just 
noticeable differences (JNDs). The thresholds of JND were 

chosen as 20% for RT60 (Meng et al. 2006) and 5% for 
EDT (Vorländer 1995) as suggested in the literature. How-
ever, it is important to note that the same literature describes 
variable percentage depending on the type of sounds. For 
instance, in Meng et al. (2006), JNDs for RT60 were found 
up to about 30% for musical signals. It is also important to 
remark that, for media or entertainment applications, authen-
ticity is not the benchmark to target. It is widely recognised 
that sound plausibility is more important (Lindau and Wein-
zierl 2012; Blauert 2005). To the best of our knowledge, no 
threshold that defines the plausibility limens for the object 
metrics employed has been identified in the literature. Pre-
vious studies typically focused on determining plausibility 
by observing the overall sound perception, without distin-
guishing between the perception of early reflections and 
late reverberation (Neidhardt et al. 2018). Furthermore, in 
the presence of visual stimuli, the perceptual differences 
between real and synthetic acoustic environment are not as 
strictly defined as they are for unimodal scenarios (Bailey 
and Fazenda 2018). In this paper, we employed JNDs to be 
coherent with the available literature though JNDs typically 
refer to authenticity in audio-only scenarios, the strictest 
case.

4.2.2 � Evaluation results

The EDTs and RT60s of rendered RIRs were compared 
against the ground truth data measured in the real environ-
ments and visualised in Figs. 9 and 10, respectively. The pro-
posed method was compared along with three other models. 
First, “Kim19” is a state-of-the-art method (Kim et al. 2019) 

(a) MR (b) KT (c) LR (d) ST (e) UL

Fig. 7   Semantic room reconstruction results (Top: initial voxel cloud, Middle: reconstruction by Kim et al. (2019), Bottom: proposed method, 
the colour index is defined as in Fig. 8

Fig. 8   Colour index for semantic objects linked to the materials in 
Table 1
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illustrated in Fig. 6. Second, “Empty” is an empty shoe box 
model which represents only room boundaries with correct 
materials to verify the role of objects within the scene for 
sound rendering. Third, for “Wrong”, the geometry was 
reconstructed based on the proposed method but incorrect 
acoustic material classification was manually assigned to 
the three largest objects in the scene to prove the importance 
of accurate material estimation in sound rendering. There 
is no carpet in the KT scene, and other scenes have less 
hard surfaces. Therefore, we assigned Carpet as the wrong 

material to the KT, and Glass to the other scene to maximise 
the difference of acoustic effect.

In Fig. 9, the EDT results show that the proposed method 
outperforms all other methods. In particular, for the KT and 
LR scenes, the estimated values fall close to the JND band, 
which means very small perceptual differences from the 
recorded acoustics. “Empty” and “Wrong” give the worst 
performances which show the strong relationship between 
interior objects (both geometry and material) and room 
acoustics.

Regarding the RT60 results in Fig. 10, there are similar 
trends to the ones observed in the EDT evaluations. The 
proposed method shows the best performance among the 
tested methods. For the ST and MR scenes, RT60s by the 
proposed method are inside the JND band, which means that 
the proposed method has recreated authentic representations 
of the room reverberation. One interesting observation in 
this RT60 test is that “Wrong” performs slightly better than 
“Kim19 (Kim et al. 2019)” for KT, ST and UL scenes (i.e. 3 
rooms out of 5). This suggests the geometrical details recon-
structed by the proposed method can improve RT60 in spite 
of the wrong materials comparing with the “Kim19 (Kim 
et al. 2019)” models which have very simple box-shaped 
geometry.

Figure 11 shows the RT60s depending on frequency. The 
proposed method generates signals closest to the recorded 
ground truth, for every tested frequency. As also previously 
observed in Fig. 10, the general trend is to have “Empty” 
to be the worst and “Wrong” is then the second best for 
KT, ST and UL scenes. The largest error for the proposed 
method seems to appear in UL because the curtain which 
actually absorbs sound in the UL scene has been classified 
as “objects” in the proposed method.

4.3 � Subjective evaluation

The aim of this experiment is to evaluate the plausibility in 
terms of the perceived spatial impression and quality of the 
sound rendered by the proposed pipeline. The evaluation test 
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was performed by twenty participants with normal hearing 
between the ages of 22 and 45, made up of 12 males and 8 
females. None of them was experienced in 3D audio. Wired 
Bose QC25 headphones were used for the sound reproduc-
tion and a 24” monitor screen to observe the related room 
images in a 360° rendering mode for the test. All tests were 
embedded into the MUSHRA interfaces3, developed in Max 
MSP.

4.3.1 � Listening test setup

Four rooms in the experimental dataset were selected for 
subjective evaluation: MR, KT, ST and UL. The Listening 
Room (LR) was excluded because people cannot expect 
sound rendered in the room with acoustically insulated walls 
from the given image. Two original sound sources were ren-
dered in the VR environments: an anechoic speech source 
from the TIMIT dataset (Garofolo et al. 1993) and a clarinet 
sound in an anechoic chamber from the OpenAirLib library 
(Brown et al. 2017).

In order to evaluate subjective attributes of the repro-
duced sound quality, two factors were tested as proposed in 
Hoeg et al. (1997): “spatial impression” and “overall qual-
ity”. The participants were presented with a PC interface 
having a 360° image viewer and an audio player with cor-
responding audio tracks to rank each stimulus against the 
attribute, within a range of integer numbers from 0 to 6. 
We did not provide the full 3D VR scene to avoid the visual 
cues influencing perception of the acoustic cues. The experi-
ment was made up of eight sessions, the combination of 
four rooms and two audio sources, and two questions were 
given to the participants to rate the stimulus: (1) “How much 
the spatial impression matches what you expect from the 
given room image”; (2) “How natural the generated sound 
is against any noise or distortion”.

Six samples were provided per session on the MUSHRA 
interface: two reference samples (“Low” and “High”) as 
anchors and randomly assigned four test samples (“A”-“D”) 
generated by different methods and audio tools. The par-
ticipants were free to listen to reference and test samples by 
clicking buttons on the interface to rate the test samples. The 
low and high references were generated as anchors to help 
the listeners. The “Low” reference samples are the original 
sound sources recorded in an anechoic environment which 
does not include any of reverberation. The “High” references 
were binaural sounds generated from B-format (i.e. first-
order Ambisonics) recordings. This conversion was done 
using the NoiseMakers Ambi-Head plug-in, in Reaper. The 
first test sample “Kim19” was generated by Steam Audio 
from the model estimated by the state-of-the-art algorithm 

(Kim et al. 2019) used in previous Sects. 4.1 and 4.2. The 
second sample “Google” was generated by the Google Reso-
nance package to evaluate its audio rendering performances. 
The third sample “Wrong” is the one with wrong acoustic 
materials introduced in the previous Sect. 4.2 and rendered 
by Steam Audio. Finally, the “Proposed” sample was ren-
dered by Steam Audio with the semantic 3D model recon-
structed by the proposed pipeline. We restricted the total 
number of samples to six per session and excluded other 
variable combinations to prevent the listeners getting con-
fused or tired. The four test samples were randomly shuffled 
to the buttons “A” to “D” in every session so that the partici-
pant could not find any consistency from the order.

4.3.2 � Spatial impression

In this test, two reference samples were provided: the “High” 
one, the binaural sound obtained from B-format, was rated 
as 5, whereas the “Low” one, the anechoic recordings, rated 
as 1. The participants were asked to rate four samples within 
the score range 0–6. (They could give even 0 or 6 if they felt 
any sample was worse or better than the references.)

The spatial impression results are visualised in the top 
row of Fig.  12. The overall rating shows the proposed 
method to provide a better spatial impression compared 
to the other three. The proposed method shows the same 
median values (i.e. 4 out of 6) as “Kim19” (Kim et al. 2019), 
but looking at their 75th percentile, the results related to the 
proposed method are more stretched towards values greater 
than 4, as opposed to the results related to “Kim19” (Kim 
et al. 2019). It is also important to show that participants 
clearly perceived the lowest spatial impression when the 

Fig. 12   Subjective scores for spatial impression (top three) and over-
all quality (bottom three). On each box, the horizontal red line repre-
sents the median of the distribution, the bottom and top edges of the 
boxes are the 25th and 75th percentiles, respectively. The whiskers 
show the most extreme non-outlier samples, whereas the outliers are 
the red stars

3  https://​github.​com/​IoSR-​Surrey/​MUSHRA-​MaxMSP.

https://github.com/IoSR-Surrey/MUSHRA-MaxMSP
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wrong materials were given (Wrong), again demonstrating 
the importance of correct object and material recognition.

The second and third figures in the top row show the split 
between the two content types: music and speech. The trend 
observed in the overall score is mainly given by the speech 
results. For the music, all methods seem to provide similar 
spatial impression, but the data distribution is also stretched 
towards higher values for the proposed method, as suggested 
by the 75th percentile.

These plots could, mistakenly, lead to the conclusion that 
the four tested methods produce the results having similar 
statistics. Therefore, we have run further statistical analy-
sis over the results. In Table 3, we report the results of the 
one-way ANOVA test (Sthle and Wold 1989), which aims 
to identify whether the different methods produced a sta-
tistically significant effect on the results. The test results 
confirm this hypothesis. This can be observed by looking at 
the p-values that are always (much) below 5%: with a con-
fidence greater than 95%, the distributions are statistically 
different. In Table 4, we also reported the results’ means, and 
p-values obtained by running t-tests between each pair of 
methods (Student: The probable error of a mean 1908). The 
reported mean values confirm what was already observed: 
for the spatial impression, the proposed method performs the 
best, on average, followed by (in order): “Kim19”, “Google” 
and “Wrong”. Regarding the paired t-tests, we first com-
pared “Kim19” to “Google”, “Wrong” and “Proposed”; then 

“Google” to “Wrong” and “Proposed”; finally, “Wrong” to 
“Proposed”. We can see that the differences related to “Pro-
posed” are statistically significant when directly compared 
to the distributions of the results of “Google” and “Wrong”. 
This confirms that our pipeline composed by room geometry 
estimation and Steam VR is able to render an acoustic field 
that gives a better spatial impression than the other ana-
lysed pipelines. Nevertheless, these results also show that 
it is not possible to claim, with 95% confidence, that the 
“Proposed” results are significantly better than our previous 
work in “Kim19”.

4.3.3 � Overall quality

In this test, the participants evaluated the stimulus only in 
terms of sound quality, scoring them between 0 and 6. The 
same eight sessions were tested with the same four test sam-
ples without references.

The results are reported in the bottom row of Fig. 12. 
The observed trend is similar to the one discussed for the 
spatial impression. In general, the participants seem to 
prefer the quality provided by the proposed method. None-
theless, Kim19 (Kim et al. 2019) also gives good perfor-
mance, with the median being the same as the new method 
but its 75th percentile is distributed towards lower values. 
The sounds reproduced by Google Resonance seem to be 
perceived as having low quality. This difference in quality 

Table 3   F-values and related 
P-values of the one-way 
ANOVA tests among the 
different methods’ ratings, for 
overall rating, single music and 
single speech results

H = 1 means that the test rejects the null hypothesis of the groups belonging to normal distributions with 
equal means (95% of confidence), also denoted by ∗

Overall ratings Music Speech

H F-value P-value (%) H F-value P-value (%) H F-value P-value (%)

Spatial impression 1 17.71 < 0.1 1 10.20 < 0.1 1 8.35 < 0.1
Overall quality 1 7.73 < 0.1 0 2.17 9.2 1 8.60 < 0.1

Table 4   Means of the results and the scores obtained by paired t-tests between the different methods’ ratings, for overall rating, single music and 
single speech results

H = 1 means that the pair of results are statistically different (95% of confidence). The first four rows’ label SI stands for spatial impression, 
whereas the last four rows’ label OQ stands for overall quality

Overall ratings Music Speech

Kim19 Google Wrong Prop. Kim19 Google Wrong Prop. Kim19 Google Wrong Prop.

SI-means 3.41 2.97 2.57 3.63 3.25 2.95 2.30 3.54 3.57 3.00 2.84 3.73
SI-t-test Kim19 – H = 1 H = 1 H = 0 – H = 0 H = 1 H = 0 – H = 1 H = 1 H = 0

SI-t-test Google – – H = 1 H = 1 – – H = 1 H = 1 – – H = 0 H = 1

SI-t-test Wrong – – – H = 1 – – – H = 1 – – – H = 1

OQ-Means 3.71 3.05 3.21 3.72 3.54 3.34 3.07 3.64 3.88 2.77 3.56 3.79
OQ-t-test Kim19 – H = 1 H = 1 H = 0 – H = 0 H = 1 H = 0 – H = 1 H = 1 H = 0

OQ-t-test Google – – H = 0 H = 1 – – H = 0 H = 0 – – H = 1 H = 1

OQ-t-test Wrong – – – H = 1 – – – H = 1 – – – H = 0
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is due to the fundamental differences between Google Res-
onance and Steam Audio as discussed in Sect. 3.4: Google 
Resonance employs an Ambisonic field as intermediate 
step to create virtual loudspeakers, whereas Steam directly 
generates the BRIRs. For an infinite-order Ambisonic 
rendering via virtual loudspeakers, the direct sound and 
early reflections would be sharp in terms of their spatial 
image and the full room effect would be conveyed via the 
surrounding virtual loudspeakers. However, the limited-
order Ambisonic decoding (they suggest to use third order 
to achieve the highest fidelity) not only blurs the spatial 
image of the direct sound and early reflections but causes 
temporal smearing of the impulse response at the ears as 
a result of panning combined with variation in the propa-
gation time to each ear (relative to the calibrated/aligned 
delay to the centre of the listener). Using HRIRs for the 
final stage of convolution to render the virtual loudspeak-
ers to binaural cannot simultaneously compensate for all 
active directions of arrival. Since Steam has a single-stage 
method, it avoids this problem.

Therefore, Steam seems to be a better option when high 
sound quality is required, while Google Resonance would 
be more appropriate for light and fast rendering applica-
tions (Remaggi et al. 2019). Moreover, Google Resonance 
usually performs better when near-field sounds are repro-
duced, and when source directionality is important. In fact, 
Steam only allows omnidirectional sources and its HRTF 
interpolation algorithm seems less accurate in near-field 
scenarios. Nevertheless, these important features are not 
related to the aim of our study here. Therefore, their effect 
on the spatial sound quality did not emerge from our lis-
tening tests.

The ANOVA test results without any multiple hypoth-
esis adjustment, e.g. Bonferroni (Sthle and Wold 1989; 
Rothman 1990), for the overall quality are in Table 3. For 
the overall ratings and speech the p-values are always 
below 1%, demonstrating that, with a confidence greater 
than 95%, the four method result distributions are statisti-
cally different. Nevertheless, this cannot be claimed for 
the music results. In that case, a p-value of 9.2% cannot 
reject (with a 95% of confidence) the null hypothesis of the 
results’ normal distributions having same means. Looking 
at the means in Table 4, we can see that overall, and in 
particular with music, the proposed approach performs the 
best. However, with speech, our previous “Kim19” is the 
best, with “Proposed” ranked second. Regarding the paired 
t-tests, similar to the spatial impression, the results related 
to “Proposed” are typically statistically significant with 
respect to “Google” and “Wrong”. Nevertheless, it is not 
possible to claim, with 95% confidence, that “Proposed” 
and “Kim19” give a statistically significant improvement.

However, by looking at these results together with 
the spatial impression’s, we can conclude that, overall, 

“Proposed” is the best pipeline among the tested ones, 
with “Kim19” being very close to it, in particular provid-
ing the best overall quality with speech.

4.4 � Interactive VR scene rendering

The final VR scenes with spatial audio reproduced by the 
proposed pipeline were played on a VR headset, HTC VIVE 
Pro (HTC: Vive pro 2018) with real-time user interaction. In 
this implementation, users can freely navigate with 6 degrees 
of freedom (DoF) in the virtual scene by their own move-
ments or using the Vive controller. This implementation 
provides four different simulation modes shown in Fig. 13a 
360° panoramic scene with the original sound without any 
acoustic effect; (b) bare-room auralisation only with 3D 
room layout without any object; (c) furnished auralisation 
with full 3D room structure and acoustic properties (Pro-
posed method); and (d) dense geometry and texture visuali-
sation with the same auralisation as (c) (Proposed method). 
The white sphere in the scenes shows the location of the 
sound source. In mode (d), dense geometry and texture have 
been overlaid on the transparent voxel structure to increase 
the level of visual immersion. The spatial audio was still 

Fig. 13   Interactive real-time VR scene rendering with spatial audio
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rendered with the reconstructed voxel structure, as in mode 
(c). We did not use the dense geometry for spatial audio 
rendering in order to keep low computational complexity 
for real-time rendering. In Fig. 13a, the 360° textures are 
not exactly matched to the rendered 3D geometry because 
the panoramic image was simply projected on a sphere as 
a 2D texture.

It is hard to quantitatively evaluate plausibility of audio-
visual VR content because the perception of the acous-
tic environment is influenced by visual cues (Bailey and 
Fazenda 2018). We demonstrated this interactive audio-
visual system with the VR headset in several public events 
and received informal verbal feedback. The sounds rendered 
by the proposed pipeline were demonstrated and compared 
with the original source and the sound rendered in the empty 
room. Users consistently reported a higher sense of immer-
sion when the spatial audio was given together with dense 
3D geometry and texture.

5 � Conclusion

We proposed a practical solution to reproduce plausible 
audio-visual VR scenes from 360° images allowing spatial 
audio to be adapted to the virtual model of a room environ-
ment. The first part of the proposed pipeline is a vision-
based method to estimate the complete room model with 
semantic information. A voxel-based 3D model of the scene 
is reconstructed and completed with semantic labels using 
an ensemble of 3D CNNs trained using normal perspective 
image datasets. This information is used to generate spatial 
audio on Unity with audio tool kits, allowing perceptually 
plausible sound for the scene.

The reproduced room geometry and spatial audio were 
evaluated against actual data measured and recorded in the 
original rooms. The proposed method obtained much faster 
semantic scene reconstruction with geometric details and 
achieved better agreement between the real and simulated 
acoustics than the state-of-the-art algorithm through objec-
tive and subjective evaluations.

Future work will look at robust material recognition in 
the acoustic room modelling to replace the current object-
to-material mapping method as the current object categories 
are not enough to represent the full range of acoustic prop-
erties. For example, a solid “Wall” recognised from visual 
cues cannot tell if it is a concrete wall or light partition wall. 
A “Sofa” cannot tell if the material is fabric or leather. A 
multi-modal sensory approach, e.g. combining audio-visual 
sensors, can be a solution to create a stronger relationship 
between objects and their acoustic properties.
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