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Abstract
Blood pressure and bone metabolism appear to share commonalities in their physiologic regulation. Specific antihypertensive 
drug classes may also influence bone mineral density. However, current evidence from existing observational studies and 
randomised trials is insufficient to establish causal associations for blood pressure and use of blood pressure–lowering drugs 
with bone health outcomes, particularly with the risks of osteoporosis and fractures. The availability and access to relevant 
large-scale biomedical data sources as well as developments in study designs and analytical approaches provide opportuni-
ties to examine the nature of the association between blood pressure and bone health more reliably and in greater detail than 
has ever been possible. It is unlikely that a single source of data or study design can provide a definitive answer. However, 
with appropriate considerations of the strengths and limitations of the different data sources and analytical techniques, we 
should be able to advance our understanding of the role of raised blood pressure and its drug treatment on the risks of low 
bone mineral density and fractures. As elevated blood pressure is highly prevalent and blood pressure–lowering drugs are 
widely prescribed, even small effects of these exposures on bone health outcomes could be important at a population level.
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Introduction

For some years, a close link between cardiovascular and 
bone health has been hypothesised [1–5], given that there 
are similarities in the biological risk factors, lifestyle 

determinants and demographic profile associated with 
cardiovascular disease (CVD) and bone health conditions 
[1, 3, 6–10]. A fall in blood pressure (BP) level and use of 
antihypertensive drugs have been associated with increased 
risk of falls particularly in the elderly [11, 12], which may 
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consequently increase the risk of bone fractures. Other 
pathways that may play a role in the pathophysiology of 
both atherosclerotic vascular disease and osteoporosis can 
include alterations in the regulatory mechanisms involved in 
calcium metabolism and homeostasis, stimulation of inflam-
matory response, and sympathetic nervous system activation 
[6–8, 13]. In particular, an association between hypertension 
and low bone mineral density (BMD) has been suggested 
[14], possibly as a result of calcium loss observed in people 
with raised BP [13, 15, 16]. The observation that BP may 
influence bone health is nothing new as many studies in the 
past few decades have examined associations between BP 
and BMD as well as fracture risk [17–21] and between BP-
lowering drugs and the risk of osteoporosis and fractures 
[22–34]. These findings were largely based on observational 
studies and residual confounding could be an issue, so the 
likely causal role of BP or use of antihypertensive drugs on 
bone health outcomes remains to be established. Time trends 
suggest that age-adjusted mean BP and incidences of osteo-
porosis and fractures have been improving in some popu-
lations [35, 36], but the global burden of these conditions 
remains high [37–39] perhaps because of a demographic 
shift towards an ageing population. This ageing demo-
graphic trend underscores the importance of understanding 
the role of raised BP in the aetiology of osteoporosis and its 
important clinical consequence—bone fractures—as man-
aging elevated BP could play a role in maintaining optimal 
bone health in the population.

In recent years, large-scale population-based cohorts 
with detailed clinical assessments, biological measures and 
genetic data are being used in epidemiologic and clinical 
investigations. Novel study designs and innovative analytical 
approaches have been developed, and collaborative studies 
that involve sharing of biomedical data of study cohorts have 
become a common practice. These research developments 
provide an opportunity to revisit hypotheses linking cardio-
vascular and bone health, and explore ways to answer ques-
tions that characterise and establish the causal role of raised 
BP on bone health outcomes in the population. To share our 
perspective, we describe some of the evidence linking BP 
with bone health, identify difficulties in establishing their 
causal relation from existing evidence and elucidate on 
research challenges and opportunities to help address these 
aetiological questions.

High population burden of osteoporosis 
and fractures

Osteoporosis is a systemic skeletal disease characterised by 
low bone mass and deterioration of the microarchitecture of 
bone tissue, which increases fragility of the bone and sus-
ceptibility to fractures [40, 41]. Its prevalence increases with 

age, and markedly so in women soon after menopause [37, 
42, 43]. The bone mineral density (BMD), reported in values 
relative to the peak bone mass of a standard comparator such 
as among healthy young women, is used to define osteope-
nia (BMD T-score of − 2.5 to − 1.0) and osteoporosis (BMD 
T-score below − 2.5) [44–47]. Worldwide prevalence of 
low BMD has doubled from 1990 (0.12%) to 2010 (0.21%) 
and accounted for up to a third of falls-related deaths [38]. 
Indeed, it has been estimated that 1 in 3 women and 1 in 5 
men aged ≥ 50 years will have osteoporosis-related fractures 
globally [37]. Thus, efforts to reduce the burden of poor 
bone health are of utmost importance.

Blood pressure may influence bone health

Elevated BP, or hypertension, is the leading cause of 
cardiovascular disease morbidity and mortality in many 
regions worldwide [48]. It is a condition that signifi-
cantly raises the risks of coronary heart disease, stroke, 
and renal disease, and also the world’s leading cause of 
premature death. Over 1.13 billion people globally have 
elevated BP, with two-thirds of them living in low- and 
middle-income countries [49]. The prevalence of raised 
BP increases with age, and in England, it has been esti-
mated that over half of all adults aged ≥ 65 years in 2019 
will have had hypertension [50]. There are public health 
preventive measures to reduce this burden [51]. Moreo-
ver, antihypertensive medications are effective, afford-
able and generally safe, and therefore widely prescribed 
for managing hypertension in many populations globally. 
Nevertheless, fewer than 1 in 5 people with hypertension 
globally have their BP levels under control [48]. In Eng-
land, nearly a third of all adults have hypertension. More 
specifically, among all adults in the country, 10% have 
‘controlled’ hypertension, 5% have uncontrolled hyper-
tension and 12% have hypertension that remains untreated 
despite wide access to healthcare provision [50]. How-
ever, the continuing efforts for broader use of effective 
drugs to control and manage raised BP are showing an 
impact on encouraging trends towards more people with 
hypertension in England who are receiving treatment and 
whose raised BP are getting controlled.

Raised blood pressure, blood pressure reduction 
and bone health outcomes

While raised BP is an established risk factor of CVD, there 
are suggestions that it also affects long-term bone health. 
While the underlying mechanisms are not fully understood, 
elevated BP has been thought to alter calcium metabolism 
leading to increased calcium loss [15, 16]. Increased sym-
pathetic nervous system activity, enhanced inflammation 
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response and alteration of parathyroid hormone regulation 
are pathways that have also been suggested to be involved 
[1, 6–8, 13]. This relation between raised BP and low bone 
mineral density could lead to enhanced bone fragility which 
may increase the risk of fracture, not least in some suscep-
tible individuals such as among the elderly. There is also a 
suggestion that hypertension affects balance and mobility 
[52] thereby increasing the likelihood of falls and, conse-
quently, fractures.

Few studies have examined the association between BP 
and BMD. In one small study, hypertensive women were 
shown to have lower BMD and higher 24-h urinary calcium 
excretion than normotensive women [17]. A meta-analysis of 
observational studies observed a heterogeneity in the asso-
ciation between BP and BMD depending on the anatomical 
location of the bone and ethnicity, although the study largely 
included cross-sectional studies [53]. In a prospective inves-
tigation based on repeated BMD measurements among 3000 
elderly women, elevated BP was associated with increased 
bone loss in the femoral neck after 3 years of follow-up, 
independently of hormone replacement therapy and use of 
BP-lowering drugs [14]. It is uncertain if a similar observa-
tion can be seen in elderly men.

Limited data exist for investigating the impact of ele-
vated BP on outcomes involving bone fractures. In a large 
case–control study, a 27% increased risk of any fracture was 
associated within 3 years of a diagnosis of hypertension, and 
11% increase in risk in the longer term [19]. In a prospective 
study involving 1032 men and 1701 women aged ≥ 50 years, 
elevated BP was associated with increased risk of any or hip 
fracture in women, with similar but less precise estimates in 
men [21]. In another study, mean arterial pressure or hyper-
tension was not shown to predict incident hip fracture, but 
the study was based only on 176 events in men and 458 in 
women, and did not account for the use of antihypertensive 
treatment [54].

There are also other possible pathways by which ele-
vated BP, or rather, its pharmacologic reduction, can influ-
ence bone health. Susceptible individuals may develop 
syncope or hypotension soon after initiating antihyperten-
sive treatment, leading to injurious falls [12] and, conse-
quently, to fractures [55]. Indeed, a history of a fall is a 
well-established predictor of future fractures [10]. Three 
randomised clinical trials (RCTs) with relatively long fol-
low-up have separately reported on the effect of BP reduc-
tion on fracture outcomes (Table 1), but these trials only 
involved less than 500 fracture events collectively [56–58]. 
One trial [56] reported no difference in the risk of any 
fracture between comparison groups, while the other two 
trials [57, 58] showed suggestive reduction in fracture risk 
in the active BP-lowering treatment arm, but the confidence 
interval of the risk estimate included the null value. To our 
knowledge, no randomised trials have examined the effects 

of pharmacologic lowering of BP on BMD or osteoporosis 
outcomes.

Antihypertensive drug class and bone health 
outcomes

Other than the unintended effects of antihypertensive medi-
cations in lowering BP on falls, others have shown class-spe-
cific effects of antihypertensive drugs by affecting different 
pathways involved in bone remodelling (Table 2). Thiazide 
diuretics are widely prescribed drugs to manage elevated 
BP, and this drug can also modulate calcium homeostasis 
[59]. It has been reported that thiazides can reduce urinary 
excretion of calcium by 40% [60, 61] as well as stimulate the 
production of osteoblast differentiation markers and enhance 
bone calcium uptake by inhibiting thiazide-sensitive sodium 
chloride cotransporter which are expressed in human osteo-
blasts [62, 63]. In contrast, loop diuretics are associated with 
increased urinary calcium excretion and increase parathy-
roid hormone levels and bone-specific alkaline phosphatase, 
which could be indicative of accelerated bone remodelling 
[64, 65]. For both types of diuretics, their use may promote 
nocturia, which could increase the likelihood of a fall and/
or fractures particularly in the elderly. β-Blockers have been 
suggested to inhibit osteoclastic activity thereby decreasing 
bone resorption [25, 66]. Selective β-blockers particularly 
inhibit signalling pathways via β1-adrenergic receptors that 
are expressed in human bones [67]. The renin–angioten-
sin–aldosterone system not only has systemic effects but 
also local effects in several tissues including the bone which 
might explain some of the effects of angiotensin-convert-
ing enzyme inhibitors (ACEI) in improving bone mineral 
density, albeit similar effects are not seen for angiotensin-
II receptor blockers (ARB) [59, 68]. There are, therefore, 
several plausible pathways by which antihypertensive drug 
classes—collectively or individually—can have an impact 
on important bone health outcomes.

Several observational studies have examined associa-
tions of specific BP-lowering drug classes with bone loss 
or fracture risk [59]. While some findings are inconsistent, 
many have suggested protective effects on BMD (and reduc-
tion in fracture risk) for thiazide diuretic [69–72], β-blocker 
[26, 73] and ACEI [68, 73, 74]. Loop diuretics have been 
reported to increase the risk of fracture [27, 70, 75, 76], with 
no or little evidence of any impact of the use of ARB and 
calcium channel blocker (CCB) on bone fractures [32, 70, 
73, 74, 76]. Evidence from RCTs also remains limited. To 
date, only one long-term trial has investigated the effects of 
specific antihypertensive drug class on fracture risk [77]. 
Involving 22,180 participants and accruing 338 hip or pel-
vic fractures over 4 years of follow-up, thiazide treatment 
showed 20% reduction in fracture risk when compared to 
treatment with ACEI or CCB.
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So far, we see that much of the existing findings on BP 
level or BP-lowering drug classes on bone health outcomes 
have been based on observational studies, with only a hand-
ful using a prospective study design. Since both hypertension 
and osteoporosis and fractures are influenced by similar fac-
tors as age, body size, physical activity level and co-existing 
chronic conditions, these factors need to be considered and 
will pose analytical challenges when establishing the causal 
relation between raised blood pressure and bone health out-
comes using data from observational studies. As exposure to 
these drugs in these studies is mainly based on self-reports, 
details on timing of prescription as well as the dose and 
duration of drug treatment are often missing, which lim-
its characterisation of exposure to these drugs. Given how 
common hypertension is and how widely antihypertensive 
drugs are being prescribed, even small effects of these expo-
sures could be relevant at the population level. It is there-
fore crucial to determine the causal relation between BP and 

BP-lowering drugs with bone health, as it will improve our 
understanding of the additional implications of BP control 
in the promotion of optimal bone health. Since the preva-
lence of raised BP and use of antihypertensive medications 
increase with age, and those at risk to suffer from metabolic 
bone disorders and fractures are also more likely to be older, 
understanding the nature of the associations is important for 
maximising the benefits and reducing the risks associated 
with BP control and treatment.

Advancing research into blood pressure 
and bone health in the population: current 
opportunities

Developments in population-based research in recent 
years have opened up opportunities to address fundamen-
tal questions on the role of elevated BP in the aetiology of 

Table 1   Randomised clinical blood pressure–lowering treatment trials with long-term follow-up and have reported on the risk of fracture as an 
outcome

ACCORD Action to Control Cardiovascular Risk in Diabetes, ALLHAT Antihypertensive and Lipid-Lowering Treatment to Prevent Heart 
Attacks Trial, HYVET Hypertension in the Very Elderly Trial, SHEP Systolic Hypertension in the Elderly Program, ACEI angiotensin-convert-
ing enzyme inhibitor, CCB calcium channel blocker, HR hazard ratio, CI confidence interval
* An α-blocker (doxazosin) trial arm was terminated early

Trial

ACCORD [58] (N = 3099) ALLHAT [77] (N = 22,180) HYVET [57] (N = 3845) SHEP [56] (N = 4736)

Study population Age ≥ 40 years with diabetes 
and increased CVD risk

Age ≥ 55 years with hyper-
tension and other CVD 
risk factors

Age ≥ 80 years with sus-
tained SBP ≥ 160 mmHg

Age ≥ 60 years with 
hypertension, and no 
previous treatment

Comparisons More vs less intense treat-
ment

Drug class comparison 
(thiazide vs ACEI, CCB or 
ACEI and CCB)

Placebo-controlled Placebo-controlled

Drug intervention Drug class available in clini-
cal practice

Diuretic (chlorthalidone), 
CCB (amlodipine), 
and ACEI (lisinopril)*; 
additionally with atenolol, 
clonidine or reserpine if 
required

Diuretic (indapamide); 
additionally with ACEI 
(perindopril) if required

Diuretic (perindopril) 
and/or diuretic (inda-
pamide)

Outcome, total N (%) Non-spine fractures, 270 
(8.7)

Hip or pelvic fracture, 338 
(1.5)

First fracture, 90 (2.3) Any fracture, 104 (2.2)

  Active group, N (%) 116 (7.6) 135 (1.3) 38 (1.5) 57 (2.4)
  Control group, N (%) 154 (9.8) 203 (1.7) 52 (2.0) 47 (2.0)

Risk estimate compar-
ing active treatment vs 
control group

HR = 0.79 (95% CI 0.62 to 
1.01)

HR = 0.78 (95% CI 0.63 to 
0.97);

HR = 0.75 (95% CI 0.58 
to 0.98) if ACEI only as 
comparator;

HR = 0.82 (95% CI 0.63 
to 1.08) if CCB only as 
comparator

HR = 0.69 (95% CI 0.46 to 
1.05);

HR = 0.58 (95% CI 0.33 to 
1.00) if adjusted for base-
line predictors of fracture

z = 0.8 (p = 0.4)

Comment Other site-specific fractures 
also reported

HR are age- and sex-
adjusted; subgroup 
analysis consistent; post 
trial to 8 years similar but 
wide CI

Definite or probable frac-
tures only
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osteoporosis and fractures. Access to databases providing 
detailed health data for large numbers of people allows us 
to investigate associations between BP and bone health out-
comes prospectively and with sufficient statistical power. 
Further, advances in study designs and innovative analytical 
techniques have drawn us towards making causal inference 
with more credence. There is also an increasing trend among 
research communities across disciplines towards working 
collaboratively and sharing research data and expertise, 
which have opened up new ways to re-examine old, unan-
swered questions using novel ideas and perspectives.

Big data from large‑scale cohort studies 
and healthcare databases

Routinely collected healthcare data have become increas-
ingly an important resource to generate and test hypoth-
eses in clinical research. Anonymised data are extracted 
from electronic health records (EHRs), such as the United 
Kingdom (UK) Clinical Practice Research Database [78]. 
These EHRs provide rich datasets that include time-stamped 
information on clinical measures, diagnoses and prescrip-
tions and are linked to various national databases that fur-
ther enrich the datasets to incorporate information on hos-
pitalisations and vital status. These linkages at individual 
level allow investigations on the prospective associations 
of hypertension and antihypertensive drug use on bone 
health outcomes including osteoporosis and fractures. As 
drug dose and duration can be estimated from these medi-
cal records, detailed characterisation of drug exposure is 

possible to conduct in this context. In the UK, where 97% 
of the population are registered with the National Health 
Service, EHRs provide clinical data that are generalisable to 
the population [79]. Similar possibilities exist in other coun-
tries using their national healthcare or prescription databases 
[80–82]. By linking prescriptions with other administrative 
health records, it is possible to create anonymised records 
of prescriptions and relevant health data at individual level.

In addition, several cohorts involving large numbers of 
participants have collected detailed information on personal 
characteristics, medical history, lifestyle factors, biological 
samples, genetic data and clinical measures such as bone 
densitometry and heel bone ultrasound. For example, in the 
UK Biobank, these data have been collected for nearly 0.5 
million individuals, including calcaneal ultrasound measures 
for the whole cohort and total dual-energy X-ray absorpti-
ometry in a large subset of the study population [83–85]. 
Similar detailed phenotypic and genetic data have been col-
lected in other cohorts, such as the population-based Trøn-
delag Health Study with genetic information combined with 
phenotypic data that include BMD measurements and pro-
spectively recorded fracture information [86]. Indicators of 
bone health as well as diagnoses of osteoporosis and frac-
tures are collected in these cohort studies. Data from EHR 
and well-characterised cohort studies have detailed health 
information that allows analyses that account for the poten-
tial effects of confounding factors. With large numbers of 
participants and long follow-up, health outcomes will accrue 
in sufficient numbers and allow conducting stratified analysis 
to investigate associations in important subgroups, such as 
by age and sex.

Table 2   Blood pressure–
lowering drugs and 
hypothesised effects and 
mechanisms on bone health 
and fracture risk (adapted and 
modified from Ghosh and 
Majumdar [59])

↑, increase; ↓, decrease; ↔ , probably no discernible impact; ACE angiotensin-converting enzyme, RAAS 
renin–angiotensin–aldosterone system, ARB angiotensin-II receptor blocker, CCB calcium channel blocker

Medications Potential mechanisms affecting bone health Effect on 
bone mineral 
density

Effect on 
fracture 
risk

All blood pres-
sure–lowering 
drugs

Blood pressure reduction leading to syncope, hypo-
tension and falls

 ↔  ↑

Reduction in sympathetic nervous system stimulation ↑ ↓
By drug class

  Thiazide diuretic Direct stimulation of osteoblasts ↑ ↓
Bone formation ↑ ↓

  Loop diuretic Increased urinary calcium loss ↓ ↑
Falls  ↔  ↑

  Spironolactone Inhibition of aldosterone receptors ↑ ↓
  β-Blocker Inhibition of β2-adrenergic receptors in osteoblast ↑ ↓
  ACE-inhibitor Inhibition of ACE in local RAAS in bone ↑ ↓
  ARB Direct blockade for angiotensin-II receptor  ↔   ↔ 
  CCB Inhibition of voltage-gated calcium channel  ↔   ↔ 
  Nitrates Donates nitric oxide ↑ ↓

Suppression of osteoclast ↑ ↓
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Trials investigating the effects of antihypertensive drugs 
involving large numbers of participants with relatively long 
follow-up have been conducted for many years. Findings 
from these RCTs, particularly by pooling evidence from 
across these trials, have helped establish the causal role of 
elevated BP in the aetiology of cardiovascular disease and 
clearly demonstrated the efficacy of antihypertensive drugs 
in reducing cardiovascular disease risk [87]. In recent years, 
collaborative efforts of trialists have allowed pooling of evi-
dence based on individual-level data, which further provided 
evidence into the efficacy of BP-lowering treatment across 
important patient subgroups and clinical characteristics [88]. 
While bone health conditions are not the primary outcomes 
of these trials, adverse events and other unintended conse-
quences of antihypertensive drug treatments are commonly 
collected, which may include information on hypotension, 
falls and fractures. The Blood Pressure Lowering Treatment 
Trialists’ Collaboration (BPLTTC) (www.​bplttc.​org) is one 
such collaboration which recently has been investigating the 
efficacy and safety of antihypertensive drug treatment [89]. 
As many of the trials in the collaboration have collected 
safety data, it could be an important resource to provide 
randomised evidence for the effects of BP reduction and spe-
cific effects of antihypertensive drug classes on fracture risk.

Methodological and analytical innovations

Epidemiological investigations

Designing studies and analysing data to examine associa-
tions between an exposure (e.g. raised BP or specific classes 
of BP-lowering drugs) and an outcome (e.g. low BMD or 
fracture) in cohort studies require careful consideration as 
associations based on observational data are prone to biases, 
confounding and reverse causation. As bone health outcomes 
are likely to affect the elderly, analysis should account for 
competing risk such as from other causes of death. While 
using relevant study designs may help establish temporality 
of the association of the exposure with the outcome and con-
founding factors could be adjusted for by employing appro-
priate statistical methods, residual confounding remains a 
possibility due to unmeasured or imprecisely measured con-
founders. When the exposure of interest involves pharma-
cologic treatments, confounding by indication is an impor-
tant issue as the clinical indication for the drug treatment 
in itself may affect the outcome of interest. Some have also 
suggested that osteoporosis is associated with an increased 
risk of cardiovascular disease [3, 90], so reverse causation is 
also a possibility. However, a number of large-scale cohort 
studies are well-characterised and extensively phenotyped, 
allowing for potential confounders to be accounted for in the 
analyses. Data from repeat measurements provide estimates 
of variability that can be used to correct for imprecision 

of measurements and adjust for regression dilution [91], an 
issue particularly relevant for blood pressure [92]. The long 
follow-up of these cohorts also allows for time-stratified 
analysis, which permits exploring reverse causality, such as 
by excluding outcomes occurring during the early years of 
follow-up. Another important consideration is body weight 
or body mass index (BMI), which is positively associated 
with blood pressure and inversely associated with bone 
density [93, 94] and risk of hip fracture [95–97]. It is there-
fore important to take into account the impact of BMI when 
studying the association between BP and bone health.

Analysis using data extracted from EHRs faces similar 
issues on bias and confounding [98] as analysis using data 
from observational cohort studies. However, an important 
issue to consider when using EHR is missing data [99]. 
Since EHR data are collected primarily for administra-
tive rather than research purpose, information relevant to 
the study may be missing for many individuals. Thus, to 
account for these missing data, imputation techniques can 
be employed to address this problem [99–101]. As EHRs 
include detailed information on drug prescriptions for a large 
number in the population, it would be an important resource 
for addressing questions on the effects of antihypertensive 
drug classes that are unlikely to be answered reliably by 
BP-lowering trials, perhaps because some outcomes, such as 
osteoporosis, take a long time to develop and get diagnosed, 
and most BP-lowering treatment trials do not actively follow 
up study participants beyond 5 years [102]. While compar-
ing drug treatment effects without randomisation is prone 
to bias and confounding, methodological developments in 
designing studies using EHR could address these potential 
issues. It has been proposed that a target randomised trial 
can be emulated using large-scale EHR data, and a frame-
work has been developed to serve as a guide when designing 
such investigations [103–106]. For example, the effects of 
statin treatment on cardiovascular disease and cancer tend to 
show contrasting findings obtained from RCTs and observa-
tional studies. However, by designing the study using obser-
vational data to ‘mimic’ the target RCT study population 
and comparison groups, findings from this trial emulation 
were shown to be consistent with the trial [103]. Using this 
relatively novel design to conduct studies using EHR data 
may be useful in this particular context to enable to address 
questions on BP treatment and bone health that are not ordi-
narily feasible to be answered using evidence from existing 
randomised trials.

Mendelian randomisation studies

Naturally randomised genetic variants associated with spe-
cific phenotypes are increasingly being applied in epide-
miologic analysis to investigate unconfounded associations 
between an exposure and an outcome of interest [107, 108]. 

http://www.bplttc.org
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This approach is based on Mendel’s second law which fol-
lows the principle of the random assortment of alleles during 
meiosis involving the transfer of deoxyribonucleic acid from 
parent to offspring during gamete formation. Inheriting a 
particular genetic variant by an individual is independent of 
other characteristics. When these individuals are grouped 
together in the population according to a specific genotype 
that is associated with a particular phenotype, they should be 
similar other than for the genetically determined phenotype. 
If the genetic variant alters or reflects the biological effects 
of the phenotype, such as BP, the effects of the phenotype 
can be predicted by the genetic variant for the phenotype. 
The inheritance of a particular set of alleles could be thought 
of as a form of naturally occurring randomisation to different 
levels of exposures. Thus, Mendelian randomisation (MR) 
is a form of instrumental variable analysis that uses genetic 
variants as instruments, which could be used in an analysis 
to diminish issues on confounding and reverse causality in 
exposure-outcome associations [107, 109]. Multiple single 
nucleotide polymorphisms (SNPs) associated with a specific 
phenotype can be combined and used as an instrument in 
MR analysis [110]. Recent genome-wide association studies 
(GWAS) have identified over 270 single nucleotide poly-
morphisms associated with systolic BP in over a million 
people of European ancestry [111–113]. These variants have 
been used and validated on coronary heart disease and stroke 
outcomes and showed findings to be consistent with the ran-
domised evidence from BP-lowering trials [114], suggesting 
that these SNPs are valid instruments for MR analyses to 
examine a causal association between BP and bone health 
outcomes.

In addition, SNPs that encode proteins relating to the 
functions of specific antihypertensive drug classes have 
also been identified. For example, selective β-blocker acts by 
inhibiting the activation of adrenergic receptor β1 (ADRβ1) 
which results in reduced myocardial contractility and heart 
rate leading to a fall in BP [115]. The ADRβ1 gene encodes 
for this receptor which could then be used as a surrogate for 
exposure to selective β-blockers. Indeed, genetic variants 
that could be used to evaluate the effects of antihyperten-
sive drug classes, particularly for thiazides, ACEI, ARB, 
β-blocker and CCB, have been identified [116, 117]. It is, 
therefore, possible to conduct MR studies to examine asso-
ciations between specific classes of antihypertensive drugs 
and bone health outcomes. However, unlike the number of 
SNPs associated with BP, the number of variants associated 
with BP-lowering drug classes is limited, and single cohort 
studies may lack sufficient power to conduct MR analyses in 
this context. To address this limitation, methods have been 
developed to allow conducting MR association studies by 
using summary data from large-scale GWAS without the 
need for individual-level data at the same time increasing 
statistical power [118]. In a two-sample MR, the instruments 

will include all the BP-related variants identified in a sepa-
rate and independent GWAS, and the outcome will be based 
on the estimates obtained from the GWAS estimates of bone 
health outcomes. Given that separate GWAS have been con-
ducted for the exposure (e.g. BP and antihypertensive drug 
class [111–113]) and for the outcome (e.g. BMD, osteoporo-
sis and fractures) [119–123]), two-sample MR investigations 
could be conducted. It is worth noting that the UK Biobank 
contributes genetic data to some of these collaborative stud-
ies. Thus, it is important to consider the data being used for 
exposure (e.g. BP GWAS) are separate from the outcome 
data [124]. This two-sample MR technique is an approach 
increasingly being used [114, 125]. Since this analysis does 
not require individual-level data, it circumvents some of the 
limitations of genomic data access and sharing.

There are, of course, issues to consider when conduct-
ing MR analysis, primarily, the issue of pleiotropy [107, 
108, 126]. Although findings remain valid with ‘vertical 
pleiotropy’, when the association with the phenotype is 
representing the downstream effects of the genetic vari-
ants on the exposure, ‘horizontal pleiotropy’ needs to be 
considered particularly in settings when multiple variants 
are being used as instruments. However, there are tools to 
assess the impact of this bias and still allow calculation 
of valid causal estimate even when horizontal pleiotropy 
exists [126, 127]. Additionally, the GWAS on BP pheno-
type also mainly include participants from Western popu-
lations; hence, their generalisability to other populations 
remains uncertain.

Individual participant‑level data meta‑analysis

As mentioned earlier, there were very few RCTs that 
reported on the effects of BP-lowering treatment and effects 
of antihypertensive drug class on risk of fractures. Each 
individual trial does not have sufficient statistical power to 
examine the effects of BP-lowering treatment on bone health 
outcomes. However, several RCTs of BP-lowering treatment 
have previously collaborated to pool individual participant-
level data (IPD) to examine important clinical questions. 
Since the inception of BPLTTC in 1995, it has provided 
reliable evidence on the efficacy of BP-lowering drugs in 
reducing major cardiovascular disease events and mortality 
[89]. In its current phase, the collaboration includes 52 trials 
and over 350,000 randomised participants [102]. Many of 
these trials have routinely collected information on fractures 
as well as predisposing events, such as syncope, hypotension 
and falls. As the BPLTTC provides the largest IPD on BP-
lowering treatment currently available, this resource offers 
an opportunity to investigate the effects of pharmacologic 
effects of BP-lowering on the risk of fractures. There are 
well-established methods for conducting IPD meta-anal-
ysis which could be used to examine the impact of drug 
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treatments to lower BP on bone health outcomes [128, 129]. 
While it is common to conduct meta-analysis based on pub-
lished or aggregate data, this method is evidently of limited 
use because most trials have not reported findings on frac-
ture risk, and, by design, it is not possible to conduct strati-
fied analysis, such as by age and sex.

Summary

The association between BP and bone health is certainly 
not a new observation. Yet their plausible biologic link is 
certainly intriguing and deserves further scrutiny. Given 
the high prevalence of elevated BP and wide use of BP-
lowering drugs, the impact of these exposures on bone 
health may be important in the population. However, for 
these associations to have relevance in informing clinical 
practice and public health policy, the causal nature of the 
relation between BP and bone health has to be established. 
It is unlikely that a single source of evidence or study 
design can provide a definitive answer. For population 
studies, what is likely needed is to combine epidemiologic, 
genetic and randomised evidence to provide detailed and 
nuanced understanding of the importance of controlling 
BP levels to improve bone health of the population.
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