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Abstract: Requirements evaluation is critically important for the successful 

development of a product-service system (PSS). The requirements of a PSS often 

interact with each other, hence significantly influencing requirements evaluation and 

decision-making processes. The recent literature has proposed some methods such as 

fuzzy ANP and rough DEMATEL to evaluate interacting PSS requirements and to focus 

on requirements prioritization. However, aggregation with respect to interacting PSS 

requirements is seldomly considered. Alternatively, the weighted arithmetic mean 

method is implicitly used as the aggregation operator to aggregate PSS requirements. 

Hence, different effects of interactions among any subset of PSS requirements are not 

considered. This may result in sub-optimal alternatives being adopted for further PSS 

development. In order to solve this specific problem, a systematic method based on 

rough-fuzzy DEMATEL, 2-additive fuzzy measures, and the Choquet integral is 

proposed for aggregating interacting requirements for PSS development along with 

requirements prioritization. The proposed method utilizes the rough-fuzzy DEMATEL 

method to determine the weights of interacting PSS requirements when there is a group 

of experts providing subjective and linguistic assessments of influence strengths. By 

integrating the Choquet integral with 2-additive fuzzy measures, the proposed method 

can aggregate interacting PSS requirements non-additively by considering 2-order 

interactions between any two requirements. To demonstrate its feasibility and 

advantages, the proposed method is applied to evaluate requirement interactions for a 

smart wearable medical system. 
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1 Introduction  
The product-service system (PSS) is an integrated offering of products and services to satisfy customer 

and other stakeholders’ requirements (Mont, 2002; Tukker & Tischner, 2006). As a result, requirements 
management plays an important role for the successful development of PSS. The main requirements 
management activities of PSS include requirements elicitation, analysis, specification and forecast. 
Complete requirements elicitation, rational analysis, undistorted transformation and specification, and 
accurate forecast should be carefully deployed with respect to characteristics of PSS, which are necessary 
to ensure successful development of PSS and to deliver differentiating and continuous value to customers. 
However, the specific characteristics relating to the PSS development, such as heterogeneity, interaction, 
multiple stakeholder participation and life cycle orientation make requirements management of PSS more 
challenging and different from conventional requirements management (Nilsson, Sundin, & Lindahl, 
2018; Song, 2017).   

Due to different stakeholders’ preference and PSS heterogeneity, the interaction of PSS requirements 
is inherently very complex. In other words, the interactions may happen not only among product 
requirements or service requirements, but also between product requirements and service requirements 
as well. These complex interactions also introduce different effects such as enhancing, weakening, 
conflicting and replacing, and so on (Robinson, Pawlowski, & Volkov, 2003; Song, 2017). For example, 
considering a smart vehicle service system, customers require one product requirement of “high dynamic 
performance of engine”, which interacts with and weakens another product requirement of “low fuel 
consumption”. At the same time, the service requirement “driver behavior monitoring, prediction and 
recommendation” interacts with and enhances “low fuel consumption”. These interacting requirements 
exist extensively in PSS, and they result in additive independence assumptions among PSS requirements 
being violated. Then, evaluating these interacting requirements based on additive independence 
assumption will lead to distorted representation of decision makers’ preferences, including inaccurate 
requirements prioritization and aggregation. Therefore, it is critically important to evaluate interacting 
requirements to discover their implication for requirements prioritization and non-additive aggregation.  

Previous research pays more attention to developing and applying Multi-Attribute Decision Making 
(MADM) methods to evaluate interacting PSS requirements. While the majority of the MADM methods 
assume additively independent attributes, e.g. the analytic hierarchy process (AHP) (Biju, Shalij, & 
Prabhushankar, 2015; Song, Ming, Han, & Wu, 2013), TOPSIS and VIKOR (Watrobski, Jankowski, 
Ziemba, Karczmarczyk, & Ziolo, 2019), some researchers explored analytic network process (ANP) 
(Kheybari, Rezaie, & Farazmand, 2020) and Decision Making Trial and Evaluation Laboratory 
(DEMATEL) (Lee, Li, Yen, & Huang, 2010) for modeling complex interrelationships among PSS 
requirements. The extensions of ANP and DEMATEL have been developed for evaluating interacting 
PSS requirements, such as fuzzy ANP (Geng, Chu, Xue, & Zhang, 2010), fuzzy DEMATEL (Geng & 
Chu, 2012), rough DEMATEL (Song & Cao, 2017), rough-fuzzy DEMATEL-ANP (Z. H. Chen, Ming, 
Zhang, Yin, & Sun, 2019). In general, the literature only focusses on determining weights for interacting 
PSS requirements with different types of assessment data, such as crisp assessment data, linguistic 
assessment data and/or group diverse assessment data. However, aggregation with respect to interacting 
PSS requirements is rarely considered. Or alternatively, the weighted arithmetic mean is implicitly used 
as the aggregation operator to aggregate PSS requirements. Hence, different effects of interactions among 
any subset of PSS requirements remain unconsidered. Obviously, if there are other interactions among 
any subset of requirements, then their effects should be integrated into the aggregation function, which 



will lead to different non-additive aggregation functions. While requirements prioritization can determine 
the relative importance of PSS requirements, requirements aggregation focuses on the whole perceived 
preference of all requirements together, which is critically important for PSS design optimization and 
evaluation of alternatives. If requirements are aggregated inaccurately, then sub-optimal alternatives may 
be adopted for further development and this may lead to costly design iterations, rework, and project 
delays. 

In order to solve this specific gap in research, an integrated method based on rough-fuzzy DEMATEL, 
2-additive fuzzy measures, and the Choquet integral is proposed to evaluate interacting requirements for 
PSS. The main contribution of the proposed method is that PSS requirements are aggregated non-
additively by considering second order effects of interactions between any two requirements besides 
requirement prioritization. The rough-fuzzy DEMATEL method is adopted for modelling influence 
relationship among requirements and for determining weights for requirements when there are a group 
of experts giving their subjective and linguistic assessment about influence strength. In particular, the 
fuzzy measures and Choquet integral are integrated to aggregate interacting PSS requirements since the 
Choquet integral with respect to fuzzy measures is always considered as an effective method to achieve 
the aggregation of interacting criteria non-additively in MADM. In terms of identification of fuzzy 
measures, the 2-additive fuzzy measures are introduced to balance between complexity and accuracy of 
identification, in which weights of requirements and constraints on degree of interaction act as constraints 
of an optimization model. With the proposed method, the second order interactions between any pair of 
requirements are explicitly modeled and a corresponding aggregation function is constructed. To the 
authors’ knowledge, there is no such research in the past to explore prioritization and aggregation together 
for interacting PSS requirements.   

The rest of this paper is organized as follows. Section 2 gives literature review concerning PSS, 
requirement interactions, evaluation methods of requirement interactions in the field of PSS. Section 3 
proposes an integrated method based on rough-fuzzy DEMATEL, 2-additive fuzzy measures and the 
Choquet integral for evaluating interacting PSS requirements. Section 4 applies the proposed method to 
evaluate interacting requirements of a smart wearable medical system. Section 5 presents the theoretical 
and practical implications of this study. Finally, conclusions and suggestions are presented.  

2 Literature review 

2.1 PSS and requirement interactions 

A PSS is a system of products, services, software, supporting networks and infrastructure, which 
provides integrated offerings of products and services (Mont, 2002; Tukker & Tischner, 2006). Besides 
the obvious product function, performance, reliability, and aesthetics, many product-related services are 
enabled by PSS to provide differentiating and continuous value to customers, such as installation, repair 
and maintenance, upgrading and recycling, monitor and control, product lifecycle management, and 
financing (Reim, Parida, & Ortqvist, 2015; Szwejczewski, Goffin, & Anagnostopoulos, 2015). With the 
rapid development of new generation information and communication technologies, such as the Internet 
of Things, Big Data and Artificial Intelligence, smart PSS is emerging and more and more smart services 
are enabled based on smart-connected products (Valencia, Mugge, Schoormans, & Schifferstein, 2015; 
Zheng, Wang, Chen, & Khoo, 2019).  

Very complex interactions exist extensively among PSS requirements. PSS requirements include 
customer and stakeholder requirements, business process requirements, regulatory or environmental 
requirements, and contractor’s requirements at the system level (Berkovich, Leimeister, Hoffmann, & 



Krcmar, 2014). These requirements can be derived into product engineering requirements, software 
engineering requirements and service engineering requirements at the component level. Because of 
heterogeneity, diversity of stakeholders and others, requirements often interact with each other in a 
complex way. The study reveals that only a few requirements are singular and that interdependencies 
between requirements can be classified into functionality-related and value-related interdependencies 
(Carlshamre, Sandahl, Lindvall, Regnell, & Dag, 2001). Value-related interdependencies include value 
and cost aspects, and their assessments are subjective. To classify and identify requirement interactions, 
a four-layered requirement interactions taxonomy is proposed, including “which two elements interact?”, 
“which two attributes interact?”, “why two attributes interact?”, and “how to detect those interactions?” 
(Shehata, Eberlein, & Fapojuwo, 2007). These interactions focus on the implementation of function and 
performance. Dahlstedt et al. address requirements interdependencies from a traceability perspective, 
and they classify fundamental interdependency into three types, including structural interdependencies, 
constraint interdependencies, and cost/value interdependencies (Dahlstedt & Persson, 2005). Robinson 
et al. believe there are three characterizations of requirement interactions, including perceived interaction, 
logical interaction and implementation interaction (Robinson, et al., 2003). Perceived interaction implies 
that satisfaction of one requirement will affect the satisfaction of another requirement, while logical 
interaction is the same as the implementation interaction when the implementation is correct. According 
to Song, different interactions may exist between product characteristics and service characteristics, 
including enhancing, weakening, conflicting and replacing, and so on (Song & Cao, 2017). These 
interactions can be of different nature. For example, a conflict happens when two requirements cannot 
be implemented at the same time, which falls into implementation-related interaction. Meanwhile, 
another conflict happens when increasing the satisfaction level of one requirement decreases the 
satisfaction level of another requirement, which falls into perception-related interaction. Hence, previous 
research on requirement interactions can usually be classified into implementation-related interactions 
and perception-related interactions. Implementation-related interactions are usually functionality-related, 
structural, and logical. Perceived interactions are usually subjective and related to value and preference. 
Because of the complexity and wide scope, requirement interactions significantly influence requirements 
management, system development, change management and impact analysis, and others (Papinniemi, 
Hannola, & Maletz, 2014; Robinson, et al., 2003). Therefore, discovery, evaluation and disposition of 
these critical relationships are very important.  

2.2 Evaluation methods of requirement interactions of PSS 

Requirement interactions evaluation in terms of perceived preference is an important part of 
requirement interactions management. Some researchers have focused on this topic by developing and 
applying MADM methods to determine weights for requirements. The AHP is the most used method in 
requirements prioritization (Bukhsh, Bukhsh, & Daneva, 2020). It assumes that the requirements in the 
same hierarchy should be mutually independent and there is no interaction between them. Hence, the 
AHP and its extensions, including AHP, fuzzy AHP (Haber, Fargnoli, & Sakao, 2018), rough AHP (Song, 
et al., 2013) and others, fail to model requirement interactions. In fact, the majority of MADM methods 
assume those attributes are mutually independent, including TOPSIS, VIKOR, and others (Watrobski, et 
al., 2019). However, requirement interactions are common in PSS, and it influences the reliability of 
requirements prioritization and aggregation significantly. If requirement interactions are not 
appropriately considered, then they lead to erroneous or redundant results. 

The ANP is the generalized form of AHP, and it is applied to deal with complex and interrelated 
relationships between criteria. Fargnoli et al. propose a method based on QFDforPSS and ANP to assess 



the mutual interactions between the product’s and the service’s elements (Fargnoli & Haber, 2019). Geng 
et al. combine the fuzzy theory, group decision-making technique and ANP to determine weights of PSS 
requirements considering their interdependence, which has an advantage of manipulating uncertainty, 
group decision making and complex dependency relationships (Geng, et al., 2010). Mistarihi et al. use 
an integrated method that combines Quality Function Deployment (QFD) and fuzzy ANP to determine 
weights for engineering characteristics, which considers the mutual dependence between customer needs 
and engineering characteristics and the inner dependency between them under subjective judgements of 
intensity of preference (Mistarihi, Okour, & Mumani, 2020). However, the number of pairwise 
comparisons and calculation workload in the ANP is substantial when the number of PSS requirements 
are large.  

The DEMATEL is a method to analyze direct and indirect causal relationship among system variables 
or criteria, which can be used for visualizing cause and effect groups and for determining weights for 
system variables or criteria (Lee, et al., 2010). Geng et al. present a vague set-based DEMATEL method 
to consider the mutual influence relationships among PSS requirements with uncertainty and vagueness 
in the evaluation process (Geng & Chu, 2012). Song et al. propose a method based on rough set theory 
and DEMATEL for assessing requirement interactions under subjective group judgement, where crisp 
prominence and crisp relation are calculated from rough total relation matrix through multiple operators 
of modified-CFCS (converting fuzzy values into crisp scores) plus single vector-length (Song & Cao, 
2017). Liu et al. revise Song’s method by using a simpler operator of average vector-length on rough 
prominence and rough relation, which has the merit of remaining roughness until the end of weight 
calculation procedure (Liu & Ming, 2019). Different from the above individual consideration of fuzziness 
or group diversity, Chen et al. propose a graphic-based rough-fuzzy DEMATEL method to 
simultaneously manipulate vagueness and group diversity, which is applied to a different topic about 
evaluating innovative value propositions for smart PSS (Z. H. Chen, Lu, Ming, Zhang, & Zhou, 2020).  

There are some combinational applications of DEMATEL and ANP methods. Chen et al. propose a 
hybrid method for evaluating sustainable value requirement of PSS by integrating the fuzzy set, rough 
set, DEMATEL and ANP, which can simultaneously deal with judgement vagueness, group decision 
diversity and complex interrelationships (Z. H. Chen, et al., 2019). However, this method requires large 
amounts of rough-fuzzy pairwise comparisons because of the application of rough-fuzzy ANP. Different 
ways of hybridization between DEMATEL and ANP are also available, depending on how DEMATEL 
being applied in different stages of ANP (C. H. Chen & Tzeng, 2011). A summary of different evaluation 
methods of requirement interactions is shown in Table 1. 

Table 1 Different evaluation methods of requirement interactions 

Literature Method Linguistic, fuzzy 
assessment 

Group 
assessment 

Requirements 
prioritization 

Requirements 
aggregation 

(Fargnoli & 

Haber, 2019) 

QFDforPSS and 

ANP 

× × √ × 

(Geng, et al., 

2010) 

fuzzy theory, 

group decision-

making, ANP  

√ √ √ × 

(Mistarihi, et al., 

2020) 

QFD and fuzzy 

ANP 

√ × √ × 

(Geng & Chu, 

2012) 

vague sets, 

DEMATEL 

√ × √ × 



(Liu & Ming, 

2019; Song & 

Cao, 2017) 

Rough set, 

DEMATEL 

× √ √ × 

(Z. H. Chen, et 

al., 2019) 

fuzzy set, rough 

set, DEMATEL 

and ANP 

√ √ √ × 

 
These methods have made significant contributions to evaluating PSS requirement interactions. 

Complex dependency or cause-effect relationships have been modeled to determine weights for 
interacting PSS requirements in the context of intrapersonal judgement fuzziness and/or interpersonal 
judgement diversity. However, requirements aggregation is seldom considered in the existing PSS 
literature. While requirements prioritization is beneficial to focus on more important requirements, 
requirements aggregation pays more attention to the whole effect of all requirement together, which is 
critically important to design optimization and evaluation of alternatives. The weighted arithmetic mean 
method is the most common aggregation operator for aggregating criteria in MADM, but it has many 
well-known disadvantages (Marichal, 2000; Marichal & Roubens, 2000). It cannot express interaction 
effects among any subset of requirements.  

Fuzzy measures and the Choquet integral are powerful tools to aggregate interacting criteria in MADM 
(Beliakov, James, & Wu, 2020; Grabisch, 2016). A fuzzy measure is a set function, which can assign 
importance to any subset of criteria and thus can model interaction among any subset of PSS 
requirements. When the fuzzy measure is used to assign the importance of any subset of PSS 
requirements, a suitable aggregation operator is the Choquet integral that generalizes the weighted 
arithmetic mean. However, the number of coefficients to identify a fuzzy measure increase exponentially 
with number of requirements. To reduce this problem, 2-additive fuzzy measures are introduced to 
balance between complexity and accuracy, which enables modeling interactions among any two 
requirements. Therefore, to fill the gap of aggregating interacting PSS requirements non-additively, 2-
additive fuzzy measures and the Choquet integral are adopted. At the same time, rough-fuzzy DEMATEL 
is used to determine weights for PSS requirements when there is a group of experts providing their 
linguistic assessment of requirements. The weight information also acts as the input to identify 2-additive 
fuzzy measures.  

Therefore, this study combines rough-fuzzy DEMATEL, 2-additive fuzzy measures and the Choquet 
integral to propose a systematic method for evaluating interactions between PSS requirements. The 
objective is to build a non-additive aggregation function for interacting PSS requirements besides 
requirements prioritization.  

3 A hybrid framework integrating rough-fuzzy DEMATEL, 2-

additive fuzzy measures and the Choquet integral to evaluate 

interacting requirements  

3.1 Mathematical preliminaries 

This section introduces the definitions related to fuzzy measures, Möbius transform, 2-additive fuzzy 
measures, the Choquet integral, importance index, and interaction index.  
Definition 1 (Grabisch, 2016) Let 𝑋𝑋 = {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} be a finite non-empty set of 𝑛𝑛 criteria, and P(X) 



be the power set of 𝑋𝑋 . A fuzzy measure on 𝑋𝑋  is a set function 𝜇𝜇:𝑃𝑃(𝑋𝑋) → [0,1] , satisfying: (1) 
Boundary condition: 𝜇𝜇(∅) = 0 and 𝜇𝜇(𝑋𝑋) = 1, and (2) Monotonicity: for any 𝑆𝑆,𝑇𝑇 ∈ 𝑃𝑃(𝑋𝑋), 𝑆𝑆 ⊆ 𝑇𝑇 ⇒
𝜇𝜇(𝑆𝑆) ≤ 𝜇𝜇(𝑇𝑇). 
𝜇𝜇(𝑆𝑆) and 𝜇𝜇(𝑇𝑇) can be interpreted as the importance of subset 𝑆𝑆 and 𝑇𝑇, respectively.  

Definition 2 (Grabisch, 2016). A set function 𝑚𝑚𝑣𝑣:𝑃𝑃(𝑋𝑋) → R is called the Möbius transform of 𝑣𝑣 and 
it is expressed by: 

𝑚𝑚𝑣𝑣(𝑇𝑇) = ∑ (−1)|𝑇𝑇|−|𝑆𝑆|𝑣𝑣(𝑆𝑆),∀𝑆𝑆𝑆𝑆⊆𝑇𝑇 ∈ 𝑃𝑃(𝑋𝑋)  (1) 
where |𝑆𝑆|  and |𝑇𝑇|  are the cardinalities of subsets 𝑆𝑆  and 𝑇𝑇 , respectively. 𝑣𝑣  is a set function 
𝑣𝑣:𝑃𝑃(𝑋𝑋) → R that can be uniquely expressed by:  

𝑣𝑣(𝑇𝑇) = ∑ 𝑚𝑚𝑣𝑣(𝑆𝑆),∀𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) 𝑆𝑆⊆𝑇𝑇   (2) 
In order to establish the Möbius transform of 𝜇𝜇, the boundary and monotonicity conditions of the 

fuzzy measure must be satisfied. Those corresponding conditions in terms of the Möbius transform 
must have the properties given in Equation (3). 

�
𝑚𝑚𝜇𝜇(∅) = 0,∑ 𝑚𝑚𝜇𝜇(𝑇𝑇) = 1𝑇𝑇⊆X        
∑ 𝑚𝑚𝜇𝜇(𝑆𝑆) ≥ 0,∀𝑇𝑇 ⊆ X,∀𝑖𝑖 ∈ 𝑇𝑇𝑆𝑆⊆𝑇𝑇
∀𝑖𝑖∈𝑆𝑆

  (3) 

Definition 3 (Grabisch, 2016). A fuzzy measure 𝜇𝜇 is 2-additive if its Möbius transform 𝑚𝑚𝜇𝜇 satisfies: 
(1) For any 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) , if |𝑆𝑆| > 2 , then 𝑚𝑚𝜇𝜇(𝑆𝑆) = 0 , and (2) For any 𝑆𝑆 ∈ 𝑃𝑃(𝑋𝑋) , if |𝑆𝑆| = 2 , then 
∃𝑚𝑚𝜇𝜇(𝑆𝑆) ≠ 0. 

2-additive fuzzy measures can model interactions among at most two criteria. The number of 𝑚𝑚𝜇𝜇’s 
to be decided in 2-additivity is ∑ �𝑛𝑛𝑙𝑙 �

2
𝑙𝑙=1 , instead of 2𝑛𝑛 in general case. 2-additivity is a particular 

model of 𝑘𝑘 -additive fuzzy measures, which reduces complexity and is also of flexibility in 
expressiveness. When 𝑘𝑘 = 1  in 𝑘𝑘 -additive fuzzy measures, the fuzzy measure 𝜇𝜇  is 1 -additive, 
which means criteria in the set X are mutual independent. 
Definition 4 (Grabisch, 2016). Let 𝑥𝑥 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} ∈ [0,1]𝑛𝑛 be a vector. The Choquet integral of 𝑥𝑥 
with respect to the fuzzy measure 𝜇𝜇 is defined by: 

𝐶𝐶𝜇𝜇(𝑥𝑥) = ∑ 𝑥𝑥𝜎𝜎(𝑖𝑖)[𝜇𝜇𝑛𝑛
𝑖𝑖=1 (𝐴𝐴𝜎𝜎(𝑖𝑖)) − 𝜇𝜇(𝐴𝐴𝜎𝜎(𝑖𝑖+1))] (4) 

where 𝜎𝜎 is a permutation on 𝑥𝑥 so that 𝑥𝑥𝜎𝜎(1) ≤ ⋯ ≤ 𝑥𝑥𝜎𝜎(𝑛𝑛). 𝐴𝐴𝜎𝜎(𝑖𝑖) ≔ {𝜎𝜎(𝑖𝑖), … ,𝜎𝜎(𝑛𝑛)} and 𝐴𝐴𝜎𝜎(𝑛𝑛+1) =
∅.  
  The Choquet integral of 𝑥𝑥 with respect to the Möbius transform of 𝜇𝜇 is defined by Equation (5), 
where the symbol ∧ is the minimum operator.  

𝐶𝐶𝑚𝑚𝜇𝜇(𝑥𝑥) = ∑ 𝑚𝑚𝜇𝜇(𝑇𝑇)⋀ 𝑥𝑥𝑖𝑖𝑋𝑋𝑖𝑖∈𝑇𝑇𝑇𝑇⊆X   (5) 
Definition 5 (Grabisch, 2016). The global importance of a criterion 𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋  is measured by the 
importance index or the Shapley index. The Shapley index of 𝑋𝑋𝑖𝑖  with respect to 𝑚𝑚𝜇𝜇  is defined by 
Equation (6), and it is of the property ∑ ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1 = 1. 

∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖) = ∑ 1
|𝑇𝑇|+1

𝑚𝑚𝜇𝜇(𝑇𝑇 ∪ 𝑋𝑋𝑖𝑖),𝑇𝑇 ⊆ 𝑋𝑋 𝑇𝑇⊆𝑋𝑋{𝑋𝑋𝑖𝑖}   (6) 

Definition 6 (Grabisch, 2016). The degree of interaction among any subset criteria of is measured by the 
interaction index. The interaction index between 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 with respect to 𝑚𝑚𝜇𝜇 is defined by: 

𝐼𝐼𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = ∑ 1
|𝑇𝑇|+1𝑇𝑇⊆𝑋𝑋{𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗 }

𝑚𝑚𝜇𝜇�𝑇𝑇 ∪ 𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗�  (7) 

The interaction index 𝐼𝐼𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�  is of the property −1 ≤ 𝐼𝐼𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� ≤ 1 . If 𝑖𝑖 = 𝑗𝑗 , then 
𝐼𝐼𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖). 

3.2 The proposed approach for evaluating interacting PSS requirements  

In this section, an integrated approach combining rough-fuzzy DEMATEL, 2-additive fuzzy measures 



and Choquet integral is proposed to evaluate interacting requirements for PSS. This approach focuses on 
resolving requirements prioritization and non-additive aggregation under the context of group linguistic 
judgement. The underlying steps of the proposed approach are modeled using the Icam DEFinition for 
Function Modelling (IDEF0) methodology (Moreno et al., 2017) and shown in Fig.1.  

In particular, weights of PSS requirements are determined based on rough-fuzzy DEMATEL, which 
has the merit of dealing with cause-effect influence relationships among requirements, linguistic 
assessment from single expert and diverse assessments from group experts. Besides the weights of the 
requirements, identification of 2-additive fuzzy measures requires further information, such as the degree 
of interactions. Quantitative information on degree of interactions between any two requirements is 
derived from its relationship with weights of the PSS requirements and by considering the strength of 
interactions between any two requirements. All obtained information is then acted as constraints of an 
optimization model based on the minimum variance method. After the optimization model is solved, 2-
additive fuzzy measures are identified. Finally, PSS requirements are aggregated by utilizing the Choquet 
integral with respect to 2-additive fuzzy measures.  

A1

1 Determine 
weights of PSS 
requirements
considering 
interactions

A2

2 Determine 
constraints on the 
interaction indices 

A3

3 Determine 2-
additive fuzzy 

measures and their 
Möbius transform

A4

4 Aggregate PSS 
requirements

Group 
linguistic 

assessment

Aggregation 
function

Weights of PSS requirements

Constraints on the interaction indices 

2-additive fuzzy measures 
and their Möbius transform

Rough-fuzzy 
DEMATEL

importance index  
interaction index

Möbius transform, fuzzy measures
minimum variance method

Choquet Integral  
Fig.1. The approach to evaluate interacting PSS requirements 

3.2.1 Determine weights of PSS requirements considering interactions  

(1) Construct group fuzzy initial direct-relation matrix of PSS requirements 
Given a set of 𝑛𝑛 PSS requirements 𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}, their mutual influence relationships can be 

structurally expressed by a direct-relation matrix. Assume there is a set of ℎ experts who provide their 
subjective and linguistic assessment of influence degree between any two requirements. Fuzzy set theory 
is usually applied to express the fuzziness or imprecision of human cognitive processes, which is thus 
used for expressing experts’ linguistic assessment. In particular, the triangular fuzzy number (TFN) 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘 =
�𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙 , 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚 , 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘� is used to denote the direct influence degree of 𝑋𝑋𝑖𝑖 on 𝑋𝑋𝑗𝑗 provided by the 𝑘𝑘𝑡𝑡ℎ expert, 
where 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙 ≤ 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚 ≤ 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘. The basic operation of TFN is given in (Sun, 2010). The group fuzzy initial 
direct-relation matrix 𝐼𝐼𝐼𝐼𝐼𝐼 can be established by Equation (8).  

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑛𝑛×𝑛𝑛
= �

𝑟𝑟11 𝑟𝑟12 ⋯ 𝑟𝑟1𝑛𝑛
𝑟𝑟21 𝑟𝑟22 ⋯ 𝑟𝑟2𝑛𝑛
⋮
𝑟𝑟𝑛𝑛1

⋮
𝑟𝑟𝑛𝑛2

⋱
⋯

⋮
𝑟𝑟𝑛𝑛𝑛𝑛

� , 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 (8) 

where 𝑟𝑟𝑖𝑖𝑗𝑗 = �𝑟𝑟𝑖𝑖𝑗𝑗1 , 𝑟𝑟𝑖𝑖𝑗𝑗2 , … , 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘 , … 𝑟𝑟𝑖𝑖𝑗𝑗ℎ�, 𝑘𝑘 = 1, … , ℎ. In particular, if 𝑖𝑖 = 𝑗𝑗, then 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘 = (0,0,0).   



Different measuring scales have been used in the literature, such as 3-level scale, 5-level scale and 
7-level scale. Without any loss of generality, the 5-level scale is used to measure the influence degree. 
The linguistic assessments of influence degree and their corresponding TFN are listed in Table 2.  

Table 2. The linguistic assessments of influence degree and their corresponding TFN 

Linguistic assessments of influence degree TFN 

NO (N)  (0, 0, 0) 
Low (L)  (0, 0.25, 0.5) 

Medium (M)  (0.25, 0.5, 0.75) 
High (H) (0.5, 0.75, 1) 

Very high (V) (0.75, 1, 1) 

 
(2) Calculate rough-fuzzy direct-relation matrix and its normalized matrix  

The group fuzzy assessment 𝑟𝑟𝑖𝑖𝑗𝑗   can be converted into a rough-fuzzy interval 𝑟𝑟𝚤𝚤𝚤𝚤� = �𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘� 
through rough set theory, where 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙 is a TFN and the lower limit of 𝑟𝑟𝚤𝚤𝚤𝚤� , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘 is also a TFN and the 
upper limit of 𝑟𝑟𝚤𝚤𝚤𝚤� . The following procedures are taken to obtain 𝑟𝑟𝚤𝚤𝚤𝚤�  from 𝑟𝑟𝑖𝑖𝑗𝑗 .  

Firstly, it is necessary to rank all elements in 𝑟𝑟𝑖𝑖𝑗𝑗  and order those elements in such a way that 𝑟𝑟𝑖𝑖𝑗𝑗
(1) ≤

𝑟𝑟𝑖𝑖𝑗𝑗
(2) ≤ ⋯ ≤ 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘) ≤ ⋯ ≤ 𝑟𝑟𝑖𝑖𝑗𝑗
(𝑛𝑛), where 𝑟𝑟𝑖𝑖𝑗𝑗

( ) is a permutation on 𝑟𝑟𝑖𝑖𝑗𝑗 . Secondly, the lower approximation of 

𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘) can be expressed by a set 𝐿𝐿𝐴𝐴�𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘)� = �𝑟𝑟𝑖𝑖𝑗𝑗
(1), 𝑟𝑟𝑖𝑖𝑗𝑗

(2), … , 𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘)� and the upper approximation of 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘) 

can be expressed by a set 𝑈𝑈𝐴𝐴�𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘)� = �𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘), 𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘+1), … , 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑛𝑛)�. Then, the average value of elements in the 

set of 𝐿𝐿𝐴𝐴�𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘)� is defined as the lower limit of the corresponding rough-fuzzy number 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘), which is 
denoted by a TFN 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘)𝑙𝑙. The average value of elements in the set of 𝑈𝑈𝐴𝐴�𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘)� is defined as the upper 

limit of the corresponding rough-fuzzy number 𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘), which is denoted by a TFN 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘)𝑘𝑘. Finally, 𝑟𝑟𝑖𝑖𝑗𝑗  can 
then be converted into a rough-fuzzy number 𝑟𝑟𝚤𝚤𝚤𝚤� = �𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘� with Equation (9). 

�
𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙 =

∑ 𝑟𝑟𝑖𝑖𝑗𝑗
(𝑘𝑘)𝑙𝑙𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘 =
∑ 𝑟𝑟𝑖𝑖𝑗𝑗

(𝑘𝑘)𝑢𝑢𝑛𝑛
𝑘𝑘=1

𝑛𝑛

  (9) 

The rough-fuzzy direct-relation matrix 𝑅𝑅𝐼𝐼𝐼𝐼  can be expressed by Equation (10), where 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙 =
�𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑚𝑚 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑘𝑘� and 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘 = �𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑚𝑚, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑘𝑘� are TFNs. 

                     𝑅𝑅𝐼𝐼𝐼𝐼 = �𝑟𝑟𝚤𝚤𝚤𝚤� �𝑛𝑛×𝑛𝑛
=

⎣
⎢
⎢
⎢
⎡[𝑟𝑟11����

𝑙𝑙 , 𝑟𝑟11����𝑘𝑘] [𝑟𝑟12����𝑙𝑙 , 𝑟𝑟12����𝑘𝑘] ⋯ [𝑟𝑟1𝑛𝑛����𝑙𝑙 , 𝑟𝑟1𝑛𝑛����𝑘𝑘]
[𝑟𝑟21����𝑙𝑙 , 𝑟𝑟21����𝑘𝑘] [𝑟𝑟22����𝑙𝑙 , 𝑟𝑟22����𝑘𝑘] ⋯ [𝑟𝑟2𝑛𝑛����𝑙𝑙 , 𝑟𝑟2𝑛𝑛����𝑘𝑘]

⋮
[𝑟𝑟𝑛𝑛1����𝑙𝑙 , 𝑟𝑟𝑛𝑛1����𝑘𝑘]

⋮
[𝑟𝑟𝑛𝑛2����𝑙𝑙, 𝑟𝑟𝑛𝑛2����𝑘𝑘]

⋱
⋯

⋮
[𝑟𝑟𝑛𝑛𝑛𝑛����𝑙𝑙 , 𝑟𝑟𝑛𝑛𝑛𝑛����𝑘𝑘]⎦

⎥
⎥
⎥
⎤
                   (10) 

  The rough-fuzzy direct-relation matrix 𝑅𝑅𝐼𝐼𝐼𝐼 can be normalized through dividing each element by a 
rough number 𝑅𝑅𝑅𝑅(𝑟𝑟) . The normalized rough-fuzzy direct-relation matrix 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼  is calculated by 
Equation (11).  

𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼 = �𝑟𝑟𝚤𝚤𝚤𝚤� ′�
𝑛𝑛×𝑛𝑛

= �
𝑟𝑟𝚤𝚤𝚤𝚤�

𝑅𝑅𝑅𝑅(𝑟𝑟)�𝑛𝑛×𝑛𝑛
= �

�𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑚𝑚 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑘𝑘�
𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛 ∑ 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑘𝑘𝑛𝑛

𝑗𝑗=1
,
�𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑙𝑙 , 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑚𝑚, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑘𝑘�

 𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛 ∑ 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑘𝑘𝑛𝑛
𝑗𝑗=1

�
𝑛𝑛×𝑛𝑛

 (11) 

where 𝑅𝑅𝑅𝑅(𝑟𝑟) = �𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛 ∑ 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑘𝑘𝑛𝑛
𝑗𝑗=1 ,𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑖𝑖≤𝑛𝑛 ∑ 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑘𝑘𝑛𝑛

𝑗𝑗=1 �. Here, for the sake of brevity, the following 
identity is used: 𝑟𝑟𝚤𝚤𝚤𝚤� ′ ≡[(𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑙𝑙′, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑚𝑚′, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑘𝑘′), (𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑙𝑙′, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑚𝑚′, 𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑘𝑘′)]. 
(3) Calculate rough-fuzzy total-relation matrix 

The rough-fuzzy total-relation matrix 𝑅𝑅𝑇𝑇𝐼𝐼  is calculated with Equation (12) and Equation (13), 
where 𝐼𝐼 is the unit matrix with dimensions of 𝑛𝑛 × 𝑛𝑛.  



𝑅𝑅𝑇𝑇𝐼𝐼 = �𝑡𝑡𝑖𝑖𝑗𝑗�𝑛𝑛×𝑛𝑛
= �𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 �𝑛𝑛×𝑛𝑛

= ��𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑚𝑚, 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑘𝑘�, � 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚, 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘��𝑛𝑛×𝑛𝑛
  (12) 

�

                 
�𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙�𝑛𝑛×𝑛𝑛

= 𝐴𝐴𝑙𝑙(𝐼𝐼 − 𝐴𝐴𝑙𝑙)−1,𝐴𝐴𝑙𝑙 = �𝑟𝑟𝚤𝚤𝚤𝚤� 𝑙𝑙𝑙𝑙′�
𝑛𝑛×𝑛𝑛

�𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙�𝑛𝑛×𝑛𝑛
= 𝐵𝐵𝑙𝑙(𝐼𝐼 − 𝐵𝐵𝑙𝑙)−1,𝐵𝐵 = �𝑟𝑟𝚤𝚤𝚤𝚤� 𝑘𝑘𝑙𝑙′�

𝑛𝑛×𝑛𝑛

,   𝑥𝑥 = 𝑙𝑙,𝑚𝑚,𝑢𝑢 (13) 

(4) Calculate crisp prominence and crisp relation 
In the rough-fuzzy total-relation matrix 𝑅𝑅𝑇𝑇𝐼𝐼, the rough-fuzzy sum of row values and the rough-fuzzy 

sum of column are denoted by 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗, respectively. They are formally expressed in Equation 
(14). 

�
𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 = [(∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑛𝑛

𝑗𝑗=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑚𝑚𝑛𝑛
𝑗𝑗=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑘𝑘),𝑛𝑛

𝑗𝑗=1 �∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙𝑛𝑛
𝑗𝑗=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚𝑛𝑛

𝑗𝑗=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘)𝑛𝑛
𝑗𝑗=1 �

𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗 = ��∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑛𝑛
𝑖𝑖=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑚𝑚𝑛𝑛

𝑖𝑖=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑙𝑙𝑘𝑘𝑛𝑛
𝑖𝑖=1 �, �∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑙𝑙𝑛𝑛

𝑖𝑖=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚𝑛𝑛
𝑖𝑖=1 ,∑ 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘𝑛𝑛

𝑖𝑖=1 ��  
  (14) 

where 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 implies the overall influence of a given requirement 𝑋𝑋𝑖𝑖 on other requirements, and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗 
implies the overall influence of other requirements on a given requirement 𝑋𝑋𝑗𝑗.   
  In order to calculate crisp prominence and crisp relation, the 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗  are defuzzied into 
rough numbers. The method of converting a fuzzy number 𝐹𝐹𝑅𝑅 = (𝑙𝑙,𝑚𝑚,𝑢𝑢) into a crisp number 𝐶𝐶𝑅𝑅 is 
defined in Equation (15) (Liou & Wang, 1992; Yu & Dat, 2014), where 𝜌𝜌 is a parameter to denote 
experts’ risk attitude about the 𝐹𝐹𝑅𝑅. 

𝐶𝐶𝑅𝑅 = (1−𝜌𝜌)𝑙𝑙+𝑚𝑚+𝜌𝜌𝑘𝑘
2

  (15) 

If 0.5 < 𝜌𝜌 ≤ 1, then experts are optimistic about the 𝐹𝐹𝑅𝑅. If 𝜌𝜌 = 0.5, then experts are neutral about 
the 𝐹𝐹𝑅𝑅. If 0 ≤ 𝜌𝜌 < 0.5, then experts are pessimistic about the 𝐹𝐹𝑅𝑅.  

With Equation (15), the 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗  can be converted into rough numbers 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖′ =
�𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖𝑙𝑙

′ ,𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖𝑘𝑘
′�  and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗′ = �𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗𝑙𝑙

′ ,𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗𝑘𝑘
′� , respectively. 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖′  and 𝑅𝑅𝑆𝑆𝐶𝐶𝑖𝑖′  are calculated through 

Equation (16), where 𝜌𝜌𝑖𝑖1, 𝜌𝜌𝑖𝑖2, 𝜌𝜌𝑗𝑗1 and 𝜌𝜌𝑗𝑗2 are parameters to denote experts’ risk attitude. 

⎩
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    (16) 

Then, rough numbers 𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖′ and 𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗′ are converted into crisp numbers. The method of converting 

a rough number 𝑅𝑅𝑅𝑅 = [𝐶𝐶𝑙𝑙 ,𝐶𝐶𝑘𝑘] to a crisp number 𝐶𝐶 is given in Equation (17) (Song, et al., 2013), 
where 𝜃𝜃 is the indicator of risk attitude. 

𝐶𝐶 = (1 − 𝜃𝜃)𝐶𝐶𝑙𝑙 + 𝜃𝜃𝐶𝐶𝑘𝑘 (17) 
If experts are optimistic about their assessment of 𝜃𝜃, then they can select a value bigger than 0.5. If 

decision makers are neutral about their assessment, then they can choose the value of 0.5. Otherwise, 
they can select a value smaller than 0.5 for 𝜃𝜃.  
  With Equation (17), the crisp sum of 𝑖𝑖th row 𝐶𝐶𝑆𝑆𝑅𝑅𝑖𝑖 and crisp sum of 𝑗𝑗th column 𝐶𝐶𝑆𝑆𝐶𝐶𝑗𝑗 are calculated 
through Equation (18), where 𝜃𝜃𝑅𝑅𝑖𝑖 and 𝜃𝜃𝐶𝐶𝑗𝑗 are indicators of risk attitude. 

𝐶𝐶𝑆𝑆𝑅𝑅𝑖𝑖 = (1 − 𝜃𝜃𝑅𝑅𝑖𝑖)𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖𝑙𝑙
′ + 𝜃𝜃𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖𝑘𝑘

′

𝐶𝐶𝑆𝑆𝐶𝐶𝑗𝑗 = �1 − 𝜃𝜃𝐶𝐶𝑗𝑗�𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗𝑙𝑙
′ + 𝜃𝜃𝐶𝐶𝑗𝑗𝑅𝑅𝑆𝑆𝐶𝐶𝑗𝑗𝑘𝑘

′ (18) 

  Then, the crisp prominence 𝐶𝐶𝑃𝑃𝑖𝑖 and the crisp relation 𝐶𝐶𝑅𝑅𝑖𝑖 are calculated with Equation (19).  

�𝐶𝐶𝑃𝑃𝑖𝑖 = 𝐶𝐶𝑆𝑆𝑅𝑅𝑖𝑖 + 𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖
𝐶𝐶𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑆𝑆𝑅𝑅𝑖𝑖 − 𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖

  (19) 

𝐶𝐶𝑃𝑃𝑖𝑖 indicates the total influence degree that is given by and received by 𝑋𝑋𝑖𝑖, while 𝐶𝐶𝑅𝑅𝑖𝑖 indicates the 



net effect that 𝑋𝑋𝑖𝑖 contributes to other requirements. 𝐶𝐶𝑅𝑅𝑖𝑖 is applied to classify requirements into cause 
and effect groups. If 𝐶𝐶𝑅𝑅𝑖𝑖 is positive, then 𝑋𝑋𝑖𝑖 belongs to the cause group. Otherwise, 𝑋𝑋𝑖𝑖 belongs to the 
effect group. 
(5) Determine weights of PSS requirements 

The normalized weight of the 𝑖𝑖𝑡𝑡ℎ requirement 𝑤𝑤𝑖𝑖  is calculated with Equation (20). 

𝑤𝑤𝑖𝑖 = �(𝐶𝐶𝐶𝐶𝑖𝑖)2+(𝐶𝐶𝑅𝑅𝑖𝑖)2

∑ �(𝐶𝐶𝐶𝐶𝑖𝑖)2+(𝐶𝐶𝑅𝑅𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

  (20) 

Here, 𝑤𝑤𝑖𝑖  ’s are the overall relative importance of PSS requirements, because weights of 
requirements are determined by considering mutual influence relationships among PSS requirements. 
Also, 𝑤𝑤𝑖𝑖  ’s have the property of ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 1 . Therefore, 𝑤𝑤𝑖𝑖   calculated from rough-fuzzy 
DEMATEL is used as the Shapley index ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖). 

3.2.2 Determine constraints on the interaction indices 

According to fuzzy measures, the Shapley value ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖) is in general different from the fuzzy 
measure 𝜇𝜇(𝑋𝑋𝑖𝑖). ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖) can be interpreted as overall importance of 𝑋𝑋𝑖𝑖 while 𝜇𝜇(𝑋𝑋𝑖𝑖) is interpreted 

as importance of 𝑋𝑋𝑖𝑖. The reason of the difference is that there are interactions between 𝑋𝑋𝑖𝑖 and the 
other requirements. Consider any two different requirements 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗 , their interaction index 
𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� can be modelled by Equation (21). 

�

0 < 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ≤ 1, 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗�  > 𝜇𝜇(𝑋𝑋𝑖𝑖) + 𝜇𝜇�𝑋𝑋𝑗𝑗� 

𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� = 0, 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗� = 𝜇𝜇(𝑋𝑋𝑖𝑖) + 𝜇𝜇�𝑋𝑋𝑗𝑗�            

−1 ≤ 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� < 0, 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗�  < 𝜇𝜇(𝑋𝑋𝑖𝑖) + 𝜇𝜇�𝑋𝑋𝑗𝑗�
 (21) 

If 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗�  > 𝜇𝜇(𝑋𝑋𝑖𝑖) + 𝜇𝜇�𝑋𝑋𝑗𝑗� , then there is complementarity between 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗 , hence 
simultaneous satisfaction of both requirements should be favored. The requirement interactions are 
then positive with 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ∈ (0,1). The larger the 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��, the larger the complementarity. 
In particular, if 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� = 1, then there is perfect complementarity. If 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗� = 𝜇𝜇(𝑋𝑋𝑖𝑖) +
𝜇𝜇�𝑋𝑋𝑗𝑗� , then 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗  are mutual independent and 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� = 0 . If 𝜇𝜇�𝑋𝑋𝑖𝑖 ∪ 𝑋𝑋𝑗𝑗� <  𝜇𝜇(𝑋𝑋𝑖𝑖) +
𝜇𝜇�𝑋𝑋𝑗𝑗�, then there is substitutability or some overlap between 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗. The requirement interactions 
are then negative with 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ∈ [−1,0] . The smaller the 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� , the larger the 
substitutability. In particular, if 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� = −1, then there is perfect substitutability.  

The assessment of constrains on interaction indices includes three steps. First, the type of a specific 
interaction index is assessed, which can be either positive, negative or independent. Second, 
quantitative constraints on interaction indices are determined according to the conditions to be satisfied 
by the 2-additive fuzzy measures. With respect to the conditions to be satisfied in the Equation (3), 
constraints on degree of interaction between 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are derived and defined in Equation (22) (Wu 
& Zhang, 2010).  
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−

2∅𝑙𝑙𝜇𝜇(𝑋𝑋𝑖𝑖)

𝑛𝑛−1
≤ 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ≤

2∅𝑙𝑙𝜇𝜇(𝑋𝑋𝑖𝑖)

𝑛𝑛−1

−
2∅𝑙𝑙𝜇𝜇�𝑋𝑋𝑗𝑗�

𝑛𝑛−1
≤ 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑖𝑖�� ≤

2∅𝑙𝑙𝜇𝜇�𝑋𝑋𝑗𝑗�

𝑛𝑛−1

  (22) 

Let 𝐼𝐼𝑖𝑖𝑗𝑗 = min �
2∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖)

𝑛𝑛−1
,
2∅𝑚𝑚𝜇𝜇�𝑋𝑋𝑗𝑗�

𝑛𝑛−1
� . Because of 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� = 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑖𝑖�� , there is the 

following constraint on 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� as defined in Equation (23). 
 

�𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��� ≤ 𝐼𝐼𝑖𝑖𝑗𝑗 (23) 



Third, for the sake of describing interactions more intuitively, the degree of interaction is elicited 
and falls into certain subinterval of [−𝐼𝐼𝑖𝑖𝑗𝑗 , 𝐼𝐼𝑖𝑖𝑗𝑗]. [−𝐼𝐼𝑖𝑖𝑗𝑗 , 𝐼𝐼𝑖𝑖𝑗𝑗] is divided into five subintervals, including 

[−𝐼𝐼𝑖𝑖𝑗𝑗 ,−3
5
𝐼𝐼𝑖𝑖𝑗𝑗], [−

3
5
𝐼𝐼𝑖𝑖𝑗𝑗 ,−1

5
𝐼𝐼𝑖𝑖𝑗𝑗], [−1

5
𝐼𝐼𝑖𝑖𝑗𝑗 , 1

5
𝐼𝐼𝑖𝑖𝑗𝑗], [1

5
𝐼𝐼𝑖𝑖𝑗𝑗 , 3

5
𝐼𝐼𝑖𝑖𝑗𝑗], [3

5
𝐼𝐼𝑖𝑖𝑗𝑗 , 𝐼𝐼𝑖𝑖𝑗𝑗], representing significant negative 

interaction, negative interaction, independence, positive interaction and significant positive 
interaction, respectively. 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� should lie in certain subinterval 𝐼𝐼′𝑖𝑖𝑗𝑗 (𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑛𝑛 and 

𝑖𝑖 ≠ 𝑗𝑗). This yields: 

𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ∈ 𝐼𝐼
′
𝑖𝑖𝑗𝑗  (24) 

Furthermore, other preference information may be elicited depending on the particular context, such 
as overall utilities of alternatives, rank of alternatives and interactions. Comparatively, the overall utilities 
of alternatives cannot always be obtained in the early stage of the PSS development while the burden to 
obtain the rank of alternatives or interactions is lighter.  

3.2.3 Determine 2-additive fuzzy measures and their Möbius transform 

Several approaches are available in the literature for identifying fuzzy measures, such as least-squares 
based method, maximum split method, minimum variance method, and supervised method with and 
without regularization (Grabisch, Kojadinovic, & Meyer, 2008; Kojadinovic, 2007; Pelegrina, Duarte, 
Grabisch, & Romano, 2020). The minimum variance method is used to identify the “least specific” fuzzy 
measures conditioning the initial preference being satisfied (Kojadinovic, 2007). It has the advantage of 
finding a unique solution, because of the mathematical form of the objective function. Compared with 
the least-squares based method, this method does not require preference information about overall utility 
assessment of alternatives. The requirements’ weights, constraints on interaction indices, and other 
available information are used as constraints in the minimum variance method. Therefore, the minimum 
variance method is applied here to determine 2-additive fuzzy measures and their Möbius transform. The 
objective function and its constraints are given in Equation (25). 

min   1
𝑛𝑛
∑ ∑ (|𝑋𝑋|−|𝑄𝑄|−1)!|𝑄𝑄|!

|𝑋𝑋|!
�∑ 𝑚𝑚𝜇𝜇(𝑆𝑆 ∪ 𝑋𝑋𝑖𝑖)𝑆𝑆⊆𝑄𝑄 − 1

𝑛𝑛
�
2

𝑄𝑄⊆𝑋𝑋\{𝑋𝑋𝑖𝑖}𝑋𝑋𝑖𝑖∈𝑋𝑋   (25) 

𝑠𝑠. 𝑡𝑡.�

                                        
𝑤𝑤𝑖𝑖 = ∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖) = 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��, 𝑖𝑖 = 𝑗𝑗 = 1, … ,𝑛𝑛 

 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� ∈ 𝐼𝐼
′
𝑖𝑖𝑗𝑗                                                   

…                                                                                  
 

                 

    

The first constraint is obtained from relative weight of the requirement 𝑋𝑋𝑖𝑖. The second constraint 
gives information about the interaction indices when 2-additive fuzzy measures are used. More 
constraints can be added when they are available. In fact, Möbius transform 𝑚𝑚𝜇𝜇’s are identified through 
the optimization process. Then, 2-additive fuzzy measures are identified using Equation (2).  

3.2.4 Aggregate PSS requirements 

Although weights of PSS requirements take requirement interactions into consideration, the weighted 
arithmetic mean remains an unattractive aggregation operator, which is unsuitable when additive 
independence is violated. The fuzzy measures are introduced to replace the weights vector in the 
weighted arithmetic mean. They can express not only the importance of each requirement but also the 
importance of each subset of requirements. A suitable extension that generalizes the weighted arithmetic 
mean is the Choquet integral with regards to fuzzy measures.  



Assume the marginal utility function of the requirement 𝑋𝑋𝑖𝑖 has already been determined and been 
denoted by 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖) ∈ [0,1]  with utility theory (Keeney & Raiffa, 1993) or MACBETH approach 
(Bana E Costa & Chagas, 2004). Those marginal utility functions should be commensurable as 
required by application of the Choquet integral (Grabisch, et al., 2008). For example, if 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖) and 
𝑢𝑢𝑗𝑗�𝑥𝑥𝑗𝑗� are commensurable, then all scales of 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖) can be represented by the same scale of 𝑢𝑢𝑗𝑗�𝑥𝑥𝑗𝑗�. 
They represent the same degree of satisfaction when 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝑢𝑢𝑗𝑗�𝑥𝑥𝑗𝑗� . Let 𝑢𝑢 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛} 
denote the set of marginal utility functions.  

The PSS requirements are aggregated with the Choquet integral. In case of 2-additive fuzzy 
measures, the Choquet integral of 𝑢𝑢 with respect to 𝜇𝜇 can be expressed by the interaction indices 
and the Shapley values as defined in Equation (26) (Grabisch & Labreuche, 2010), where ∧ and ∨ 
denote min and max, respectively.  

𝐶𝐶𝜇𝜇(𝑢𝑢) = ∑ �𝑢𝑢𝑖𝑖 ∧ 𝑢𝑢𝑗𝑗�𝐼𝐼𝑙𝑙𝜇𝜇��𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗��>0
𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� + ∑ �𝑢𝑢𝑖𝑖 ∨ 𝑢𝑢𝑗𝑗�𝐼𝐼𝑙𝑙𝜇𝜇��𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗��<0

�𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��� +

∑ 𝑢𝑢𝑖𝑖 �∅𝑚𝑚𝜇𝜇(𝑋𝑋𝑖𝑖) − 0.5∑ �𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗���𝑖𝑖≠𝑗𝑗 �𝑛𝑛
𝑖𝑖=1   

(26) 

4 Illustrative application 
In this section, the proposed method is applied to evaluate requirement interactions for developing a 

smart wearable medical system in Company A. Company A is a recently established business focusing 
on developing smart wearable medical systems for families and hospitals. They have already successfully 
launched a smart wearable medical device into market for monitoring body temperatures of patients. In 
order to extend their product line, they are developing a new smart wearable medical system that will 
provide sophisticated capabilities for monitoring patients’ vital signs, such as their pulse, blood pressure 
and temperature, and for medical services/professionals. This new system is a kind of smart PSS. The 
framework of the system is shown in Fig. 2.  

 
Fig. 2. The framework of smart wearable medical system. 

 
The evaluation of requirement interactions is conducted by a decision group of five members, 

including two customer representatives, one software engineer, one hardware engineer and one product 



manager. After several iterations in the decision group, a set of nine high-level system requirements has 
been identified as given in Table 3. 

Table 3 The set of requirements of the smart wearable medical system 

Requirement Description 

𝑋𝑋1 The system should measure patient’s vital signs accurately 
𝑋𝑋2 The system should be waterproof to resist sweat from patient’s body 
𝑋𝑋3 The system should be comfortable when attached to patient’s body 
𝑋𝑋4 The system should be easy to use 
𝑋𝑋5 The system should be used repeatedly   
𝑋𝑋6 The system should monitor patient’s vital signs remotely and continuously 
𝑋𝑋7 The system should have low lifecycle cost 
𝑋𝑋8 The system should provide data storage, analysis, and an emergency alarm 
𝑋𝑋9 The system should allow remote medical diagnosis 

 
It is straightforward to detect interaction among requirements. For example, the requirement 𝑋𝑋2 will 

influence 𝑋𝑋1  and there is negative interaction between 𝑋𝑋1  and 𝑋𝑋2 . The interactions significantly 
influence requirements prioritization and aggregation. The objective of evaluating interacting 
requirements for the smart wearable medical system is to determine weights of requirements and to 
develop model of aggregated requirements considering interactions. The evaluation provides valuable 
information for managers and design engineers in Company A, which in turn enables them to focus on 
more important requirements, to evaluate alternatives, and to optimize their design. The method is 
compared with the fuzzy DEMATEL method with respect to requirements prioritization, and compared 
with the weighted arithmetic mean method with respect to requirements aggregation.  

4.1 Evaluate requirement interactions for the smart wearable medical system 

4.1.1 Determine weights of requirements for the smart wearable medical system 

(1) Construct group fuzzy initial direct-relation matrix  
For the identified requirements in Table 3, the members in the decision group provide their linguistic 

assessments. The result with respect to the influence degree from 𝑋𝑋𝑖𝑖 to 𝑋𝑋𝑗𝑗 is 𝑟𝑟𝑖𝑖𝑗𝑗 = �𝑟𝑟𝑖𝑖𝑗𝑗1 , 𝑟𝑟𝑖𝑖𝑗𝑗2 , 𝑟𝑟𝑖𝑖𝑗𝑗3 , 𝑟𝑟𝑖𝑖𝑗𝑗4 , 𝑟𝑟𝑖𝑖𝑗𝑗5�. 
The group fuzzy initial direct-relation matrix 𝐼𝐼𝐼𝐼𝐼𝐼 in Equation (8) is conveniently represented in Table 
4. Each cell of the table is filled with 5 assessments from the 5 members. For example, the cell from 𝑋𝑋1 
to 𝑋𝑋2 denotes that four members give “no influence” and that one member give “low influence” of 𝑋𝑋1 
to 𝑋𝑋2.  

Table 4 The table form of the group fuzzy initial direct-relation matrix 

DMs 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 𝑋𝑋5 𝑋𝑋6 𝑋𝑋7 𝑋𝑋8 𝑋𝑋9 

𝑋𝑋1 N,N,N,N,N N,N,L,N,N M,L,M,M,M L,L,M,L,L M,L,L,M,M N,N,N,N,N M,H,M,H,H N,N,N,N,N N,N,N,N,N 

𝑋𝑋2 H,M,M,M,M N,N,N,N,N M,H,V,H,M N,N,N,N,N M,M,H,M,M L,N,N,N,N M,M,L,L,L N,N,N,N,N N,N,N,N,N 

𝑋𝑋3 L,L,M,M,M L,N,M,L,N N,N,N,N,N N,N,N,L,N L,N,L,N,N N,N,L,N,L M,M,M,M,M N,N,N,N,N N,N,N,N,N 

𝑋𝑋4 L,N,L,N,M N,N,N,N,N N,N,N,L,N N,N,N,N,N N,N,N,N,N N,N,N,L,N L,L,L,M,L N,N,N,N,N N,N,N,N,N 

𝑋𝑋5 M,L,N,L,N L,L,L,L,L L,N,N,N,N N,N,L,N,N N,N,N,N,N M,L,M,L,M H,M,M,M,M N,N,N,N,N N,N,N,N,N 

𝑋𝑋6 N,N,N,L,N N,N,N,N,N M,M,H,H,M M,L,L,M,M M,M,L,M,M N,N,N,N,N M,H,M,M,M M,M,H,H,V M,M,M,M,M 

𝑋𝑋7 M,L,M,L,L N,N,L,N,N L,L,M,M,L N,N,L,N,L M,L,M,H,M L,L,L,L,L N,N,N,N,N M,M,L,M,M M,M,L,M,M 

𝑋𝑋8 N,N,N,N,N N,N,N,N,N N,N,N,N,N H,H,H,M,M N,N,N,N,N N,N,N,N,N H,M,M,H,H N,N,N,N,N H,H,H,M,M 



𝑋𝑋9 N,N,N,N,N N,N,N,N,N N,N,N,N,N H,M,M,L,M M,M,L,L,L N,N,N,N,N M,H,M,M,H N,N,N,N,N N,N,N,N,N 

 
(2) Calculate rough-fuzzy direct-relation matrix and its normalized matrix 
  By using Equation (9), the 𝑟𝑟𝑖𝑖𝑗𝑗  ’s are converted into rough-fuzzy numbers 𝑟𝑟𝚤𝚤𝚤𝚤�  ’s. Taking the group 
assessments of 𝑟𝑟32  as an example, the five linguistic assessments are L, N, M, L and N, and their 
corresponding fuzzy numbers are (0, 0.25, 0.5), (0, 0, 0), (0.25, 0.5, 0.75), (0, 0.25, 0.5) and (0, 0, 0). 
The ranking order of elements in 𝑟𝑟32  is N, N, L, L and M. The lower approximation and upper 
approximation of N are 𝐿𝐿𝐴𝐴(𝑅𝑅) = {𝑅𝑅,𝑅𝑅} and 𝑈𝑈𝐴𝐴(𝑅𝑅) = {𝑅𝑅,𝑅𝑅, 𝐿𝐿, 𝐿𝐿,𝐼𝐼}, respectively. The lower limit 
of N is calculated through averaging TFNs in 𝐿𝐿𝐴𝐴(𝑅𝑅) . The upper limit of N is calculated through 
averaging TFNs in 𝑈𝑈𝐴𝐴(𝑅𝑅) . The lower limit and upper limit of N are (0, 0, 0) and (0.05,0.2,0.35), 
respectively. The lower approximation and upper approximation of L are 𝐿𝐿𝐴𝐴(𝐿𝐿) = {𝑅𝑅,𝑅𝑅, 𝐿𝐿, 𝐿𝐿}  and 
𝑈𝑈𝐴𝐴(𝐿𝐿) = {𝐿𝐿, 𝐿𝐿,𝐼𝐼} , respectively. The lower limit and upper limit of N is (0, 0.125, 0.25) and 
(0.083,0.333,0.583). The lower approximation and upper approximation of M are 𝐿𝐿𝐴𝐴(𝐼𝐼) =
{𝑅𝑅,𝑅𝑅, 𝐿𝐿, 𝐿𝐿,𝐼𝐼} and 𝑈𝑈𝐴𝐴(𝐼𝐼) = {𝐼𝐼}, respectively. The lower limit and upper limit of M is (0.05,0.2,0.35) 
and (0.25,0.50,0.75). The rough-fuzzy number 𝑟𝑟32���� = �𝑟𝑟32����𝑙𝑙 , 𝑟𝑟32����𝑘𝑘�  is [(0.01, 0.09, 0.17), (0.10, 0.31, 
0.52)]. The calculation process is repeated for all the 𝑟𝑟𝑖𝑖𝑗𝑗’s and the rough-fuzzy direct-relation matrix 
𝑅𝑅𝐼𝐼𝐼𝐼 in Equation (10) is then obtained. The subset of the full 𝑅𝑅𝐼𝐼𝐼𝐼 is presented in Table 5. 

Table 5 The rough-fuzzy direct-relation matrix 

DMs 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 … 𝑋𝑋9 

𝑋𝑋1 [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

[(0.00,0.01,0.02), 

(0.00,0.09,0.18)] 

[(0.16,0.41,0.66), 

(0.24,0.49,0.74)] 

…. [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

𝑋𝑋2 [(0.26,0.51,0.76), 

(0.34,0.59,0.84)] 

[(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

[(0.34,0.59,0.83), 

(0.56,0.81,0.96)] 

… [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

𝑋𝑋3 [(0.09,0.34,0.59), 

(0.21,0.46,0.71)] 

[(0.01,0.09,0.17), 

(0.10,0.31,0.52)] 

[(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

… [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

… … … … … … 

𝑋𝑋9 [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

[(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

[(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

… [(0.00,0.00,0.00), 

(0.00,0.00,0.00)] 

 
The normalized rough-fuzzy direct-relation matrix 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼 is then obtained through dividing each 

element in the matrix 𝑅𝑅𝐼𝐼𝐼𝐼 by a rough number 𝑅𝑅𝑅𝑅(𝑟𝑟). 𝑅𝑅𝑅𝑅(𝑟𝑟) is calculated by Equation (11) and is 
[4.4, 5.09]. The calculated 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼 is given in Table 6. 

Table 6 The normalized rough-fuzzy direct-relation matrix 

DMs 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 … 𝑋𝑋9 

𝑋𝑋1 [(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

[(0.000,0.002,0.005), 

(0.000,0.018,0.035)] 

[(0.036,0.093,0.150), 

(0.047,0.096,0.145)] 

… [(0.000,0.000,0.0000), 

(0.000,0.000,0.000)] 

𝑋𝑋2 [(0.059,0.116,0.172), 

(0.067,0.116,0.165)] 

[(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

[(0.077,0.134,0.1890), 

(0.110,0.159,0.189)] 

… [(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

𝑋𝑋3 [(0.020,0.077,0.134), 

(0.041,0.090,0.139)] 

[(0.002,0.020,0.039), 

(0.020,0.061,0.102)] 

[(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

… [(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

… … … … … … 

𝑋𝑋9 [(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

[(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

[(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

… [(0.000,0.000,0.000), 

(0.000,0.000,0.000)] 

 



(3) Calculate rough-fuzzy total-relation matrix 
  By applying Equations (12) and (13), the rough-fuzzy total-relation matrix 𝑅𝑅𝑇𝑇𝐼𝐼 is calculated. The 
resulting 𝑅𝑅𝑇𝑇𝐼𝐼 is given in Table 7. 

Table 7 The rough-fuzzy total-relation matrix 

DMs 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 … 𝑋𝑋9 

𝑋𝑋1 [(0.002,0.025,0.098), 

(0.007,0.045,0.166)] 

[(8.454e-05,0.011,0.042), 

(9.983e-04,0.036,0.112)] 

[(0.037,0.111,0.232), 

(0.051,0.129,0.280)] 

… [(3.218e-03,0.021,0.079), 

(0.005,0.024,0.089)] 

𝑋𝑋2 [(0.061,0.141,0.277), 

(0.075,0.163,0.335)] 

[(1.813e-04,0.012,0.048), 

(2.271e-03,0.026,0.095)] 

[(0.080,0.160,0.298), 

(0.116,0.201,0.350)] 

… [(9.471e-04,0.016,0.078), 

(0.003,0.023,0.095,)] 

𝑋𝑋3 [(0.021,092,0.020), 

(0.045,0.123,0.279)] 

[(2.276e-03,0.023,0.058), 

(1.976e-02,0.072,0.163)] 

[(0.001,0.023,0.090), 

(0.006,0.043,0.158)] 

… [(2.316e-03,0.017,0.067), 

(0.003,0.022,0.089)] 

… … … … … … 

𝑋𝑋9 [(0.001,0.015,0.065), 

(0.005,0.032,0.116)] 

[(1.484e-06,0.005,0.027), 

(6.003e-05,0.010,0.049)] 

[(0.001,0.014,0.064), 

(0.003,0.025,0.100)] 

… [(2.645e-03,0.018,0.066), 

(0.004,0.021,0.081)] 

 
(4) Calculate crisp prominence and crisp relation 

For the 𝑅𝑅𝑇𝑇𝐼𝐼, the rough-fuzzy sum of rows and the rough-fuzzy sum of columns are calculated with 
Equation (14), and the results are given in the 2nd column and 5th column of Table 8, respectively. If the 
decision group is neutral about the TFNs, then 𝜌𝜌 equals 0.5 in Equation (15). According to Equation 
(16), the rough sum of rows and rough sum of columns are calculated when 𝜌𝜌 equals 0.5. The acquired 
results are shown in the 3rd column and 6th column of Table 8, respectively. For other possible risk attitude 
of the decision group about the TFNs, the calculation is straightforward. Furthermore, if the decision 
group is neutral about the rough number, then 𝜃𝜃 equals 0.5 in Equation (17). The crisp sum of row and 
crisp sum of column when 𝜃𝜃 equals 0.5 are calculated by applying Equation (18), and the results are 
shown in in the 4th column and 7th column of Table 8, respectively. 

Table 8 Crisp sum of row and column when 𝜌𝜌 equals 0.5 and 𝜃𝜃 equals 0.5 
 Rough-fuzzy 

sum of row 
Rough sum 
of row  

 Crisp sum 
of row  

rough-fuzzy sum 
of column 

Rough sum 
of column  

 Crisp sum 
of column 

𝑋𝑋1 [(0.153,0.548,1.354), 

(0.235,0.695,1.748)] 

[0.651,0.843] 0.747 [(0.102,0.474,1.251), 

(0.223,0.757,1.982)] 

[0.576,0.930] 0.753 

𝑋𝑋2 [(0.228,0.656,1.564), 

(0.326,0.838,1.988)] 

[0.776,0.998] 0.887 [(0.003,0.137,0.432), 

(0.026,0.278,0.876)] 

[0.177,0.365] 0.271 

𝑋𝑋3 [(0.092,0.385,1.020), 

(0.140,0.599,1.662)] 

[0.470,0.750] 0.610 [(0.198,0.604,1.439), 

(0.306,0.816,1.957)] 

[0.711,0.973] 0.842 

… … … … … … … 

𝑋𝑋9 [(0.122,0.417,1.029), 

(0.209,0.534,1.280)] 

[0.497,0.639] 0.568 [(0.199,0.542,1.266), 

(0.235,0.576,1.336)] 

[0.637,0.680] 0.659 

 
According to Equation (19), by adding the crisp sum of row to crisp sum of column, the crisp 

prominence is obtained and the results when 𝜌𝜌 equals 0.5 are shown in the 2nd column of Table 8. By 
subtracting the crisp sum of row to crisp sum of column, the crisp relation is obtained and the results 
when 𝜌𝜌 equals 0.5 are shown in the 5th column of Table 8. The relation values enable to separate these 
9 requirements into cause and effect groups. The relation values of 𝑋𝑋2, 𝑋𝑋6 and 𝑋𝑋8 are positive, and 
they are classified in the cause group. The relation values of other requirements are negative, and they 



belong to the effect group. The crisp prominence and crisp relation when 𝜌𝜌 equals 0 and 1 respectively 
are also calculated and shown in Table 9. 

Table 9 Crisp prominence, crisp relation and relative weight 

 crisp prominence crisp relation Relative weight 
𝜌𝜌 = 0.5 𝜌𝜌 = 0 𝜌𝜌 = 1 𝜌𝜌 = 0.5 𝜌𝜌 = 0 𝜌𝜌 = 1 𝜌𝜌 = 0.5 𝜌𝜌 = 0 𝜌𝜌 = 1 

𝑋𝑋1 1.500 0.797 2.202 -0.006 0.019 -0.030 0.106 0.100 0.109 

𝑋𝑋2 1.158 0.623 1.693 0.616 0.401 0.831 0.093 0.093 0.093 

𝑋𝑋3 1.452 0.785 2.121 -0.232 -0.177 -0.287 0.104 0.101 0.105 

𝑋𝑋4 1.068 0.554 1.581 -0.496 -0.307 -0.684 0.083 0.079 0.085 

𝑋𝑋5 1.669 0.878 2.459 -0.243 -0.169 -0.318 0.119 0.112 0.122 

𝑋𝑋6 1.679 0.933 2.424 0.795 0.552 1.037 0.132 0.136 0.130 

𝑋𝑋7 2.590 1.164 3.715 -0.560 -0.415 -0.705 0.188 0.191 0.186 

𝑋𝑋8 1.211 0.744 1.678 0.217 0.163 0.271 0.087 0.096 0.084 

𝑋𝑋9 1.227 0.708 1.745 -0.091 -0.067 -0.114 0.087 0.090 0.086 

 
(5) Determine relative weights of requirements for the smart wearable medical system 

The relative weight of the requirement 𝑋𝑋𝑖𝑖 is calculated by applying Equation (20). The results are 
provided in Table 9. The rank of the requirements for the smart wearable medical system is presented as 
follows: 𝑤𝑤7(0.188) > 𝑤𝑤6(0.132) > 𝑤𝑤5(0.119) > 𝑤𝑤1(0.106) > 𝑤𝑤3(0.104) > 𝑤𝑤2(0.093) >
𝑤𝑤8(0.087) = 𝑤𝑤9(0.087) > 𝑤𝑤4(0.083) . The top five requirements are 𝑋𝑋7  (Low lifecycle cost), 𝑋𝑋6 
(Monitor vital signs remotely and continuously), 𝑋𝑋5  (Be used repeatedly), 𝑋𝑋1  (Accuracy), and 𝑋𝑋3 
(Comfort). By adjusting the value of 𝜌𝜌, relative weights of requirements change accordingly as shown 
in Table 8. This change of relative weights is due to the fuzzy assessment of influence degree and different 
risk attitudes of the decision group. 

4.1.2 Determine constraints on the interaction indices 

The degree of interaction between any two requirements is determined by verifying the type and 
strength of their interaction. For example, the decision group believes that there is a negative interaction 
between the requirement 𝑋𝑋1 (Accuracy) and the requirement 𝑋𝑋2  (Be waterproof to resist sweat), 
because there is somewhat overlapping effect between them or double counting in terms of preference. 
At the same time, there is positive interaction between requirements 𝑋𝑋1  and 𝑋𝑋3  (Comfort), and 
simultaneous satisfaction of them is favored. After repeatedly verifying the interactions between any two 
requirements, the type and the strength of interaction are determined. Furthermore, the constrains on the 
interaction indices are calculated by applying Equation (24). The results are given in Table 10. 

Table 10 constraints on the interaction indices 

Requirements Constraints of 
interaction 

Requirements Constraints of 
interaction 

𝑋𝑋1, 𝑋𝑋2 [-0.01395, -0.00465] 𝑋𝑋2, 𝑋𝑋4 [-0.00415, 0.00415] 

𝑋𝑋1, 𝑋𝑋3 [0.0052, 0.0156] 𝑋𝑋2, 𝑋𝑋5 [-0.01395, -0.00465]  

𝑋𝑋1, 𝑋𝑋4 [0.00415, 0.01245] 𝑋𝑋2, 𝑋𝑋6 [-0.00465, 0.00465] 

𝑋𝑋1, 𝑋𝑋5 [0.00595, 0.01785] 𝑋𝑋2, 𝑋𝑋7 [-0.01395, -0.00465]  

𝑋𝑋1, 𝑋𝑋6 [0.0066, 0.0198] 𝑋𝑋2, 𝑋𝑋8 [-0.00435, 0.00435] 

𝑋𝑋1, 𝑋𝑋7 [0.0282, 0.047] 𝑋𝑋2, 𝑋𝑋9 [-0.00435, 0.00435] 

𝑋𝑋1, 𝑋𝑋8 [0.00435, 0.01305] 𝑋𝑋3, 𝑋𝑋4 [0.00415, 0.01245] 



𝑋𝑋1, 𝑋𝑋9 [0.00435, 0.01305] … … 

𝑋𝑋2, 𝑋𝑋3 [-0.01395, -0.00465] 𝑋𝑋8, 𝑋𝑋9 [-0.02175, -0.01305] 

4.1.3 Determine 2-additive fuzzy measures and their Möbius transform 

The above determined information is used as constraints of the optimization model based on Equation 
(25). The optimization model is then solved by applying the Kappalab R package (Grabisch, et al., 2008). 
The value of the objective function is 0.122. The 2-additive fuzzy measures and their Möbius transform 
are shown in Table 11. 

Table 11 The 2-additive fuzzy measures and their Möbius transform 

Requirement 𝜇𝜇 𝑚𝑚𝜇𝜇 Requirement 𝜇𝜇 𝑚𝑚𝜇𝜇 Requirement 𝜇𝜇 𝑚𝑚𝜇𝜇 
𝑋𝑋1 0.081 0.081 𝑋𝑋1, 𝑋𝑋2 0.177 -0.007 𝑋𝑋2, 𝑋𝑋4 0.182 0.002 

𝑋𝑋2 0.104 0.104 𝑋𝑋1, 𝑋𝑋3 0.181 0.005 𝑋𝑋2, 𝑋𝑋5 0.205 -0.005 

𝑋𝑋3 0.095 0.095 𝑋𝑋1, 𝑋𝑋4 0.161 0.004 𝑋𝑋2, 𝑋𝑋6 0.218 -0.002 

𝑋𝑋4 0.076 0.076 𝑋𝑋1, 𝑋𝑋5 0.193 0.006 𝑋𝑋2, 𝑋𝑋7 0.243 -0.013 

𝑋𝑋5 0.106 0.106 𝑋𝑋1, 𝑋𝑋6 0.204 0.007 𝑋𝑋2, 𝑋𝑋8 0.202 0.004 

𝑋𝑋6 0.116 0.116 𝑋𝑋1, 𝑋𝑋7 0.261 0.028 𝑋𝑋2, 𝑋𝑋9 0.202 0.004 

𝑋𝑋7 0.152 0.152 𝑋𝑋1, 𝑋𝑋8 0.179 0.004 𝑋𝑋3, 𝑋𝑋4 0.175 0.004 

𝑋𝑋8 0.094 0.094 𝑋𝑋1, 𝑋𝑋9 0.179 0.004 … … … 

𝑋𝑋9 0.094 0.094 𝑋𝑋2, 𝑋𝑋3 0.194 -0.005 𝑋𝑋1, …, 𝑋𝑋9 1 0 

 

4.1.4 Aggregate requirements for the smart wearable medical system 

In case of 2-additive fuzzy measures, there is a property that 𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� equals 𝐼𝐼𝑚𝑚𝜇𝜇��𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��, so the 
values of 𝑚𝑚𝜇𝜇�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�’s are used in Equation (26). Let 𝑢𝑢𝑖𝑖 denote the marginal utility function of 𝑋𝑋𝑖𝑖, the 
aggregation function of the smart wearable medical system requirements is built in Equation (27). 

Cμ(u) =  0.074u1 + 0.072u2 + 0.089u3 + 0.068𝑢𝑢4 + 0.093𝑢𝑢5 + 0.106𝑢𝑢6 + 0.14𝑢𝑢7
+ 0.068u8 + 0.068u9 + 0.007(u1 ∨ u2) + 0.005(u1 ∧ u3)
+ 0.004(u1 ∧ u4) + 0.006(u1 ∧ u5) + 0.007(u1 ∧ u6) + 0.028(u1 ∧ u7)
+ 0.004(u1 ∧ u8) + 0.004(u1 ∧ u9) + ⋯+ 0.013(u8 ∨ u9) 

(27) 

4.2 Comparisons and discussions 

To demonstrate the feasibility and advantages of the proposed method, two comparative studies are 
conducted based on the same assessment data. One comparison is conducted between rough DEMATEL 
and rough-fuzzy DEMATEL with respect to requirements prioritization. Another comparison is 
conducted between the weighted arithmetic mean and the Choquet integral with respect to requirements 
aggregation.  

The values used in rough DEMATEL are obtained by selecting middle values of the linguistic 
assessments from the five members and calculating their rough number. For example, about 𝑟𝑟14={L, L, 
M, L, L}, its corresponding middle values of the linguistic assessments is {0.25, 0.25, 0.5, 0.25, 0.25}, 
and the calculated rough number is [0.27, 0.34]. The relative weights of requirements are then calculated 
and compared with the results from the rough-fuzzy DEMATEL. To demonstrate the effect of fuzzy 
assessments on final weighting result, three cases when 𝜌𝜌 equals 0, 0.5 and 1 respectively are analyzed. 
The comparative results are shown in Fig. 3.  



 
Fig. 3. Weights of requirements with different evaluation methods. 

 
In general, four prioritizations of requirements are similar in these four different cases, except some 

minor differences. The top three ranked requirements are the same in the four different cases, namely the 
requirement 𝑋𝑋7, 𝑋𝑋6 and 𝑋𝑋5. There are different ranks for other requirements, but the fluctuations of 
their ranking positions are very slight. For example, the ranks of the requirement 𝑋𝑋1 and 𝑋𝑋2 are {4, 5, 
4, 4} and {6, 7, 6, 6} in all the four cases. At the same time, there are two interesting phenomena. One is 
that the weights of requirements calculated by rough DEMATEL are almost the same with those weights 
calculated by rough-fuzzy DEMATEL when 𝜌𝜌 equals 0.5. The other is that the weights of requirements 
calculated by rough DEMATEL fall into the ranges of weights calculated by rough-fuzzy DEMATEL 
when 𝜌𝜌 ∈ [0,1]. The reason of the first phenomenon is that the group linguistic assessment 𝑟𝑟𝑖𝑖𝑗𝑗  in the 
rough-fuzzy DEMATEL when 𝜌𝜌 = 0.5  is converted into the same rough number as in the rough 
DEMATEL. For example, about 𝑟𝑟14={L, L, M, L, L}, the corresponding crisp value set is {0.25, 0.25, 
0.5, 0.25, 0.25} when 𝜌𝜌 equals 0.5, which results in the rough number [0.27, 0.34]. The reason of the 
second phenomenon is that rough DEMATEL is a special case of rough-fuzzy DEMATEL, and special 
middle values of the linguistic assessments are selected for assessment. Therefore, rough-fuzzy 
DEMATEL is more appropriate model for capturing linguistic assessment and group diversity 
simultaneously.  

The proposed method is then compared with the weighted arithmetic mean method in terms of 
requirements aggregation. The weighted arithmetic mean is a Shapley integral in nature, and it is not 
suitable to aggregate requirements when there are interactions. When 𝜌𝜌 equals 0.5 and 𝜃𝜃 equals 0.5, 
the weighted arithmetic mean of requirements can be expressed by Equation (28). Obviously, there are 
no interactions among different marginal utility functions 𝑢𝑢𝑖𝑖’s.  

𝑊𝑊𝐴𝐴𝐼𝐼 = 0.106u1 + 0.093u2 + 0.104u3 + 0.083u4 + 0.119u5 + 0.132u6 + 0.188u7
+ 0.087u8 + 0.087u9 

(28) 

However, the proposed method explicitly recognizes requirements interactions and it can model the 
positive and negative interactions between any two requirements during requirements aggregation. For 
example, as shown in Equation (27), there is a negative interaction between 𝑋𝑋1  and 𝑋𝑋2 , and the 



influence of their interaction on total preference is modeled by 0.007(u1 ∨ u2).  
When these two aggregation methods are used for evaluating design alternatives, they will result in 

different ranked alternatives for some cases. A simulation procedure is introduced to check the 
inconsistency ratio between the weighted arithmetic mean method and the proposed method in terms of 
the recommended design alternatives. It includes the following steps: 

1. Assume there are two different alternatives with 𝑛𝑛 attributes. The 𝑛𝑛 samples 𝑢𝑢1𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛) 
are generated for the 1st alternative and the 𝑛𝑛 samples 𝑢𝑢2𝑖𝑖 ( 𝑖𝑖 = 1, … ,𝑛𝑛) are generated for the 
2nd alternative from a uniform [0,1] distribution, respectively.  

2. The values of the 1st alternative and the 2nd alternative are calculated and then ranked according 
to the weighted arithmetic mean method.  

3. The values of the 1st alternative and the 2nd alternative are calculated and then ranked according 
to the proposed method.  

4. Compare the ranking result obtained from the Step 2 and that from the Step 3.  
5. Repeat 𝑚𝑚 times (𝑚𝑚 is the iteration number). 
6. Calculate the fraction of times a difference in the recommended design alternatives occurs 

between these two methods.  
With Equation (27) and (28), the simulation results of this application are shown in Fig. 4-a.  

 

Fig. 4. Rate of inconsistency between the two different methods 
The inconsistency ratio is 2.16% with 100,000 iterations. The underlying reason of this inconsistency 

level is that the identified degree of interactions in Equation (27) and Table 11 is small. With low levels 
of interaction degree between the requirements, there is a high level of consistency between the weighted 
arithmetic mean method and the proposed method in terms of the recommended design alternatives. 
According to Equation (23) and (24), the identified interaction degree is closely related to the number of 
requirements and assessed subinterval of interactions. When the number of requirements increases, the 
degree of interactions between any pair of requirements will lessen. If the assessed subinterval of 
interactions falls into the negative interaction, independence or positive interaction, the interaction degree 
is lower than significant negative interactions or significant positive interactions. 

Consider another example with four attributes of equal relative importance of 0.25 and two different 
degrees of interaction. One case has a degree of interaction of 0.15 between any pair of attributes, and 
the other has a degree of interaction of -0.15 between any pair of attributes. Using the same simulation 
procedure, the ratio of inconsistency is 10.07% and 10.2%, respectively, as shown in Fig. 4-b. This 



example shows that the advantage of the proposed method is more significant when the number of 
requirements decreases and when requirement interactions are becoming stronger. Therefore, the 
proposed requirements aggregation method has the potential to better identify the alternatives that are 
judged as worse alternatives by the weighted arithmetic mean when there are strong interactions between 
requirements.  

5 Theoretical and practical implications 
Interactions are very common among PSS requirements, and they have significant influence on 

requirements prioritization and aggregation. Evaluation of requirement interactions is still an emerging 
research field, and it deserves more attention from both academia and practice.  

Theoretically, this study contributes to proposing a novel method for evaluating interacting PSS 
requirements in a group linguistic environment. First, rough-fuzzy DEMATEL is applied to determine 
relative weights of interacting PSS requirements when a group of experts provide their linguistic 
judgement of influence degree from one requirement to another. Compared with crisp DEMATEL, rough 
DEMATEL and fuzzy DEMATEL, rough-fuzzy DEMATEL is more flexible and capable method for 
dealing with judgement vagueness and group diversity simultaneously. Crisp DEMATEL, rough 
DEMATEL and fuzzy DEMATEL can be derived from rough-fuzzy DEMATEL through certain 
conversions of fuzzy and/or rough numbers. Second, the non-additive aggregation operator (i.e. the 
Choquet integral with respect to 2-additive fuzzy measures) is applied to aggregate PSS requirements. 
Compared with the weighted arithmetic mean that assumes mutual independence among requirements, 
the proposed method can explicitly identify, quantify and incorporate interactions into requirements 
aggregation, which enables building a non-additive aggregation function. Hence, the paper can fill the 
gap on non-additive requirements aggregation in PSS research. Third, the relative weights determined 
from rough-fuzzy DEMATEL and constrains on interaction indices are used to identify 2-additive fuzzy 
measures with the minimum variance method.  

Practically, the study has the following characteristics. First, the cognitive burden required from the 
group of experts is lightweight. Compared with giving crisp assessment of influence degree, it is more 
realistic for a group of experts to provide their linguistic assessment. The required information for 
identifying 2-additive fuzzy measures is also lightweight, such as the type of interaction and strength of 
interaction. Second, the effects of positive or negative interactions on aggregation function are apparent, 
giving clear demonstration of the result of requirement interactions evaluation. Third, building the non-
additive function form is more precise and it can help managers and engineers to make better decisions 
in PSS development.  

6 Conclusions 
In this paper, an effective method based on rough-fuzzy DEMATEL, 2-additive fuzzy measures and 

the Choquet integral is proposed to evaluate requirements interactions of PSS. The main scientific 
contribution of the proposed method is that it can aggregate interacting PSS requirements non-additively 
by considering second order requirement interactions between any two requirements besides 
requirements prioritization. This method includes four steps. Firstly, the rough-fuzzy DEMATEL is 
applied to determine relative weights of interacting PSS requirements, which has merits of dealing with 
individual linguistic judgement and group diversity simultaneously. Then, the constrains on interaction 
indices are determined by deriving information on degree of interaction from relative weights and by 
eliciting strength of interaction. Furthermore, 2-additive fuzzy measures and their Möbius transform are 



identified with minimum variance method. Consequently, the interacting PSS requirements are 
aggregated non-additively by applying the Choquet integral with respect to 2-additive fuzzy measures, 
which explicitly model the contribution of requirement interactions on preference aggregation. The 
method can evaluate interacting PSS requirements and conduct requirements prioritization and 
aggregation together, which contribute to building more precise requirement-based objective functions 
that can be used in alternative evaluation and design optimization in the PSS.   

The proposed method is applied to evaluate requirement interactions of a smart wearable medical 
system that provides sophisticated capabilities for monitoring vital signs of patients. The application 
shows that the method enables requirements prioritization and aggregation in the group linguistic 
environment. The comparison analysis between rough DEMATEL and rough-fuzzy DEMATEL shows 
that rough-fuzzy DEMATEL is more flexible than rough DEMATEL that is a specific case of rough-
fuzzy DEMATEL. Furthermore, the Choquet integral with respect to 2-additive fuzzy measures can 
aggregate interacting requirements non-additively while additive independence is assumed in the 
weighted arithmetic mean. 

In terms of future research, two research directions are identified. Firstly, although 2-additive fuzzy 
measures are a reasonable trade-off between modeling accuracy and complexity, 𝑘𝑘 -additive fuzzy 
measures will enable modeling requirement interactions more flexibly and precisely. Second, the method 
is preferred to be implemented by a computer software or a module in a requirements management 
software to reduce the time and calculation burden in the evaluation process.  
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