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Abstract

Due to the absence of adequate control at different stages of complex manufacturing process, material and geometric proper-
ties of composite structures are often uncertain. For a secure and safe design, tracking the impact of these uncertainties on 
the structural responses is of utmost significance. Composite materials, commonly adopted in various modern aerospace, 
marine, automobile and civil structures, are often susceptible to low-velocity impact caused by various external agents. Here, 
along with a critical review, we present machine learning based probabilistic and non-probabilistic (fuzzy) low–velocity 
impact analyses of composite laminates including a detailed deterministic characterization to systematically investigate the 
consequences of source- uncertainty. While probabilistic analysis can be performed only when complete statistical descrip-
tion about the input variables are available, the non-probabilistic analysis can be executed even in the presence of incom-
plete statistical input descriptions with sparse data. In this study, the stochastic effects of stacking sequence, twist angle, 
oblique impact, plate thickness, velocity of impactor and density of impactor are investigated on the crucial impact response 
parameters such as contact force, plate displacement, and impactor displacement. For efficient and accurate computation, a 
hybrid polynomial chaos based Kriging (PC-Kriging) approach is coupled with in-house finite element codes for uncertainty 
propagation in both the probabilistic and non- probabilistic analyses. The essence of this paper is a critical review on the 
hybrid machine learning algorithms followed by detailed numerical investigation in the probabilistic and non-probabilistic 
regimes to access the performance of such hybrid algorithms in comparison to individual algorithms from the viewpoint of 
accuracy and computational efficiency.

1 Introduction

Due to the high specific strength, stiffness, rigidity, fatigue, 
corrosion resistance and other outstanding mechanical 
characteristics (with tunable characteristics) compared to 
standard metallic structural materials, laminated composite 
plates have a broad application in the spacecraft, marine, 
automotive, mechanical and civil sectors. Composite struc-
tures are often susceptible to low-velocity impact caused 
by various external agents, leading to a significant influ-
ence on the intended performance of the system. Therefore, 
investigating the behaviour of composite structures sub-
jected to impact load is of utmost importance. On the other 
hand, uncertainties in a composite material may arise due 
to presence of voids in between the laminate, incomplete 
knowledge about the fibre parameters, porosity, alternation 
in ply thickness and various other inevitable issues involved 
in the complex manufacturing process. Quite naturally, the 
low-velocity impact responses are affected by the presence 
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of these uncertainties. A general overview of the sources 
of uncertainty in the computational framework of a struc-
tural system is presented in Fig. 1 [1]. One ad-hoc way to 
deal with these uncertainties is to introduce the so- called 
partial safety factors at the design stage. However, a more 
rigorous method will demand quantification of the effect of 
the material and the geometric uncertainties on the output 
responses. To this end, we would pursue both probabilistic 
and non-probabilistic low-velocity impact assessment of 
composite laminates to cover two possible instances of get-
ting an adequate statistical report on the input parameters, 
or unavailability of the same owing to restrictions on per-
forming experiments involving a large number of samples.

Researchers, over the years, have studied the behaviour of 
composite structures under the action of impact load. While 
Xu and Chen [2] conducted low-velocity impact analysis 
of carbon- epoxy laminates for damage detection, Liu et al. 
[3] studied the influence of shape of impactor (such as 
conical, hemispherical and flat) on the low-velocity impact 
responses of sandwich plate. In both cases, experimental 
as well as numerical analyses were performed. Jagtap et al. 
[4] carried out finite element (FE) simulation for damage 
identification of laminated plates due to impact loading. 

The effect of boundary condition and velocity of impactor 
were determined. Similarly, Balasubramani et al. [5] per-
formed numerical investigation to determine the effect of 
boundary conditions, the thickness of laminate, impactor’s 
mass and velocity on transverse and longitudinal stress of 
the composite laminate due to low-velocity impact loading. 
Tan and Sun [6] and Sun and Chen [7] also used the finite 
element method with Newmark time integration scheme to 
investigate low-velocity impact on composite structures. A 
comprehensive review on low-velocity impact loading on 
composite structures can be found in [8]. Ahmed and Wei 
[9] also reviewed numerical and experimental methods for 
computing dynamic and static responses of composite plates 
subjected low-velocity impact and quasi-static loads.

Several works dealing with failure mechanism of compos-
ite plates subjected to low-velocity impact load can be found 
in the literature. While Yuan et al. [10] used an analytical 
model based on the theory of first order shear deformation 
for the analysis of damage and deformation of laminated 
glass under low-velocity impact, Zhang and Zhang [11] 
applied FE model for damage detection in composite struc-
tures due to low-velocity impact. Feng and Aymerich [12], 
Maio et al. [13] and Kim et al. [14] developed and applied 

Fig. 1  General overview of the sources of uncertainty in the computational framework of a structural system
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progressive damage models to investigate the failure mecha-
nism of laminated composite due to the low-velocity impact. 
Lipeng et al. [15] investigated delamination failure due to 
impact load by using a self-adapting delamination element 
method. Johnson et al. [16] presented different models for 
failure analysis of composite plates by considering internal 
damage and delamination due to impact loading. Coutellier 
et al. [17] developed a model for delamination detection in 
thin composite structures. Jih and Sun [18], on the other 
hand, investigated experimentally the delamination in lami-
nated composite plates due to low-velocity impact.

Despite the vast literature on low-velocity impact analysis 
of composite structures, none of these studies consider the 
presence of uncertainties in the system. Due to the complexity 
of manufacturing, accurate design specifications of composite 
structures cannot be achieved in real life. As a consequence, 
uncertainties in a composite structure are unavoidable. In 
composite material, the main sources of uncertainties are due 
to variation in material properties and inaccurate geometrical 
properties. Such uncertainties are introduced in the elementary 
input level (elemental mass and stiffness matrix), and propa-
gate to the global level (global mass and stiffness matrix) of 
composite structures and hence, leads to a significant devia-
tion from the deterministic value of impact responses. In the 
present paper, the effects such source-uncertainties on the low- 
velocity oblique impact (refer to Fig. 2a) response of compos-
ite plates are aimed to be addressed. The analysis is divided 
into three sections namely deterministic, probabilistic and non-
probabilistic, the later two sections being dedicated to stochas-
tic analysis and uncertainty quantification (UQ). Only when 
the probabilistic distributions of uncertain input parameters 
are accessible can the probabilistic analyses be performed. In 
many instances though, it is not possible to obtain the complete 
probabilistic distributions of the input variables. In such cases, 
non-probabilistic fuzzy analysis can be employed to portray 
the effects of uncertainty. It is to be noted that both conven-
tional probabilistic and non-probabilistic analysis techniques 
involve significant computational efforts due to the require-
ment of performing thousands of expensive finite element 
simulations. One way to circumvent this issue is to develop a 
machine learning model on the basis of representative origi-
nal finite element simulations. It is worthy to note here that 
machine learning is a broad domain. A schematic diagram 
showcasing the various aspects of machine learning techniques 
and its relationship with data science is shown in Fig. 3. In this 
work, we are only interested in supervised learning techniques. 
Popular supervised learning techniques include Gaussian pro-
cess or Kriging [19–22], Polynomial chaos expansion (PCE) 
[23–25], analysis-of-variance decomposition [26–29], Polyno-
mial chaos based Kriging (PC- Kriging) [30–33] etc. In this 
work, we review three machine learning techniques in the con-
text of stochastic low-velocity impact analysis. The machine 

learning techniques reviewed here are polynomial chaos 
expansion, Kriging and polynomial chaos based Kriging.

This paper is composed of six sections in the order of 
chronological inter-dependence including the current intro-
duction section. Section 2 describes governing equations for 
the analysis of the transient low-velocity oblique impact of 
composite plates that includes the descriptions of dynamic 
equations, contact law and Newmark’s integration scheme. In 
Sect. 3, detailed description of the surrogate model based on 
PC-Kriging is provided. Section 4 provides both probabilis-
tic and non-probabilistic stochastic approaches for the impact 
analysis of low-velocity. The numerical results are presented 
in Sect. 5 (deterministic, probabilistic and fuzzy based non-
probabilistic results including the comparative performance 
of three different surrogate models i.e. PCE, Kriging and PC-
Kriging). Finally, in Sect. 6, major observations and conclu-
sion are provided along with an overview of the current level 
of development in relevant research fields.

2  Review of the Governing Equations 
for Low-Velocity Impact on Laminated 
Composites

A laminated composite plate is considered with length L, 
width b, and thickness t subjected to normal and oblique 
impact loading (as shown in Fig. 2). The dynamic equation 
[34] of such system can be expressed as

where M(𝜍̃) , (𝜍̃) , � and 𝛿 are the randomized mass matrix, 
randomized stiffness matrix, displacement vector and accel-
eration vector, respectively, while {F} is externally applied 
force vector. Here,(𝜍̃) indicates the degree of randomization. 
The force vector including the contact force 

(

F
C

)

 in case of 
impact can be expressed as

The equation of motion for the rigid impactor is given by

where mimp(𝜍̃) is the mass of impactor while 𝛿imp is the accel-
eration of impactor.

2.1  Contact Law

Modified Hertzian contact law can be utilized to calculate 
the contact force between impactor and the composite plate 
[35]. The impactor is assumed as a spherical elastic solid 
body.

The contact force can be obtained during loading as

(1)[M(𝜍̃)] {𝛿} + [K(𝜍̃) ] {𝛿} = {F(𝜍̃)}

(2)F(𝜍̃) =
{

0 0 0 F
C
(𝜍̃) 0 0 0

}

(3)mimp(𝜍̃) 𝛿imp + Fc(𝜍̃) = 0
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Fig. 2  a Laminated composite plate subjected to normal and oblique impact load by a spherical mass. b A typical example of twisted plate. c 
Geometric details of twist in the plate
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where � denotes the local indentation and k is the modified 
contact stiffness [36] which can be expressed by contact 
theory as

where Ei is the elastic modulus of the impactor, Eyy is the 
elastic modulus of laminated composite plate of the upper-
most ply in the transverse direction, while Rimp and � are the 
radius and Poisson’s ratio of impactor, respectively. At the 
time of loading and unloading the contact force 

(

F
C

)

 can be 
estimated as

where Fm and �m are the maximum contact force and maxi-
mum indentation, respectively. The permanent indentation 
(�

0
) in loading and unloading cylce is given by

where �
c
 is the constant, while �Cr is the critical identation. 

For the oblique impact, the local indentaion is given by

where �imp and �plt are impactor’s displacement and targeted 
plate displacements, respectively, while � and�  are the 
oblique impact angle and twist angle, respectively, along the 

(4)F
c
(𝜍̃) = k(𝜍̃) 𝛾(𝜍̃)1.5

0 ≤ 𝛾 ≤ 𝛾
m

(5)
k(𝜍̃) =

4

3

√

Rimp

1

[1−𝜐2

i
(𝜍̃)]

Ei(𝜍̃)
+

1

Eyy(𝜍̃)

(6)

F
c
(𝜍̃) = F

m

[

𝛾(𝜍̃) − 𝛾
0

𝛾
m
− 𝛾

0

]5∕2

and F
c
(𝜍̃) = F

m

[

𝛾(𝜍̃) − 𝛾
0

𝛾
m
− 𝛾

0

]3∕2

(7)
�

0
= 0 when �m < �

Cr

�
0
= 𝛽

c

(

�
m
− �

Cr

)

when �
m
≥ �

Cr

(8)�(t) (𝜍̃) = �imp(t) (𝜍̃) cos 𝛽 + �plt(xc, yc, t) (𝜍̃) cos𝜓

global z-direction, respectively. The contact force elements 
at the global direction of contact point can be described as

2.2  Newmark’s Time Integration Scheme

The contact force involved in the equilibrium Eqs. (1) and 
(3) is generally transient in nature for the dynamic response 
of a laminated composite plate under the impact by a spheri-
cal impactor. The time integration scheme of Newmark [37] 
is used to solve the equations that depend on time. Use of 
above scheme with time interval Δt gives the subsequent 
relations at the time t + Δt

where [K̄] and [k̄] are the effective stiffness matrix of the 
plate and impactor, respectively, and given by

Effective contact forces at time t + Δt can be derived as

(9)Fix = 0, Fiy = F
c
(𝜍̃) sin𝜓 , Fiz = F

c
(𝜍̃) cos𝜓 .

(10)[K̄]𝛿(t+Δt) = {F̄}(t+Δt)

(11)kimp�
(t+Δt)

imp
= {FC}

(t+Δt)

(12)[K̄] = K + a
0
M

(13)[k̄] = a
0
mimp

(14){F}(t+Δt) = {F}(t+�t) + [M]
(

a
0
�(t) + a

1
�̇(t) + a

2
�⃛(t)

)

(15)F̄
(t+Δt)

Ce

= F
(t+Δt)

C
+ mimp

(

a
0
𝛿
(t)

imp
+ a

1
𝛿̇
(t)

imp
+ a

2
𝛿
(t)

imp

)

Fig. 3  Different facets of 
machine learning techniques
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The acceleration and velocity can be derived from displace-
ment at time t + Δt as

The initial boundary condition considered as

where V
0
 is the initial velocity of the impactor. The time 

integration constants can be expressed as

For the present study, the value of �′′ and �′′ are considered 
as 0.5 and 0.25, respectively.

3  Hybrid Machine Learning Based 
on Kriging and PCE

Let, x =

{

x
1
,… , x

N

}

∈ ℝ
N to be the input variables and 

y ∈ ℝ
O to be the output responses. We also assume M(⋅) 

to be the computational model (FE model in present case) 
such that

For impact analysis, the model M(⋅) is computationally 
expensive to evaluate and hence, the task of quantifying the 
uncertainties in the output response y becomes difficult. One 
way to deal with this issue is to replace the computationally 
expensive finite element model M(⋅) with a surrogate 

⌢

M(⋅) . 
It can be noted here that we have used the words surrogate 
modelling and machine learning in identical sense keeping 
in mind its purpose in the context of this article. We would 
review three methods of machine learning in this section that 
can be used as a surrogate of the original simulation model.

3.1  Polynomial Chaos Expansion

Polynomial chaos expansion (PCE) is one of the most pop-
ular methods available in literature. This was first imple-
mented by Wiener [38] and hence, is also known as ‘Wiener 
Chaos expansion’. Xiu and Karniadakis [23] subsequently 
generalized the technique and proved its effectiveness for 
different continuous and discrete systems from the so called 

(16)

{𝛿}(t+Δt) = a
0
({𝛿}(t+Δt) − {𝛿}(t)) − a

1
{𝛿̇}(t) − a

2
{𝛿}(t)

𝛿
(t+Δt)

imp
= a

0

(

𝛿
(t+Δt)

imp
− 𝛿

(t)

imp

)

− a
1
𝛿̇
(t)

imp
− a

2
𝛿
(t)

imp

{𝛿̇}(t+Δt) = {𝛿̇}(t) + a
3
{𝛿}(t) + a

4
{𝛿}(t+Δt)

𝛿̇
(t+Δt)

imp
= 𝛿̇

(t)

imp
+ a

3
𝛿
(t)

imp
+ a

4
𝛿
(t+Δt)

imp

(17)� = �̇ = �̈ = 0, �imp = �̈imp = 0 and �̇imp = V0

(18)

a0 =
1

���𝛿t2
, a1 =

1

���Δt

, a2 =
1

2���
− 1,

a3 =
(

1 − ���
)

Δt and a4 = ���
Δt

(19)y = M(x)

Askey-scheme, L2 convergence in the corresponding Hilbert 
space.

Assuming � =
(

i
1
, i

2
,… , iN

)

∈ ℕ
N
0

 to be a multi-index 
with |i| = i1 + i2 +⋯ + iN , and let n ≥ 0 be an integer. The 
nth order PCE of g(X) is given as:

where {ai} are unknown coefficients that must be deter-
mined. Φi(X) are N-dimensional orthogonal polynomials 
with maximum order of and satisfies

Here, δij denotes the multivariate kronecker delta function. 
It is to be noted that the orthogonal polynomials are depend-
ent on the PDF ϖ(x) of input variables. Table 1 presents the 
orthogonal polynomial type and the random variable type 
correspondence [23].

Over last two decades, researchers have developed and 
utilized different variants of PCE. Xiu and Karniadakis 
[23] proposed the Wiener–Askey PCE where the unknown 
coefficients associated with the coefficients were deter-
mined by using either collocation method or the Galerkin 
projection. With this method, it is possible to solve sto-
chastic partial differential equations in an efficient way. 
However, Wiener–Askey PCE is intrusive in nature and 
hence, knowledge about the governing partial differential 
equation of the system is required. As a consequence, this 
method is not applicable to cases where the user only have 
some data and no knowledge about the process from which 
the data is generated.

To tackle the above-mentioned problem, researchers 
focused on developing nonintrusive (data-driven) PCE. 
The easiest and most popular way to train a data-driven 
PCE is by minimizing the least square error of the system 

(20)ĝ(X) =

n∑

|i|=0

ai𝛷i(X)

(21)

E(�i(X)�j(X)) = �
�

�i(X)�j(X)�(x) = �ij, 0 ≤ |i|, |j| ≤ N

Table 1  The Correspondence of the type of orthogonal polynomial 
with distribution pattern

Type Random variables Type of orthogo-
nal polynomial

Support

Continuous Gaussian Hermite (− ∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1,…}

Binomial Krawtchouk {0, 1,… , N}

Negative binomial Meixner {0, 1,…}

Hypergeometric Hahn {0, 1,… , N}
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[39, 40]. However, this method is susceptible to overfitting 
and as a result often performs poorly. Methods for train-
ing a PCE model by using the quadrature rule can also be 
found in the literature [41, 42]. However, both these train-
ing algorithms suffer from the curse of dimensionality and 
hence, are only applicable to small-scale problems with 
limited number of input variables.

To address the curse of dimensionality associated with 
least-square and quadrature based training algorithms, 
Blatman and Sudret [24, 43] two adaptive sparse PCEs 
which can used for solving problems having hundreds of 
input variables. Both the methods proposed follow similar 
flow where an iterative algorithm is used to determine the 
importance of the terms involved in PCE and the lesser 
important terms are removed. In the first method, the 
important terms in PCE are determined by tracking the 
change in coefficient of determination 2 (due to addition/
removal of a term). In the second approach, a more rigor-
ous framework, referred to as the least-angle regression 
is used to determine the important terms of PCE. With 
both these approaches, there is a significant reduction in 
the number of unknown coefficients associated with PCE 
and thereby, issues with hundreds of input variables can 
be solved.

Jacquelin et al. [44] identified that for lightly damped sys-
tems, the convergence of PCE is very poor. It was proposed 
that integrating Aitken’s transformation into the framework 
of PCE can improve its convergence significantly. Pascual 
and Adhikari [45] hybridized the basic formulation of PCE 
by coupling it with perturbation method. Four variants of the 
hybrid perturbation-PCE was proposed and reduced spectral 
method was used to identify unknown coefficients associ-
ated with the bases. The proposed approaches were utilized 
to solve the stochastic eigenvalue problem. It was observed 
that the approaches proposed lead to a better approximation 
of larger eigenvalues.

3.2  Kriging

In today’s time, one of the most popular machine learning 
technique is perhaps the Gaussian process, a.k.a. Krig-
ing is a Bayesian machine learning technique where we 
assume that the response y, conditioned on input x is a 
sample from a Gaussian process.

where �(⋅;�) is the mean function and R(⋅, ⋅;�) is the cor-
relation kernel. �, � and � are the hyperparameters of the 
Gaussian process respectively, denotes the unknown coef-
ficients related to the mean function, the process variance 
and the length-scale parameter associated with the correla-
tion kernel. In order to use Gaussian process as a machine 

(22)y|x;�, �,� ∼ GP
(
�(x;�), �2R

(
x1, x1;�

))

learning technique, the hyperparameters needs to be esti-
mated based on some training data. This can either be 
achieved by maximizing the likelihood [21] or by using the 
Bayes rule [46–49].

The most popular form of Gaussian process is the zero 
mean Gaussian process or the simple Kriging. In this vari-
ant, we assume �(⋅;�) = 0 . As a consequence, only � and � 
are the only hyperparameters associated with the system. 
An improvement to the simple Kriging is the ordinary 
Kriging where we assume the mean function is assumed 
to be constant, �(⋅;�) = a0 where a

0
 is a constant. Unfor-

tunately, the fact that the mean function is modelled as a 
constant often results in erroneous models.

To enhance the Kriging model’s precision, universal 
Kriging was developed [50, 51]. In universal Kriging, the 
mean function represented as a linear regression model by 
using multivariate polynomials

where b
i
(x) represents the ith basis function and ai denotes 

the coefficient associated with the ith basis function. With 
this setup, the mean function captures the largest variance 
in the data and the correlation function interpolates the 
residual. Considering, x =

{

x
1, x

2,… , x
n
}

 to be input sam-
ples andg = {g

1
, g2,… , g

n
} to be the responses, the design 

matrix and the correlation matrix can be represented. The 
regression portion can be written as a n × p model matrix F,

whereas the stochastic process is defined using a n × n cor-
relation matrix Ψ

where ψ(∙,∙) is a correlation function, parameterised by a 
set of hyperparameters θ. As already stated, the hyperpa-
rameters are identified either by using maximum likelihood 
estimation (MLE) or by using the Bayes rule.

Similar to PCE discussed in previous section, univer-
sal Kriging also suffers from the curse of dimensional-
ity. To address this issue, blind Kriging was proposed in 
[51–54]. In blind Kriging, the polynomial order used to 
represent the mean function of the Gaussian process is 
selected in an adaptive manner. Bayes rule is used to train-
ing the blind Kriging model. It is worthwhile to mention 
that blind Kriging satisfies both the hierarchy criterion 
and the heredity criterion. As per the hierarchy criterion, 

(23)�(⋅,�) =

P∑

i=1

a
i
b

i
(x)

(24)F =

⎛
⎜⎜⎝

b
1

�
x1
�
… bp

�
x1
�

⋮ ⋱ ⋮

b
1
(xn) ⋯ bp(x

n)

⎞
⎟⎟⎠

(25)� =

⎛
⎜⎜⎝

�
�
x

1, x
1
�
… �

�
x

1, x
n
�

⋮ ⋱ ⋮

�
�
x

n, x
1
�
⋯ �(xn, x

n)

⎞
⎟⎟⎠
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lower order effects in the mean function are selected before 
the higher order effects. Whereas, as per the heredity cri-
terion, an effect can only be important if its parent effects 
are already important. Other variants of Kriging includes 
Co-Kriging [55] and stochastic Kriging [56–58]. A com-
parative assessment from the viewpoint of accuracy and 
computational efficiency can be found in ref [19], where 
both high and low dimensional input parameter space was 
considered for a comprehensive analysis.

The choice of suitable correlation function is a crucial 
element for all the Kriging variants [59–61]. Correlation 
function that are commonly used with Gaussian process 
are mostly stationary and hence,

With such as correlation function, it is possible to represent 
multivariate functions as product of one-dimensional corre-
lations. Popular stationary correlation functions includes: (a) 
exponential correlation function (b) generalised exponential 
correlation function (c) Gaussian correlation function (d) 
linear correlation function (e) spherical correlation function 
(f) cubic correlation function and (g) spline correlation func-
tion. The mathematical forms of all the correlation functions 
are provided below:

1. Exponential correlation function:

2. Generalised exponential correlation function:

3. Gaussian correlation function:

4. Linear correlation function:

5. Spherical correlation function:

6. Cubic correlation function:

7. Spline correlation function:

(26)�(x, x�) =
∏

j

�j(�, xi − x�
i
)

(27)�j(�;dj) = exp(−�j|dj|)

(28)�j(�;dj) = exp(−�j|dj|�n+1), 0 < �n+1 ≤ 2

(29)�j(�; dj) = exp(−�jd
2

j
)

(30)�j(�; dj) = max{0, 1 − �j|dj|}

(31)�j(�; dj) = 1 − 1.5�j + 0.5�2

j
, �j = min{0, �j|dj|}

(32)�j(�; dj) = 1 − 3�2
j
+ 2�3

j
, �j = min{1, �j|dj|}

  
where �j = �j|dj|

  For all the correlation functions described above, 
dj = xi − x�

i
 . The hyperparameters associated with the 

covariance functions are determined either by using the 
maximum likelihood estimate (MLE) or by using the 
Bayes rule. A detailed account of MLE in the context of 
Kriging is given in [21].

3.3  Polynomial Chaos Based Kriging (PC-Kriging)

Finally, we discuss about a hybrid machine learning tech-
nique, referred to as the polynomial chaos based Kriging 
(PC-Kriging) [30–32]. PC-Kriging is a novel surrogate 
model that combine two well-known surrogates, namely, 
polynomial chaos expansion (PCE) [23, 25] and Kriging [19, 
20]. PC-Kriging can be viewed as a Kriging model where 
the mean/trend function is modelled by using PCE. With 
this setup, it is possible to achieve a higher order accuracy 
as compared to PCE and Kriging.

PC-Kriging is a special kind of Kriging where the mean 
function of the Gaussian process is modelled by using poly-
nomial chaos expansion. More specifically, �(⋅) in Eq. (23) 
is represented by using Eq. 19. Under limiting condition, 
PC-Kriging converges either to PCE or to Kriging. Similar 
to Kriging, the hyperparameters in PC-Kriging are learned 
by maximizing the likelihood. For further details, interested 
readers may refer [19, 62].

Despite PC-Kriging’s benefit over its individual PCE 
and Kriging, the hybrid metamodel suffers from the curse 
of dimensionality due to the factorial growth of unknown 
coefficients with a rise in the number of input parameters 
N. This limitation originates from the PCE component 
of PC-Kriging. To address this problem, a variant of PC-
Kriging, referred to as Optimal PC- Kriging (OPC-Kriging) 
[31] was proposed. In OPC-Kriging, least angle regression 
(LAR) is used to only retain the important components of 
PCE. The OPC-Kriging follows an iterative algorithm where 
each polynomial can be added to the trend part one-by-one. 
Figure 4 presents a flowchart depicting the algorithm of 
OPC-Kriging.

(33)�j(�; dj) =

⎧
⎪⎨⎪⎩

1 − 5�2
j
+ 30�3

j
, 0 ≤ �j ≤ 0.2

1.25

�
1 − �3

j

�
, 0.2 ≤ �j ≤ 1

0, �j > 1
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4  Machine Learning Based Stochastic 
Impact Analysis

A major objective of the present study is to determine sto-
chastic response of low-velocity impact loading on com-
posite plates following probabilistic and non-probabilistic 
frameworks. Both geometric and material uncertainties are 
considered in this work. To be specific, uncertainties in the 
composite plate stem from variation in the material prop-
erties, fibre orientation angle, twist angle, oblique impact 
angle, initial velocity of impactor, mass density of impac-
tor, and thickness of target plates, inclusion of which in 
the analysis (following probabilistic and non-probabilistic 
approaches) is discussed here.

4.1  Probabilistic Impact Analysis

For probabilistic impact analysis, statistical descriptions of 
the stochastic inputs are necessary. To that end, the machine 
learning techniques discussed in previous section have been 
coupled with our in-house FE code for low-velocity impact 
analysis. For quantifying the uncertainty in the output 
responses, first input training samples are obtained using 
an appropriate design of experiment (sampling) scheme. 
Due to its simplicity and already proven superior perfor-
mance, Sobol sequence [63, 64] has been used in this study. 
In the next step, the training outputs are obtained by using 
the actual FE solver. In the third step, the machine learning 
models are trained and the hyperparameters associated with 

the models are computed. Finally, Monte Carlo simulation 
is carried out based on the trained ML model to compute 
the probability density function of the output responses. A 
flowchart depicting the ML based probabilistic uncertainty 
quantification algorithm is presented in Fig. 5. For the cur-
rent study, the following cases of uncertainties are consid-
ered at each lamina level (layer-wise uncertainty modelling)

1. Variation of fibre-orientation angle:

2. Variation of twist angle:

3. Variation of oblique impact angle:

4. Variation of initial velocity of impactor:

5. Variation of mass density of impactor:

6. Variation of thickness of the plate:

7. Variation in location of loading point:

�1{�, E, G, 𝜐, 𝜌} = 𝛩[{�(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

�2{� , �, E, G, 𝜐, 𝜌} = 𝛩[� , {�(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

�3{𝛽, 𝜃, E, G, 𝜐, 𝜌} = 𝛩[𝛽, {𝜃(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

�4{V , �, E, G, 𝜐, 𝜌} = 𝛩[V , {�(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

�5{𝜌imp, 𝜃, E, G, 𝜐, 𝜌} = 𝛩[𝜌imp, {𝜃(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

�6{tplt, �, E, G, 𝜐, 𝜌} = 𝛩[tplt, {�(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}]

Fig. 4  Flowchart for OPC-
Kriging
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Here 𝜁  is used to denote the stochastic representation 
of the system parameters. The parameters E, G, �, 𝜌 are 
the set of Young’s moduli, shear moduli, mass den-
sity and Poisson’s ratio in different directions, where 
the entire set of stochastic material properties is 
{E1, E2, E

3
, G

12
, G

13
, G

23
, �

12
, �

13
, �

23
, �

32
, �

21
, �

31
, 𝜌} . Unless 

otherwise mentioned, the degree of stochasticity from the 
respective deterministic values is taken as ±10% (as per 
standard design practice) for each of the components in 
the set of material properties.

�7{Lp, �, E, G, 𝜐, 𝜌} = 𝛩[Lp, {�(𝜍̃)}, {E(𝜍̃)}, {G(𝜍̃)}, {𝜐(𝜍̃)}, {𝜌(𝜍̃)}] 4.2  Fuzzy Impact Analysis

Although probabilistic analysis is more rigorous as it pro-
vides the probability distribution of the output responses, 
it is limited by the fact that we require probability distribu-
tion of the input variables for carrying out such analysis. 
In the real-life scenario, we may not have knowledge about 
the probability distribution of the input variables due to 
the requirement of extensive experimental characterization 
of the materials involving thousands of physical samples. 
Under such circumstances of sparse data availability, we 
have to opt for non- probabilistic analysis. Out of differ-
ent non- probabilistic analysis methods available in litera-
ture, fuzzy based non-probabilistic analysis is employed 

Fig. 5  Flowchart for probabilistic impact analysis based on hybrid machine learning models coupled with FE simulations
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for uncertainty quantification and propagation in low-
velocity impact analysis of the laminated composite plate. 
The fuzzy theory is employed in the intermediate stage 
between non-members and members known as member-
ship function 

[

�pi

]

 that signifies the degree to which each 
component in the territory leads to the fuzzy set [65]. The 
triangular membership function is employed for the fuzzy 
number [P

i
(𝜍̃𝛼)] and expressed as

where PM

i
,PU

i
,PL

i
 denotes the mean value, upper bound and 

lower bound, respectively. Here 𝜍̃𝛼 indicates the fuzzified 
variations corresponding to each α-cut, where α is known 
as the degree of fuzziness or membership grade ranging 
from 0 to 1. As an example, the Gaussian distribution can 
be approximated by using the triangle as shown in Fig. 6a, 
where the area under the Gaussian distribution is equal to 
the area under the triangular function [66]. The triangular 
fuzzy membership function is written as

where � = (2��
x
)1∕2 , Xi and �

x
 represents the mean and 

standard deviation (S.D.) of the Gaussian distribution. In 
the present study, triangular membership function [µP(i)] is 
employed as

By applying the α-cut method, the fuzzy input number Pi 
can be grouped into the set P̄

i
 of (n + 1) intervals Pi

(j)

where n is the number of α-cut levels. The interval of j-th 
level of i-th fuzzy number can be expressed

where Pi
(j,U) and Pi

(j,L) represent the upper and lower bound 
of the interval at the j-th level, respectively. At j = n, 
P

(n,U)

i
= P

(n,L)

i
= P

(n,M)

i
 . The superscript U represents the upper 

bound, while L denotes lower bound. The fuzzy input num-
bers are considered as the uncertain model parameters for 
the uncertainty analysis and an interval analysis is carried 
out at different α-levels [67].

Even though in the present study we have considered 
triangular membership functions for the input parameters, 

(34)P
i
(𝜍̃𝛼) = [PU

i
, P

M

i
, P

L

i
]

(35)�
P(i) = max

⎡
⎢
⎢
⎣
0, 1 −

���X
(j)

i
− X

i

���
�

⎤
⎥
⎥
⎦

(36)

�
P(i) = 1 −

(

P
M
i
− P

i

)/(

P
M
i
− P

L
i

)

, for P
L
i
≤ P

i
≤ P

M
i

�
P(i) = 1 −

(

P
i
− P

M
i

)/(

P
U
i
− P

M
i

)

, for P
M
i
≤ P

i
≤ P

U
i

�
P(i) = 0, otherwise

(37)P̄
i
(𝜍̃𝛼) = [P

(0)

i
, P

(1)

i
, P

(2)

i
, P

(3)

i
,… , P

(j)

i
,… , P

(n)

i
]

(38)P
(j)

i
=

[

P
(j,L)

i
, P

(j,U)

i

]

the input membership functions can be augmented further 
depending on the availability of limited number of input 
dataset. In this work, we start by evaluating the deterministic 
solution at � = 1 level first and continue towards the lower 
�− cut levels using an interval analysis. As a special case, 
if the input–output relation of the problem in hand is mono-
tonic in nature, computing the bounds of the fuzzy outputs 
becomes trivial. Unfortunately, for most real-life problems, 
the input–output relation is not monotonic in nature. Under 
such circumstances, a maximization and minimization algo-
rithm involving multiple simulations is necessary. In this 
work, we proceed by first formulating the machine learn-
ing models as a surrogate to the actual FE code. Then we 
perform MCS on the trained machine learning models to 
compute the maximum and minimum values of the response 
quantities of interest for a particular α-cut level. It is to be 
noted that only a single machine learning model is required 
in this case corresponding to � = 0 as the same model can 
be reused for other α-cut levels. The number of actual FE 
simulations required in this study is therefore equal to the 
number of training samples needed to train the models of 
machine learning. The procedure of the present fuzzy impact 
approach is summarized in Figs. 6b and 7.

5  Numerical Investigation and Discussion

In this work a glass–epoxy laminated composite plate 
having dimensions L = 1 m, b = 1 m and t = 0.002 m 
is considered. Unless otherwise mentioned, the plate is 
considered to be subjected to normal and oblique impact 
loadings at the centre of the plate. The deterministic 
material properties of glass–epoxy are E1 = 38.6 × 10

9 
Pa,  E2 = 8.27 × 10

9 Pa,  G
12

= G
13

= 4.144 × 10
9 Pa, 

G
23

= 1.657 × 109 Pa, � = 2600 kg/m3 , � = 0.26 [68]. The 
diameter of spherical steel ball (impactor) is considered 
as 0.0127 m . It is assumed that the fibre orientation angle 
may have a variation of 5% and the material properties 
may have a variation of 10% with respect to the determin-
istic values. Such variations are considered as per stand-
ard industrial practices; however, the current analysis can 
be extended to other percentages of variation, if required. 
Contact force (CF), impactor displacement (ID) and 
plate displacement (PD) are considered to be the output 
response variables. The in-house deterministic finite ele-
ment code for impact analysis is validated with results of 
Sun and Chen [7] (refer to Fig. 8), wherein it is observed 
that the current results are extremely close to the results 
of literature.
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5.1  Deterministic Impact Analysis

Deterministic numerical results of the low-velocity impact 
are discussed in this subsection (Tables 2, 3, 4, 5, 6, 7, 8) 
to study the basic and fundamental influence of different 
system parameters such as fibre-orientation angle, oblique 

impact angle, twist angle, initial velocity of impactor, mass 
density of impactor, thickness of plate and location of 
impact loading. Here we study four different crucial stacking 
sequences of the composite laminate: bending stiff laminate 
([0°/0°/30°/− 30°]s), cross ply laminate ([90°/0°/90°/0°]s), 
torsion stiff laminate). The effects of stacking sequence on 

Fig. 6  a Triangular membership function approximated from Gaussian distribution. b Fuzzy analysis for different value of α-cuts
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low-velocity impact responses are furnished in Table 2. It is 
observed that the peak CF is highest for the torsion stiff lam-
inates. On the other hand, peak ID and peak PD are found 
to be minimum for torsion stiff laminates and maximum for 
bending stiff laminates. Table 3 shows the variation of peak 

impact responses with the change in twist angle. The peak 
CF is found to increase with increase in twist angle. On the 
contrary, peak ID and peak PD decrease with the increase 
in twist angle. The influence of oblique impact angle on the 
responses is shown in Table 4. While peak CF and peak PD 

Fig. 7  Flowchart for non-probabilistic impact analysis based on fuzzy approach (Machine learning models are used instead of direct FE model, 
as indicated using a blue colour box)
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decrease with increase in the impact angle, peak ID is found 
to follow a reverse trend. All the peak responses are found 
to increase with increase in the initial velocity, as shown 
in Table 5. Effect of mass density on the impact response 
is shown in Table 6. In this case, increase in mass density 
raises the peak responses. The effect of plate thickness, as 
presented in Table 7, reveals that peak CF increases with the 
increase in plate thickness, while peak PD and peak ID show 
an opposite trend. The effect of impact point on the critical 
impact responses is shown in Table 8, where it is found that 

peak CF, PD and ID are maximum at point 2, point 3 and 
point 3, respectively.

Fig. 8  Time histories of a contact force and b deflection of glass 
epoxy composite plates considering a centrally impacted bending 
stiff laminated composite plate (±0◦∕ ± 30

◦) with dimension L = 1 m, 
b = 1  m, and t = 0.002  m, ѱ = 0°, β = 0°, initial velocity of impac-
tor = 5 m/s, diameter of spherical steel ball = 0.0127 m, mass density 
of impactor (�) = 0.0085

N−s

cm4
 [7]

Table 2  Effect of stacking sequence (quasi-isotropic stiff, tor-
sion stiff, cross ply and bending stiff laminates on low-velocity 
impact responses considering t = 0.002  m, ѱ = 0°, β = 0°, V = 5  m/s, 
ρ = 0.0085 N−s

cm4

Stacking sequence Impact responses (maximum value)

CF (N) ID (m) PD (m)

Bending stiff 744.7855 0.000225 0.090134

Quasi-isotropic stiff 770.0546 0.000221 0.0854

Cross ply 770.45 0.000219 0.08794

Torsion stiff 773.31 0.000219 0.08548

Table 3  Effect of twist angle (�) on low-velocity impact responses 
with considering t = 0.002 m, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , bend-

ing stiff laminate  (02°/± 30°)s

Twist angle Impact responses (maximum value)

CF (N) ID (m) PD (m)

� = 0◦ 744.7855 0.000227 0.090134

� = 15◦ 776.3958 0.000221 0.0882

� = 30
◦ 874.1484 0.000206 0.0833

� = 45◦ 1053.9 0.000188 0.07413

Table 4  Effect of oblique impact angle (�) on low-velocity impact 
responses with considering t = 0.002 m, ѱ = 0°, V = 5 m/s, ρ = 0.0085 
N−s

cm4
 , bending stiff laminate  (02°/± 30°) s

Oblique impact 
angle

Impact responses (maximum value)

CF (N) ID (m) PD (m)

� = 0◦ 744.7855 0.000225 0.090134

� = 15◦ 724.1631 0.000232 0.08965

� = 30
◦ 661.4398 0.000251 0.087791

� = 45◦ 553.4121 0.00029 0.084967

Table 5  Effect of initial velocity of impactor on low-velocity impact 
responses with considering t = 0.002 m, ѱ = 0°, β = 0°, ρ = 0.0085 N−s

cm4
 , 

bending stiff laminate  (02°/± 30°)s

Initial velocity of 
impactor (m/s)

Impact responses (maximum value)

CF (N) ID (m) PD (m)

V = 5 744.7855 0.000227 0.090134

V = 10 1549.402 0.00042 0.177863

V = 15 2365.073 0.000606 0.263738

V = 20 3193.182 0.000789 0.349809

Table 6  Effect of mass density of impactor (ρ in N−s

cm4
 ) on low-veloc-

ity impact responses with considering t = 0.002  m, ѱ = 0°, β = 0°, 
V = 5 m/s, bending stiff laminate  (02°/± 30°)s

Mass density of 
impactor

Impact responses (maximum value)

CF (N) ID (m) PD (m)

� = 75 × 10−4 719.9314 0.00021 0.08149

� = 80 × 10−4 733.6016 0.000219 0.085852

� = 85 × 10−4 744.7855 0.000227 0.090134

� = 90 × 10−4 755.3778 0.000235 0.094109

� = 95 × 10−4 766.9816 0.000242 0.098161
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5.2  Stochastic Impact Analysis

In this section, results corresponding to the probabilistic 
and non-probabilistic impact analysis are presented. The 
formation of surrogate models based on PCE-Kriging is 
discussed first including comparative assessment of other 
related surrogates. After validating the accuracy of the sur-
rogate models, detailed stochastic analyses are carried out 
in the subsequent subsections.

5.2.1  Surrogate Modelling and Validation

In this section, first we discuss about training the machine 
learning models. To be specific, convergence studies to 
determine the optimal number of training samples are pre-
sented. Second, we perform a comparative assessment of 
PCE, Kriging and PC-Kriging.

5.2.1.1 Design of Experiments One important task in sur-
rogate modelling is to generate suitable training samples 
for training the surrogate model. As already stated in the 
preceding section, Sobol sequence is adopted in this study 
to generate samples for training ML model. However, the 
optimal number of training samples required still needs to 

be determined. To that end, a study by varying the number 
of training samples has been carried out. Figure 9 shows the 
PDF of responses (for direct MCS and PCE-Kriging based 
MCS) with respect to training sample size of 32, 64, 128, 
256, 512 and 1024. For all the three output responses, the 
results obtained using 512 training samples are almost iden-
tical to those obtained using 1024 samples. Based on this 
observation, we conclude that 512 is the optimal number 
of training samples. Note that all the subsequent results are 
obtained by training the surrogate with 512 training sam-
ples.

5.2.1.2 PCE Versus Kriging Versus PC-Kriging: A  Compara-

tive Study The surrogate PC-Kriging is developed by 
combine PCE and Kriging. In this section, we examine the 
performance of the three surrogate models (PCE, Kriging 
and PC-Kriging) in the context of probabilistic low-velocity 
impact analysis. To that end, coefficient of determination 
(

R
2
)

 and root mean square error (RMSE) have been com-
puted corresponding to training sample size of 32, 64, 128, 
256, 512 and 1024. Figure 10 shows the R2 and RMSE cor-
responding to the different training sample size and the three 
surrogate models.

It is observed that PC-Kriging consistently outperforms 
PCE and Kriging; although the results obtained using PCE 
are found to be extremely close to the PC-Kriging results. 
Moreover, similar to the observations in previous section, 
the results obtained corresponding to sample size of 512 
and 1024 are almost identical (with R2 close to 1), indi-
cating that the surrogate models converge at 512 training 
samples. Figure 11 shows the probability density functions 
obtained using PCE, Kriging and PC-Kriging, wherein the 
results are compared with benchmark Monte Carlo simula-
tion results. For all the three cases, PC-Kriging is found to 
yield best results followed by PCE, establishing the superior-
ity of PC-Kriging over PCE and Kriging. All the subsequent 
results in this paper are obtained using PC-Kriging trained 
with 512 training samples. It can be noted in this context 
that stochastic analysis of composite structures leading to 
the uncertainty quantification of different global responses 
have recently received significant attention from the scien-
tific community [69–79]. However, most of these studies 
consider a single machine learning algorithm to map the 
stochastic input–output domain. The current investigation 
is the first attempt to investigate the performance of hybrid 
machine learning algorithms for any structural response of 
composite structures.

Table 7  Effect of thickness of plate (t) on low-velocity impact 
responses with considering ѱ = 0°, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , 

bending stiff laminate  (02°/± 30°) s

Thickness of plate 
(m)

Impact responses (maximum value)

CF (N) ID (m) PD (m)

t = 0.002 322.9597 0.000548 0.266644

t = 0.004 744.7855 0.000225 0.090134

t = 0.006 1054.777 0.000188 0.050085

t = 0.008 1248.632 0.000176 0.033335

Table 8  Effect of location of impactor contacting point on low-
velocity impact responses with dimension t = 0.002 m, ѱ = 0°, β = 0°, 
V = 5  m/s, ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s (loca-

tion of impact points on the laminated composite plate is indicated in 
the inset of Fig. 19a)

Location of impactor Impact responses (maximum value)

CF (N) ID (m) PD (m)

Location 1 731.8873 0.000228 0.075777

Location 2 744.7855 0.000225 0.090134

Location 3 735.177 0.000229 0.124411
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5.2.2  Probabilistic Impact Analysis

Having established the superiority of PC-Kriging over 
PCE and Kriging, we present results for probabilistic 
impact analysis in this subsection based on the PC-Kriging 
assisted approach. The results presented here correspond to 
the impact location at the centre of the plate, unless other-
wise mentioned. Figures 12 shows the variation of contact 
force, displacements of impactor and plate, and velocity of 
impactor with respect to time history for different stacking 
sequences. The figure also shows the corresponding stochas-
tic response bounds arising due to the source- uncertainties. 
It is found that contact force initially increases at a signifi-
cant rate with time and then decreases up to zero gradually. 
Impactor and plate displacements are noticed to gradually 

increase to a peak value and then reduce with the elapse of 
time. The velocity of the impactor reduces gradually over 
time and becomes constant after a certain duration.

The influence of fibre orientation angle in composite 
laminates is shown in Fig. 13. It is observed that the peak 
CF occurs for the torsion stiff laminates. The effects of 
twist angle on the critical impact responses are furnished in 
Fig. 14. In this case, the CF increases with the increase in 
twist angle, while peak ID and peak PD have a reverse trend. 
In case of impact loading, impact angle has a significant 
effect on the critical impact responses as shown in Fig. 15. 
The peak CF and peak PD decreases with the increase in 
impact angle from 0° to 45° while peak PD is found to have 
a reverse trend. All the impact responses increase with the 
increase in the initial velocity of the impactor as shown in 

Fig. 9  Convergence study for PC-Kriging with respect to the number of training samples. For all the three responses, PC-Kriging converges at 
512 training samples
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Fig. 16 due to the increase in kinetic energy. The standard 
deviation of the response parameters is also found to follow 
a similar trend for initial velocity of impactor. The increase 
in impactor mass density also leads to an increase of all 
impact responses for the same reason as shown in Fig. 17. 
The effect of plate thickness on the impact responses are 

shown in Fig. 18, wherein contact force is found to increase 
with the increase in plate thickness. On the other hand, the 
displacement of the impactor and plate displacement reduce 
as the plate thickness increases. The standard deviation of 
the response parameters is also found to follow a simi-
lar trend for thickness. The effect of location of impactor 

Fig. 10  PCE vs Kriging versus 
PC-Kriging (PC-Kriging is 
found to yield the best results)

787

788

789

790

791

792

793

794

795

796

797

798



   
   

   
R

E
V

IS
E
D

 P
R
O

O
F

Journal : Large 11831 Article No : 9438 Pages : 32 MS Code : 9438 Dispatch : 23-7-2020

 T. Mukhopadhyay et al.

1 3

contacting point on the impact responses is shown in Fig. 19. 
It is observed that contact force is maximum at the loca-
tion 2 i.e. centre of the plate, while plate displacement and 
impactor displacement are maximum at location 3. The rela-
tive coefficient of variation is shown for various influencing 

system parameters in Fig. 20 to understand about their rela-
tive degree of influence on the impact response parameters. 
The coefficient of variation (COV) is obtained by taking the 
ratio of standard deviation to mean of the responses. Here 
the relative coefficient of variation (RCOV) is computed by 

Fig. 11  Comparison of PCE, Kriging and PC-Kriging results. All the three models are trained with 512 training samples
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Fig. 12  Stochastic variation of the time history of low-velocity impact responses for different stacking sequences of the composite plate a–d 
for torsion stiff laminate (45°, − 45°, 45°, − 45°)s, e–h for bending stiff laminate (0°, 0°, 30°, − 30°)s considering t = 0.002 m, ѱ = 0°, β = 0°, 
V = 5 m/s, ρ = 0.0085 N−s

cm4
 , and Δt = 1 micro-second. Stochastic variation of the time history of low-velocity impact responses for different stack-

ing sequences a–d for cross ply laminate (90°, 0°, 90°, 0°)s, e–h for quasi-Isotropic stiff laminate (0°, 45°, − 45°, 90°)s considering t = 0.002 m, 
ѱ = 0°, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , and Δt = 1 micro-second
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normalizing the COVs with respect to the sum of all COVs. 
The relative sensitivity [67] of critical impact responses for 
the six cases indicated in Sect. 4.1 (considering impact at 
the centre of the plate) can be clearly understood from this 
analysis.

5.2.3  Fuzzy Based Non-probabilistic Impact Analysis

In this sub-section, we present numerical results correspond-
ing to the non-probabilistic assessment based on fuzzy 
analysis, which is beneficial if the complete description of 
the probability distribution of the input variables is not avail-
able. In this paper, the fuzzy approach is used to find out the 

Fig. 13  Effect of variation of stacking sequence (quasi-isotropic stiff 
laminate (0°, 45°, − 45°, 90°)s, torsion stiff laminate (45°, − 45°, 45°, 
− 45°)s, cross ply laminate (90°, 0°, 90°, 0°)s and bending stiff lami-
nate (0°, 0°, 30°, − 30°)s on low-velocity impact responses consider-
ing t = 0.002 m, ѱ = 0°, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4

Fig. 14  Effect of variation of twist angle ( � ) on PDF plots of low-
velocity impact responses considering t = 0.002 m, β = 0°, V = 5 m/s, 
ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s
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non-probabilistic responses by means of a predefined inter-
val of input parameters. The membership grade is considered 
0–1 at a level of 0.25. Similar to probabilistic analysis, PC-
Kriging models trained with 512 training samples are used. 
Fuzzy triangular membership function of the stochastic input 
parameters is formed to address the variation of contact force, 
plate displacement, and impactor displacement corresponding 

to each level of α- cut. It is found that the resulting output 
membership functions show a deviation from the triangular 
distribution of input membership functions.

Similar to the probabilistic analysis, Figs. 21, 22, 23, 24, 
25, 26 and 27 show the influence of different input vari-
ables on the low-velocity impact responses following the 
fuzzy based approach. In Fig. 21, influence of ply-angle on 
low velocity impact responses are shown. For torsion stiff 

Fig. 15  Effect of variation of impact angle (β) on PDF plots of low-
velocity impact responses considering t = 0.002 m, � = 0

◦ , V = 5 m/s, 
ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s

Fig. 16  Effect of variation of initial velocity of impactor (V) on 
PDF plots of low-velocity impact responses considering t = 0.002 m, 
ѱ = 0°, β = 0°, ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s
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Fig. 17  Effect of variation of mass density of impactor (ρ in N−s

cm4
 ) on 

PDF plots of low-velocity impact responses considering t = 0.002 m, 
ѱ = 0°, β = 0°, V = 5 m/s, bending stiff laminate  (02°/± 30°)s

Fig. 18  Effect of variation of thickness of plate (m) on PDF of low-
velocity impact responses considering ѱ = 0°, β = 0°, V = 5  m/s, 
ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s

and bending stiff laminate configurations, the maximum and 
minimum values of contact forces are identified respectively. 
On the other hand, maximum plate displacement and impac-
tor displacement are observed for bending stiff laminate. 
Figure 22 shows the effect of the twist angle on fuzzy low 
velocity impact response behaviour of laminated composite 
plates. The contact force peak value is noticed to increase 

as the angle of twist increases. On the other hand, as the 
angle of twist increases the plate displacement is found to 
reduce. The influence of oblique impact angle is shown in 
Fig. 23. The contact force and plate displacement decrease 
with the increase in the oblique impact angle; impact dis-
placement is found to have a reverse trend. Figures 24 and 
25 show the effect of the mass and initial velocity of the 
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impactor on the transient impact responses, respectively. All 
the critical responses increase with increase in the impac-
tor mass and initial impactor velocity. The influence of the 
thickness of plate is shown in Fig. 26, where the contact 
force increases with the increase in thickness of plate. The 
plate displacement and impactor displacement are found 
to decrease with the increase in the thickness of laminate. 
Finally, Fig. 27 shows the effect of location of impactor on 
the fuzzy responses considering three different points on 
the plate surface. The maximum value of contact force is 
observed when the impact occurs at the centre of the plate. 
On the other hand, both plate-displacement and impactor 
displacement are observed to have maximum value when 
the impact is on location 3.

6  Remarks and Perspective on Hybrid 
Machine Learning Models

In this paper, we reviewed the possibility of using a hybrid 
machine learning technique (PC-Kriging) for stochastic 
computational mechanics considering a critical impact 
problem. Note that the concept of hybrid machine learn-
ing approaches is not new; in fact, there exist a plethora of 
hybrid machine learning approaches in the literature. The 
primary idea of these methods is to combine more than one 
machine learning models so as to exploit the advantages of 
both (or, all of them). The first use of hybrid machine learn-
ing model is perhaps the ‘ensemble method’ proposed in 
[80, 81]. The primary premise of this work was to represent 
the response as a weighted combination of more than one 
machine learning techniques. The ‘ensemble of surrogate’ 
method has gained significant attention and its applica-
tion can be found in different domain [82–83]. Analysis of 
variance (ANOVA) decomposition [84], also known as the 
high-dimensional model representation (HDMR) [85], is a 
popular choice among researchers for hybridization. Over 
the years, researchers have come up with different variants 
of HDMR/ANOVA by combining it with other machine 
learning techniques. For example, Shan and Wang [86, 
87] combined radial basis function (RBF) with cut-HDMR 
(aka anchored ANOVA) to formulate RBF-HDMR. Within 
this framework, the basis functions in cut HDMR are rep-
resented by using RBF. In an independent study, Chowd-
hury et al. [88–90] formulated moving least square based 
cut-HDMR (MLS-HDMR) for solving structural reliability 
analysis problems. The formulation for MLS-HDMR and 
RBF-HDMR are similar; the only difference resides in the 

Fig. 19  Effect of variation of impactor contacting point on PDF plots 
of low-velocity impact responses considering t = 0.002  m, ѱ = 0°, 
β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°) s 

(Location of impact points on the laminated composite plate is indi-
cated in the inset of Fig. 19a)

Fig. 20  Relative coefficient of variation (RCOV) for peak con-
tact force, plate displacement, and impactor displacement of cen-
trally impacted glass–epoxy laminated composite plates consider-
ing bending stiff laminate  (02°/± 30°)s, ѱ = 45°, β = 30°, V = 10 m/s, 
ρ = 0.0090 N−s

cm4
 , t = 0.004 m
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Fig. 21  Effect of variation of stacking sequence (quasi-isotropic stiff 
laminate (0°, 45°, − 45°, 90°)s, torsion stiff laminate (45°, − 45°, 45°, 
− 45°)s, cross ply laminate (90°, 0°, 90°, 0°)s and bending stiff lami-
nate (0°, 0°, 30°, − 30°)s on low-velocity impact responses consider-
ing t = 0.002 m, ѱ = 0°, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4

Fig. 22  Effect of variation of twist angle (ѱ) on low-velocity impact 
responses considering t = 0.002 m, β = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , 

bending stiff laminate  (02°/± 30°)s

fact that the basis functions for MLS-HDMR are represented 
by using MLS based regression. As an improvement over 
MLS-HDMR and RBF-HDMR, Huang et al. [91] proposed 
support vector regression HDMR (SVR-HDMR) in 2015. It 
was illustrated that the performance of SVR-HDMR outper-
forms RBF-HDMR. Note that all the HDMR based hybrid 
machine learning algorithms discussed above are based on 
cut-HDMR.

Hybrid machine learning approaches based on random 
sampling HDMR, also known as the ANOVA decomposi-
tion, can also be found in the literature. Chakraborty and 
Chowdhury [92] developed a sequential experimental design 
based generalized ANOVA by coupling polynomial chaos 
expansion [23, 25, 43] with RS-HDMR [93, 94]. An adap-
tive version of this algorithm was also proposed [95]. Later 
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generalized ANOVA was further hybridized by coupling 
Gaussian process [96–98] with it. This was referred to as the 
hybrid polynomial correlated function expansion (H-PCFE). 
In essence, H-PCFE is a fusion of three machine learning 
algorithms, namely PCE, RS-HDMR and Gaussian process 
[22, 46, 47, 99]. The primary idea of H-PCFE is to represent 
the mean function of Gaussian process by using general-
ized ANOVA. Adaptive variants of H-PCFE was proposed 
in [100, 101]. It was illustrated that with hybridization (or 

fusion), the accuracy of the machine learning algorithm 
improves.

Apart from HDMR, hybrid machine learning algorithms 
based on Gaussian process, also known as the Kriging [20, 
21, 62] is also popular in the literature. In [102], a new 
hybrid machine learning algorithm was developed by com-
bining fuzzy logic, artificial neural network and Kriging. 
In another work, Pang et al. [103] combined Gaussian pro-
cess with neural network. The two methods differ in how 

Fig. 23  Effect of variation of impact angle (β) on low-velocity impact 
responses considering t = 0.002 m, ѱ = 0°, V = 5 m/s, ρ = 0.0085 N−s

cm4
 , 

bending stiff laminate  (02°/± 30°)s

Fig. 24  Effect of variation of mass density of impactor (ρ in N−s

cm4
 ) on 

low-velocity impact responses considering t = 0.002 m, ѱ = 0°, β = 0°, 
V = 5 m/s, bending stiff laminate  (02°/± 30°)s
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the neural network and Gaussian processes are combined. 
While the former uses neural network and Gaussian process 
sequentially, separated by fuzzy logic, the latter uses neural 
network to represent the covariance function of the Gauss-
ian process. The method used in the current paper is also a 
hybrid machine learning technique, referred to as the poly-
nomial chaos based Kriging (PC-Kriging). This method was 

Fig. 25  Effect of variation of initial velocity of impactor (V in m/s) on 
low-velocity impact responses considering t = 0.002 m, ѱ = 0°, β = 0°, 
ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°)s

Fig. 26  Effect of variation of plate thickness (t) on low-velocity 
impact responses considering ѱ = 0°, β = 0°, V = 5  m/s, ρ = 0.0085 
N−s

cm4
 , bending stiff laminate  (02°/± 30°)s

first proposed in [30] and was then further improved in [31]. 
In this method, the mean function of Kriging is represented 
by using polynomial chaos expansion. It is argued that poly-
nomial chaos expansion performs a global approximation by 
using basis function and Kriging performs local approxima-
tion by using the covariance kernel.
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Based on the literature and the results presented in this 
paper, it is safe to conclude that hybrid machine learning 
approaches are generally more accurate as compared to a 
single machine learning approach (note that such single 
machine learning approaches have been shown to predict 
accurately in various engineering problems [104–133]). 
However, there is no free lunch and this enhancement in 
the accuracy normally comes at a cost of the efficiency. For 
instance, H-PCFE discussed above is more accurate but less 
efficient as compared to the generalized ANOVA. Similarly, 
polynomial chaos based Kriging used in this paper is more 
accurate than polynomial chaos and Kriging; however, the 
computational time necessary for training a polynomial 
chaos based Kriging is more. To address this issue, research-
ers over the last few years have developed different adaptive 
algorithms. Having said that, there is still a significant scope 
for further developments when it comes to hybrid machine 
learning algorithms.

7  Conclusions

This paper deals with the effects of input-uncertainty on 
low-velocity impact responses of composite laminates, 
which is investigated based on an efficient machine learning 
algorithm. The Newmark’s time integration scheme is imple-
mented to solve time–histories of transient responses, while 
the modified Hertzian contact law is employed to obtain 
the contact force and other parameters. First, a determinis-
tic analysis is carried to investigate the effects of different 
system parameters (such as stacking sequence, twist angle, 
impact angle, initial velocity of impactor, mass density of 
impactor and thickness of plate). Subsequently a proba-
bilistic analysis is presented to characterize the complete 
probabilistic descriptions of low-velocity impact responses. 
Finally, to address the scenario where complete statistical 
descriptions of the input data are not available (sparse input 
data), a fuzzy based non-probabilistic approach is presented 
for low-velocity impact analysis of composites. Since con-
ventional methods for probabilistic and non-probabilistic 
analyses are exorbitantly computationally expensive, we 
integrated a hybrid polynomial chaos based kriging (PC-
Kriging) approach with the conventional framework to 
obtain a high level of computational efficiency. By hybridiz-
ing the two powerful metamodelling techniques, polynomial 
chaos and kriging (to capture the global and local behaviour 
of a system, respectively), it is possible to exploit the com-
plementary advantages of these two models in a single com-
putational framework. In essence, here we have presented 
a numerical demonstration of the superiority of hybrid 
machine learning algorithms over individual models in a 
systematic way including a critical review of the algorithms.

The novelty of this paper lies in characterizing the effect 
of source-uncertainty on low- velocity impact of compos-
ite plates as well as development of the hybrid simulation 
approach based on PC-Kriging coupled with the finite 
element model of composite laminates to achieve compu-
tational efficiency. We have presented a comprehensive 
study following both the probabilistic and non-probabilistic 
approaches that covers every possible scenario of the avail-
ability or unavailability of the statistical distributions of the 
input parameters. The stochastic results (both probabilistic 
and non-probabilistic) in this paper show that the inevita-
ble effect of uncertainty has significant effect on the critical 
impact responses of composite laminates. Thus it is impor-
tant to adopt an inclusive design approach by quantifying 
the stochastic variation of the global responses to ensure 
adequate safety and serviceability of the structure under low- 
velocity impact. Besides that, the hybrid PC-Kriging based 
approach adopted in this study to achieve computational effi-
ciency in the expensive and time-consuming process of mod-
elling impact in complex structural forms like composite 

Fig. 27  Effect of variation of impactor contacting point on low-
velocity impact responses considering t = 0.002  m, ѱ = 0°, β = 0°, 
V = 5 m/s, ρ = 0.0085 N−s

cm4
 , bending stiff laminate  (02°/± 30°) s (Loca-

tion of impact points on the laminated composite plate is indicated in 
the inset of Fig. 19a)
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structures can be useful for other computationally intensive 
problems of structural analyses and mechanics.
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