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Abstract 

The coupled effect of manufacturing uncertainty and a critical service-life damage condition (delamination) is 

investigated on the natural frequencies of laminated composite plates. In general, delamination is an 

unavoidable phenomenon in composite materials encountered often in real-life operating conditions. We have 

focused on the characterization of dynamic responses of composite plates considering source-uncertainty in 

the material and geometric properties along with various single and multiple delamination scenarios. A hybrid 

high dimensional model representation based uncertainty propagation algorithm coupled with layer-wise 

stochastic finite element model of composites is developed to achieve computational efficiency. The finite 

element formulation is based on Mindlin’s theory considering transverse shear deformation. Numerical results 

are presented for the stochastic natural frequencies of delaminated composites along with a comprehensive 

deterministic analysis. Further, an inevitable effect of noise is induced in the surrogate based analysis to 

explore the effect of various errors and epistemic uncertainties involved with the system. 

Keywords: delamination; manufacturing uncertainty; laminated composite plate; surrogate based finite 

element method 

1. Introduction 

Laminated composites have gained preference in various engineering applications such as aerospace, 

naval, automobile, micro-electro-mechanical-systems (MEMS) and civil structures due to high strength and 

stiffness with weight-sensitivity, increased toughness, mechanical damping, as well as tailoring of structural 

properties. In the recent year, wide application of composite materials has drawn an increased attention to its 

operational reliability and safety. The exhaustive usage of such structures has warranted the detail 

understanding of damage modes and their consequences in global structural responses. One of the most 
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significant setbacks of fibre-reinforced polymer composites is the propensity to onset, growth and propagation 

of delamination. In other words, one of the principle modes of failure in laminated composites is the 

delamination or separation of layers along the interfaces. In general, delamination occurs due unaccounted 

tension and shear developed at inter-laminar zones due to various factors such as free edge effect, 

discontinuities in structural elements, localized disturbances during manufacturing and operating conditions. 

The presence of inter-laminar debonding or delamination is often laid buried between the layers as it is hidden 

from superficial visual inspection. Subsequently the growth and propagation of delamination in conjunction 

with other modes of damage also remain unaccounted whereas it may reduce stiffness of the structure 

drastically leading to failure and instability of the structure.  

Besides delamination in composites, these advanced materials are susceptible to various forms of 

source-uncertainties in material and structural attributes due to complex manufacturing process (such as intra-

laminate voids and excess matrix voids, excess resin between plies, incomplete curing of resin, porosity, 

variations in lamina thickness, fibre orientation and fibre properties) and complicated design requirements. 

Such uncertainties affect the global structural responses significantly. The coupled effect of delamination and 

inevitable source-uncertainties can drastically influence the structural responses computed based on 

deterministic assumptions.  

Fundamental principles of stochastic mechanics are required to understand the probabilistic dynamic 

behavior of delaminated composites. It involves significant challenges to apply the original concepts 

developed for isotropic materials to laminated composites where material and geometric anisotropy prevails. 

Hence it is essential to investigate the complexities arising from unknown sources initiating the debonding of 

constitutive layers and its uncertain means of propagation. The free vibration characteristics of delaminated 

composites can show drastic fluctuations from the computed deterministic values due to randomness in 

material and geometric properties and damages incurred during the service-life depending on number, size or 

shape and location of delamination.  Moreover, due to the involvement of random system properties, the 

vibration characteristics of such structures with delamination can behave differently in different modes.  

A plenty of research work is reported on deterministic free vibration analysis of laminated composite 

plates and shells [1-10]. The aspect of delamination in composites has also received adequate attention in the 

deterministic domain [11-39]. Stochastic analysis of composite and sandwich structures considering source-

uncertainty is found to be studied by many researchers including the aspects of multi-scale analysis, 
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optimization and reliability assessment [40-59]. However, the compound effect of delamination and source-

uncertainty has not been investigated yet for the dynamic responses of composite structures. In this paper, we 

aim to investigate this coupled effect on the natural frequencies of composite plates.  

A careful review of literature concerning uncertainty quantification in composites shows two 

prominent approaches: perturbation based approach and Monte Carlo simulation based approach. The major 

drawback in a perturbation based approach can be identified as the requirement of intensive analytical 

derivation and lack of the ability to obtain complete probabilistic description of the response quantities. 

Moreover, this approach is valid only for a low degree of stochasticity in the input parameters. A Monte Carlo 

simulation (MCS) approach for uncertainty quantification does not have these critical lacunas. But the MCS 

approach is computationally very demanding because of the requirement of carrying out large number (~10
4
) 

of repetitive simulations corresponding to a random set of input parameters. For the analyses of composite 

structures including the effect of delamination, even one such simulation is normally very computationally 

intensive and time consuming. In such situation the panacea is a surrogate based Monte Carlo simulation [60-

64], which is adopted in this study.  

In the uncertainty quantification of responses by employing surrogate based approach, the original 

finite element model is replaced by an efficient pseudo simulation model, which is effective but economical. 

The surrogate models get necessary information about the nature of the response outputs by algorithmically 

selected design points drawn from the entire domain. An efficient hybrid high dimensional model 

representation (HDMR) [65-66] based uncertainty propagation algorithm coupled with layer-wise stochastic 

finite element (FE) model of the delaminated composites is developed in this paper for the stochastic free 

vibration analysis. The optimal design points are drawn from a pseudo random Sobol sequence [67]. In this 

context, another source of uncertainty needs be accounted in the analysis. The information acquired from the 

selected design points (input-output dataset) for forming surrogate models is a second source of uncertainty 

besides the conventional source-uncertainties in material and geometric parameters (refer to Figure 1). In the 

present study, simulated noise is introduced to account for such second source of uncertainty that can be 

tantamount to incorporating measurement error of responses, modelling and simulation error and other 

epistemic uncertainties involved in the system. To the best of authors’ knowledge, the present paper is the 

first attempt for a surrogate based dynamic analysis of delaminated composite plates (refer to Figure 2) 

coupled with random material and geometric properties including the effect of inevitable noise. After the  
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Fig. 1 Surrogate based stochastic analysis under the influence of noise 

 

 

 

(a) (b) (c) 

Fig. 2 (a, b) Composite plate showing forces and moments (c) Delamination in composite plates at crack tip 

 

introduction section, this paper is organized as, section 2: brief description of the mathematical model for 

stochastic dynamic analysis of delaminated composite plates; section 3: Hybrid HDMR based FE algorithm 

for layer-wise stochastic modelling of delaminated composites including the effect of noise (detail 

mathematical formulation of HDMR based surrogate modelling is provided as APPENDIX); section 4: results 

and discussion; section 5: summary and perspective; section 6: conclusion. 

2. Stochastic dynamics of delaminated composite plates 

In the present article, a composite cantilever plates with thickness ‘h’ with length ‘L’ and width ‘b’ is 

considered as shown in Figure 2. According to the first-order shear deformation theory, the displacement field 

of the plates is described by  
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),(),(),,( yxzyxuzyxu x  

),(),(),,( yxzyxvzyxv y  

),(),(),,( yxwyxwzyxw   

 

 

(1) 

where, u , v  and w  denotes displacements corresponding to the reference planes, while x and y  represents x 

and y axes rotations respectively. Each fibre of laminae is oriented at an arbitrary angle ‘θ’ about the x-axis. 

For the shell, the constitutive equations is given by [68]  

 })]{([}{ DF   (2) 

where    is a typical representation of stochasticity. Here the force resultant is given by 
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The strain vector can be expressed as 

T

yzxzxyyxxyyx kkk },,,,,,,{}{                                             (3b) 

The elements of elastic stiffness matrix )]([ D is given by 
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The parameter s  represents the shear correction factor (in the present study s =5/6) and ])([ ijH  denotes 

off-axis elastic constant matrix elements and expressed by 

T
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in which )(Sinc   and )(Cosd  , wherein )(  is random fibre orientation angle. 
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Where 
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In the FE formulation, an isoparametric quadratic element with 64 elements and 225 nodes is considered in 

this paper and each node has five degrees of freedom (DOF) (three translations and two rotations). For 

composite plate the mass per unit area is given by 
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The mass matrix is given by 
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The stiffness matrix can be expressed by 
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Lagrange’s equation and Hamilton’s principle [69] are employed to define the equation of motion for the free 

vibration system having n DOF and given by 

 0}{)]([][)]([   KM   (11) 

where )]([ M represents mass matrix and )]([ K represents elastic stiffness matrix, while {δ} represents the 

vector of generalized coordinates. Mindlin’s theory is employed to derive the governing equations for 

transverse shear deformation. In the free vibration analysis QR iteration algorithm is applied to determine the 

stochastic natural frequencies )]([ n  by solving standard eigenvalue problem [70].  

The cross-sectional view of delaminated composite crack tip is illustrated in Figure 2 (multipoint 

constraint – delamination model), in which a common node is formed by the nodes of three plate elements. 

The plate element 1 with thickness h illustrates the undelaminated portion, while plate elements 2 and 3 show 

the delaminated portion. Delamination occurs at the interface of the plate element 2 and 3, where h2 and h3 are 

the thicknesses of the elements 2 and 3, respectively. Before application of constraints condition, the elements 

1, 2 and 3 are free to deform. At the crack tip, the nodal displacements of elements 2 and 3 can be given by 

[71] 
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where '

ju , '

jv and '

jw  represents the mid-plane displacements in the x, y and z direction respectively. 

'

jz represents the z-coordinate of mid-plane of element j while x  and y  denotes rotations about x and y axes,  

respectively. For the element 1 also the given equation is valid. The common node have relationship for 

transverse displacements and rotations as 

wwww  321  

(13) xxxx   321  

yyyy   321  

 

At the crack tip, in-plane displacements have same magnitude for all the three elements and they have 

relationship as  
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where '

1u  denotes the displacement of the element 1 at the mid-plane. Equations (13) and (14) are the 

multipoint constraint equations, which have relationship for the nodal displacements and rotations of elements 

at the crack tip. These equations satisfy the compatibility equations of displacement and rotations and these 

equations are employed for the finite element formulation in the present study.  The mid-plane strains 

between elements 2 and 3 have relationship as,  

                             }{}{}{ '

1
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Where }{ '  denotes the normal strain vector at mid-plane and {k} denotes the curvature vector. For elements 

1, 2 and 3 curvature vector have same value at the crack tip. This equation is the special case for element 1 

when z′1 is equal to zero. For the element 2 and 3, in-plane stress-resultants )}({ N  and moment resultants 

)}({ M  are expressed by  
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In other form, 
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where )]([ A  denotes the extension coefficients, )]([ B denotes the bending-extension coupling coefficient 

and )]([ D denotes the bending stiffness coefficients. For the element 1 the relationship among these 

coefficients can be given as 
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3. Hybrid HDMR based FE algorithm for layer-wise stochastic modelling of delaminated composites  

Stochastic dynamic analysis of delaminated composites is carried out using a hybrid HDMR based FE 

algorithm. Detail mathematical formulation for the HDMR based surrogate model is provided as APPENDIX. 

This article focuses on the coupled effect of source-uncertainty (due to inherent randomness in material and 

geometric parameters) and delamination with different degree of severity and location. The effect of noise is 

investigated in the surrogate based uncertainty quantification algorithm. In this paper, the combined effect of 

geometric and material uncertainties along with delamination in laminated composites is considered as 

follows:  

 1 2 12 13 23( ) ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ) ( , ) ( )E E G G Gg s                                   (21) 

where ( , )  represents the effect of delamination. The parameters   and  are used to denote the location 

and severity of delamination. The quantity ( )s  represents the effect of noise in the surrogate based analysis, 

wherein s is used to denote the noise level. The compound effect of materials and geometric source-

uncertainties can be expressed as 
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where θi  denotes the ply-orientation angle, ρi  is the mass density, G12(i) and G23(i) represent the shear moduli, 

E1(i) and E2(i) are Young’s modulus along longitudinal direction and transverse direction, while ‘l’ represents 

the number of layer in the laminated composite plate. The parameter   is the stochasticity in input 

parameters. It is considered that the randomness in input parameters is distributed within a certain band of 

tolerance from central deterministic mean value which follows a uniform distribution. For presenting 

numerical results, it is considered as 10% and  10º for material properties and ply orientation angle 

respectively according to industry standard, unless otherwise indicated. Figure 3 shows the hybrid surrogate 

(HDMR) based FE algorithm for uncertainty quantification followed in this paper. A description about Monte 

Carlo simulation can be found in Naskar et al. (2018) [57]. 

Besides the source-uncertainties in material and geometric properties ( )(g  ), another source of 

uncertainty is considered in the present analysis in terms of noise ( ( )s ). The simulated noise is introduced to 

account for the effect of measurement error of responses, modeling and simulation error and other epistemic  
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Fig. 3 Flowchart for surrogate based uncertainty quantification of composite laminates (to analyze the 

coupled effect of source-uncertainty and delamination) including the influence of noise. Representative 

figures of finite element analysis, sobol’s quasi-random sampling, surrogate modelling and probability 

distributions are shown corresponding to the respective steps. 

 

uncertainties involved in the system [59]. While formation of the surrogate model, gaussian white noise with 

a specific level (s) is induced in the set of output responses as 

ijN ij ijf f s     (23) 

where, f represents the natural frequency corresponding to a particular mode of vibration, subscript i is the 

frequency number, and subscript j is sample number in the design point set. The parameter ij  denotes a 

function that creates random numbers. Here the subscript N is used to represent the noisy frequency. Thus the 

simulated noisy dataset is generated by considering a gaussian noise in the responses, while the input design 

points remain constant. Thereby Monte Carlo Simulation is carried out for each noisy dataset following a non-

intrusive method as shown in Figure 3. Thus thousands of surrogate based Monte Carlo Simulations are 

performed with the noisy design points to quantify the effect of noise corresponding to a particular level. 
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4. Results and discussion 

In the present study, the first three natural frequencies of a cantilever laminated composite plate with 

length 1m, breadth 1m and thickness 0.0004m are analysed corresponding to different ply orientation angle, 

degree of orthotropy, degree of stochasticity, material and geometric properties, position of delamination, and 

number of delamination. Both deterministic as well as stochastic results are presented for a comprehensive 

analysis. The material properties of the composite plate are assumed as: E1 = 138.0 GPa, E2 = 8.96 GPa and µ 

= 0.3, while values of G12, G13, and G23 are determined by relationship of E and µ as G12 = G13 = 7.1 GPa, G23 

= 2.84 GPa, where the symbols have usual meanings. The first three natural frequencies are abbreviated as 

FNF (first natural frequency), SNF (second natural frequency) and TNF (third natural frequency) respectively. 

4.1. Validation and convergence study 

In the surrogate assisted stochastic analysis of laminated composites, two different forms of validation 

and convergence study are needed to be carried out. The first validation is for the finite element model of 

delaminated composite plate along with mesh convergence study. A second type of validation is also needed 

here concerning the performance (efficiency and accuracy) of the surrogate model in predicting the responses 

along with a convergence study for minimizing the number of design points required for forming surrogate 

models. Table 1 shows the mesh convergence study and comparative results with scientific literature for the 

deterministic first natural frequency of an undelaminated composite plate. Keeping the computational aspect 

in mind, a 6 x 6 mesh is adopted in this work. Further the deterministic first natural frequency is validated 

with Krawczuk et al. [72] for delaminated composite plates considering various relative position of 

delamination as shown in figure 4. 

The optimum number of samples (drawn from Sobol sequence) to construct surrogate models are 

decided based on sample-wise prediction performance (scatter plot) and a comparative assessment with direct 

Monte Carlo simulation (probability density function plot). Based on the results presented in figure 5, a 

sample size of 1024 is adopted for surrogate model formation. A good agreement between the probabilistic 

descriptions of natural frequencies and minimal deviation from the diagonal lines of the scatter plots 

corroborate the accurate prediction capability of the surrogate models corresponding to the chosen sample 

size. It can be noted in this context that the computational time required is exorbitently high for evaluating the 

probabilistic responses through full scale direct MCS because of the involvement of large number of finite 

element simulations (~10
4
). However, in case of the present surroagate based method, although a same sample  
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Table 1 Non-dimensional fundamental natural frequencies [ω=ωn L
2
 √(ρ/E1h

2
)] of three layered [θ, -θ, θ] 

graphite- epoxy twisted plates, L/b=1, b/h=20, ψ=30° 
 

Ply orientation 

Angle, θ 

Present FE model 

 

Qatu and 

Leissa [73] 

 

4 x 4 6 x 6 8 x 8 10 x 10 

15° 0.8588 0.8618 0.8591 0.8543 0.8759 

30° 0.6753 0.6790 0.6752 0.6722 0.6923 

45° 0.4691 0.4732 0.4698 0.4578 0.4831 

60° 0.3189 0.3234 0.3194 0.3114 0.3283 

 

 

Fig. 4 Validation for the deterministic finite element code with respect to published results (Krawczuk et al. 

[72]) considering the effect of relative position of delamination  

size as the direct MCS is considered, the requirement of carrying out actual finite element simulations is much 

lesser compared to the direct MCS approach. Here it is equal to the number of samples required to form the 

HDMR based surrogate model (i.e. 1024). Hence, the computational intensiveness (time and effort) in terms 

of FE analyses are decreased significantly in comparison to full-scale direct MCS. 

4.2. Deterministic analysis 

In this section, deterministic results are presented to portray the fundamental influences of the location 

and severity of delamination in cantilever composite plates. Table 2 presents the effect of severity of damage 

considering a case of single delamination. It can be noticed that the natural frequencies reduce with increasing 

percentage of delamination due to the reduction in stiffness. Table 3 shows the effect of single delamination 

in a composite plate considering different locations of delamination along the span (x-y plane). From the 

table, it can be noted that all three natural frequencies decrease with changing the delamination location from 

near fixed end to near the free end. The effect of locational variation of delamination across the thickness is 

shown in figure 6, which reveals an interesting trend of reduction of the frequencies up to mid-zone of the  
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Fig. 5 (a,b,c) Scatter plots and (d, e, f) probability density function (PDF) plots for first three natural 

frequencies (rad/s) considering HDMR model with respect to original finite simulation model considering 

different sample size 

interfaces and then a rise following a symmetric pattern. In this figure the results are presented considering a 

higher number of plies to portray the effect of locational variation of delamination across thickness more 

clearly. For the case of single delamination, it can be noted that the effect of increasing severity of damage 

(percentage of delamination) is rather less, although the natural frequencies decrease marginally with the 

increase of damage level. In contrast, the effect of multiple delamination is observed to be more noteworthy 

for the natural frequencies as shown in Table 4 considering different laminate configurations. With the 

increase in number of delamination (nd), the natural frequencies are found to decrease significantly. 
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Table 2 The effect of severity of delamination (% of delamination) on first three deterministic natural 

frequencies considering a stacking sequence of [45˚/-45˚/45˚] 

Parameters FNF SNF TNF 

Undelaminated composite plate 8.851 51.053 164.702 

% of delamination 

(Mid-point delamination) 

16.66% 8.836266 51.02038 164.5625 

25% 8.835081 51.01272 164.5404 

33.33% 8.830061 50.99974 164.4979 

50% 8.738607 50.81708 163.891 

Table 3 The effect of location of delamination (along the span) on first three deterministic natural frequencies 

considering a stacking sequence of [45˚/-45˚/45˚] 

Parameters FNF SNF TNF 

Undelaminated composite plate 8.851 51.053 164.702 

Location of delamination  

(Along span – 25% 
delamination) 

Near fixed end 8.842589 51.03411 164.6553 

Mid-point 8.835081 51.01272 164.5404 

Near Free end 8.398455 50.04205 161.7076 

4.3. Stochastic analysis 

Stochastic results are presented in this section for natural frequencies of delaminated composite plates 

considering the compound variation of the source-uncertainties (refer to section 2) along with the effect of 

noise. Figure 7-13 and figure 15 show stochastic results concerning different aspects of single delamination, 

while figure 14 considers multiple delamination in composites. Figure 7 shows the effect of increasing 

percentage of delamination (along with the case of no delamination) on the first three natural frequencies of 

composite laminates, wherein it can be noticed that the natural frequencies reduce marginally with the 

increase in severity of damage while the probabilistic descriptions vary considerably. The effect of ply-

orientation angle on the stochastic natural frequencies of delaminated composite plates (single delamination – 

25%) is shown in figure 8 considering cross-ply and angle-ply laminates. The figure illustrates that cross-ply 

laminates have higher range of natural frequencies compared to angle-ply laminates, whereas the probabilistic 

response bounds are more in case of angle ply laminates. Figure 9 shows the effect of variation in degree of 

orthotropy (DOO) on the stochastic natural frequencies of delaminated composite plates (considering single 

delamination – 25%), wherein all the natural frequencies along with their probabilistic bounds are found to 

increase with the increase in degree of orthotropy. The effect of degree of stochasticity (i.e. level of source-  
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(a) 

 

(b) 

 

(c) 

 

 

 

(d) 

Fig. 6 (a-c) Variation of first three natural frequencies of an eight layered angle ply [45˚/-45˚/45˚/-45˚]S 

delaminated composite plate (single delamination) with varying relative location of delamination across the 

thickness (d) Relative location of delamination (at the interfaces of two laminas) across thickness 

Table 4 Effect of multiple delamination (33.33% mid-point delamination) on the first three natural 

frequencies for various laminate configurations of a [θ /- θ / θ /- θ]S family of composite 

Ply 

orientation 

angle (θ) 

No delamination           

(nd = 0) 

Single delamination      

(nd = 1) 

Multiple delamination   

(nd = 4) 

FNF SNF TNF FNF SNF TNF FNF SNF TNF 

 

0  8.016 35.627 115.711 7.954 35.438 115.314 7.935 35.378 115.196 

15  8.107 39.262 133.232 8.056 39.122 132.872 8.046 39.078 132.758 

30  8.467 46.254 158.215 8.434 46.189 157.974 8.431 46.171 157.904 

45  8.851 51.053 164.702 8.830 50.999 164.497 8.829 50.986 164.448 

 0  9.072 52.012 158.057 9.053 51.93 157.749 9.051 51.919 157.664 

 5  8.951 50.296 145.491 8.931 50.236 145.167 8.927 50.220 145.074 

 0  8.731 48.202 134.891 8.710 48.148 134.559 8.704 48.133 134.463 
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(a) 

 

(b) 

 

(c) 

Fig. 7 Probabilistic description of first three natural frequencies (rad/s) due to varying severity of 

delamination ( ) considering the case of single delamination 

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 8 Effects of delamination on first three natural frequencies (rad/s) considering angle ply and cross ply 

laminate configurations 
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(a) 

 
(b) 

 
(c) 

Fig. 9 Effect of variation of degree of orthotropy (DOO) on the first three natural frequencies (rad/s) of 

delaminated composite plates 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10 Effect of variation in degree of stochasticity (DOS) on the first three natural frequencies (rad/s) of 

delaminated composite plates 
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(a) 

 
(b) 

 
(c) 

Fig. 11 Effects of individual variation of all material properties and structural attributes (θ) on the first three 

natural frequencies (rad/s) 

 

uncertainty) on first three natural frequencies is presented in figure 10.  As expected, the response bounds are 

noticed to be increased with increasing degree of stochasticity. Figure 11 presents a comparative assessment 

in two different cases of source uncertainty in delaminated composite plates (considering single delamination 

– 25%), compound effect of stochasticity in all materials properties only and the effect of stochsticity in 

structural property (ply orientation angle). Besides significant difference in the probability distribution 

between the two cases, the natural frequencies are found to decrease marginally in case of the compound 

variation of material properties. From the probabilistic response bounds it can be discerned that the sensitivity 

of ply orientation angle is one of the most predominant in the free vibration responses of composite plates.  

Figure 12 and 13 show the effect of the location of delamination (considering single delamination – 

25%) on stochastic natural frequencies of composite plates. Figure 12 shows the effect of span-wise location, 

wherein it can be noticed that the influence of delamination becomes more severe as the location changes 

from the fixed end to the free end in a cantilever composite plate along with an increase in probabilistic 

response bounds. Figure 13 presents the effect of location of delamination across the thickness of a composite 

plate (i.e. single delamination is considered at the interface of different layers) on the stochastic natural 

frequencies. While obtaining these results, a different laminate configuration with increased number of layers  
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(a) 

 

(b) 

 

(c) 

Fig. 12 Effect of delamination location on the first three natural frequencies (rad/s) considering spatial 

variation along the span (fixed, middle, and free end) with 25% single delamination  

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 13 Effects of delamination location across the thickness (refer to figure 6 for the pictorial representation 

of h’/h ratio) on the first three natural frequencies (rad/s) considering a 25% single delamination case 
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(a) 

 
(b) 

 
(c) 

Fig. 14 Effects of number of delamination (nd) on the first three stochastic natural frequencies (rad/s) for the 

case of multiple delamination in composite plates 

is used to portray the effect of the location of delamination across the thickness clearly. From the figure it can 

be observed that the range of natural frequencies reduce as the location of delamination varies from the two 

free surfaces towards the middle of thickness of the laminate. 

 The results in figure 14 are presented to analyse the effect of multiple delamination on stochastic 

natural frequencies of composite plates considering a laminate configuration of (45˚/-45˚/45˚/-45˚)S. 

Comparative probability distribution plots are presented considering the case of no delamination, single 

delamination and four delaminations (nd = 0, 1, 4). It can be noticed from the figures that the range of natural 

frequencies reduce with the increase in number of delaminations. The influence of noise on the stochastic 

natural frequencies of delaminated composite plates is presented in figure 15 considering a single 

delamination (25% mid-point delamination). It can be noticed that the stochastic bound of the probability 

distributions increase with the increase in level of simulated noise (s). 

5. Summary and perspective 

 This paper presents an efiicient stochastic bottom-up framework for analyzing the coupled effect of 

delamination and source-uncertainties ( ( ) ) on natural frequencies of composite plates. The simulated noise 

studied in this article can be considered equivalent to accounting for the effect of measurement error of  
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(a) 

 
(b) 

 
(c) 

Fig. 15 Effect of noise on the first three stochastic natural frequencies (rad/s) of delaminated composite plates 

responses, modeling and simulation error and other epistemic uncertainties involved in the system. A 

stochastic simulation involving thousands of finite element simulations (~10
4
) becomes exorbitantly 

computationally expensive. To mitigate this lacuna, a surrogate based approach (HDMR coupled with 

DMORPH) in conjunction with the stochastic finite element formulation is adopted to obtain computational 

efficiency (without compromising the accuracy of results) in the present analysis. In case of the structural 

mechanics problems, where efficient analytical solutions [74-80] are not available, a surrogate based approach 

can be developed to carryout multiple iterative function evaluations. 

 In the stochastic characterization of delaminated composites, there exists three distinct stages of the 

analysis: uncertainty modelling at the input level, propagation of uncertainty to the global level and 

quantification of the global responses such as natural frequencies. A layer-wise model of source-uncertainty 

along with the effect of noise and delamination is adopted in the present analysis, as discussed in section 2. 

Normally efficeint function evaluations (in terms of the stochastic input parameters) by direct closed-form 

formulae are not available for complex structural systems like laminated composites. In such situation, a 

numerical analysis technique like finite element method is adopted to obtain the response quantities. Finite 

element analyses are normally very expensive and time consuming. Inclusion of the effect of delamination in 
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the present study makes the simulations more computationally intensive. The situation becomes worse in case 

of a stochastic analysis that requires thousands of such finite element simulations to be carried out. The 

surrogate based uncertainty propagation strategy, as adopted in this study, can develop a representative and 

predictive mathematical/ statistical metamodel relating the natural frequencies to a number of stochastic input 

variables. Thereafter the metamodels (response surface) are used to compute the dynamic characteristics 

corresponding to a given set of input variables, instead of having to simulate the time-consuming FE model 

repeatedly. The response surface here represents the results (or outputs) of the structural analyses 

encompassing (in theory) every prospective combination of the stochastic input variables. Hence, thousands 

of combinations of the stochastic input variables can be created and a pseudo analysis (efficient, yet accurate) 

for each variable set can be performed by adopting the corresponding surrogate model. The final step in the 

stochastic analysis is uncertainty quantification in the output responses, which is effectively carried out by 

deriving the probabilistic distributions and the statistical moments. 

 The results in this article capture the influence of inevitable source-uncertainties in material and 

structural attributes (manufacturing uncertainties) along with service-life conditions such as damage in 

composites (delamination). The effect of source-uncertainty in all material properties and structural properties 

are analyzed separately to ascertain their relative influence on the stochastic natural frequencies. It is noted 

that the ply orientation angle is more sensitive to natural frequencies compared to the individual effect of 

variability in material properties of the delaminated composites. Along with the previous studies [81], where 

the individual effect of variation in different material properties are analyzed for undelaminated composites, 

the present results can provide a comprehensive idea about the senstivity of various input parameters towards 

the global dynamic behaviour of the structure in the presence of delamination. Effect of single as well as 

multiple delamination on the stochastic dynamic responses of composite plates is analyzed considering the 

aspects of location and severity of delamination. The results reveal that the effect of increasing number of 

delamination is more sensitive to the natural frequencies compared to the effect of increasing severity of 

delamination corresponding to a particular case of single delamination. Besides the conventional sources of 

manufacturing uncertainty in material and structural properties, another source of uncertainty is considered in 

this study in the form of noise, which can be considered tantamount to incorporating various forms of errors 

involved in the system and other epistemic uncertainties, which are not explicitly addressed in the analysis.   
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6. Conclusion 

The compound influence of source-uncertainties in material and structural attributes (manufacturing 

uncertainty) and delamination (a service-life condition) on the natural frequencies of composite laminates is 

analyzed including the effect of inevitable noise. The propagation of source-uncertainty can cause a dramatic 

shift in the dynamic behavior of composites when coupled with the effect of damage. A hybrid HDMR based 

finite element code is developed for delaminated composite plates to study the effect of single and multiple 

delamination along with their locational sensitivity and severity. In-depth results are presented in both 

deterministic as well as stochastic regime for a comprehensive understanding. Various laminate 

configurations along with different degree of orthotropy and degree of stochasticity are analyzed to provide a 

thorough insight on the stochastic dynamic behavior of delaminated composite structures. It is found that the 

coupled effect of stochasticity/ source-uncertainty and delamination has significant influence on the dynamic 

behaviour of composite structures. Thus it is imperative to include these aspects in subsequent analyses/ 

design process to ensure the desired robust, safe and sustainable system performance. Future research would 

follow the probabilistic analysis of delaminated shell structures and consideration of other forms of damages 

concerning composites in the stochastic regime. The present paper dealing with the efficient hybrid HDMR 

based finite element analysis for the stochastic dynamics of delaminated composite plates would serve as a 

valuable reference in such future studies. 

APPENDIX 

In the case of large number of input variables (i.e. high dimensional systems), a system can be 

effectively analysed by using the high dimensional model representation (HDMR) [65]. By using the HDMR, 

deterministic as well as stochastic relationships can be handled. The HDMR is employed to create a model for 

prediction of the response output in the stochastic region (in this paper natural frequency is taken as output 

response). To confirm the component functions’ orthogonality, D-MORPH algorithm is employed in the 

formulation. In the present approach, the function )(  is decomposed with component functions by input 

parameters ),...,,( 21 kk  . The nature of the input parameters is independent and the component 

functions are projected by vanishing condition. So, this technique has limitation for general formulation. The 

output is determined for the different input variables as [65] 
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where  0  denotes the mean value, which is a zeroth order component function. )( ii   represents the first 

order component function, ),( jiij  resents the second order component functions, and 

).,....,,( 21.......12 kkkk   denotes the residual contribution by input parameters, while 

},....,2,1{ kku represents the subset wherein kku  for simplicity and empty set, u .  The correlated 

variables are defined as, 
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The function )( is determined from the sample data by experiments or by modelling. The squared error can 

be reduced to minimise the computational cost. Considering Q in Hilbert space expanded on the 

basis },....,,{ 21 kkqqq , the bigger subspace Q (⊃Q ) is expanded by extended 

basis },....,,,....,,{ 121 mkkkk qqqqq  . Then Q can be decomposed as 

  QQQ  (6) 

where Q  represents the complement subspace of Q [82] within Q . In the past works [83-85], basis 

functions are employed to determine the component functions. The basis functions }{  are used to estimate 

the component functions of second order HDMR expansion as [85] 
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The basis functions of ),( jiij  includes all the basis functions used in )( ii  and )( jj  . At sampN  sample 

points of , the HDMR expansions are denoted by the linear algebraic equation system 

 RG ˆ  (9) 

where  is a matrix with size sampN  × t
~

and all elements of this matrix are basis functions at the sampN  values 

of  ; G  represents a vector with t
~

dimension of all unknown combination coefficients; R̂  denotes a vector 
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with sampN -dimension wherein l -th element is 0

)( )(  l . )(l  represents the l -th sample of  , and 0  

denotes the average value of all )( )(l . The regression equation for least squares of the above equation can 

be given as 
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Some rows of the above equation are identical due to the use of extended bases, and an underdetermined 

algebraic equation system is obtained by removing these rows as  

 VGA ˆ  (11) 

This has many of solutions for G consisting a manifold tY
~

 . The main task is to determine a solution G  

from Y  to force the HDMR component functions satisfying the hierarchical orthogonal condition. A solution 

provided by D-MORPH regression ensures additional condition of exploration path which is denoted by 

differential equation  
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wherein   represents orthogonal projector ensuring 

 2     and         T  (13) 
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To ensure the wide domain for )(lG and reduce the cost ))(( lG , the free function vector is selected and 

expressed as 
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The cost function is represented in quadratic form as  
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where B is the positive definite symmetric matrix and G  can be given as 
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This unique solution G in Y shows the minimized cost function. The solution ‘G’ is determined by using the 

D-MORPH to ensure the HDMR component functions’ orthogonality in hierarchical manner. In previous 

literature, construction of the corresponding cost function   can be found [65].  
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