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Abbreviation Meaning 

CHILD Canadian Healthy Infant Longitudinal Development  

CMA Cow’s milk allergy 

CRD Component-resolved diagnostic 

DBP Vitamin D binding protein 

EAACI European Academy of Allergy and Clinical Immunology 

EAT Enquiring about tolerance 

FA Food Allergy 

HLA-DQ Human leukocyte antigen DQ isotype 

HLA-DR Human leukocyte antigen DR isotype 

OFC Oral food challenge 

OIT Oral immunotherapy 

RCT Randomized control trials 

SERPINB Clade B serpin 

SPT Skin prick test 

Treg T-regulatory 
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Abstract 

Food allergy affects the quality of life of millions of people worldwide and presents a 

significant psychological and financial burden for both national and international public 

health. In the past few decades, the prevalence of allergic disease has been on the rise 

worldwide. Identified risk factors for food allergy include family history, mode of delivery, 

variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, 

and social economic status.  Identifying reliable biomarkers which predict the risk of 

developing food allergy in early life would be valuable in both preventing morbidity and 

mortality and by making current interventions available at the earliest opportunity.  There is 

also the potential to identify new therapeutic targets.  This narrative review provides details 

on the genetic, epigenetic, dietary and microbiome influences upon the development of food 

allergy and synthesizes the currently available data indicating potential biomarkers.  While 

there is a large body of research evidence available within each field of potential risk factors, 

there are very limited number of studies which span multiple methodological fields, for 

example including immunology, microbiome, genetic/epigenetic factors and dietary 

assessment.  We recommend that further collaborative research with detailed cohort 

phenotyping is required to identify biomarkers, and whether these vary between at-risk 

populations and the wider population.   The low incidence of oral food challenge confirmed 

food allergy in the general population, and the complexities of designing nutritional 

intervention studies will provide challenges for researchers to address in generating high 

quality, reliable and reproducible research findings. 

 

Keywords: IgE mediated food allergy, biomarkers, pathways, risk factors, microbiota, 

nutrition, infant diet  
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Statement of significance 

Food allergy affects the quality of life of millions of people worldwide and presents a 

significant psychological and financial burden for both national and international public 

health. Identifying reliable biomarkers which predict the risk of developing food allergy 

would be valuable in both preventing morbidity and mortality and by making current 

interventions available at the earliest opportunity. This review provides details on the genetic, 

epigenetic, dietary and microbiome influences upon the development of food allergy. This 

helps in identifying reliable biomarkers to predict the risk of developing food allergy, which 

could be valuable in both preventing morbidity and mortality and by making interventions 

available at the earliest opportunity.    
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1. Introduction   

Food allergy (FA) is defined as an adverse immunologic response to a food protein (1).  It 

affects the quality of life of millions of people worldwide and presents a significant 

psychological (2) and financial (3) burden for both public health. The European Academy of 

Allergy and Clinical Immunology (EAACI) systematic review estimates FA prevalence in 

Europe between 0.1 and 6.0% (4). Risk factors for developing FA are multiple and 

contextual, ranging from genetic predisposition to environmental factors (such as mode of 

birth delivery, type and timing of solid food introduction, changes in hygiene practices, and 

social economic status) and the interaction between these factors (Table 1).  

Identifying biomarkers that reflect either the risk of developing FA, the severity of FA or 

induction of tolerance (i.e. reaching non-reactivity towards a substance that would previously 

cause a reaction) would be valuable in both preventing morbidity and mortality arising from 

FA, by allowing earlier interventions and by potentially highlighting new targets for 

intervention. The Health Biomarkers Definitions Working Group defined a biomarker as "a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” 

(5). 

Biomarkers can also provide value in the regulatory context. The European Food Safety 

Authority health claim substantiation requires that “a food or one of its constituents 

significantly reduces a risk factor in the development of a human disease” (6). The regulation 

additionally requires that the risk factor is `generally accepted`. A classic example is 

cholesterol, a biomarker found to be associated with heart disease development. In labelling 

or advertising, health claims which constitute a "reduction of disease risk" shall also bear a 

statement indicating that the disease to which the claim is referring has multiple risk factors 

and that altering one of these risk factors may or may not have a beneficial effect. Thus, the 
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optimal risk biomarker to be altered would be a combination of risk factors or a chain of 

events reflecting changes in the relative risk.   

This paper reviews available evidence in human studies in early life about well-described 

pathways with well-defined biomarkers and risk factors which are associated with IgE-

mediated FA.  

2. Current status of knowledge 

Recent efforts have focused on the identification of biomarkers for prediction and diagnosis 

of IgE-mediated FA. IgE-mediated reactions induce a variety of symptoms that range from 

erythema, urticaria and angioedema, nausea, abdominal pain or vomiting, to severe 

respiratory distress, or cardiovascular collapse among others (7). Differences in the outcomes 

and manifestations might be related with genetic components but also with environmental 

factors, dietary factors and the intestinal microbiota (8). The exact diagnosis and prevalence 

of FA is difficult to ascertain due to the imprecision of laboratory tests and the lack of 

specific biomarkers, relying on the combination of the clinical history of characteristic 

symptoms together with test results (7), the use of IgE as a biomarker in FA, and the potential 

associations with genetic and epigenetic origins that would be target of potential interventions 

(breast milk versus others, weaning, diet, etc.).  

2.1. Genetic and epigenetic biomarkers of food allergy 

The link between the risk of FA in children and allergic diseases and/or allergic sensitisation 

in their family has been extensively reported (9-14), with estimates that FA/sensitization risk 

doubles if one parent has an allergic disease and is threefold higher if both parents having an 

allergic disease. A recent meta-analysis of genome-wide association studies identified 10 loci 

near C11orf30 (encoding the transcriptional repressor EMSY), STAT6, SLC25A46, HLA-

DQB1, IL1RL1 (encoding ST2, the -chain of the IL-33 receptor), LPP, MYC, IL2, and HLA-
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B that are associated with allergic sensitisation (15). Allergen-specific genetic modifications 

in the human leukocyte antigen (HLA) DR and DQ isotype gene region have also been 

associated with peanut allergy (16). Conflicting results were reported with regards to gender 

association with FA and no conclusive studies are available (10, 11, 17, 18). Some data 

suggests that five loci at genome-wide significance (clade B serpin [SERPINB]) gene cluster 

at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 

locus, and the HLA region increase the risk for FA (19). 

Eczema and FA often co-exist and evidence suggests that impaired skin barrier is a 

significant risk factor for FA development later in life (20, 21) with loss-of-function variants 

in the filaggrin gene suggested as a causative factor, and filaggrin mutation is associated with 

eczema and asthma later in life (22, 23). Identified genetic loci associated with FA, their 

potential mode of action and evidence supporting their use as a biomarker are presented in 

Table 2. 

Extrinsic environmental factors including diet, pollutants and infections, and intrinsic factors 

such as the intestinal microbiota and inflammatory state are likely to play a crucial role in 

inducing epigenetic changes (24, 25). The importance of postnatal factors and environmental 

influence is a risk factor for FA development and this exposure accumulates while the infant 

develops (9, 10, 18). The route of exposure (e.g. placental, skin, breast milk, airway, gut), 

timing, dose of allergen exposure, and host immune system status are likely to impact upon 

the potential for epigenetic change (26). Investigations of targeted and untargeted methylation 

profiles of immune cells are methodologies that can help to find biomarkers that reflect the 

different stages of FA: those at risk, those who are tolerant, those with active disease (27, 28). 

An overview of studies on epigenetic changes associated with FA is presented in Table 3. 
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2.2. The role of breastfeeding, and time of food introduction in FA 

2.2.1. Breastfeeding 

Human milk is the first food available to a newborn baby and exclusive breastfeeding for the 

duration of 6 months is recommended by the WHO. Available evidence suggests that 

breastfeeding protects against infections as well as offers long-term benefits, reducing the 

risk of hypertension and diabetes, and improving cognitive development (29). The protective 

effect of breastmilk on allergy development has not been fully demonstrated (29-33). 

However, there is conflicting data concerning the relationship between breastfeeding and FA 

with some cohort studies reporting a reduced risk of FA development in the general 

population (20, 21) and in high-risk children (34) while others reporting an increased risk (35, 

36). One meta-analysis investigating this relationship reported no evidence of breastfeeding’s 

protective effect in preventing FA development (OR: 1.02; 95% CI: 0.88, 1.18), although the 

authors suggested that the risk of bias and major differences in the outcome definitions in the 

current studies may be responsible for the inconclusive results (31). As human milk contains 

food proteins, their levels in the milk and maternal diet may also contribute to tolerance 

development (37), particularly in presence of the biologically active molecules (38). Both 

aspects are not normally considered in the studies, assessing associations between 

breastfeeding and non-communicable diseases development. 

A recent systematic review on FA prevention suggests that although breastfeeding has many 

benefits for infants and mothers, it may not reduce the risk of FA (39). Human breast milk 

constituents vary (over time postpartum, within and between women and even within the 

same feed), which may, in part, explain some of the conflicting results of general 

observational studies regarding the provision of breastfeeding (40, 41). It has been described 

that immunological compounds in breast milk (including cytokines and immunoglobulins) 

are modulated by multiple factors, including maternal allergic status, parity, geographical 
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location among others (42-45), but overall evidence on the topic is conflicting with most of 

the studies not identifying clear associations between the immunological composition of 

breast milk and allergic disease development in infants (38). Dietary peptides from proteins 

in food are excreted in breast milk, but the peptide sequences are relatively short and in small 

amount, therefore, their sensitization or tolerogenic potential remain to be explored (46). The 

presence of specific peptides has also been shown in infant formula (47). However, so far, 

systematic reviews (48, 49) have not found sufficient evidence that hydrolysed formula 

prevents eczema or milk allergy (50). 

Thus, claims currently appearing on the infant formula products need better substantiation 

and many reputable organizations, including the American Academy of Pediatrics; American 

Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and 

Immunology; Canadian Society for Allergy and Clinical Immunology concluded that “there 

is no protective benefit from the use of hydrolyzed formula in the first year of life against 

food allergy or food sensitization” (51, 52). A recent study suggested that avoiding temporary 

supplementation with conventional cow’s milk formula in the first three days of life may 

result in a large decrease in the risk of food allergy in early childhood (53) but this requires 

further confirmation.  

2.2.2. Weaning and food introduction 

Delaying the introduction of solid food until 6 months remains the current WHO 

recommendation. Yet recent expert opinion has investigated the hypothesis that oral tolerance 

can be induced by modifying the timing and diversity of early food exposure (54). Supportive 

data for this hypothesis is coming predominantly from two large high quality randomised 

control trials (RCT) LEAP and Enquiring About Tolerance (EAT). The LEAP study 

demonstrated a significant reduction in peanut allergy prevalence in children at high risk of 

allergy development, who were consuming peanuts between 4 and 11 months old on a regular 
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basis (55). There was an earlier and greater increase in peanut specific IgG and IgG4 in the 

early consumption group compared to the avoidance group. In both groups the mean peanut 

specific IgE levels were highly comparable and increased over time with the note that there 

were more participants in the avoidance group with very high IgE levels (55). The EAT trial 

looked at early food introduction (from 3 months old) and concluded that it may decrease the 

risk of FA development (56). The authors reported significantly lower relative risks of peanut 

and egg allergy in the early-introduction group, with no difference in the prevalence of milk, 

sesame, fish, or wheat allergy. Risk reduction was shown in per-protocol analysis only, while 

no statistically significant difference was found in intention to treat analysis. Studies 

reporting contradicting results to EAT exist (57), but they are often considered of lower 

robustness. 

With an apparent shift in expert opinion towards early introduction of certain highly 

allergenic foods, the American National Institute of Allergy and Infectious Diseases, updated 

its guidelines on peanut allergy prevention in 2017 (58), recommending that peanut-

containing food introduction should occur between 4 and 6 months of age in egg allergic 

infants and/or babies with severe eczema and at 6 months of age for infants with mild-to-

moderate eczema. Recent guidelines from the American Academy of Pediatrics support these 

recommendations (52).  

In their systematic review on FA prevention, the authors concluded that available evidence 

suggests that “introduction of a small amounts of cooked, egg into the infant diet as part of 

complementary feeding probably reduces the risk of egg allergy in infancy and in countries 

with a high prevalence of peanut allergy, introducing regular peanut consumption from 4-11 

months of life in infants at increased risk probably results in a large reduction in peanut 

allergy in early childhood compared to completely avoiding peanut for the first five years” 

(39). In contrast, no reduction in FA incidence was found when multiple potential food 
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allergens were simultaneously introduced into the infant diet as of three months (56). Diet 

diversity during the first year of life may also have a positive role in determining the risk of 

FA. An increased diversity of complementary foods introduced in the first 12 months of life 

was inversely associated with FA development up to 6 years old (59).  

2.3. Is there a need of biomarkers to monitor dietary interventions to induce 

tolerance?   

Food avoidance remains the main therapeutic approach in FA management, but researchers 

and clinicians are continuously seeking for intervention options. Controlled exposure to the 

allergens was suggested as a potential option for tolerance induction. Indeed, in recent years, 

Oral immunotherapy (OIT) has been applied for several allergens to investigate whether 

desensitisation and/or sustained unresponsiveness development is possible. A meta-analysis 

on the effect of OIT in reducing prevalence of CMA concluded it is an effective therapy (60); 

however, frequency of adverse events is high and validity of outcome selection used to 

measure the efficacy of OIT is still unclear. Looking at an individual study level, there was 

no association of OIT in children (6-17 yo) and IgE levels between the treated and the control 

group, whereas IgG4 was significantly increased in the post-treatment group after OIT but 

there was only a slight increase in the control group (61). Recently, a cohort of 137 peanut 

allergic child and adult patients (6-26 yo) were compared to non-peanut allergic controls and 

examined differences between IgE, IgG4 and the ratio of IgG4/IgE (62).  

These observations would imply that more data are needed on sIgE and IgG4 in monitoring 

tolerance induction over time before being able to conclude that these are reliable biomarkers 

for tolerance induction. There may be more potential for the increase in IgG4 in oral 

tolerance induction than the decrease in IgE. It is very important to note that there are no 

agreed core outcome measures in FA trials, which do not allow for appropriate 
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effectiveness/efficacy evaluation (63). Different immunological parameters are currently used 

as endpoints in OIT trials, but available evidence of their importance is very limited (64). 

3. What is the role of the microbiota in food allergy? 

A link between IgE-mediated FA and the gut microbiota composition and metabolic activity 

has been suggested. A recent study including 233 infants (> 4 years old) with FA (milk, 

sesame, peanut and tree nuts), and non-allergic controls showed a distinct microbial profile 

for FA to different foods characterized with an underrepresentation of Prevotella copri (65). 

In agreement, maternal carriage of Prevotella copri during pregnancy was also linked to a 

decreased risk of FA during infancy (66). Growing evidence supports a role for the gut 

microbiome in the pathogenesis and course of FA, with microbial dysbiosis preceding the 

development of FA (67). It has been reported that an elevated 

Enterobacteriaceae/Bacteroidaceae ratio in early infancy as well as lower microbial species 

richness in the infant (n=166, ages 3 and 12 months) might be a predictor of egg, milk, and 

peanut sensitization (determined by SPT) at age of 12 months, adjusting for birth delivery 

mode, antibiotic use, or breastfeeding (68). This raises the question of whether FA can be 

predicted using gut microbiome biomarkers (69). A study with 319 subjects enrolled in the 

Canadian Healthy Infant Longitudinal Development (CHILD) study showed that infants at 

risk of asthma exhibited transient gut microbial dysbiosis during the first 100 days of life 

characterized by lower relative abundance of Lachnospira, Veillonella, Faecalibacterium, 

and Rothia species (70). Another study reported lower relative abundance of Citrobacter, 

Oscillospira, Lactococcus and Dorea in stool samples collected at age 3-6 months in children 

who had FA (milk, egg, peanut, wheat, soy, or other nut allergy) by the age of 3 years (71). In 

addition, Firmicutes including Clostridia were enriched in the gut microbiota of infants at age 

3-6 months whose milk allergy resolved at 8 years of age (72), suggesting a potential 

predictive role of gut microbiota composition for FA. 
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Interestingly, the specific microbiota signature may distinguish infants with IgE-mediated 

from non-IgE-mediated FA. Infants with IgE-mediated FA had increased levels of 

Clostridium sensu stricto and Anaerobacter and decreased levels of Bacteroides and 

Clostridium XVIII, with a positive correlation between Clostridium sensu stricto and serum 

sIgE (73). However, as with observational studies, it is not possible to assess causation 

between changes in microbial composition and FA (74). A study in adults with FA showed 

the opposite results with reduced Clostridiales, and increased Bacteroidales (75), suggesting 

that the changes observed in microbiota associated with allergy may be different depending 

on other factors such as age, ethnicity, geographical location and lifestyle.  

It is widely known that early infant microbiota is influenced by several factors including 

mode of birth, antibiotic use and environmental exposures that can contribute to the dysbiosis 

linked to allergy development (Figure 1) and would provide opportunities to develop 

strategies aimed to microbial modulation and decrease risk of FA (76).   

C-section delivery and antibiotic exposition. Available evidence indicates that C-section is a 

possible risk factor for FA as newborn infant bypasses microbial exposure, naturally 

happening during vaginal delivery, obtaining a distinct gut microbiota (77). In general, 

infants born by C-section have lower levels of Bacteroides and lower diversity which is a 

pattern also observed to precede the development of allergic symptoms in several studies 

(78). However, there is no clear evidence on C-section association with a higher risk of FA 

development, with studies producing contradictory results (79, 80). On the other hand, a 7-

fold increased risk of parental-reported fish or nuts allergy and a 4-fold increased risk of 

confirmed egg allergy was reported (81) among high-risk children born via C-section. C-

section was found to be associated with other allergic diseases, such as allergic rhinitis (OR: 

1.23; 95% CI: 1.12, 1.35), asthma (OR: 1.18; 95% CI: 1.05, 1.32) and allergic sensitisation to 

foods (OR: 1.32; 95% CI: 1.12, 1.55) (82). Most of the C-sections are associated with 
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antibiotic intrapartum. Antibiotic use (particularly cephalosporins and sulfonamides) 

including its frequency during pregnancy and first year of life was linked with an increased 

risk of FA development (83), and is likely to reflect an indirect effect via infant gut 

microbiota dysbiosis (84, 85).  

Breastfeeding practices. It has been shown that infants with CMA had an increased gut 

microbiota diversity and a higher prevalence of members belonging to the Lachnospiraceae 

family (Firmicutes phyla) as compared to non-allergic infants (86). However, another study 

showed an inverse association between the early gut microbial diversity and the risk of 

allergic sensitization (87). A low gut microbiota richness, overrepresentation of 

Enterobacteriaceae and underrepresentation of Bacteroidaceae (Bacteroidetes phyla) at 3 

months of age were associated with food sensitization in a subset of the CHILD study (68). 

Those associations were found among infants who were vaginally delivered, exclusively 

breastfed and unexposed to antibiotics. 

Breastfeeding practices were associated with lower diversity and higher levels of 

Bifidobacterium breve and B. bifidum (Actinobacteria phyla), and the cessation of 

breastfeeding resulted in faster maturation of the gut microbiota, as marked by an increase in 

the members belonging to Firmicutes phyla (88). However, formula-fed infants had more 

diverse microbiota with higher proportions of Clostridium spp (Firmicutes phyla), and 

Enterobacteriaceae members (Proteobacteria phyla), but with lower bacterial count (89). 

Recent studies have shown that breastmilk with a reduced microbial richness in the first 

month of life may play an important role in allergy development during childhood (90). Thus, 

the protection against allergy development provided by human milk may be attributable to 

the effect on the infant gut microbiota or direct effects on immune system; however, further 

studies are needed to evaluate the effect of breastfeeding and milk specific compounds on FA 

(91). 
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Environmental exposures. Associations between living in affluent countries and allergic 

disease development are well-known and FA is no exception to the rule. A higher 

socioeconomic status (92) or living in developed societies were associated with an increased 

risk of FA development, though it is possible that variations in frequencies of studies and 

methodological variation also contributes to these geographic variations (4). Researchers 

suggest that farming lifestyle exposes pregnant women and their offspring to a wide variety 

of microorganisms, which urban inhabitants lack. Data from two large, prospective, cohorts 

showed that exposure to a greater variety of environmental microorganisms was associated 

with a reduced risk of asthma development in PARSIFAL (OR: 0.62; 95% CI: 0.44, 0.89) 

and in GABRIELA (OR: 0.86; 95% CI: 0.75, 0.99) (93).  

4. Dietary interventions 

4.1. Macronutrients and micronutrients associations with FA 

A recent systematic review was published recently, suggesting that supplementation with fish 

oil (a source of long chain omega-3 fatty acids) during pregnancy and lactation may reduce 

risk of allergic sensitisation to egg (RR: 0.69; 95% CI: 0.53, 0.90; I2 = 15%; Absolute Risk 

Reduction: 31 cases per 1,000; 95% CI: 10, 47) (94). The Grading of Recommendations 

Assessment, Development and Evaluation certainty of these findings was moderate. In 

addition, in vitro and in vivo studies have demonstrated that n-3 PUFA can modulate the 

activity of dendritic cells, T cells, and IgE production by B cells, reducing allergic 

sensitisation (95).   

Although vitamin D deficiency was linked with the development of allergic diseases (96), 

data relevant for FA is limited. Vitamin D deficiency linked with GG genotype producing 

less vitamin D binding protein (DBP) was associated with a higher prevalence of egg and 

peanut allergy in 1- and 2-year-old infants (97). Use of vitamin D supplements during 
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pregnancy as a prevention of FA was, however, unsuccessful, both in a RCT (RR: 1.92; 95% 

CI: 0.57, 6.50) (98) and a case-control study (OR: 1.50; 95% CI: 0.78, 2.88) (99). 

Supplementation during the first year of life resulted in a reduced risk of FA development 

during the first 12 months of life (RR: 0.49, 95% CI: 0.27, 0.88) (99). However, the 

confidence in this estimate is also very low owing to indirectness of the evidence and risk of 

bias, as reported in a recent systematic review on the subject (100). Overall, there is currently 

not enough evidence to suggest that vitamin D supplements for pregnant and/or breastfeeding 

women or infants have an effect on FA development (39). 

4.2. Dietary interventions targeting the microbiota modulation: pre- and probiotics 

Targeted and personalized nutrition is an emerging strategy to approach FA in early infancy 

including microbiome-modifying interventions with probiotics (Lactobacillus acidophilus 

LAVRI A1, Lacticaseibacillus rhamnosus GG), prebiotics (long-chain fructo-

oligosaccharides, short-chain galacto-oligosaccharides) and human milk oligosaccharides (2′-

fucosyllactose, lacto-N-neotetraose) (101). The pathogenesis of FA in early infancy and other 

associated events such as dermatitis or asthma is still largely unknown, but increasing 

evidence suggest that they are associated with a perturbation of gut microbiome, namely 

microbial dysbiosis, leading to alterations in immune system which could influence the 

occurrence of FA (102). In addition, FA derives from a defect in immune tolerance 

mechanisms. Immune tolerance is modulated by gut microbiota composition and function. 

Therefore, the potential use of probiotics has been highlighted to counteract microbial 

dysbiosis linked to FA and boost microbial modulated tolerance because probiotics could 

interact with host microbiota and the host immune system at the same time (103). In infants, 

supplementation with specific probiotic strains may reduce the risk of sensitization to cow’s 

milk (RR: 0.60; 95% CI: 0.37, 0.96) (104) although the quality of evidence is considered low. 

In general, those studies combined maternal and infant supplementation and it is unclear if 
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the effect is due the combination or the specific intervention (104-106). A systematic review 

and meta-analysis was published recently, suggesting that probiotics intake during late 

pregnancy and lactation may reduce risk of eczema (RR: 0.78; 95% CI: 0.68, 0.90; I
2
: 61%; 

Absolute Risk Reduction: 44 cases per 1,000; 95% CI: 20, 64) (94). There are some studies 

associating the consumption of oligosaccharides in early life with reduced incidence of atopic 

dermatitis and other allergy manifestations (107, 108) with a lack of evidence in food allergy 

and human studies. However, the evidence on the use of prebiotics, probiotics and synbiotics 

in breastfeeding mothers and infants to reduce the risk of FA is inconclusive (39). In a 

randomized controlled trial, specialized infant formula enriched with fructo-oligosaccharides 

and Bifidobacterium breve M-16V was able to restore altered microbiota in non-IgE mediated 

cow´s milk allergic infants bringing it close to the healthy breastfed microbial profile when 

compared with the same formula without the synbiotic (109). Increasing evidence suggests 

that shifts in the neonatal gut microbiota composition, activity and diversity are implicated in 

the pathogenesis of FA (Table 4).  

5. Evidence for the role of microbial metabolites in FA 

Increasing data is showing the key role of metabolites in the host-microbe interaction as 

messengers and signals between microbiota and immune system with impact on human 

health. A comprehensive understanding of how microbiota-derived metabolites influence the 

human immune system and health is critical for the rational design of therapies for 

microbiota-driven diseases (110). Different dietary patterns change the proportions and type 

of microbial groups, influencing host exposure to microbial metabolites (111) which in turn 

produce epigenetic changes. Although no data is available for infants <1 year of life, in older 

children and adults, a balanced low-fat and high-fiber diet may be important in preventing 

perturbation of gut microbiome and preserving a functional immune system (112). Little is 

known about the role of microbial metabolites in FA but evidence is showing the impact of 
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diet including prebiotics on the production of microbial metabolites as SCFA, polyamines 

and even other compounds as toxins (LPS, staphylococcal enterotoxin B, etc.). 

5.1. Short chain fatty acids 

Metabolites produced by intestinal microbiota, and in particular SCFAs, play a critical role in 

mediating the effect of the gut microbiota on Treg proliferation and differentiation both in 

vitro and in vivo (113). The molecular mechanisms for this are not clearly elucidated but 

butyrate may suppress NF-κB and STAT1 activation and induce differentiation of colonic 

Treg cells by enhanced histone acetylation (113-116). Moreover, these effects are not 

confined to the gastrointestinal tract, and both butyrate and propionate have been reported to 

influence peripheral Treg development (117). The mechanisms involved in SCFA regulation 

of T-cell differentiation may include the control of cellular metabolism and the G-protein-

coupled receptors signaling pathways (118), and involve strong epigenetic regulation through 

inhibition of histone deacetylases (102). In particular, the effect of butyrate on Treg 

differentiation may be through the increase of histone H3 acetylation in the FOXP3 locus 

(117), and propionate seems to increase the expression of FOXP3 and Il10 (119). These 

results may explain the benefits of dietary fibers and bacteria, such as Akkermansia 

municiphila, Faecalibacterium prausnitzii, Eubacterium, Bifidobacterium, Clostridium and 

Ruminococcus, typical SCFAs producers, that can increase colonic luminal SCFA 

concentrations and modulate immune system response (120, 121).   

Some specific SCFA have been reported to influence FA. In details, butyrate has a well-

known inhibitory effect on histone deacetylases (114) and can induce the expression of non-

coding RNAs (113, 116). Furthermore, a lower butyrate production and shifted gut 

microbiota composition towards an enrichment of Bacteroides and Alistipes genus have been 

reported in infants with non-IgE-mediated CMA (122). Low levels of SCFAs at one year of 

age has been associated with questionnaire-reported symptoms of FA at four years (123). In 
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addition, propionate has been associated to an increased expression of FOXP3 and IL-10 in 

colonic Treg cells (119). There are signals of an association between SCFA and Treg cells 

development and function by epigenetic mechanisms, but the influence of this association in 

the risk of FA is still not clear. 

5.2. Other microbial metabolites 

It has been suggested that some other microbial metabolites such as Staphylococcal 

enterotoxin B could act as adjuvants of food allergens during simultaneous exposure via skin 

(74). Staphylococcus aureus colonization of the skin has been associated with FA to peanut, 

egg white, and cow's milk in patients with atopic dermatitis, and may be associated with skin 

barrier dysfunction and immune system dysregulation (124). Bacterial LPS are strong 

immunostimulants that can induce tolerance at certain doses (125). Their role in allergy 

seems to be conditioned by the timing of exposure, the presence of preexisting disease, and 

polymorphisms in the genes that encode endotoxin receptors (126). Evidence in humans is 

not clear but results from animal studies indicate LPS might prevent adverse IgE-mediated 

reactions by regulation of Th2-type responses (127) and suppression of mast-cell responses 

(128). 

There is substantial evidence that intestinal bacteria can produce significant amounts of folate 

as well as other B-vitamins complementing the dietary intake (129), including generally 

recognize beneficial microorganisms such as bifidobacterias and lactic acid bacteria (115). 

These B-vitamins, and particularly folate, play a crucial role in epigenetic regulation as 

donors of methyl groups for DNA, RNA and protein methylation (130, 131). Folate-induced 

changes in DNA methylation may modify gene expression in T-helper cells (132), which has 

been proposed as a plausible mechanism underlying associations between folate and several 

diseases such as asthma (129), child wheeze (133) and allergy (134). For FA, it is still largely 

underexplored with contradictory results depending on the studies (132). Most of the few 
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studies conducted to date suggest that maternal folate exposure is not associated with the 

development of FA (132). However, a retrospective study suggested that maternal folic acid 

supplementation in dosages higher that recommended may be a risk factor for allergy 

development (135). Emerging evidence on the role of biotinylation upon immune function 

(136-138) and microbial metabolites such as polyamines (139-143) indicate potential further 

links between the gut microbiome and allergy by epigenetic regulation of genes modulating 

the activity of T and B lymphocytes, and proinflammatory cytokine expression (111, 136-

144).  

6. Recommendation / Guidance for future research 

FA research is now experiencing an exciting new era thanks to the advances on 

immunological, microbiological, and epigenetic factors and their integration allowing an 

increased knowledge on risk factors and potential biomarkers. However, limited data is 

available to identify potential biomarker or biomarkers combination determining a risk 

reduction in FA. The EAACI has recently published a systematic review as a source of 

evidence to support the development of FA prevention guidelines (39). This systematic 

review included forty‐ six intervention studies to reduce the risk of FA in infancy (up to 1 

year) or early childhood. Different interventions during pregnancy, lactation and infancy 

including dietary avoidance of food allergens, vitamin supplements, fish oil, probiotics, 

prebiotics, synbiotics, and emollients were included. Results showed that interventions have 

little or no effect on preventing FA, but the evidence is very uncertain. The systematic review 

concluded that most of the evidence has been published in the last 10 years, and still no clear 

data are available on preventing FA. There is a need to validate the potential benefits of early 

introduction of food allergens in a wider range of populations. Furthermore, there is a lack of 

studies analyzing serial and longitudinal biomarkers from birth up to adulthood, and clear 

biomarkers have not been identified until now. Promising potential biomarkers associated 
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with FA such as the depletion of key microbial components (e.g. Bifidobacterium and 

Bacteroides) or methylation profiles in the FOXP3 and IL-10 genes should be deeply 

evaluated in future studies. 

To bridge the gap, more data is required on the maternal impact during gestation upon fetal 

immune regulation as well as the immunometabolic profile of breastmilk composition 

(immune cells, cytokines, hormones). There are also a limited number of studies focusing on 

immunology, microbiome, diet and few assess across the board. More cohort and intervention 

studies are needed to confirm which methylation profiles are suitable as biomarkers to 

monitor risk reduction of FA. Thus, designing nutritional intervention trials aimed at risk 

reduction of FA, or induction of tolerance may need stratification based on specific risk 

factors to be able to come to a design that is still feasible to execute. Indeed, low incidence of 

oral food challenge confirmed FA in the general population requires high numbers of infants 

to be able to detect a significant effect of an intervention. This review of currently available 

and emerging biomarkers linked to allergy can inform the design of future intervention 

studies.  The available literature suggests that a highly collaborative approach spanning 

nutritional, genetic and microbial biomarkers will be valuable in identifing panels of 

biomarkers which best predict food allergy, its severity or its remission.  
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Table 1. Summary of the most common and specific determinants impacting microbiota and risk to develop food allergy.  

 Factors associated with higher 

risk of food allergy 

Factors associated with lower 

risk of food allergy 

Factors with no association with 

higher/lower risk of food allergy 

Factors increasing 

microbial dysbiosis 

Antibiotic use during pregnancy 

and first year of life 

- Formula feeding 

 Cesarean delivery  Low fiber/high fat diet 

 Exposure to bacterial enterotoxins   

 Vitamin D deficiency   

Factors improving 

microbial equilibrium 

- Farm/rural lifestyle Outdoor activities 

  Pet exposure in early life Breastfeeding 

  Having older siblings Probiotics/fermented products 

  Exposure to an increased diversity 

of foods in early life 

Less processed food 

  Ingestion or aryl hydrocarbon 

receptor ligands (cruciferous 

vegetables) 

 

  N-3 polyunsaturated fatty acids  

Factors with no proven 

impact on microbial 

dysbiosis/equilibrium 

Early cutaneous exposure to food 

allergens in the environment 

Early oral exposure to foods - 

 Family history of allergic disease   

 Prior diagnosis of atopic disease 

like eczema 

  

 Higher socioeconomic status   

 Living in developed societies   
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Table 2 - Genetic loci associated with food allergy, their potential link with FA and evidence supporting their use as a biomarker.  

Name  
Genetic risk 

factor  
Role  

Potential link with 

FA  
Reported utility as biomarker?  References  

Toll-like receptor 6  TLR6  

Pathogen recognition and 

activation of innate 

immunity  

TLR function can be 

altered by early 

environmental and 

microbial exposures  

Generally associated with allergic 

sensitization 
(15, 145) 

EMSY transcriptional 

repressor 
C11orf30  Repressor of BRCA2 protein 

Involved in epigenetic 

regulation of gene 

expression  

Identified as genetic risk factor 

for peanut allergy and food 

allergy  

(15, 146) 

Signal transducer and 

activator of transcription 

6  

STAT6  
Central role in IL4 mediated  

responses 

Polymorphisms have 

been associated with 

age of tolerance 

induction.  

Age of tolerance development for 

cow’s milk was significantly 

higher in children with the GG 

genotype at rs324015 of the 

STAT6 gene compared with 

those with the AA+AG genotype 

(2 years [range, 1.5-3.9 years] vs 

1.2 years [range, 1.0-2.2 years]) 

(P = .02)   

(15, 147) 

Solute carrier family 25 

member 46  
SLC25A46   

Promotes mitochondrial 

fission and prevents the 

formation of 

hyperfilamentous 

mitochondria  

Involved in the 

association between 

food allergy and 

atopic dermatitis 

Polymorphism SLC25A46 was 

associated with higher risk of 

food allergy  

(15, 148) 
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Major 

histocompatibility 

complex, class II, DQ 

beta 1  

HLA-DQB1  

Plays a central role in the 

immune system by 

presenting peptides derived 

from extracellular proteins.  

Peanut allergic 

specific loci in the 

human leukocyte 

antigen (HLA)-DQ 

and –DR region were 

found in a large 

cohort study.  

Several polymorphisms 

associated with peanut, milk and 

egg allergy  

(15, 16, 149) 

Interleukin 1 receptor 

like 1  
IL1RL1  

Involved in the function of 

helper T cells  
  ST2, -chain of IL-

33 receptor  

Generally associated with allergic 

sensitization 
(15) 

LIM domain containing 

preferred translocation 

partner in lipoma  

LPP  

Involved in cell-cell 

adhesion and cell motility. 

This protein also shuttles 

through the nucleus and may 

function as a transcriptional 

co-activator.  

Allergic sensitization 
Generally associated with allergic 

sensitization 
(15) 

MYC proto-oncogene, 

bHLH transcription 

factor  

MYC  

Plays a role in cell cycle 

progression, apoptosis and 

cellular transformation.  

Down-regulated 

among children with 

food allergy  

Generally associated with allergic 

sensitization and food allergy   
(15, 150) 

Interleukin 2  IL2  
Proliferation of T and B 

lymphocytes  
Allergic sensitization 

Generally associated with allergic 

sensitization    
(15) 

Major 

histocompatibility 

complex, class I, B  

HLA-B  

Central role in the immune 

system by presenting 

peptides derived from the 

endoplasmic reticulum 

lumen  

Allergic sensitization 
Generally associated with allergic 

sensitization 
(15) 

Filaggrin  FLG  Role in skin barrier function  
Indirect association 

with food allergy 

Filaggrin loss-of function 

mutations are associated with 

food allergy in older children via 

eczema and food allergen 

(20, 21, 23, 

151) 
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sensitization in their early 

childhood  

Interleukin 13  IL13  

Involved in several stages of 

B-cell maturation and 

differentiation  

IL13 polymorphism 

rs1295686 (in 

complete linkage 

disequilibrium with 

functional variant 

rs20541) is associated 

with challenge-proven 

food allergy.  

IL-13 gene polymorphisms have 

also been identified as 

biomarkers of IgE-mediated food 

allergy and are a predictor of cord 

blood IgE concentrations  

(152) 

Catenin alpha 3  CTNNA3  Cell-cell adhesion  

Knockdown of 

CTNNA3 resulted in 

upregulation of CD63 

and CD203c in 

mononuclear cells 

upon PMA 

stimulation 

Copy number variation impacting 

CTNNA3 has been associated 

with pediatric food allergy  

(153) 

RNA binding fox-1 

homolog 1  
RBFOX1  

Regulates alternative 

splicing events  

Association with food 

allergy at a genome-

wide scale  

Generally associated with 

pediatric food allergy 
(153) 

GC vitamin D binding 

protein  
GC/DBP  

Binds to vitamin D and its 

plasma metabolites and 

transports them to target 

tissues  

GG genotype 

produces less vitamin 

D binding protein 

(DBP)  

Vitamin D deficiency linked with 

GG genotype producing less 

vitamin D binding protein (DBP) 

was associated with a higher 

prevalence of egg and peanut 

allergy in 1 and 2 year-old 

infants.  

(154) 

Indoleamine 2,3-

dioxygenase 1  
IDO1  Modulates T-cell behavior  

High IDO activity is 

associated with non-

responsiveness to 

food allergens despite 

Associated with tolerance to food 

allergens 
(155) 
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allergen sensitization.  

Sirtuin 1  SIRT1  

Functions of human sirtuins 

have not yet been 

determined  

Negatively regulates 

FcεRI-stimulated 

mast cell activation 

and anaphylaxis  

Generally associated with anti-

allergic response   
(156, 157) 

Table 3 – Epigenetic changes associated with food allergy.  

Study 
Where 

identified 
Main findings Potential mechanism of action 

Reported utility as 

biomarker? 
References 

DNA 

methylation 

profiles 

(~450,000 

CpGs) of 

peripheral 

immune cells 

(CD4+ T-cells )  

Children with 

IgE-mediated 

food allergy 

179 differentially methylated 

sites of loci associated with the 

disease phenotype, and 96 CpG 

sites 

 

DNA methylation profile 

discriminated food allergic vs 

healthy infant 

MAP kinase pathway  Dysregulation of 

DNA methylation at MAPK signaling-

associated genes during early CD4+ T-

cell development may contribute to 

suboptimal T-lymphocyte responses in 

early childhood associated with the 

development of food allergy  

Predicted clinical 

outcomes with an accuracy 

of almost 80%.  

 

MAP kinase pathway was 

most prominently 

associated with CpGs that 

were predictive of food 

challenge 

(158, 159) 

DNA 

methylation 

profiles 

Egg allergy 

DNA methylation profiles of T 

cells discriminate infants with 

persistent egg allergy compared 

with those who had outgrown 

egg allergy. 

Methylation of metabolic (RPTOR, 

PIK3D, MAPK1, FOXO1) and 

inflammatory genes (IL1R, IL18RAP, 

CD82) affected  

Data about predictive 

potential not available 
(150) 
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DNA 

methylation 

profiles 

Cow’s milk 

allergy 

Cow’s milk allergic infants 

showed hypermethylation in 

whole blood compared to 

controls and tolerant group 

Differential methylation patterns on 

DHX58 (innate immune response), 

ZNF281 (transcriptional regulation), 

EIF42A (interferon pathway) and 

HTRA2 (smooth muscle contraction) 

between groups 

Data about predictive 

potential not available 
(160) 

DNA 

methylation 

profiles and 

single-

nucleotide 

polymorphisms 

(SNPs) 

Peanut allergy 

DNA methylation of the HLA-

DQB1 and HLA-DRB1, IL4, 

IL12B, IL2, brain-derived 

neurotrophic factor (BDNF), 

IL17F, CXCL12, CCR7, runt-

related transcription factor 1 

(RUNX1), CD3ε, and 

SERPINE1 IL1B and IL6 has 

been associated with peanut 

allergy 

Increased protein secretion in response to 

allergen-specific stimulation. 

 

Additional functional studies are needed. 

DNA methylation 

signature combinations 

may have superior 

diagnostic potential than 

serum peanut–specific IgE 

(16) 

Th1-Th2 
Cow’s milk 

allergy 

DNA methylation profiles 

differs with cows milk allergy 

DNA methylation profiles of IL-4, IL-5, 

IL-10 and IFN gamma genes between 

infants with active cows milk allergy and 

those who outgrew their cows milk 

allergy. 

GATA3 in Th2 cells  

 

Ex vivo PBMC cytokine 

profile in predicting cows 

milk allergy: TNF, IL10, 

IL12 higher in cows milk 

allergy patients compared 

to controls   

(161-163) 
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Th1-Th2 
Cow’s milk 

allergy 

DNA methylation of FOXP3, 

Th1/Th2 cytokine genes in IgE-

mediated in children with cow’s 

milk allergy treated with an 

extensively hydrolysed formula 

including a probiotic (test 

formula) versus a control 

formula 

FOXP3, IL-10 and IFNg demethylation 

rate was higher and IL-4 and IL-5 

demethylation rate was lower in the test 

formula group 

Intervention promotes 

regulatory and immune 

suppressive immune 

factors and at the same 

time decrease activity of 

Th2 type genes.   

(164) 

FOXP3 

Peanut allergic 

infants & 

cow’s milk 

allergic infants 

immune tolerant  participants 

had ↑ai-Treg with greater 

suppressive function, and with ↑ 

FOXP3 hypomethylation 

Oral immunotherapy in peanut allergic 

infants increased antigen induced 

regulatory T cell function and 

hypomethylation of FOXP3 in infants 

that became tolerant  

Data about predictive 

potential not available  
(165) 

 
Cow’s milk 

allergy 

↓FOXP3 gene demethylation in 

children with active IgE-

mediated cows milk allergy 

Formula selection influenced the FOXP3 

T-cell specific demethylation region 

demethylation profile 

Data about predictive 

potential not available  
(166) 

Methylation 

levels taken 

from 

mononuclear 

blood cells at 

405,658 CpG 

islands across 

the genome 

(machine 

learning 

approach) 

40 samples for 

training, 10 

samples for 

cross-

validation, and 

8 completely 

hidden 

samples for 

testing 

Novel 13-gene signature to 

diagnose clinical reactivity: 

chr1p13 (SARS), chr7p22 

(MAFK), chr11q14 (PANX1), 

chr9p22 (SLC24A2), chr8p21 

(KIF13B), chr10q26 (CTBP2), 

chr10q11 (ARID5B), and 

chr10q23 (FAM190B). 

These genes are mapped to several 

canonical Wnt pathways, GO, and 

positional gene sets with functional 

association with the immune system 

The 18-CpG signature 

mapped to 13 genes is a 

strong biomarker of FA 

with a 94-96% accuracy 

(167) 
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Table 4 – Perinatal Probiotics, Prebiotics and Synbiotics for cow’s milk allergy management and allergy prevention: summary of clinical studies 

and meta-analyses. CMA: cow’s milk allergy; RT: randomized trials. 

Clinical studies 

Strain(s) No. subject 
Intervention 

Time 
Target Outcome(s) Study type Reference 

Lactobacillus LGG 

1x10
9
 CFU  

100 infants 

diagnosed with 

CMA  

4 weeks  
Management of 

CMA 

Significant improvement in 

symptoms of infants 

diagnosed with CMA  

 

No impact on abdominal 

pain, constipation and 

dermatitis   

Randomised 

double-blind 

placebo 

controlled 

study 

(168) 

Synbiotic formula with 

a combination of B. 

breve M-16V and 

chicory-derived neutral 

oligofructose, long-

chain inulin 

122 infants 

 

Synbiotic n= 35 

Control n= 36 

Reference n= 51 

8 weeks 

Management of 

severe or 

complex non-

IgE mediated 

CMA 

↑ percentage of 

Bifidobacterium and lower 

% of Eubacterium 

rectale/Clostridium 

coccoides group in the test 

group 

 

No significant results for the 

faecal secretory IgA and 

short chain fatty acids 

Double-blind, 

randomised 

clinical trial 

with non-

randomised 

breastfed 

reference group 

(169) 

Lactobacillus 

rhamnosus and 

Bifidobacterium 

animalis subsp lactis 

290 participants 

approx 10 month 

of age  

 

N= 144 probiotic  

N= 146 placebo  

6 months  
Allergic diseases 

and sensitization. 

↓ incidence of eczema 

 

No effect on the incidence of 

asthma and conjunctivitis or 

sensitization  

Randomised 

double-blind, 

placebo-

controlled 

intervention 

(170) 
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Amino-acid-based 

formula (AAF) with 

fructo-oligosaccharides 

and Bifidobacterium 

breve M-16V. 

51 infants aged 

<13 months  

N= 35 (test)  

N= 36 (control)  

Infant 

intervention 

for 8 weeks 

Management of 

infants with 

suspected/proven 

CMA. 

↑bifidobacteria in the AAF 

with prebiotic and probiotic 

Randomised 

double-blind, 

placebo-

controlled 

intervention 

(109) 

L. rhamnosus GG; L 

rhamnosus LC705 

(DSM 7061), 

Bifidobacterium breve 

Bb99 (DSM 13692), 

and Propionibacterium 

freudenreichii ssp. 

shermanii JS (DSM 

7076). 

891 mothers with 

infants at high risk 

for allergy 

 

Probiotic n = 445 

Placebo n = 446 

Maternal-

infant 

intervention 

 

Follow-up 

until 5 years 

Allergy 

prevention 

↓ IgE-associated allergic 

disease occurred in 

cesarean-delivered children  

 

No allergy-preventive effect 

that extended to age 5 years 

Randomised 

Double-

blinded, 

placebo-

controlled 

study 

(171) 

Meta-analyses 

Strain(s) No. subject 
Intervention 

Time 
Target Outcome(s) Study type Reference 

Different strains 

10 RT (n = 845; 

probiotics, 422; 

control, 423) 

 

Infants 

Different 

intervention 

times 

Management of 

infants with 

suspected/proven 

CMA. 

No impact on  hematochezia 

 

In confirmed CMA, 

probiotics ↑ acquisition of 

tolerance to CMP at the end 

of 3 years  

Meta-analysis (172) 

Single or multiple 

organisms, given as 

capsules, powder, or 

part of a drink or infant 

formula milk 

28 trials RT 

6,705 participants 

Maternal-

infant 

intervention  

Allergy 

prevention 

↓ risk of eczema and/ or 

atopic eczema at age ≤4 

years. 

 

↓ allergic sensitisation to 

cow’s milk at age 1 to 2 

years 

Systematic 

review and 

meta-analysis 

(94) 
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Combinations of 

lactobacilli and 

bifidobacteria 

17 trials  

 

2947 infants 

Maternal-

infant 

intervention  

Allergy 

prevention 

↓ risk of atopic eczema  

 

↓ risk of food 

hypersensitivity 

 

When probiotics were 

administered either only 

prenatally or only 

postnatally, no effects on 

atopy and food 

hypersensitivity  

Systematic 

review and 

Meta-analysis 

(173) 

Combinations of 

lactobacilli and 

bifidobacteria 

17 RT  

4755 children 

Probiotic n= 2381 

Control n= 2374 

Maternal 

intervention 

during 

pregnancy 

Allergy 

prevention  

↓ risk ratio for eczema  

 

No impact on asthma, 

wheezing or 

rhinoconjunctivitis 

Meta-analysis (174) 
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Figure 1 - Level of evidence of different biomarkers and interactions between genetic 

background, lifestyle, and epigenetics factors on the interplay between microbiota and the 

immune system on food allergy. CD103: integrin αEβ7; CX3CR1: C-X3-C Motif Chemokine 

Receptor 1; FOXP3: Forkhead box P3; LAP: Latency associated peptide; mMCP-1: Mouse 

mast cell protease-1; PPAR: peroxisome proliferator-activated receptors; TGF-β: 

Transforming growth factor beta; TLR: Toll-like receptor; Treg: T-regulatory. 
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