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Abstract Betweenness as a relation between three individual points has been
widely studied in geometry and axiomatized by several authors in different con-
texts. The article proposes a more general notion of betweenness as a relation
between three sets of points. The main technical result is a sound and complete
logical system describing universal properties of this relation between sets of
vertices of a graph.
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1 Introduction

In this article we develop an axiomatic theory of the betweenness relation.
Such a relation could be considered as a relation between points or a relation
between sets of points.

1.1 Betweenness of Points

Betweenness of points is a commonly studied relation in geometry. Usually it
has been investigated not as a stand-alone notion, but in the context of com-
prehensive axiomatic theories of geometry. For example, Hilbert’s axiomati-
sation of Euclidean geometry [1] treats the relation “between” as a primitive
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(non-definable) relation between three points. Three of his “order” axioms are
concerned with this relation:

1. If a point b lies between points a and c, then b is also between c and a, and
there exists a line containing the distinct points a,b, and c.

2. If a and c are two points, then there exists at least one point b on the line
ac such that b lies between a and c and at least one point d so situated
that c lies between a and d.

3. Of any three points situated on a straight line, there is always one and only
one which lies between the other two.

Note that although betweenness is a relation between points and not between
lines, these axioms refer to all three primitive terms of Hilbert’s axiomati-
zation: betweenness, points, and lines. Furthermore, some properties of be-
tweenness might not be captured by these three axioms at all and, instead,
they might follow from the combination of these axioms and other Hilbert’s
axioms.

a b c d

Fig. 1 If point b is between points a and c and point c is between points b and d, then
point b is between points a and d.

Huntington and Kline [2] proposed several systems of axioms for between-
ness of points on a line. Their axioms are self-contained in the sense that they
do not refer to any other primitive terms. The example of an axiom in one of
their systems, see Figure 1, is “If point b is between points a and c and point
c is between points b and d, then point b is between points a and d”.

Betweenness as a relation between three points could be generalised from
a relation between points on a line to a relation between points on a plane by
saying that a point b is between points a and c if point b belongs to the open
interval with the end points a and c. This could be even further generalised
to a relation between points in a metric space through the triangle inequality.
Namely, we can say that b is between a and c if b is not equal to either of these
two points and d(a, c) = d(a, b) + d(b, c).

Another way to generalise betweenness is to consider this relation between
vertices on a graph. We can say that vertex b is between vertices a and c if b
is an internal vertex of each path from vertex a to vertex c, see Figure 2. This
relation has a close connection to the betweenness on road systems recently
studied by Bankston [3].

Finally, it is also possible to consider betweenness as a relation on partial
orders and other similar structures. See Fishburn [4] for a review of the results
in this area.
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a b c

Fig. 2 Vertex b is between vertices a and c if b is an internal vertex of each path from
vertex a to vertex c.

1.2 Betweenness of Sets

Betweenness could be also considered as a relation between sets of points. For
any three sets A,B,C ⊆ R, we say that the set B is between sets A and C
if for any a ∈ A and any c ∈ C there is a point b ∈ B such that point b is
between points a and c. We denote this relation between sets A, B, and C by
A|B|C. For example, Q|Q|R\Q. In other words, the set of all rational numbers
Q is between itself and the set of all irrational numbers. This statement is true
because every open interval contains at least one rational point. There are at
least three natural generalisations of this relation.

First, for any sets A,B,C ⊆ R2 we can say that A|B|C if for any a ∈ A
and any c ∈ C there is a point b ∈ B such that point b is an internal point of
the interval with end points a and c. This notion of set betweenness could be
generalised to sets in an arbitrary metric space if the “point of the interval”
requirement is replaced with d(a, c) = d(a, b) + d(b, c).

a
c
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Fig. 3 A|B|C if for any a ∈ A, any c ∈ C and any curve γ from point a to point b, there
is b ∈ B such that b is an internal point of curve γ.

Second, for any sets A,B,C ⊆ R2 we can say that A|B|C if for any a ∈ A,
any c ∈ C and any curve γ from point a to point b, there is b ∈ B such that b
is an internal point of curve γ, see Figure 3. This notion of betweenness could
be generalised to a relation between sets of points in an arbitrary topological
space.

Finally, see Figure 4, we can consider set betweenness on graphs. For any
sets of vertices A, B, and C, we say that the set B is between sets A and C if
for each vertex a ∈ A, each vertex c ∈ C, and each path from vertex a to vertex
c there is an internal vertex of this path that belongs to the set B. This notion
of betweenness, mostly between edges rather than graphs, has been used by
the second author to describe information flow properties in communication
networks [5,6].
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Fig. 4 {a1, a2}|{b1, b2}|{c1, c2}, because for each vertex a ∈ {a1, a2}, each vertex c ∈
{c1, c2} and each path from vertex a to vertex c there is an internal vertex of this path that
belongs to the set {b1, b2}.

1.3 Insertion Principle

One of the more interesting observations about betweenness is that if point b
is between points a and c, and point i is between points a and b, then point
i is between points a and c. We call this statement the “insertion principle”,
because it can be informally rephrased as “if a point b is between points a
and c and a point i is inserted between points a and b, then point i is also
between points a and c”, see Figure 5. Using our notation for betweenness,
this principle can be written as {a}|{b}|{c} → ({a}|{i}|{b} → {a}|{i}|{c}),
or, omitting curly braces, a|b|c→ (a|i|b→ a|i|c).

a b ci

Fig. 5 Insertion Principle: If point b is between points a and c and a point i is inserted
between points a and b, then point i is also between points a and c.

The insertion principle is a very general property of betweenness. For ex-
ample, see Figure 6, it is true for any sets of points on a plane.

A C

B

I

Fig. 6 A|B|C → (A|I|B → A|I|C).

The betweenness statement A|B|C is equivalent to C|B|A and, thus, there
is a symmetry between the first and the third argument of the betweenness
predicate. The insertion principle, as stated so far, is not symmetric with
respect to these two arguments. As a result, a valid symmetric version of this
principle can be stated: A|B|C → (B|I|C → A|I|C). The original principle
“inserts” a set I between sets A and B, when as the second insertion principle
“inserts” a set I between sets B and C. What is more interesting is that there
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is an even more general form of the insertion principle:

A|B1, B2|C → (A|I|B1 → (B2|I|C → A|I|C)), (1)

where B1, B2 denotes the union of sets B1 and B2. This principle is illustrated
in Figure 7. Informally, this principle splits set B into parts B1 and B2 and
inserts a set I between A and B1 and between B2 and C.

B1

B2 II

A C

Fig. 7 A|B1, B2|C → (A|I|B1 → (B2|I|C → A|I|C)).

It is relatively easy to see why principle (1) is true. Indeed, consider any
curve from a point in the set A to a point in the set C. By the first assumption,
this curve must have an internal point either belongs to set B1 or to set B2.
Without loss of generality, assume that the curve contains an internal point
from set B1. Therefore, the curve must also contain an internal point from the
set I due to the second assumption of the formula (1).

B1

B2 II

B2
A C

Fig. 8 A|B1, I, B2|C → (A|I|B1 → (B2|I|C → A|I|C)).

The above argument could be easily modified to prove an even stronger
version of principle (1). Namely,

A|B1, I, B2|C → (A|I|B1 → (B2|I|C → A|I|C)). (2)

This principle is illustrated in Figure 8. In this article we give a partial answer
to the question, what is the strongest form of the insertion principle. It turns
out the answer to this question depends on the setting in which the between-
ness relation is considered. The main focus of our work is on betweenness as
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a relation on sets of vertices of a graph. In this setting, principle (2) has an
even stronger form:

A|B1, I, B2|C → (A|I, C|B1 → (B2|A, I|C → A|I|C)). (3)

We prove this form of the insertion principle for the finite graph semantics in
Lemma 8. Informally, the main technical result of this article is that (3) is the
strongest possible form of the insertion principle for graphs. More formally, we
prove that the logical system consisting of axiom (3) and several other much
more straightforward properties of betweenness is sound and complete with
respect to the graph semantics.

Unlike principle (2), insertion principle (3) is not valid for arbitrary sets of
points on a plane. It is valid, however, if sets A, B, C, . . . are arbitrary closed
sets on a plane, or, more generally, arbitrary closed sets in a topological space.
Furthermore, since finite graphs can be embedded into R3, it is likely that our
proof of completeness for graphs could be modified to obtain the completeness
of our logical system with respect to closed sets in R3.

1.4 Outline

The article is organised as follows. In the next section we formally define the
language of our logical system. In Section 3, we introduce graph semantics for
this language. In Section 4, we list axioms of our formal system. We prove
soundness of these axioms in Section 5 and completeness of our logical system
in Section 6. Section 7 concludes the article by discussing non-strict between-
ness on graphs and showing that insertion principle in the form (3) is not,
generally speaking, valid for sets of points on a plane.

2 Syntax

In this section we introduce the syntax of our formal theory of betweenness.
Informally, the language of our theory includes betweenness statements of
the form A|B|C and all possible Boolean combinations of these statements.
This is a propositional theory in the sense that we do not allow the use of
quantifiers. Since all Boolean connectives can be expressed through negation
and implication, we use only these two in our formal syntax.

Definition 1 For any finite set V of “vertices”, let the language Φ(V ) be the
minimal set of formulae such that

1. A|B|C ∈ Φ(V ) for all sets A,B,C ⊆ V ,
2. (ϕ→ ψ) ∈ Φ(V ) for all ϕ,ψ ∈ Φ(V ),
3. ¬ϕ ∈ Φ(V ) for each ϕ ∈ Φ(V ).

For the sake of simplicity, when listing elements of sets A, B, and C explicitly,
we usually omit curly brackets in the expression A|B|C. For example, we write
a|b1, b2|c instead of {a}|{b1, b2}|{c}.



Axiomatic Theory of Betweenness 7

3 Semantics

In this article by graph we mean an undirected graph without multiple edges,
but possibly with loops. Minor changes are needed to accommodate graphs
with multiple edges or to exclude graphs with loops. It is likely that our results
can be adopted to directed graphs, but this would require a more substantial
revision.

Definition 2 A path between a vertex a and a vertex b in a graph (V,E)
is any sequence of vertices a = v0, v1, . . . , vn = b, where n ≥ 0, such that
(vi, vi+1) ∈ E for each 0 ≤ i < n. Vertices v1, . . . , vn−1 are called internal
vertices of the path.

Next is the key definition of this article. Its first item formally specifies the
betweenness relation as a relation between sets of vertices of a graph.

Definition 3 For any ϕ ∈ Φ(V ) and any graph (V,E), satisfiability relation
(V,E) � ϕ is defined inductively as follows

1. (V,E) � A|B|C, if for any a ∈ A, any c ∈ C, and any path between vertices
a and c, at least one internal vertex of the path belongs to the set B.

2. (V,E) � ¬ϕ, if (V,E) 2 ϕ,
3. (V,E) � ϕ→ ψ, if (V,E) 2 ϕ or (V,E) � ψ.

Note that item 1 of the above definition requires that at least one internal
vertex of the path belongs to set B. If the requirement of the vertex to be
internal is removed, then we get the definition of what we could call non-strict
betweenness relation.

4 Axioms

For any given finite set V , our axiomatic system consists of the following
axioms in the language Φ(V ):

1. Trivial Path: ¬(A|B|C), if A ∩ C 6= ∅,
2. Empty Set: ∅|B|C,
3. Shortest Path: A|B|C → A|(B\A)|C,
4. Aggregation: A1|B|C → (A2|B|C → A1, A2|B|C),
5. Symmetry: A|B|C → C|B|A,
6. Left Monotonicity: A1, A2|B|C → A1|B|C,
7. Central Monotonicity: A|B1|C → A|B1, B2|C,
8. Insertion: A|B1, I, B2|C → (A|I, C|B1 → (B2|A, I|C → A|I|C)),
9. Transitivity: ¬(A|B|d)→ (¬(d|B|C)→ ¬(A|B|C)), if d /∈ B.

The name Shortest Path comes from the shortest path used in the proof of
the soundness of this axiom, see Lemma 3. In the above axioms by A,B we
denote the union of sets A and B. Note that we represent union by comma
only inside betweenness predicate. In all other setting, to avoid confusion, we
use the standard notations A ∪B.
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We write `V ϕ if formula ϕ is provable from the the set of all propositional
tautologies and the above axioms using Modus Ponens inference rule. We write
X `V ϕ, if a formula ϕ is derivable with the use of additional axioms from the
set X. We often omit the subscript V when its value is clear from the context.

5 Soundness

In this section we prove the soundness of our logical system. We prove sound-
ness of each axiom as a separate lemma for an arbitrary graph (V,E), arbi-
trary sets A,B,C,A1, A2, B1, B2, I ⊆ V , and an arbitrary vertex d ∈ V . The
soundness theorem that follows from these lemmas is stated at the end of this
section.

Lemma 1 (V,E) 2 A|B|C, if A ∩ C 6= ∅.

Proof Fix an arbitrary v ∈ A ∩ C. Consider trivial path consisting of the
single vertex v. This path has no internal vertices. Therefore, (V,E) 2 A|B|C
by Definition 3.

Lemma 2 (V,E) � ∅|B|C.

Proof Due to Definition 3, the statement of the lemma is vacuously true be-
cause the set ∅ contains no elements.

Lemma 3 If (V,E) � A|B|C, then (V,E) � A|(B\A)|C.

Proof Suppose that (V,E) 2 A|(B \A)|C. Thus, by Definition 3, there is a
path from a vertex in set A to a vertex in set C that has no internal vertices
belonging to set B\A. Recall that graph (V,E) is finite by Definition 1. Hence,
there must exist a shortest path π from a vertex in set A to a vertex in set C
that has no internal vertices belonging to set B\A. Because path π is shortest,
it cannot contain an internal vertex from set A. Thus, π is a path from a vertex
in set A to a vertex in set C that has no internal vertices belonging to set B.
Therefore, (V,E) 2 A|B|C by Definition 3.

Lemma 4 If (V,E) � A1|B|C and (V,E) � A2|B|C, then (V,E) � A1, A2|B|C.

Proof Consider any a ∈ A1 ∪A2, any c ∈ C, and any path a = v0, . . . , vn = c.
Without loss of generality, we can assume that a ∈ A1. Thus, by the assump-
tion (V,E) � A1|B|C and Definition 3, there must exist 0 < i < n such that
vi ∈ B. Therefore, (V,E) � A1, A2|B|C by Definition 3.

Lemma 5 If (V,E) � A|B|C, then (V,E) � C|B|A.

Proof Consider any c ∈ C, any a ∈ A, and any path c = v0, . . . , vn = a. Since
graph (V,E) is not directed, the sequence a = vn, . . . , v0 = c is also a path in
this graph. Thus, by the assumption (V,E) � A|B|C and Definition 3, there
exists 0 < i < n such that vi ∈ B. Therefore, (V,E) � C|B|A by Definition 3.



Axiomatic Theory of Betweenness 9

Lemma 6 If (V,E) � A1, A2|B|C, then (V,E) � A1|B|C.

Proof Consider any a ∈ A1, any c ∈ C, and any path a = v0, . . . , vn = c.
Note that a ∈ A1 ⊆ A1 ∪ A2. Thus, by the assumption (V,E) � A1, A2|B|C
and Definition 3, there exists 0 < i < n such that vi ∈ B. Therefore, (V,E) �
A1|B|C by Definition 3.

Lemma 7 If (V,E) � A|B1|C, then (V,E) � A|B1, B2|C.

Proof Consider any a ∈ A, any c ∈ C, and any path a = v0, . . . , vn = c. By the
assumption (V,E) � A|B1|C and Definition 3, there exists 0 < i < n such that
vi ∈ B1. Thus, vi ∈ B1 ∪B2. Therefore, (V,E) � A|B1, B2|C by Definition 3.

Lemma 8 If (V,E) � A|B1, I, B2|C, (V,E) � A|I, C|B1, (V,E) � B2|A, I|C,
then (V,E) � A|I|C.

Proof Consider any a ∈ A, any c ∈ C, and any path a = v0, . . . , vn = c. It
suffices to prove that there is 0 < i < n such that vi ∈ I. Suppose the opposite,
that is, v1, . . . , vn−1 /∈ I.

Note that v0 = a ∈ A. Let k be the largest integer such that vk ∈ A and
0 ≤ k ≤ n. Thus, vk+1, vk+2, . . . , vn /∈ A. Note now that vn = c ∈ C. Let m be
the smallest integer such that vm ∈ C and k ≤ m ≤ n. Hence, vk, . . . , vm−1 /∈
C. Therefore, the path vk, vk+1, . . . , vm−1, vm is such that vk ∈ A, vm ∈ C,
and vk+1, . . . , vm−1 /∈ A ∪ I ∪ C.

By Definition 3, the assumption (V,E) � A|B1, I, B2|C implies that there
is k < ` < m such that v` ∈ B1 ∪ I ∪ B2. Thus, v` ∈ B1 ∪ B2 because
v` /∈ A∪ I ∪C. Without loss of generality, we can assume that v` ∈ B1. Hence,
the path vk, vk+1, . . . , v`−1, v` is such that vk ∈ A and v` ∈ B1. Then, by
the assumption (V,E) � A|I, C|B1 and due to Definition 3, there must exist
k < i < ` such that vi ∈ I ∪C. The last statement contradicts the established
above fact that vk+1, . . . , vm−1 /∈ A ∪ I ∪ C, because k < i < ` < m.

Lemma 9 If d /∈ B, (V,E) 2 A|B|d, (V,E) 2 d|B|C, then (V,E) 2 A|B|C.

Proof By Definition 3, the assumption (V,E) 2 A|B|d implies that there is
a path v0, v1, . . . , vk = d such that v0 ∈ A and vi /∈ B for each 0 < i <
k. Similarly, the assumption (V,E) 2 d|B|C, by Definition 3, implies that
there is a path d = u0, u1, . . . , un such that un ∈ C and ui /∈ B for all
0 < i < n. Recall that d /∈ B by the assumption of the lemma. Thus, sequence
v0, v1, . . . , vk−1, d, u1, u2, . . . , un is a path whose internal vertices do not belong
to the set B. Additionally, v0 ∈ A and un ∈ C. Therefore, (V,E) 2 A|B|C by
Definition 3.

The soundness theorem below follows from the above lemmas by induction
on the length of derivation.

Theorem 1 For each formula ϕ ∈ Φ(V ), if `V ϕ, then (V,E) � ϕ for each
graph (V,E). ut
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6 Completeness

The soundness theorem proved in the previous section states that each theo-
rem of our system is valid in each finite graph. In this section we prove the
converse of this statement, known as the completeness theorem. The proof
of the completeness theorem consists in constructing a countermodel for each
statement not provable from the axioms.

Theorem 2 For any formula ϕ ∈ Φ(V ), if (V,E) � ϕ for each graph (V,E),
then `V ϕ.

Proof Suppose that 0 ϕ. By Lindenbaum’s lemma [7, Proposition 2.14], there
is a maximal consistent set of X ⊆ Φ(V ) such that ¬ϕ ∈ X. We need to specify
a relation E ⊆ V 2 such that (V,E) 2 ϕ. This is done in Definition 5 below.

Definition 4 G(a, c) = {G ⊆ V | X ` a|G|c and a, c /∈ G}.

Informally G(a, c) is the family of all sets that “separate” vertices a and c. We
define vertices a and c to be adjacent if they are not “separated” by any set.

Definition 5 E = {(a, c) ∈ V 2 | G(a, c) = ∅}.

The next six lemmas are about arbitrary sets A,B,C ⊆ V .

Lemma 10 X 0 a|B|c, for each edge (a, c) ∈ E.

Proof Suppose that X ` a|B|c. Thus, X ` a|B \ {a}|c by the Shortest Path
axiom. Hence,X ` c|B\{a}|a by the Symmetry axiom. Then,X ` c|B\{a, c}|a
again by the Shortest Path axiom. Thus, X ` a|B \ {a, c}|c by the Symmetry
axiom. Hence, B \ {a, c} ∈ G(a, c) by Definition 4. Therefore, (a, c) /∈ E, by
Definition 5.

Lemma 11 If X ` A|B|C, then (V,E) � A|B|C.

Proof Suppose (V,E) 2 A|B|C. Thus, by Definition 3, there are vertices a ∈ A
and c ∈ C, an integer n ≥ 0, and a path v0, v1, . . . , vn such that a = v0, vn = c
and v1, . . . , vn−1 /∈ B.

If n = 0, then a = c. Thus, A ∩ C 6= ∅. Hence, X ` ¬(A|B|C) by Trivial
Path axiom. Therefore, X 0 A|B|C due to the consistency of the set X.

Assume now that n > 0. Note that (vi, vi+1) ∈ E for each 0 ≤ i < n, since
v0, v1, . . . , vn is a path. Hence, X 0 vi|B|vi+1 for each 0 ≤ i < n by Lemma 10.
Then, ¬(vi|B|vi+1) ∈ X for each 0 ≤ i < n due to the maximality of set X.
Recall that v1, . . . , vn−1 /∈ B. Hence, X ` ¬(a|B|c) by multiple applications of
Transitivity axiom because n ≥ 1. Thus, X ` ¬(A|B|c) by Left Monotonicity
axiom. Then, X ` ¬(c|B|A) by Symmetry axiom. Hence, X ` ¬(C|B|A) by
Left Monotonicity axiom. Hence, X ` ¬(A|B|C) again by Symmetry axiom.
Therefore, X 0 A|B|C due to the consistency of the set X.

Lemma 12 If a, c /∈ B and X 0 a|B|c, then there is a path from vertex a to
vertex c that does not contain internal vertices from the set B.
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Proof Since set V is finite, we prove this statement by backward induction on
the size of the set B ⊆ V . In other words, we prove the lemma by induction
on the size of the set V \B. The following three cases cover both the base and
the induction steps.
Case I: a = c. Consider a single-vertex path that starts and ends at vertex
a. To finish the proof, we only need to note that this path has no internal
vertices.
Case II: a 6= c and the set G(a, c) is empty. Thus, (a, c) ∈ E by Definition 5.
To finish this case, note that the two-vertex path a, c has no internal vertices.
Case III: a 6= c and the set G(a, c) is not empty. Take any G ∈ G(a, c) and
define subsets Ga and Gc as follows:

Ga = {g ∈ G | X ` a|B, c|g}, (4)

Gc = {g ∈ G | X ` g|a,B|c}. (5)

Claim 1 X ` a|B, c|Ga and X ` Gc|a,B|c.

Proof of Claim. If the set Ga is empty, then X ` a|B, c|Ga follows from the
combination of Empty Set axiom and Symmetry axiom. Suppose now that
the set Ga is not empty. Note that X ` a|B, c|g for each g ∈ Ga due to
definition (4). Thus, X ` g|B, c|a for each g ∈ Ga by Symmetry axiom. Hence,
X ` Ga|B, c|a by multiple applications of Aggregation axiom because the set
Ga is not empty. Therefore, X ` a|B, c|Ga by Symmetry axiom.

Similarly, if the set Gc is empty, then Gc|a,B|c is an instance of Empty
Set axiom. Suppose now that the set Gc is not empty. Note that X ` g|a,B|c
for each g ∈ Gc due to definition (5). Thus, X ` Gc|a,B|c by multiple appli-
cations of Aggregation axiom because the set Gc is not empty. �

The following is an instance of Insertion axiom:

a|Ga, B,Gc|c→ (a|B, c|Ga → (Gc|a,B|c→ a|B|c)).

Hence, X ` a|Ga, B,Gc|c → a|B|c by Claim 1. Recall that X 0 a|B|c by
the assumption of the lemma. Hence, X 0 a|Ga, B,Gc|c. Thus, by Central
Monotonicity axiom, X 0 a|Ga, B ∩ G,Gc|c. At the same time, X ` a|G|c
by the choice of the set G and Definition 4. Recall that Ga, Gc ⊆ G, hence,
Ga∪ (B∩G)∪Gc ⊆ G. Then statements X ` a|G|c and X 0 a|Ga, B∩G,Gc|c
imply that there must exist g ∈ G such that

g /∈ Ga, g /∈ Gc, g /∈ B. (6)

Claim 2 a /∈ B ∪ {c} and c /∈ B ∪ {a}.

Proof of Claim. By the assumption of the lemma, a, c /∈ B. By the assumption
of the case, a 6= c. �

Claim 3 g /∈ B ∪ {a} and g /∈ B ∪ {c}.
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Proof of Claim. Recall that G ∈ G(a, c) by the choice of the set G. Thus,
a, c /∈ G by Definition 4. At the same time g ∈ G by the choice of vertex g.
Hence, g 6= a and g 6= c. Finally, g /∈ B due to statement (6). �

Claim 4 There is a path from vertex a to vertex g whose internal vertices do
not belong to the set B.

Proof of Claim. Note that g ∈ G by the choice of vertex g. At the same time,
g /∈ Ga by statement (6). Thus, X 0 a|B, c|g by statement (4). Recall that we
are proving the lemma by backward induction on the size of set B. We now
would like apply the induction hypothesis to statement X 0 a|B, c|g. To do
this we must verify the following three conditions:

1. |B| < |B ∪ {c}|.
2. a /∈ B ∪ {c}.
3. g /∈ B ∪ {c}.

The first of these conditions holds by the assumption c /∈ B of the lemma.
The second condition holds by Claim 2. The third condition holds by Claim 3.
Therefore, by the induction hypothesis, there is a path from vertex a to vertex
g whose internal vertices do not belong to the set B ∪ {c} ⊃ B. �

Claim 5 There is a path from vertex g to vertex c whose internal vertices do
not belong to the set B.

Proof of Claim. The proof of this claim is similar to the proof of Claim 4 ex-
cept that it uses statement (5) instead of statement (4). �

To finish the proof of the lemma, consider the paths whose existence stated
in Claim 4 and Claim 5. These two paths can be combined into a single path π
from vertex a to vertex c whose internal vertices (possibly with the exception of
vertex g) do not belong to set B. Note that g /∈ B by statement (6). Therefore,
π is a path from vertex a to vertex c whose internal vertices do not belong to
set B.

Lemma 13 If there is a path from vertex a to vertex c that does not contain
internal vertices from the set B \ {a, c}, then there must exist a path from
vertex a to vertex c that does not contain internal vertices from the set B.

Proof If there is a path from vertex a to vertex c that does not contain internal
vertices from the set B \ {a, c}, then there must exist a simple (without self-
intersections) path π with the same property. Any simple path from vertex a
to vertex c does not contain vertices a and c as internal vertices. Therefore,
path π does not contain internal vertices from the set B.

Lemma 14 If X 0 a|B|c, then there is a path from vertex a to vertex c that
does not contain internal vertices from the set B.
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Proof Suppose that X 0 a|B|c. Thus X 0 a|B \ {a, c}|c by Central Mono-
tonicity axiom. Then, by Lemma 12, there is a path from vertex a to vertex c
that does not contain internal vertices from the set B \ {a, c}. Therefore, by
Lemma 13, there must exist a path from vertex a to vertex c that does not
contain internal vertices from the set B.

Lemma 15 If (V,E) � A|B|C, then X ` A|B|C.

Proof We consider the following four cases:
Case I: the set A is empty. Then X ` A|B|C by Empty Set axiom.
Case II: the set C is empty. Then X ` C|B|A by Empty Set axiom. Thus,
X ` A|B|C by Symmetry axiom.
Case III: Sets A and C are not empty and X ` a|B|c for each a ∈ A and
each c ∈ C. Thus, X ` A|B|c for each c ∈ C, by multiple applications of
Aggregation axiom, due to the set A not being empty. Hence, X ` c|B|A for
each c ∈ C by Symmetry axiom. Then, X ` C|B|A by multiple applications of
Aggregation axiom, due to the set C not being empty. Therefore, X ` A|B|C
by Symmetry axiom.
Case IV: There are a ∈ A and c ∈ C such that X 0 a|B|c. Thus, by Lemma 14,
there exists a path from vertex a to vertex c that does not contain vertices
from the set B. Therefore, (V,E) 2 A|B|C by Definition 3.

Lemma 16 X ` ψ iff (V,E) � ψ, for each ψ ∈ Φ(V ).

Proof We prove the lemma by induction on the structural complexity of a
formula ψ. The base case follows from Lemma 11 and Lemma 15. The induction
step follows from Definition 3 and the maximality and the consistency of the
set X in the standard way.

To finish the proof of the theorem, recall that ¬ϕ ∈ X. Thus, X 0 ϕ due to
the consistency of the set X. Therefore, (V,E) 2 ϕ by Lemma 16.

7 Conclusion

In this article we introduced a complete axiomatic system describing properties
of betweenness relation A|B|C in a finite graph defined as “every path from a
vertex in the set A to a vertex in the set C contains at least on internal vertex
from the set B”. One can also consider a non-strict betweenness relation in
which the vertex from the the set B is not required to be an internal vertex
of the path.

Another natural question is that of axiomatization of betweenness relation
between sets of points on a line, on a plane, or, more generally, in a topological
space. In the introduction section of this article we claimed without proof
that although insertion principle (2) is valid in an arbitrary topological space,
stronger principle (3) does not hold in R2. In fact, insertion principle (3) does
not hold even in R. To see the later, it is enough to consider A = B2 = Q,
C = B1 = R\Q, and I = ∅. Indeed, the statements A|B1, I, B2|C, A|I, C|B1,
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and B2|A, I|C are true in this setting because between any rational number
and any irrational number there is a rational number and an irrational number.
Statement A|I|C is false because the set I is empty. In case of subsets of R2,
the same result could be achieved by choosing A = B2 = Q × R, C = B1 =
(R \ Q) × R, and I = ∅. The complete axiomatization of all properties of
betweenness common to all topological spaces remains an open question.
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