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A Monte Carlo model designed for fixed-wing aircraft takeoff performance uncertainty quantification is

benchmarked. The uses of an efficient takeoff simulator of this type range from rapid design variable and

constraint sensitivity studies and large-scale conceptual level analyses to operational performance planning and

real-time anomaly detection. The accuracy of the model is assessed against high-resolution flight-test data obtained

through a campaign consisting of eight takeoffs flown with a specially instrumented commuter category transport

aircraft: a BAe JetstreamSeries 3100 twin turboprop.On all but one of the takeoffs, a close agreement is seen in terms

of the takeoff distance, as predicted vs as observed, at the point of passing a 35 ft screenheight; for the outlier, evidence

of a sudden change in wind speed is presented as the probable cause of the discrepancy. Such studies are subject to

many other sources of error and uncertainty, which are inherent in both flight-test data analysis and simulation,

stemming from the highly dynamic and complex nature of this phase of the flight. The analysis presented also

proposes to be a template for dealing with these issues, in a way that is applicable to other benchmarking studies.

Nomenclature

b = wingspan
CTO
D = airframe drag coefficient in takeoff configuration

CTO
D0

= airframe zero-lift drag coefficient in takeoff configu-
ration

CL = airframe lift coefficient
CTO
Lmax

= maximum lift coefficient in takeoff configuration
Cp = propeller power coefficient
Ct = propeller thrust coefficient
D = total aerodynamic drag vector
Dp = propeller diameter
Ffr = tire rolling resistance vector
fx, fz = x and z components of the resultant of the forces acting

on aircraft
G = weight
h = average height of the wing above ground
I2 = 2 × 2 identity matrix
K = induced drag coefficient
L = lift vector
m = takeoff mass
n = engine speed
Q = propeller torque
R = runway reaction force vector
T = total thrust vector
Te = engine thrust estimate
x = coordinate axis attached to runway
z = coordinate axis perpendicular to runway
αb = body angle of attack
ρ = ambient air density
Φ = ground effect factor

I. Introduction

TAKEOFF performance drives many design decisions in the
conceptual phase; in fact, it even tends to feature prominently

in the earliest discussions with the customer around the formulation
of the design brief. Tight regulation [e.g., 14 Code of Federal Reg-
ulations (CFR) 25.105] and the financial implications of either
missing airport (or aircraft carrier) compatibility targets, or paying

cruise efficiency penalties for a propulsion system oversized by the
takeoff constraints, focusminds on field performance from the outset.
Although this is not a new phenomenon, the current push toward
operations from heavily restricted, complex environments (urban
mobility) is likely to further increase the demand for a sophisticated,
probabilistic understanding of the field performance uncertainties
involved, from the earliest stages of the design process.
Takeoff is at the confluence of multiple aircraft design and perfor-

mance analysis challenges, which, together, conspire to create com-
plex tradeoffs that neither accept elegant, closed-form optima, nor do
they ever yield clean, deterministic conclusions. The engineer must
thus seek to acquire a probabilistic understanding of what the design
brief is likely to cost, which of its entries are the priciest, which design
variables drive the constraint boundaries, andwheremust uncertainty
margins be narrowed for smaller variances on the forecast perfor-
mance. Such variances are likely to exceed those associated with
climb and cruise, as more factors are involved: landing gear, runway
shape and surface, wind variability, high-lift system aerodynamics,
ground effect, propulsion system transients, piloting technique, etc.,
all propagating through to the distributions of the all-important
takeoff distances (all engines operating, critical engine failure at
decision speed, etc.).
The starting point of this paper is a probabilistic simulation frame-

work constructed around a fast, efficient numerical solver of the point
mass equations of motion that govern the takeoff run. Let us examine
the suitability of such a model for generating probabilistic takeoff
performance estimates via a Monte Carlo approach. Here, “suitable”
stands for 1) computationally inexpensive, to the extent of plausibly
serving as a real-time decision support tool running on a laptop in a
design meeting or in a preliminary discussion with a customer; and
2) of an accuracy convincingly benchmarked against the real world.
Although testing definition 1 requires little more than a simple
convergence analysis and a stopwatch, definition 2 presents signifi-
cant challenges due to the inherent errors in any observed flight-test
data, as well as due to the aforementioned complexities of field
performance having to be dealt with both in terms of the benchmark
and the prediction model.
We tackle the benchmarking via a series of flight tests conducted

with G-NFLA, a BAe Jetstream Series 3100 aircraft. It serves the
purpose exceptionally well, thanks to its high-quality, rigorously
calibrated instrumentation.Moreover, its operator [the U.K. National
Flying Laboratory Centre (NFLC)] has amassed an almost peerless
wealth of performance data on the aircraft over its long years of
service, providing not only estimates of its characteristics, but also
confidence intervals around these, which are essential for the com-
plex benchmarking task at hand.
Although design applications motivated this work, a fast, probabi-

listic field performance model has operational applications too, for
example, in real-time anomaly monitoring. Specifically, it may be an
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effective means of the early automated rejection of takeoffs (e.g., in
the case of remotely piloted/autonomous aircraft), where a continu-
ation conditionmay be defined in terms of percentile targets set by the
prediction model (and, given sufficient onboard compute power,
reevaluated several times during the ground roll). The reader inter-
ested in this type of application maywish to consult, for example, the
work of Zollitsch et al. [1]. Here, we shall mainly adopt a design
perspective.

II. Uncertainty in Field Performance Prediction

The design brief and its translation into a design concept commit
the aircraft manufacturer to choices with “long tails” spanning the
preliminary and detail design phases of the development, as well as
the rest of the life cycle of the product. The weight of this earliest
phase of the development process is compounded by the uncertainties
arising from the lack of a geometry (beyond, often, a topological
sketch), and thus the absence of detailed simulations and tests; in fact,
most design variables and performance estimates carry large uncer-
tainty margins at this stage. This is compounded by the uncertainties
of the environment and the geography of the future operators of the
aircraft.
Of course, it is possible to size early concepts for limit cases

(e.g., in the takeoff performance context, using a “one-percentile
low-density” MIL-HDBK-310 [2] atmosphere at KDEN), but this
yields far less insight into sensitivities than a full propagation of
distributions through the design. [Denver International Airport
(elevation 5434 ft) is a classic design point for transport aircraft
takeoff and first/second segment climb performance.] Moreover, it
offers no possibility of calculating the integrals of key quantities,
such as one may need for an early estimate of the environmental
impact (see, for instance, the work of Allaire et al. [3] on estimating
the distributions of noise and emissions metrics for specific
locations).
In a pair of papers on integrating aerodynamic uncertainty into

aircraft maneuvers, Wendorff et al. [4,5] make the point that such
techniques are powerful tools in de-risking certification, which is
where an approach that yields probabilities of meeting certain require-
ments becomes far more valuable than a “best estimate” or “best
estimate of worst case” approach, flagging potential issues as early
as the conceptual design phase. Uncertainty quantification in the early
stages of the design process is also the foundation of robust design
approaches; see, for example, the conceptual-design levelMonteCarlo
analysis of aircraft performance metrics reported by Ng and Willcox
[6], where they tackle the optimization of a NASA N+3 subsonic
transport under uncertainty.
The rapidly growing general literature on uncertainty quantification

and robust design is beyond the scope of this paper, but let us consider
uncertainty briefly from the perspective of takeoff performance.
One of the most recent in-depth analyses of the topic is due to

Takahashi et al., who examined the impact of pilot technique [7] and
aeropropulsive factors [8]. As an instance of the former, they high-
light the impact of pitch rate in the transition fromground roll to flight
(rotation), noting the lack of standardization and a lack of training
received by crews in terms of the impact of deviations from the
optimum (erring either on the side of under-rotation, resulting in
increased takeoff distances, or over-rotation, resulting in the same
outcome due to excessive alpha or tail strike). Takahashi et al. model
the takeoff of an A320-class twin jet and estimate an impact of
slower-than-prescribed rotation of up to 30% on takeoff field length.
Another remarkable result of their simulations is that a 1 deg reduc-
tion in themaximum ground angle of attack (AoA; from 18 to 17 deg,
such as one might expect when implementing a fuselage stretch) can
increase certified distances bymore than 5% (assuming that thewing
remains unchanged) [8].
The operational impact of such uncertainties and our inability to

quantify them accurately is that, to quote Bays and Halpin [9], the
“conservatism inherent in traditional manuals produces an undue
penalty in airfield performance.” An example is the common feature
found even in computational field performance planning models that
calculations are based on half of the actual headwind component, and

a tailwind component is typically multiplied by a safety factor of 1.5
[10], both designed to cover the uncertain impact of some of the
factors mentioned previously. (Typically, several other inputs are
penalized in similar ways.) Further, “there is no industry standard,”
Bays andHalpin go on towrite, “for establishing the appropriate level
of conservatism relative to the physics-based models upon which the
traditional manuals are based.” The end result of all of the above is
poorly quantified project risk (in a conceptual design setting) and
unnecessarily conservative airfield constraints (in the context of the
operations of existing aircraft).
Interest in a better understanding of field performance uncertainty

is likely to increase in the coming years, carried by the rising tide of
the quest for the most effective urban mobility solution. Discussions
around this topic are often dominated by multirotor vertical takeoff
and landing (VTOL) concepts, but there is a school of thought that
advocates fixed-wing solutions with distributed electric propulsion
as a faster, more viable route to effective urban mobility [11], which
can be built on an existing airworthiness framework (such as 14 CFR
Part 23) and may suffer less from the noise issues and technological
risks of VTOL ideas. Such concepts hinge, however, on their fea-
sibility in tight, cluttered, complex environments, often featuring
“tabletop” runways on the roofs of buildings, and complicated failure
and abort scenarios. They will thus, perhaps even more than conven-
tional applications, require a validated, probabilistic takeoff perfor-
mance framework, and it is such a tool that we propose next.

III. Numerical Model for Rapid Takeoff Simulation

A. Solving the Equations of Motion

In the context of conceptual design level takeoff performance,
modeling the customary approach is to solve the equations of motion
in the time t domain, with the aircraft represented by a point massm,
moving in the (x, z) plane,where x is a horizontal coordinate axiswith
the same azimuth as the runway centerline (positive in the takeoff run
direction) and z is vertical, positive upward (see, e.g., Blake [12] and
Takahashi [13]). We adopt the same starting point here. Designating
the origins of both axes as the point where the aircraft begins its
ground roll from rest, we assume the motion of the aircraft to be
described by the system of ordinary differential equations:

�
�x�t�
�z�t�

�
� 1

m
I2

�
fx�t; _x�t�; : : : �
fz�t; _z�t�; : : : �

�
(1)

and we consider the model of the takeoff as an initial value problem,
where

x�0� � 0; _x�0� � 0; �x�0� � 0; z�0� � 0; _z�0� � 0; �z�0� � 0 (2)

and

�
fx�t; _x�t�; : : : �
fz�t; _z�t�; : : : �

�
� T�D� L� R� G� Ffr (3)

The right-hand side represents the vector sum (in a plane aligned
with the runway centerline and perpendicular to its surface) of the
forces acting on the aircraft: the thrust T, the total dragD, the net lift
L, the reaction force acting on the tires during the ground roll R, the
takeoff weight G, and the rolling resistance of the tires Ffr � μR.
Closed-form analytical solutions are rendered impossible by the
complex relationships between these terms. For example, T is typi-
cally a function of _x�t�, but is also a function of throttle setting,which,
in turn, can be a function of t [or even x�t�] itself, to allow the
modeling of the spool-up transients of the engine, as well as various
engine failure profiles (e.g., “throttle chop”).
A peculiarity of the takeoff modeling problem is that its time

domain alternates long periods of limited variation in the derivatives
(most of the ground roll and the climb out)with relatively challenging
transients (spool up and rotation). Although constant step-size
Runge/Kutta-type schemes (e.g., classical Euler integration) are the
simplest to implement (and thus popular), their step sizewill be set by
the requirements associated with the transients, and will therefore be
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wasteful elsewhere. Our desire to integrate the simulation into aMonte
Carlo framework puts pressure on the computational efficiency of the
solution, and so here we opted for an adaptive step-size approach,
specifically a three-stage third-order Runge–Kutta method based on
the Bogacki–Shampine formula [14] (as implemented in [15]), which,
throughout the experiments described here, has proved both fast and
robustly stablewith a residual threshold of 10−7. Figure 1 illustrates the
time-domain resolutionvariation during a typical takeoff run simulated
via adaptive Runge–Kutta time stepping.

B. Uncertainty Quantification

The popularity of the forward-propagationMonte Carlo method for
this type of application is largely the result of its nonintrusive nature;
the governing equations can be solved in the same way as one would
solve the deterministic problem, and it can be applied to black-box
analysis codes too. It also handles large numbers of factors in problems
featuring complex, multidisciplinary interactions; see, for example,
the work of Siva et al. [16] on dealing with the interactions between
structures and aerodynamics in helicopter performance analysis,
or recent tilt-rotor analysis work at NASA Ames Research Center
(Khurana et al. [17]). It is also naturally concurrent, allowing linear
wall time control by varying the numbers of processors deployed on
the problem.

Another strength of the Monte Carlo approach in the aircraft
design context is that it also works well when the uncertainties of
the problem are captured through a mix of analytically postulated
probability densitymodels (e.g., Gaussian) and real-world ensembles
of observations, such as environmental data sets; see, as an illustra-
tion, our earlierwork on incorporating atmospheric profile ensembles
into a forecast of balloon landing site distributions [18] via a Monte
Carlo calculation. In the context of takeoff performance modeling,
other observational data sets (beyond weather) might include pilot
input profiles collected in a flight simulator (see, e.g., the work of
Wood et al. [19] observing variations in takeoff technique in a
CRJ-200 flight simulator) or engine power loss profiles (e.g., col-
lected during simulated failures on a test stand).
Figure 2 is a sketch of our proposed architecture, highlighting the

principal data flow paths. Each component with a blue background is
a probabilistic data source. They supply weather data, contingencies,
aerodynamic parameters, and pilot inputs, as driven by the outer
Monte Carlo loop. In the validation study described in Sec. IV, the
aerodynamics module will constitute the principal source of uncer-
tainty, but the framework is capable of deploying all (or any subset of)
these sources for a design study.
The network of information flow arrows highlights one of the

implementation challenges of such a simulator, namely, that the solver
operates in the time domain, but the various terms on the right-hand
side of the equations of motion (3) are functions of velocity and other
parameters; moreover, the adaptive nature of the chosen Runge–Kutta
solver breaks the linearity of the time domain. (Refinement iterations
require unpredictable returns over already-covered ground, in both
time and space.) This necessitates careful, yet computationally effi-
cient bookkeeping to “straighten” the arrow of time to deal with time-
dependent transients, such as engine spool up and rotation.
A key control lever for any simulation is the size of the Monte

Carlo sample; the convergence traces in Fig. 3, generated on the
validation scenario described in the next section, offer an insight into
the associated simulation time/accuracy tradeoff. Both the sample
means and the sample standard deviations require of the order of 1000
simulations before the fluctuations settle down to 1–2 m in terms of
the various landmark distances of the takeoff.

Fig. 1 Bogacki–Shampine time steps marked by “+” symbols on the
altitude profile of a simulated takeoff run.

Fig. 2 Probabilistic takeoff simulation framework.
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IV. Validation Flight Tests: Aircraft, Airfield,
Conditions, and Limitations

We have chosen to validate the model using high-resolution take-
off performance data recorded onboard the BAe Jetstream Series
3100 aircraft, registration G-NFLA (see Fig. 4), of the U.K. NFLC.
The validation data set used in this paper consists of the variable
traces of eight takeoffs, performed by anNFLC crew at Southampton
Airport (EGHI) at takeoff weights ranging from 6372 to 6722 kg
(spanning a little under 5% of the maximum takeoff weight of
7059 kg of G-NFLA).

A. Test Environment

All takeoffs were flown from runway 20 [with a takeoff run
available (TORA)/accelerate-stop distance available of 1650 m and
a takeoff distance available (TODA) of 1805 m]. The lineup point of
runway 20 has an elevation of 44 ft; the variable atmospheric con-
ditions during the test campaign translated into density altitudes
ranging here from−96 to 312 ft through the eight flights. Theweather
conditions during the flights were variable, ranging from dry and
sunny through overcast with light drizzle, light showers, and light
rain. Table 1 is a summary of the environmental conditions recorded
at the time of each takeoff, as follows:
1)Outside air temperature (OAT) is calculated as the average of the

airport METAR (standard format for reporting a summary of the

weather observations at and in the vicinity of an aerodrome) obser-
vations published just before and just after each takeoff and the mean
of the OAT signal recorded by the air data system of the aircraft;
rounded to the nearest degree (the exact value was used in the
calculations)
2)QFE is the ambient pressure at the airfield level [see theMETAR

for the QNH (QFE, QNH: altimeter pressure setting for the surface
and sea level, respectively)]; expressed in millibars (hPa), rounded to
the nearest millibar
3) The density altitude is expressed in feet; rounded to the nearest ft
4) The headwind component on runway 20 is expressed in knots;

rounded to the nearest knot
5) Southampton Airport METARs (aerodrome weather informa-

tion): are issued at 30 min intervals. The METAR preceding the
takeoff and the one immediately following it (shaded in blue) are
shown in the table. The time stamp of the latter was nearer to the
actual takeoff times; thus, thewind value recorded thereinwas used in
the simulations conducted for validation purposes. Only the weather
section of each METAR is shown, with the International Civil
Aviation Organization (ICAO) identifier (EGHI) and the date and
time block omitted for compactness
Runway 20 has a listed slope of −0.23%, but this is simply the

slope of a straight line connecting its two ends. G-NFLA lifted off on
each of our test flights nearer the halfway point of the runway, up to
which point the downslope is significantly greater (due to the “V”

Fig. 3 Monte Carlo convergence study: typical mean (blue) and standard deviation (dotted green) traces.

4 Article in Advance / SÓBESTER

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
A

M
PT

O
N

 o
n 

O
ct

ob
er

 2
2,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
61

80
 



profile of the runway). We were able to use the inertial altitude
recorded by the inertial reference system (IRS) of the aircraft as a
means of charting the actual topographical profile of the section of the
runway used for the takeoff. We have inserted the slope values thus
found (typically of the order of –1 to –2%, the variation among them
being due to the different ground-roll distances) into our simulator,
for the validation cases.

B. Propulsion

The test aircraft is powered by two Garrett AiResearch (now
Honeywell) TPE331-10UR-513H turboprop engines. They have a
single-shaft architecture, featuring a two-stage centrifugal compres-
sor, a three-stage axial turbine, and an annular combustion chamber.
Each of the TPE331s fitted to G-NFLA drives a four-bladed Dowty-
Rotol propeller, designed to operate at a constant speedwhen the rpm
lever in the flight deck is in “FLIGHT”mode (including at takeoff). In
thismode, the governor controls the blade angles such that a propeller
speed of 1591 rpm is maintained.
The TPE331-10UR series of engines has a thermodynamic (full)

rating of 1000 shp, flat rated to 940 shp for takeoff (5 min of
operation; see Fig. 5); the maximum continuous flat power rating is
900 shp. Jet propulsion accounts for around 5% of the total thrust
generated by each engine (derived from the equivalent shaft powers

Table 1 Environmental conditions during the eight validation takeoffs

Flight no. OAT, °C QFE, mbar
Density
altitude, ft

Headwind
component, kt

METAR (ICAO code and time block omitted for compactness) last report
before takeoff first report after takeoff (nearest in time, used for wind estimate)

1 12 1004 −96 13 20013 KT 170V250 6000 RA BKN012 12/08 Q1005
20013 KT 7000 RA FEW010 BKN013 12/08 Q1006

2 12 1005 −73 13 20014 KT 170V230 7000 RA FEW012 BKN015 11/09 Q1006
20013 KT 160V230 9999 -RA BKN012 12/09 Q1006

3 13 1005 7 16 21015 KT 9999 -RA FEW011 BKN014 12/09 Q1006
21016 KT 170V240 9999 VCSH SCT012 BKN016 12/08 Q1006

4 13 1005 47 15 21018G30 KT 180V240 9999 -SHRA SCT012 BKN016 12/09 Q1006
21015 KT 180V240 9999 -SHRA SCT014 BKN016 13/09 Q1006

5 15 1009 109 14 19014 KT 170V240 9999 FEW013 BKN025 15/10 Q1010
20014 KT 170V230 9999 FEW013 BKN025 15/10 Q1010

6 15 1009 149 16 20015 KT 160V240 9999 FEW015 BKN025 15/09 Q1010
19016 KT 150V220 9999 -DZ FEW016 BKN025 15/09 Q1010

7 17 1010 312 17 20015 KT 150V240 9999 FEW016 BKN025 16/09 Q1011
20017G27 KT 170V230 9999 FEW016 SCT025 16/09 Q1011

8 16 1010 233 15 21015 KT 180V240 9999 BKN021 15/08 Q1011
20015 KT 170V230 9999 FEW020 BKN025 15/07 Q1011

Fig. 4 National Flying Laboratory (Jetstream 31; G-NFLA) being prepared for the test flights (photo by the author).

Fig. 5 Uninstalled 5 min maximum power curves of the TPE331-10UR
engine (from data presented in the manufacturer’s specifications docu-
ment [21]).
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quoted by the type certificate as 984 and 944 eshp for takeoff and
maximum continuous operation, respectively) [20,21]. All these are
uninstalled figures, that is, they relate to an engine operating on its own,
on a test rig. Typical installation losses, accounting for engine–airframe
integration effects, as well as bleed air offtakes and other services
provided by the powerplant, are estimated byKundu [22] at between 8
and 10% at takeoff; the Monte Carlo simulations performed here as
benchmarks for our validation cases assume a normally distributed
figure, with Kundu’s numbers setting the 95 percentile boundaries.
The operating limits of the engines on Jetstream 31 are guarded by

a torque and temperature limiter computer, which limits the fuel flow
to the engines to prevent either the maximum torque or maximum
exhaust gas temperature (EGT) red line limit of 650°C from being
exceeded. In case of engine failure (detected as a sudden loss of
torque), an automatic power reserve logic adds 19°C of “headroom”

to the EGT limit of the other engine [23].
For purposes of the validation study at the center of this paper, we

have constructed a model of the performance of the engine, with
environmental conditions, power lever position, true airspeed (TAS),
and torque gauge reading as inputs and thrust as the output. Here is
the algorithm that forms the basis of themodel. First, the torque gauge
reading is converted into an actual torque value using a calibration
coefficient obtained experimentally (using the Lebow test procedure)
by the NFLC via a specialist calibration facility. This allows the
calculation of the power coefficient:

Cp � 2πQ

ρn2D5
p

(4)

whereQ is the torque, ρ is the ambient density, n is the engine speed
(26.5 rev/s in the FLIGHTmode of the propeller governor (the mode
selected at takeoff), andDp is the diameter of the propeller (2.692m).
The Cp value thus computed, along with the advance ratio of the
propeller (the ratio of the TAS and the tip speed), is the input to a pair
of models supplied by Dowty (the manufacturer of the propeller) that
allow the calculation of the blade angle, and finally, the thrust
coefficientCt, which, along with the original inputs, yields the single
engine thrust estimate Te as

Te � Ctρn
2D4

p (5)

C. Airframe

G-NFLA is an ideal validation case for two reasons. First, the
aircraft is equipped with an extensive suite of sensors and a high-
resolution data logging capability (more on this presently). Second,
over its long service, the NFLC was able to amass a robust and
detailed understanding of its performance and aerodynamics. The
following is a distillation of this wealth of data (based on [24–26]).
Most germane to the study at hand are the key aerodynamic param-

eters of the airframe in the takeoff configuration (flaps 10 deg; under-
carriage down). The zero alpha lift coefficient CTO

L0 of the airframe,
derived with a 95 percentile confidence interval of �0.008, is 0.523,
with a slope of aTO1 � 5.8 rad−1 on the linear portion CTO

L � CTO
L0 �

a1αb of the lift curve defined in terms of the body AOA αb. The
airframe achieves its maximum lift coefficient CTO

Lmax � 1.81 in the
takeoff configuration at αb � 9.7 deg (with 95% of observations in
the�0.5 deg interval).
The zero-lift drag coefficientCTO

D0 of the airframe, derived with a 95
percentile confidence interval of�0.001, is 0.072. On the assumption
of a parabolic drag polar of the form CTO

D � CTO
D0 � KΦC2

L, the
induced drag coefficient K was determined through extensive flight
testing as 0.056� 0.001. (It is safe to assume this being constant
through the low-Mach-number range of the aircraft.) The ground effect
factor Φ accounts for the presence of the runway and is estimated as

Φ � �16h∕b�2
1� �16h∕b�2 (6)

where h∕b is the ratio of the height of the wing above the ground and
the span of the main wing [27,28].
A final note on the takeoff aerodynamics of the Jetstream 31: the

“clean” airframe generates 371 counts of zero-lift drag; thus, low-
ering the landing gear and deploying the flaps to 10 deg effectively
double CD0!

D. Data Recording and Processing

G-NFLA is equipped with a Litton LTN-90 IRS, which uses
pendulous accelerometers, ring laser gyroscopes, and a GPS unit.
A key parameter from the viewpoint of validating our simulation
capability was the position (and, implicitly, the ground speed) of the
test aircraft. Figure 6 is an illustration of the error margins we were
able to place around the GPS latitude data. The arrays of gray disks
represent individual latitude readings along a typical takeoff run, and
they show that the update rate of the GPS unit is considerably lower
than the overall sampling frequency of the reference system.We have
constructed sixth-order polynomials to place a lower and upper
bound on the latitude signal (blue and green curves, respectively).
The colored patches superimposed on an aerial view of the runway
represent this uncertainty range mapped onto the tarmac at a series of
instants along a typical ground roll (initial position and 5, 10, 15, 20,
and 25 s). Taking advantage of the fact that the aircraft is known to
have followed the centerline of the runway during the ground roll, we
have implemented a “snap-to-road” algorithm (commonly used in in-
car satellite navigation) to compute the longitude at each sample.
Although a highly precise reconstruction of the full kinematics is

not necessary for model validation purposes, the analysis outlined
previously was important to allow us to identify the end-of-takeoff
landmark, the point where the aircraft passed the 35 ft screen height.
(We would proceed to extract the same reference point from the
simulations too for this key comparison.)
Additionally, the readings from the LTN-90 and the air data unit of

the aircraft contributed to our reverse engineering of the “real-life”
performance of the engine. As outlined earlier, this involved calcu-
lating the thrust, which relies on the readings from the torque-sensing
system built into the propeller and a TAS input. The accuracy of the
thrust estimation is limited in the first 5 s or so of the ground roll by the
fact that G-NFLA is not equipped with a direct rpm and blade angle
sensing capability; thus, our calculations had to be made on the
assumption that the propeller speed stayed constant (at the FLIGHT
mode target speed of 1591 rpm) through the initial spool-up phase,
with the governor reacting without significant lag to the substantial
increase in power setting. For the purposes of the simulation, we
approximated the throttle setting (which is also not logged directly by
G-NFLA) with a sigmoid function spanning the approximate spool-
up time we reverse engineered from the flight-test data (with the
aforementioned caveat).
Another issue related to the first few seconds of the ground roll is

the measurement of the airspeed. The TAS, in addition to being
required by the thrust computation, is also an input of the bench-
marking simulations, more specifically, its headwind component. In
theory, the difference between the TAS reported by the air data unit of
the aircraft and the GPS-derived ground speed should yield the
headwind, which could then be fed into the simulation as part of
the validation test. In practice, however, this is problematic for two
reasons. One is the aforementioned GPS position uncertainty (com-
pounded here by differentiation). The other is that the TAS reading is
heavily affected at the start of the rollout by the proximity of the pitot
tubes of the Jetstream to the propeller disks; specifically, the TAS
signal spikes with the sharp power increase associated with the
beginning of the roll. Figure 7 depicts the interplay between these
parameters on a typical takeoff run. A key reference point here (black
dotted line), which we eventually proceeded to use as the runway
component of the wind-speed value in the simulation, is the runway
component of the wind recorded in the METARs.
The METARs also indicate gusts and variable wind directions

through the campaign (see Table 1), which introduces an additional
source of uncertainty, but it can be seen in Fig. 7 that the “TASminus
ground speed” estimates do converge upon the METAR-recorded
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value in the latter part of the takeoff run.We shall return to this aspect
of the data analysis during our discussion of the results of the
benchmarking study.
Further uncertainties lie in the IRS data in terms of noise in the

signal and resolution limitations. Some of the noise is inherent to the
physical limitations of the ring laser gyros, whereas others reflect
the “untidiness” of the environment (e.g., the response of the landing
gear oleos to discontinuities in the pavement, gusts, propulsion

system vibrations, and natural unevenness of human pilot inputs).
Consider Fig. 8, a plot of 2 s or so of raw data generated by the LTN-
90 during one of the takeoffs, showing the beginning of the rotation
phase (nose gear lifting off the runway). Some of the air data (AOA)
and control surface positions are also shown.
Clearly, rotation occurs around the 22 smark, but, as confirmed by

the rest of the data from this campaign, it is hard to pin down the exact
moment to a precision greater than towithin a second or so, due to the

Fig. 6 Upper and lower bounds on the GPS latitude readings mapped onto the runway for a particular moment in time (20 s).

Fig. 7 Headwind component estimates from two sources: aerodrome observations and onboard sensors.
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various fluctuations and lags in the recorded data. The IRS altitude
was, in most of the cases we examined here, perhaps counter-
intuitively, one of the safest indicators of rotation having definitely
occurred, as the IRS unit is mounted aft of the main gear, and there-
fore, rotation results in a small dip in its altitude; however, thismerely
gives us an upper bound, as the accelerometer needs approximately
one foot of travel before it integrates any motion from the acceler-
ation. All we can conclude from this particular snapshot of the data
is that by 22.75 s, the rotation phase will definitely have been in
progress. (Also, this dip is somewhat confounded by those caused by
unevenness in the runway surface.) We were also able to bracket the
other milestones (the start of the ground roll, passing the velocity of
minimum control on the ground, liftoff, and completion of takeoff)
into a 1 s window.

E. Piecing It All Together

The analysis outlined previously has allowed us to identify the
salient features of each of the eight test flights. Key elements of the
data corresponding to the first of these takeoffs (taken as an example)
are depicted in Fig. 9, overlaid on top of a map of Southampton
Airport.
Milestones of the takeoff are shown on the right-hand side, each

with its own position uncertainty band projected onto the runway
(resulting from the uncertainties around time and latitude/longitude,
as discussed previously). The runway itself is colored, corresponding
to the along-track component of the acceleration of the aircraft,
peaking early on at just over 0.25g, a value fairly typical of transport
aircraft operations. The Jetstream takes approximately 17 s (over half
of the total takeoff time) to reach its minimum ground control speed
of 90 kt indicated airspeed (KIAS), with the crew initiating the

rotation phase within a knot of the handbook-prescribed VR value
(for the conditions of this first flight) of 107 KIAS. Liftoff occurs
approximately 3 s later (during which time the aircraft covers around
150 m with the main landing gear on the tarmac and the nose gear in
the air) and the turboprop is airborne as it passes taxiway Bravo 1.
Overall, with a weight of 6688 kg and operating at a density altitude
of–96 ft, the takeoff requires, on this occasion, around 53% of the
available distance (TODA) and around 44% of the length of tarmac
designated as available for the ground roll (TORA).

F. Flight Testing Lessons Learned

Although the flights conducted here did not form part of a certif-
ication process, we followed good practice outlined in certification
testing guides wherever appropriate. For example, our inclusion of
GPS and inertial data to augment the air data recorded in the course of
each takeoff follows the guidance set out inRef. [29]. A key takeaway
here formed around the challenges illustrated, for example, in Fig. 6.
Clearly, higher time-domain and spatial resolution systems are avail-
able today than those integrated in the test aircraft and used here, and
wewill aim to design future flight-test campaigns aroundmuchmore
up-to-date Global Navigation Satellite System and inertial referenc-
ing technology. Clearly, the integrated system is suitable for the
vast majority of test cases flown by G-NFLA, but high-precision
reconstruction of transient maneuvers (such as required here for, for
example, identifying the exact point of liftoff) would benefit from
recent augmentation technology (e.g., multiconstellation averaging,
differential GPS), obviating the type of time-consuming modeling
and snap-to-road methodology employed here. Indeed, even the
sophisticated data fusion technology powering the attitude and
positioning capability of a modern smartphone could provide a
significant step-up in resolution and precision, given an adequate
view of the sky (e.g., the GPS + GLONASS + Galileo + QZSS +
BeiDou + magnetic compass suite featured by some current-
generation smartphones).
The processing of the air data has also yielded useful take-home

lessons. As discussed previously, this proved more laborious than
expected and brought with it data quality issues. The precise and
rigorously validated ground-based wind measurements of the air-
port served as useful ground truth, but at a low time resolution and in
a single location. We augmented this, as described previously, with
the own air data of the aircraft, which, for most flight testing
purposes, offer excellent accuracy and high resolution. However,
we once again ran into the issue of transient phenomena in the case
of the surgical deconstruction of the ground roll. The sensitivity of
the air data to abrupt changes in power setting (e.g., ground-roll
start) limits the usability of the air data for the estimation of TAS
(defined in relation to the unaffected air mass), as the local flow
speed over the pitot-static system becomes significantly different
from the TAS due to the proximity of the propellers (ideal for
operational reasons, less so for the niche application of high-
resolution ground-roll reconstruction). The ideal solution may be
to perform such tests on low-level wind-shear alert system-
equipped runways or, if unavailable, setting up an ad hoc network
of sensors to provide a similar capability (see Ref. [30] for a further
discussion of these challenges associated with the high-resolution
reconstruction of ground rolls).

V. Validation

A. Monte Carlo Setup

Let us now consider the Monte Carlo simulation setup that we
pressed into the service of validating the framework sketched out in
Fig. 2. We have selected seven probabilistic inputs for this exercise,
divided into three categories: propulsion, aerodynamics, and piloting
technique (see Table 2).
Following a very precise reconstruction of the performance of the

TPE331-10UR-513H turboprop engines, the key sources of remain-
ing propulsion uncertainty are the integration losses; we use Kundu’s
[22] estimates here (first line of Table 2). The parameters of the
distributions of aerodynamic parameters fed into the simulations
are based on the data presented in Sec. IV.C, assuming normal

Fig. 8 Two seconds of raw data recorded during one of the takeoffs;
rotation occurs approximately between 21.5 and 22.5 s.
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distributions. Finally, we assume a sigmoidal rotation input for the
rotation of the airplane, starting from no elevator deflection to a
deflection that results in a target maximum rotation angle (first line
of the “piloting technique” section of Table 2),with a rate of transition
between the two as specified in the last row of the table. The
distribution mean figures shown here are representative values; the
exact value for each simulation was that captured from the rate and
maximum angle of rotation of the test flight being matched.
All other parameters of each simulation (not listed here) are

assumed constant for each member of their respective Monte Carlo
ensembles; for example, the takeoff weight of the aircraft on each
validation flight was known very precisely, and so there was no need
for a probabilistic treatment.
The choice of Monte Carlo input values is consistent with the

philosophy that we are aiming to validate the structure of the model
and its implementation (rather than its inputs), and so the goal is to
have inputs that are as close to the observed reality as possible.

Fig. 9 Reconstruction of a takeoff from test flight data (flight 1) (TOW= take-off weight; AGL= above ground level; Elev = elevation; dens. alt. = density
altitude; Rwy = runway).

Table 2 MonteCarlo inputs for themodel runs used in the validation
study

Input Distribution Mean Standard deviation

Propulsion

Engine installation factor Normal 0.91 0.005

Aerodynamics

Lift curve slope aTO1 Normal 5.8 rad−1 0.05 rad−1

Lift curve intercept CTO
L0 Normal 0.523 0.004

Induced drag coefficient K Normal 0.056 0.0005
Zero-lift drag coefficient CTO

D0 Normal 0.072 0.0005

Piloting technique

Maximum angle of rotation Normal ≈3 deg 0.5 deg
Rotation rate Normal ≈3 deg ∕s 0.5 deg ∕s

All parameters relate to the takeoff configuration.
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The data reported on in the next section are the results of feeding
the aforementioned distributions (and the appropriate single values
for other parameters) into the framework depicted in Fig. 2; eight
Monte Carlo ensembles were generated, one for each validation
flight.

B. Validation Results

Let us now match the flight-test data for the eight flight tests
against the corresponding simulation results generated via theMonte
Carlo setup presented previously.
At the beginning of this paper, we set out two requirements, around

which we designed the simulation capability described in Sec. III:
that it needs to be fast enough to plausibly serve as a real-time
decision support tool running on a laptop in a design meeting or in

a preliminary discussion with a customer, and that it must have its
accuracy benchmarked against flight tests.
The first of these requirements is easily tested. The author’s

3.1 GHz Intel Core i5-powered laptop can comfortably run an
iteration of the framework depicted in Fig. 2 in just under two-tenths
of a second (simulating around 40 “real” seconds of flight). With
Fig. 3 as a guide, this can be translated into around half a minute for
getting to within 10 m or so of the mean and the standard deviation
of the takeoff distance distribution, sufficient for the purposes of
supporting a design discussion. If more accuracy is desired, such as
we did for the validation experiments described here, one may
continue to about 20 min to converge the statistical moments to
within a meter or so (or around 0.1% of the takeoff distance). With
the Monte Carlo method offering linear speedups, multicore systems

Fig. 10 Takeoff distance (to 35 ft screen height) Monte Carlo histograms in blue, shown against the corresponding flight-test data.
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allow the division of these figures by the number of available cores;
moreover, significant further speedups (such as may be required for a
real-time onboard system) could be achieved by implementing the
methodology in, say, C++.
Let us now address the second part of the question by comparing the

eight validation flights against simulation setup such that they match
the conditions of the test flights as closely as possible. Consider the
results depicted in Fig. 10, where each tile depicts one of the eight
takeoffs and the distribution of takeoff distances (35 ft screen height
reached) generated via 2000 iterations of the Monte Carlo simulation
of that takeoff. The resulting histogram (in blue) of takeoff distances is
aligned with the appropriate location along the runway. The purple
bands either side of the runway, which can be seen underneath (or,
geographically, to thewest–north–west of the histogram) delineate the
area within which we estimate that each test takeoff ended, that is,
where G-NFLA passed 35 ft above ground level.
The simulations used the takeoff mass calculated from the load

sheets of each flight, and our best reconstruction of the environmental
conditions that prevailed at the time of the takeoff, as laid out in
Sec. IV, with a normally distributed wind perturbation of a 2 kt
standard deviation. Further, we used a set of sigmoid functions to
approximate the spool-up profile of the engine deck and the pitch-up
control input leading to the rotation of the aircraft. In terms of the
aerodynamics and propulsion performance of the aircraft, as well as
the corresponding uncertainty margins, we used the model outlined
in Sec. IV.B and IV.C.
The first conclusion is the relatively large spread of the predicted

takeoff distances, which highlights the way in which even relatively
narrow uncertainties (such as those we specified here on the aerody-
namic coefficients, the propulsion installation factor, and pilot
inputs) can build up over the 30 s/a kilometer or so it takes the
Jetstream to clear 35 ft from a standing start; the farthest outliers
typically exceed the mean by over 20%.
The second observation one might make is that the purple band

representing the actual takeoff distance range of each test flight
generally aligns well with the predicted distribution of distances; this
is true of seven of the eight cases, with the exception being flight 5.
The probable cause of this anomaly is that, during the takeoff run,
there was a deviation from the METAR-reported wind in direction
and/or speed.
This hypothesis is supported by a comparison between flights 5

and 6. Flight 5 features the heaviest takeoff weight of the campaign,
whereas on flight 6, G-NFLAweighed less by 241 kg. The “baseline”
wind speeds recorded in theMETARs (see Table 1) were very similar
at the time of the two flights (14 and 15–16 kt, respectively, from 190
to 200 deg), as was the OAT (15°C in both cases). Yet, the center of
the “35 ft screen height reached” uncertainty band was at the 932 m
mark on flight 5, whereas flight 6 (lighter by the weight of three to
four adults) took 46m longer to reach the equivalent milestone. With

little evidence of significant inconsistencies in piloting technique
from one flight to the next, the strongest possibility remains a change
in the runway component of the wind speed (with the METAR
indicating directional variability between 170 and 240 deg) or a wind
gust during the takeoff run.
The air data recorded by the aircraft offer further evidence in

support of the wind variability hypothesis. Although, as discussed

Fig. 11 Air data recorded by G-NFLA on flight 5; the circle highlights the location of a sudden change in the headwind component.

Fig. 12 Flight 5 simulation results with a headwind gust introduced at

15 s into the ground roll.
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in Sec. IV, propulsion effects render the TAS minus ground speed
signal unsuitable for reconstructing actual headwind values, abrupt
variations in it do offer an indication of changes in wind speed and
direction. Examining the air data traces for flight 5 does indeed reveal
evidence of such an event, featuring a clear jump in the estimated
headwind (circled in Fig. 11).
To test the wind variation hypothesis (as a possible reason for the

flight 5 anomaly) directly, we repeated the flight 5 simulations, this
time injecting a gust into the simulation, just after the 15 s mark (the
location of the discontinuity highlighted in Fig. 11), temporarily
increasing the headwind to 30 kt (the value seen in the METAR
corresponding to the previous flight). The results of this fresh sim-
ulation are shown via the histogram in Fig. 12, revealing a good
alignment between the distribution of simulated takeoffs and the
“35 ft screen height cleared” zone derived from the data recorded
on flight 5, in keeping with the results of the other seven flights.

VI. Conclusions

The study described in this paper set out to propose aMonte Carlo
model that allows the rapid, probabilistic assessment of the takeoff
performance of an aircraft (anywhere between the earliest stages of its
design and in service) and assess its accuracy against real-life data
acquired as part of a flight-test campaign. Along theway, the research
effort reported on here also turned into an exercise in understanding
the challenges and pitfalls of the reconstruction of takeoff flight-test
data in a way that quantifies its uncertainties. This was made espe-
cially challenging by the limitations of the LTN-90, a state-of-the-art
device in its time, but now four decades behind modern GPS and IRS
technology.
The analysis of the air data also provided some interesting chal-

lenges. AlthoughG-NFLA features much useful instrumentation and
logging capability beyond what production variants of the Jetstream
3100 are equipped with, they offer (not entirely unreasonably) far
more to the flight-test engineer when the aircraft is airborne; the
peculiarities of takeoff (large speed and power setting transients, etc.)
are on themargins of their capabilities. One example is theAOAvane,
the signal of which is unreliable at the low speeds typical of much of
the takeoff.
Let this paper conclude by summarizing the findings, results, and

recommendations of the work reported previously:
1) It is hoped that readers aiming to conduct their own computa-

tionalmodel vs flight-test data validation studywill find the analysis a
useful template for a comparison with quantified uncertainties and
will be able to design a more effective experiment avoiding some of
the pitfalls that were encountered along the way.
2) As for the model itself, it has been demonstrated that its

execution speed and accuracy make it a useful prediction tool in a
range of settings. The main target use case is its ability to support
design discussions in the early conceptual phase or perhaps even at
the time when the design brief is drawn up (the method being
sufficiently fast to support discussions with real-time “what ifs”),
or the initial feasibility of a tentative design is tested. Finely poised
concepts in the emerging urban mobility sector may benefit particu-
larly from early quantification of takeoff performance uncertainty;
the early generation of probabilistic noise footprint maps may be
another particularly interesting application candidate.
3) The validation study presented here provides strong evidence

for the thesis that very efficient, lightweight point mass models can
offer a high level of accuracy within a Monte Carlo framework,
within the requirements of design studies and most operational
applications as well.
4) It was found that solving the governing equations via an

adaptive step-size approach (using the Bogacki–Shampine formula)
is ideally suited for dealing with the transients associated with
takeoff, as it speeds up the solution process significantly, while
performing robustly and in a stable manner.
5) Much takeoff modeling at the conceptual design stage typically

relies on analytical models at present. They are fast to compute, but
their rigidity (inability to model contingencies, different piloting
techniques, detailed weather and runway geography, etc.) limits their

usefulness. Conversely, full-flight simulators based on blade element
models or higher-fidelity simulation technology is not sufficiently
fast for practical Monte Carlo studies, an essential step in under-
standing the downstream impact of uncertainties. In this paper, it was
shown that a point mass model engineered with modularity and
flexibility in mind offers the flexibility of the latter at a fraction of
its computational cost. (Note that this claim is made only for takeoff
performance modeling. A detailed dynamics model with a complete
set of inertial properties and derivatives may be required for other
maneuvers.)
6) The study presented here is also an argument in favor of the

suitability of the point mass model described for precise and rapid
operational field performance prediction in probabilistic terms,
potentially offering more operational flexibility than conventional,
highly conservative, rigid, “handbook-based”methods. A typical use
case might be a tilt-rotor-type fixed-wing drone operating out of
varied, constrained environments (e.g., ship based) offering a variety
of takeoff techniques depending on payload and environmental and
geographical conditions. The approach detailed here may be used to
generate an optimal thrust vectoring or high-lift system deployment
schedule, or compute a payload limit based on the rapid assessment of
a large number of possible propulsion system failure scenarios
adapted to the exact environment being considered.
7) The probabilistic nature of the model allows it to be used to

facilitate a quantified risk-based approach to field performance,
especially useful in cases where the impact of failure can only be
damage to a low-cost vehicle.
8) The low computational cost of the model, combined with the

increasing speed of graphical processing units, could yield a power-
ful, real-time, onboard anomaly detection tool that could make
hundreds of probabilistically based “go/no-go” decisions in the
course of the ground roll of a vehicle, by constantly assessing
recomputed predicted performance vs TORA.
To maximize the benefit to the community of the model described

here, it will form part of the Aircraft Design Recipes in Python (see
https://github.com/sobester/ADRpy) open-source library.
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