
1

Balanced Neural Architecture Search and Its
Application in Specific Emitter Identification

Mingyang Du, Xikai He, Xiaohao Cai and Daping Bi

Abstract—The performance of a single neural network can
vary unexpectedly corresponding to different classification tasks,
and thus the network with fixed structure may lack flexibility
and often lead to overfitting or underfitting. It is urgent, also
the main objective of this paper, to deal with the limitation of
the fixed neural network structure on classifying radar signals
in different electromagnetic environments. We in this paper pro-
pose a variable network architecture search (NAS) mechanism,
called balanced-NAS framework, and apply it in specific emitter
identification (SEI) to greatly improve the flexibility of model
searching. In the proposed balanced-NAS framework, a “block-
cell” structure and a controller based recurrent neural network
(RNN) are utilized to design models automatically according to
external environment. In particular, a balance function is also
proposed and utilized in the balanced-NAS framework, acting
on the RNN controller to take both the validation accuracy
and computational budget into consideration while searching
for ideal models. The efficiency of the searching process is
further enhanced by exploiting a progressive strategy to design
simple and complicate child models where unpromising ones
after each evaluation process are obsoleted to release searching
space. Simulations and experiments indicate that the proposed
balanced-NAS framework is extremely efficient and outperforms
the conventional algorithms in classifying radar signals in differ-
ent environments.

Index Terms—Specific emitter identification, time-frequency
distribution, neural architecture search, radar, signal processing.

I. INTRODUCTION

SPECIFIC emitter identification (SEI) is the process of
discriminating or identifying different emitters based on

the radio frequency fingerprint features extracted from the
received signals [1]. The application of SEI techniques has
been intensively studied in military communication, radar sys-
tem, cognitive radio and self-organized network [2]. However,
the increasing complexity of the spatial spectrum makes this
task more complicated than ever before. For example, sensors
deficiency and low signal-to-noise ratio (SNR) environments
may cause measurement loss or error, which finally results in
poor performance [3]. Therefore, SEI in the complex electro-
magnetic environment is inherently an urgent and extremely
challenging problem. In this paper, we endeavor to propose
new efficient methods to pave the way for SEI in complex
electromagnetic environments.

M. Du, X. He and D. Bi are with College of Electronic Engineering,
National University of Defense Technology, Huangshan Road No. 460, Hefei,
China (e-mail: dumingyang17@nudt.edu.cn).

X. Cai is with School of Electronics and Computer Science, University
of Southampton, University Road, Southampton, SO17 1BJ, UK (e-mail:
x.cai@soton.ac.uk).

Pulse description word [4] is one of the most common and
easiest ways to describe radar signal inter-pulse characteristics
which mainly gather parameters including radio frequency
(RF), pulse amplitude (PA), time-of-arrival (TOA), direction-
of-arrival (DOA) and pulse width (PW). When the signal
density in the electromagnetic environments is low and the
majority of radars are conventional systems, the classification
using inter-pulse features is feasible [5]. However, in modern
radar systems, more sophisticated signal waveforms are used
and thus only inter-pulse features may not be enough to
separate and classify those received pulses. To identify the
radar emitter in such environments, we need to explore the
detailed structure inside each pulse, called intra-pulse features
[6]. This is because an emitter has its own electrical signal
structure inside each of its transmitted pulses due to both
intentional and unintentional modulations [7]. Time-frequency
analysis is one of the most effective approaches to extract
intra-pulse features of radar signals. There are some conven-
tional techniques such as short-time Fourier transform (STFT)
[8], wavelet transformation [9], Wiger-Ville distribution [10],
and Choi-Williams distribution [11]. Some state-of-the-art
SEI techniques based on these time-frequency analyses are
proposed in e.g. [12] [13]. The basic procedures include
extracting the time-frequency distribution of the given signal,
applying morphological processing on the extracted time-
frequency images and finally designing classifiers to produce
the outputs [14]. In the following, we briefly recall some
popular classifiers which are related to the focus of this paper.

Some conventional classifiers like support vector machine,
k-nearest neighbor and random forest have broadly been
applied in SEI research [15] [16]. However, they have limited
capacity to express complex functions. Moreover, for compli-
cate classification problems, their generalization abilities are
rather limited. Machine learning system has the advantages of
self-organizing and self-learning in the course of the solution
to recognition tasks. Their usefulness has been proved in many
applications such as speech, image, and video recognition.
Models like convolutional neural network (CNN) and recurrent
neural network (RNN) employ a data-driven approach to learn
discriminative features from raw sensor data to infer complex,
sequential and contextual information in a hierarchical manner
[17]. Much novel SEI research work based on CNN has been
developed in recent years. Their high accuracies (up to 90%)
on distinguishing different radar signals among a large scale
of samples are strongly proved [18] [19].

Recently, some state-of-the-art neural networks like
Inception-v3 and ResNet-152 are utilized to classify time-
frequency distribution images [20]–[22]. In these works, SEI is

2

regarded as a problem in image classification. However, some
discrepancies between SEI and image classification cannot be
overlooked. For example, data sets (like CIFAR-10, CIFAR-
100, ImageNet, SPORT8, MIT67 and FLOWERS102) in the
image classification field are fixed. On the contrary, data sets
in SEI are variable since radar signal samples might come
from different electromagnetic environments and vary in size.
Note that the performance of a single network can be different
when dealing with variable data sets. More specifically, on
the one hand, a deep network might have a good performance
when faced with an extremely complicated data set with many
categories and samples. On the other hand, it might experience
overfitting because of the vanishing gradient when the target
data set is quite small, with a great waste of computation
resource as well.

Considering the SNR as a factor which generates difference
between data sets in SEI, it is much easier to qualitatively
analyze and recognize those signals in the high rather than low
SNR environment. The reason is obvious, i.e., the noise will
corrupt the true radar signals and thus cause many difficulties.
Therefore, a much deeper network might work well with high
noise level, whereas a narrower network would be adequate
for low noise level. This implies that fixed structure networks
might not be suitable for the SEI task. In addition, the
procedure of designing networks manually is time consuming
and error-prone. All these factors motivate us to design a
mechanism that is capable of automatically constructing an
optimized network structure for different environments.

Nowadays, there is a growing interest in computer vision
about automated neural architecture search (NAS) methods
[23]. The state-of-the-art techniques about NAS usually fall
into one of the two categories: evolutionary algorithms (see
e.g. [24] [25]) or reinforcement learning (see e.g. [26] [27]).
Although these methods could be able to learn network
structures that outperform manually designed architectures,
they need considerable computation resources. For instance,
the reinforcement learning method in [27] trains and evaluates
20,000 models across 500 P100 GPUs over 4 days. It is
obviously unrealistic to afford such huge price in SEI. Several
directions to accelerate the model searching and evaluating
procedures to improve the efficiency are as follows. The work
in [28] proposed an efficient NAS (ENAS) which uses param-
eter sharing to eschew training every child model from scratch
to convergence, and notably, is 1000 times less expensive than
the standard NAS. On the CIFAR-10 data set, for example,
ENAS finds a novel architecture and achieves 2.89% test
error, which is on a par with the 2.65% test error of the
expensive method in [27]. The work in [29] proposed a simple
iterative approach called Hillclimbing for NAS (NASH). At
each step, it trains the resulting child networks with short
optimization runs of cosine annealing, and moves to the
most promising child network. NASH searches and trains a
single network on CIFAR-10 with an error rate below 6%
in roughly 12 hours on a single GPU. In [30], a progressing
NAS (PNAS) was proposed which uses heuristic search to find
the optimized cell structures, beginning with simple models
to complex ones, and pruning out bad structures as searching
ongoing. PNAS learns a model or surrogate function which

can predict the performance of a structure without training it.
This approach could achieve the state-of-the-art classification
accuracy on CIFAR-10 and ImageNet, and it is 8 times faster
than computing all child models. All of these above-mentioned
NAS methods provide a great potential for SEI.

In this paper, we challenge the SEI problem in different
electromagnetic environments. The main contributions are as
follows.

1) A variable NAS mechanism – called balanced-NAS
framework – based on the “block-cell” mode is proposed
as an alternative of the fixed structure networks in
conventional SEI algorithms such that the flexibility of
the model searching is greatly improved. The details
about the block and cell can be found in section IV.
This mechanism can generate considerable promising
network structures automatically without manpower, and
thus possesses high potential to find more outstanding
models. Moreover, different effects of the block and
cell are tested and compared in the experiment, which
provides guidances for adding network complexity when
tackling more difficult classification tasks.

2) A novel balance function is proposed to trade off the ac-
curacy and efficiency (computational cost) of a network
in NAS. The amount of trainable parameters in neural
networks is adopted as a metric to evaluate the efficiency,
plus the validation accuracy as another criterion to
ensure the output of the network also meets the accuracy
requirement. Under the two criteria, the learned balance
function would stimulate the newly constructed network
to choose the most optimized models with both high
accuracy and high efficiency. We emphasize that this
high level of accuracy and efficiency is very hard, if not
impossible, to achieve by a standard approach which
only uses a network with fixed structure for SEI in
different electromagnetic environments.

3) The proposed method is evaluated on a radar signal data
set containing seven categories which are commonly
used in modern radar systems. It includes linear fre-
quency modulation (LFM) with positive and negative
slope, sine frequency modulation, polyphase codes (P1,
P2, P3, P4), which have the similar time-frequency fea-
ture (ridge line distribution). Moreover, different degrees
of environmental noise are added, which brings more
difficulties to classification. The experimental results
show that the proposed method can design/select the
most optimized models which could reach a state-of-
the-art accuracy and simultaneously take the cheapest
computational cost.

The reminder of this paper is organized as follows. Firstly,
we introduce the radar signal model, radar system and the
STFT approach in Section II. The previous methods in NAS
about the search space, search strategy and performance
estimation are then recalled in Section III. The new NAS
framework with variable structure network and progressive
search strategy is designed in Section IV. The novel balance
function is proposed in Section V to trade off the accuracy
and efficiency when searching and constructing networks.

3

Finally, Section VI reports extensive experiments to evaluate
and compare the proposed method with the state-of-the-art
techniques. The conclusion drawn from this paper and future
work is given in Section VII.

II. PRELIMINARY

To start, we first recall the representation of modeling dis-
crete radar signals and introduce the radar system. After that,
we review the ways of extracting time-frequency features from
radar signals using discrete STFT. Finally, several typical radar
signals are analyzed and compared in different environments.

A. Radar signal

In discrete setting, the radar signal u can be modeled as
discrete time complex samples [31]. Let m ∈ Z and T ∈ R+

be the sample index and the sampling interval, respectively.
Then the m-th sample of the radar signal u(mT) reads

u(mT) = a(mT)exp(jθ(mT)) + n(mT), (1)

where a(mT) is the signal envelope within the pulse interval,
θ(mT) is the instantaneous phase and n(mT) denotes the
additive Gaussian white noise.

B. Radar system

A typical radar system generally consists of RF signal
reception unit, parameter measurement and deinterleaving
unit, parameter estimation unit and emitter identification unit
[1], see the flow chart in Fig. 1. In detail, a set of RF
down-converters firstly translates received RF signals to the
intermediate frequency. Next, the intersected radar signals
are deinterleaved, followed by parameter estimation including
e.g. RF, PW, PA, TOA, angle-of-arrival (AOA) consisting of
pulse description word. Other feature parameters of emitters
like pulse repetition interval and antenna scan style will also
be estimated. After that, the emitter can be recognized by
comparing these parameters with the known threat database.

In deep-learning-based methods, the intermediate process
like parameter estimation which extracts hand-engineered fea-
tures could be omitted. The raw radar signals after some
preprocessing operations are formed as input data and fed
to deep neural networks. In this paper, we assume that the
received signals have been deinterleaved in advance, and are
supposed to be transformed into images through the time-
frequency analysis approach which is introduced in the follow-
ing subsections. After that, at the emitter identification stage,
the proposed method will search the most optimized neural
networks, which are both accurate and efficient, according to
different input radar signals.

C. Short time Fourier transformation (STFT)

STFT, one of the most classical techniques in signal process-
ing, has been widely used in e.g. audio signal [32], radar signal
[33], fingerprint image [34], and electroencephalography [35].
It maps a non-stationary signal onto a two-dimensional plane
with time and frequency to analyze the frequency components
and variations of signals. In discrete setting, it divides signals

(e.g. radar signals) into small sequential or overlapping data
frames and then fast Fourier transformation is applied to each
one, with output containing both the temporal and spectral
information; see e.g. [36], [37] for more details. The time-
frequency distribution of the m-th input discrete radar signal,
X(mT, f), is defined by

X(mT, f) =

N−1∑
k=0

u(kT)h∗((k−m)T) exp(−j 2πf

N
kT), (2)

where f is the frequency component, h∗(·) is the time window
function, and N is the length of u(mT).

The STFT uses h∗(kT) to intercept u(mT) and conducts
Fourier transformation on the intercepted part. By shifting
k, the central position of h∗(kT) is shifted and the Fourier
transformation at different time is attained. Therefore, the
STFT compensates the Fourier transformation’s lack of lo-
cation analysis capability. The time-frequency resolution of
STFT techniques is inversely related to the window length.
Increasing the window length will increase the frequency
resolution and simultaneously reduce the frequency tracking
capability of the representation.

D. STFT time-frequency images

In this paper, we extract the time-frequency feature of radar
signals to classify different emitters. By STFT, the time-series
radar signal can be transferred into 2D images which contain
individual time-frequency information. However, noise is one
of the most normal factors, which influences the classification
accuracy. Generally, the SNR in signal processing is used
to measure the level of a desired signal to the degree of
noise power [38]. It is defined as 10 log10 Ps/Pn, where Ps

and Pn are the effective powers of the signal and the noise,
respectively. We consider the LFM with positive slope and M -
bit polyphase codes including P1, P2, P3 and P4 radar signals
with different SNR. LFM is one of the most common intra-
pulse modulation types where the frequency varies linearly
with time. The M -bit polyphase codes like P1, P2, P3 and
P4, which modulate the signal phase by some specific codes,
are listed in Table I, where p, q = 1, 2, ...M,M = 64.

Fig. 2 gives the time-frequency images of the 64-bit
polyphase codes transferred by STFT. The discriminating
features are clearly visible when the noise is free, see the
top row of Fig. 2. Specifically, polyphase codes and LFM
have the similar time-frequency distribution which contains
several ridge lines in the plane. For the polyphase code signal,
during a single coding cycle, P3 code has two main ridge lines
and several minor ridge lines, whereas codes P1, P2 and P4
all have one main ridge line and several minor ridge lines.
During two coding cycles, P3 code has three main ridge lines,
while codes P1, P2 and P4 all have two main ridge lines. For
the LFM signal, since the frequency varies linearly with time,
there is a single oblique line in the time-frequency distribution
plane. However, in the bottom row of Fig. 2, we can see that it
becomes extremely complicated to extract the aforementioned
features and distinguish these signals when the SNR drops to
−10dB.

4

3DUDPHWHU�PHDVXUHPHQW�
DQG�GHLQWHUOHDYLQJ

Parameter estimation
(RF, PW, PA, TOA, AOA)

Emitter identification

Transform signal to image
(Time-frequency image)

Traditional radar signal processing stage

Deep-learning-based radar signal processing stage

Fig. 1. Radar system flow chart which illustrates the comparison between the traditional method (light blue part) and the proposed deep-learning-based method
(light green part). The deep-learning-based method in this paper does not need the parameter estimation step where the features estimated are replaced by
high-level features extracted by the hidden layers in deep models.

P1 (clean) P2 (clean) P3 (clean) P4 (clean) LFM (clean)

P1 (noisy) P2 (noisy) P3 (noisy) P4 (noisy) LFM (noisy)
Fig. 2. Examples of some time-frequency distribution images transferred from 64-bit polyphase codes of radar signals. The top row is in the noise-free
environment and the bottom row is in the situation of SNR = −10dB. Columns from left to right give the P1, P2, P3, P4 and LFM radar signals, respectively.

TABLE I
EXAMPLES OF 64-BIT POLYPHASE CODES

Phase Formula

P1 − π
M

[(M − (2q − 1))][(q − 1)M + p− 1]

P2 − π
2M

[2p− 1−M][2q − 1−M]

P3 − π
M

(p− 1)2

P4 − π
M

(p− 1)2 − π(p− 1)

III. RELATED WORK

Currently employed architectures for SEI were mostly de-
veloped manually with experts’ advice, which is time con-
suming and error-prone. Automated NAS methods therefore
have been attracting more and more interests. The intrinsic
NAS can be categorized into three dimensions, i.e., the search

space, search strategy and performance estimation [25]. In this
section we briefly recall some widely-utilized techniques in
terms of these aspects which are in relation to the work here.

A. Block-cell structure and search space

A block is a mapping from two input tensors to one
output tensor. A cell is a convolutional neural network, which
contains a certain number of blocks and maps one tensor to
another, see e.g. Fig. 5. The size of a cell’s output tensor
depends on the stride and padding therein.

Let Ii be the input set containing all the outputs of previous
cells. Let O be the set of operations on set Ii, and C be the set
of actions on set O. Here C contains the elementwise addition
and concatenation. Let Bb be the b-th block in a single cell,
where b = 1, 2, ..., B. For example, a block Bb in [27] is

5

composed of five tuples (I1, I2, O1, O2, C), where I1, I2 ∈ Ii
are the inputs to the block, O1, O2 ∈ O are the operations
applied to the inputs I1 and I2, and C ∈ C is the action of
combining O1 and O2 which generates the output of the block.
In other words, the output of the block (I1, I2, O1, O2, C) here
is operations executed by either addition or concatenation.

The search space defines which architectures are under
consideration in principle. The choice of the search space
therefore largely determines the complexity and difficulty of
the given searching problem. Many NAS techniques use the
“block-cell” mechanism to construct basic units of a full CNN
[26], [27]. This mechanism exploits knowledge from previous
networks which contain a specific number of components such
as convolutional layers, pooling layers, and fully connected
layers. More specifically, all convolutional networks in the
search space are “cells” with identical structure but different
weights. A full CNN is a stack of cells at specific times.
Searching for the optimized network architecture is therefore
reduced to find the best cell structure, which has a great
promotion in terms of efficiency compared to designing a
whole network directly.

B. Search strategy and performance estimation

The search strategy details how to explore the search space.
It is supposed to find well-performed architecture quickly and
avoid premature convergence to local optimizations. Many
different search strategies can be used to explore the space
of a neural architecture, including the random search (RS),
Bayesian optimization [39], evolutionary method [40] and
reinforcement learning (RL) [26]. For example, the controller
in [26] samples child networks with a certain probability
among the search space. These child networks are then trained
to converge to a validation accuracy as a reward to update
the controller by proximal policy optimization (or Q learning
[41]); the main framework is akin to the diagram shown in
Fig. 3. The work in [42] made a comparison between the
RS, RL and evolutionary method, and concluded that the
RL and evolutionary method, with nearly equal test accuracy,
outperform the RS.

Cell structures are searched directly in the full search space
in [43], and thus it is difficult to navigate in such a huge
space and there is lack of prior knowledge to recognize what
model is better. The work in [30] proposed a progressive NAS
method which searches cell structures in a hierarchical order,
i.e., beginning with the simplest models to complex ones. For
example, at the beginning all possible cell structures are with
fixed B = 1 (i.e., every cell has only one block) in the queue.
Every model in the queue will then be trained from scratch.
After that the cell structures will be expanded with B = 2 (i.e.,
the number of blocks in every cell rises to 2) and analogous
procedures are repeated until the predefined stopping criterion
is satisfied.

It is generally unaffordable to train child models individ-
ually and evaluate their performance since the scale of child
models is considerable. The design procedure of the control
scheme shown in Fig. 3 is based on the property of the
series of recurrent networks. The controller in NAS regarding

Sample
architecture A

with probability p

Train a child network
with architecture A to
convergence to get

validation accuracy R

Scale gradient of
p by R to update

the controller

The controller
(RNN)

Fig. 3. NAS framework. Starting from the state at the top of the diagram,
a child network with an architecture called ‘A’ is sampled with probability p
from the search space. This child network will then be trained on the given
data set from scratch. The obtained validation accuracy named R is viewed as
a “reward signal” and used to update the controller. Iteratively, the controller
can give higher probabilities to those architectures which have higher accuracy.

the quantitative analysis should have capacity to traverse the
search space and generate arbitrary child models. Since the
child models’ complexity in the search space covers a large
range, their corresponding strings will possibly possess vari-
able length. RNN has advantages in processing the variable-
length string and thus is naturally taken into consideration in
the NAS framework. A long short-term memory (LSTM) –
one of the most representative RNNs – was adopted e.g. in
[30] as the controller to generate convolutional architectures.

More specifically, the learning scheme of the LSTM con-
troller is illustrated in Fig. 4. Firstly, child models are trans-
ferred into a series of input strings by one-hot encoding and
fed into the LSTM controller. Then, a one-unit fully connected
layer following the LSTM embedded layer outputs a series of
scalar values representing the probable validation accuracy of
the input child models. By backward propagating the gradient
of the loss between the predicted accuracy and real accuracy
gained from the training procedure, the weights and bias in the
controller will be optimized to get more accurate estimations.
Consequently, candidate child models in the search space are
to be divided into two groups, i.e., one used for training
on the real data to update the LSTM contributes a smaller
proportion, the other whose accuracy will be attained by
estimation contributes a larger proportion. Finally, the LSTM
approximates the true performance of each child model in the
search space, which greatly improves the overall efficiency
compared to training all child models from scratch.

Note that in this mechanism, the algorithm can be stimulated
to find the most accurate models since it considers the accuracy
only as the reward to train the LSTM and update weights.
Other important factors, like efficiency, are not yet considered
to design networks.

IV. VARIABLE STRUCTURE NETWORK

Since a network with fixed structure may lack flexibility
when conducting classification tasks on different data sets,
we in this section focus on variable structure network and

6

Fig. 4. LSTM controller. Each child model is encoded first and fed into
the LSTM controller with its validation accuracy to repeatedly generate more
promising individuals through back-propagation.

construct one with progressive search strategy, which will be
used for SEI.

We first explicitly define the operation set O used in our
network. Let O contain the following eight operations: 1)
three depthwise separable convolutions called ‘dc’ whose sizes
are 3x3, 5x5 and 7x7, respectively; 2) 1x7 followed by 7x1
convolution called ‘1x7-7x1-c’; 3) 3x3 dilated convolution
called ‘3x3-d’; 4) 3x3 average pooling called ‘3x3-ap’; 5)
3x3 max pooling called ‘3x3-mp’; and 6) identity. The above
generated set O contains less operations than that in [27] (i.e.,
containing 13 functions) since those used in [27] not directly
related to the main focus of this work are abandoned here.

The “block-cell” structure introduced in Section III is used
for our construction, see Fig. 5 as an example. Fig. 5 (a)
represents a block consisting of two inputs, two operations
(i.e., 7x7-dc and 1x7-7x1-c) and one combination operator
(i.e., addition). Fig. 5 (b) represents a cell structure consisting
of three blocks with structure similar to the one shown in Fig.
5 (a). Here, we describe this cell structure as {1x7-7x1-c, 1x7-
7x1-c, 1x7-7x1-c, 7x7-dc, 1x7-7x1-c, 1x7-7x1-c}. A full CNN
is then constructed by stacking this kind of cell for specific
times, with a global average pooling before the softmax layer,
see Fig. 5 (c).

The search space size of this kind of structure can be
measured explicitly. For example, the size of the b-th block Bb
is |Bb| = |Ib|2×|O|2×|C|, where |Ib| = 2+b−1, |O| = 8 and
|C| = 2. Therefore, for b = 1, there are |B1| = 22 × 82 × 2 =
512 child network structures. When B = 5, the total number
of possible cell structures is |B1:5| = Π5

i=1|Bi| = 1.8× 1016,
which is too large to train them all. We therefore propose
to only choose the top K � |B1:B | child models sorted by
accuracy for training and updating the controller, see Fig. 6,
where Mbj indicates the j-th child model in the b-th block.

As discussed in Section III, the searching strategies pro-
posed so far only feed back the validation accuracy as the
reward to the controller to update the weight of each child
model. This mechanism is able to find the most accurate
models in the search space but overlooks other important
metrics like efficiency of the network. In practice (e.g. in SEI)

(a) (b) (c)
Fig. 5. Block-cell structure. (a): a block; (b): a cell which contains three
blocks; and (c): a full CNN. Specifically, there is an average pooling layer
before the softmax layer.

Fig. 6. Child models selection. In the NAS algorithm, considering the
computational cost, only the top K child models in terms of high accuracy
at each searching stage will be chosen.

high real-time performance is as important as the accuracy
since actions like electronic jamming and combat effectiveness
destruction are needed to be conducted immediately after
classifying emitters.

To overcome this shortcoming within the current searching
strategies, we propose a new search strategy which modifies
the current reward principle by addressing both the accuracy
and efficiency simultaneously. Compared to the framework
shown in Fig. 3, a metric evaluating the efficiency of child
models at each searching procedure is also considered in the
NAS framework. The proposed NAS framework, coined as
balanced-NAS framework, is shown in Fig. 7. The integration
of the validation accuracy and network efficiency will be uti-
lized to evaluate the potential of every candidate child model.
The new reward value R is used to replace the former accuracy
to update the weights and bias in the LSTM controller.

In the next section we propose a novel way to evaluate
the model accuracy and efficiency. Briefly speaking, a balance
function is designed to trade off different metrics. Again, the
output of the proposed balance function will be a composite
reward to update the controller.

7

Fig. 7. The proposed balanced-NAS framework. To update the controller, the
balanced-NAS framework ensures the efficiency and validation accuracy of
every child model are both evaluated.

V. PROPOSED BALANCE FUNCTION

To optimize the search strategy in NAS and generate the
most suitable architectures for various data sets, we propose a
multivariate function, called balance function and denoted by
F (x, y), to replace the solely accuracy-based reward to train
the controller, where x > 0 and y > 0 respectively represent
the accuracy and the efficiency of a single network. The output
value of this balance function F (x, y) is regarded as “scores”;
the higher the scores, the better the model performs. For the
convenience of analysis, the balance function is split into two
parts, F1(x) and F2(y), which denote the accuracy function
and efficiency function, respectively. Note that F1(x) and
F2(y) can also be viewed as the marginal distributions of the
multivariate function F (x, y) respectively with respect to y
and x. For variable x, we directly use the validation accuracy
at every epoch. The variable y, representing the efficiency
of a network, can be measured by using the computational
complexity (e.g. the number of trainable parameters or FLOPs)
of a network. In this work the number of trainable parameters
is selected as the criterion to evaluate the efficiency. More
precisely, for CNNs, we mainly take the number of parameters
regarding convolutional layers and fully connected layers into
consideration [44], which can be computed by

n =

d∑
l=1

nl−1 · s2l · nl ·m2
l , (3)

where l is the index of the convolutional layer, d is the depth
or the number of convolutional layers, nl is the number of the
filters in the l-th layer, sl is the length of the filter, and ml is
the spatial size of the feature map (output size). Analogous to
the accuracy x whose value range is [0, 1], for the i-th child
model in a specific search space, the normalized number of
trainable parameters, say y(i), is defined as

y(i) =
n(i)

nmax
, (4)

where ni is the number of trainable parameters of the i-th child
model and nmax denotes the maximum number of trainable
parameters of individual models in a specific search space.

TABLE II
EXAMPLES FOR THE CHOICES OF THE FUNCTIONS F1(x) AND F2(y).

Function F1(x) F2(y)

Linear function ax+ b, a > 0 ay + b, a < 0

Exponential function ax, a > 1 ay , a < 1

Power function xn, n > 0 yn, n < 0

Sigmoid function 1
1+e−x

1
1+ey

A. Basic properties

The balance function F (x, y) should follow the following
two basic properties which reflect the relationship between the
accuracy and the efficiency, i.e.,

F (x, y(i)) > F (x, y(j)), ∀y(i) < y(j); (5)

F (x(i), y) < F (x(j), y), ∀x(i) < x(j). (6)

The first inequality implies that the scores of more complicated
models are lower than simpler models corresponding to the
same accuracy, and the second inequality implies that more ac-
curate models have higher priorities given the same efficiency.
Accordingly, F1(x) and F2(y) are increasing and decreasing
functions, respectively. Table II gives some functions (e.g.,
linear functions, exponential functions, power functions, and
Sigmoid function) which can be used for functions F1(x) and
F2(y).

It is also worth investigating the gradient of functions F1(x)
and F2(y). Obviously, F ′1(x) > 0 and F ′2(y) < 0. A brief
discussion about the comparison between |F ′1(x)| and |F ′2(y)|
is given below. I) If |F ′1(x)| > |F ′2(y)|, this means that the
weight of accuracy is larger than the efficiency in the balance
function F (x, y), and then the final result of the NAS will
prefer the accuracy to the efficiency; II) if |F ′1(x)| < |F ′2(y)|,
analogously, the final result of the NAS will prefer the effi-
ciency to the accuracy; and III) if |F ′1(x)| = |F ′2(y)|, then
the final result of the NAS will weigh the efficiency and the
accuracy equally, which might be the category we shall use
more often in practice if no prior knowledge is available.

The above three properties suggest that when the accuracy is
already high (e.g. above 90%), it is wise to focus on searching
more efficient models among those high-accurate ones, and
thus the weight of efficiency is supposed to be larger than that
of accuracy, i.e., |F ′1(x)| < |F ′2(y)|. On the other hand, if the
accuracy is low (e.g. below 60%), it is necessary to continue
searching more accurate models, and in this regard the weight
of accuracy should be stressed compared to the efficiency, i.e.,
|F ′1(x)| > |F ′2(y)|.

All these properties are necessary for the balance function.
The most natural way of defining F1(x) and F2(y) is to set

F1(x) = x, F2(y) = y−1. (7)

The natural way of generating the balance function using
F1(x) and F2(y) is

F (x, y) = F1(x) ∗ F2(y) (8)

or
F (x, y) = F1(x) + F2(y). (9)

8

Note that the main focus of this paper is to show the excellent
performance of the balance function in enabling the NAS al-
gorithm to learn perfect models. The investigation of searching
optimized pairs of F1(x) and F2(y) for the balance function
for specific problems will be left for future work.

B. Performance evaluation

We define the following metrics which are useful to validate
the performance of a model and gauge the influence of the
balance function on choosing the most optimized models.

Let τ represent the accuracy and efficiency ratio of the i-th
child model, which is calculated by

τ = xi/yi, (10)

where xi and yi are the accuracy and the generalization value
of the computational cost (efficiency), respectively. A model
with high value τ means it has the high accuracy and low
computation on average, and therefore it is advisable to search
the neural network possessing the largest τ .

Let sequences A = {a1, a2, ..., aN} and A′ =
{a′1, a′2, ..., a′N} represent models in a search space with
descending order in terms of accuracy and the cost computed
in (10), respectively. For example, if i < j, then xai

≥ xaj

and τa′i ≥ τa′j . Let xAM
denote the average accuracy of the

top M models in A, i.e.,

xAM
=

1

M

M∑
i=1

xai
, (11)

which measures the overall accuracy of the M candidate
models. Let ∆ denote the maximum accuracy difference
between sequences A and A′, which is computed by

∆ = |xa1
− xa′1 |. (12)

Note that ∆ above can be used to verify the influence of the
balance function on the accuracy, i.e., the larger the magnitude
∆, the higher the influence of the balance function on the
accuracy.

VI. EXPERIMENTAL RESULTS

In this section, we test the proposed method in terms of
learning the most optimized cell structures. The radar signal
data sets detailed below are generated by Matlab. All the
experimental tests are run on Jetbrains Pycharm 2020 with
a CPU of Intel(R) Core(TM) i9-9900k @ 3.60GHz and two
GPUs of NVIDIA GeForce RTX 2080Ti.

A. Data sets

In previous works e.g. [11] [18] on SEI, synthetic data set
consisting of a large scale of different types of radar signals is
generally used to test methods’ performance. Time-series radar
signals are firstly generated according to modulation types,
and are then transformed into the time-frequency domain.
The data set used in the following contains more signal
categories with much more different environments compared
to the aforementioned one. More specifically, the data set
contains 7 different radar signals which can be split into two

TABLE III
FREQUENCY MODULATION SIGNAL PARAMETERS

Pulse width Carrier frequency Band width

FM 20–30us 20MHz 70–80MHz

TABLE IV
64-BIT POLYPHASE CODE SIGNAL PARAMETERS

Duration time Sample frequency Band width

Polyphase code 2.5ms 15kHz 0.83–1.67kHz

categories: frequency modulation (FM) and phase modulation
(PM). For FM signals, compared to the previous work in [11]
which uses positive slope LFM only, they are augmented here
by adding negative slope LFM and Sine FM. For PM signals,
there are 64-bit polyphase code signals including P1–4. Each
signal type in a single environment has 2,000 samples, thus
14,000 in total of the data set. Five different electromagnetic
environments are formed based on the SNR set to −10dB,
−8dB, −5dB, −1dB and noise free, respectively. We name
this data set “SIGNAL-5”. The details of the signal parameters
like the range of the pulse width, carrier frequency and band
width for the FM signals are given in Table III. The settings
of code duration time, sample frequency and band width for
polyphase code signals are given in Table IV.

B. Simulations

According to the illustration in Fig. 1, the received radar sig-
nal should be deinterleaved firstly. Thus, the aforementioned
data set is the group of intersected radar signals coming from
different emitters. After that, data preprocessing is conducted
to transform the time-series signal data to the time-frequency
distribution image data which will then be fed into our
proposed balanced NAS.

For the data preprocessing, the Hamming window is applied
in STFT and the length of each segment is 256. The time-
frequency distribution image is in RGB format with size 512×
512×3, which is clipped to the size of 64×64 using the nearest
neighbor interpolation and then fed into CNN for the sake of
computation reduction. The whole data set is separated into
training, validation and test sets, which account for 60%, 20%
and 20% samples, respectively, with batch size set to 64.

For the RNN controller implementation, we use a single
LSTM layer, where the number of cells in the controller is
100. An embedding layer with output dimension 20 encodes
the candidate child models to a fixed-size vector before LSTM
cells. A densely-connected layer with one unit follows the
LSTM to output a scalar representing the predicted accuracy
of the input child model. We minimize the sum-of-squares
loss between the predicted accuracy from LSTM and the real
accuracy in the training process by using gradient descent
to update the controller. The Adam optimizer is used with
learning rate 10−3 initially and then exponential decay.

For the NAS structure, the maximum number of cells and
blocks of the network structure is respectively set to 2 and 3
unless specific statement. During the searching process, we set

9

K = 64 for stage one and K = 10 for the rest of stages. There
are two types of cells which respectively have the number of
filters 32 and 64, with stride set to 2. The learning rate for
the full CNN is 10−3 initially with cosine decay. To construct
the full CNN from cells, there is a global average pooling
layer before the final dense layer. About the training epochs,
an early stopping mechanism is implemented, i.e., the training
stage terminates when the validation accuracy is larger than
0.999 or the increase of accuracy is less than 0.01% between
two consecutive epochs.

The sigmoid function and power function are used to
construct the balance function F (x, y), i.e.,

F1(x) = 1/(1 + e−10(x−0.5)), (13)

F2(y) = −y2, (14)
F (x, y) = F1(x) + F2(y). (15)

It is straightforward to verify that F (x, y), F1(x) and F2(y)
all meet the requirements of the basic properties discussed in
Section V-A, see also Fig. 8 for the shape of these functions.
As shown in Fig. 8 (a), with the variable x (accuracy)
increasing, the sigmoid function F1(x) increases slowly first,
then abruptly in the middle and steadily when x is close to
1. This property is ideal for our requirement since when the
accuracy is low (e.g. 40%), the scores of models will increase
fast with respect to the accuracy; otherwise the scores of
models will increase slowly with respect to the accuracy and
in this case the emphasis on the efficiency will be taken.

C. Results

In the following the performance of four traditional and
representative neural networks (i.e., LeNet, AlexNet, VGG16
and DenseNet) is first tested. We then explore the different
effects between cell and block units in CNNs. After that,
we report the performance of the proposed balanced NAS
in searching the most optimized cell structures in different
SNR. Finally, we conduct the robustness and stability analysis
of the proposed method, and discuss its relationship and
difference from the reinforcement learning methods like [26],
which emphasizes the excellent performance of the proposed
balanced NAS.

1) Performance of the CNNs with fixed structure: The
performance of applying four conventional CNNs (i.e., LeNet,
AlexNet, VGG16 and DenseNet, whose hyper parameter set-
tings, including e.g. the number of filters, kernel size, strides
and learning rate, follow the ways given in the seminal papers)
to classify radar signals in different SNR circumstances is
shown in Fig. 9. We can see that when the noise is free,
these networks all perform perfectly, i.e., being able to achieve
nearly 100% accuracy in a few epochs. However, when the
radar signals with SNR down to −10dB, their accuracy suffer
a significant degradation or sharp fluctuation except for LeNet.
The possible reason why LeNet performs the best in this
scenario might be due to the scale and diversity of the
signal data set. A deeper model will more easily suffer from
overfitting in the RF signal image data set, which contains a
smaller scale and less categories compared to large data sets
like ImageNet. In addition, the intense noise distraction could

(a)

(b)

Fig. 8. Function curves. (a): F1(x) = 1/(1 + e−10(x−0.5)) (green line)
and F2(y) = −y2 (blue line); (b) F (x, y) = F1(x) + F2(y).

also bring instability to the identification. To further validate
the performance of VGG16 and DenseNe, Fig. 10 presents the
results via parameter optimization, e.g. adjusting the learning
rate and decreasing the number of units in the fully connected
layers. We see that the performance of deeper models such as
VGG16 and DenseNet can be enhanced in this manner.

Note that the total number of trainable parameters of LeNet
is 16,816,741 (i.e., the least one among these four models)
with input image size of 64 × 64. However, the parameters
of LeNet is still too large and it is too shallow (only two
convolutional layers) to extract much deeper features and will
not enable to tackle complicated data sets with considerable
samples. In sum, the fixed-structure network generally is not
appropriate for variable data sets, which motivates us to design
automatic mechanisms to search the most optimized models
regarding different environments.

2) Performance of the block-cell structure: We now test the
NAS method [30] which uses the accuracy only as the reward
to search optimized models. To construct the full CNN, we
first stack 2 cells (C = 2) in series, where each has 3 blocks
(B = 3).

The accuracy of the top 10 models on the data set with
SNR set to −1dB, −5dB, −8dB, −10dB and noise free is
shown in Fig. 11. It shows that all the models can achieve

10

(a) Noise free data (b) Data with SNR = −10dB

Fig. 9. Performance of four conventional CNNs (i.e. LeNet, AlexNet, VGG16 and DenseNet) with fixed structure in the SEI. (a): Model accuracy on noise
free data; (b) model accuracy on the data with SNR = −10dB. The plots show that when the noise level is low, all these models can achieve nearly 100%
accuracy within a few epochs; however, when the noise level is high, all these models suffer seriously except for LeNet.

(a) VGG16 (b) DenseNet8

Fig. 10. Performance of the VGG16 and DenseNet8 with different hyper parameters on the data with SNR = −10dB. (a): Model accuracy of VGG16 with
different lr (learning rates) and different number of units in the last three fully connected (FC) layers; (b): model accuracy of DenseNet with different learning
rates. It indicates the performance of these two deeper models has an obvious enhancement compared to that in Fig. 9 with default hyper parameter settings.

high accuracy within a few epochs when the SNR is higher
than −10dB; however, when the SNR is down to −10dB,
the accuracy of these models decreases by more than 10%.
This is obviously due to the challenge that the time-frequency
distribution images are corrupted more seriously when the
SNR decreases (see Fig. 2).

We now test the influence of adding more cells and blocks
into the network structure. Note that, according to the afore-
mentioned analysis (e.g. Fig. 5), adding more cells can be
viewed as deepening the network, and adding more blocks
can extract more features in each hidden layer. Investigating
the effect of this kind of setting could provide us guidance
regarding constructing optimized neural architecture. In the
following we implement further experiments focusing on the
most challenging case, i.e., SNR set to −10dB.

We first increase the number of cells with fixed number
of blocks, and then increase the number of blocks with fixed

number of cells. Fig. 12 (a) gives the accuracy of the top 10
models with the number of blocks fixed to 3 but the number
of cells increased from 2 to 4. The structure of the most
accurate model (i.e., model 1) in Fig. 12 (a) is shown in Fig.
13. It is worth highlighting that the total number of trainable
parameters of model 1 in Fig. 12 (a) is 1,587,077, which is
much less than that of LeNet (16,816,741) aforementioned.
The best accuracy, compared to the results given in Fig. 11
(e), increases from 88.8% to 99.2%. Similarly, all other models
also have about 10% increase in terms of accuracy.

Fig.12 (b) gives the accuracy of the top 10 models with the
number of cells fixed to 2 but the number of blocks increased
from 3 to 5. The highest accuracy on this occasion is 89.2%,
which has a slight increase compared to the result 88.8% given
in Fig. 11 (e), but far less than the 99.2% accuracy shown in
Fig. 12 (a). This indicates that adding depth of the network is
more effective than adding the number of blocks in this scale

11

(a) NAS results when noise is free. (b) NAS results when SNR = −1dB. (c) NAS results when SNR = −5dB.

(d) NAS results when SNR = −8dB. (e) NAS results when SNR = −10dB.

Fig. 11. Top accuracy of the models selected by the NAS method without using the balance function in different environments; the network structure has 2
cells where each has 3 blocks. (a)–(e) present the results on the data set with no noise, SNR set to −1dB, −5dB, −8dB and −10dB, respectively. It shows
that when the SNR is higher than −10dB, all the models can nearly achieve perfect accuracy within a few epochs. However, when the SNR is down to
−10dB, their accuracy decreases by more than 10%.

of samples.
3) Performance of the proposed balance function: For the

comparison of the NAS method with and without the proposed
balance function, two extreme cases – noise free and SNR set
to −10dB – are considered.

For the noise free case, top 5 models in terms of their
scores (say set A′5) rather than accuracy are selected by
the NAS method with the proposed balance function. Their
performance are shown in bold type in Table V, where “Para.”
represents the number of trainable parameters. Table V also
lists the top 5 models (say set A5) given in Fig. 11 (a) which
are selected in terms of accuracy. It shows that the balance
function can find cell structures which have both high accuracy
and efficiency. The computational cost decreases nearly more
than 10 times when using the balance function, with the
accuracy comparable to the conventional algorithm (i.e., the
average accuracy of A5 and A′5 are respectively xA5 = 1.0 and
xA′5 = 0.996, and the maximum accuracy difference between
A5 and A′5 is ∆ = 0.34%). The τ values corresponding to the
best models selected by the NAS method without and with
the balance function are 2.46 and 31.94, respectively, which
shows a huge improvement of the model selected by using the
proposed balance function.

For the case of the SNR set to −10dB, similar to the setting
in Table V, Table VI gives the results of the NAS method
without and with the proposed balance function. Note that
here the top 5 models selected without using the balance

function are those shown in Fig. 11 (e). It is clear that the
proposed balance function dramatically prompts the searching
performance of the NAS algorithm in terms of both accuracy
and efficiency. Specifically, the accuracy of the best models
without and with the balance function has been improved
from 88.8% to 92.35% (i.e., ∆ = 3.55%), and the τ value
corresponding to the best models selected by the NAS method
without and with the balance function are respectively 2.45 and
14.92. This implies that in challenging cases when applying
the balance function the overall accuracy of the searching
results could also be highly increased rather than sacrificing a
fraction of the accuracy for the improvement of the efficiency.
Therefore, the balance function in some cases can assist
the NAS algorithm in searching the most optimized model
possessing both high accuracy and efficiency.

A further comparison of the NAS algorithm with and with-
out the proposed balance function in terms of accuracy and
efficiency is implemented for networks with different blocks.
Fig. 14 shows the comparison for networks with the number
of blocks set to 1 to 8, where the best models selected with
and without the proposed balance function are compared. It is
observed that when more blocks are added, the accuracy of the
models selected with or without the balance function is very
similar with no dramatic increase (see red lines in Fig. 14),
which is consistent with the previous conclusion that adding
more number of blocks may not boost the accuracy. Regarding
the efficiency of the selected models with or without the

12

(a) (b)

Fig. 12. Top accuracies of the models selected by the NAS method without using the balance function; SNR is set to −10dB. (a): Network structure with
the number of blocks fixed to 3 but the number of cells increased from 2 to 4; (b): network structure with the number of cells fixed to 2 but the number of
blocks increased from 3 to 5. It shows that the highest accuracy in (a) reaches 99%, which is about 10% higher than the highest one in (b).

TABLE V
TOP 5 ACCURATE MODELS WHEN NOISE IS FREE. THE BOLD PARTS ARE RESULTS AFTER APPLYING THE BALANCE FUNCTION.

Model index Model structure Accuracy Para. Score

model 1 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 7x7-dc
3x3-dc, 3x3-ap

1
99.66%

257,157
19,717

0.829
0.981

model 2 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 7x7-dc, 1x7-7x1-c
3x3-ap, 3x3-dc

1
98.37%

257,157
19,717

0.829
0.980

model 3 1x7-7x1-c, 1x7-7x1-c, 7x7-dc, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c
1x7-7x1-c, 3x3-mp

1
1

257,157
30,533

0.829
0.973

model 4 1x7-7x1-c, 1x7-7x1-c, 7x7-dc, 1x7-7x1-c
1x7-7x1-c, 3x3-ap

1
1

196,421
30,533

0.863
0.973

model 5 7x7-dc, 1x7-7x1-c
3x3-mp, 1x7-7x1-c

1
1

135,685
30,533

0.900
0.973

TABLE VI
TOP 5 ACCURATE MODELS WHEN SNR = −10DB. THE BOLD PARTS ARE RESULTS AFTER APPLYING THE BALANCE FUNCTION.

Model index Model structure Accuracy Para. Score

model 1 1x7-7x1-c, 5x5-dc, 1x7-7x1-c, 1x7-7x1-c, 5x5-dc, 1x7-7x1-c
3x3-dc, 3x3-dc

88.8%
92.35%

229,189
39,109

0.838
0.929

model 2 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 5x5-dc, 1x7-7x1-c
3x3-dc, 3x3-dc, 3x3-dc, 3x3-dc, 3x3-dc, 3x3-mp

85.3%
91.7%

205,701
97,925

0.847
0.919

model 3 1x7-7x1-c, 1x7-7x1-c, 5x5-dc, 1x7-7x1-c, 5x5-dc, 1x7-7x1-c
3x3-dc, 3x3-dc, 3x3-dc, 1x7-7x1-c

86.0%
72.8%

229,189
89,029

0.835
0.914

model 4 1x7-7x1-c, 5x5-dc, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c, 5x5-dc
3x3-dc, 3x3-dc, 3x3-dc, 3x3-dc, 3x3-dc, 3x3-dc

86.1%
85%

229,189
117,317

0.835
0.902

model 5 1x7-7x1-c, 1x7-7x1-c, 5x5-dc, 1x7-7x1-c, 1x7-7x1-c, 1x7-7x1-c
3x3-dc, 3x3-dc, 3x3-dc, 5x5-dc

85.2%
92.75%

205,701
112,517

0.847
0.900

balance function (see blue lines in Fig. 14), it shows that the
proposed balance function can indeed control the computation
amount well when adding more blocks into the neural network,
whereas without using the balance function, the computation
amount of the selected models is increasing greatly. This
demonstrates the great importance of the proposed balance
function in NAS in terms of balancing the accuracy and
efficiency.

4) Robustness and stability analysis: To validate the robust-
ness of the proposed balanced-NAS framework, a simple but
effective white-box attack, called Fast Gradient Sign method
(FGSM) [45], is used to add some intentional and impercepti-
ble perturbation on the clean data set. We adopt the adversarial
training as the defense strategy to strengthen the robustness of
those searching results. The research work in [46] finds that
fine-tuning the candidate models with adversarial training for

a few epochs can obviously promote the performance. The
adversarial accuracy is served as the robustness indicator of
the network. Moreover, we develop the flow of the adversarial
training, which is illustrated in Fig. 15. It firstly generates
some adversarial examples by Projected Gradient Descent
[47] to augment the original clean samples. After training
the optimized models by our balanced NAS, we fine-tune
them for a few epochs on the augmented data set. Fig. 16
shows the performance comparison of the top 5 optimized
models before attack, after attack and after fine-tune, where
the data sets with noise free and SNR set to −10dB are
showcased. The comparison indicates that the accuracy of the
selected models drops significantly after the attack, see the
orange lines in Fig. 16. This accuracy drop can be eliminated
immediately by fine-tuning on the adversarial examples, which
clearly demonstrates the robustness of the balanced NAS. Fig.

13

Fig. 13. The structure of model 1 in Fig. 12 (a), i.e., the most accurate model
with B = 3, C = 4 and accuracy 99.2%. The left and right figures show the
cell structure and the full CNN, respectively.

16 (b) also shows that, after adversarial training for the case
of SNR = −10dB, the accuracy achieved could even surpass
that achieved before the FGSM attack.

To validate the stability of the proposed balanced-NAS
framework, we show the standard deviation of the accuracy
and computation amount of the searching results after repeat-
ing the experiments with random seeds. It is illustrated in e.g.
[48], [49] that the skip-connection in deep architectures often
leads to the most rapid error decay during optimization, which
might bring instability. In our setting, the single-path paradigm
is used in the search space, which is more efficient and less
error-prone. We execute the standard NAS and our balanced
NAS 10 times on the data with SNR = −10dB and compare
the top 10 candidate models in each run (i.e., 100 candidate
models in total for comparison). In the meantime, we also ran-
domly sample 100 child models from the search space and test
their performance as the baseline. The distribution of the accu-
racy among these models is displayed in Fig. 17. It shows that
i) the random search baseline verifies the effectiveness of the
searching strategy in NAS; and 2) the proposed balanced NAS
can indeed find the cheapest models whose accuracy is also
comparable to that obtained by the standard NAS. To quantify
the stability, the mean and standard deviation of the accuracy
and the normalized computation amount are computed, i.e.,
[0.824±0.12, 0.246±0.153], [0.895±0.002, 0.515±0.170] and
[0.843± 0.005, 0.076± 0.047] corresponding to the random
search baseline, the standard NAS and our balanced NAS,
respectively. This clearly shows the great stability of the
proposed balanced-NAS framework. Moreover, it is worth
emphasizing again that the candidate models searched by
the proposed balanced-NAS framework have less trainable
parameters up to 7 times compared to the standard NAS at
the price of a slight accuracy decrease (i.e., 5.8%).

5) Further discussion: Finally, a brief discussion is con-
ducted regarding the relationship and difference between the
proposed method and the standard reinforcement learning

methods like [26]. The similarity is that they both utilize
an RNN policy to sequentially sample a string representing
the neural architectures where the generation of a neural
architecture can be viewed as an agent’s action [23]. As for
their difference, the agent’s reward in the work like [26] is
only based on the accuracy of the trained architecture, whereas
our proposed strategy takes both the accuracy and efficiency
into consideration by leveraging the proposed balance func-
tion whose excellent performance has been validated in the
previous sections. Moreover, comparing to the local search
manner used in [26], we adopt the heuristic search inspired
by [30], which evaluates the candidate child models from
simple to complex and abandons unpromising individuals at
the searching stage to further promote the overall efficiency.

VII. CONCLUSION

In this paper, a new NAS mechanism called balanced-NAS
framework was designed for SEI as an alternative of the fixed
neural structure in conventional approaches, with the benefit
that not only the accuracy but also the efficiency is considered
as rewards to the RNN controller for model searching in
neural networks. A balance function was also proposed to
manage the accuracy and efficiency in NAS. It is motivated by
the real-time performance requirement of SEI that the neural
network in SEI should possess high accuracy and efficiency
simultaneously. Experimental results demonstrated that the
new NAS mechanism exploiting the block-cell structure and
RNN controller can design models comparable to the state-of-
the-art manually-designed networks. Moreover, the proposed
balance function can optimize the search strategy and can
find models with both high accuracy and efficiency, which
outperform the ones searched by the standard network in
which only the accuracy criterion is used. The robustness
and stability of the proposed balanced-NAS framework have
also been validated quantitatively. Potential future works could
consider other neural network structures except for the block-
cell-based search space. It is also of great interest to analyse
inter-pulse radar features in addition to the ones with time-
frequency distribution.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Grant no. 61671453).

REFERENCES

[1] K. I. Talbot, P. R. Duley, and M. H. Hyatt, “Specific emitter identification
and verification,” Technol. Rev., vol. 11, pp. 113–133, 2003.

[2] Z. Zhang, K. Long, and J. Wang, “Self-organization paradigms and
optimization approaches for cognitive radio technologies: a survey,”
IEEE Commun. Lett., vol. 20, no. 2, pp. 36–42, 2013.

[3] G. Revillon, A. Mohammad-Djafari, and C. Enderli, “Radar emitters
classification and clustering with a scale mixture of normal distribu-
tions,” IET Radar, Sonar Navig., vol. 13, no. 1, pp. 128–138, 2018.

[4] C.-S. Shieh and C.-T. Lin, “A vector neural network for emitter identi-
fication,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127,
2002.

[5] C.-M. Lin, Y.-M. Chen, and C.-S. Hsueh, “A self-organizing interval
type-2 fuzzy neural network for radar emitter identification.” Int. J. Fuzzy
Syst., vol. 16, no. 1, 2014.

14

Fig. 14. Performance comparison of the NAS method with and without the proposed balance function, where the number of blocks is set from 1 to 8, the
number of cells is fixed to 2, and SNR = −10dB. The lines in red and blue show the comparison corresponding to the accuracy and the computation amount,
respectively.

Clean data Balanced NAS Optimized models

Adversarial examples

Robust models

Adversarial trainingNAS searching

Fig. 15. The flow chart of the adversarial training for our proposed balanced
NAS. During the searching process, adversarial examples are generated though
FGSM, which augments the data. Then, the robustness of the optimized
models is strengthened by fine-tuning on the augmented data set.

[6] A. Kawalec and R. Owczarek, “Radar emitter recognition using intra-
pulse data,” in Int. Conf. Microwaves Radar Wireless Commun., vol. 2.
IEEE, 2004, pp. 435–438.

[7] L. Ding, S. Wang, F. Wang, and W. Zhang, “Specific emitter identifica-
tion via convolutional neural networks,” IEEE Commun. Lett., vol. 22,
no. 12, pp. 2591–2594, 2018.

[8] G. López-Risueño, J. Grajal, and A. Sanz-Osorio, “Digital channelized
receiver based on time-frequency analysis for signal interception,” IEEE
Trans. Aerosp. Electron. Syst., vol. 41, no. 3, pp. 879–898, 2005.

[9] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet fin-
gerprinting of radio-frequency identification (rfid) tags,” IEEE Trans.
Consum. Electron., vol. 59, no. 12, pp. 4843–4850, 2011.

[10] J. Lundén and V. Koivunen, “Automatic radar waveform recognition,”
IEEE J. Sel. Topics Signal Process., vol. 1, no. 1, pp. 124–136, 2007.

[11] M. Zhang, L. Liu, and M. Diao, “Lpi radar waveform recognition based
on time-frequency distribution,” Sensors, vol. 16, no. 10, pp. 1682–1701,
2016.

[12] S. Liu, X. Yan, P. Li, X. Hao, and K. Wang, “Radar emitter recognition
based on sift position and scale features,” IEEE Trans. Circuits Syst. II,
vol. 65, no. 12, pp. 2062–2066, 2018.

[13] U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter
identification based on variational mode decomposition and spectral
features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 3, pp. 581–591, 2019.

[14] J. Zhu, Y. Zhao, and J. Tang, “Automatic recognition of radar signals
based on time-frequency image character,” Def. Sci. J., vol. 63, pp. 308–
314, 2013.

[15] I. Jordanov, N. Petrov, and A. Petrozziello, “Supervised radar signal
classification,” in Proc. Int. Jt. Conf. Neural Networks. IEEE, 2016,
pp. 1464–1471.

(a)

(b)

Fig. 16. Robustness performance analysis of the balanced NAS in terms of
accuracy before adversarial attack, after attack and after fine-tune through the
adversarial training. (a)–(b): Accuracy of the top 5 optimized models selected
by the balanced NAS (i.e., Tables V and VI) for identifying the radar signals
with noise free and SNR = −10dB, respectively.

15

(a)

(b)

Fig. 17. Stability comparison in terms of (a) validation accuracy and (b)
computation amount between the random sample baseline, the standard NAS
and our balanced NAS on the data with SNR = −10dB. For each method,
the top 10 models are selected in each of the 10 independent executions.

[16] P.-j. Chun, I. Ujike, K. Mishima, M. Kusumoto, and S. Okazaki, “Ran-
dom forest-based evaluation technique for internal damage in reinforced
concrete featuring multiple nondestructive testing results,” Comput. Biol.
Med., vol. 253, pp. 119 238–119 247, 2020.

[17] D. Ravi, C. Wong, B. Lo, and G. Yang, “Deep learning for human
activity recognition: A resource efficient implementation on low-power
devices,” in IEEE Int. Conf. Wearable Implant. Body Sens. Netw., 2016,
pp. 71–76.

[18] S.-H. Kong, M. Kim, L. M. Hoang, and E. Kim, “Automatic lpi radar
waveform recognition using cnn,” IEEE Access, vol. 6, pp. 4207–4219,
2018.

[19] M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for
automatic cognitive radio waveform recognition,” IEEE Access, vol. 5,
pp. 11 074–11 082, 2017.

[20] Q. Guo, X. Yu, and G. Ruan, “Lpi radar waveform recognition based on
deep convolutional neural network transfer learning,” Symmetry, vol. 11,
no. 4, pp. 540–553, 2019.

[21] C. Wang, J. Wang, and X. Zhang, “Automatic radar waveform recog-
nition based on time-frequency analysis and convolutional neural net-
work,” in IEEE Int. Conf. Acoust. Speech Signal Process Proc., 2017,
pp. 2437–2441.

[22] C.-W. Tan and A. Kumar, “Accurate iris recognition at a distance using
stabilized iris encoding and zernike moments phase features,” IEEE
Trans. Image Process., vol. 23, no. 9, pp. 3962–3974, 2014.

[23] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv preprint arXiv:1808.05377, 2018.

[24] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in Int.
Conf. Mach. Learn. JMLR. org, 2017, pp. 2902–2911.

[25] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Elsevier, 2019, pp. 293–312.

[26] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[27] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vision Pattern Recognit. IEEE, 2018, pp. 8697–
8710.

[28] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Effi-
cient neural architecture search via parameter sharing,” arXiv preprint
arXiv:1802.03268, 2018.

[29] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture
search for convolutional neural networks,” arXiv preprint arXiv:.04528,
2017.

[30] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Lect. Notes Comput. Sci. Springer, 2018, pp. 19–34.

[31] K. Cui, W. Wu, J. Huang, X. Chen, and N. Yuan, “Doa estimation of
lfm signals based on stft and multiple invariance esprit,” Int. J. Electron.
Commun., vol. 77, pp. 10–17, 2017.

[32] P. Magron, R. Badeau, and B. David, “Model-based stft phase recovery
for audio source separation,” IEEE/ACM Trans. Audio, Speech, Lan-
guage Process., vol. 26, no. 6, pp. 1095–1105, 2018.

[33] I. Djurović, V. Popović-Bugarin, and M. Simeunović, “The stft-based
estimator of micro-doppler parameters,” IEEE Trans. Aerosp. Electron.
Syst., vol. 53, no. 3, pp. 1273–1283, 2017.

[34] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, “Fingerprint en-
hancement using stft analysis,” Pattern Recognit., vol. 40, no. 1, pp.
198–211, 2007.

[35] M. K. Kıymık, İ. Güler, A. Dizibüyük, and M. Akın, “Comparison of stft
and wavelet transform methods in determining epileptic seizure activity
in eeg signals for real-time application,” Comput. Biol. Med., vol. 35,
no. 7, pp. 603–616, 2005.

[36] J. Zhang, F. Wang, O. A. Dobre, and Z. Zhong, “Specific emitter
identification via hilbert–huang transform in single-hop and relaying
scenarios,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1192–
1205, 2016.

[37] L. Durak and O. Arikan, “Short-time fourier transform: two fundamental
properties and an optimal implementation,” IEEE Trans. Signal Process.,
vol. 51, no. 5, pp. 1231–1242, 2003.

[38] T. Yuan, W. Deng, J. Tang, Y. Tang, and B. Chen, “Signal-to-noise
ratio: A robust distance metric for deep metric learning,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2019, pp. 4815–
4824.

[39] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Int. Conf. Mach. Learn., 2013, pp. 115–123.

[40] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proc. Genet. Evol. Comput. Conf., 2017, pp. 497–504.

[41] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vision Pattern Recognit. IEEE, 2018, pp. 2423–2432.

[42] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” arXiv preprint
arXiv:1703.01041, 2017.

[43] L. Xie and A. Yuille, “Genetic cnn,” in Proc. IEEE Int. Conf. Comput.
Vision. IEEE, 2017, pp. 1379–1388.

[44] K. He and J. Sun, “Convolutional neural networks at constrained
time cost,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit. IEEE, 2015, pp. 5353–5360.

[45] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[46] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, “When nas meets
robustness: In search of robust architectures against adversarial attacks,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit.,
2020, pp. 631–640.

[47] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[48] X. Chu, B. Zhang, J. Li, Q. Li, and R. Xu, “Scarlet-nas: bridging the gap
between stability and scalability in weight-sharing neural architecture
search,” arXiv preprint arXiv:1908.06022, 2019.

[49] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,”
in Lect. Notes Comput. Sci., 2019, pp. 1294–1303.

	Introduction
	Preliminary
	Radar signal
	Radar system
	Short time Fourier transformation (STFT)
	STFT time-frequency images

	Related work
	Block-cell structure and search space
	Search strategy and performance estimation

	Variable structure network
	Proposed balance function
	Basic properties
	Performance evaluation

	Experimental results
	Data sets
	Simulations
	Results
	Performance of the CNNs with fixed structure
	Performance of the block-cell structure
	Performance of the proposed balance function
	Robustness and stability analysis
	Further discussion

	Conclusion
	References

