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The omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA), mediate inflammation in large part by affecting

pro-inflammatory and anti-inflammatory/pro-resolving oxylipin concentrations. Common

gene variants are thought to underlie the large inter-individual variation in oxylipin levels

in response to n-3 PUFA supplementation, which in turn is likely to contribute to the

overall heterogeneity in response to n-3 PUFA intervention. Given its known role in

inflammation and as a modulator of the physiological response to EPA and DHA, here

we explore, for the first time, the differential response of plasma hydroxy-, epoxy- and

dihydroxy-arachidonic acid, EPA and DHA oxylipins according to apolipoprotein E

(APOE) genotype using samples from a dose-response parallel design RCT. Healthy

participants were given doses of EPA+DHA equivalent to intakes of 1, 2, and 4 portions

of oily fish per week for 12 months. There was no difference in the plasma levels of

EPA, DHA or ARA between the wildtype APOE3/E3 and APOE4 carrier groups after

3 or 12 months of n-3 PUFA supplementation. At 12 months, hydroxy EPAs (HEPEs)

and hydroxy-DHAs (HDHAs) were higher in APOE4 carriers, with the difference most

evident at the highest EPA+DHA intake. A significant APOE∗n-3 PUFA dose effect was

observed for the CYP-ω hydroxylase products 19-HEPE (p = 0.027) and 20-HEPE

(p = 0.011). 8-HEPE, which, along with several other plasma oxylipins, is an activator of

peroxisome proliferator activated receptors (PPARs), showed the highest fold change in

APOE4 carriers (14-fold) compared to APOE3/E3 (4-fold) (p = 0.014). Low basal plasma

EPA levels (EPA < 0.85% of total fatty acids) were associated with a greater change in

5-HEPE, 9-HEPE, 11-HEPE, and 20-HEPE compared to high basal EPA levels (EPA

> 1.22% of total fatty acids). In conclusion, APOE genotype modulated the plasma

oxylipin response to increased EPA+DHA intake, with APOE4 carriers presenting with

the greatest increases following high dose n-3 PUFA supplementation for 12 months.
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INTRODUCTION

The omega-3 polyunsaturated fatty acids (n-3 PUFAs)
eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) have long been known to play a role in promoting
human health and well-being (1). Higher EPA and DHA intake
is associated with a lower risk of cardiovascular disease and
mortality (2, 3), cognitive decline (4), rheumatoid arthritis (5),
obesity (6), and overall mortality (7). The biological actions
of n-3 PUFAs are partly mediated through their oxidized
metabolites, called oxylipins. Oxylipins are formed via three
main pathways involving cyclooxygenases, lipoxygenases,
and several cytochrome P450 (CYP) enzymes which produce

hydroxy-, dihydroxy-, or epoxy- fatty acids (FAs) among other
products. Due to their highly unsaturated status, PUFAs can also
be non-enzymatically oxidized (i.e., autooxidation) by reactive
oxygen and nitrogen species, to produce a number of oxylipins
(Figure 1) (8, 9). Oxylipins are potent lipid mediators of multiple
physiological processes (10). Epoxy-arachidonic acid (ARA)
species (EpETrEs), products of CYP2C and 2J epoxygenases,
have recently been shown to have cardiovascular (11, 12)
and anti-inflammatory benefits (13). Epoxy-EPAs (EpETEs)
and -DHAs (EpDPEs) are anti-arrhythmic (14) and inhibit

angiogenesis (15). Epoxy-FAs are metabolized by hydration to

the corresponding less active dihydroxy-FAs by the action of
soluble epoxide hydrolase (sEH) (9). As a result, the ratio of
dihydroxy- to epoxy-FAs has been used as an indicator of sEH
activity (16). Hydroxy-ARAs (HETEs), -EPAs (HEPEs), and
-DHAs (HDHAs) have a wide range of functions, for example
regulating neutrophil chemotaxis, platelet aggregation and
adipogenesis (9). 8-HEPE has recently been found to reduce
plasma LDL-cholesterol and triglycerides in obese mice through
binding to peroxisome proliferation activator receptors (PPARs)
(17). Other hydroxy-FAs, such as 18-HEPE and 17-HDHA
are precursors for specialized pro-resolving mediators (SPMs).
SPMs (including resolvins, protectins, maresins, and lipoxins)
are now known for their anti-inflammatory and pro-resolving
roles (18).

Several intervention studies have shown a rise in EPA- and
DHA-derived and a fall in ARA-derived oxylipins in response
to n-3 PUFA supplementation (19–23). This response is linearly
related to n-3 PUFA dose (24). However, despite the high
compliance to n-3 PUFA treatment in most studies, a strong
inter-individual variation in the oxylipin response to different
doses of n-3 PUFA intervention was observed (23, 25, 26). This
variation has been partly explained by differences in baseline EPA
and DHA status. Individuals with lower basal levels of EPA and
DHA levels showed a greater increase in the n-3 PUFA-derived
oxylipins in response to increased n-3 PUFA intake (23, 25).
Genetic variation in enzymes involved in PUFAmetabolism have
been implicated as another possible cause of variation in the
oxylipin response to n-3 PUFAs. Genetic variation in LTA4H,
an enzyme in the pathway of leukotriene synthesis, significantly
interacted with dietary intake of n-3 and n-6 fatty acids to
determine intima-media thickness (IMT) in one population (27).
In another study, variants in ALOX5 gene were associated with a
differential oxylipin response to fish oil supplementation (28).

Apolipoprotein E (APOE) regulates the concentrations and
metabolism of cholesterol and PUFAs in the circulation and in
tissues (29). The APOE gene has three allele variants ε2, ε3,
and ε4, determined by two SNPs, rs429358 at codon 112 and
rs7412 at codon 158. The frequency of the major APOE3 allele
ranges from 48 to 94% while the APOE4 allele has a wider
global range (3–41%) (30). APOE genotype has long been known
to affect the response to n-3 PUFA interventions in healthy
participants (31) and in patients with cardiovascular (32) and
cognitive disorders (33). Studies have investigated the benefit of
APOE4-targeted dietary approaches on blood lipid levels (34, 35)
and Alzheimer’s disease risk (36, 37). Despite APOE genotype
being a knownmodulator of response to n-3 PUFA interventions,
the mechanistic basis for this is poorly understood, and the effect
of APOE genotype on oxylipin responses to increased n-3 PUFA
intake has not been investigated. In this study, we hypothesize
that the change in the plasma concentrations of free oxylipins in
response to n-3 PUFA supplementation will differ according to
APOE genotype. To test this hypothesis, we genotyped healthy
subjects who participated in a well-designed randomized control
trial (RCT), where EPA and DHA capsules were given in different
doses to mimic three different patterns of oily fish intake for a
duration of 12 months. Plasma phosphatidylcholine (PC) fatty
acids and free oxylipin concentrations were measured at baseline,
3 and 12 months, as reported elsewhere (24, 38).

METHODS

The primary aim of the RCT was to investigate the time course
and dose-response effect of EPA and DHA supplementation on
the EPA and DHA content of different blood and tissue pools
(38); a secondary a posteriori aim was to determine the effect on
plasma oxylipin concentrations (24). Here we investigate ifAPOE
genotype influences habitual plasma oxylipin concentrations and
their response to EPA and DHA supplementation. The current
analysis is considered as exploratory.

Participants and Study Design
The study was a double-blinded, parallel RCT in healthy
subjects with low habitual fish intake. The study protocol
and all procedures and analyses were approved by the Suffolk
Local Research Ethics Committee (approval 05/Q0102/181)
with the participant consent process allowing for additional
analysis of the data collected or biobanked samples. The trial
is registered at www.controlled-trials.com as ISRCTN48398526.
The study design and the characteristics of the study participants
have been described elsewhere (38). Briefly, 163 participants
were given EPA+DHA (as triglycerides) in capsules with
weekly doses equivalent to the consumption of 0, 1, 2, or
4 portions of fatty fish per week, with one portion being
equivalent to 3.27 g EPA + DHA (1:1.2, wt:wt). The period
of supplementation was 12 months and blood was sampled
at baseline, 3 months and 12 months. Buffy coat and plasma
were prepared. For the current analysis, a subset of 110
subjects with APOE genotype data were selected according
to the availability of a buffy coat for DNA extraction
and APOE genotyping. The characteristics of the study
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FIGURE 1 | Simplified metabolism of ARA, EPA and DHA by, LOXs and CYPs to produce the oxylipins evaluated in this study. ARA, Arachidonic acid; EPA,

Eicosapentaenoic acid; DHA, docosahexaenoic acid; LOXs, lipoxygenases; sEH, soluble epoxide hydrolase enzyme; EpETrE, epoxyeicosatrienoic acid; DiHETrE,

dihydroxyeicosatrienoic acid; HETE, hydroxy-eicosatetraenoic acid; EpETE, epoxyeicosatetraenoic acid; DiHETE, dihydroxyeicosatetraenoic acids; HEPE,

hydroxyeicosapentaenoic acid; EpDPE, epoxydocosapentaenoic acid; DiHDPE, dihydroxydocosapentaenoic acid; HDHA, hydroxydocosahexaenoic acid. Of note,

several oxylipins can be formed by different routes as well as by chemical autoxidation.

TABLE 1 | Basic characteristics of the study population at baseline based on APOE genotype.

APOE2 (n = 18) APOE3 (n = 66) APOE4 (n = 26)

Age (years) 55.2± 15.1a 49.6 ± 15.9a 48.5 ± 13.8a

Gender (M/F) 6/12 35/31 12/14

BMI (kg/m2 ) 24.9 ± 3.7a 25.7 ± 3.8a 25.3 ± 4.3a

aMean ± SD.

population based on their APOE genotype are presented in
Table 1.

DNA Extraction and APOE Genotyping
DNA was extracted from the buffy coat of whole blood using
the QiAmp DNA Blood Mini kit (Qiagen, UK). The quality and
quantity of extracted DNA was checked using a Nanodrop 2000
spectrophotometer. Samples with a yield of at least 15 ng/µl and a
260/280 ratio of at least 1.8 were used for subsequent genotyping.

APOE genotyping was performed by LGC Genomics Ltd,
Hoddesdon, UK, using the KASP technology. Primers were
designed for the two single-nucleotide polymorphisms (SNPs)
in the APOE gene; rs429358 at codon 112 and rs7412 at
codon 158. These two SNPs determine the APOE2, E3, and
E4 alleles.

Oxylipin Analysis
Plasma free oxylipins weremeasured at baseline, 3 and 12months
of n-3 PUFA supplementation. Oxylipin analysis was performed
as described elsewhere (24, 39). Briefly, oxylipins were isolated
from plasma using Bond Elut Certify II Cartridges (Agilent) and
analyzed by liquid chromatography-tandem mass spectrometry
(LC-MS/MS) after negative electrospray ionization in scheduled
selected reaction monitoring.

Fifty EPA-, DHA-, and ARA-derived oxylipins were included
in the present study: 9 hydroxy-EPAs (HEPEs), 4 dihydroxy-
EPAs (DiHETEs), 3 epoxy-EPAs (EpETEs), 11 hydroxy-DHAs
(HDHAs), 5 dihydroxy-DHAs (DiHDPEs), 4 epoxy-DHAs
(EpDPEs), 6 hydroxy-ARAs (HETEs), 4 dihydroxy-ARAs
(DiHETrEs), and 4 epoxy-ARAs (EpETrEs). The concentrations
of all HEPEs, DiHETEs, EpETEs, HDHAs, DiHDPEs, EpDPEs,
HETEs, DiHETrEs, and EpETrEs covered by the analytical
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TABLE 2 | APOE genotype and allele frequencies in the study population.

APOE genotype Number Genotype Frequency (%) Allele frequency (%)

E2/E2 2 1.8 E2 = 16.4

E2/E3 15 13.6

E2/E4 1 0.9

E3/E3 66 60.0 E3 = 60.0

E3/E4 25 22.7 E4 = 23.6

E4/E4 1 0.9

Total 110 100.0 100.0

method were summed from the individual data as described
previously (24).

Fatty Acids Analysis
ARA, EPA, and DHA were measured in the plasma
phosphatidylcholine (PC) fraction as described previously
(38). Briefly, total lipid was extracted from plasma using
chloroform:methanol (2:1) Plasma lipid fractions were separated
and isolated by solid-phase extraction on aminopropylsilica
cartridges. PC, which is the major plasma phospholipid, was
eluted with chloroform:methanol (60:40, vol:vol). Fatty acid
methyl esters (FAMEs) were formed by transesterification
with methanol in sulphuric acid and were separated using gas
chromatography. FAMEs were identified by comparison with
authentic standards. Fatty acids are expressed as weight percent
of total fatty acids in plasma PC.

Statistics and Data Analysis
Data for fatty acids, oxylipins, and APOE genotyping were
processed using RStudio. Results are presented as mean
± SEM. The absolute changes in oxylipin concentration
after 12 months of supplementation were calculated as
conc(t12)-conc(t0). Relative changes after 12 months were
calculated as conc(t12)/conc(t0). Percent relative change of
EPA and DHA and their derived oxylipins were calculated as
conc(t12)/ conc(t0)∗100.

Variables were checked for normality using the Shapiro-Wilk
test. For normally distributed variables, an independent sample t-
test was used to test for significance between APOE3 (E3/E3) and
APOE4 (E3/E4 + E4/E4) groups. For not-normally distributed
variables, the Mann-Whitney test was used. Being aware of the
unequal sample sizes between APOE groups, Levene’s test for
homogeneity of variances was conducted. Log transformation
was performed when required.

A univariate general linear model was used to investigate the
main and combined (interaction) effect of APOE genotype and
n-3 PUFA dose on the absolute change of individual oxylipin
concentrations at 12 months. Age, sex, BMI, and baseline parent
n-3 PUFA concentration were used as covariates.

To investigate the effect of APOE genotype on the change in
oxylipin concentration over time, a repeated measure analysis
of oxylipins was performed using the baseline, 3 and 12 month
data. A model was built to identify the independent effect of
APOE genotype and dose as main effects, and “APOE∗dose”

interaction effect. Age, sex and BMI were used as covariates in
the model. Time was used as the “within subject” factor. Due
to the exploratory nature of this study, correction for multiple
testing was not performed and no formal power calculation was
carried out, although a retrospective power calculation indicates
that for the sum of EPA-, DHA-, and ARA- oxylipins we had 93.6,
91.2, and 53.8% power, respectively, to detect a 5% difference
between genotype groups when on the highest dose of n-3
supplementation (4 portions).

All the statistics were carried out using SPSS version 24 (IBM).

RESULTS

APOE Genotyping Frequencies in the
Studied Population
rs429358 and rs7412 were genotyped from the DNA of 110
participants. Basic characteristics of the study population at
baseline based on APOE genotype are shown in Table 1.
Genotype and allele frequencies, as shown in Table 2, correspond
to the frequencies in the European population (39). Using PLINK
software (https://www.cog-genomics.org/plink2), all three APOE
genotypes were found to be in Hardy-Weinberg equilibrium. Due
to the small number of samples with the E2 allele, with numbers
of <3 per n-3 PUFA dose group, E2 was excluded from the
analysis. Results for E3 (E3/E3 genotype) and E4 (E3/E4 and
E4/E4) alleles are thus calculated and displayed hereafter.

Baseline Plasma Levels of ARA, EPA, and
DHA, and Their Derived Oxylipins
At baseline, there was no significant effect of APOE genotype on
plasma PC levels of ARA, EPA, or DHA, or their derived oxylipins
except for 11-HDHA and 20-HETE, which were lower in the
APOE4 group (p= 0.035 and p= 0.04, respectively) (Table 3).

Changes in Parent PUFAs and Their
Derived Plasma Oxylipins Following
Supplementation
There was no difference in the level of plasma PC EPA,
DHA, or ARA between APOE3 and APOE4 groups after 3
or 12 months of n-3 PUFA supplementation (Figures 2A–C).
However, higher concentrations of EPA and DHA-derived
oxylipins were observed in the APOE4 group compared to
the APOE3 group. Differences were observed at 12 months
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TABLE 3 | Baseline plasma phosphatidylcholine fatty acids (% of total fatty acids; %tFA) and oxylipin concentrations (nM) in APOE3 and APOE4 individuals.

Fatty acids and oxylipins APOE3

(n = 66)

APOE4

(n = 26)

Total

(n = 92)

PAPOE Pparent PUFA PAPOE*parent PUFA

EPA (%tFA) 1.11 ± 0.06 1.19 ± 0.10 1.10 ± 0.05 0.22

Hydroxy-EPA 5-HEPE 0.36 ± 0.02 0.34 ± 0.03 0.35 ± 0.02 0.84 0.02* 0.62

8-HEPE 0.08 ± 0.00 0.08 ± 0.01 0.08 ± 0.00 0.59 0.01* 0.66

9-HEPE 0.23 ± 0.01 0.23 ± 0.02 0.23 ± 0.01 0.67 0.01* 0.72

11-HEPE 0.11 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 0.36 0.17 0.26

12-HEPE 0.30 ± 0.03 0.30 ± 0.04 0.30 ± 0.02 0.28 0.58 0.21

15-HEPE 0.14 ± 0.01 0.15 ± 0.02 0.14 ± 0.00 0.83 0.96 0.97

18-HEPE 0.19 ± 0.01 0.21 ± 0.02 0.19 ± 0.01 0.51 0.06 0.78

19-HEPE 1.02 ± 0.06 0.98 ± 0.10 1.00 ± 0.05 0.87 0.10 0.71

20-HEPE 0.61 ± 0.04 0.68 ± 0.08 0.62 ± 0.03 0.39 0.33 0.62

sum 3.01 ± 0.16 3.01 ± 0.25 3.01 ± 0.20 0.57 0.11 0.53

Dihydroxy-EPA 8,9-DiHETE 0.09 ± 0.01 0.08 ± 0.01 0.09 ± 0.00 0.93 0.04* 0.77

11,12-DiHETE 0.06 ± 0.00 0.05 ± 0.00 0.06 ± 0.00 0.66 0.02* 0.91

14,15-DiHETE 0.10 ± 0.00 0.09 ± 0.01 0.10 ± 0.01 0.77 0.05 0.57

17,18-DiHETE 0.66 ± 0.03 0.62 ± 0.04 0.67 ± 0.03 0.61 0.08 0.38

sum 0.90 ± 0.05 0.85 ± 0.05 0.87 ± 0.05 0.81 0.03* 0.54

Epoxy-EPA 11 (12)-EpETE <0.05 <0.05 <0.05

14 (15)-EpETE 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.86 0.12 0.77

17 (18)-EpETE <0.1 <0.1 <0.1

DHA (%tFA) Hydroxy-DHA 3.67 ± 0.12 3.73 ± 0.25 3.69 ± 0.11 0.86

4-HDHA 0.45 ± 0.03 0.41 ± 0.03 0.50 ± 0.05 0.41 0.95 0.55

8-HDHA 0.51 ± 0.03 0.48 ± 0.05 0.50 ± 0.02 0.19 0.22 0.22

10-HDHA 0.12 ± 0.01 0.12 ± 0.01 0.12 ± 0.00 0.12 0.30 0.12

11-HDHA 0.23 ± 0.01 0.20 ± 0.02 0.22 ± 0.01 0.04* 0.96 0.08

13-HDHA 0.11 ± 0.01 0.10 ± 0.01 0.10 ± 0.00 0.28 0.17 0.36

14-HDHA 1.30 ± 0.12 1.08 ± 0.16 1.29 ± 0.11 0.28 0.16 0.40

16-HDHA 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.57 0.28 0.64

17-HDHA 0.94 ± 0.05 0.99 ± 0.12 0.98 ± 0.05 0.30 0.51 0.20

20-HDHA 0.44 ± 0.02 0.43 ± 0.03 0.43 ± 0.02 0.42 0.29 0.40

21-HDHA 3.28 ± 0.16 3.12 ± 0.30 3.23 ± 0.14 0.35 0.09 0.39

22-HDHA 2.72 ± 0.16 2.54 ± 0.22 2.75 ± 0.14 0.43 0.66 0.32

sum 10.43 ± 0.47 10.32 ± 0.82 10.38 ± 0.6 0.16 0.18 0.16

Dihydroxy-DHA 4,5-DiHDPE 1.42 ± 0.07 1.24 ± 0.11 1.37 ± 0.06 0.42 0.99 0.65

10,11-DiHDPE 0.23 ± 0.01 0.21 ± 0.02 0.23 ± 0.01 0.32 0.33 0.44

13,14-DiHDPE 0.25 ± 0.01 0.23 ± 0.01 0.26 ± 0.02 0.38 0.14 0.63

16,17-DiHDPE 0.32 ± 0.01 0.29 ± 0.02 0.33 ± 0.02 0.44 0.11 0.67

19,20-DiHDPE 3.16 ± 0.13 2.76 ± 0.17 3.18 ± 0.15 0.31 0.05 0.62

sum 5.48 ± 0.22 5.41 ± 0.57 5.39 ± 0.35 0.43 0.19 0.75

Epoxy-DHA 10 (11)-EpDPE 0.31 ± 0.02 0.28 ±0.03 0.3±0.01 0.25 0.09 0.31

13 (14)-EpDPE 0.25 ± 0.01 0.24 ± 0.03 0.25 ± 0.01 0.34 0.03* 0.36

16 (17)-EpDPE 0.27 ± 0.01 0.26 ± 0.02 0.26 ± 0.01 0.77 0.05 0.87

19 (20)-EpDPE 0.48 ± 0.02 0.45 ± 0.04 0.47 ± 0.02 0.25 0.02* 0.31

sum 1.30 ± 0.06 1.30 ± 0.13 1.3 ± 0.10 0.33 0.03* 0.39

ARA (%tFA) 9.06 ± 0.23 9.5 ± 0.40 9.19 ± 0.2 0.34

Hydroxy-ARA 5-HETE 1.35 ± 0.07 1.30 ± 0.09 1.41 ± 0.09 0.91 0.57 0.98

8-HETE 0.31 ± 0.01 0.31 ± 0.02 0.31 ± 0.01 0.5 0.16 0.41

11-HETE 0.27 ± 0.01 0.27 ± 0.02 0.27 ± 0.01 0.53 0.41 0.52

12-HETE 2.05 ± 0.17 2.26 ± 0.37 2.55 ± 0.29 0.52 0.72 0.59

15-HETE 1.00 ± 0.04 1.03 ± 0.06 1.01 ± 0.03 0.9 0.8 0.85

20-HETE 0.93 ± 0.05 0.92 ± 0.07 0.93 ± 0.04 0.04* 0.74 0.04*

(Continued)
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TABLE 3 | Continued

Fatty acids and oxylipins APOE3

(n = 66)

APOE4

(n = 26)

Total

(n = 92)

PAPOE Pparent PUFA PAPOE*parent PUFA

sum 6.21 ± 0.12 6.55 ± 0.09 6.39 ± 0.10 0.41 0.88 0.46

Dihydroxy-ARA 5,6-DiHETrE 0.37 ± 0.04 0.27 ± 0.02 0.34 ± 0.03 0.51 0.82 0.31

8,9-DiHETrE 0.25 ± 0.01 0.21 ± 0.01 0.24 ± 0.01 0.42 0.20 0.22

11,12-DiHETrE 0.57 ± 0.02 0.61 ± 0.07 0.58 ± 0.02 0.82 0.19 0.95

14,15-DiHETrE 0.65 ± 0.02 0.70 ± 0.07 0.66 ± 0.02 0.62 0.19 0.76

sum 1.84 ± 0.05 1.68 ± 0.06 1.78 ± 0.06 0.46 0.36 0.32

Epoxy-ARA 5 (6)-EpETrE 0.9 ± 0.05 0.8 ± 0.09 0.87 ± 0.04 0.94 0.49 0.90

8 (9)-EpETrE 0.19 ± 0.01 0.18 ± 0.02 0.19 ± 0.01 0.89 0.19 0.77

11 (12)-EpETrE 0.20 ± 0.01 0.19 ± 0.01 0.20 ± 0.01 0.56 0.29 0.47

14 (15)-EpETrE 0.46 ± 0.02 0.42 ± 0.03 0.45 ± 0.02 0.63 0.29 0.46

sum 1.75 ± 0.22 1.69 ± 0.57 1.73 ± 0.37 0.57 0.50 0.94

Mean ± SEM(n) individual and sum of hydroxy-, dihydroxy- and epoxy-EPAs, -DHAs and -ARAs. P values are shown for genotype, parent PUFA and genotype*parent PUFA interaction

using a univariate GLM. Age, gender, and BMI were used as covariates. *Statistically significant, P < 0.05.

(Figures 2D,E,G,H,J,K) for the sum of HEPEs, DiHETEs,
EpETEs, HDHAs and DiHDPEs (p= 0.014, p= 0.001, p= 0.024,
p = 0.048, and p = 0.011, respectively). There was no significant
difference between APOE3 and APOE4 in the concentrations
of epoxy-DHAs (Figure 2K) or epoxy-ARAs (Figures 2F,I,L).
Analysis of n-3 PUFA∗APOE (independent and interactive) was
carried out on select LA- ALA- and DGLA- oxylipins. There were
no significant effects evident (data not shown).

Considering the change in the sum of oxylipins derived from
EPA and DHA at 12 months, a linear dose-response increase
in oxylipins was observed as described previously (22). For
the hydroxy- and dihydroxy-EPAs and -DHAs, but not for the
epoxy-EPAs and -DHAs, the increase was significantly greater
in the APOE4 carriers who received the highest n-3 PUFA dose
(equivalent to 4 portions of fatty fish/week) (Figure 3).

A focused analysis of the change in the parent PUFA and
the corresponding oxylipins at the highest dose of n-3 PUFAs
supplemented (equivalent to 4 portions of fatty fish/week) was
done. Change in the parent EPA was higher (359% ± 32) than
DHA (192% ± 14), with no difference observed between APOE3
and APOE4 groups (Figures 4A,B). The increase in EPA- and
DHA-derived oxylipins was generally higher than their parent
PUFA. A greater increase in almost all oxylipins was observed
in the APOE4 group, with the highest % change seen in the
EPA-derived 8-HEPE (1,474% in E4 compared to 477% in E3)
(p = 0.014) (Figure 4A). With regard to DHA-derived oxylipins,
the highest % change was seen for 10-HDHA (597% in E4
compared to 274% in E3, p = 0.026) (Figure 4B). There was
no significant difference in the epoxy-EPAs and -DHAs between
APOE3 and APOE4 groups. After adjusting for age, sex, BMI and
the basal level of parent n-3 PUFA, significant genotype∗dose
interactions were observed for two EPA-derived oxylipins: 19-
HEPE and 20-HEPE (p= 0.027 and 0.011 (Table 4).

Effect of APOE Genotype Is More Evident
for the Dihydroxy-EPAs and -DHAs
Compared to the Epoxy-EPAs and -DHAs
A strong independent effect of APOE genotype on all dihydroxy-
EPAs and -DHAs (except 4,5 DiHDPE) was observed (Table 4).

Despite the higher levels of epoxy-EPAs and -DHAs in theAPOE4
group, the differences were not statistically significant (Table 4
and Figures 4A,B).

Influence of the Basal Parent Plasma PUFA
on the Change in Plasma Oxylipins Is More
Pronounced for EPA-Derived Oxylipins
The basal level of plasma PC EPA had a significant effect on the
change in concentration of select hydroxy- and dihydroxy-EPAs
(Table 4) but not epoxy-EPAs. When dividing baseline plasma
PC EPA levels into tertiles and different, a higher change in 5-
HEPE, 9-HEPE, 11-HEPE, and 20-HEPE was observed at a low
basal EPA level (EPA < 0.85% of total fatty acids) compared
to high basal EPA level (EPA > 1.22% of total fatty acids) in
APOE4 carriers (Figure 5). On the other hand, the basal level of
plasma PC DHA had no influence on the change in DHA-derived
oxylipins (Table 4).

DISCUSSION

PUFAs mediate inflammatory status partly through the balance
between n-6 PUFA-derived and n-3 PUFA-derived oxylipins (9).
Recent studies show a linear response of EPA- and DHA-derived
oxylipins to fish oil supplementation (24, 25). However, a strong
inter-individual variation is observed. APOE genotype is known
to modulate systemic inflammation and neuroinflammation, and
the response to fish oil interventions, in healthy subjects (31)
and in patients with cardiovascular (32) and cognitive disorders
(33). To our knowledge, no previous studies have explored the
effect of APOE genotype on oxylipins, either cross-sectionally
or in response to n-3 PUFA supplementation. In the current
study, we show that APOE genotype affects the plasma oxylipin
concentrations and their response to EPA+DHA intervention
in healthy participants. We observe higher levels of hydroxy-
and dihydroxy-EPA- and DHA-derived oxylipins in APOE4
carriers compared to the wild type APOE3/E3 genotype. This
difference becomes more evident with higher doses of n-3 PUFAs
supplemented for longer periods (12 months). The greatest
increase was in 8-HEPE, an oxylipin formed by autoxidation.
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FIGURE 2 | Plasma levels of parent PUFAs (EPA, DHA, and ARA) (A–C) and sum of EPA, DHA, and ARA-derived oxylipins; (D–L), at baseline, 3m and 12m. Levels of

EPA, DHA, and ARA (% of total fatty acids) and concentrations of plasma oxylipins (nM) are presented as mean ± SEM. Data were analyzed by repeated measures

ANOVA. A model was built to identify the independent (main) effect of APOE and dose, and “APOE*dose” interaction effect. Age, sex, BMI, and baseline parent PUFA

for oxylipins were used as covariates in the model. Within subject factor: time. The absolute concentrations of all HEPEs, HDHAs, DiHETEs, DiHDPEs, EpETEs, and

EpDPEs covered by the analytical method were summed from the individual data, i.e., 9 × HEPEs, 10 × HDHAs, 4 × DiHETEs, 5 × DiHDPEs, 3 × EpETEs, and 4 ×

EpDPEs. APOE3 n = 66, APOE4 n = 26.

It has recently been shown that 8-HEPE, together with other
HEPEs, has a high ligand activity for PPARs (40, 41). A significant
effect of APOE on dihydroxy- but not the epoxy-EPAs and -
DHAs suggests a more active sEH enzyme in APOE4 carriers.
Analyzing samples from a well-designed intervention trial, with
different doses of n-3 PUFAs and for a duration up to 12 months,
highlights the importance of n-3 PUFA dose and duration of
intake in modulating select plasma oxylipin levels such as 8-
HEPE and 17-HDHA. Higher levels of these oxylipins in APOE4
carriers, may help mitigate a more disrupted metabolic and
pro-inflammatory profile relative to the common APOE3/3 in
multiple disease pathologies (42, 43).

Prior to intervention, there was no difference in the levels
of ARA, EPA and DHA between APOE3 and APOE4 carriers
(Table 3). This is consistent with the Multi-Ethnic Study of
Atherosclerosis (MESA), where, although there was no difference
in plasma phospholipid EPA and DHA concentrations between
APOE3 and APOE4 groups an APOE∗n-3 PUFA interaction was
evident with high density lipoprotein cholesterol and particle
size (44). Similarly, in the Alzheimer’s Disease Cooperative Study
there were no differences between APOE genotypes for EPA
and DHA in plasma phospholipids at baseline (45). In contrast,
Plourde et al. showed that EPA and DHA were higher in APOE4
carriers, in plasma triglycerides while there was no differences

in n-3 PUFAs between genotypes in the non-esterified fatty acid
fraction, with plasma phospholipid fraction composition data not
included (46).

Similar to baseline, there was no difference in the levels
of EPA, DHA or ARA between APOE3 and APOE4 groups
after 12 months of n-3 PUFA supplementation (Figures 2A–C),
which is consistent with previous n-3 PUFA intervention studies
carried out in healthy subjects (47, 48) and after 18 months
of DHA supplementation in patients with Alzheimer’s disease
(49). However, in some studies, the ratios of DHA/AA and
EPA/AA were lower in the APOE4 group following n-3 PUFA
supplementation (45). This was not found in the current analysis
(data not shown).

At baseline, there was no difference in plasma oxylipin levels
between APOE3 and APOE4 except for 11-HDHA and 20-
HETE, which were both lower in the APOE4 group (Table 3).
In mouse models, there was no significant difference in the
level of 20-HETE between wild type and APOE knockout mice.
However, after being fed with a high fat diet, 20-HETE was
higher in the renal tissue of the APOE knockout mice, with
no difference observed in the hepatic tissue (50). Similarly,
in a mouse model of abdominal aortic aneurysm, levels of
several HETEs (5-, 8-, 12-, 15-HETE) were similar in the blood
of wildtype and APOE knockout mice, and were higher in
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FIGURE 3 | Box plots showing the mean relative change in oxylipin levels at 12 months with EPA+DHA intake, stratified according to APOE genotype. The

concentrations of all HEPEs, HDHAs, EpETEs, and EpDPEs covered by the analytical method were summed from the individual data, i.e., 9 × HEPEs, 10 × HDHAs,

4 × DiHETEs, 5 × DiHDPEs, 3 × EpETEs, and 4 × EpDPEs. Mann-Witney test was used to compare APOE genotypes within each dose. *Statistically significant, P <

0.05; **Statistically significant, P < 0.01. APOE3 n = 66, APOE4 n = 26.

APOE knockout mice after pro-coagulant administration (51).
In aged mice, brain cortical levels of EPA-derived 18-HEPE
and DHA-derived 10,17-diHDHA, together with the specialized
pro-resolving mediator resolvin D1, were lower in APOE4 mice
compared to APOE3 (52).

The changes in plasma EPA- and DHA-oxylipins were
consistently higher in APOE4 compared to APOE3/E3
(Figures 4A,B), with the highest change observed for 8-
HEPE (1,474% in APOE4 vs. 477% in APOE3, p = 0.014)
(Figure 4A). Most plasma oxylipins are bound to lipoproteins
(53), and in particular LDL (54). APOE4 has a higher affinity for
the LDL-receptor leading to increased catabolism of VLDL and a
subsequent increase in LDL-cholesterol (55, 56). In addition, n-3
PUFA supplementation was found to increase LDL-cholesterol
concentrations (57), which becomesmore pronounced inAPOE4
carriers, and more evident in chronic inflammatory conditions
(32). Interestingly, after 1 year of 0.840 g/day EPA+DHA and
vitamin D supplementation in a subset of the VITAL study,
an association between some oxylipins and increased LDL was
found (58). Consequently, although LDL data are not available
in the current RCT, it is speculated that, with higher doses of
EPA and DHA, the differential increase of oxylipins in APOE4
carriers could relate to possibly higher LDL levels in those
individuals. However, given the healthy status of the participants

in this study, future studies focusing on patients with chronic
inflammatory conditions are needed for confirmation.

Recent studies show that HEPEs have higher ligand activity
for PPARs than their parent EPA (40, 41). 8-HEPE activated the
transcription of PPARs leading to increased adipogenesis and
cellular glucose uptake in fibroblasts and muscle cell-lines (41),
and improved dyslipidemia in a PPARα-dependent manner (17).
Several studies showed that glucose and lipid metabolism and
fatty acid oxidation are disturbed in APOE4 carriers (59–62).
Interestingly, PPARγ signaling was also found to be disturbed
in APOE4 carriers (60, 63, 64). Taken together, we suggest
that the post-n-3 PUFA intervention differential increase in
levels of HEPEs observed here, especially in 8-HEPE, promotes
PPARγ activation, and consequently could contribute to the
partial mitigation of the disturbed metabolic processes evident in
APOE4 carriers.

APOE4 individuals have a higher inflammatory status and
more oxidative stress (65, 66) compared to APOE3 carriers.
LPS-stimulated macrophages from human and mice showed
increased TNF-α and IL-6, and the activation of the inflammatory
NFκB pathway in APOE4 compared to APOE3 carriers (65).
We have previously shown higher levels of h-CRP, P-selectin
and E-selectin in normal-weight healthy APOE4 individuals in
comparison to APOE3/E3 (67). Similarly, in the mouse brain,
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FIGURE 4 | Bar charts showing the mean % change (with SEM) in individual EPA- (A) and DHA- (B) derived oxylipins, with their parent EPA and DHA following 12

months of supplementation with the equivalent of 4 portions of oily fish, comparing between APOE3 (n = 17) and APOE4 (n = 5/6). Independent sample t-test or

Mann-Witney test was used to compare between APOE genotypes. *Statistically significant, P < 0.05, **Statistically significant, P < 0.01.

an APOE4 genotype was associated with increased microglial
activation, IL-1β and lipid peroxidation (65, 66).

A possible mechanism for the increase in HEPEs and
HDHAs in APOE4 carriers could be the increased activity
of 5- and 12/15-lipoxygenases and increased auto-oxidation
in response to the higher inflammatory status in APOE4
carriers. Increased activity of lipoxygenase enzymes was found
in the macrophages and atherosclerotic plaques of APOE
KO mice used as models of chronic inflammation (68,
69). Moreover, the absence of 12/15-lipoxygenase reduced
oxidative stress in the brains of APOE KO mice (70). N-
3 PUFA were shown to increase lipoxins and resolvins in

atherosclerosis (71) and Alzheimer’s disease (72), thus suggesting
EPA/DHA-induced activation of 5- and 12/15-lipoxygenases.
Similarly, products of n-3 PUFA autooxidation increase with n-
3 PUFA supplementation, with studies showing their beneficial
effects on cardiovascular diseases (8). Interestingly, in this
study the 15-lipoxygenase derived oxylipin 17-HDHA was
significantly higher in APOE4 (PAPOE = 0.03) (Table 4
and Figure 4B). 17-HDHA is the precursor of D-resolvins
and protectins which possess strong pro-resolving and anti-
inflammatory properties and are dysregulated in several chronic
inflammatory and neurodegenerative conditions (17, 52). Taken
together, we suggest that the inflammatory environment in
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TABLE 4 | Change from baseline in plasma oxylipins (nM) after 12 months of supplementation with n-3 PUFAs equivalent to 0, 1, 2, and 4 portions of fatty fish per week.

Oxylipin Portion of fish oil per week equivalency PAPOE Pdose PAPOE*

dose

Pbaseline

parent

PUFAAPOE3 APOE4 Total APOE3 APOE4 Total APOE3 APOE4 Total APOE3 APOE4 Total

(n = 14) (n = 5) (n = 19) (n = 17) (n = 10) (n = 27) (n = 17) (n = 6) (n = 23) (n = 17) (n = 5/6) (n = 22/23)

Hydroxy-EPA

5-HEPE −0.04 ± 0.03 −0.08 ± 0.05 −0.05 ± 0.03 0.14 ± 0.07 0.12 ± 0.08 0.14 ± 0.05 0.25 ± 0.06 0.52 ± 0.19 0.32 ± 0.07 0.67 ± 0.08 0.57 ± 0.17 0.66 ± 0.07 0.463 <0.001 0.117 0.001

8-HEPE −0.02 ± 0.02 −0.01 ± 0.01 −0.02 ± 0.01 0.09 ± 0.04 0.31 ± 0.20 0.17 ± 0.08 0.12 ± 0.04 0.28 ± 0.16 0.16 ± 0.05 0.27 ± 0.06 0.70 ± 0.08 0.33 ± 0.06 0.004 0.001 0.486 0.104

9-HEPE 0.00 ± 0.05 −0.07 ± 0.04 −0.02 ± 0.04 0.14 ± 0.06 0.27 ± 0.15 0.19 ± 0.06 0.23 ± 0.05 0.50 ± 0.18 0.30 ± 0.06 0.55 ± 0.07 0.92 ± 0.14 0.60 ± 0.07 0.006 <0.001 0.259 0.005

11-HEPE −0.03 ± 0.02 −0.01 ± 0.01 −0.03 ± 0.01 0.11 ± 0.03 0.13 ± 0.07 0.12 ± 0.03 0.13 ± 0.03 0.29 ± 0.14 0.17 ± 0.04 0.30 ± 0.05 0.50 ± 0.13 0.33 ± 0.05 0.012 <0.001 0.207 0.005

12-HEPE −0.02 ± 0.04 −0.06 ± 0.06 −0.03 ± 0.03 0.04 ± 0.09 0.31 ± 0.16 0.14 ± 0.08 0.38 ± 0.13 0.95 ± 0.42 0.53 ± 0.15 0.52 ± 0.16 0.27 ± 0.22 0.49 ± 0.14 0.256 0.002 0.196 0.114

15-HEPE <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 0.17 ± 0.09 0.33 ± 0.33 0.19 ± 0.09 0.527 0.022 0.385 0.356

18-HEPE −0.01 ± 0.02 0.01 ± 0.04 0 ± 0.01 0.11 ± 0.04 0.71 ± 0.42 0.33 ± 0.16 0.2 ± 0.04 0.37 ± 0.17 0.24 ± 0.05 0.58 ± 0.1 1.32 ± 0.56 0.69 ± 0.12 0.008 0.001 0.265 0.767

19-HEPE −0.05 ± 0.12 −0.13 ± 0.07 −0.07 ± 0.09 0.21 ± 0.15 0.17 ± 0.09 0.20 ± 0.10 0.7 ± 0.22 1.68 ± 0.64 0.96 ± 0.24 1.36 ± 0.24 2.02 ± 0.2 1.45 ± 0.21 0.026 <0.001 0.027 0.024

20-HEPE −0.05 ± 0.09 −0.29 ± 0.17 −0.11 ± 0.08 0.25 ± 0.11 0.11 ± 0.07 0.20 ± 0.07 0.42 ± 0.11 0.95 ± 0.38 0.56 ± 0.13 1.10 ± 0.13 1.33 ± 0.09 1.13 ± 0.12 0.198 <0.001 0.011 0.008

Dihydroxy-EPA

8,9-DiHETE −0.03 ± 0.01 −0.00 ± 0.01

0

−0.02 ± 0.01 0.02 ± 0.01 0.07 ± 0.03 0.04 ± 0.01 0.04 ± 0.02 0.10 ± 0.04 0.06 ± 0.02 0.13 ± 0.02 0.17 ± 0.03 0.14 ± 0.02 0.007 <0.001 0.633 0.003

11,12-DiHETE −0.01 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.07 ± 0.04 0.03 ± 0.02 0.04 ± 0.01 0.07 ± 0.02 0.05 ± 0.01 0.09 ± 0.01 0.18 ± 0.01 0.10 ± 0.01 0.002 <0.001 0.642 0.07

14,15-DiHETE −0.01 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01 0.02 ± 0.01 0.08 ± 0.05 0.04 ± 0.02 0.07 ± 0.02 0.11 ± 0.03 0.08 ± 0.01 0.13 ± 0.02 0.26 ± 0.03 0.15 ± 0.02 0.001 <0.001 0.360 0.023

17,18-DiHETE −0.04 ± 0.06 −0.01 ± 0.07 −0.03 ± 0.05 0.15 ± 0.09 0.39 ± 0.21 0.24 ± 0.10 0.46 ± 0.12 0.83 ± 0.25 0.55 ± 0.11 0.72 ± 0.1 1.45 ± 0.17 0.83 ± 0.10 0.001 <0.001 0.236 0.004

Epoxy-EPA

11 (12)-EpETE <0.05 <0.05 <0.05 0.03 ± 0.01 0.02 ± 0.01 0.030 0.06 ± 0.01 0.07 ± 0.02 0.06 ± 0.01 0.13 ± 0.02 0.17 ± 0.04 0.14 ± 0.02 0.605 <0.001 0.302 0.343

14 (15)-EpETE 0 ± 0.01 −0.01 ± 0.01 0 ± 0.01 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.09 ± 0.02 0.11 ± 0.04 0.09 ± 0.02 0.17 ± 0.03 0.23 ± 0.04 0.18 ± 0.02 0.450 <0.001 0.818 0.419

17 (18)-EpETE <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.14 ± 0.03 0.21 ± 0.06 0.16 ± 0.03 0.26 ± 0.03 0.36 ± 0.07 0.28 ± 0.03 0.067 <0.001 0.294 0.213

Hydroxy-DHA

4-HDHA −0.08 ± 0.07 0.01 ± 0.14 −0.05 ± 0.06 0.06 ± 0.07 0.14 ± 0.09 0.09 ± 0.06 0.26 ± 0.08 0.36 ± 0.12 0.29 ± 0.07 0.48 ± 0.06 0.45 ± 0.17 0.47 ± 0.05 0.458 <0.001 0.994 0.688

7-HDHA <0.1 <0.1 <0.1 0.13 ± 0.02 0.11 ± 0.02 0.12 ± 0.02 0.16 ± 0.02 0.23 ± 0.09 0.18 ± 0.03 0.25 ± 0.03 0.31 ± 0.06 0.26 ± 0.03 0.301 <0.001 0.54 0.605

8-HDHA −0.08 ± 0.09 −0.15 ± 0.12 −0.1 ± 0.07 0.21 ± 0.09 0.28 ± 0.11 0.24 ± 0.07 0.37 ± 0.09 0.68 ± 0.31 0.45 ± 0.10 0.82 ± 0.12 1.34 ± 0.21 0.90 ± 0.11 0.062 <0.001 0.458 0.514

10-HDHA −0.02 ± 0.01 −0.01 ± 0.03 −0.02 ± 0.01 0.03 ± 0.02 0.11 ± 0.04 0.06 ± 0.02 0.1 ± 0.02 0.19 ± 0.10 0.12 ± 0.03 0.19 ± 0.02 0.35 ± 0.02 0.21 ± 0.02 0.008 <0.001 0.577 1.000

11-HDHA −0.03 ± 0.02 −0.02 ± 0.05 −0.03 ± 0.02 0.01 ± 0.03 0.14 ± 0.04 0.06 ± 0.03 0.15 ± 0.04 0.27 ± 0.10 0.18 ± 0.04 0.21 ± 0.04 0.34 ± 0.01 0.23 ± 0.03 0.016 <0.001 0.658 0.717

13-HDHA −0.01 ± 0.01 0.01 ± 0.03 −0.01 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 0.08 ± 0.02 0.14 ± 0.09 0.10 ± 0.03 0.15 ± 0.02 0.31 ± 0.09 0.17 ± 0.03 0.024 <0.001 0.352 0.369

14-HDHA 0.09 ± 0.16 −0.42 ± 0.43 −0.04 ± 0.16 −0.38 ± 0.32 1.45 ± 0.91 0.3 ± 0.42 1.04 ± 0.45 2.7 ± 1.35 1.47 ± 0.49 0.61 ± 0.34 0.32 ± 0.82 0.57 ± 0.31 0.21 0.015 0.096 0.106

16-HDHA −0.02 ± 0.01 −0.01 ± 0.04 −0.02 ± 0.01 0.05 ± 0.02 0.14 ± 0.06 0.08 ± 0.03 0.10 ± 0.03 0.17 ± 0.09 0.12 ± 0.03 0.18 ± 0.03 0.41 ± 0.04 0.22 ± 0.03 0.003 <0.001 0.312 0.412

17-HDHA −0.11 ± 0.07 −0.06 ± 0.17 −0.1 ± 0.06 0.06 ± 0.15 0.03 ± 0.18 0.05 ± 0.11 0.28 ± 0.11 0.67 ± 0.22 0.38 ± 0.10 0.63 ± 0.11 1.36 ± 0.08 0.73 ± 0.11 0.033 <0.001 0.155 0.455

20-HDHA −0.06 ± 0.04 0.02 ± 0.13 −0.04 ± 0.04 0.09 ± 0.06 0.35 ± 0.17 0.18 ± 0.08 0.24 ± 0.05 0.38 ± 0.22 0.28 ± 0.07 0.43 ± 0.06 0.93 ± 0.10 0.50 ± 0.07 0.004 <0.001 0.429 0.666

21-HDHA −0.10 ± 0.48 −1.08 ± 0.37 −0.36 ± 0.38 0.18 ± 0.33 0.26 ± 0.34 0.21 ± 0.24 1.62 ± 0.38 2.40 ± 1.13 1.82 ± 0.40 3.21 ± 0.47 4.68 ± 0.63 3.42 ± 0.42 0.357 <0.001 0.434 0.093

22-HDHA −0.10 ± 0.41 0.03 ± 1.14 −0.07 ± 0.41 0.08 ± 0.35 0.12 ± 0.41 0.1 ± 0.26 1.29 ± 0.32 1.99 ± 0.97 1.47 ± 0.34 3.08 ± 0.48 4.08 ± 0.47 3.23 ± 0.42 0.209 <0.001 0.786 0.225

Dihydroxy-DHA

4,5-DiHDPE −0.23 ± 0.15 −0.19 ± 0.22 −0.22 ± 0.12 0.05 ± 0.16 0.10 ± 0.1 0.06 ± 0.11 0.92 ± 0.34 1.15 ± 0.27 0.98 ± 0.26 0.80 ± 0.19 1.81 ± 0.57 0.95 ± 0.19 0.144 <0.001 0.523 0.316

10,11-DiHDPE −0.04 ± 0.02 −0.03 ± 0.04 −0.04 ± 0.02 0.00 ± 0.03 0.03 ± 0.02 0.01 ± 0.02 0.09 ± 0.03 0.18 ± 0.10 0.11 ± 0.03 0.12 ± 0.03 0.33 ± 0.07 0.15 ± 0.03 0.005 <0.001 0.228 0.089

13,14-DiHDPE −0.04 ± 0.02 −0.04 ± 0.03 −0.04 ± 0.02 0.01 ± 0.02 0.16 ± 0.12 0.06 ± 0.05 0.11 ± 0.03 0.14 ± 0.05 0.12 ± 0.03 0.14 ± 0.03 0.41 ± 0.05 0.18 ± 0.03 0.004 <0.001 0.182 0.145

16,17-DiHDPE −0.02 ± 0.02 −0.03 ± 0.03 −0.02 ± 0.02 −0.01 ± 0.02 0.16 ± 0.11 0.05 ± 0.04 0.16 ± 0.04 0.16 ± 0.07 0.16 ± 0.03 0.15 ± 0.03 0.42 ± 0.07 0.19 ± 0.04 0.008 <0.001 0.100 0.095

19,20-DiHDPE −0.44 ± 0.29 −0.25 ± 0.32 −0.39 ± 0.22 0.02 ± 0.21 1.33 ± 1.10 0.51 ± 0.43 1.45 ± 0.37 1.72 ± 0.68 1.52 ± 0.32 1.39 ± 0.28 3.85 ± 0.77 1.74 ± 0.32 0.006 <0.001 0.349 0.054

(Continued)
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TABLE 4 | Continued

Oxylipin Portion of fish oil per week equivalency PAPOE Pdose PAPOE*

dose

Pbaseline

parent

PUFA0 1 2 4

APOE3 APOE4 Total APOE3 APOE4 Total APOE3 APOE4 Total APOE3 APOE4 Total

(n = 14) (n = 5) (n = 19) (n = 17) (n = 10) (n = 27) (n = 17) (n = 6) (n = 23) (n = 17) (n = 5/6) (n = 22/23)

Epoxy-DHA

10 (11)-EpDPE 0.00 ± 0.04 −0.05 ± 0.03 −0.01 ± 0.03 0.00 ± 0.04 0.03 ± 0.05 0.02 ± 0.03 0.16 ± 0.06 0.24 ± 0.10 0.18 ± 0.05 0.31 ± 0.09 0.43 ± 0.09 0.32 ± 0.07 0.496 <0.001 0.931 0.37

13 (14)-EpDPE −0.01 ± 0.03 −0.06 ± 0.02 −0.03 ± 0.02 0.00 ± 0.03 0.06 ± 0.05 0.03 ± 0.03 0.15 ± 0.05 0.15 ± 0.10 0.15 ± 0.04 0.27 ± 0.07 0.46 ± 0.12 0.29 ± 0.06 0.394 <0.001 0.452 0.387

16 (17)-EpDPE −0.02 ± 0.03 −0.02 ± 0.05 −0.02 ± 0.03 0.00 ± 0.04 0.04 ± 0.05 0.02 ± 0.03 0.15 ± 0.05 0.16 ± 0.08 0.15 ± 0.04 0.30 ± 0.07 0.41 ± 0.10 0.32 ± 0.06 0.566 <0.001 0.886 0.681

19 (20)-EpDPE −0.01 ± 0.05 −0.10 ± 0.04 −0.03 ± 0.04 0.02 ± 0.06 0.07 ± 0.06 0.04 ± 0.04 0.25 ± 0.08 0.37 ± 0.19 0.29 ± 0.08 0.47 ± 0.11 0.69 ± 0.10 0.50 ± 0.10 0.405 <0.001 0.862 0.301

Hydroxy-ARA

5-HETE −0.28 ± 0.23 −0.26 ± 0.10 −0.27 ± 0.17 −0.14 ± 0.08 −0.21 ± 0.16 −0.16 ± 0.08 −0.06 ± 0.24 −0.29 ± 0.07 −0.12 ± 0.18 −0.24 ± 0.10 −0.32 ± 0.36 −0.25 ± 0.10 0.187 0.928 0.924 0.349

8-HETE −0.02 ± 0.02 −0.02 ± 0.02 −0.02 ± 0.01 −0.02 ± 0.02 0.01 ± 0.03 −0.01 ± 0.02 −0.03 ± 0.02 −0.01 ± 0.03 −0.03 ± 0.02 −0.04 ± 0.01 −0.02 ± 0.01 −0.04 ± 0.01 0.600 0.684 0.971 0.674

11-HETE −0.03 ± 0.01 −0.07 ± 0.02 −0.04 ± 0.01 0.00 ± 0.02 0.00 ± 0.05 0.00 ± 0.02 −0.04 ± 0.03 −0.02 ± 0.02 −0.04 ± 0.02 −0.06 ± 0.01 −0.05 ± 0.03 −0.06 ± 0.01 0.545 0.181 0.784 0.357

12-HETE 0.09 ± 0.39 −0.65 ± 0.54 −0.11 ± 0.33 0.07 ± 0.45 0.21 ± 0.66 0.12 ± 0.37 −0.26 ± 0.49 −0.54 ± 1.26 −0.33 ± 0.47 −0.61 ± 0.27 −0.05 ± 0.06 −0.53 ± 0.23 0.332 0.790 0.997 0.239

15-HETE −0.09 ± 0.06 −0.23 ± 0.09 −0.13 ± 0.05 −0.10 ± 0.07 −0.13 ± 0.06 −0.11 ± 0.05 −0.17 ± 0.06 −0.14 ± 0.05 −0.16 ± 0.05 −0.28 ± 0.05 −0.12 ± 0.11 −0.25 ± 0.05 0.634 0.546 0.391 0.131

20-HETE 0.04 ± 0.09 −0.08 ± 0.14 0.01 ± 0.08 −0.10 ± 0.08 −0.25 ± 0.08 −0.16 ± 0.06 −0.18 ± 0.05 0.10 ± 0.18 −0.10 ± 0.06 −0.22 ± 0.08 0.15 ± 0.22 −0.17 ± 0.08 0.827 0.517 0.051 0.791

Dihydroxy-ARA

5,6-DiHETrE −0.18 ± 0.15 −0.02 ± 0.01 −0.14 ± 0.11 −0.02 ± 0.03 −0.01 ± 0.03 −0.02 ± 0.02 0.02 ± 0.15 0 ± 0.04 0.02 ± 0.11 −0.08 ± 0.04 −0.08 ± 0.1 −0.08 ± 0.04 0.544 0.717 0.991 0.765

8,9-DiHETrE −0.03 ± 0.03 0 ± 0.02 −0.02 ± 0.02 −0.03 ± 0.01 −0.04 ± 0.02 −0.03 ± 0.01 −0.02 ± 0.03 0.01 ± 0.04 −0.02 ± 0.03 −0.08 ± 0.02 −0.02 ± 0.03 −0.07 ± 0.02 0.613 0.224 0.735 0.657

11,12-DiHETrE −0.04 ± 0.03 −0.03 ± 0.04 −0.04 ± 0.03 −0.06 ± 0.02 −0.16 ± 0.03 −0.1 ± 0.02 −0.08 ± 0.03 −0.04 ± 0.04 −0.07 ± 0.02 −0.19 ± 0.03 −0.01 ± 0.08 −0.17 ± 0.03 0.369 0.164 0.02 0.459

14,15-DiHETrE −0.02 ± 0.04 −0.03 ± 0.06 −0.02 ± 0.03 −0.07 ± 0.02 −0.14 ± 0.02 −0.09 ± 0.02 −0.06 ± 0.03 −0.05 ± 0.04 −0.06 ± 0.02 −0.18 ± 0.04 −0.02 ± 0.09 −0.16 ± 0.04 0.648 0.132 0.193 0.38

Epoxy-ARA

5 (6)-EpETrE 0.08 ± 0.12 −0.11 ± 0.16 0.03 ± 0.1 −0.13 ± 0.12 −0.06 ± 0.15 −0.1 ± 0.1 −0.09 ± 0.12 0.05 ± 0.14 −0.05 ± 0.1 −0.13 ± 0.13 −0.06 ± 0.25 −0.12 ± 0.12 0.673 0.636 0.903 0.998

8 (9)-EpETrE 0 ± 0.02 0 ± 0.04 0 ± 0.02 −0.02 ± 0.02 0 ± 0.03 −0.01 ± 0.02 −0.01 ± 0.03 0.01 ± 0.04 0 ± 0.02 0 ± 0.02 0 ± 0.03 0 ± 0.02 0.736 0.928 0.916 0.635

11 (12)-EpETrE −0.01 ± 0.02 −0.01 ± 0.02 −0.01 ± 0.01 −0.03 ± 0.02 −0.02 ± 0.03 −0.03 ± 0.02 0 ± 0.02 0 ± 0.05 0 ± 0.02 −0.01 ± 0.02 0.03 ± 0.01 0 ± 0.02 0.861 0.538 0.878 0.766

14 (15)-EpETrE −0.01 ± 0.05 −0.01 ± 0.07 −0.01 ± 0.04 −0.11 ± 0.04 −0.07 ± 0.07 −0.09 ± 0.03 −0.03 ± 0.05 −0.02 ± 0.1 −0.03 ± 0.04 −0.03 ± 0.04 0.09 ± 0.05 −0.02 ± 0.04 0.393 0.223 0.639 0.582

Mean ± SEM(n) absolute change in individual hydroxy-, dihydroxy- and epoxy-EPAs, -DHAs and -ARAs. P values are shown for genotype, dose PUFA and genotype*dose interaction using univariate GLM. P value for baseline parent

PUFA was calculated in the same univariate GLM as a covariate. Other covariates used are age, gender and BMI.
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FIGURE 5 | Mean absolute change (±SEM) in select EPA-derived oxylipins (nM) at 12 months of supplementation, according to APOE genotype and the level of

baseline EPA. Low basal EPA (APOE3 n = 22, APOE4 n = 9), high basal EPA (APOE3 n = 18, APOE4 n = 10).

APOE4 carriers could increase the activity of lipoxygenases
and autooxidation of PUFA which in turn leads to an
increased production of EPA-and DHA-oxylipins when fish oil
is supplemented.

Consistent with previous observations of greater increases in
oxylipins in those with lower parent PUFA at baseline (25, 73), we
observed that the change in the EPA- oxylipins (5-, 9-, 11-, 19, 20-
HEPEs-, and all DiHETEs), though not the DHA- oxylipins, was
associated with baseline EPA levels in plasma PC. In an earlier
study, we found that the increase in 5-HEPE and 17,18-DiHETE
after 12 weeks of n-3 PUFA supplementation was significantly
associated with baseline EPA status (p < 0.01 and p < 0.05,
respectively), with higher levels observed in subjects with low
baseline EPA levels (23). The current study shows that higher
levels of 5-HEPE, 9-HEPE, 11-HEPE, and 20-HEPE are present
in APOE4 individuals with low basal EPA status, compared to
APOE3 (Figure 5).

APOE∗time interactions were only evident for hydroxy- and
dihydroxy-EPAs and -DHAs, with no significant increase in
the epoxy-EPAs and DHAs (Figure 2 and Table 4). This is
despite the increase of hydroxy-, dihydroxy- and epoxy-EPAs
and -DHAs which was generally observed with n-3 PUFA
intervention (Figure 2), Dihydroxy-oxylipins are the metabolic
products of epoxy-oxylipins by the action of sEH, with the ratio
of DiHETE/EpETE being indicative of sEH activity (13, 74).

It is important to note here the effect of n-3 PUFA dose
and duration of intake on the changes in plasma oxylipins in

APOE4 carriers. The difference in n-3 PUFA-derived oxylipins
was observed with an n-3 PUFA dose equivalent to two
portions of oily fish intake per week and became more evident
with the dose equivalent to four portions per week, at 12
months of n-3 PUFA supplementation. Indeed, it has been
demonstrated that a threshold intake of n-3 PUFAs may be
required before a favorable effect is observed, whether in the form
of increased specialized pro-resolving mediators production (75)
or in reducing neuroinflammation (76).

The main strengths of this study were the large
number of oxylipins quantified, the dose response
nature of the analysis (three physiologically relevant
doses included), and the long intervention period
of 12 months, which included interim assessment at
3 months.

The present study has some limitations. Due to the
exploratory nature of the analysis, participants were genotyped
retrospectively and an unequal sample size between APOE3
(n = 66) and APOE4 (n = 26) inevitable. When further
subgrouping the participants according to n-3 PUFA dose,
the numbers in the genotype groups were lower, reaching
5–6 in the four portions fatty fish/week group. However,
an independent association of APOE with plasma oxylipins
was still observed, regardless of the n-3 PUFA dose given.
Another limitation is that correction for multiple testing
was not applied, which may lead to overestimation of
the findings. Due to the exploratory nature of this study,
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validation in a study with a larger number of participants
is necessary.

In conclusion, this study shows for the first time the
impact of APOE genotype on plasma oxylipin concentrations
and their response to EPA+DHA intervention. Higher levels
of EPA- and DHA- oxylipins in APOE4 carriers compared
to the wild type APOE3/E3 genotype become more evident
with higher doses of n-3 PUFAs supplemented for longer
periods (12 months). The greatest increase was in autoxidatively
formed 8-HEPE which is a PPAR activator, with PPAR
activation shown previously to be inhibited in APOE4 carriers
(64). This study indicates that APOE genotype mediating
oxylipin production, and may be an important contributor to
the inter-individual variability and dose-response relationship
between fish oil supplementation and health outcomes. Future
studies should focus on the HEPEs-PPARs-glucose and lipid
metabolism axis according to APOE genotype status, given
their greater increase in response to PUFA supplementation in
APOE4 carriers and their emerging importance in regulating
cellular metabolism.
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