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ABSTRACT 

Managing navigational safety is a key responsibility of coastal states. Predicting and measuring these 

risks has a high complexity due to their infrequent occurrence, multitude of causes and large study 

areas. As a result, maritime risk models are generally limited in scale to small regions, generalised 

across diverse environments or rely on the use of expert judgement. Therefore, such an approach has 

limited scalability and may incorrectly characterise the risk. Within this paper a novel method for 

undertaking spatial modelling of maritime risk is proposed through machine learning. This enables 

navigational safety to be characterised whilst leveraging the significant volumes of relevant data 

available. The method comprises two key components: aggregation of historical accident data, vessel 

traffic and other exploratory features into a spatial grid; and the implementation of several 

classification algorithms that predicts annual accident occurrence for various vessel types. This 

approach is applied to characterise the risk of collisions and groundings in the United Kingdom. The 

results vary between hazard types and vessel types but show remarkable capability at characterising 

maritime risk, with accuracies and AUC scores in excess of 90% in most implementations. 

Furthermore, the ensemble tree-based algorithms of XGBoost and Random Forest consistently 

outperformed other machine learning algorithms that were tested. The resultant potential risk maps 

provide decision makers with actionable intelligence in order to target risk mitigation measures in 

regions with the greatest requirement. 
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1 INTRODUCTION 

Maritime accidents such as collisions and groundings can result in significant loss of life, pollution and 

economic losses. Accurately characterising maritime risk within an area is a critical task for decision 

makers. Coastal states need to determine the requirement for different risk mitigation measures such 

as traffic routeing measures or pilotage (IMO, 2004). The offshore renewables or oil and gas industries 

need to ensure that the risks to their developments, and impact on navigation safety are acceptable. 

Ports and harbours need to ensure that their waterways are safe for trading vessels and appropriate 

risk controls are in place. Maritime safety assessments are often framed in the context of the 

International Maritime Organisation’s (IMO) Formal Safety Assessment (FSA) (Montewka et al. 2014) 

which provides a structured and systematic methodology for risk analysis (IMO, 2018). The FSA is goal-

based and proactive rather than reactive, identifying hazards, assessing risks, identifying mitigation 

measures, and performing a cost-benefit assessment before providing recommendations.  

Numerous quantitative methods are proposed for use in maritime risk studies (OpenRisk, 2018). These 

include statistical analysis of accident data and incident rates (Bye and Almklov, 2019), the use of 

expert judgement in the form of Bayesian Networks (Hanninen, 2014; Montewka et al. 2015) and 

analytical risk modelling, such as geometric route models (Pedersen, 1995; Mazaheri and Ylitalo, 2010; 

Li et al. 2012a) or time-domain simulations (Wang et al. 2009; Pietrzykowski and Uriasz, 2009). Whilst 

these methods have made a significant contribution to understanding maritime safety, limitations 

have been identified in probabilistic risk assessments more generally (Aven and Zio, 2011), and 

maritime risk assessments specifically (Psaraftis, 2012; Hoorn and Knapp, 2015; EMSA, 2018). 

Maritime accidents occur infrequently, limiting the available sample size, and whilst some have 

proposed using near misses (Du et al. 2020) or expert judgement (Mazaheri et al. 2014), this may not 

accurately reflect the circumstances of previous incidents. Most accidents are the result of human 

error (Weng et al. 2019) which requires a detailed understanding of human factors and organisational 

influences which can be challenging to model. Furthermore, often there is a complex interplay of 
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different factors that leads to an accident, which leads to difficulty in diagnosing the root cause (Brito 

et al. 2014).  

Whilst predicting each individual accident occurrence is challenging, over time accidents tend to occur 

more frequently in some places than others (Hoorn and Knapp, 2015). Spatially dependent variables 

include traffic volume, bathymetry, weather and a myriad of other factors (Mazaheri et al. 2014). By 

mapping the presence of these risk factors, it may be possible to develop national scale, high 

resolution, strategic risk maps to support decision makers. Whilst some work has attempted such an 

exercise, several key challenges need to be addressed. Firstly, how can the multitude of maritime risk 

factors be quantified and integrated into a model given their heterogenous formats? Secondly, how 

can the complex relationships between vessel traffic, incidents and relevant contributory factors be 

determined? Thirdly, what is the effect of aggregating the input data, both spatially and temporally, 

on the effectiveness of the model? Finally, how can the performance of these models be evaluated 

and what is their utility to navigation authorities, given their potentially high cost. 

To address these challenges, this paper proposes a novel approach to maritime risk assessment by 

using machine learning methods to predict the likelihood of collisions and groundings in UK waters. 

Several key contributions are made. Firstly, a pipeline is proposed for integrating massive and 

heterogenous maritime datasets into a common spatial data structure, recognised as an emerging but 

important trend (Kulkarni et al. 2020), partly due to the inherent challenges of achieving this (Lensu 

and Goerlandt, 2019). Secondly, the strength of different machine learning methods to predict the 

spatial distribution of maritime accidents is tested. In situations with complex, non-linear relationships 

between heterogenous datasets, machine learning methods have been shown to be effective but 

there are few examples for maritime risk assessment (Jin et al. 2019; Adland et al. 2021) and it is a 

growing method in risk analysis more generally (Nateghi and Aven, 2021). Finally, it has been noted 

that little scientific attention has been given to implementing maritime risk models to support decision 
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making (Kulkarni et al. 2020), and this paper sets out a practical, structured framework for achieving 

this. 

The remainder of this paper is set out as follows: Section 2 provides an overview of existing methods 

to develop spatial risk models. Section 3 describes the general methodological approach which is 

proposed in developing the spatial model, including the variables, algorithms and data pre-processing. 

Section 4 implements this methodology for a case study on assessing navigational safety in the United 

Kingdom. Finally, Section 5 discusses the implications of this work and proposes several areas of future 

research. 

2 LITERATURE REVIEW 

2.1 SPATIAL MODELS OF MARITIME RISK 

Mapping the relative likelihood of maritime risk are often reliant on either expert judgement or 

historical accidents. Firstly, in practice risk assessment is performed using expert judgement using 

hazard workshops and risk matrices (see for example Port of Dover, 2016). Limitations of risk matrices 

have been widely discussed (Cox, 2008; Hubbard, 2009; Kontovas and Psaraftis, 2009) and include a 

fixed spatial scale of assessment. Secondly, the sparsity of historical accident data might result in 

regions without previous accidents being incorrectly interpreted as having zero risk (Rawson et al. 

2019). One method to overcome this is to generalise the study areas into much larger regions (Bye 

and Almklov, 2019), but doing so compromises the important insights from localised risk factors.  

To incorporate the spatial element, several studies have utilised Geographical Information Systems 

(GIS). In general, regions are subdivided into a grid of smaller spatial units, datasets are mapped across 

this grid, and some form of calculation conducted to derive a risk score. This might include assigning 

weightings derived from expert judgement (Halpbern et al. 2008), fuzzy logic (Zhou et al. 2020) or 

statistical techniques (Hoorn and Knapp, 2015; 2019). Table 1 provides an evaluation of several major 

regional scale studies into maritime risk, demonstrating a great variation in purpose, datasets, 
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methods and spatial units. Several limitations are common between these studies on each of these 

aspects which should be addressed. 

Firstly, some studies seek to guide national policy (Safetec, 1999; Marico, 2015) whilst others are 

tailored to evaluating the impacts of new terminals (van Dorp 2008; 2014; DNV, 2012). The scope of 

the studies is limited to one specific issue, omitting many other potentially significant hazards. 

Furthermore, the models have a high cost and are conducted in isolation (EMSA, 2018), becoming 

quickly out of date, superseded by changing shipping patterns or new developments. 

Secondly, the principal inputs used in these assessments include expert judgement, vessel traffic data 

collected from the Automatic Identification System (AIS), historical incident data and various 

environmental datasets. Some have criticised maritime risk assessments as overly qualitative 

(Psaraftis, 2012) and limitations of expert judgment have been widely discussed (Kahneman et al. 

1982). In addition, issues with the quality of the accident (Hassel et al. 2011; Qu et al. 2012) and vessel 

traffic data (Harati-Mokhtari et al. 2007) have been highlighted. 

Thirdly, a variety of different techniques are utilised to calculate risk. These range from applying 

international accident rates (Genivar, 2013), mapping traffic flows with risk factors using a Bayesian 

Network (DNV, 2012;2013) to comprehensive traffic simulations (van Dorp et al. 2008;2014). It is 

notable that many studies utilise proprietary models developed by the consultancies involved and 

therefore lack transparency (Psaraftis, 2012; EMSA, 2018). Whilst these models have their genesis 

within the academic literature (Fowler and Sorgard, 2000; Merrick and van Dorp, 2006), several recent 

studies have challenged the underlying assumptions of these models, such as the relationship 

between traffic flows, grounding accidents (Mazaheri et al. 2014) and near misses (Rawson and Brito, 

2021).  

Fourthly, different approaches have been devised to tackle the spatial element of the assessments 

with routes, grid cells or large regions used. Each of these seek to reduce the complexity of the 

assessment from effectively infinite spatial variation of maritime risk to a manageable scale of 
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assessment. Where grid cells are utilised, none have considered the potentially significant implications 

on the derived results of spatial distortion due to mapping a square grid on a spherical globe (Battersby 

et al. 2016; Barnes, 2016; 2019). Furthermore, as a result of different methodological implementations 

and assumptions, each study is conducted in isolation for a specific waterway which prevents 

comparison. 

Lensu and Goerlandt (2019) noted that a compromise is generally required on either the study area 

size and dataset volume or the methodological complexity. In this paper, a machine learning approach 

to maritime risk assessment is proposed that addresses this compromise as well as the 

aforementioned methodological challenges.  

 



 

        8 

Table 1: Review of Selected Major Spatial Risk Models. 

N Study Description/Scope 
Spatial 
Units 

Principal Data 
Sources 

Summary of Model 

1 
MEHRAs 
Safetec (1999) 

Identify Marine 
Environmental High Risk 
Areas around the UK Coast 
based on the risk of 
pollution and 
environmental sensitivity 

Varied: 
between 
4.5x75nm 
and 
60x32nm 

Vessel Routes 
Database 
Incident Data 
Environmental Data 

For each cell and route, the geometric probability of 
vessel/shoreline interactions was multiplied by a causation 
factor representing different local factors/risk controls to 
produce an incident probability. Spill probabilities were derived 
from conditional tables given accident type and vessel types. 
Environmental sensitivity was mapped based on weighted 
scores of different receptors. 
Risk is presented as incident probability x spill size x 
environmental sensitivity. 

2 

Prince Rupert 
Marine Risk 
Assessment  
DNV (2012) 

A risk assessment for 
potential introduction of 
LNG and oil tanker traffic 
and any possible associated 
risks or hazards. 

7 "Routes" 

Traffic numbers 
Environmental Data 
Operational Data 
Generic incident 
rates 

MARCS Model - creates vessel routes from AIS data, multiplies 
by base accident frequencies from incident data which is 
modified with environmental datasets to account for localised 
risk. Risk controls are then applied as a percentage 
effectiveness. 

3 

Risk 
Assessment for 
Marine Spills in 
Canadian 
Waters 
Genivar (2013) 

Estimate the relative risk for 
ship-source spills of oil in 
Canadian waters. 

77 broad 
regions 

Transit Data 
Incident Data 
Environmental 
Datasets 

For each region, calculate volume of oil transiting through, 
multiply by a generic accident rate and oil spill size distributions. 
An environmental sensitivity index (ESI) per area is then 
defined, risk being the product of oil spill volume and ESI. 

4 

North East 
Shipping Risk 
Assessment 
DNV (2013) 

Assessment of navigational 
risks due to shipping in 
open waters 

1nm grid 

AIS 
Environmental Data 
Operational Data 
Generic incident 
rates 

MARCS Model - creates vessel routes from AIS data, multiplies 
by base accident frequencies from incident data which is 
modified with environmental datasets to account for localised 
risk. Risk controls are then applied as a percentage 
effectiveness. 
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N Study Description/Scope 
Spatial 
Units 

Principal Data 
Sources 

Summary of Model 

5 

Assessment of 
Marine Oil Spill 
Risk and 
Environmental 
Vulnerability 
for the State of 
Alaska 
RPSasa et al. 
(2014) 

Determine the probabilities 
of spills occurring with 
respect to geographic 
region, oil type, and season, 
as well as the potential 
impacts from an oil spill. 

14 large 
broad 
regions 

Incident Data 

Spill likelihood is calculated based on analysis of historical 
incidents per region and per oil type. These were increased 
based on future traffic projections. In a similar fashion, 
historical incident analysis was used for spill volumes. Where no 
incidents occurred in a region, the rates were manually altered 
to reflect the project team's opinion. 
Environmental sensitivities were mapped to derive 
vulnerability. 

6 
BE-AWARE 
(2014) 

Gain a better understanding 
of the regional and sub-
regional risk of accidents 
and the potential for 
marine pollution events in 
the North Sea. 

Route 
Network 

AIS Data 
Incident Data 

AIS data is compressed into thousands of network routes. For 
each route, the geometric probability and causation probability 
are multiplied by the number of passages. An oil spill output 
model is then applied. 

7 

LINZ 
Hydrographic 
Risk 
Assessment 
Marico (2015) 

Assess navigational risk to 
prioritise the need for 
nautical charting. 

Varied: 
500m to 
3km cells 

AIS 
S57 Charts 
Environmental 
Datasets 

Within each grid cell, for each vessel type, the total number of 
transits/year are multiplied by a generic causation factor and 
then an event tree to derive annualised potential consequence 
for people, environment and monetary impacts. A localised 
weighted causation modifier is applied (e.g. complexity, chart 
age, hazards etc.). This is then multiplied by a weighted 
consequence factor for each consequence type (e.g. response 
complexity, World Heritage Sites, tourist sites, wetlands etc.). 
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N Study Description/Scope 
Spatial 
Units 

Principal Data 
Sources 

Summary of Model 

8 

Marine 
Environmental 
Risk 
Assessment – 
Greenland 
DNV (2015) 

Quantify and describe the 
likelihood of marine 
accidents with and without 
pollution around 
Greenland. 

10km grid 
AIS 
Incident Data 
Ice Coverage 

Risk modelling is undertaken per each grid cell, by multiplying 
likelihood and consequence. 
Accident frequency is derived by calculating annual distance 
travelled, multiplying by base accident frequencies/nm per 
vessel type globally and an adjustment factor (e.g. cells within 
2nm of coast have a 10x adjustment factor for grounding). 
Finally, a table of fuel spill likelihood is used per accident 
scenario. Spill volumes are similarly derived based on vessel size 
and type tables. 
Environmental sensitivities are derived on a per species basis, 
using their vulnerability and mortality to score their sensitivity. 

9 
VTRA 
van Dorp et al. 
(2008; 2014) 

The Vessel Traffic Risk 
Assessment (VTRA) 
assesses the likelihood of 
collisions, allisions and 
groundings in the Puget 
Sound (USA). 

0.5nm grid 

AIS Data 
Incident Data 
Environmental Data 
Expert Elicitation 

A simulation is constructed from AIS data that counts 
interactions between vessels, projects future courses and 
models possible drifting patterns. A base accident rate is used, 
which is modified using a Bayesian pairwise expert elicitation 
model to account for other causal factors. Finally, oil spill 
outflow for each accident situation is modelled. 
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2.2 MACHINE LEARNING IN SPATIAL RISK ASSESSMENT 

Machine learning techniques for risk assessment are an emerging field of study (Hedge and Rokseth, 

2020; Nateghi and Aven, 2021). Supervised learning of accident data, whereby a model is constructed 

on data containing both input and outputs, has two key applications within transportation safety. 

Firstly, predicting the severity of accidents based on the accident characteristics (Li et al. 2012b; Lee 

et al. 2019; Zhang and Mahadevan, 2019). Secondly, predicting the likelihood of accidents based on 

identified risk factors such as driving style, personal descriptive characteristics (Fang et al. 2018; Wang 

et al. 2019) and environmental conditions (Yuan et al. 2017).  

Within the maritime domain, this topic has been rarely addressed though their potential was 

recognised some time ago (Wang et al. 2004). Several studies have sought to identify which vessels 

are likely to have accidents given their characteristics using ship details (Jin et al. 2019) or inspection 

outcomes (Heij and Knapp, 2018). However, such models use only descriptive variables of the vessels 

such as age, flag or size and therefore lacks any spatial element. Others have incorporated spatial and 

temporal datasets such as weather conditions to improve the discrimination of accidents between 

vessel transits (Wu et al. 2009; Adland et al. 2021; Rawson et al. 2021). By aggregating these datasets, 

a strategic risk tool can be developed to identify which regions have a higher propensity for accidents. 

There are two approaches that can be taken in order to frame the research question; namely, 

regression to predict some target variable in an area based on input features; or classification of 

whether a variable occurs or not in that location. Accident frequency as a continuous variable is 

naturally a regression problem, and some studies have sought to map crime frequency (McClendon 

and Meghanathan, 2015), road accident frequency (Pan et al. 2017) and susceptibility of landslides 

(Lee et al. 2017). However, the presence or absence of a certain event can also be predicted spatially 

using classification algorithms if we consider that all locations and times where an incident has 

occurred is a positive case whereas all other locations and times are negative cases. For example, the 

presence or absence of forest fires can be modelled as a classification exercise using historical fire 
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events and various spatial variables such as elevation, land use and rainfall (Rodrigues and Riva, 2014; 

Nguyen et al. 2018; Agarwal et al. 2020). Other examples of this approach include air pollution 

(Choubin et al. 2020), avalanches (Choubin et al. 2019), flooding disasters (Mojaddadi et al. 2017; Li 

et al. 2019; Tetro et al. 2019) or road traffic accidents (Yuan et al. 2017; Moosavi et al. 2019). The 

trained model can then be applied to the entire dataset in order to produce regional maps of the 

relative likelihood of certain events (Mojaddadi et al. 2017; Nguyen et al. 2018; Li et al. 2019). High 

resolution and data driven impact maps can be generated, far exceeding the detail and scale of what 

other methods might achieve, including areas where no historical events have previously occurred. 

Section 3 describes a general methodological framework for achieving these aims in the context of 

maritime safety before testing its effectiveness using a UK case study in Section 4. 

3 GENERAL METHODOLOGY 

The proposed methodology consists of four steps (Figure 1), which are described in the following sub-

sections.  
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Figure 1: Methodological Approach. 

3.1 STEP 1: DATA PIPELINE 

Step 1 requires the development of a data pipeline to identify, quantify and integrate multiple risk 

factors as features into a common data model. Three principal sources of data are required. Firstly, 

accident data is the class label and can be obtained from national administrations or commercial 

proprietary datasets. Secondly, all other factors being equal, we might naturally expect more accidents 

in locations where more vessels transit and therefore a key input is a measure of vessel activity. 

Multiple standardised units of measurement can be developed using AIS data, including the number 

of transits, hours of transit or distance travelled (Bye and Almklov, 2019).  
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Thirdly, other independent variables related to the relative likelihood of maritime accidents have been 

proposed (Kite-Powell et al. 1999; Kristiansen, 2005; USCG, 2010; Mazaheri et al. 2014; Mazaheri et 

al. 2016; Bye and Aalberg, 2018; Hoorn and Knapp, 2019; Olba et al. 2019). These can be categorised 

into human, mechanical and external factors and an overview is provided in Table 2. Not all of these 

causal factors are well suited to integration into a spatial model, but different methods have been 

proposed to model weather (Rezaee et al. 2016; Knapp et al 2011; Adland et al. 2021) or ship 

characteristics (Bye and Aalberg, 2018; Heij and Knapp, 2018; Jin et al. 2019) amongst others. Some 

features might need to be engineered or obtained from experts. For example, mapping the perceived 

complexity of navigation as characterised by ship’s masters (Mazaheri et al. 2014). 

Table 2: Significant Causes of Maritime Accidents. 

Category Cause 

Human and 
Organisational Factors 

Inattention and Fatigue 
Bridge Resource Management 
Communication 
Position Monitoring 
Training and experience 
Regulation 

Vessel and Mechanical 
Factors 

Ship Dimensions and Manoeuvrability Characteristics 
Vessel Age 
Vessel Flag State and Safety Regime 
Maintenance 
Vessel Speed 

External Factors 

Traffic Density and Distribution 
Waterway Geometry 
Depth 
Weather (Visibility, wave, ice, darkness etc.) 
Hydrodynamic Effects (E.g. Tidal, Bank Effect) 
Support Availability (VTS, Tugs, TSS, Pilotage, Aids to Navigation etc.) 

Having identified and obtained relevant datasets, a base spatial model is required to fuse the 

heterogeneous datasets with different geometries, scales and accuracy. Binning of spatial data into a 

discrete number of cells reduces complexity and enables standardised statistical methods to be 

applied. Conventionally, cartesian grid systems, with fixed x-y dimensions, are widely employed in 

maritime studies (Wu et al. 2017; Filipiak et al. 2018). However, such a structure attempts to map a 

regular lattice onto a spherical globe, inevitably introducing a number of distortions in cell size and 
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shape that could limit the validity of analysis (Battersby et al. 2016). Within this study, a form of equal-

area, hexagonal and global tessellation is implemented known as the Discrete Global Grid System 

(DGGS) (OGC, 2019). The final dataset should then be quality checked to identify and correct any 

missing or spurious values. 

3.2 STEP 2: DATA PREPARATION 

At this juncture there are two methods through which to frame the problem, namely regression and 

classification. If taken as the number of incidents per year, the relative sparsity of incidents means 

that in any individual waterway almost all records will take the form of 1 or 0. For example, there are 

few locations where multiple collisions of commercial vessels happen every year. As a result, 

classification models may be better suited, and have been implemented in this case study. Each DGGS 

cell is sampled on accident occurrence at different temporal scales. The data has also been aggregated 

annually, but also compared by month to test the importance of seasonal factors. For example, the 

occurrence of an accident in a cell in one month but not the other eleven, is represented as one 

positive and eleven negative samples.  

3.3 STEP 3: MACHINE LEARNING MODEL DEVELOPMENT 

The prepared dataset consists of a number of exploratory features, and a binary label of accident 

occurrence or not occurrence. The dataset is randomly split into a training and testing dataset with a 

ratio of 70% to 30% respectively. Model development and tuning is conducted utilising the training 

dataset and evaluated on the test set. 

Classification algorithms have a natural tendency towards the majority class, incorrectly treating the 

minority class as noise (Leevy et al. 2018). Strategies to redress this include data rebalancing, the use 

of class distribution sensitive models and the use of cost-sensitive learning approaches. In this study, 

a powerful technique to generate realistic new samples to balance the training datasets called 

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) is used. As shown in 

Equation 1, SMOTE searches k-nearest minority neighbours of each minority instance (Xi), selecting 
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one of the neighbours as a reference point (XKNN) and generating a new value (Xnew) by multiplying the 

difference with a random value, r, between 0 and 1 (r). 

 𝑋𝑛𝑒𝑤 = 𝑋𝑖 + (𝑋𝐾𝑁𝑁 − 𝑋𝑖)  × 𝑟 (1) 

There are a significant number of possible machine learning algorithms suitable for classification. This 

work implements four which have been shown to achieve good performance in previous studies, 

namely Logistic Regression, Support Vector Machines (SVM), Random Forest and Gradient Boosted 

Trees. Each algorithm has hyperparameters which impact prediction performance and require tuning 

by iteratively retraining the model with different input hyperparameters and comparing performance. 

The best performing model is then chosen for further evaluation and implementation using the test 

dataset. 

3.3.1 Logistic Regression 

Logistic Regression has been utilised by many for maritime risk modelling due to its suitability of using 

multiple independent variables, greater transparency, low computational requirements and capability 

to provide a probabilistic output between 0 and 1 (Knapp et al. 2011; Razaee et al. 2016; Jin et al. 

2019). Independent variables X (x1, x2, x3…) explain a binary outcome yi where yi is 1 if an accident 

occurs, otherwise yi is 0: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0 +  𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 (2) 

Where Logit(pi) is the logit transformation of the odds and β0 and βn are the bias and feature 

coefficients respectively, and can be rewritten as: 

𝑃𝑖 =
𝑒𝛽0+ 𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘

1 +  𝑒𝛽0+ 𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘
 

(3) 
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3.3.2 Support Vector Machines 

An SVM can perform linear and non-linear classification by constructing a hyperplane or set of 

hyperplanes in high dimensional space to maximise the margin between training examples (Kecman, 

2005). A linear SVM’s decision function is created from the feature weights vector (w) plus a bias term 

(b): 

𝑤𝑇𝑋 +  𝑏 = 0 (4) 

To maximise the margin, it is necessary to minimise the weight vector by solving the optimisation 

problem of: 

minimise
𝑤,𝑏

1

2
𝑤𝑇𝑤  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 

(5) 

In cases where the data is not linearly separable, the hyperplane margins can be made soft. In addition, 

it is possible to apply a kernel function to transform the data into a higher dimensional space, where 

it is linearly separable.  

3.3.3 Random Forest 

Random Forests develop an ensemble of decision trees and has attractive properties such as training 

speed and robustness when using high-dimensional and unbalanced datasets (Brieman, 2001). 

Decision trees are constructed in a top-down recursive manner that partitions the data into different 

groups. At each step, a feature k is split by a threshold value tk so as to maximise the purity of each 

subset such that each node is as homogenous as possible. The cost function (J) that is optimised can 

be represented as below, where G and m represent the impurity and number of instances of each 

subset respectively. 

𝐽(𝑘, 𝑡𝑘) =
𝑚𝑙𝑒𝑓𝑡

𝑚
𝐺𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝐺𝑟𝑖𝑔ℎ𝑡 (6) 
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Gini impurity (G) is used to measure the proportion of training instances that belong to the same class, 

where pi,k is the ratio of class k amongst the training instances in the i-th node. 

𝐺𝑖 = 1 − ∑ 𝑝𝑖,𝑘
2

𝑛

𝑘=1

 
(7) 

Decision trees are prone to overfitting and random forest introduces several features (Breimen, 2001). 

Firstly, bagging (bootstrap aggregating) involves the training dataset being sampled with replacement. 

Secondly, randomly selecting attribute variables when splitting the dataset. This leads to decorrelation 

of each model. The model prediction is the aggregated majority decision of the ensemble of individual 

trees.  

3.3.4 Gradient Boosted Trees (XGBoost) 

Overfitting of decision trees can also be addressed through boosting, which generates an ensemble of 

weaker models that seek to correct the residual errors in previous models to create a stronger 

classifier (Friedman, 2001). New models are iteratively trained on the gradient of the loss function 

through gradient descent. For training data xi and labels yi, a tree ensemble model takes the form 

where K is the number of trees, f is a function in the functional space F of the set of all possible trees. 

The prediction scores of each tree are summed so as to reach a final score and the predicted value 

(ŷi). 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘  ∈ 𝐹

𝐾

𝑘=1

 
(8) 

In order to learn the functions which describe the structure of the tree and leaf scores, an additive 

strategy is undertaken to sequentially add trees and fix the errors in what has been learnt. The 

prediction value at step t is given as y î(t), with n number of predictions, then at each stage of training 

we want to add the tree that optimises a regularised objective function where l is the loss function 

between prediction y ând target y. A regularisation term (Ω) is used to prevent overfitting and 
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measures the complexity of the model, consisting of T as the number of leaves in a tree, the vector of 

leaf scores w, complexity parameter γ and λ as the parameter to scale the penalty.  

𝑜𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ Ω(f𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (9) 

𝑤ℎ𝑒𝑟𝑒 Ω(f) = 𝛾𝑇 +  
1

2
𝜆‖𝑤‖2 

(10) 

Through second order Taylor expansion, where gi and hi are the first and second order gradient 

statistics of the loss functions respectively, and removing the constants, the specific objective at step 

t becomes as presented in Equation 11. 

𝑜𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω(f𝑡) 
(11) 

The optimal weights and tree structure functions are computed using Equations 12 and 13 

respectively: 

𝑤𝑗
∗ =

𝐺𝑗

𝐻𝑗 + 𝜆
 

(12) 

𝑜𝑏𝑗∗ =  −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆

𝑇

𝑗=1

+  𝛾𝑇 
(13) 

Finally, each tree is optimised one level at a time, splitting a leaf with the score it gains defined in 

Equation 14, namely, the score on the left leaf, the score on the new right left, the score on the original 

leaf and regularisation on the additional leaf. If the gain is smaller than γ, then the branch should not 

be split. The gain for each feature indicates its relative contribution towards the model making 

accurate predictions, therefore implying its importance.  
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𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 

(14) 

Extreme Gradient Boosting (XGBoost) introduces several innovations including parallel learning to 

improve performance, whilst being computationally less costly and therefore fast (Chen and Guestrin, 

2016). In addition, XGBoost utilises the techniques of shrinkage and sub-sampling to prevent 

overfitting, the former reducing the influence of each tree through training, and the latter training on 

a random subset of data columns. XGBoost has been shown to have good predictive capabilities in 

accident prediction, often exceeding the accuracy of other models (Leevy et al. 2018) in both road 

transportation (Shi et al. 2019; Wang et al. 2019; Parsa et al. 2020) and maritime risk (Jin et al. 2019; 

Adland et al. 2021). It has also been shown to be highly efficient and therefore scalable to massive 

datasets (Leevy et al. 2018), which is a significant advantage when analysing large maritime traffic 

datasets.  

3.4 STEP 4: RESULTS EVALUATION AND IMPLEMENTATION 

Multiple performance measures for machine learning classification algorithms are available. These 

include model accuracy, recall (ratio of true positives to false negatives and true positives), specificity 

(ratio of true negatives to true negatives and false positives), precision (ratio of true positives to true 

positives and false positives) and F1 Score (harmonic mean of precision and recall). In this study, the 

Area Under Curve (AUC) of the Receiver Operating Characteristics (ROC) Curve is used as the primary 

performance measure. The ROC curve plots the true positive rate (recall) against the false positive 

rate (1 – specificity). The resulting score measures the model’s ability to separate positive and negative 

samples. A score of 0.5 indicating random performance and a score of 1.0 indicating perfect 

performance. 

Predicted class probabilities need to be calibrated as upsampling the minority class through SMOTE 

causes high probabilities for the majority class. This can be corrected by adjusting for the ratio of 
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positive to negative classes in the data (Pozzolo et al. 2015), where ps is the probability of selecting a 

positive or negative sample and β is the ratio of positive to negative samples during sampling. 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑃 =
𝛽𝑝𝑠

𝛽𝑝𝑠 − 𝑝𝑠 + 1
 

(15) 

Following this the probability of accidents in each cell can be displayed, and the relative significance 

of each feature to accident occurrence considered. 

4 UNITED KINGDOM EEZ CASE STUDY 

4.1 UK STRATEGIC MANAGEMENT OF VESSEL SAFETY 

The Maritime and Coastguard Agency (MCA) is responsible for managing the safety of shipping in UK 

waters. The MCA must ensure that existing waterways are safe and that any proposed future 

developments do not compromise the safety of navigation. At a regional or local level, risk 

assessments are also required by developers for offshore wind farms (MCA, 2021) and oil and gas 

infrastructure (DECC, 2012). For UK ports and harbours, the Port Marine Safety Code (PMSC), states 

that a risk assessment should “ensure that marine risks are formally assessed and are eliminated or 

reduced to the lowest possible level” (DfT, 2016:5). Such activities are hampered by the scale of the 

task, with the UK responsible for more than 10,000 miles of coastline and two million square miles of 

sea. As a result, there is no overarching and holistic maritime risk assessment for UK waters utilised 

by the MCA. To address this, the methodological framework developed in Section 3 is evaluated within 

the context of the UK’s EEZ in the following section. 

4.2 DATASETS 

In this case study a spatial model is constructed using DGGS at resolution 11 (Barnes, 2016) which 

consists of 2,941 hexagonal cells (excluding those entirely on land) each with an area of 290 km2 and 

a diameter of 22km. This resolution was found to exhibit a balance between spatial precision and real-

world implementation, providing similar cell sizes as used in other studies. However, the approach 
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described above can be conducted at any resolution, utilising a finer or coarser spatial scale as 

required. 

4.2.1 Vessel Traffic 

Anonymized monthly AIS data in the UK for 2017 is available from the Marine Management 

Organization (MMO) in ESRI shapefile polylines format (MMO, 2014). These tracks have been grouped 

into unique daily vessel movements and annualised for each grid cell for each vessel type utilising a 

spatial join (see Figure 2). Within the MMO dataset, vessels are classified into 11 type categories based 

on their AIS message information. Vessels have been recategorized into five principal types based on 

their size and purpose (Table 3). Some vessel types have been overwritten based on their operational 

activities, for example freight ferries and oil and gas supply vessels are described as cargo vessels but 

have been assigned passenger and tug and service vessels respectively.  

Table 3: Vessel Categories (* indicates some vessels split into different categories). 

Vessel Category MMO Vessel Types 

Commercial (Dry or 
liquid bulk) 

Cargo (*), Tankers 

Passenger (Cruise 
Ships and Ferries) 

Passenger Vessels, high speed craft (*). 

Fishing Fishing 

Recreational (Leisure) Sailing and Pleasure Craft 

Tug and Service Craft 
Cargo (*), Unknown, Port Service Craft, Vessels engaged in dredging or 
underwater operations, high speed craft (*), military or law enforcement. 
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Figure 2: Vessel Traffic Movements by Vessel Type.
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4.2.2 Incident Data 

Incident data was provided by the UK’s Marine Accident Investigation Branch (MAIB) under a Freedom 

of Information Request for the years 2010 to 2020. The data has been filtered to the UK EEZ and 

filtered to collisions (n=1,226) and groundings (n=901), shown in Figure 3. The same vessel type 

categorisations shown in Table 3 have been applied. Whilst every effort has been made to ensure the 

accuracy of the underlying accident database, several examples were found of erroneous locations 

assigned to accidents. Where these have been identified the incident attributes were corrected 

manually, however, we must accept some degree of uncertainty in the quality of the underlying 

accident datasets which have been commented on previously (Qu et al 2012; Hassel et al. 2011). 



 

 25 

 

Figure 3: Historical Accidents (2010-2020).



 

 26 

4.2.3 Other Datasets and Feature Engineering 

Based on the risk factors identified in Table 2, the following model features were developed (Figure 4 

and Figure 5): 

1. Annual Vessel Movements for Vessel Class I (n) – as described in Section 4.2.1. 

2. Annual Vessel Movements for all other Vessel Classes (n) - collision incidents would include 

collisions between the target vessel type and other vessel types. 

3. Average Depth of grid cell (metres) - developed as part of the UK’s renewable energy atlas 

(https://www.renewables-atlas.info/) and indicates increased probability of encountering 

shallow waters. 

4. Mean Wind Speed (m/s) and Mean Significant Wave Height (metres)– obtained from the EU 

Copernicus earth observation system (CERSAT-GLO-REP_WIND_L4-OBS and GLOBAL-

REANALYSIS-WAV-001-032). Data consists of a NetCDF format grid contained hourly and 

monthly values for 2017 which are aggregated. Feature indicates presence of metocean 

factors which might compromise ship handling performance. 

5. Mean Spring Tidal Current (knots) - developed as part of the UK’s renewable energy atlas 

(https://www.renewables-atlas.info/) and indicates presence of hydrodynamic factors which 

might increase navigational complexity. 

6. Distance from Shore (km) and Inland Waterways (binary) – calculated for each DGGS cell 

using a spatial query from the GADM world landmass shapefile under free academic license 

(https://gadm.org/download_world.html). Feature indicates relative navigational complexity 

of a waterway and distance to shore. 

7. Average vessel density (0 to 1) – the proportion of navigable waters in a cell which has high 

density traffic. A 1000m high resolution grid was generated of the entire study area, and the 

total number of vessel transits calculated per grid cell. Where the number of transits was 

greater than 100/yr, this cell was classed as high density (N100). The average density of each 

about:blank
about:blank
about:blank
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DGGS cell was then calculated and compared against the percentage of that cell which is not-

land (PArea). Feature indicates presence of major shipping routes or concentrated traffic flows 

which might increase the likelihood of vessel interactions. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁100

𝑃𝐴𝑟𝑒𝑎
 

(16) 

8. Presence or absence of major ports (binary) - The Department for Transport publishes annual 

statistics for what are classed “major” or “minor” ports in the UK (DfT, 2020). All 53 major 

ports were located as a five nautical mile circular buffer, with the presence or absence of a 

port within a DGGS cell taken as a feature. Feature indicates locations of increased 

navigational complexity and vessel activity. 

9. Presence or absence of major shipping routes (binary) - Feature indicates the presence of 

IMO mandated traffic schemes as identified from the relevant nautical publications. 
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Figure 4: Model Features (1). 
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Figure 5: Model Features (2).
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4.3 MODEL DEVELOPMENT 

Given the identified model features, the processing steps identified in Section 3 are undertaken. 

Firstly, the dataset is split into a training and testing dataset with the ratio of 70:30. Secondly, each 

spatial unit was resampled using expected annual and monthly accident frequencies to form a 

classification problem. For example, if during the ten years of accident data, one incident occurred in 

a grid cell, this could be expressed as one positive sample and nine negative samples. It was necessary 

to undertake this resampling after splitting into train and test datasets in order to prevent identical 

samples appearing in both datasets. Thirdly, the dataset was split into twelve different 

implementations, six collision and six grounding implementations for each of the five vessel categories 

and a combined total. Fourthly, positive and negative samples in the training dataset were balanced 

using SMOTE. 

Each of the four algorithms described in Section 3.3 are implemented using the Scikit-Learn and 

XGBoost python libraries. Each model was trained independently to reflect the different factors that 

might influence a commercial vessel as opposed to a fishing vessel, and a collision as opposed to a 

grounding. Hyperparameter tuning was conducted using a parameter grid with randomized search 

using 25 iterations with 5-fold cross validation used to determine the optimal parameters. Each model 

was assessed to maximise the AUC of the ROC curve. The best model in each case was then used on 

the set aside test set to evaluate their effectiveness. The models were developed using aggregated 

annual datasets and monthly datasets, evaluate the significance of temporal factors. 

4.4 RESULTS 

4.4.1 Algorithm Performance 

Figure 6 compares the accuracies achieved by each of the machine learning algorithms using the same 

features and general methodology. Of the 12 models, XGBoost exceeded Logistic Regression and a 

Linear SVM in all 12, and Random Forest in 75% of cases. This supports the findings of other studies 

that XGBoost is a powerful multi-application machine learning model that achieves high performance 
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(Jin et al. 2019; Wang et al. 2020; Adland et al. 2021). Some have argued that logistic regression models 

will rarely perform as well given their inherent statistical assumptions and static relationships between 

variables, but their greater transparency can be an advantage (Adland et al. 2021). Linear SVM’s 

performed marginally better than Logistic Regression but did not achieve the performance of the tree-

based algorithms. Random Forest by contrast was consistently marginally weaker than XGBoost, 

however, achieved the highest accuracies in the case of collision risk for commercial vessels, 

recreational and all vessel types combined. 

Figure 7 further differentiates the XGBoost performance scores utilising the AUC ROC value for 

accident type, vessel type and temporal units. All 12 models achieved AUC ROC scores in excess of 

0.87, indicating both an overall strong performance and which particular model configurations 

perform more or less well. Firstly, the model performance is on average higher for ship groundings as 

opposed to ship collisions. This suggests that spatial factors are more important for ship groundings, 

which given the necessity for shallow water is to be expected. Whilst ship collisions often occur in 

areas of shallow water, where ship navigation is more constrained and they navigate closer together, 

they can also occur offshore in deep water. 

Secondly, model performance varied significantly by vessel type. For example, fishing vessels obtained 

the lowest scores and may be due to underrepresentation of their movements as they are not required 

to carry AIS. Whilst this is also true for recreational craft, their activities are much more concentrated 

in specific regions such as the Solent and are therefore more predictable.  

Thirdly, in most cases, aggregating the data into annualised figures reduced performance as opposed 

to using monthly figures (Figure 7). Monthly figures allow for temporal variations in vessel activity and 

weather conditions to be captured which would otherwise be lost. Furthermore, providing monthly 

figures increases the sample size and training data by 12, likely improving performance. A notable 

exception is recreational craft collision, which whilst highly seasonal, did not achieve as high 

performance as annualised figures.  
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Figure 6: Comparison of Algorithm Performance. 

 

Figure 7: XGBoost performance between annualised and monthly datasets. 
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4.4.2 Implementation 

Given the consistently superior performance of XGBoost, the trained models utilising this algorithm 

have been implemented in order to generate risk maps for collision and grounding of different vessel 

types. The annualised collision and grounding frequencies for each vessel type are shown in Figure 8 

and Figure 9 respectively. Several observations can be made. Firstly, the accident data presented in 

Figure 3 shows that accident distribution is not uniform with a small sample size, and therefore there 

are large regions where no accidents have occurred. By contrast, the trained models have both 

correctly learnt which locations have frequent accidents and identified regions where it predicts could 

have accidents in the future, given the presence of certain risk factors.  

Secondly, for some vessel types the risk is highly concentrated in specific waterways. For example, 

passenger vessel collisions and groundings are shown to be most likely in ferry ports such as 

Southampton/Portsmouth, Liverpool, Belfast and inland waterways such as the Thames. Tug and 

service vessels are highly concentrated in ports and harbours as they include tugs and pilot vessels, 

but the risk of collision involving North Sea oil and gas fields is evident in Figure 8. The risks associated 

with recreational craft are concentrated inshore near popular cruising destinations such as the Solent. 

Thirdly, the distribution of risk for groundings is much more concentrated inshore than for collisions, 

given the significance of water depth in hazard occurrence. However, the model has identified some 

waterways further offshore, such as within the Thames Estuary and Dover Straits which contain 

numerous sand banks where historical ship groundings have occurred.  
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Figure 8: Predicted Collision Frequency Using XGBoost. 
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Figure 9: Predicted Grounding Frequency Using XGBoost. 
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4.4.3 Variable Importance 

Table 4 compares the XGBoost feature importance rankings for collision and grounding between the 

vessel types. Firstly, the overwhelmingly most important feature is distance from shore, and it can be 

seen in Figure 3 that the majority of accidents are coastal. Whilst other types of maritime accident do 

occur offshore, such as sinkings and fires, collisions and groundings are principally near shore hazards. 

As depths of water are averaged per cell, some shallow water shoals may be underrepresented 

contributing a minor influence on the model. 

Secondly, the frequency of vessel movements is a key contribution to accident frequency. The 

statistical relationship between accidents and vessel movements have been challenged by some 

(Mazaheri et al. 2014) but supported by others to varying degrees of significance (Bye and Aalberg, 

2018; Rawson and Brito, 2021). However, the analysis shows that most accidents occur in the busiest 

locations such as ports. In addition, the density of traffic increases the proximity between vessels and 

has an influence on collision risk for some vessel types. It is interesting that the presence of non-

commercial traffic is a more significant contributor to collision risk for commercial and passenger 

vessels, suggesting that these vessel types are more likely to collide with other vessel types than 

similar vessels. 

Finally, the influence of metocean conditions such as wind, wave and tide are amongst the least 

important features. This is contrary to the findings of other works that metocean features are critical 

for predicting certain accident types such as insurance claims (Adland et al. 2021), hurricane impacts 

(Rawson et al. 2021) and fishing vessel casualties (Rezaee et al. 2016). There are two likely reasons for 

this difference. Firstly, the aforementioned works include a variety of other hazards such as capsize or 

cargo damage which are much more related to weather conditions than collisions or groundings which 

are far more commonly associated with human error. Secondly, by aggregating the metocean 

conditions into monthly and annual averages, the most exposed locations are typically furthest from 

shore where accidents are much less likely.  
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Table 4: Feature Ranking Per XGBoost Model (Top 3 Highlighted). 

Variable 

Collision Grounding 
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Target Traffic 10 7 2 2 1 2 5 2 2 2 6 2 

Non-Target Traffic 3 2 11 7 5 N/A 9 9 7 7 8 N/A 

Distance 5 1 5 1 2 1 1 1 1 1 1 1 

Depth 4 3 3 4 4 5 3 4 11 3 2 5 

Density% 1 8 1 6 6 4 6 5 5 9 4 4 

Port 2 9 10 5 11 6 2 8 8 6 3 6 

TSS 6 11 8 9 7 10 10 7 3 5 9 10 

Inland 7 4 4 11 3 3 11 6 6 11 5 3 

Wind 8 5 7 3 9 8 7 10 10 4 11 8 

Wave 11 6 9 10 10 9 4 3 4 8 7 9 

Tidal 9 10 6 8 8 7 8 11 9 10 10 7 

 

5 DISCUSSION AND FUTURE RESEARCH DIRECTIONS 

The case study demonstrates that a machine learning approach to map navigation safety is a powerful 

and effective tool for strategic maritime risk assessment. In particular, this approach has several 

attractive qualities over conventional methods which make them well suited for practical 

implementation as a decision support tool for navigational authorities. Firstly, the proposed model 

provides a high resolution, standardised and visual tool for decision makers to effectively plan the 

safety of navigation between different waterways. Coastal states have an obligation to assess the 

degree of risk within their waterways and determine the requirement for risk control measures (IMO, 

2004). These measures can be expensive, such as Emergency Towage Vessels (ETVs) which cost tens 

of millions of pounds (Transport Committee, 2011) and require both justification and allocation to the 

regions where they would be most effective. Furthermore, marine spatial planning of new 

developments such as offshore wind farms to deconflict with maritime risk can be more effectively 
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undertaken. A national, data-driven risk map can support these activities, providing an important 

visual appreciation of the spatial distribution of risk (Hoorn and Knapp, 2015). Secondly, the model 

can be quickly and cost effectively updated with new traffic conditions at regular intervals without the 

need to commission new studies, overcoming a major limitation of conventional models (EMSA, 2018). 

Furthermore, the model can be tested with future case scenarios by adding additional shipping routes 

or mitigation measures and evaluating the impact on risk. 

Whist this case study has shown significant promise in achieving these goals, several limitations and 

areas of further work remain. Firstly, there are challenges associated with the availability and 

representativeness of the training data (Guikema, 2020). For example, accidents are underreported 

(Qu et al 2012; Hassel et al. 2011) and not all risk factors identified as important (Table 2) can be easily 

quantified into aggregated spatial models. Furthermore, a machine learning approach cannot predict 

accidents for which there are no previous examples. For example, allisions between commercial ships 

and offshore wind farms is a credible hazard (MCA, 2021) but is absent from the training data. 

Secondly, only a single spatial scale of assessment has been utilised for model development. 

Aggregating data into spatial units improves the scalability of subsequent analysis but can lead to 

statistical challenges associated with the Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984; 

Rawson et al. 2019). Whilst a spatial data structure such as a DGGS inherently supports multi-

resolution analysis, the influence of changing resolutions on machine learning model performance 

requires further exploration. Furthermore, it is likely that many features exhibit positive spatial 

autocorrelation whereby risk is clustered into specific waterways. To support model development and 

integration of massive datasets, this work has aggregated data into discrete spatial units without 

regard for the relationships between neighbouring cells. Further work could be undertaken to better 

understand these spatial and statistical relationships.  

Finally, whilst a strategic maritime risk map is valuable to decision makers, a tactical decision support 

tool could be envisaged which identifies risk in real-time to enable Coastguards to intervene to prevent 
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an accident. In such a case, the model would be trained on individual ship positions or transits and the 

specific conditions that the vessel is exposed to (Adland et al. 2021; Rawson et al. 2021). Furthermore, 

the characteristics of each vessel, such as age, flag state or size, could be included as new features in 

the model development (Jin et al. 2019). However, given the requirement for massive vessel traffic, 

metocean and other datasets to achieve this, a big data processing solution would be required 

(AbuAlhaol et al. 2018; Lensu and Goerlandt, 2019). Whilst some work has considered the application 

of architectures such as Apache Spark or Hadoop for maritime risk analysis (Zhang et al. 2019; Filipak 

et al. 2018; Chatzikokolakis et al. 2019), further research is required to integrate machine learning 

processes with big data infrastructure for maritime risk assessment. 

6 CONCLUSIONS 

Spatial maritime risk assessments can support decision makers by comparing and monitoring the risk 

profile between different waterways and enabling the targeted deployment of risk mitigation. 

However, previous risk models have been criticised due to their significant cost, methodological 

assumptions and limited scale. Within this paper, a methodological framework utilising machine 

learning models to map the risk of collisions and groundings across the UK has been presented and 

tested. The results demonstrate that a data processing pipeline using a DGGS, combined with a 

machine learning algorithm can predict which areas of the UK are likely to experience maritime 

accidents to a high degree of accuracy. Furthermore, the model is able to assess the relative risk of 

regions where no historical accidents have previously occurred, overcoming challenges with 

conventional quantitative models.  

This work demonstrates how heterogenous spatial datasets such as bathymetry, vessel traffic, 

metocean and accidents can be effectively integrated into a common spatial model, overcoming the 

static nature of previous works (Jin et al. 2019). Whilst many of these datasets are aggregated, by 

differentiating between monthly and annualised samples, the model performance is shown to be 

more effective with a finer temporal resolution. Furthermore, the use of XGBoost is shown to have 
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consistently greater predictive performance than alternative machine learning algorithms. From these 

outputs, the contribution of different risk factors is discerned, providing additional transparency as to 

how the model is developed. Finally, the practical and operational benefits to coastal states and 

navigational authorities of implementing such a strategic risk tool are described. High resolution, 

visual and automated risk assessment tools can support decision makers with better managing the 

safety of navigation and reducing the risk of loss of life and pollution at sea. 
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