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ABSTRACT

Binary classification is an important issue in many applications but mostly studied for inde-
pendent data in the literature. A binary time series classification is investigated by proposing
a semiparametric procedure named “Model Averaging nonlinear MArginal LOgistic Regres-
sions" (MAMaLoR) for binary time series data based on the time series information of predictor
variables. The procedure involves approximating the logistic multivariate conditional regression
function by combining low-dimensional non-parametric nonlinear marginal logistic regressions,
in the sense of Kullback-Leibler distance. A time series conditional likelihood method is sug-
gested for estimating the optimal averaging weights together with local maximum likelihood es-
timations of the nonparametric marginal time series logistic (auto)regressions. The asymptotic
properties of the procedure are established under mild conditions on the time series observations
that are of �-mixing property. The procedure is less computationally demanding and can avoid
the “curse of dimensionality" for, and be easily applied to, high dimensional lagged information
based nonlinear time series classification forecasting. The performances of the procedure are
further confirmed both by Monte-Carlo simulation and an empirical study for market moving
direction forecasting of the financial FTSE 100 index data.

1. Introduction
Time series data lagged information has been useful for forecasting of future. Traditionally, for continuous-valued

time series data, ARIMA based analysis is well developed and applied (c.f., Box, Jenkins, Reinsel & Ljung (2015)).
Further development of nonlinear and nonparametric analysis of that kind of time series data can be found in Tong
(1990), Fan & Yao (2003), Gao (2007) and Terasvirta, Tjostheim, Granger et al. (2010) for comprehensive reviews.
Particularly, curse of dimensionality is a common challenging issue when faced a large number of time series lagged
observations. Various semiparametric models are hence developed, which however usually involve expensive compu-
tations (c.f., the above-mentioned references). For more recent applications to multivariate time series under spatial
and machine learning settings, the readers are referred to Al-Sulami, Jiang, Lu & Zhu (2017) and Hofert, Prasad &
Zhu (2021) on the related issues. Alternatively, Li, Linton & Lu (2015) have recently introduced a novel procedure for
forecasting the unknown future by conditional time series regression with high-dimensional time series lagged predic-
tor vector, namely the Model Averaging MArginal Regressions (MAMAR). This is a very flexible procedure for time
series forecasting based on the idea of model averaging the low-dimensional marginal forecasts. See also Chen, Li,
Linton & Lu (2016, 2018) for more recent developments on the approach under continuous valued time series response.

However, in many situations of practical time series forecasting, such continuous response based procedure is not
always adequate. In this paper we are concerned with binary valued time series classification forecasting. Observations
like the market price moving (up/down) direction forecasting and the default/non-default credit scoring classification
are actually discretely binary-valued. Binary data is a kind of important data with logistic regression analysis devel-
oped popularly for many applications though mostly under independent data in the literature (c.f., Cox & Snell (1989)).
Our aim in this paper is to suggest a novel semiparametric procedure, named “Model Averaging nonlinear MArginal
LOgistic Regressions" (MAMaLoR) for binary time series classification based on the information of a large number
of lagged predictors, by extending the MAMAR idea of Li et al. (2015) to binary-valued time series nonlinear clas-
sification. This is motivated by the needs of wide practical applications, such as the financial examples mentioned.
We are aware that such binary-valued time series data exist in wide applications beyond finance, though the financial
application is particularly examined in this paper. Indeed, binary classification has been thought of as one of the most
important problems in machine learning and statistics (c.f., Ryabko & Mary (2013)).
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Within the discrete-valued time series models, linear autoregression technique is very popular. The history of
analysing and modelling discrete-valued time series by a linear structure goes back to Jacobs & Lewis (1978), who
proposed the DARMA (discrete mixed autoregressive-moving average) process. However its long term foresting per-
formance is not as good as expected. McKenzie (1985) has alternatively proposed the INARMA (Integer-valued
autoregressive-moving average) model, which is still well applied even today. Further developments include Waller,
Carlin, Xia & Gelfand (1997) on hierarchica dynamic generalized linear mixed model for spatial time series problems,
and Shephard (1995) on generalised linear autoregressive moving average model (GLARMA) applied in many differ-
ent fields such as Rydberg & Shephard (2003) and Liesenfeld, Nolte & Pohlmeier (2006) in financial modelling and
Turner, Hayen, Dunsmuir & Finch (2011) and Buckley & Bulger (2012) in epidemiological assessments and clini-
cal management. Similarly, an Integer-valued GARCH model (INGARCH) has been proposed by Ferland, Latour &
Oraichi (2006) in the spirit of the generalised autoregressive conditional heteroskedastic model (GARCH). In addition,
the general latent-based time series models including the binary case are proposed by Davis & Wu (2009) (Experi-
ment 2 on Page 743) and de Oliveira Maia, Barreto-Souza, de Souza Bastos & Ombao (2021) (Subsection 2.3). For a
comprehensive review on the related developments, the reader is referred to Davis, Dunsmuir & Wang (1999) , Davis,
Holan, Lund & Ravishanker (2016) and the references therein.

Though linearity is widely adopted in the literature, it may often be too strong to be appreciated when dealing
with unknown data. The assumptions made on linear parametric relationship may be incorrect if we don’t have prior
knowledge about the true relationship between the predictors and the response. Indeed, in the case of time series
classification and forecasting, the influences of the predictor variables and their lags on the response are usually of
unknown forms. Differently from the parametric discrete-valued time series models above, in this paper, we will
therefore suggest utilising nonparametric method, where the estimation of conditional regression functions is data
driven. Here, in our proposed MAMaLoR procedure for binary time series classification, it involves approximating
the logistic multivariate conditional regression function by combining low-dimensional nonlinear marginal logistic
regressions which will be estimated non-parametrically in the first step of our procedure. A popular nonparametric
approach in the literature is local fitting or kernel smoother of unknown functions (c.f., Fan, Farmen&Gijbels (1998a)),
which can be estimated via technique of either maximum likelihood or least square method. Differently from Li et al.
(2015), for our binary time series data, maximum likelihood method is preferred for nonparametric local linear fitting
of the low-dimensional conditional marginal logistic regressions. The idea of maximum likelihood local fitting can
be traced back to Tibshirani & Hastie (1987) and Fan & Gijbels (1995) for independent and identically distributed
(i.i.d.) data, and Fan & Yao (1998) extending to stochastic regression. We will apply the maximum likelihood local
fitting of the conditional marginal logistic regressions with the uniform consistency in the time series setting, which
is required in the second step of combining those marginal logistic regressions for classification forecasting in our
MAMaLoR procedure. Hence, in this paper, we will consider the maximum likelihood local fitting method under the
data dependence of a so-called �-mixing conditions. For a more detailed discussion on �-mixing conditions, the reader
is referred to Doukhan, Massart & Rio (1995) [Section2.4]. Theoretically, we will establish the asymptotic properties
for our MAMaLoR procedure under �-mixing conditions.

Another advantage with our MAMaLoR procedure to be noted is that it overcomes the so-called “curse of dimen-
sionality" (c.f., Seifert & Gasser (1996)), when a large number of time series lagged predictors are taken account of,
leading to high dimensional conditional logistic regression functions. For multivariate nonparametric models with the
increase of dimension d, it is well known that the performance may become worse or even useless (when d is beyond
2) as the sample size is required to increase exponentially to get the same quality of estimation for one dimensional
function. In our MAMaLoR procedure, we consider combining low-dimensional marginal non-parametric nonlinear
logistic regressions, and hence “curse of dimensionality" is flexibly avoided for time series binary classification sim-
ilarly to that for the regression in Li et al. (2015). This is different than perhaps it initially looks when compared to
the popular semiparametric generalised additive model (GAM) (Hastie & Tibshirani, 1987). When we only consider
the one-dimensional marginal non-parametric logistic regressions for combination, our MAMaLoR shares a similar
model form as a special case of GAM, but the GAM still suffers from heavier computational costs and other defi-
ciencies in forecasting due to possible overfitting in particular in the case of small samples but with a relatively large
number of time series lagged predictors, while these difficulties are more easily avoided in MAMaLoR. In addition,
the low-dimensional marginal non-parametric logistic regressions could also be two-dimensional for combination in
our MAMaLoR, where it is not of a GAM form (see more discussion on this in Section 2 below). We will also show in
the data examples that our MAMaLoR procedure is not only easy to implement, but also works better in classification
forecasting than GAM.
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The structure of the rest of the paper is as follows: In Section 2, we provide the basic ideas on the proposed
MAMaLoR procedure. Estimations for the MAMaLoR procedure with asymptotic properties established under �-
mixing properties are given in Section 3. In Section 4 the numerical examples including a simulation and an application
to forecasting themarket pricemoving direction of FTSE 100 data will be demonstrated. Section 5 gives the conclusion.
All the proofs will be relegated to an Appendix.

2. Model averaging marginal nonlinear logistic regressions
We are concerned with the binary classification forecasting. Let (Yt, XT

t ) be a stationary time series process with Yt
the response of binary values of 0 and 1 at time t and Xt = (x1t, ..., xdt)T a d-dimensional random vector representing
the available information up to time t−1, where the components ofXt may involve the concerned time series predictor
variables including lagged ones so that the dimension d may be rather large as in Li et al. (2015) in practice.

In general, we denote by It−1 for all the information up to time t−1 about time series Yt. So the regression problem
is to estimate the conditional probability for classification forecasting:

pt = P (Yt = 1|It−1). (1)

Because of the curse of dimensionality, it is well known that a direct nonparametric estimation of pt performs
very poor. We suggest the semiparametric procedure, Model Averaging nonlinear MArginal LOgistic Regressions
(MAMaLoR), for binary time series classification by extending the MAMAR idea of Li et al. (2015), consisting of two
steps as follows.

First, we would like to look at the marginal foresting effects based on part of the available information, say each
component, of Xt. Then define the marginal forecasting probability based on the jth component (xjt) as follows:

pjt = P (Yt = 1|xjt), j = 1, ..., d. (2)

A popular idea to model the conditional probability pjt is by logistic regression. If we let F be the logistic cumulative
distribution function(c.d.f), i.e., F (u) = eu

1+eu , then the marginal nonparametric logistic regression is

logit(pjt) ≡ log
pjt

1 − pjt
= fj(xjt), (3)

where fj(xjt) can be a nonlinear function of xjt, and we hence have:

pjt = F (fj(xjt)). (4)

Our second step is to combine the marginal logistic regressions together with a constant to approximate our con-
cerned pt in (12) by using the idea of model average as follows:

logit(pt) ≈ �0 + �1logit(p1t) + ... + �dlogit(pdt)

= �0 + �1f1(x1t) + ... + �dfd(xdt) ≡ fMA
t , (5)

where � = (�0, �1, ..., �d) is the vector of unknown coefficients. Indeed, the direct motivation for equation (5)
comes from the model averaging by combining the easily estimable marginal logit forecasts to approximate the high-
dimensional logit forecast that is hard to be well estimated due to curse of dimensionality for a relatively large d, so
equation (5) represents an approximation, rather than an exact equality, similar to that in Li et al. (2015).

This can be seen as a model average as the � can be seen as the weights assigned to different marginal estimations
(c.f., Li et al. (2015)). Here we use the affine combination in equation (5) because it is flexible and easy to apply for
classification forecasting and also much less overfitting than the GAM for forecasting in application. These advantages
are similar to those in Li et al. (2015) with regression forecasting.

Let F−1(⋅) be the inverse function of F (⋅). Then (5) can alternatively be expressed as

F−1(pt) = log(
pt

1 − pt
) ≈ �0 +

d
∑

j=1
�jF

−1(E(Yt|xjt)), (6)
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whereE(Yt|xjt) = P (Yt = 1|xjt) = pjt. Therefore our (6) can be seen as a logit transformed extension of the MAMAR
procedure of Li et al. (2015), in which E(Yt|It−1) is approximated by �0 +

∑d
j=1 �jE(Yt|xjt) in terms of 2 distance,

thatE{E(Yt|It−1)−�0−
∑d
j=1 �jE(Yt|xjt)}

2 is minimised with respect to � = (�0, �1, ..., �d). Differently from this2
distance in Li et al. (2015), our approximation in (5) and (6) is based on the Kullback-Leibler distance (KL-distance),
a natural distance function from a “true" probability distribution, pyt = P (Yt = y|It−1) = pyt (1 − pt)

1−y, to a “target"
probability distribution, qyt = q

y
t (1 − qt)

1−y, for y = 0, 1, with qt = qt(�) = F (fMA
t ) and fMA

t defined in (5),

KL(pyt, qyt) = Epyt{log(pyt∕qyt)}, (7)

which is minimised with respect to �; we denote this minimiser by �0. Note that (5) or (6) is a kind of approximation
to the binary-valued distribution in pt = P (Yt = 1|x1t,⋯ , xdt). So this KL distance is appropriate to measure the
closeness of the approximation of distribution, which is widely applied (c.f., Zhang, Yu, Zou & Liang (2016)). We
hence need to estimate the minimiser by maximum likelihood estimation below.

Wemake some comments before ending this section. Firstly, in this paper we focus on theMAMaLoR procedure as
given in (5) or (6) for easy implementation, but the basic idea underlying our proposedmethod can applymore than this.
In general, estimation of the conditional probability pt of Yt = 1 given Xt = (x1t,⋯ , xdt) by nonparametric logistic
regression for classification suffers from curse of dimensionality if d > 3, but we can well estimate the low-dimensional
marginal conditional probabilities. We therefore try to approximate this high-dimensional conditional probability pt
by the affine combination, in logit transformation, of low-dimensional marginal conditional probabilities, say one-
dimensional pjt, j = 1,⋯ , d, as done above for simplicity in this paper. Here our MAMaLoR approximation given in
(5) or (6) shares a similar model form as a special case of GAM (Hastie & Tibshirani (1987)), but it more easily avoids
the shortcomings that the GAM suffers from, such as heavier computational costs and other deficiencies in forecasting
due to possible overfitting with GAM in particular in the case of relatively small samples but with a larger number of
time series lagged predictors. In addition, the low-dimensional marginal non-parametric logistic regressions could also
be two-dimensional for combination in ourMAMaLoR.Note that pjt’s used in the combination approximation (5) could
be replaced or added by other low-, say two-, dimensional marginal conditional probabilities pjkt = P (Yt = 1|xjt, xkt),
for j, k = 1,⋯ , d, in the approximation, where it is not of a GAM form. However, this approximation would lead
to additional issues including more careful variable selection needed for a good classification forecasting when d is
large (c.f., Chen et al. (2018)), so we leave this problem for study in other work. Secondly, our combination idea
for binary forecasting above is different from that of Lahiri & Yang (2016). In Lahiri & Yang (2016), it is based on
discriminant analysis idea with copula applied to combine the conditional marginal distributions of two components
of Xt, say x1t and x2t, given the binary response Yt = 1 (in the notation of our paper) to model the conditional joint
distribution of (x1t, x2t) given Yt = 1. They suppose both conditional marginal distributions of x1t and x2t given the
binary response Yt = 1 as well as the copula function are known with parametric distributions respectively up to some
unknown parameters. They mainly focus on the case d = 2, rather than d > 3 as addressed in this paper. When d = 2,
we can also estimate the conditional joint probability density function of (x1t, x2t) given Yt = 1 non-parametrically via
the equality f (x1, x2|Y = 1) = P (Y = 1|x1, x2)fX1,X2 (x1, x2)∕P (Y = 1), where fX1,X2 (x1, x2) stands for the joint
probability density function of (x1t, x2t) while P (Y = 1|x1, x2) is just what we are concerned with above.

3. Estimation and Properties
3.1. Estimation

We articulate the estimation for the MAMaLoR procedure in two steps.
Step one, to estimate the weight coefficients in (5), as fj(xjt)’s are unknown, we need to estimate these marginal

conditional regression first. Here nonparametric smoother is used to estimate the marginal probability pjt = E(Yt =
1|xjt) through that given in (3). We suggest applying maximum likelihood local linear fitting (c.f., Fan et al. (1998a))
for estimation of fj(⋅) in (3) as it is one-dimension and Yt given xjt follows Bernoulli(pjt) distribution. Note that by
taking the Taylor expansion of fj(xjt) at an arbitrary point xj0 given it is differentiable, then as xjt is close to xj0, it
gives an approximation

fj(xjt) ≈ fj(xj0) + f ′j (xj0)(xjt − xj0)

≡ �1 + �2(xjt − xj0), if |xjt − xj0| ≤ ℎ, (8)
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where ℎ is a bandwidth to be appropriately selected. Then under the conditional independence of Yt given the relevant
information up to time (t − 1) along t, define the conditional local log likelihood function for (3) and (8) by:

l(�, xj0, ℎ) =
n
∑

t=1
[Yt(�1 + �2(xjt − xj0))

− log(1 + exp(�1 + �2(xjt − xj0)))]Kℎ(xjt − xj0), (9)

whereKℎ(⋅) = ℎ−1K(⋅∕ℎ)withK(⋅) a kernel function onR1 (c.f. Jones, Davies & Park (1994)). The aim is to estimate
� = (�1, �T2 ) = (fj(xj0), f

′
j (xj0))

T , that is,
[

f̂j(xj0)
f̂ ′j (xj0)

]

=
[

�̂1
�̂2

]

= argmax
�1,�2

l(�, xj0, ℎ). (10)

By solving the optimisation, which is easy as it could be seen as a locally weighted linear regression, we then get the
estimation at xj0 as the intercept f̂j(xj0) in the equation (8). Since xj0 is chosen arbitrarily, by letting xj0 go through
each point in xjt, we then get the estimated marginal probability p̂jt = F (f̂j(xjt)), where we recall F (y) = ey∕(1+ ey).

Step two, now we can try to estimate the coefficients in (5) together with replacing the fj(xjt)’s by f̂j(xjt)’s. That
is, we would like to estimate the minimiser that minimises (7) by using maximum likelihood estimation.

Under the conditional independence of Yt given the relevant information up to time (t− 1) along t, following from
(5), we can define the (approximate) conditional likelihood function as follows:

L(�) =
n
∏

t=1
P (Yt = yt|It−1;�)

=
n
∏

t=1
(pt(�))yt (1 − pt(�))1−yt ,

(11)

where

pt(�) =
e�0+

∑d
j=1 �jfj (xjt)

1 + e�0+
∑d
j=1 �jfj (xjt)

. (12)

Note that (11) can be also viewed as a kind of composite likelihood; see Varin, Reid & Firth (2011). Then taking
nature log of the equation (11) together with (12), with fj(xjt)’s replaced by f̂j(xjt)’s, we define the log conditional
likelihood function (scaled by 1∕n) as follows

l̂(�) = 1
n

n
∑

t=1

[

yt(�0 +
d
∑

j=1
�j f̂j(xjt)) − log(1 + e

�0+
∑d
j=1 �j f̂j (xjt))

]

. (13)

In order to control the impacts of the poor estimate of fj(⋅)’s at the extreme xjt’s, we slightly modify the estimation
procedure with the log-likelihood given in (13), and define the following modified log-likelihood function:

ln(�) = ln(f̂ (⋅),�) =
1
n

n
∑

t=1

[{

Yt

(

�0 +
d
∑

j=1
�j f̂j(xjt)

)}

− log

{

1 + exp

(

�0 +
d
∑

j=1
�j f̂j(xjt)

)}]

w(Xt),

(14)

which asymptotically corresponds to the population log-likelihood function:

l(f (⋅),�) = E
[{

Yt

(

�0 +
d
∑

j=1
�jfj(xjt)

)}

− log

{

1 + exp

(

�0 +
d
∑

j=1
�jfj(xjt)

)}]

w(Xt), (15)

where f (⋅) = (f1(⋅),⋯ , fd(⋅))T , f̂ (⋅) is defined similarly with estimated elements, Xt = (x1t, ..., xdt) and w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j ) is a weight function controlling the edge effects in the estimation with I(⋅) being an indicator function
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and c0j < c1j appropriately chosen. For example, in practice, c0j and c1j may be chosen to include all observations,
or as 0.1 and 0.9 quantiles of the sample xjt, t = 1, 2,⋯ , n, if there are extreme outliers, which are hence removed
from estimation by using this control weight function Lu, Tjøstheim & Yao (2007)[Section 3.2]. Note that �̂ =
argmax� ln(f̂ (⋅),�) gives the estimator �̂ from sample data and �(0) = argmax� l(f (⋅),�) gives the true parameter
vector �0 = (�00, �01, ..., �0d)T .

We now take the first order derivative of the modified log-likelihood function (14) with respect to �j :

)ln(�)
)�j

= 1
n

n
∑

t=1
[ytf̂j(xjt) − p̂tf̂j(xjt)]w(Xt), (16)

where

p̂t = p̂t(�) =
e�0+

∑d
j=1 �j f̂j (xjt)

1 + e�0+
∑d
j=1 �j f̂j (xjt)

. (17)

The second order derivative, which is also known as the Hessian matrix, is negative definite:

)2ln(�)
)�j)�k

= −1
n

n
∑

t=1
f̂j(xjt)p̂t(1 − p̂t)f̂k(xkt)w(Xt). (18)

This is to say, the likelihood function is concave and hence has a unique maximiser.
From the computational perspective, note that equation (5) looks like a logistic linear regression with f̂j(xjt) given,

which means we can apply relevant technique and algorithm developed in GLM with logistic regression. Therefore
our MAMaLoR procedure is easy to implement in computation. In addition, both marginal nonparametric logistic
regression estimation by local linear fitting and parametric affine combination estimation are applied in our method,
so the MAMaLoR procedure is of “semiparametric" nature.

3.2. Asymptotic properties
In this section, we present the large sample property of asymptotic normality for our proposed MAMaLoR proce-

dure. We would like to first show �̂ → �(0) in probability as n→ ∞.
For notational ease below, we define

pt(f (⋅),�) =
e�0+

∑d
j=1 �jfj (xjt)

1 + e�0+
∑d
j=1 �jfj (xjt)

. (19)

Note that pt(�) = pt(f (⋅),�) and p̂t(�) = pt(f̂ (⋅),�).
In addition, we suppose (Yt, XT

t ) are �-mixing, for which we give the following definition:

Definition. Let Zt = (Yt, Xt) be a strictly stationary time series. The process Zt is said to be �-mixing if

�(n) = E

{

sup
B∈∞t+n

|P (B) − P (B|Zt, Zt−1, ...)|

}

→ 0,

as n→∞, where ∞t+n is the information field (a so-called �-algebra) of {Zs, s ≥ t + n}.

For the completion of our results, we now introduce the following assumptions.

A1 (i) We assume (Yt, Xt) (with Yt being binary) is strictly stationary process under �-mixing condition. There exists
b > max(2(�r+ 1)∕(�r− 2), (r+ a)∕(1 − 2∕�)) and a ≥ (r�− 2)r∕(2 + r�− 4r), such that �(t) = O(t−b); (ii) for
any t1 < ⋯ < ts and 1 ≤ s ≤ 2r, the joint probability density function of (Xt1 ,⋯ , Xts ) := gXt1 ,⋯,Xts (x1,⋯ , xs)
is bounded above uniformly; (iii) there exists � > 4 − 2∕r in R and r ≥ 1 in Z, such that E|Xt|

�r <∞.

A2 The weight function w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j ) with c0j < c1j appropriately chosen, where I(⋅) is an indicator
function.
This weight function is used for controlling the edge effects in the estimation.
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A3 (i) The bandwidth ℎ = ℎn satisfies the conditions limn→∞ ℎ = 0 and lim infn→∞ nℎ
2(r−1)a+(�r−2)

(a+1)� > 0 for some
integer r ≥ 3; (ii) There exists a sequence of positive integers sn → ∞ such that sn = o((nℎ)1∕2), ns−bn → 0 and

snℎ
2(�r−2)

[2+b(�r−2)] > 1 as n→∞; (iii) nℎ4 = o(1) as n→ ∞.

A4 Let f0(⋅) = (f1(⋅), ..., fd(⋅))T be the vector of the true conditional regression functions, with fj(⋅)’s defined in
Equation (3). For an f (⋅), define its Lipschitz norm: For some � > 0, let [�] be the largest integer not greater
than �, and define (if it exists)

‖f‖∞,� = max
0≤�≤[�]

sup
x∈A

‖f (�)(x)‖ + sup
x≠x′;x,x′∈A

‖f ([�])(x) − f ([�])(x′)‖
‖x − x′‖�−[�]

, (20)

where f (�)(x) is the �-th derivative of f (x) with respect to x, and A =
∏d

j=1[c0j , c1j] with some real values of
c0j and c1j satisfying c0j < c1j given in assumption A2. We suppose f0(⋅) with fj’s belongs to the functional
space F with � ≥ 2:

F ∶= {f ∶ continuous from A to Rd with ‖f‖∞,� ≤ c}, (21)

where c is a positive constant. This functional space F (containing functions f of which its Lipschitz norm is
bounded) is often denoted by C�c (A).

A5 For the local likelihood function (9), define Φ(Yt, zj) = Yt − exp(zj)∕[1 + exp(zj)], and

m(xj , zj) = E[Φ(Yt, zj)|xjt = xj], (22)

satisfying (xj , zj) → m(xj , zj) ⋅ gj(xj) is three times continuously differentiable as a function form R2 to R,
where gj(xj) is the marginal density of xjt, which is strictly positive and continuous over Aj = [c0j , c1j]. We
denote the derivative of m with respect to xj by m′1, and the derivative with respect zj by m′2, etc.

Remark. (i) Assumption 1 shows a technical standard �-mixing process which is satisfied by many linear and non-
linear time series models under geometric ergodicity (Fan & Yao, 2003; Lu et al., 2007). The edge effect is
controlled by Assumption 2, which removes the extreme estimates around the boundaries of Xt, in order to
improve the practical performance of the estimation (c.f. Fan, Härdle & Mammen (1998b), Fan, Yao & Cai
(2003) and Lu et al. (2007)).
(ii) Assumption 3 is also standard in time series topics (Fan et al., 2003; Lu et al., 2007) and easily satisfied
though it looks a bit involved. For example, if we take ℎ = n−c with 1∕4 < c < (b−2)∕b and sn = (nℎ)1∕k with
2 < k < (1 − c)b, then it follows that sn = (nℎ)1∕k = n(1−c)∕k → ∞, sn = o((nℎ)1∕2), ns−bn = n1−b(1−c)∕k → 0
and nℎ4 = n1−4c = o(1) as n → ∞, while lim infn→∞ nℎb1 > 0 if c < 1∕b1, where b1 ≡ 2(r−1)a+(�r−2)

(a+1)� . As

ns−bn → 0, we have sn ≥ n1∕b as n is sufficiently large, and, letting b2 ≡
2(�r−2)

[2+b(�r−2)] , hence snℎ
b2 ≥ n1∕b−cb2 > 1

if c < 1∕(bb2) =
[2+b(�r−2)]
2(�r−2)b > 1∕2. Therefore A3(i)-(iii) is satisfied if there is some c such that 1∕4 < c <

min{(b − 2)∕b, 1∕b1, 1∕(bb2)}, which holds true if b > 8∕3, b1 < 4 and bb2 < 4. Here b1 < 4 is equivalent to
a > (r−4)�−2

4�−2(r−1) . Note that bb2 < 2. So A3(i)-(iii) holds true easily. Note that the lim inf in A3(i) that is finite, just
greater than 0, is needed – it borrows from Assumption (C7) of Lu et al. (2007).
(iii) Assumptions 4 and 5 give smoothness conditions on the conditional regression and marginal density func-
tions. The Lipschitz norm conditions (Assumption 4) are introduced to give a tighter bound than uniform norm
(Nielsen, 2005). For more information on Lipschitz norm, the reader is referred to Van Der Vaart & Wellner
(1996).

Theorem 3.1. (Consistency) Suppose Assumptions A1-A5 hold. Let A be a close set in Rd+1 and �(0) is an interior
point of A and f ∈ F. Then �̂ − �(0) = op(1).

It is to prove the convergence of �̂ to �(0) in probability. That is, we would like to show:

∀� > 0, P (‖�̂ − �(0)‖ > �)→ 0,

as n→ ∞.
Here we follow Lemma 4.1 of Lu et al. (2007), given below, to prove Theorem 3.1.
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Proposition 3.1. (Consistency Lemma) Suppose �(0) ∈ A satisfies l(f0(⋅),�(0)) = max�∈A l(f0(⋅),�), where f0(⋅) is
the true function vector in Assumption A4, A is a closed set in ℝd+1 with �(0) an interior point of A, and that

i. ln(f̂ (⋅), �̂) ≤ max�∈A ln(f̂ (⋅),�) + op(1).
ii. For all � > 0, there exists �(�) > 0 such that

inf
∥�−�(0)∥>�

|l(f0(⋅),�) − l(f0(⋅),�(0))| ≥ �(�).

iii. Uniformly for all � ∈ A, l(f (⋅),�) is continuous with respect to the metric ‖ ⋅ ‖F in f (⋅) at f0(⋅), where ‖f (⋅)‖F =
supx∈A ‖f (x)‖ with ‖ ⋅ ‖ being the Euclidean norm of Rd .

iv. ‖f̂ (⋅) − f0(⋅)‖F = op(1).
v. For all �n with �n = o(1),

sup
�∈A

sup
‖f (⋅)−f0(⋅)‖F≤�n

|ln(f (⋅),�) − l(f (⋅),�)| = op(1).

Then �̂ − �(0) = op(1).

The proof of Theorem 3.1 is relegated to Appendix A.
For asymptotic normality, we need to introduce some more notation. Let �̃t(f0) = (1, f1(x1t)..., fd(xdt))T with

fj(xjt) defined in (3),

U = E[−pt(1 − pt)�̃t(f0)�̃t(f0)T ]w(Xt),
and

V = lim
n→∞

V ar

(

1
√

n

n
∑

t=1
(Yt − pt)�̃t(f0)w(Xt)

)

. (23)

Then we have

Theorem 3.2. (Asymptotic Normality)
Suppose that the assumptions A1-A5 are satisfied, for � ∈ A, and U is invertible. Then

√

n(�̂ − �(0))
L
←←←←←←←←→ N(0,U−1VU−1), (24)

as n→ ∞, where
L
←←←←←←←←→ stands for convergence in distribution.

We remark that owing to time series dependence, V may not be equal to U in Theorem 3.2. The proof of Theo-
rem 3.2 is provided in Appendix B.

4. Numerical evidence
In this section, we illustrate the empirical application of our proposedMAMaLoRmodel by both simulated and real

data numerical examples to understand the impact of lagged information on binary-valued time series data forecasting.
A Monte-Carlo simulation study is given in the first subsection and an application to financial data of FTSE 100 index
is then presented in the second subsection.

4.1. A simulation study
In order to examine the finite sample performance of the method, a Monte-Carlo simulation is made. Bandwidth

selection for h in (9) is indeed an important problem but appears quite sensitive to outliers for the Cross-Validation (CV)
based on likelihood. So we leave this for further investigation. In the simulation, we applied a simple Cross-Validation
by using h.select in R package sm, which is actually based on a direct estimation of pjt = E(Yt|xjt).

The model used in this section is given as follows:

Yt = I(xt > 0),
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Table 1
Parameters specified in Model (25)

a1 a2 a3 a4 a5 a6 a7 a8 a9
-0.1129 0.0245 -0.1892 -0.0820 -0.1962 -0.1232 0.1180 0.1282 -0.2407

xt =
9
∑

k=1
g0k(xt−k) + �t,

and
g0k(xt−k) = akxt−k + � exp(−kxt−k)∕(1 + exp(−kxt−k)) +  cos(xt−kxt−1), (25)

where �t’s are i.i.d. following a logistic distribution, generated by �t = log(et∕(1 − et)) with et having a uniform
distribution over the interval (0, 1). Here we use logistic distribution for the error term so that the resultant model
is a logistic time series regression model with the true link function being a logit link function; see (27) below. Our
simulation model for xt is basically similar to that in Li et al. (2015), where the values of ak, for k = 1, 2,… , 9, are
given in Table 1. We have taken ak’s such that all the roots of the polynomial, 1−

∑9
k=1 ak�

k, are outside the unit circle
and note that

∑9
k=1 g0k(xk) =

∑9
k=1 akxk + o(‖x‖), as ‖x‖ → ∞, no matter what finite real values the � and  take

on, where ‖x‖ is the Euclidean norm of x = (x1, x2,⋯ , x9)′, so there is a geometrically ergodic stationary solution,
which is �-mixing with exponentially decaying mixing coefficient, for xt in (25) (c.f., Lu (1998)). We will have the
constants � and  taking on values of 0 and 0.5, respectively, with the 4 pairs of which specified in Figures 1 and 2.
Note that � and  with non-zero values are used to change the model with nonlinear structure or interaction. When
(�, ) = (0, 0), the xt process in (25) is a purely linear AR model; when  = 0 but � ≠ 0, it is an additive AR model,
while  ≠ 0 leads to a model with interaction between xkt = xt−k and x1t = xt−1, for k = 1, 2,⋯ , 9. The larger the
value  , the larger the deviation of the model from an additive structure for xt.

By the assumption imposed on model (25), Yt given Xt ∶= {xt−1,… , xt−9} follows a Bernoulli distribution with
probability pt, that is

[Yt|Xt] ∼ Bin(1, pt), (26)

where Bin(⋅, ⋅) stands for a binomial distribution, and the probability pt is defined as,

pt = P (Yt = 1|Xt) = P

( 9
∑

k=1
g0k(xt−k) + �t > 0|Xt

)

= P

(

�t > −
9
∑

k=1
g0k(xt−k)|Xt

)

= 1 − F

(

−
9
∑

k=1
g0k(xt−k)

)

= F

( 9
∑

k=1
g0k(xt−k)

)

,

(27)

where F (z) = ez∕(1+ez), for z ∈ R1, is a logistic cumulative distribution function. In the simulation below, we apply
a logistic classification forecasting based on the observations of (Yt, Xt).

The simulation consists of the data generated with the estimation sample size set to be n = 500 and n = 1000,
respectively, and a testing sample of size of np = 50 for prediction evaluation. When generating the time series data,
in view of a necessary warming up step, we deleted the first 100 observations every time from the (100 + n + np)
generated sample through the iterations for xt in (25) with initial values taken to be zero. The simulation is repeated
100 times for each setting.

In this simulation, we let � and  take on values in {0, 0.5} each time to represent different degrees of nonlinear
structures and interactions in (25). For the bandwidth used in our estimation, how to select optimal one for forecasting
is still an open question. We just applied the simplest cross validation for the needed bandwidth in simulation. To
evaluate the forecasting, we apply the area under the curve (AUC) of receiver operation characteristic (ROC), which is
a popular criterion often used to evaluate the performance of prediction for binary variable classification. The larger
the AUC, the better the model. The boxplots of the AUC values of 100 repetitions with the testing sample of size
np = 50 for different methods are plotted in Figures 1 and 2 with estimation sample of size n = 500 and n = 1000,
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Figure 1: Boxplots of the area under curve (AUC) with 100 repetitions for one-step ahead classification predictions, with
np = 50 observations for testing, of different methods under different true model structures (Top left: linear, Top right:
additive, Bottom left & right: nonlinear non-additive) based on n = 500 observations for training.

respectively. The methods, in each panel, include ”MAMaLoR", ”LLoR" and ”AddLoR" referring to the maximum
likelihood estimation methods based on model averaging marginal nolinear logistic model (proposed in this paper),
linear logistic regression model (via GLM) and additive logistic model (via GAM), respectively. In most practical
applications with binary classification, we can only observe (Yt, Xt) with Xt representing the past observations of xt,
rather than xt itself, but for the real data example with stock price below, we can have the data of xt, and we have
therefore, as a comparison, additionally consider the classification forecasting of Yt through Yt = I(xt > 0) with
forecasting of xt by the methods of ”MAMaR", ”AR" and ”’AddR" representing least squares estimations of nonlinear
MAMaR model (Li et al., 2015), pure AR model and additive model for xt, respectively. Note that the latter three
models are used to predict the value of xt directly and then we convert it into prediction of binary Yt. Following from
Figures 1 and 2, we summarise our findings as follows.
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Figure 2: Boxplots of the area under curve (AUC) with 100 repetitions for one-step ahead classification predictions, with
np = 50 observations for testing, of different methods under different true model structures (Top left: linear, Top right:
additive, Bottom left & right: nonlinear non-additive) based on n = 1000 observations for training.

(i) When the true models are additive (corresponding to  = 0) as indicated in the upper panels of Figures 1 and 2,
we can see that the performances of our proposed MAMaLoR method, though not the best, are basically comparable
to those of the additive logistic (AddLoR) model in classification forecasting in terms of the popular classification
performance measure of area under curve (AUC). Here if the true model is linear (corresponding to � = 0 and  = 0),
then, as expected, linear logistic (LLoR) model performs the best in classification forecasting. Furthermore, it is
interesting to note that the LLoR method even performs better than the AddLoR in forecasting when the true model is
nonlinearly additive (corresponding to � = 0.5 and  = 0) with the training sample size being n = 500 (shown in the
upper right panel of Figure 1); however, as the training sample size increases to n = 1000, our proposed MAMaLoR
method clearly becomes comparable to both LLoR and AddLoR in performance of forecasting as shown in the upper
right panel of Figure 2.
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Table 2
Parameters specified in Model (28)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
0.0542 -0.0837 0.0578 -0.1336 -0.0152 -0.0042 -0.0286 0.0102 -0.0174 -0.0302 -0.0629
a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22

0.0258 -0.0207 -0.0266 -0.0375 0.0639 -0.0528 0.0615 -0.0508 0.1036 -0.0307 0.0785
a23 a24 a25 a26 a27 a28 a29 a30 a31

-0.0806 -0.0381 0.0755 0.0096 -0.0257 -0.0273 -0.0717 -0.0229 -0.0309

(ii) When the true models are not additive (corresponding to  ≠ 0) as indicated in the bottom panels of Figures 1
and 2, we can clearly see that the performances of our proposed MAMaLoR method are the best among all the six
considered methods. Interestingly, our MAMaLoR method performs much better than both LLoR and AddLoR meth-
ods in classification forecasting in both cases of n = 500 (bottom panel of Figure 1) and n = 1000 (bottom panel of
Figure 2). Here the LLoR method performs the worst.

(iii) When comparing logistic regression based forecasting methods (MAMaLoR, LLoR, AddLoR) with other
indirect least squares (auto)regression based methods (MAMaR, AR, AddR) for classification, both classes of methods
are basically correspondingly comparable when the true models are additive. But our MAMaLoR method performs
the best if the true models are not additive, as indicated in both bottom panels of Figures 1 and 2, in particular the
performance of our MAMaLoR method turns to be more viable when the training sample size n becomes large for
time series bigger data.

We now extend the number of lags considered in (25) to 31. We use the following model along with the parameters
summarised in Table 2 to generate data for the simulation.

Yt = I(xt > 0),

xt =
31
∑

k=1
g0k(xt−k) + �t,

and
g0k(xt−k) = akxt−k + � exp(−kxt−k)∕(1 + exp(−kxt−k)) +  cos(xt−kxt−1), (28)

where �t’s are i.i.d. following a logistic distribution, generated by �t = log(et∕(1 − et)) with et having a uniform
distribution over the interval (0, 1). We use the parameters estimated by the linear AR model of 31 lags, i.e., AR(31),
to the geometric return of Financial data of FTSE 100 Index, which is introduced later in the application section below.

Here (28) has an analogous setting to (25). Similar to (25), Yt given Xt ∶= {xt−1,… , xt−31} follows a Bernoulli
distribution with probability pt. We then conduct the Monte-Carlo simulation with the estimation sample size set to
be n = 1000 and a testing sample of size of np = 50 for prediction evaluation.

We focus on the setting of non-additive data structure in (28), where � = 0,  = 0.5. The results are depicted in
Figure 3. It is noted that GAM model has been removed as it costed too much time to converge when facing a high
dimension of d = 31. The performances of the candidate models are summarised: (i) when the model is not additive
( ≠ 0), the MAMaLoR model clearly outperforms the other candidate models in the context of prediction power,
confirmed by the highest AUC value; (ii) the computational cost of MAMaLoR model is comparable to that for the
LLoR and AR models, as it increases only in polynomial time when adding more lags (i.e., enlarge the dimension d).

To conclude it, our proposed MAMaLoR method is flexible to deal with binary-valued time series data with com-
plex nonlinear and interaction structures. It is shown that MAMaLoR model can compete with other popular models
in prediction at a lower computational cost. It overcomes the “curse of dimensionality" as one can easily add more
predictor variables into the model and the computational time is still in polynomial time . However, when more and
more predictor variables are added, we should take care to select the relevant variables for prediction, which is beyond
the scope of this paper and left for further study.

4.2. An application: forecasting market moving direction of FTSE 100 index
In this section, we demonstrate practical advantages of our proposed MAMaLoR model by an application to fore-

casting market moving direction of FTSE 100 Index data. The data set includes close price, cpt, the maximum price
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Figure 3: Boxplots of the area under curve (AUC) with 100 repetitions for one-step ahead classification predictions of
non-additive data, with np = 50 observations for testing, for lag = 31, based on n = 1000 observations for training.

maxpt and the minimum price minpt of the day, and the trading volume V lmt for each day from 1 May 2013 to 1
May 2018, with 1263 observations. We are concerned with whether the market price is up (Yt = 1) or not (Yt = 0)
is determined by the factors of historical data, such as volatility, volume and (geometric) return, which are defined,
respectively, by

Yt =
{

1 if cpt − cpt−1 > 0
0 else, (29)

vt = log(100
(maxpt − minpt)
1
2 (maxpt + minpt)

),

Vt = log(V lmt)
and

Gt = 100log(
cpt
cpt−1

).

The three series of volatility vt, log-volume Vt and geometric return Gt are depicted in figure (4). Note that Yt =
I(Gt > 0), with I(⋅) standing for an indicator function.

In this example, we are interested in the one-step-ahead prediction of the market (price) moving direction Yt by
using the information of a range of lags of all volatility, volume and geometric return to examine if they help to improve
the explanation or prediction of market direction. Each lagged variable will be treated as a single predictor and then
fed to the model.

To start with, we consider Xt = (vt−j , Vt−j , Gt−j , j = 1, 2, 3, 4) ,i.e., a short lag of 4 and 3 ∗ 4 = 12 variables used
in total, to predict Yt. The number of lags will then be enlarged later to fully exploit the advantage of our proposed
MAMaLoR procedure. Though the selection of the lags is important in prediction, we start with this arbitrary selected
lag first. The training sample we used is from the 1st observation to the 800th observation. Our evaluation or testing
sample for the prediction is the following 200 observations (801 to 1000) right after the training sample. Since Yt is
binary, we are plotting the Receiver Operating Characteristic (ROC) and computing Area Under the Curve (AUC) to
compare the performances (see Ballings, Van den Poel, Hespeels & Gryp (2015)).
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Figure 4: The time series plot of volatility vt, log-volume Vt and geometric return Gt defined in (29).

We first estimate the marginal logistic regressions fj(⋅)’s in (3) for the given lagged volatility, volume and geo-
metric return variables, respectively, with a bandwidth of 0.5 applied for initial investigation. we are comparing our
MAMaLoR with the linear logistic (LLoR) and the additive logistic (AddLoR) models in forecasting of Yt based on
the lagged information of Xt. As to the LLoR and AddLoR models, we use, respectively, the GLM in R and the R
package (gam) for the binomial family with logistic link, with the s(.) functions that automatically specify a smoothing
spline fit for each component of Xt in the GAM model. For ease of statement, we call the LLoR and the AddLoR
models the GLM and the GAM below,

Note that in general it is poor to estimate the probability of P (Yt = 1|Xt) via a purely nonparametric logistic
regression for such a high dimensional case with Xt = (vt−j , Vt−j , Gt−j , j = 1, 2, 3, 4) of dimension d = 12 due to
curse of dimensionality. We compare the performance of our MAMaLoR model with both GLM and GAM in the
forms detailed as follows:
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Figure 5: Marginal probability of significant variables in MAMaLoR model, with the quantities for x-axis defined in (29).

Figure 6: Smooth function for significant variables in GAM model, with the quantities for x-axis defined in (29).

MAMaLoR model:

logit(pt) = log
pt

1 − pt
≈ �0 +

4
∑

j=1
�jfj(vt−j) +

4
∑

j=1
�4+jf4+j(Vt−j) +

4
∑

j=1
�8+jf8+j(Gt−j), (30)

where fj(vt−j) = logit(P (Yt = 1|vt−j)) for j = 1, 2, 3, 4 and f4+j(Vt−j) and f8+j(Gt−j) defined similarly are pre-
estimated, respectively, as in (10) and then �j’s estimated, detailed in Section 3.1;
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Table 3
Summary of MAMaLoR, GLM and GAM model fittings

MAMaLoR model GLM (LLoR) model GAM (AddLoR) model
Estimate Std. Error Pr(|z|) Pr(|z|) P-value

Intercept -0.7697 0.2001 0.000120 *** Intercept 0.496 Intercept 0.204
f1(vt−1) -0.1815 1.2192 0.881654 vt−1 0.632 s(vt−1) 0.7654
f2(vt−2) 0.7542 0.6624 0.254884 vt−2 0.460 s(vt−2) 0.2275
f3(vt−3) 0.7087 0.6118 0.246755 vt−3 0.237 s(vt−3) 0.0586 .
f4(vt−4) 0.9240 0.8155 0.257175 vt−4 0.835 s(vt−4) 0.6357
f5(Vt−1) 1.0364 1.2139 0.393246 Vt−1 0.580 s(Vt−1) 1.0000
f6(Vt−2) 0.4283 0.6882 0.533729 Vt−2 0.306 s(Vt−2) 0.1544
f7(Vt−3) 0.3587 0.7690 0.640865 Vt−3 0.918 s(Vt−3) 0.5899
f8(Vt−4) -0.6463 1.0239 0.527874 Vt−4 0.852 s(Vt−4) 1.0000
f9(Gt−1) 1.6064 0.4549 0.000413 *** Gt−1 0.147 s(Gt−1) 0.2821
f10(Gt−2) 1.2537 0.4592 0.006335 ** Gt−2 0.214 s(Gt−2) 0.0543 .
f11(Gt−3) 2.1436 0.7808 0.006042 ** Gt−3 0.268 s(Gt−3) 0.2892
f12(Gt−4) 1.1419 0.4337 0.008461 ** Gt−4 0.121 s(Gt−4) 0.0592 .

AIC 1062.1 AIC 1118.4 AIC 1095.604
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1

GLM model:

logit(pt) ≈ �0 +
4
∑

j=1
�jvt−j +

4
∑

j=1
�4+jVt−j +

4
∑

j=1
�8+jGt−j , (31)

where �j’s are estimated by the GLM in R;
GAM model:

logit(pt) ≈ �0 +
4
∑

j=1
gj(vt−j) +

4
∑

j=1
g4+j(Vt−j) +

4
∑

j=1
g8+j(Gt−j), (32)

where gj(⋅)’s are unknown functions estimated by GAM in R with the s(.) functions specifying a smoothing spline fit.
The fitting results of these models are summarised in Table 3. Indeed, AIC is widely applied for model selection.

As an indicative only, by the AIC values shown in this table, the MAMaLoR with the used bandwidth of ℎ = 0.5
seems preferred to the GLM and the GAM. Here the selected bandwidth of ℎ = 0.5 is an indicative only for illustration
- it appears to work well. Also as shown, none of the GLM coefficients are significant at 5% level of significance,
while the GAM result seems to imply that almost all the variables in model (32) are not useful in explaining the market
direction Yt except the components, vt−3, Gt−2 and Gt−4, the additive functions of which are displayed in Figure 6.
Differently, our MAMaLoR model appears to show that the market direction Yt is significantly correlated to the lagged
geometric returns from t− 1 to t− 4 through marginal local linear logistic (auto)regression estimates together with an
intercept (see Figure 5 on the estimated marginal probabilities of P (Yt = 1|Gt−j = xj) for j = 1, 2, 3, 4). From the
above analysis, it appears that one may conclude that the true relationship between Yt andXt is not linear. In particular,
the MAMaLoR model recognizes the relationship between the lags of the geometric return Gt and the market index
moving direction Yt, which appears reasonable according to the way we set them, while the other models fail to provide
relevant information.

In addition, we notice from the MAMaLoR result in Table 3 that, though all the lagged volatility and volume
variables seem to be removed from our model, it is possible that a longer range of lags of the geometric return would
still be significant and help to explain Yt. We have hence examined to determine the optimal number of lags for
geometric return (Gt) in the MAMaLoR model. The AIC value for each fit with different lags of geometric return is
plotted in Figure (7). It appears that the MAMaLoR model improves with more lags, though the following lags of Gt
after lag of 21 may not help a lot in explaining Yt with the change of AIC being small from lag = 21 to lag = 31. We
have hence considered a lag order of 31 in our MAMaLoR model fitting.

By removing the insignificant lags of Gt in the model, we obtain a new MAMaLoR model fitting result provided
in Table 4 with a much smaller AIC value of 968.74 than those in Table 3. We have further compared the AUC values
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Figure 7: The aic of MAMaLoR model with different number of lagged Gt.

Table 4
MAMaLoR model after lag selection

MAMaLoR model
Estimate Std. Error Pr(|z|)

Intercept -1.9983 0.2612 2.01e-14 ***
Gt−1 1.7347 0.4848 0.000346 ***
Gt−3 2.4553 0.8163 0.002631 **
Gt−8 1.0010 0.3262 0.002150 **
Gt−11 1.6940 0.6218 0.006439 **
Gt−13 1.1286 0.4655 0.015320 *
Gt−14 1.1290 0.2811 5.93e-05 ***
Gt−15 3.0522 1.1383 0.007332 **
Gt−16 1.2039 0.3765 0.001384 **
Gt−17 1.5887 0.5373 0.003106 **
Gt−18 1.1873 0.5708 0.037528 *
Gt−21 1.2115 0.2944 3.87e-05 ***
Gt−28 2.1106 0.6844 0.002043 **
Gt−31 1.5785 0.8405 0.060367.

AIC 968.74
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1

of the forecasting of the market moving direction Yt based on the significant Xt identified by the above analysis. The
group of Xt = (Gt−1, Gt−3, Gt−8, Gt−11, Gt−13, Gt−14, Gt−15, Gt−16, Gt−17, Gt−18, Gt−21, Gt−28, Gt−31) is identified by
the MAMaLoR model given in Table 4. The AUC values with the ROC curves for both the MAMaLoR model with
bandwidth selection and the corresponding GLM are investigated.

As is well known, financial return is notoriously difficult to predict, so it is quite understandable that the predictive
power of a model on financial return is basically very low with the AUC close to 0.5 for forecasting of price moving
direction under an efficient market hypothesis. In this sense, a model that achieves AUC higher than 0.5 for forecasting
of the price moving direction is of interest, which indicates some kind of ability in forecasting by the model. The ROC
curves together with the AUC values are given in Figure 8. It is clear that the performance of our proposed MAMaLoR
is better than that of the GLM model in time series classification prediction, which is promising. Recognising that the
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Figure 8: The ROC curves for the MAMaLoR with selected bandwidth (h given in Table 5) and the GLM models. Here
the corresponding AUC values for MAMaLoR 0.6041 with h selected, and for GLM it is 0.560, respectively.

Table 5
Bandwidth selected for the 13 significant variables given in Table 4

Gt−1 Gt−3 Gt−8 Gt−11 Gt−13 Gt−14 Gt−15 Gt−16 Gt−17 Gt−18 Gt−21 Gt−28 Gt−31
h selected 0.2287426 0.5396938 0.8646845 0.8266905 1.4065888 1.1340509 1.8326259 0.3591425 1.3146497 0.9988872 1.3914061 1.8377243 1.8388175

market direction may also be influenced by other more factors, there is, henceforth, still a room for our MAMaLoR
model to improve its predictability by optimally choosing the lagged information from more explanatory variables.

We comment that the performance of kernel based models, e.g., local linear regression, may depend on the choice
of bandwidth. For simplicity, as in the simulation, we used the function h.select available in R package sm, which is
a direct estimation of pjt = E(Yt|xjt) based on cross validation, to find the bandwidths for the 13 selected predictors
given in Table 4. The selected bandwidth ℎ’s are summarised in Table 5, used for the MAMaLoR in Figure 8. Again
it appears to work well although there is no theoretical guarantee that these ℎ’s selected are globally optimal for
classification. We leave the investigation of theoretically optimal bandwidth selection to the future work.

5. Conclusion
In this paper, a novel semi-parametric logistic model, namely MAMaLoR, has been proposed to forecast binary

time-series classification data with mixing dependence. The consistency and asymptotic normality of the estimator of
averaging coefficients are established under mild conditions. A simulation based numerical example is presented to
show the strength of our proposed model in forecasting. An application of our MAMaLoR model to forecast of market
moving direction of the FTSE100 financial data has further illustrated its power in time series classification forecasting
by a comparison with the GAM and GLM models. With more work by careful variable selection, the performance
of our proposed model would still improve, which is left for future work. We hope this would contribute to further
studies in semiparametric classification models in time series domain, with the future research direction including
variable selection and bandwidth selection in high and ultra-high dimension cases.
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Appendix
A. Sketch of Proof of Theorem 3.1

Proposition 3.1 (Consistency Lemma), given in Section 3, follows from Lemma 4.1 in Lu et al. (2007). The consis-
tency of �̂ can be proved by checking the conditions specified in Proposition 3.1. As �̂ and �(0) are the maximizers of
ln(f̂ (⋅),�) and l(f0(⋅),�), respectively, (i) and (ii) of Proposition 3.1 hold obviously. (iii) of Proposition 3.1 also holds
clearly by the following fact:

l(f (⋅),�) = E[Yt�̃t(f )T� − log(1 + e�̃t(f )
T �)], (33)

where �̃t(f ) = (1, f1(x1t)..., fd(xdt))T with fj’s being marginal functions that are generally different from those in f0
given in Assumption A4 at a cost of slight notation confusion.

Then:

sup
�∈A

|l(f (⋅),�) − l(f0(⋅),�)|

≤ E|Yt|‖�̃t(f ) − �̃t(f0)‖� + | log(1 + e�̃t(f )
T �) − log(1 + e�̃t(f0)

T �)|

≤ e�̃t(f )T �

1 + e�̃t(f )T �
‖�̃t(f ) − �̃t(f0)‖‖�‖

≤ C‖f − f0‖F, (34)

where C is a generic constant.
Now, to prove (iv) of Proposition 3.1, we show that the estimator f̂j(.) replacing fj(.) function in the model av-

eraging step is uniformly consistent. The proof for the local fitting technique is given as follows. It is similar to that
of Nielsen (2005) under i.i.d. data, but we are concerned with time series data process of �-mixing as defined in
Subsection 3.2.

The non-linear logistic regression can be formulated as follows:

logit(pj(xjt)) = log(
pj(xjt)

1 − pj(xjt)
) = fj(xjt), (35)

where pj(xjt) = P (Yt = 1|xjt) and 1 − pj(xjt) = P (Yt = 0|xjt), and fj(⋅) is a nonparametric function from R to R.
Given the local log likelihood function in (9), we have the following types of estimation equations:

Ω(1)n (�, xj , ℎ) =
1
n
)l
)�1

= 1
n

n
∑

t=1

[

Yt −
exp(�1 + �T2 (xjt − xj))

1 + exp(�1 + �T2 (xjt − xj))

]

Kℎ(xjt − xj) = 0, (36)

Ω(2)n (�, xj , ℎ) =
1
nℎ

)l
)�2

= 1
n

n
∑

t=1

[

Yt −
exp(�1 + �T2 (xjt − xj))

1 + exp(�1 + �T2 (xjt − xj))

]

xjt − xj
ℎ

Kℎ(xjt − xj) = 0. (37)

Intuitively, if Ωn(�, xj , ℎ) = (Ω(1)n (�, xj , ℎ),Ω
(2)
n (�, xj , ℎ))T is uniformly close to E[Ωn(�, xj , ℎ)] in xj ∈ Aj =

[cj0, c1j], then �̂ should be close to the solution of E[Ωn(�, xj , ℎ)] = 0, and is a consistent estimator of �0. We
first check �0 is close to the solution to E[Ωn(�, xj , ℎ)] = 0 with our local maximum likelihood estimation under
model (35):

E[Ω(1)n (�, xj , ℎ)] = E

[

1
n

n
∑

t=1

(

Yt −
exp(�1 + �2(xjt − xj))

1 + exp(�1 + �2(xjt − xj))

)

Kℎ(xjt − xj)

]

= E

{

1
n

n
∑

t=1
E
[(

Yt −
exp(�1 + �2)(xjt − xj)

1 + exp(�1 + �2(xjt − xj))

)

Kℎ(xjt − xj)|xjt

]

}
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= E

[

1
n

n
∑

t=1

(

E[Yt|xjt] −
exp(�1 + �2(xjt − xj0))
1 + exp(�1 + �2(xjt − xj))

)

Kℎ(xjt − xj)

]

= E

[

1
n

n
∑

t=1

( exp(fj(xjt))
1 + exp(fj(xjt))

−
exp(�1 + �2(xjt − xj))

1 + exp(�1 + �2(xjt − xj))

)

Kℎ(xjt − xj)

]

,

where note that E[Yt|xjt] =
exp(fj (xjt))
1+exp(fj (xjt))

.

Let f̃ (zj) =
ezj
1+ezj . Then by Taylor expansion together with assumptions A4 and A2 we find:

E
[

Ω(1)n (�, xj , ℎ)
]

= E

[

1
n

n
∑

t=1

(

f̃ (fj(xjt)) − f̃ (�1 + �2(xjt − xj))
)

Kℎ(xjt − xj)

]

= (1 + o(1))[f̃ (fj(xjt)) − f̃ (�1)]gj(xj),

where o(1) is uniform in x ∈ A owing to Assumption A4, and gj is the marginal probability density function of xjt.
In fact, if we denote Φ(Yt, zj) = Yt − exp(zj)∕[1 + exp(zj)] as in Assumption A5, then

E[Ω(1)n (�, xj , ℎ)] = E[Φ(Yt; �1 + �2(xjt − xj))Kℎ(xjt − xj)]
= E[m(xj ; �1 + �2(xjt − xj))Kℎ(xjt − xj)]

= m(xj , �1)gj(xj) + O(ℎ2), (38)

where, corresponding to our local logistic regression, m(xj , �1) = f̃ (fj(xj)) − f̃ (�1), and the O-term does not depend
on x ∈ A nor on �1 = fj(xj) which is the j-th component of f0(⋅) owing to Assumption A4.

Similarly,

E[Ω(2)n (�, xj , ℎ)] = E
[

Φ(Yi; �1 + �2(xjt − xj))
xjt − xj

ℎ
Kℎ(xjt − xj)

]

= ℎ(�2m′2(xj , �1)) + m
′
1(xj , �1))gj(xj) + ℎm(xj , �1)g

′
j(xj) + O(ℎ

3),

where, corresponding to our local logistic regression model, m′1(xj , �1) = f̃ ′(fj(xj))f ′j (xj) = f ′j (xj)
efj (xj )

(1+efj (xj ))2
and

m′2(xj , �1) = −f̃ ′(�1) = − e�1
(1+e�1 )2

, with f̃ ′(zj) = ezj∕(1 + ezj )2 as defined above, and the O-term is uniform with
respect to x ∈ A.

Thus we get:

E[Ω(1)n (�, xj , ℎ)] = Ω
(1)
0 (�, xj) + O(ℎ

2), (39)

and

E[Ω(2)n (�, xj , ℎ)] = ℎΩ
(2)
0 (�, xj) + O(ℎ

3), (40)

where

Ω(1)0 (�, xj) = m(xj , �1)gj(xj), (41)

Ω(2)0 (�, xj) = (�2m
′
2(xj , �1) + m

′
1(xj , �1))gj(xj) + m(xj , �1)g

′
j(xj). (42)

Denote by �0 = (�01, �02) the solution to 
0(�, xj) = 0, where 
0(�, xj) = (Ω
(1)
0 (�, xj),Ω

(2)
0 (�, xj))

T . Then we
have:

⎧

⎪

⎨

⎪

⎩

m(xj , �01) = 0

�02(x) = −
m′1(xj ,�01)
m′2(xj ,�02)

,
(43)
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which is actually unique correspondingly to our local linear logistic regression (9) with �01 = fj(xj) and �02 = f ′j (xj).
ForΩ(i)0 (�, xj), i = 1, 2, we further know from the above thatΩ(i)0 (�, xj) is continuous in � ∈ F (in Lipschitz norm)

and x ∈ A (in Euclidean norm) owing to Assumption A4. Therefore, for any " > 0, there exists � > 0 such that

‖�̂ − �0‖∞ > � ⇒ max
i=1,2

|Ω(i)0 (�̂, xj)| > ", for x ∈ A. (44)

Therefore for the uniform consistency of �̂ to �0 in probability, by (44), it suffices to showmaxi=1,2 supx∈A |Ω
(i)
0 (�̂, xj)|

= maxi=1,2 supx∈A |Ω
(i)
0 (�̂, xj) − Ω

(i)
0 (�0, xj)| → 0 in probability as n→ ∞. This follows from

max
i=1,2

sup
‖�‖F≤C

sup
xj∈Aj

|Ω(i)n (�, xj) − Ω
(i)
0 (�, xj)| → 0,

as n → ∞, which is easily proved under Assumptions A1–A4 (c.f., Lu et al. (2007)) with details omitted. The proof
of (iv) of Proposition 3.1 is done.

To check (v) of Proposition 3.1, let �n = o(1) and ‖f − f0‖F ≤ �n. Then we have:

ln(f (⋅),�) − l(f (⋅),�) = {ln(f (⋅),�) − ln(f0(⋅),�)} + {ln(f0(⋅),�) − l(f0(⋅),�)} + {l(f0(⋅),�) − l(f (⋅),�)}
= I + II + III. (45)

Uniformly, for � ∈ A and f satisfying ‖f − f0‖F ≤ �n, I , II and III can be proved to tend to zero. It is easy to
show that III tending to zero follows from equation (34) and II tending to zero is easily proved by the law of large
number together with A being a compact set. Note that III is the expected value of I . That I tends 0 can be proved
similarly. Hence we know that I + II + III tends to zero.

By completing the checking of the conditions of Proposition 3.1 (Consistency Lemma), the proof of Theorem 3.1
is completed.

B. Sketch of Proof of Theorem 3.2
Now we will derive the asymptotic normality. Note that ln(f (⋅),�) and l(f (⋅),�) are differentiable with respect to

�. By applying simple algebraic operations, we can obtain and denote the derivatives as follows:

l
′

n(f (⋅),�) =
1
n

n
∑

t=1
[(Yt − pt(f ,�))�̃t(f )]w(Xt),

l′(f (⋅),�) = E[(Yt − pt(f ,�))�̃t(f )]w(Xt),

l
′′

n (f (⋅),�) = −
1
n

n
∑

t=1
pt(f ,�)(1 − pt(f ,�))�̃t(f )�̃t(f )Tw(Xt),

and

l
′′
(f (⋅),�) = )l′(f (⋅),�)

)�
=
)E[(Yt −

e��̃t(f )

1+e��̃t(f )
)�̃t(f )]w(Xt)

)�

= E[− e��̃t(f )

1 + e��̃t(f )
⋅

1
1 + e��̃t(f )

⋅ �̃t(f ) ⋅ �̃t(f )T ]w(Xt)

= E[−pt(f ,�)(1 − pt(f ,�))�̃t(f )�̃t(f )T ]w(Xt),

where �̃t(f ) = (1, f1(x1t)..., fd(xdt))T .
We apply the Taylor expansion:

0 = l
′

n(f̂ (⋅), �̂) = l
′

n(f̂ (⋅),�
(0)) + l

′′

n (f̂ (⋅),�
(0) + �(�̂ − �(0)))(�̂ − �(0)),

and
√

n(�̂ − �(0)) = −[l′′n (f̂ (⋅),�
(0) + �(�̂ − �(0)))]−1

√

nl
′

n(f̂ (⋅),�
(0)),
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where |�| < 1. Then we have, together with the consistency of �̂ to �(0),
√

n(�̂ − �(0)) = −(1 + op(1))[l′′n (f0(⋅),�
(0))]−1

√

n[l
′

n(f0(⋅),�
(0)) + O(ℎ2)], (46)

by noting that

l
′

n(f̂ ,�
(0)) − l

′

n(f0,�
(0)) = (1 + oP (1))

1
n

n
∑

t=1
[(Yt − pt)(�̃t(f̂ ) − �̃t(f0))w(Xt)]

= OP (ℎ2), (47)

owing to the uniform consistency of f̂ to f0 and E[f̂ ] − f0 = O(ℎ2) as we have proved.
Note that

l
′′

n (f0,�
(0)) = −1

n

n
∑

t=1
pt(f0,�(0))(1 − pt(f0,�(0)))�̃t(f0)�̃t(f0)Tw(Xt). (48)

By law of large number, we have

l
′′

n (f0,�
(0))→ l

′′
(f0,�(0)) = U = E[−pt(1 − pt)�̃t(f0)�̃t(f0)T ]w(Xt). (49)

By central limit theorem,
√

nl
′

n(f0,�
(0))→ N(0,V), (50)

where

V = lim
n→∞

V ar( 1
√

n
(Yt − pt)�̃t(f0)w(Xt)). (51)

Thus the asymptotic variance matrix

V ar(�̂|f (⋅)) = U−1VU−1. (52)

The asymptotic normality of �̂ hence follows.
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