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Maximum entropy classification for record linkage 

Danhyang Lee, Li-Chun Zhang and Jae Kwang Kim1 

Abstract 

By record linkage one joins records residing in separate files which are believed to be related to the same 

entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy 

classification method in machine learning to record linkage, both in the supervised and unsupervised settings 

of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, 

our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and 

Sunter (1969); on the other hand, the proposed algorithm is fully automatic, unlike the classical approach that 

generally requires clerical review to resolve the undecided cases. 

 

Key Words: Probabilistic linkage; Density ratio; False link; Missing match; Survey sampling. 

 

 

1. Introduction 
 

Combining information from multiple sources of data is a frequently encountered problem in many 

disciplines. To combine information from different sources, one assumes that it is possible to identify the 

records associated with the same entity, which is not always the case in practice. The entity may be 

individual, company, crime, etc. If the data do not contain unique identification number, identifying 

records from the same entity becomes a challenging problem. Record linkage is the term describing the 

process of joining records that are believed to be related to the same entity. While record linkage may 

entail the linking of records within a single computer file to identify duplicate records, referred to as 

deduplication, we focus on linking of records across separate files. 

Record linkage (RL) has been employed for several decades in survey sampling producing official 

statistics. In particular, linking administrative files with survey sample data can greatly improve the 

quality and resolution of the official statistics. As applications, Jaro (1989) and Winkler and Thibaudeau 

(1991) merged post-enumeration survey and census data for census coverage evaluation. Zhang and 

Campbell (2012) linked population census data files over time, and Owen, Jones and Ralphs (2015) linked 

administrative registers to create a single statistical population dataset. The classical approach pioneered 

by Fellegi and Sunter (1969), which is the most popular method of RL in practice, has been successfully 

employed for these applications. 

The probabilistic decision rule of Fellegi and Sunter (1969) is based on the likelihood ratio test idea, by 

which we can determine how likely a particular record pair is a true match. In applying the likelihood ratio 

test idea, one needs to estimate the model parameters of the underlying model and determine the 

thresholds of the decision rule. Winkler (1988) and Jaro (1989) treat the matching status as an unobserved 

variable and propose an EM algorithm for parameter estimation, which we shall refer to as the 
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WJ-procedure. See Herzog, Scheuren and Winkler (2007), Christen (2012) and Binette and Steorts (2020) 

for overviews. However, as explained in Section 2, to motivate the WJ-procedure as an EM algorithm 

requires the crucial assumption that measures of agreement between the record pairs, called comparison 

vectors, are independent from one record pair to another, which is impossible to hold in reality. 

Newcombe, Kennedy, Axford and James (1959) address dependence between comparison vectors through 

data application. Also, see e.g. Tancredi and Liseo (2011), Sadinle (2017), and Binette and Steorts (2020) 

for discussions of this issue. Bayesian approaches to RL are also available in the literature (Steorts, 2015; 

Sadinle, 2017; Stringham, 2021). Bayesian approaches to RL problems allow us to quantify uncertainty on 

the matching decisions. However, the stochastic search using MCMC algorithm in the Bayesian approach 

involves extra computational burden. 

To develop an alternative approach, we first note that the RL problem is essentially a classification 

problem, where each record pair is classified into either “match” or “non-match” class. Various 

classification techniques based on machine learning approaches have been employed for record linkage 

(Hand and Christen, 2018; Christen, 2012, 2008; Sarawagi and Bhamidipaty, 2002). In this paper, we 

adapt the maximum entropy method for classification to record linkage. Specifically, we can view the 

likelihood ratio of the method proposed by Fellegi and Sunter (1969) as a special case of the density ratio 

and apply the maximum entropy method for density ratio estimation. For example, Nigam, Lafferty and 

McCallum (1999) use the maximum entropy for text classification and Nguyen, Wainwright and Jordan 

(2010) develop a more unified theory of maximum entropy method for density ratio estimation. There is, 

however, a key difference of record linkage to the standard setting of classification problems, in that the 

different record pairs are not distinct ‘units’ because the same record is part of many record pairs. 

We present our maximum entropy record linkage algorithm for both supervised and unsupervised 

settings, while our main contributions concern the unsupervised case. Supervised approaches need training 

data, i.e., record pairs with known true match and true non-match status. Such training data are often not 

available in real world situations, or have to be prepared manually, which is very expensive and time-

consuming (Christen, 2007). Thus, the unsupervised case is by far the most common in practice. In the 

unsupervised case, however, one cannot estimate the density ratio directly based on the observed true 

matches and non-matches, and it is troublesome to jointly model for the unobserved match status and the 

observed comparison scores over all the record pairs. We develop a new iterative algorithm to jointly 

estimate the density ratio as well as the maximum entropy classification set in the unsupervised setting 

and prove its convergence. The associated measures of the linkage uncertainty are also developed. 

Furthermore, we show that the WJ-procedure can be incorporated as a special case of our approach to 

estimation, but without the need of the independence assumption between the record pairs. This reveals 

that the WJ-procedure can be motivated without the independence assumption, and explains why it gives 

reasonable results in many situations. The choice of the set of links is guided by the uncertainty measures 

developed in this paper. This is an important practical improvement over the classical approach, which 

does not directly provide any uncertainty measure for the final set of links. Our procedure is fully 
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automatic, without the need for resource-demanding clerical review that is required under the classical 

approach. 

The paper is organised as follows. In Section 2, the basic setup and the classical approach are 

introduced. In Section 3, the proposed method is developed under the setting of supervised record linkage. 

In Section 4, we extend the proposed method to the more challenging case of the unsupervised record 

linkage. Discussions of some related estimation approaches and technical details are presented in 

Section 5 and the supplementary material. Results from an extensive simulation study are presented in 

Section 6. Some concluding remarks and comments on further works are given in Section 7. 

 
2. Problems with the classical approach 
 

Suppose that we have two data files A  and B  that are believed to have many common entities but no 

duplicates within each file. Any record in A  and another one in B  may or may not refer to the same 

entity. Our goal is to find the true matches among all possible pairs of the two data files. Let the bipartite 

comparison space = =A B M U    consist of matches M  and non-matches U  between the records 

in files A  and .B  For any pair of records ( ), ,a b   let abγ  be the comparison vector between a set of 

key variables associated with a A  and ,b B  respectively, such as name, sex, date of birth. The key 

variables and the comparison vector abγ  are fully observed over .  In cases where the key variables may 

be affected by errors, a match ( ),a b  may not have complete agreement in terms of ,abγ  and a non-match 

( ),a b  can nevertheless agree on some (even all) of the key variables. 

In the classical approach of Fellegi and Sunter (1969), one recognizes the probabilistic nature of abγ  

due to the perturbations that cause key-variable errors. The related methods are referred to as probabilistic 

record linkage. To explain the probabilistic record linkage method of Fellegi and Sunter (1969), let 

( ) ( )( )= ,ab abm f a b Mγ γ  be the probability mass function of the discrete values abγ  can take given 

( ), .a b M  Similarly, we can define ( ) ( )( )= , .ab abu f a b Uγ γ  The ratio  

 
( )

( )
=

ab

ab

ab

m
r

u

γ

γ
  

is then the basis of the likelihood ratio test (LRT) for ( )0: ,H a b M  vs. ( )1: , .H a b U  Let 

( ) * = , : ab MM a b r c  be the pairs classified as matches and ( ) * = , : ab UU a b r c  the non-matches, the 

remaining pairs are classified by clerical review, where ( ),M Uc c  are the thresholds related to the 

probabilities of false links (of pairs in )U  and false non-links (of pairs in ),M  respectively, defined as  

 ( ) ( )*= ;u M 
γ

γ γ    and   ( ) ( )*= ; ,m U 
γ

γ γ  (2.1) 

where ( )*; = 1M γ  if =abγ γ  means ( ) *,a b M  and 0 otherwise, similarly for ( )*; .U γ  
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In practice the probabilities ( )m γ  and ( )u γ  are unknown. Neither is the prevalence of true matches, 

given by = := .MM n n   Let η  be the set containing   and the unknown parameters of ( )m γ  

and ( ).u γ  Let = 1abg  if ( ),a b M  and 0 if ( ), .a b U  Given the complete data 

( ) ( ) , : , ,ab abg a b γ  Winkler (1988) and Jaro (1989) assume the log-likelihood to be  

 ( )
( )

( )( ) ( )
( )

( ) ( )( )
, ,

= log 1 log 1 .ab ab ab ab

a b a b

h g m g u 
 

+ − − η γ γ  (2.2) 

An EM-algorithm follows by treating ( ) = : ,abg g a b   as the missing data. 

There are two fundamental problems with this classical approach.   

[Problem-I] Record linkage is not a direct application of the LRT, because one needs to evaluate all 

the pairs in   instead of any given pair. The classification of   into *M  and *U  is incoherent 

generally, since a given record can belong to multiple pairs in *.M  Post-classification 

deduplication of *M  would be necessary then, which is not part of the theoretical formulation 

above. In particular, there lacks an associated method for estimating the uncertainty 

surrounding the final linked set, such as the amount of false links in it or the remaining matches 

outside of it. 

[Problem-II] In reality the comparison vectors of any two pairs are not independent, as long as they 

share a record. For example, given ( ),a b M  and abγ  not subjected to errors, then abg   must 

be 0, for b b   and ,b B  as long as there are no duplicated records in either A  or ,B  and 

abγ  depends only on the key-variable errors of b  Whereas, marginally, = 1abg   with 

probability   and abγ  depends also on the key-variable errors of .a  It follows that ( )h η  in 

(2.2) does not correspond to the true joint-data distribution of ( ) = : , ,ab a b γ γ  even 

when the marginal m  and u -probabilities are correctly specified. Similarly, although one may 

define marginally ( ) ( )= Pr , ,a b M a b      for a randomly selected record pair from ,  

it does not follow that ( ) ( ) ( )log = log log 1M Mf g n n n  + − −  jointly as in (2.2). For both 

reasons, ( )h η  given by (2.2) cannot be the complete-data log-likelihood.  

 

In the next two sections, we develop maximum entropy classification to record linkage to avoid the 

problems above, after which more discussions of the classical approach will be given. 

 
3. Maximum entropy classification: Supervised 
 

As noted in Section 1, the record linkage problem is a classification problem. Maximum entropy 

classification has been used in image restoration or text analysis (Gull and Daniell, 1984; Berger, 

Della Pietra and Della Pietra, 1996). Maximum entropy classification (MEC) has been proposed for 

supervised learning (SL) to standard classification problems, where the units are known but the true 
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classes of the units are unknown apart from a sample of labelled units. Let  1, 0Y   be the true class and 

X  the random vector of features. Let the density ratio be  

 ( )
( )
( )

( )

( )
1

0

= 1; ;
; = := ,

;= 0;

f Y f
r

ff Y

x η x η
x η

x ηx η
  

where 1f  and 0f  are the conditional density functions given =1Y  or 0, respectively, and η  contains the 

unknown parameters. For MEC based on ( ),r x  one finds η̂  that maximises the Kullback-Leibler (KL) 

divergence from 0f  to 1f  subjected to a constraint, i.e.  

 ( ) ( )
1

1= ; log ;
S

D f r d x η x η x    subjected to   ( ) ( )
1

0
ˆ ˆ; ; =1,

S
f r d x η x η x   

where 1S  is the support of X  given =1,Y  and the normalisation constraint arises since ( ) ( )0
ˆ ˆ; ;r fx η x η  

is an estimate of ( )
1 .f x  Provided common support 1 0 ,S S=  where 0S  is the support of X  given = 0,Y  

one can use the empirical distribution function (EDF) of X  over  : =1i iyx  in place of 1f  for ,D  and 

that over  : = 0i iyx  in place of 0f  for the constraint. Having obtained ( )ˆˆ = ; ,r rx x η  one can classify any 

unit given the associated feature vector x  based on ( )ˆ ˆPr =1 ; , ,Y p rxx  where p̂  is an estimate of the 

prevalence ( )= Pr =1 .p Y  

We describe how the idea of MEC for supervised learning can be adapted to record linkage problem in 

the following subsections. 

 
3.1 Probability ratio for record linkage 
 

For supervised learning based MEC to record linkage, suppose M  is observed for the given ,  and 

the trained classifier is to be applied to the record pairs outside of .  To fix the idea, suppose B  is a non-

probability sample that overlaps with the population ,P  and A  is a probability sample from P  with 

known inclusion probabilities. While ( ) = : ,M ab a b Mγ γ  may be considered as an IID sample, since 

each ( ),a b  in M  refers to a distinct entity, this is not the case with ( ) : , ,ab a b Mγ  whose joint 

distribution is troublesome to model. 

 
Probability ratio (I) 
 

Let ( )qr γ  be the probability ratio given by  

 ( )
( )

( )
= ,q

m
r

q

γ
γ

γ
  

where ( )m γ  is the probability mass function of =abγ γ  given = 1,abg  and ( )q γ  is that over 

( ) = : , .ab a b γ γ  The KL divergence measure from ( )q γ  to ( )m γ  and the normalisation constraint 

are  
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 ( )
( )

( )= logf q

S M

D m r



γ

γ γ    and   ( )
( )

( )ˆ ˆ =1 ,q

S M

q r



γ

γ γ   

where ( )S M  is the support of abγ  given = 1.abg  This set-up allows ( )S M  to be a subset of ,S  where 

S  is the support of all possible .abγ  It follows that, based on the IID sample Mγ  of size = ,Mn M  the 

objective function to be minimized for qr  can be given by  

 
( )

( )( )

( ) ( )
( ), ,

1
= log ,

ab

f q ab q ab

a b M a b MM ab M

f
Q r r

n n 

− 
γ

γ γ
γ

 (3.1) 

where 𝑛𝑀(𝛄𝑎𝑏) = ( ),i j M 𝕀(𝛄𝑖𝑗 = 𝛄𝑎𝑏) based on the observed support ( ).S M  

 
Probability ratio (II) 
 

Provided ( ) ( ),S M S U  where ( )S U  is the support of abγ  over ,U  one can let the probability ratio 

be given by  

 ( )
( )

( )
=

m
r

u

γ
γ

γ
  

where ( )u γ  is the probability of =abγ γ  given = 0.abg  We have  

 ( )
( )

( )

( )

( ) ( ) ( )

( )

( )( )
= = =

1 1 1
q

m m r
r

q m u r  + − − +

γ γ γ
γ

γ γ γ γ
  

where ( ) ( ) ( ) ( )= 1 ,q m u + −γ γ γ  so that ( )qr γ  and ( )r γ  are one-to-one. Meanwhile, the KL 

divergence measure from ( )u γ  to ( )m γ  is given by  

 ( )
( )

( )= log
S M

D m r



γ

γ γ   

and the objective function to be minimized for r  can now be given by  

 
( )

( )( )

( ) ( )
( ), ,

1
= log .

ab

ab ab

a b M a b MM ab M

u
Q r r

n n 

− 
γ

γ γ
γ

 (3.2) 

Model of :γ  Under the multinomial model, one can simply use the EDF of γ  over γ  as ( ),f γ  for each 

distinct level of ,γ  as long as   is large compared to .S  Similarly for ( )m γ  over Mγ  and ( )u γ  over 

.U  For linkage outside of ,  the estimated ( )m γ  from ( )M   applies, if the selection of A  from P  is 

non-informative. 

For γ  made up of K  binary agreement indicators, = 0, 1k  for =1, , ,k K  there are up to 2K  

distinct levels of ,γ  which can sometimes be relatively large compared to .M  A more parsimonious 

model of ( );m γ θ  that is commonly used is given by  

 ( ) ( )
1

= 1

; = 1 kk

K

k k

k

m
 

−
−γ θ  (3.3) 
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where ( ),= Pr =1 =1 ,k ab k abg   and ,ab k  is the thk  component of .abγ  It is possible to model k  based 

on the distributions of the key variables that give rise to ,γ  which makes use of the differential 

frequencies of their values, such as the fact that some names are more common than others. Similarly, 

( );u γ ξ  can be modeled as in (3.3) with parameters k  instead of ,k  where ( ),= Pr =1 = 0 .k ab k abg   

Note that (3.3) implies conditional independence among agreement indicators. Winkler (1993) and 

Winkler (1994) demonstrated that even when the conditional independence assumption does not hold, 

results based on conditional independence assumption are quite robust. More complicated models that 

allow for correlated k  can also be considered. See Armstrong and Mayda (1993) and Larsen and Rubin 

(2001) for discussion of those models. See Xu, Li, Shen, Hui and Grannis (2019) for a recent study which 

compares models with or without correlated .k  

 
3.2 MEC sets for record linkage 
 

Provided there are no duplicated records in either A  or ,B  a classification set for record linkage, 

denoted by ˆ ,M  consists of record pairs from ,  where any record in A  or B  appears at most in one 

record pair in ˆ .M  Let the entropy of a classification set M̂  be given by  

 ( )
( )

ˆ
ˆ,

1
= log .

ˆ abM
a b M

D r
M 

 γ  (3.4) 

A MEC set of given size * ˆ=n M  is the first classification set that is of size 
* ,n  obtained by 

deduplication in the descending order of ( )abr γ  over .  It is possible to have ( ) ˆ,a b M   and 

( ) ( ),ab a br r  γ γ  for ( ) ˆ, ,a b M    if there exists ( ) ˆ,a b M  with ( ) ( ).ab abr r γ γ  

A MEC set of size *n  is not necessarily the largest possible classification set with the maximum 

entropy, to be referred to as a maximal MEC set, which is the largest classification set such that 

( ) ( )= maxabr rγγ γ  for every ( ),a b  in it. In practice, a maximal MEC set is given by the first pass of 

deterministic linkage, which only consists of the record pairs with perfect and unique agreement of all the 

key variables. 

Probabilistic linkage methods for MEC set are useful if one would like to allow for additional links, 

even though their key variables do not agree perfectly with each other. For the uncertainty associated with 

a given MEC set ˆ ,M  we consider two types of errors. First, we define the false link rate (FLR) among the 

links in M̂  to be  

 ( )
( ) ˆ,

1
= 1

ˆ ab

a b M

g
M




−  (3.5) 

which is different to   by (2.1) where the denominator is .U  Second, the missing match rate (MMR) of 

ˆ ,M  which is related to the false non-link probability   in (2.1), is given by  

 
( ) ˆ,

1
=1 .ab

a b MM

g
n




−   (3.6) 
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While   and   in (2.1) are theoretical probabilities, the FLR and MMR are actual errors. 

It is instructive to consider the situation, where one is asked to form MEC sets in   given all the 

necessary estimates related to the probability ratio ( ),r γ  which can be obtained under the SL setting, 

without being given ,Mn g  or M  directly. 

First, the perfect MEC set should have the size .Mn  Let 𝑛(𝛄) =
( ),a b  𝕀(𝛄𝑎𝑏 = 𝛄). One can obtain 

Mn  as the solution to the following fixed-point equation:  

 ( )
( )

( ) ( )
,

ˆ ˆ= =M ab

a b S

n g n g
 

 γ γ γ  (3.7) 

where  

 ( ) ( )
( )

( )( )
( )

( )( )
ˆ := Pr 1 =

1 1 1

M

ab ab

M

r n r
g g

r n r n




= = =

− + − +

γ γ
γ γ γ

γ γ
 (3.8) 

and the probability is defined with respect to completely random sampling of a single record pair from .  

To see that ( )ĝ γ  by (3.8) satisfies (3.7), notice ( ) ( ) ( )ˆ = Mg n m nγ γ γ  satisfies (3.7) for any well defined 

( ),m γ  and ( ) ( ) ( ) ( )1n n m u = + −γ γ γ  by definition. 

Next, apart from a maximal MEC set, one would need to accept discordant pairs. In the SL setting, one 

observes the EDF of γ  over ,M  giving rise to ( )ˆ = 1; ,k M Mn k n  where ( )1;Mn k  is the number of 

agreements on the thk  key variable over .M  The perfect MEC set M̂  should have these agreement rates. 

We have then, for =1, , ,k K  

 
( ) ˆ,

1ˆ =
ˆk

a b MM




 𝕀(𝛾𝑎𝑏,𝑘 = 1)   for   ˆ = .MM n  (3.9) 

Thus, no matter how one models ( ),m γ  the perfect MEC set should satisfy jointly the 1K +  equations 

defined by (3.7) and (3.9), given the knowledge of ( ).r γ  

 
4. MEC for unsupervised record linkage 
 

Let z  be the K -vector of key variables, which may be imperfect for two reasons: it is not rich enough 

if the true z -values are not unique for each distinct entity underlying the two files to be linked, or it may 

be subjected to errors if the observed z  is not equal to its true value. Let A  contain only the distinct z -

vectors from the first file, after removing any other record that has a duplicated z -vector to some record 

that is retained in .A  In other words, if the first file initially contains two or more records with exactly the 

same value of the combined key, then only one of them will be retained in A  for record linkage to the 

second file. Similarly let B  contain the unique records from the second file. The reason for separate 

deduplication of keys is that no comparisons between the two files can distinguish among the duplicated z  

in either file, which is an issue to be resolved otherwise. 
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Given A  and B  preprocessed as above, the maximal MEC set 1M  only consists of the record pairs 

with the perfect agreement of all the key variables. For probabilistic linkage beyond 1 ,M  one can follow 

the same scheme of MEC in the supervised setting, as long as one is able to obtain an estimate of the 

probability ratio, given which one can form the MEC set of any chosen size. Nevertheless, to estimate the 

associated FLR (3.5) and MMR (3.6), an estimate of Mn  is also needed. 

 
4.1 Algorithm of unsupervised MEC 
 

The idea now is to apply (3.7) and (3.9) jointly. Since setting 
1

ˆ =Mn M  and ˆ 1k   associated with 

the maximal MEC set satisfies (3.7) and (3.9) automatically, probabilistic linkage requires one to assume 

1Mn M  and 1k   for at least some of =1, , .k K  Moreover, unless there is external information 

that dictates it otherwise, one can only assume common support ( ) ( )=S M S U  in the unsupervised 

setting. Let  

 ( ) ( ) ( )= ; ;r m uγ γ θ γ ξ  (4.1) 

where the probability of observing γ  is ( );m γ θ  by (3.3) given that a randomly selected record pair from 

  belongs to ,M  and ( );u γ ξ  otherwise, similarly given by (3.3) with parameters k  instead of .k  An 

iterative algorithm of unsupervised MEC is given below.   

I. Set 
( ) ( ) ( )( )0 0 0

1= , , K θ  and 
( )0

1= ,Mn M  where 1M  is the maximal MEC set. 

II. For the tht  iteration, let 
( )

=1t

abg  if ( ) ( )
, ,ta b M  and 0 otherwise.   

i. Update 
( )( ); tu γ ξ  by using (4.4), which is discussed below, given 

( ) ( ) ( ) = : , ,t t

abg a b g  

and calculate  

 
( )

( )

( )

( ),

1
=t t

k abt
a b

g
M




 𝕀(𝛾𝑎𝑏,𝑘 = 1) ,  (4.2) 

which maximize MD  in (3.4) for given 
( )( ) ( ) ( ) ( ) ; , = , : =1t t t

abu M a b gγ ξ  and 
( ) ( )

( ),
= .t t

aba b
M g

  Once 
( )t
θ  and 

( )t
ξ  are obtained, we can update 

( ) ( ) ( ) ( )ˆ= ,t t

Mn n gγ
γ γ  where  

                                                  
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

ˆ ˆ ; , = min , 1
1

t t

t t t

t t

M r
g g

M r n

  
  

− +  

γ
γ γ θ ξ

γ
  

                                                  
( ) ( ) ( ) ( )( )

( )( )
( )( )

;
; , = .

;

t

t t t

t

m
r r

u


γ θ
γ γ θ ξ

γ ξ
  

ii. For given 
( ) ( )

,t t
θ ξ  and 

( )
,t

Mn  we find the MEC set ( ) ( ) ( ) 1 1
= , : =1

t t

abM a b g
+ +

  such that 
( ) ( )1

=
t t

MM n
+

 by deduplication in the descending order of 
( ) ( )t

abr γ  over .  It maximizes 

the entropy denoted by 
( ) ( ) :tQ g  
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( ) ( ) ( )( ) ( )

( )

( ) ( )
,

1
= log ,t t t

ab abt
a bM

Q Q g r
n 

 g g ψ γ  (4.3) 

with respect to .g  

III. Iterate until 
( ) ( )1tt

M Mn n
+

=  or 
( ) ( )1tt +
− θ θ 𝜖, where 𝜖 is a small positive value.  

 

A theoretical convergence property of the proposed algorithm and its proof are presented in the 

supplementary materials. 

Notice that, insofar as = M U   is highly imbalanced, where the prevalence of = 1abg  is very close 

to 0, one could simply ignore the contributions from M  and use  

 
( ),

1ˆ
k

a bn




=  𝕀(𝛾(𝑎𝑏,𝑘) = 1) (4.4) 

under the model (3.3) of ( ); ,u γ ξ  in which case there is no updating of 
( )( ); .tu γ ξ  Other possibilities of 

estimating ( );u γ ξ  will be discussed in Section 5.2. 

Table 4.1 provides an overview of MEC for record linkage in the supervised or unsupervised setting. 

In the supervised setting, one observes γ  for the matched record pairs in ,M  so that the probability ( )m γ  

can be estimated from them directly. Whereas, for MEC in the unsupervised setting, one cannot separate 

the estimation of ( )m γ  and .Mn  

 
Table 4.1 

MEC for record linkage in supervised or unsupervised setting 
 

 Supervised Unsupervised 

= M U   Observed Unobserved 

Probability ratio ( )γqr  generally applicable ( )γr  generally 

( )γr  given ( ) ( )S M S U  assuming ( ) ( )S M S U=  

Model of γ  Multinomial if only discrete comparison scores 

Directly or via key variables and measurement errors 

MEC set Guided by FLR and MMR 

Require estimate of Mn  in addition 

Estimation ( );γ θm  from γM  in   ( );γ θm  and Mn  

Mn  by (3.7) outside   jointly by (3.7) and (3.9) 

 
4.2 Error rates 
 

MEC for record linkage should generally be guided by the error rates, FLR and MMR, without being 

restricted to the estimate of .Mn  

Note that ( ) ˆˆ : ,abg a b M  of any MEC set M̂  are among the largest ones over ,  because MEC 

follows the descending order of ˆ ,abr  except for necessary deduplication when there are multiple pairs 

involving a given record. To exercise greater control of the FLR, let   be the target FLR, and consider 

the following bisection procedure.   
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i. Choose a threshold value c  and form the corresponding MEC set ( )ˆ ,M c  where âbr c  for 

any ( ) ( )ˆ, .a b M c  

ii. Calculate the estimated FLR of the resulting MEC set M̂  as  

 ( )
( ) ˆ,

1
ˆ ˆ= 1 .

ˆ ab

a b M

g
M




−  (4.5) 

If ˆ ,   then increase ;c  if ˆ ,   then reduce .c  

 

Iteration between the two steps would eventually lead to a value of c  that makes ̂  as close as 

possible to ,  for the given probability ratio ( )ˆ .r γ  

The final MEC set M̂  can be chosen in light of the corresponding FLR estimate ˆ.  It is also possible 

to take into consideration the estimated MMR given by  

 
( ) ˆ,

ˆ ˆ ˆ=1 ab M

a b M

g n


−   (4.6) 

where ˆ
Mn  is given by unsupervised MEC algorithm. Note that if ˆ ˆ= ,MM n  then we shall have ˆ ˆ= ;   

but not if M̂  is guided by a given target value of FLR or MMR. 

In Section 6.2, we investigate the performance of the MEC sets guided by the error rates through 

simulations. 

 
5. Discussion 
 

Below we discuss and compare two other approaches in the unsupervised setting, including the ways 

by which some of their elements can be incorporated into the MEC approach. Other less practical 

approaches are discussed in the supplementary material. 

 
5.1 The classical approach 
 

Recall Problems I and II of the classical approach mentioned in Section 2. 

From a practical point of view, Problem I can be dealt with by any deduplication method of the set *M  

of classified records pairs, where ( )ˆ
abr γ  is above a threshold value for all ( ) *, .a b M  As “an advance 

over previous ad hoc assignment methods”, Jaro (1989) chooses the linked set * *ˆ ,M M  which 

maximises the sum of ( )ˆlog abr γ  subject to the constraint of one-one link. Since ˆ
abg  is a monotonic 

function of ( )ˆ ,abr γ  this amounts to choose *M̂  which maximises the expected number of matches in it, 

denoted by  

 
( ) *

*

ˆ,

ˆ=M ab

a b M

n g


   

But *

Mn  is still not connected to the probabilities of false links and non-links defined by (2.1). As 

illustrated below, neither does it directly control the errors of the linked 
*ˆ .M  
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Consider linking two files with 100 records each. Suppose Jaro’s assignment method yields 
*ˆ = 100M  on one occasion, where 80 links have ˆ 1abg   and 20 links have ˆ 0.75,abg   such that 

* 95.Mn   Suppose it yields 90 links with ˆ 1abg   and 10 links with ˆ 0.5abg   on another occasion, where 
* 95.Mn   Clearly, *

Mn  does not directly control the linkage errors in 
*ˆ .M  Moreover, there is no 

compelling reason to accept 100 links on both these occasions, simply because 100 one-one links are 

possible. 

In forming the MEC set one deals with Problem I directly, based on the concept of maximum entropy 

that has relevance in many areas of scientific investigation. The implementation is simple and fast for 

large datasets. The estimated error rates FLR (4.5) and MMR in (4.6) are directly defined for a given MEC 

set. 

Problem II concerns the parameter estimation. As explained earlier, applying the EM algorithm based 

on the objective function (2.2) proposed by Winkler (1988) and Jaro (1989) is not a valid approach of 

maximum likelihood estimation (MLE). One may easily compare this WJ-procedure to that given in 

Section 4.1, where both adopt the same model (3.3) and the same estimator of ( );u γ ξ  via ˆ
k  given by 

(4.4). It is then clear that the same formula is used for updating 
( )t

Mn  at each iteration, but a different 

formula is used for  

 
( )

( )

( )

( )
,

,

1
ˆ=t t

k ab ab kt
a bM

g
n

 


  (5.1) 

where the numerator is derived from all the pairs in ,  whereas 
( )t

k  given by (4.2) uses only the pairs in 

the MEC set 
( )

.tM  Notice that the two differ only in the unsupervised setting, but they would become the 

same in the supervised setting, where one can use the observed binary abg  instead of the estimated 

fractional ˆ .abg  

Thus, one may incorporate the WJ-procedure as a variation of the unsupervised MEC algorithm, where 

the formulae (5.1) and (4.4) are chosen specifically. This is the reason why it can give reasonable 

parameter estimates in many situations, despite its misconception as the MLE. Simulations will be used 

later to compare empirically the two formulae (4.2) and (5.1) for 
( )

.t

k  

 
5.2 An approach of MLE 
 

Below we derive another estimator of k  by the ML approach, which can be incorporated into the 

proposed MEC algorithm, instead of (4.4). This requires a model of the key variables, which explicates 

the assumptions of key-variable errors. Let kz  be the thk  key variable which takes value 1, , .kD  Copas 

and Hilton (1990) envisage a non-informative hit-miss generation process, where the observed kz  can take 

the true value despite the perturbation. Copas and Hilton (1990) demonstrate that the hit-miss model is 

plausible in the SL (Supervised Learning) setting based on labelled datasets. 

We adapt the hit-miss model to the unsupervised setting as follows. First, for any ( ), ,a b M  let 

( ),Pr 1 ,k ab ke = =  where , 1ab ke =  if the associated pair of key variables are subjected to any form of 
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perturbation that could potentially cause disagreement of the thk  key variable, and , = 0ab ke  otherwise. 

Let  

 ( ) 2 2

=1 =1

= 1 =1 1
k kD D

k k k kd k kd

d d

m m   
 

− + − − 
 

    

where we assume that k  must be positive for some =1, , ,k K  and  

 ( ) ( ), ,Pr =1, 1 Pr = =1, = 0kd ik ab ab k ik ab ab km z d g e z d g e= = = =   

for i a=  or .b  Next, for any record i  in either A  or ,B  let = 1i  if it has a match in the other file and 

0i =  otherwise. Given 0,i =  with or without perturbation, let ( )Pr 0 .ik i kdz d u= = =  We have 

:=kd kd kdm u   if i  is non-informative. A slightly more relaxed assumption is that i  is only non-

informative in one of the two files. To be more resilient against its potential failure, one can assume kdm  

to hold for all the records in the smaller file, and allow kdu  to differ for the records with = 0i  in the 

larger file. Suppose .A Bn n  Let  

 ( ) ( )Pr 1b M B Ap E n n n = = = =   

be the probability that a record in B  has a match in .A  One may assume  :A a a A= z z  to be 

independent over ,A  giving  

 
= 1

log
K

A ak

a A k

m


=    

where 
=1

kD

ak kdd
m m= 𝕀(𝑧𝑎𝑘 = 𝑑). The complete-data log-likelihood based on ( ),B B z  is  

 ( ) ( )
=1 =1

log 1 log 1
K K

B b bk b bk

b B b Bk k

p m p u 
 

   
= + − −   

   
    (5.2) 

where 
=1

=
kD

bk kdd
m m 𝕀(𝑧𝑏𝑘 = 𝑑) and 

=1
=

kD

bk kdd
u u 𝕀(𝑧𝑏𝑘 = 𝑑), based on an assumption of independent 

( ),b b z  across the entities in .B  

Under separate modelling of Az  and ( ), ,B Bz  let ˆ
kdm  be the MLE based on ,A  given which an EM-

algorithm for estimating p  and kdu  follows from (5.2) by treating B  as the missing data. However, the 

estimation is feasible only if  kdu  and  kdm  are not exactly the same; whereas the MLE of Mn  has a 

large variance, when  kdm  and  kdu  are close to each other, even if they are not exactly equal. 

Meanwhile, the closeness between  kdm  and  kdu  does not affect the MEC approach, where ˆ
Mn  is 

obtained from solving (3.7) given ( ) ( ) ( )ˆ ˆ ˆ= ,r m uγ γ γ  where ( )û γ  is indeed most reliably estimated 

when    .kd kdm u=  Moreover, one can incorporate a profile EM-algorithm, based on (5.2) given 
( )

,t

Mn  to 

update 
( )( ); tu γ ξ  in the unsupervised MEC algorithm of Section 4.1. At the tht  iteration, where 1,t   

given 
( ) ( ) ( )max ,t t

M A Bp n n n=  and ˆ
kdm  estimated from the smaller file ,A  obtain 

( )t

kdu  by  

 
( ) ( )( ) ( ) ( ) ( )( )2

= 1 = 1

1
ˆ ˆ1 1 1 .

k kD D
t t t t t

k kd kd kd A

d dA

p u m p m p n
n


  

= − + − −  
  

   (5.3) 
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6. Simulation study  

 
6.1 Set-up 
 

To explore the practical feasibility of the unsupervised MEC algorithm for record linkage, we conduct 

a simulation study based on the data sets listed in Table 6.1, which are disseminated by ESSnet-DI 

(McLeod, Heasman and Forbes, 2011) and freely available online. Each record in a data set has associated 

synthetic key variables, which may be distorted by missing values and typos when they are created, in 

ways that imitate real-life errors (McLeod et al., 2011). 

 
Table 6.1 

Data set description (size in parentheses) 
 

Data set Description 

Census (25,343)  A fictional data set to represent some observations from a decennial Census. 

CIS (24,613)  Fictional observations from Customer Information System, combined administrative data from the tax and 

benefit systems. 

PRD (24,750)  Fictional observations from Patient Register Data of the National Health Service. 

 
We consider the linkage keys forename, surname, sex, and date of birth (DOB). To model the key 

variables, we divide DOB into 3 key variables (Day, Month, Year). For text variables such as forename 

and surname, we divide them into 4 key variables by using the Soundex coding algorithm (Copas and 

Hilton, 1990, page 290), which reduces a name to a code consisting of the leading letter followed by three 

digits, e.g. CopasC120, HiltonH435. The twelve key variables for record linkage are presented in 

Table 6.2. 

 
Table 6.2 

Twelve key variables available in the three data sets 
 

Variable Description No. of Categories 

PERNAME1 1 First letter of forename 26 

2 First digit of Soundex code of forename 7 

3 Second digit of Soundex code of forename 7 

4 Third digit of Soundex code of forename 7 

PERNAME2 1 First letter of surname 26 

2 First digit of Soundex code of surname 7 

3 Second digit of Soundex code of surname 7 

4 Third digit of Soundex code of surname 7 

SEX Male/Female 2 

DOB DAY Day of birth 31 

MON Month of birth 12 

YEAR Year of birth (1910 ~  2012) 103 
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We set up two scenarios to generate linkage files. We use the unique identification variable (PERSON-

ID) for sampling, which are available in all the three data sets. We sample 500An =  and 1,000Bn =  

individuals from PRD and CIS, respectively. Let Ap  be the proportion of records in the smaller file (PRD) 

that are also selected in the larger file (CIS), by which we can vary the degree of overlap, i.e. the set of 

matched individuals ,AB  between A  and .B  We use 0.8, 0.5Ap =  or 0.3 under either scenario. 

 

Scenario-I (Non-informative) 
 

• Sample 0 B An n p=  individuals randomly from Census.  

• Sample An  randomly from these 0n  as the individuals of PRD, denoted by .A  

• Sample Bn  randomly from these 0n  as the individuals of CIS, denoted by .B  

 

Under this scenario both a  and b  are non-informative for the key-variable distribution. For any 

given ,Ap  we have ( )M A AE n n p=  and ( ) 0 ,ME n n =  where Mn  is the random number of matched 

individuals between the simulated files A  and .B  

 

Scenario-II (Informative) 
 

• Sample An  randomly from Census  PRD  CIS, denoted by A  from PRD.  

• Sample M A An n p=  randomly from A  as the matched individuals, denoted by .AB  

• Sample B Mn n−  randomly from CIS \ A  having SEX = ,F YEAR 1970,  and odd MON, 

denoted by 0 .B  Let 0B AB B=   be the sampled individuals of CIS.  

 

Under this scenario the key-variable distribution is the same in ,A  whether or not 1,a =  but it is 

different for the records 0 ,b B  or 0.b =  Hence, scenario-II is informative. For any given ,Ap  we have 

fixed M A An n p=  and .A Bp n =  

 
6.2 Results: Estimation 
 

For the unsupervised MEC algorithm given in Section 4.1, one can adopt (4.2) or (5.1) for updating 
( )

.t

k  Moreover, one can use (4.4) for ˆ
k  directly, or (5.3) for updating 

( )t

k  iteratively. In particular, 

choosing (5.1) and (4.4) effectively incorporates the procedure of Winkler (1988) and Jaro (1989) for 

parameter estimation. Note that the MEC approach still differs to that of Jaro (1989), with respect to the 

formation of the linked set ˆ .M  

Table 6.3 compares the performance of the unsupervised MEC algorithm, using different formulae for 
( )t

k  and 
( )

,t

k  where the size of M̂  is equal to the corresponding estimate ˆ .Mn  In addition, we include 

( )ˆ 1;k M Mn k n =  estimated directly from the matched pairs in ,M  as if M  were available for 

supervised learning, together with (4.4) for ˆ .k  The true parameters and error rates are given in addition to 

their estimates. 
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Table 6.3 

Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations. 

Median of estimate of 
M

n  given as 
M

n  
 

Scenario I Scenario II 

Parameter Formulae Estimation Parameter Formulae Estimation 

  ( )M
E n  

( )t

k
  

( )t

k
  ̂  ˆ

M
n  

M
n  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂   

M
n  

( )t

k
  

( )t

k
  ̂  ˆ

M
n  

M
n  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂ 

0.0008 400 

ˆ
k  (4.4) 0.00080 400.0 397 0.0264 0.0266 0.0357 0.0357 

0.0008 400 

ˆ
k  (4.4) 0.00080 398.3 400 0.0230 0.0273 0.0326 0.0326 

(4.2) (5.3) 0.00082 407.9 405 0.0425 0.0257 0.0509 0.0509 (4.2) (5.3) 0.00080 401.4 401 0.0305 0.0277 0.0403 0.0403 

(4.2) (4.4) 0.00083 414.7 407 0.0549 0.0244 0.0620 0.0620 (4.2) (4.4) 0.00081 405.2 404 0.0379 0.0262 0.0467 0.0467 

(5.1) (4.4) 0.00081 406.0 405 0.0399 0.0269 0.0503 0.0503 (5.1) (4.4) 0.00080 401.4 401 0.0316 0.0286 0.0438 0.0438 

0.0005 250 

ˆ
k  (4.4) 0.00050 251.6 249 0.0340 0.0301 0.0370 0.0370 

0.0005 250 

ˆ
k  (4.4) 0.00050 249.6 250 0.0284 0.0302 0.0334 0.0334 

(4.2) (5.3) 0.00052 258.3 255 0.0559 0.0296 0.0533 0.0533 (4.2) (5.3) 0.00050 251.8 251 0.0383 0.0320 0.0410 0.0410 

(4.2) (4.4) 0.00053 266.9 256.5 0.0742 0.0277 0.0680 0.0680 (4.2) (4.4) 0.00052 257.7 253 0.0513 0.0295 0.0516 0.0516 

(5.1) (4.4) 0.00052 261.7 259 0.0676 0.0305 0.0636 0.0636 (5.1) (4.4) 0.00051 255.4 253.5 0.0510 0.0336 0.0520 0.0520 

0.0003 150 

ˆ
k  (4.4) 0.00030 152.3 151 0.0439 0.0356 0.0381 0.0381 

0.0003 150 

ˆ
k  (4.4) 0.00030 150.5 150 0.0382 0.0355 0.0350 0.0350 

(4.2) (5.3) 0.00033 165.9 156.5 0.0873 0.0244 0.0620 0.0620 (4.2) (5.3) 0.00031 153.0 153 0.0559 0.0377 0.0452 0.0452 

(4.2) (4.4) 0.00041 205.4 161 0.1632 0.0308 0.1251 0.1251 (4.2) (4.4) 0.00032 158.5 155 0.0708 0.0342 0.0558 0.0558 

(5.1) (4.4) 0.00054 271.4 169 0.3015 0.0785 0.1639 0.1639 (5.1) (4.4) 0.00038 189.3 156 0.1414 0.0524 0.0903 0.0903 

 
As expected, the best results are obtained when the parameter k  is estimated directly from the 

matched pairs in ,M  i.e., ( )ˆ 1; ,k M Mn k n =  together with (4.4) for ˆ ,k  despite ˆ
k  by (4.4) is not 

exactly unbiased. Nevertheless, the approximate estimator ˆ
k  can be improved, since the profile-EM 

estimator given by (5.3) is seen to perform better across all the set-ups, where both are combined with 

(4.2) for 
( )

.t

k  When it comes to the two formulae of 
( )t

k  by (4.2) and (5.1), and the resulting Mn -

estimators and the error rates FLR and MMR, we notice the followings.  
 

• Scenario-I: When the size of the matched set M  is relatively large at 0.8,Ap =  there are only 

small differences in terms of the average and median of the two estimators of ,Mn  and the 

difference is just a couple of false links in terms of the linkage errors. Figures 6.1 shows that 

(4.2) results in a few larger errors of ˆ
Mn  than (5.1) over the 200 simulations, when 0.8Ap =  or 

0.0008. =  As the size of the matched set M  decreases, the averages and medians of the 

estimators of Mn  resulting from (4.2) and (5.3) are closer to the true values than those of the 

other estimators. Especially when the matched set M  is relatively small, where 0.0003, =  

the formula (5.1) results in considerably worse estimation of Mn  in every respect. While this is 

partly due to the use of (4.4) instead of (5.3), most of the difference is down to the choice of 
( )

,t

k  which can be seen from intermediary comparisons to the results based on (4.2) and (4.4). 

• Scenario-II: The use of (4.2) and (5.3) for the unsupervised MEC algorithm performs better 

than using the other formulae in terms of both estimation of Mn  and error rates across the three 

sizes of the matched set (Figure 6.2). Relatively greater improvement is achieved by using (4.2) 

and (5.3) for the smaller matched sets.  

The results suggest that the unsupervised MEC algorithm tends to be more affected by the size of the 

matched set under Scenario-I than Scenario-II. Choosing (4.2) and (5.3), however, seems to yield the most 
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robust estimation of Mn  and error rates against the small size of the matched set ,M  regardless the 

informativeness of key-variable errors. The reason must be the fact that the numerator of 
( )t

k  is calculated 

in (5.1) over all the pairs in   instead of the MEC set 
( )

,tM  which seems more sensitive when the 

imbalance between M  and U  is aggravated, while the sizes of A  and B  remain fixed. 

 
Figure 6.1 Box plots of ˆ

M M
n n−  based on 200 Monte Carlo samples under Scenario I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Box plots of ˆ
M M

n n−  based on 200 Monte Carlo samples under Scenario II. 
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We also include the additional results obtained for 0.2, 0.15,Ap =  and 0.1 in the supplementary 

material. The estimate ˆ
Mn  (or ˆ )  gets worse as Ap  (or )  reduces, which is consistent with the previous 

findings of others, for example, Enamorado, Fifield and Imai (2019) showed that a greater degree of 

overlap between data sets leads to better merging results in terms of the error rates as well as the accuracy 

of their estimates. The problem is also highlighted by Sadinle (2017). Record linkage in cases of 

extremely low prevalence of true matches is a problem that needs to be studied more carefully on its own. 

 
6.3 Results: MEC set 
 

Aiming the MEC set M̂  at the estimated size ˆ
Mn  is generally not a reasonable approach to record 

linkage. Record linkage should be guided directly by the associated uncertainty, i.e. the error rates FLR 

and MMR, based on their estimates (4.5) and (4.6), as described in Section 4.2. Note that this does require 

the estimation of Mn  in addition to ( ).r γ  

We have FLR̂ = MMR̂ in Table 6.3, because ˆ ˆ
MM n=  here. It can be seen that these follow the true 

FLR more closely than the MMR, especially when ˆ
Mn  is estimated using the formulae (4.2) and (5.3). 

This is hardly surprising. Take e.g. the maximal MEC set 1M  that consists of the pairs whose key 

variables agree completely and uniquely. Provided reasonably rich key variables, as the setting here, one 

can expect the FLR of 1M  to be low, such that even a naïve estimate FLR̂ = 0 probably does not err 

much. Meanwhile, the true MMR has a much wider range from one application to another, because the 

difference between Mn  and 1M  is determined by the extent of key-variable errors, such that the estimate 

of MMR depends more critically on that of .Mn  The situation is similar for any MEC set beyond 1 ,M  as 

long as ˆ
abg  remains very high for any ( ) ˆ, .a b M  

Table 6.4 shows the performance of the MEC set using the bisection procedure described in 

Section 4.2, across the same set-ups as in Table 6.3. We use only (4.2) for 
( )t

k  and (5.3) for 
( )t

k  to obtain 

the corresponding ˆ .Mn  We let the target FLR be 0.05 =  or 0.03, where the latter is clearly lower than 

the true FLR of M̂  that is of the size ˆ
Mn  (Table 6.3), especially when the prevalence is relatively low (at 

0.0003) =  under either scenario. The resulting true (FLR, MMR) and their estimates are given in 

Table 6.4. 

 

Table 6.4 

Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations, 

A B
n n n=  =  

 

Scenario I Scenario II 

Parameter Target 

FLR 

Estimation Parameter Target 

FLR 

Estimation 

  ( )M
E n  ˆ

M
n  M̂ n  M̂  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂   M

n  ˆ
M

n  M̂ n  M̂  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂ 

0.0008 400 
0.05 

407.9 
0.00080 401.9 0.0313 0.0280 0.0393 0.0527 

0.0008 400 
0.05 

401.4 
0.00080 397.8 0.0239 0.0294 0.0337 0.0418 

0.03 0.00079 395.0 0.0196 0.0328 0.0271 0.0568 0.03 0.00079 393.1 0.0164 0.0334 0.0256 0.0451 

0.0005 250 
0.05 

258.3 
0.00050 251.9 0.0396 0.0326 0.0385 0.0576 

0.0005 250 
0.05 

251.8 
0.00050 248.6 0.0305 0.0361 0.0328 0.0447 

0.03 0.00049 246.7 0.0246 0.0374 0.0264 0.0650 0.03 0.00049 245.2 0.0226 0.0416 0.0245 0.0497 

0.0003 150 
0.05 

165.9 
0.00031 153.4 0.0533 0.0403 0.0389 0.0783 

0.0003 150 
0.05 

153.0 
0.00030 150.1 0.0445 0.0443 0.0333 0.0514 

0.03 0.00030 149.3 0.0355 0.0483 0.0256 0.0905 0.03 0.00029 147.4 0.0322 0.0489 0.0238 0.0588 
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It can be seen that the MEC algorithm guided by the FLR yields the MEC set ˆ ,M  whose size M̂  is 

close to the true Mn  across all the set-ups. Indeed, under Scenario-I, the mean of M̂  is closer to Mn  

than the mean (or median) of ˆ
Mn  over all the simulations, which results directly from parameter 

estimation, especially when the match set is relatively small (at 0.0003) =  and the performance of ˆ
Mn  

is most sensitive. In other words, the fact that M̂  differs to the estimate ˆ
Mn  is not necessarily a cause of 

concern for the MEC algorithm guided by targeting the FLR. 

To estimate the MMR by (4.6), one can either use M̂  as the estimate of ,Mn  or one can use ˆ
Mn  

from parameter estimation based on (4.2) and (5.3). In the former case, one would obtain MMR̂ = FLR̂. 

While this MMR̂ is not unreasonable in absolute terms since M̂  is close to Mn  here, as can be seen from 

comparing the mean of FLR̂ with that of the true MMR in Table 6.4, it has a drawback a priori, in that it 

decreases as the target FLR decreases, although one is likely to miss out on more true matches when more 

links are excluded from the MEC set ˆ .M  Using ˆ
Mn  from parameter estimation directly makes sense in 

this respect, since the true Mn  must remain the same, regardless the target FLR. However, the estimator 

MMR̂ could then become less reliable given relatively low prevalence ,  where ˆ
Mn  could be sensitive in 

such situations. 

In short, the estimation of FLR tends to be more reliable than that of MMR, especially if the 

prevalence   is relatively low in its theoretical range ( )0 min , .A Bn n n   The following 

recommendations for unsupervised record linkage seem warranted.   

• When forming the MEC set M̂  according to the uncertainty of linkage, it is more robust to rely 

on the FLR, estimated by (4.5).  

• The estimate of MMR given by (4.6), derived from the parameter estimate ˆ
Mn  based on (4.2) 

and (5.3) provides an additional uncertainty measure. However, one should be aware that this 

measure can be sensitive when the prevalence   is relatively low.  

• Between two target values of the FLR,     more attention can be given to the estimate of 

additional missing matches in ( )M̂   compared to ( )ˆ ,M    given by  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , \

ˆ ˆ ˆ  .ab ab ab

a b M a b M a b M M

g g g
       

− =     

 
7. Final remarks 
 

We have developed an approach of maximum entropy classification to record linkage. This provides a 

unified probabilistic record linkage framework both in the supervised and unsupervised settings, where a 

coherent classification set of links are chosen explicitly with respect to the associated uncertainty. The 

theoretical formulation overcomes some persistent flaws of the classical approaches. Furthermore, the 

proposed MEC algorithm is fully automatic, unlike the classical approach that generally requires clerical 

review to resolve the undecided cases. 
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An important issue that is worth further research concerns the estimation of relevant parameters in the 

model of key-variable errors that cause problems for record linkage. First, as pointed out earlier, treating 

record linkage as a classification problem allows one to explore many modern machine learning 

techniques. A key challenge in this respect is the fact that the different record pairs are not distinct “units”, 

such that any powerful supervised learning technique needs to be adapted to the unsupervised setting, 

where it is impossible to estimate the relevant parameters based on the true matches and non-matches, 

including the number of matched entities. Next, the model of the key-variable errors or the comparison 

scores can be refined. Once these issues are resolved together, further improvements on the parameter 

estimation can hopefully be made, which will benefit both the classification of the set of links and the 

assessment of the associated uncertainty. 

Another issue that is interesting to explore in practice is the various possible forms of informative key-

variable errors, insofar as the model pertaining to the matched entities in one way or another differs to that 

of the unmatched entities. Suitable variations of the MEC approach may need to be configured in different 

situations. 
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Supplementary material 
 

In the supplementary material (arXiv:2009.14797), we present the theoretical convergence property of 

the proposed algorithm and some special cases of MEC sets for record linkage, and discuss two less 

practical approaches that can be incorporated into the MEC algorithm. An additional simulation study 

with low levels of the files’ overlap is also presented. 
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