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Maximum entropy classification for record linkage

Danhyang Lee, Li-Chun Zhang and Jae Kwang Kim?

Abstract

By record linkage one joins records residing in separate files which are believed to be related to the same
entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy
classification method in machine learning to record linkage, both in the supervised and unsupervised settings
of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand,
our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and
Sunter (1969); on the other hand, the proposed algorithm is fully automatic, unlike the classical approach that
generally requires clerical review to resolve the undecided cases.

Key Words:  Probabilistic linkage; Density ratio; False link; Missing match; Survey sampling.

1. Introduction

Combining information from multiple sources of data is a frequently encountered problem in many
disciplines. To combine information from different sources, one assumes that it is possible to identify the
records associated with the same entity, which is not always the case in practice. The entity may be
individual, company, crime, etc. If the data do not contain unique identification number, identifying
records from the same entity becomes a challenging problem. Record linkage is the term describing the
process of joining records that are believed to be related to the same entity. While record linkage may
entail the linking of records within a single computer file to identify duplicate records, referred to as
deduplication, we focus on linking of records across separate files.

Record linkage (RL) has been employed for several decades in survey sampling producing official
statistics. In particular, linking administrative files with survey sample data can greatly improve the
guality and resolution of the official statistics. As applications, Jaro (1989) and Winkler and Thibaudeau
(1991) merged post-enumeration survey and census data for census coverage evaluation. Zhang and
Campbell (2012) linked population census data files over time, and Owen, Jones and Ralphs (2015) linked
administrative registers to create a single statistical population dataset. The classical approach pioneered
by Fellegi and Sunter (1969), which is the most popular method of RL in practice, has been successfully
employed for these applications.

The probabilistic decision rule of Fellegi and Sunter (1969) is based on the likelihood ratio test idea, by
which we can determine how likely a particular record pair is a true match. In applying the likelihood ratio
test idea, one needs to estimate the model parameters of the underlying model and determine the
thresholds of the decision rule. Winkler (1988) and Jaro (1989) treat the matching status as an unobserved
variable and propose an EM algorithm for parameter estimation, which we shall refer to as the
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2 Lee, Zhang and Kim: Maximum entropy classification for record linkage

WJ-procedure. See Herzog, Scheuren and Winkler (2007), Christen (2012) and Binette and Steorts (2020)
for overviews. However, as explained in Section 2, to motivate the WJ-procedure as an EM algorithm
requires the crucial assumption that measures of agreement between the record pairs, called comparison
vectors, are independent from one record pair to another, which is impossible to hold in reality.
Newcombe, Kennedy, Axford and James (1959) address dependence between comparison vectors through
data application. Also, see e.g. Tancredi and Liseo (2011), Sadinle (2017), and Binette and Steorts (2020)
for discussions of this issue. Bayesian approaches to RL are also available in the literature (Steorts, 2015;
Sadinle, 2017; Stringham, 2021). Bayesian approaches to RL problems allow us to quantify uncertainty on
the matching decisions. However, the stochastic search using MCMC algorithm in the Bayesian approach
involves extra computational burden.

To develop an alternative approach, we first note that the RL problem is essentially a classification
problem, where each record pair is classified into either “match” or “non-match” class. Various
classification techniques based on machine learning approaches have been employed for record linkage
(Hand and Christen, 2018; Christen, 2012, 2008; Sarawagi and Bhamidipaty, 2002). In this paper, we
adapt the maximum entropy method for classification to record linkage. Specifically, we can view the
likelihood ratio of the method proposed by Fellegi and Sunter (1969) as a special case of the density ratio
and apply the maximum entropy method for density ratio estimation. For example, Nigam, Lafferty and
McCallum (1999) use the maximum entropy for text classification and Nguyen, Wainwright and Jordan
(2010) develop a more unified theory of maximum entropy method for density ratio estimation. There is,
however, a key difference of record linkage to the standard setting of classification problems, in that the

different record pairs are not distinct ‘units’ because the same record is part of many record pairs.

We present our maximum entropy record linkage algorithm for both supervised and unsupervised
settings, while our main contributions concern the unsupervised case. Supervised approaches need training
data, i.e., record pairs with known true match and true non-match status. Such training data are often not
available in real world situations, or have to be prepared manually, which is very expensive and time-
consuming (Christen, 2007). Thus, the unsupervised case is by far the most common in practice. In the
unsupervised case, however, one cannot estimate the density ratio directly based on the observed true
matches and non-matches, and it is troublesome to jointly model for the unobserved match status and the
observed comparison scores over all the record pairs. We develop a new iterative algorithm to jointly
estimate the density ratio as well as the maximum entropy classification set in the unsupervised setting
and prove its convergence. The associated measures of the linkage uncertainty are also developed.

Furthermore, we show that the WJ-procedure can be incorporated as a special case of our approach to
estimation, but without the need of the independence assumption between the record pairs. This reveals
that the WJ-procedure can be motivated without the independence assumption, and explains why it gives
reasonable results in many situations. The choice of the set of links is guided by the uncertainty measures
developed in this paper. This is an important practical improvement over the classical approach, which
does not directly provide any uncertainty measure for the final set of links. Our procedure is fully
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automatic, without the need for resource-demanding clerical review that is required under the classical
approach.

The paper is organised as follows. In Section 2, the basic setup and the classical approach are
introduced. In Section 3, the proposed method is developed under the setting of supervised record linkage.
In Section 4, we extend the proposed method to the more challenging case of the unsupervised record
linkage. Discussions of some related estimation approaches and technical details are presented in
Section 5 and the supplementary material. Results from an extensive simulation study are presented in
Section 6. Some concluding remarks and comments on further works are given in Section 7.

2. Problems with the classical approach

Suppose that we have two data files A and B that are believed to have many common entities but no
duplicates within each file. Any record in A and another one in B may or may not refer to the same
entity. Our goal is to find the true matches among all possible pairs of the two data files. Let the bipartite
comparison space Q=AxB=M uwU consist of matches M and non-matches U between the records
in files A and B. For any pair of records (a,b)e €, let y,, be the comparison vector between a set of
key variables associated with a< A and b e B, respectively, such as name, sex, date of birth. The key
variables and the comparison vector vy, are fully observed over Q. In cases where the key variables may
be affected by errors, a match (a, b) may not have complete agreement in terms of y,,, and a non-match
(a,b) can nevertheless agree on some (even all) of the key variables.

In the classical approach of Fellegi and Sunter (1969), one recognizes the probabilistic nature of y,,
due to the perturbations that cause key-variable errors. The related methods are referred to as probabilistic
record linkage. To explain the probabilistic record linkage method of Fellegi and Sunter (1969), let
M(v.)= f(¥s|(2,b)eM) be the probability mass function of the discrete values y,, can take given
(a,b)e M. Similarly, we can define u(y,, )= f (yab|(a,b)eU). The ratio

- m(Yab)
U(Yab)

is then the basis of the likelihood ratio test (LRT) for H,:(a,b)eM vs. H;:(ab)eU. Let
M ={(a,b): r, >c, | be the pairs classified as matches and U ={(a,b): r,, <¢,} the non-matches, the
remaining pairs are classified by clerical review, where (cM,cU) are the thresholds related to the
probabilities of false links (of pairs in U) and false non-links (of pairs in M), respectively, defined as

ralb

p=2u(r)s(M%y) and 2= m(y)s(U’ ), (2.1)

where 5(M*; y) =1if y,, =7y means (a, b)e M ™ and 0 otherwise, similarly for 5(U*; y).
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4 Lee, Zhang and Kim: Maximum entropy classification for record linkage

In practice the probabilities m(y) and u(y) are unknown. Neither is the prevalence of true matches,
given by 7=|M|/|Q]:= n,/n. Let n be the set containing ~ and the unknown parameters of m(y)
and u(y). Let g,=1 if (a,b)eM and 0 if (ab)eU. Given the complete data
{(9u: Y2 ): (a,b) €Q, Winkler (1988) and Jaro (1989) assume the log-likelihood to be

h(m)= > gplog(7zm(v,))+ D, (1-9u)log((1-7)u(v,))- (2.2)

(a,b)eQ (a,b)eQ

An EM-algorithm follows by treating g, ={g,,: (a,b) Q} as the missing data.
There are two fundamental problems with this classical approach.

[Problem-I] Record linkage is not a direct application of the LRT, because one needs to evaluate all
the pairs in Q instead of any given pair. The classification of Q into M~ and U" is incoherent
generally, since a given record can belong to multiple pairs in M. Post-classification
deduplication of M~ would be necessary then, which is not part of the theoretical formulation
above. In particular, there lacks an associated method for estimating the uncertainty
surrounding the final linked set, such as the amount of false links in it or the remaining matches
outside of it.

[Problem-I11] In reality the comparison vectors of any two pairs are not independent, as long as they
share a record. For example, given (a,b)eM and y,, not subjected to errors, then g, must
be 0, for b’#b and b’eB, as long as there are no duplicated records in either A or B, and
Y., depends only on the key-variable errors of b’. Whereas, marginally, g, =1 with
probability = and y,, depends also on the key-variable errors of a. It follows that h(n) in
(2.2) does not correspond to the true joint-data distribution of vy, ={Yab (a, b)eQ}, even
when the marginal m and u -probabilities are correctly specified. Similarly, although one may
define marginally 7 = Pr[(a, b)eM|(a,b)e Q] for a randomly selected record pair from Q,
it does not follow that log f (g,,)=nylog 7 +(n—-n,, )log(1-7) jointly as in (2.2). For both
reasons, h(n) given by (2.2) cannot be the complete-data log-likelihood.

In the next two sections, we develop maximum entropy classification to record linkage to avoid the
problems above, after which more discussions of the classical approach will be given.

3. Maximum entropy classification: Supervised

As noted in Section 1, the record linkage problem is a classification problem. Maximum entropy
classification has been used in image restoration or text analysis (Gull and Daniell, 1984; Berger,
Della Pietra and Della Pietra, 1996). Maximum entropy classification (MEC) has been proposed for
supervised learning (SL) to standard classification problems, where the units are known but the true
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classes of the units are unknown apart from a sample of labelled units. Let Y {1, 0} be the true class and
X the random vector of features. Let the density ratio be

F(x|y =
FxY

\_/
T
—
X
-
~

r(x;n)=

II
v
—
S)
—~~
x
=]
~

where f, and f, are the conditional density functions given Y =1 or 0O, respectively, and n contains the
unknown parameters. For MEC based on r(x), one finds § that maximises the Kullback-Leibler (KL)
divergence from f; to f, subjected to a constraint, i.e.

D= j (x;m)log r(x;n)dx subjected to _[ (x;f)r(x;®)dx=1,

where S, is the support of X given Y =1, and the normalisation constraint arises since r(x;f) f, (x; 1)
is an estimate of f,(x). Provided common support S, =S;, where S is the support of X given Y =0,
one can use the empirical distribution function (EDF) of X over {xi: Y =1} in place of f, for D, and
that over {x;: y; =0} inplace of f, for the constraint. Having obtained f, =r(x;1), one can classify any
unit given the associated feature vector x based on Pr(Y =1| X; P, fx), where p is an estimate of the
prevalence p=Pr(Y =1).

We describe how the idea of MEC for supervised learning can be adapted to record linkage problem in
the following subsections.

3.1 Probability ratio for record linkage

For supervised learning based MEC to record linkage, suppose M is observed for the given €, and
the trained classifier is to be applied to the record pairs outside of Q. To fix the idea, suppose B is a non-
probability sample that overlaps with the population P, and A is a probability sample from P with
known inclusion probabilities. While vy,, = {Yab3 (a,b)e M} may be considered as an IID sample, since
each (a,b) in M refers to a distinct entity, this is not the case with {yab: (a,b) M}, whose joint
distribution is troublesome to model.

Probability ratio (I)
Let r,(y) be the probability ratio given by

SN

()= 2(:),

where m(y) is the probability mass function of vy, =y given g, =1 and q(y) is that over

—~

Yo ={¥a: (2, b) €Q}. The KL divergence measure from q(y) to m(y) and the normalisation constraint
are
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6 Lee, Zhang and Kim: Maximum entropy classification for record linkage

D, = > m(y)logr,(y) and > d(y)f(v)=1,

yeS(M) yeS(Mm)

where S(M) is the support of y,, given g, =1. This set-up allows S(M) to be a subset of S, where
S is the support of all possible v,,. It follows that, based on the 11D sample y,, of size n, =|M|, the
objective function to be minimized for r, can be given by

f(Yab) 1
— 0 (Yap)—— logr, (v ) (3.1)
(a,b)eM nM (Yab) q(y b) nM (a,éM q(y b)

Q; =
where ny, (Ygp) = Z(i’j)eM 1(y;; = Yap) based on the observed support S(M ).

Probability ratio (11)

Provided S(M)cS(U), where S(U) is the support of vy, over U, one can let the probability ratio
be given by
m(y)

)= M)
(7) o)

where u(y) is the probability of y,, =y given g, =0. We have

(1) = m(y) _ m(y) _ (v

a(r)  am(y)+(@-z)u(y)  =(r(v)-1)+1

where q(y)=zm(y)+(1-7)u(y), so that r,(y) and r(y) are one-to-one. Meanwhile, the KL
divergence measure from u(y) to m(y) is given by

D= > m(y)logr(y)

yesS(M)

and the objective function to be minimized for r can now be given by

o= 3 M) o LS ogr(y) (32)

(a,b)eM nM (Yab) nM (a,b)em

Model of y: Under the multinomial model, one can simply use the EDF of y over y, as f(y), for each
distinct level of y, as long as | Q| is large compared to | S |. Similarly for m(y) over y,, and u(y) over
U. For linkage outside of Q, the estimated m(y) from M(Q) applies, if the selection of A from P is
non-informative.

For y made up of K binary agreement indicators, , = 0,1 for k=1,..., K, there are up to 2K
distinct levels of y, which can sometimes be relatively large compared to |M | A more parsimonious
model of m(y;®) that is commonly used is given by

K

m(y;0) =[] o (1-6) " (3.3)

k=1

Statistics Canada, Catalogue No. 12-001-X
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where 6, =Pr(yy, =1 ga :1), and y,, . isthe k"™ component of y,,. It is possible to model 6, based
on the distributions of the key variables that give rise to y, which makes use of the differential
frequencies of their values, such as the fact that some names are more common than others. Similarly,
u(y;&) can be modeled as in (3.3) with parameters &, instead of 6, where & =Pr (J’ab,k =1| g, = 0).

Note that (3.3) implies conditional independence among agreement indicators. Winkler (1993) and
Winkler (1994) demonstrated that even when the conditional independence assumption does not hold,
results based on conditional independence assumption are quite robust. More complicated models that
allow for correlated y, can also be considered. See Armstrong and Mayda (1993) and Larsen and Rubin
(2001) for discussion of those models. See Xu, Li, Shen, Hui and Grannis (2019) for a recent study which
compares models with or without correlated y, .

3.2 MEC sets for record linkage

Provided there are no duplicated records in either A or B, a classification set for record linkage,
denoted by M, consists of record pairs from €, where any record in A or B appears at most in one
record pair in M. Let the entropy of a classification set M be given by

D, =

> logr(y,) (3.4)

(a, b)e M

M

A MEC set of given size n’ :| I\7I| is the first classification set that is of size n’, obtained by
deduplication in the descending order of r(y, ) over Q. It is possible to have (a, b)gM and
[(Yay) > F(Yay) for (,b)eM, if there exists (a,b) e M with r(y,)>r(v,).

A MEC set of size n” is not necessarily the largest possible classification set with the maximum
entropy, to be referred to as a maximal MEC set, which is the largest classification set such that
r(v.)=max, r(y) for every (a,b) init. In practice, a maximal MEC set is given by the first pass of
deterministic linkage, which only consists of the record pairs with perfect and unique agreement of all the
key variables.

Probabilistic linkage methods for MEC set are useful if one would like to allow for additional links,
even though their key variables do not agree perfectly with each other. For the uncertainty associated with
a given MEC set M, we consider two types of errors. First, we define the false link rate (FLR) among the
links in M to be

<
1

Y (1-9a) (3.5)

(a,b)eM

which is different to g by (2.1) where the denominator is |U | Second, the missing match rate (MMR) of
M, which is related to the false non-link probability A in (2.1), is given by

r=1-— Y g, (3.6)

Statistics Canada, Catalogue No. 12-001-X



8 Lee, Zhang and Kim: Maximum entropy classification for record linkage

While g and A in (2.1) are theoretical probabilities, the FLR and MMR are actual errors.

It is instructive to consider the situation, where one is asked to form MEC sets in Q given all the
necessary estimates related to the probability ratio r(y), which can be obtained under the SL setting,
without being given n,,, g, or M directly.

First, the perfect MEC set should have the size n,,. Let n(y) = Z(a byea I(y4, = v)- One can obtain
n,, as the solution to the following fixed-point equation:

N = 2 6(1s)=2. n(v)4(y) (3.7)

(a,b)eQ y€S

where

zr(y) _ Nur(y)
z(r(y)-1)+1  n,(r(y)-1)+n

and the probability is defined with respect to completely random sampling of a single record pair from Q.
To see that §(y) by (3.8) satisfies (3.7), notice §(y)=n,m(y)/n(y) satisfies (3.7) for any well defined
m(y), and n(y)/n=zm(y)+(1-z)u(y) by definition.

A

§(v) = Pr(gy, =1]vm=7) =

(3.8)

Next, apart from a maximal MEC set, one would need to accept discordant pairs. In the SL setting, one
observes the EDF of y over M, giving rise to 6, =n,, (1;k)/n,,, where n, (1;k) is the number of
agreements on the k™ key variable over M. The perfect MEC set M should have these agreement rates.
We have then, for k =1,..., K,

> I(Yape=1) for [M|=n,. (3.9)

(a,b)e M

Thus, no matter how one models m(y), the perfect MEC set should satisfy jointly the K +1 equations
defined by (3.7) and (3.9), given the knowledge of r(y).

4. MEC for unsupervised record linkage

Let z be the K -vector of key variables, which may be imperfect for two reasons: it is not rich enough
if the true z -values are not unique for each distinct entity underlying the two files to be linked, or it may
be subjected to errors if the observed z is not equal to its true value. Let A contain only the distinct z -
vectors from the first file, after removing any other record that has a duplicated z -vector to some record
that is retained in A. In other words, if the first file initially contains two or more records with exactly the
same value of the combined key, then only one of them will be retained in A for record linkage to the
second file. Similarly let B contain the unique records from the second file. The reason for separate
deduplication of keys is that no comparisons between the two files can distinguish among the duplicated z
in either file, which is an issue to be resolved otherwise.

Statistics Canada, Catalogue No. 12-001-X
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Given A and B preprocessed as above, the maximal MEC set M, only consists of the record pairs
with the perfect agreement of all the key variables. For probabilistic linkage beyond M, one can follow
the same scheme of MEC in the supervised setting, as long as one is able to obtain an estimate of the
probability ratio, given which one can form the MEC set of any chosen size. Nevertheless, to estimate the
associated FLR (3.5) and MMR (3.6), an estimate of n,, is also needed.

4.1 Algorithm of unsupervised MEC

The idea now is to apply (3.7) and (3.9) jointly. Since setting fi,, =|M, | and §, =1 associated with
the maximal MEC set satisfies (3.7) and (3.9) automatically, probabilistic linkage requires one to assume
Ny >| M1| and 6, <1 for at least some of k =1,..., K. Moreover, unless there is external information
that dictates it otherwise, one can only assume common support S(M)=S(U) in the unsupervised
setting. Let

r(v)=m(y;0)/u(v;¢) (4.1)

where the probability of observing y is m(y; @) by (3.3) given that a randomly selected record pair from
Q belongs to M, and u(y; &) otherwise, similarly given by (3.3) with parameters ¢, instead of 6. An
iterative algorithm of unsupervised MEC is given below.

I Set 8 =(6,...,6°) and nl =| M, |, where M, is the maximal MEC set.
1. Forthe t" iteration, let g =1 if (a,b)e M, and 0 otherwise.

i. Update u(y;&") by using (4.4), which is discussed below, given g ={g%:(a,b)eQ},
and calculate

1
0 =—— ¥ 0% I(yape =1), (4.2)
|M (a.b)en

which maximize D,, in (3.4) for given u(y;£Y),M"¥ ={(a,b)eq: gl =1} and
|M‘”|:Z(a‘b)eQ gV, Once 0 and &Y are obtained, we can update
my =2 n(v)§" (v), where

® | @®©
8O (v)=d(v: 00 £0) = mi |M |r (v) 1
()= 0lre" &%) mm{|M“)|(r“’(v)—1)+n’

O (y)=r(y:09,80) = m(y; '
ii. Forgiven 8% &Y and nV, we find the MEC set M**? :{(a,b)eQ:ggL”) :1} such that
| M(t+l)
the entropy denoted by Q" (g):

=n{ by deduplication in the descending order of r(y,,) over Q. It maximizes

Statistics Canada, Catalogue No. 12-001-X



10 Lee, Zhang and Kim: Maximum entropy classification for record linkage

1
o Z 9., 109 r(t)(Yab)' (4.3)

nﬁ; (ab)eQ

Q(t)(g) = Q(g| w(t)):

with respect to g.

l11. Iterate until n{ =n{{*Y or |8 -6 || <¢, where € is a small positive value,

A theoretical convergence property of the proposed algorithm and its proof are presented in the
supplementary materials.

Notice that, insofar as Q=M wU is highly imbalanced, where the prevalence of g, =1 is very close
to 0, one could simply ignore the contributions from M and use

A

1
& == I(¥ab=1) (4.4)
N @abyen
under the model (3.3) of u(y;&), in which case there is no updating of u(y; g“)). Other possibilities of
estimating u(y; &) will be discussed in Section 5.2.

Table 4.1 provides an overview of MEC for record linkage in the supervised or unsupervised setting.
In the supervised setting, one observes y for the matched record pairs in M, so that the probability m(y)
can be estimated from them directly. Whereas, for MEC in the unsupervised setting, one cannot separate
the estimation of m(y) and n,,.

Table 4.1
MEC for record linkage in supervised or unsupervised setting
Supervised Unsupervised
Q=MuU Observed Unobserved
Probability ratio r,(v) generally applicable r(y) generally
r(y) given S(M)cS(U) assuming S(M)=S(U)
Model of y Multinomial if only discrete comparison scores
Directly or via key variables and measurement errors
MEC set Guided by FLR and MMR
Require estimate of n,, in addition
Estimation m(y;0) from y,, in Q m(y;0) and n,,
n, by (3.7) outside O jointly by (3.7) and (3.9)

4.2 Error rates

MEC for record linkage should generally be guided by the error rates, FLR and MMR, without being
restricted to the estimate of n,,.

Note that {gab: (a,b)e I\7I} of any MEC set M are among the largest ones over ©Q, because MEC
follows the descending order of f,, except for necessary deduplication when there are multiple pairs
involving a given record. To exercise greater control of the FLR, let w be the target FLR, and consider
the following bisection procedure.

Statistics Canada, Catalogue No. 12-001-X
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i. Choose a threshold value c, and form the corresponding MEC set M (cu,), where 7, >c, for
any (a,b)eM(c,).
ii. Calculate the estimated FLR of the resulting MEC set M as

g Y (1-6.) (45)

(a,b)e M

If v >y, thenincrease c,; if y <y, then reduce c,.

Iteration between the two steps would eventually lead to a value of c, that makes y as close as
possible to y, for the given probability ratio (7).
The final MEC set M can be chosen in light of the corresponding FLR estimate . It is also possible
to take into consideration the estimated MMR given by
7=1- Z G, / Ny (4.6)
(a,b)eM
where fi,, is given by unsupervised MEC algorithm. Note that if | M |: Ay, then we shall have y =7;
but not if M is guided by a given target value of FLR or MMR.

In Section 6.2, we investigate the performance of the MEC sets guided by the error rates through
simulations.

5. Discussion

Below we discuss and compare two other approaches in the unsupervised setting, including the ways
by which some of their elements can be incorporated into the MEC approach. Other less practical
approaches are discussed in the supplementary material.

5.1 The classical approach
Recall Problems I and |1 of the classical approach mentioned in Section 2.

From a practical point of view, Problem I can be dealt with by any deduplication method of the set M~
of classified records pairs, where f(y,,) is above a threshold value for all (a,b)e M. As “an advance
over previous ad hoc assignment methods”, Jaro (1989) chooses the linked set M* < M”, which
maximises the sum of log f(y,,) subject to the constraint of one-one link. Since §,, is a monotonic
function of f(y,,), this amounts to choose M ™ which maximises the expected number of matches in it,
denoted by

Ny = Z Oa
(a,b)eM”

But n,, is still not connected to the probabilities of false links and non-links defined by (2.1). As

illustrated below, neither does it directly control the errors of the linked M.
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12 Lee, Zhang and Kim: Maximum entropy classification for record linkage

Consider linking two files with 100 records each. Suppose Jaro’s assignment method yields
|I\7I* =100 on one occasion, where 80 links have §,, =1 and 20 links have ¢, = 0.75, such that
n, ~ 95. Suppose it yields 90 links with §,, ~ 1 and 10 links with §,, ~ 0.5 on another occasion, where
n, ~ 95. Clearly, n;, does not directly control the linkage errors in M”. Moreover, there is no
compelling reason to accept 100 links on both these occasions, simply because 100 one-one links are
possible.

In forming the MEC set one deals with Problem I directly, based on the concept of maximum entropy
that has relevance in many areas of scientific investigation. The implementation is simple and fast for
large datasets. The estimated error rates FLR (4.5) and MMR in (4.6) are directly defined for a given MEC
set.

Problem Il concerns the parameter estimation. As explained earlier, applying the EM algorithm based
on the objective function (2.2) proposed by Winkler (1988) and Jaro (1989) is not a valid approach of
maximum likelihood estimation (MLE). One may easily compare this WJ-procedure to that given in
Section 4.1, where both adopt the same model (3.3) and the same estimator of u(y;&) via £ given by
(4.4). 1t is then clear that the same formula is used for updating n\' at each iteration, but a different

formula is used for

1 .
91?) =0 Z g;:J)yab,k (5.1)
Ny (abjea
where the numerator is derived from all the pairs in Q, whereas Hk“) given by (4.2) uses only the pairs in
the MEC set M. Notice that the two differ only in the unsupervised setting, but they would become the
same in the supervised setting, where one can use the observed binary g, instead of the estimated

fractional §,,.

Thus, one may incorporate the WJ-procedure as a variation of the unsupervised MEC algorithm, where
the formulae (5.1) and (4.4) are chosen specifically. This is the reason why it can give reasonable
parameter estimates in many situations, despite its misconception as the MLE. Simulations will be used
later to compare empirically the two formulae (4.2) and (5.1) for 6.".

5.2 Anapproach of MLE

Below we derive another estimator of & by the ML approach, which can be incorporated into the
proposed MEC algorithm, instead of (4.4). This requires a model of the key variables, which explicates
the assumptions of key-variable errors. Let z, be the k™ key variable which takes value 1,..., D,. Copas
and Hilton (1990) envisage a non-informative hit-miss generation process, where the observed z, can take
the true value despite the perturbation. Copas and Hilton (1990) demonstrate that the hit-miss model is
plausible in the SL (Supervised Learning) setting based on labelled datasets.

We adapt the hit-miss model to the unsupervised setting as follows. First, for any (a, b)e M, let
o, =Pr(eab’k =1), where e, =1 if the associated pair of key variables are subjected to any form of
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perturbation that could potentially cause disagreement of the k™ key variable, and e, « =0 otherwise.
Let

Dy D,
6, =(1—ak)+akz mg, =1—ak[1—z mfdj
d=1 d=1

where we assume that «, must be positive for some k =1, ..., K, and

My = Pr(zik =d| gy =184 :1): Pr(zik =d| g, =18y, :0)

for i=a or b. Next, for any record i in either A or B, let 6, =1 if it has a match in the other file and
5, =0 otherwise. Given & =0, with or without perturbation, let Pr(z, =d| & =0)=u,. We have
B =My =U if 6, is non-informative. A slightly more relaxed assumption is that &, is only non-
informative in one of the two files. To be more resilient against its potential failure, one can assume m,,
to hold for all the records in the smaller file, and allow u,, to differ for the records with 6, =0 in the
larger file. Suppose n, <n;. Let

p=Pr(8, =1)=E(n,)/ng =n7
be the probability that a record in B has a match in A One may assume zAz{za: aeA} to be
independent over A, giving

K
Cy=>.> logm,

aeA k=1

where m,, ZZ;J; My [(zgx = d). The complete-data log-likelihood based on (&, z,) is

lg=>.6, Iog(pﬁ mbkj+ > (1-4,) log ((l— p)lj ubkj (5.2)

beB k=1 beB

where m,, = Zfil My 1(zy, = d) and u,, = Zzil Uy I1(zpx = d), based on an assumption of independent

(6,.2,) across the entities in B.

Under separate modelling of z, and (z;, &), let M, be the MLE based on ¢,, given which an EM-
algorithm for estimating p and u,, follows from (5.2) by treating J, as the missing data. However, the
estimation is feasible only if {u,} and {m,} are not exactly the same; whereas the MLE of n,, has a
large variance, when {m,} and {u,} are close to each other, even if they are not exactly equal.

Meanwhile, the closeness between {m,} and {u,,} does not affect the MEC approach, where f,, is
obtained from solving (3.7) given f(y)=m(y)/G(y), where G(y) is indeed most reliably estimated
when {m,, } ={u,}. Moreover, one can incorporate a profile EM-algorithm, based on (5.2) given n;’, to
update u(y; é;(”) in the unsupervised MEC algorithm of Section 4.1. At the t™ iteration, where t>1,

given p =n{’ /max(n,,ny) and m,, estimated from the smaller file A, obtain u{, by

Dy Dy
ét) :[(1_ p(t)) z u:(;) M, + p(t) [1_:j Z I’ﬁfdj/(l— p(t) /nA)' (5.3)
d=1 A/ d=1
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14 Lee, Zhang and Kim: Maximum entropy classification for record linkage

6. Simulation study

6.1 Set-up

To explore the practical feasibility of the unsupervised MEC algorithm for record linkage, we conduct
a simulation study based on the data sets listed in Table 6.1, which are disseminated by ESSnet-DI
(McLeod, Heasman and Forbes, 2011) and freely available online. Each record in a data set has associated
synthetic key variables, which may be distorted by missing values and typos when they are created, in
ways that imitate real-life errors (McLeod et al., 2011).

Table 6.1
Data set description (size in parentheses)

Data set Description

Census (25,343) A fictional data set to represent some observations from a decennial Census.

CIS (24,613) Fictional observations from Customer Information System, combined administrative data from the tax and
benefit systems.

PRD (24,750) Fictional observations from Patient Register Data of the National Health Service.

We consider the linkage keys forename, surname, sex, and date of birth (DOB). To model the key
variables, we divide DOB into 3 key variables (Day, Month, Year). For text variables such as forename
and surname, we divide them into 4 key variables by using the Soundex coding algorithm (Copas and
Hilton, 1990, page 290), which reduces a name to a code consisting of the leading letter followed by three
digits, e.g. Copas=C120, Hilton=H435. The twelve key variables for record linkage are presented in
Table 6.2.

Table 6.2
Twelve key variables available in the three data sets
Variable Description No. of Categories
PERNAME1 1 First letter of forename 26
2 First digit of Soundex code of forename 7
3 Second digit of Soundex code of forename 7
4 Third digit of Soundex code of forename 7
PERNAME2 1 First letter of surname 26
2 First digit of Soundex code of surname 7
3 Second digit of Soundex code of surname 7
4 Third digit of Soundex code of surname 7
SEX Male/Female 2
DOB DAY |Day of birth 31
MON  |Month of birth 12
YEAR |Year of birth (1910 ~ 2012) 103
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We set up two scenarios to generate linkage files. We use the unique identification variable (PERSON-
ID) for sampling, which are available in all the three data sets. We sample n, = 500 and n; = 1,000
individuals from PRD and CIS, respectively. Let p, be the proportion of records in the smaller file (PRD)
that are also selected in the larger file (CIS), by which we can vary the degree of overlap, i.e. the set of
matched individuals AB, between A and B. We use p, = 0.8, 0.5 or 0.3 under either scenario.

Scenario-1 (Non-informative)
« Sample n,=ng / p, individuals randomly from Census.
« Sample n, randomly from these n, as the individuals of PRD, denoted by A.

« Sample n, randomly from these n, as the individuals of CIS, denoted by B.

Under this scenario both 6, and ¢, are non-informative for the key-variable distribution. For any
given p,, we have E(n,)=n,p, and z=E(n,)/n,, where n, is the random number of matched
individuals between the simulated files A and B.

Scenario-11 (Informative)
« Sample n, randomly from Census N PRD m CIS, denoted by A from PRD.
+ Sample n, =n,p, randomly from A as the matched individuals, denoted by AB.

« Sample n; —n, randomly from CIS\A having SEX=F, YEAR <1970, and odd MON,
denoted by B,. Let B = AB U B, be the sampled individuals of CIS.

Under this scenario the key-variable distribution is the same in A, whether or not 6, =1, but it is
different for the records b € B,, or ¢, =0. Hence, scenario-1l is informative. For any given p,, we have
fixed n, =n,p, and 7=p, /n;.

6.2 Results: Estimation

For the unsupervised MEC algorithm given in Section 4.1, one can adopt (4.2) or (5.1) for updating
6. Moreover, one can use (4.4) for & directly, or (5.3) for updating & iteratively. In particular,
choosing (5.1) and (4.4) effectively incorporates the procedure of Winkler (1988) and Jaro (1989) for
parameter estimation. Note that the MEC approach still differs to that of Jaro (1989), with respect to the
formation of the linked set M.

Table 6.3 compares the performance of the unsupervised MEC algorithm, using different formulae for
Hk(“ and &Y, where the size of M is equal to the corresponding estimate fiy, - In addition, we include
6, =n, (1;k)/n,, estimated directly from the matched pairs in M, as if M were available for
supervised learning, together with (4.4) for ék. The true parameters and error rates are given in addition to
their estimates.
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Table 6.3

Lee, Zhang and Kim: Maximum entropy classification for record linkage

Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations.
Median of estimate of n,, givenas fi,

Scenario | Scenario 11

Parameter Formulae Estimation Parameter | Formulae Estimation
~ |E(n,)|6" &°| # A, f, FLR MMR FLR MMR| = |[n, [6® ¢®| # A, 1, FLR MMR FLR MMR
6, (4.4)|0.00080 400.0 397 0.0264 0.0266 0.0357 0.0357 6, (4.4)]0.00080 398.3 400 0.0230 0.0273 0.0326 0.0326
0.0008] 400 (4.2) (5.3)[0.00082 407.9 405 0.0425 0.0257 0.0509 0.0509 0.0008 200 (4.2) (5.3)|0.00080 401.4 401 0.0305 0.0277 0.0403 0.0403
(4.2) (4.4)[0.00083 414.7 407 0.0549 0.0244 0.0620 0.0620 (4.2) (4.4)]0.00081 405.2 404 0.0379 0.0262 0.0467 0.0467
(5.1) (4.4)[0.00081 406.0 405 0.0399 0.0269 0.0503 0.0503 (5.1) (4.4)|0.00080 401.4 401 0.0316 0.0286 0.0438 0.0438
6, (4.4)|0.00050 251.6 249 0.0340 0.0301 0.0370 0.0370 6, (4.4)[0.00050 249.6 250 0.0284 0.0302 0.0334 0.0334
0.0005| 250 (4.2) (5.3)[0.00052 258.3 255 0.0559 0.0296 0.0533 0.0533 0.0005| 250 (4.2) (5.3)]0.00050 251.8 251 0.0383 0.0320 0.0410 0.0410
(4.2) (4.4)[0.00053 266.9 256.5 0.0742 0.0277 0.0680 0.0680 (4.2) (4.4)]0.00052 257.7 253 0.0513 0.0295 0.0516 0.0516
(5.1) (4.4)[0.00052 261.7 259 0.0676 0.0305 0.0636 0.0636 (5.1) (4.4)]0.00051 255.4 253.5 0.0510 0.0336 0.0520 0.0520
6, (4.4)|0.00030 152.3 151 0.0439 0.0356 0.0381 0.0381 6, (4.4)(0.00030 150.5 150 0.0382 0.0355 0.0350 0.0350
0.0003] 150 (4.2) (5.3)[0.00033 165.9 156.5 0.0873 0.0244 0.0620 0.0620 0.0003] 150 (4.2) (5.3)]0.00031 153.0 153 0.0559 0.0377 0.0452 0.0452
(4.2) (4.4)[0.00041 205.4 161 0.1632 0.0308 0.1251 0.1251 (4.2) (4.4)]0.00032 158.5 155 0.0708 0.0342 0.0558 0.0558
(5.1) (4.4)[0.00054 271.4 169 0.3015 0.0785 0.1639 0.1639 (5.1) (4.4)]0.00038 189.3 156 0.1414 0.0524 0.0903 0.0903

As expected, the best results are obtained when the parameter 6, is estimated directly from the
matched pairs in M, i.e., 6, =n, (L;k)/n,, together with (4.4) for &, despite & by (4.4) is not
exactly unbiased. Nevertheless, the approximate estimator ék can be improved, since the profile-EM
estimator given by (5.3) is seen to perform better across all the set-ups, where both are combined with
(4.2) for 6. When it comes to the two formulae of 6" by (4.2) and (5.1), and the resulting n,, -
estimators and the error rates FLR and MMR, we notice the followings.

Scenario-1: When the size of the matched set M is relatively large at p, =0.8, there are only
small differences in terms of the average and median of the two estimators of n,,, and the
difference is just a couple of false links in terms of the linkage errors. Figures 6.1 shows that
(4.2) results in a few larger errors of f,, than (5.1) over the 200 simulations, when p, =0.8 or
7 =0.0008. As the size of the matched set M decreases, the averages and medians of the
estimators of n,, resulting from (4.2) and (5.3) are closer to the true values than those of the
other estimators. Especially when the matched set M is relatively small, where 7z =0.0003,
the formula (5.1) results in considerably worse estimation of n,, in every respect. While this is
partly due to the use of (4.4) instead of (5.3), most of the difference is down to the choice of
6", which can be seen from intermediary comparisons to the results based on (4.2) and (4.4).

Scenario-11: The use of (4.2) and (5.3) for the unsupervised MEC algorithm performs better
than using the other formulae in terms of both estimation of n,, and error rates across the three
sizes of the matched set (Figure 6.2). Relatively greater improvement is achieved by using (4.2)
and (5.3) for the smaller matched sets.

The results suggest that the unsupervised MEC algorithm tends to be more affected by the size of the
matched set under Scenario-I than Scenario-11. Choosing (4.2) and (5.3), however, seems to yield the most
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robust estimation of n,, and error rates against the small size of the matched set M, regardless the
informativeness of key-variable errors. The reason must be the fact that the numerator of 6" is calculated
in (5.1) over all the pairs in Q instead of the MEC set M, which seems more sensitive when the
imbalance between M and U is aggravated, while the sizes of A and B remain fixed.

Figure 6.1 Box plots of A, —n,, based on 200 Monte Carlo samples under Scenario .
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Figure 6.2 Box plots of A,, —n,, based on 200 Monte Carlo samples under Scenario II.
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We also include the additional results obtained for p, =0.2,0.15, and 0.1 in the supplementary
material. The estimate i, (or 7) gets worse as p, (or x) reduces, which is consistent with the previous
findings of others, for example, Enamorado, Fifield and Imai (2019) showed that a greater degree of
overlap between data sets leads to better merging results in terms of the error rates as well as the accuracy
of their estimates. The problem is also highlighted by Sadinle (2017). Record linkage in cases of
extremely low prevalence of true matches is a problem that needs to be studied more carefully on its own.

6.3 Results: MEC set

Aiming the MEC set M at the estimated size f,, is generally not a reasonable approach to record
linkage. Record linkage should be guided directly by the associated uncertainty, i.e. the error rates FLR
and MMR, based on their estimates (4.5) and (4.6), as described in Section 4.2. Note that this does require
the estimation of n,, in addition to r(y).

We have FLR = MMR in Table 6.3, because | M |= n, here. It can be seen that these follow the true
FLR more closely than the MMR, especially when n,, is estimated using the formulae (4.2) and (5.3).
This is hardly surprising. Take e.g. the maximal MEC set M, that consists of the pairs whose key
variables agree completely and uniquely. Provided reasonably rich key variables, as the setting here, one
can expect the FLR of M, to be low, such that even a naive estimate FLR = 0 probably does not err
much. Meanwhile, the true MMR has a much wider range from one application to another, because the
difference between n,, and | M1| is determined by the extent of key-variable errors, such that the estimate
of MMR depends more critically on that of n,,. The situation is similar for any MEC set beyond M, as

long as §,, remains very high for any (a,b)e M.

Table 6.4 shows the performance of the MEC set using the bisection procedure described in
Section 4.2, across the same set-ups as in Table 6.3. We use only (4.2) for 6" and (5.3) for & to obtain
the corresponding n,,. We let the target FLR be y = 0.05 or 0.03, where the latter is clearly lower than
the true FLR of M that is of the size fi,, (Table 6.3), especially when the prevalence is relatively low (at
7 =0.0003) under either scenario. The resulting true (FLR, MMR) and their estimates are given in
Table 6.4.

Table 6.4
Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations,
n=|Q|=n,n,

Scenario | Scenario |1
Parameter  |Target Estimation Parameter |Target Estimation
=z |E(n,) | FLR | A, [NM|/n [M| FLR MMR FLR MMR| # |n, |FLR [ A, |M|/n [M| FLR MMR FLR MMR
0.05 0.00080 401.9 0.0313 0.0280 0.0393 0.0527 0.05 0.00080 397.8 0.0239 0.0294 0.0337 0.0418
0.0008 | 400 407.9 0.0008 | 400 401.4
0.03 0.00079 395.0 0.0196 0.0328 0.0271 0.0568 0.03 0.00079 393.1 0.0164 0.0334 0.0256 0.0451
0.05 0.00050 251.9 0.0396 0.0326 0.0385 0.0576 0.05 0.00050 248.6 0.0305 0.0361 0.0328 0.0447
0.0005 | 250 258.3 0.0005 | 250 251.8
0.03 0.00049 246.7 0.0246 0.0374 0.0264 0.0650 0.03 0.00049 245.2 0.0226 0.0416 0.0245 0.0497
0.05 0.00031 153.4 0.0533 0.0403 0.0389 0.0783 0.05 0.00030 150.1 0.0445 0.0443 0.0333 0.0514
0.0003 150 165.9 0.0003 | 150 153.0
0.03 0.00030 149.3 0.0355 0.0483 0.0256 0.0905 0.03 0.00029 147.4 0.0322 0.0489 0.0238 0.0588
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It can be seen that the MEC algorithm guided by the FLR yields the MEC set M, whose size | M | is
close to the true n,, across all the set-ups. Indeed, under Scenario-I, the mean of | M | is closer to n,,
than the mean (or median) of f,, over all the simulations, which results directly from parameter
estimation, especially when the match set is relatively small (at 7 = 0.0003) and the performance of fi,,
is most sensitive. In other words, the fact that | M | differs to the estimate n,, is not necessarily a cause of

concern for the MEC algorithm guided by targeting the FLR.

To estimate the MMR by (4.6), one can either use |I\7I | as the estimate of n,,, or one can use A,
from parameter estimation based on (4.2) and (5.3). In the former case, one would obtain MMR = FLR.
While this MMR is not unreasonable in absolute terms since | M | is close to n,, here, as can be seen from
comparing the mean of FLR with that of the true MMR in Table 6.4, it has a drawback a priori, in that it
decreases as the target FLR decreases, although one is likely to miss out on more true matches when more
links are excluded from the MEC set M. Using f,, from parameter estimation directly makes sense in
this respect, since the true n,, must remain the same, regardless the target FLR. However, the estimator
MMR could then become less reliable given relatively low prevalence =z, where fi,, could be sensitive in
such situations.

In short, the estimation of FLR tends to be more reliable than that of MMR, especially if the
prevalence z is relatively low in its theoretical range 0<7r£min(nA,nB)/n. The following
recommendations for unsupervised record linkage seem warranted.

«  When forming the MEC set M according to the uncertainty of linkage, it is more robust to rely
on the FLR, estimated by (4.5).

A

» The estimate of MMR given by (4.6), derived from the parameter estimate n,, based on (4.2)
and (5.3) provides an additional uncertainty measure. However, one should be aware that this
measure can be sensitive when the prevalence = is relatively low.

» Between two target values of the FLR, w <', more attention can be given to the estimate of
additional missing matches in M (i) compared to M ('), given by

Z gab - Z gab = z gab :

(ab)eM(y) (a,b)eM(y) (a,b)eM(y)\M(y)

7. Final remarks

We have developed an approach of maximum entropy classification to record linkage. This provides a
unified probabilistic record linkage framework both in the supervised and unsupervised settings, where a
coherent classification set of links are chosen explicitly with respect to the associated uncertainty. The
theoretical formulation overcomes some persistent flaws of the classical approaches. Furthermore, the
proposed MEC algorithm is fully automatic, unlike the classical approach that generally requires clerical
review to resolve the undecided cases.
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An important issue that is worth further research concerns the estimation of relevant parameters in the
model of key-variable errors that cause problems for record linkage. First, as pointed out earlier, treating
record linkage as a classification problem allows one to explore many modern machine learning
techniques. A key challenge in this respect is the fact that the different record pairs are not distinct “units”,
such that any powerful supervised learning technique needs to be adapted to the unsupervised setting,
where it is impossible to estimate the relevant parameters based on the true matches and non-matches,
including the number of matched entities. Next, the model of the key-variable errors or the comparison
scores can be refined. Once these issues are resolved together, further improvements on the parameter
estimation can hopefully be made, which will benefit both the classification of the set of links and the
assessment of the associated uncertainty.

Another issue that is interesting to explore in practice is the various possible forms of informative key-
variable errors, insofar as the model pertaining to the matched entities in one way or another differs to that
of the unmatched entities. Suitable variations of the MEC approach may need to be configured in different
situations.
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Supplementary material

In the supplementary material (arXiv:2009.14797), we present the theoretical convergence property of
the proposed algorithm and some special cases of MEC sets for record linkage, and discuss two less
practical approaches that can be incorporated into the MEC algorithm. An additional simulation study

with low levels of the files’ overlap is also presented.
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