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2.3 Researchers & Collaborators 

3. Lay Summary 
Diffraction requires certain lenses in order to see the pattern that is imprinted. 
However, this is problematic in the case of X-rays, as the lenses would need to be of 
an extremely high grade which is not widely available or economically viable. This is 
seen in the example of X-rays in hospitals where the image produced are of shadows 
where the X-ray diffraction patterns are produced by having the film exposed to 
radiation and particles are ionised and electrons trapped cause an X-ray image to be 
imprinted.1 This process makes it difficult to produce very precise images as can be 
seen in the additional blurriness seen in hospital X-rays and therefore computational 
methods are explored to circumvent this.  

4. Aims and Objectives 
The aim is to explore suitable solutions to solving issues with limited information such 
as phase for generating accurate images for diffraction data such as in X-rays. Both 
analytical and computational methods for obtaining graphical diffraction patterns are 
explored.  
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The pattern of scattered light from an object is given by its Fourier transform. When 
light is detected with a normal Charge Coupled Device (CCD) no detailed phase 
information is present, only |E|² the absolute value. Information is obtained when a 
positive potential is applied to a portion of pixels that have photos of high enough 
energy to strike the surface which caputres the electrons information into a two-
dimensional array.2 

 
For all applications, the image process requires solving inverse problems which include 
which object produced a particular pattern. This is very feasible when the complete 
phase information is already known but very difficult when the complete phases are 
not already known.3 

 
Given insufficient information to be able to generate suitable diffraction images from 
present methods, neural networks have been able to replace or complement solutions 
to problems that also involve a range of imaging tasks.4  

5. Methodology 
Fourier Transforms 
Different types of Fourier transforms were explored including the continuous version 
with infinite bounds to determine an object, 𝑓(𝑥), to its Fourier transform 𝐹(𝑢) where 

𝑥 is an 𝑀-dimensional spatial coordinate and 𝑢 is an 𝑀-dimensional spatial frequency 

coordinate.  
 

F(u) =   ∫ f(x) e−i2πu∙x dx
∞

−∞

 

 

However, for most cases where 𝑀 =  2 and for 2D cases where square arrays are 

assumed, the discrete Fourier Transform is used instead along with its inverse.5 Both 
of these were experimented with sample data sets using Python.  
 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  

�̂�𝑛 = ∑ 𝑥𝑡𝑒−2𝜋𝑖𝑘𝑛/𝑁

𝑁−1

𝑘=0

 

 
 

Phase Retrieval 
Recovering the phase would be complex-valued; therefore a suitable strategy would 
be to use the Gerchberg-Saxton algorithm.6 The Gerchbberg-Saxton algorithm is an 
iterative phase retrieval algorithm for when the complete wave function whose 
intensity in the two different planes, diffraction and imaging planes, of an imaging 
system is known.7 
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(Fig. 1. Block diagram of Gerchberg-Saxton algorithm.5) 

 
Another phase retrieval technique explored was Ptychography. This relatively young 
method is used to reconstruct intensity and phase images of samples from groups of 
diffraction patterns.8 Ptychography utilises a stack of low-resolution images derived 
from overlapped apertures to reconstruct a super-resolved image.10 

 
One of the issues from diffraction patterns is the phase information lost. Ptychography 
utilises data sets of many inference patterns during displacement then an algorithm is 
used to invert the data into suitable images.8 Seeing the evolution of various types of 
imaging and the emerging field is very insightful as to how new techniques are initially 
criticised and explored before being trusted and used as a standard technique.  
 
Ptychography scans a spot over the sample. Fourier Ptychography (FP) scans the 
angle of the light beam illuminating the sample. Maths related to calculating the 
objects are both related. Unlike holography, ptychography is a non-interferometric 
imaging technique and therefore more easily implemented.  
 
However, ptychography is found to face problems in reconstructing images.11 This 
arises from the scanning which produces mechanical vibrations.11 Additionally, 
ptychography as a computational imaging technology may face accuracy issues from 
the deviations in aperture position. This is because the resolution and quality of the 
reconstructed image are directly affected by the accuracy of the aperture position, 
and deviations result in either poor reconstruction quality or failure in reconstructing 
the image.10 

 
Another problem that Ptychography faces is limited in the attainable resolution in the 
reconstruction process, arising from limitations in illumination source, the depth of 
field problem, and limitations in photon flux.11 For instance, the depth of field problem 
is more acute in X-ray imaging.4 The depth of field problem arises from the limitations 
in assuming that a 2D projection is sufficient in representing a 3D object viewed from 
a specific angle, because the Frensel propagation effects renders this assumption 
invalid when the object’s thickness exceeds a thickness equal to the optic’s depth of 
focus (DOF).4 

𝐷𝑂𝐹 =
2

0.612

𝛿𝑡
2

𝜆
≅ 5.48

𝛿𝑡
2

𝜆
 

(Optic’s Depth of Focus  
where 𝛿𝑡 is the achieved transverse spatial resolution  

and 𝜆 is the wavelength of the beam.4) 



 
 

 
 

4 

 
Present reconstruction approaches are based on nonlinear optimization, which 
requires calculating the far-field intensities that one would expect to measure, based 
on one’s present guess of the object.4 This is so that the simple projection model can 
be replaced with a wave propagation model that depicts the way in which illumination 
propagates through the guessed object.4 This then enables the reconstruction of 
objects that extend beyond the depth of focus or objects that violate the first Born 
approximation.4 However, due to the short wavelength and high penetrating power of 
X-rays, the depth of field problem is difficult to overcome especially when X-ray 
nanoimaging is scaled up to larger objects such as entire tissues.12 

 
Onerous computational requirements also result in difficulties in practically 
implementing ptychography, such as requiring the collection of data sizes 
approximately 10-20 times larger than the desired image size of the sample in the 
point-by-point scan.4 Time taken to acquire such large data sizes is also lengthy 
because of the innate scanning procedure.4 While procedures to reduce data-
acquisition duration exist and are commonly used in full-field X-ray microscopy and 
electron microscopy (e.g. imaging larger sample volumes, capturing dynamic 
phenomena under operando conditions), applying such procedures to ptychography 
is still challenging and an area for further development.4 It is important to improve 
time resolution to allow for higher-dimensional analysis, for instance in doing 
ptychography as a function of incident X-ray energy for spectroscopic imaging.4 

 
An alternative way to improve the speed of imaging is to utilise compressive-sensing 
techniques to make up for relatively sparse data acquisition.4 However, due to a 
necessary overlap constraint in solving the phase retrieval problem, compressive 
sensing is challenging when attempting to use it in ptychography.4 Furthermore, the 
process of continuous scanning (critical to the scanning of some specimens) is limited 
by acceleration limits on optics, hence making it difficult to design a scheme to 
uniformly acquire data across the whole image while reducing the total length of the 
trajectory.4 

(Fig. 2. Abstract of Ptychography9) 
 
In summary, ptychography is currently limited by the large data size required to 
process a high-resolution image as well as the lengthy time required to obtain and 
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process such large data sizes on top of the limited types of data. This leads us to 
explore other methods, notably using Neural Networks for reconstruction.  
 

6. Conclusions & Future Work 
 

Neural Network Reconstructions for Phase retrievals 
 
Ptychography requires computational reconstruction to recover the complex field of 
the super-resolved object.10 Various algorithms have been proposed to tackle the 
nonlinear inverse FP problem.10 The Gerchberg-Saxton-type algorithm13 is used in 
Fourier ptychography (FP), but it reinforces constraints in the image domain and the 
Fourier domain.10 The Wirtinger flow framework that resembles gradient descent-
based optimization14,15, as well as PhaseLift (a convex relaxation-based phase retrieval 
algorithm)16 has been applied or explored within the context of ptychography.  
 
In the context of ptychography, neural network reconstruction would take the role of 
complementing or replacing solutions to ptychography’s imaging tasks, such as super-
resolution, inpainting, deconvolution, or denoising.4 Deep neural networks are 
advantageous for they have the potential to surpass classical optimization techniques 
for imaging tasks, by imposing constraints on the reconstructed image by having the 
image remain on a learned manifold.4 
 

Advantages of methods involving Network Networks 
 
As a data-driven method, neural networks can be incorporated into the imaging and 
reconstruction process in ptychography, specifically within ptychography-related 
algorithms.10 Neural networks would have the potential to address accuracy issues in 
ptychography that arise from deviations in aperture position by correcting these 
deviations at the level of algorithms.10 For example, the simulated annealing (SA) 
algorithm has been able to function as a self-calibration method to correct deviations 
in the position of the aperture. To minimise the cost function, the SA algorithm can 
be incorporated to locate the optimal aperture position, with the refined position 
utilised to update the object’s corresponding region in the Fourier domain with the 
classical GS-type iteration.10  
 
Trainable FP neural networks have also been proposed that can correct the 
irregularities in each aperture position deviation alongside object reconstruction, by 
constructing an FP neural network in accordance with an FP forward model that 
contains the aperture positional deviation.17 The FP neural network then sets the 
imaginary and real parts of the object, along with each aperture’s positional deviation 
as the weights of the convolutional layer.10 This results in a predicted image FP being 
the output of the FP neural network, with the results from experiments and simulations 
showing that the neural network could accurately locate aperture positions to improve 
the FP image reconstruction quality.10 
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Neural networks also have the potential to address certain aspects such as the depth 
of field problem, which contribute to the problem of limited attainable resolution due 
to time and data collection constraints in ptychography. Researchers have proposed 
and designed a convolutional neural network (CNN) known as ESTNet to quickly and 
accurately estimate depth, via training the ESTNet with a light-field data set and 
coupling it with an encoding-decoding structure, with this CNN presenting promise in 
balancing computational time with accurate depth estimation.18 

 
Neural networks offer potential in optimising and accelerating the ptychographic 
reconstruction process. For instance, an end-to-end CNN could potentially allow the 
CNN to learn the mapping from a stack of low-resolution images to a high-resolution 
image.10 Research that utilised a simple three-layer CNN for ptychography 
reconstruction demonstrates that the CNN could attain a faster speed than the 
iterative algorithms19 Another adapted variation of the CNN, known as a generative 
adversarial network (cGAN), has also been shown to yield a 50x speedup in 
ptychography reconstruction for dynamic cell videos in contrast with the model-based 
frequent pattern mining (FPM) algorithm20 Neural networks are also able to suggest a 
viable route to compressive sensing to reduce the time taken for data collection, by 
constraining either the likelihood and prior terms, or both.21 

 

Future Outlook 
 

The applications of neural networks in ptychography and X-Ray imaging are still 
relatively new, likely a result of the phase-retrieval problem and its nonconvexity that 
demand special attention when applying machine learning models.4 Additionally, it is 
still challenging to apply machine learning neural network methods to large-scale 3D 
imaging problems, due to the training process growing proportionately with the size 
of the degrees of freedom in the phase-retrieval problem.4 However, the potential of 
applying neural networks in ptychography is promising. For instance, certain studies 
have demonstrated that machine learning-based regularisation could lift the overlap 
constraint in ptychography.4 Neural networks could also be applied to solve other 
difficult puzzles in spectroscopy, and other fields. For instance, fast convolutional 
neural networks (CNN) can be used in high-resolution microscopy, to obtain a higher 
precision in estimating illumination angles, with the CNN producing solid results which 
can exceed traditional approaches with a nearly three-fold reduction in estimation 
errors.22 Considering the progress made in computational hardware in the last few 
years, with quantum computing on the horizon, neural networks have been observed 
to be computationally feasible, and could produce more precise estimations and time 
reductions to produce more accurate reconstructions at higher quality in the field of 
imaging.22 

 

7. Outputs, Data & Software Links 
Presentation Poster Presented August 
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