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Abstract. Inspirals of stellar-mass objects into massive black holes will be important
sources for the space-based gravitational-wave detector LISA. Modelling these systems
requires calculating the metric perturbation due to a point particle orbiting a Kerr
black hole. Currently, the linear perturbation is obtained with a metric reconstruction
procedure that puts it in a “no-string” radiation gauge which is singular on a surface
surrounding the central black hole. Calculating dynamical quantities in this gauge
involves a subtle procedure of “gauge completion” as well as cancellations of very large
numbers. The singularities in the gauge also lead to pathological field equations at
second perturbative order. In this paper we re-analyze the point-particle problem
in Kerr using the corrector-field reconstruction formalism of Green, Hollands, and
Zimmerman (GHZ). We clarify the relationship between the GHZ formalism and
previous reconstruction methods, showing that it provides a simple formula for the
“gauge completion”. We then use it to develop a new method of computing the metric
in a more regular gauge: a Teukolsky puncture scheme. This scheme should ameliorate
the problem of large cancellations, and by constructing the linear metric perturbation in
a sufficiently regular gauge, it should provide a first step toward second-order self-force
calculations in Kerr. Our methods are developed in generality in Kerr, but we illustrate
some key ideas and demonstrate our puncture scheme in the simple setting of a static
particle in Minkowski spacetime.

(Dated: 25 October 2021)

1. Introduction

When the gravitational-wave detector LISA launches in the early 2030s, one of its
key sources will be extreme-mass-ratio inspirals (EMRIs) [1, 2], in which stellar-mass
compact objects spiral into massive black holes in galactic nuclei [3]. Currently, the most
viable method of modelling these systems is with gravitational self-force theory [4, 5], an
asymptotic approximation in the limit m/M � 1, where m and M are the companion’s
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and black hole’s respective masses. At leading order in this approximation, the companion
can be approximated as a point mass moving on a geodesic, and the self-force method
reduces to a venerable problem [6] in general relativity: finding the linear metric
perturbation generated by a point mass orbiting a black hole. The metric perturbation
then exerts a self-force on the particle, accelerating it away from geodesic motion.

To be sufficiently accurate for LISA science, self-force calculations must be carried
beyond linear perturbation theory, to second order in m/M [4, 5]. They also need to be
carried out in the spacetime of an astrophysically realistic, spinning, Kerr black hole.
This is now one of the central challenges in EMRI modelling. While the foundations of
second-order self-force theory are well understood [7, 8], and concrete calculations are
underway in Schwarzschild spacetime [9–11], there have not yet been any second-order
self-force calculations in Kerr.

Computations of the metric perturbation in Kerr face the significant obstacle that the
perturbative Einstein equation in Kerr is not separable in any known basis of functions,
unlike in Schwarzschild. Traditionally, in linear perturbation theory this obstacle is
avoided by instead solving the (fully separable) Teukolsky equation for the Weyl scalar
ψ0 (or ψ4). In vacuum, ψ0 contains nearly all the invariant information in a linear
metric perturbation [12], and from ψ0 the metric perturbation can be reconstructed in a
radiation gauge using a procedure due to Chrzanowski [13] and Cohen and Kegeles [14]
(CCK). The CCK reconstruction procedure can only be applied in vacuum regions [15, 16],
but it can nevertheless be used in first-order self-force calculations by carrying it out
separately in the two regions r < rp(t) and r > rp(t), where r is the Boyer-Lindquist
radial coordinate and rp(t) is the particle’s time-dependent orbital radius. The resulting
metric perturbation is in a “no-string radiation gauge” [17–19]. This approach, initiated
in Refs. [20, 21] and formulated in detail in Refs. [17, 18, 22], underlies almost all
numerical first-order self-force calculations in Kerr (e.g., [22–27]) as well as analytical,
weak-field calculations (e.g., [28–31]). Most prominently, van de Meent has used it to
compute the first-order self-force on fully generic, inclined and eccentric bound orbits in
Kerr [27]. These implementations have been in the frequency domain, but work is also
ongoing in the time domain [32, 33].

While it has enabled this progress at first order, the no-string gauge comes with a
major drawback: it is singular over the entire surface r = rp(t) [17], which we denote Sp.
Unlike in a regular gauge such as the Lorenz gauge, where the point-particle singularity
is confined to the particle’s worldline [5], in the no-string gauge the metric perturbation
suffers from both jump discontinuities and Dirac-delta singularities over Sp. These
singularities represent a significant barrier to second-order calculations. The second-order
metric perturbation is sourced by quadratic combinations of the first-order perturbation,
and if the first-order perturbation contains distributional singularities, these quadratic
combinations are ill defined. Without a well-defined field equation to start from, it is
unclear how the second-order metric perturbation can be found. Even when restricted to
first-order applications, the no-string construction has shortcomings that we will outline
below.
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In this paper we present a method for obtaining the metric perturbation in a more
regular gauge. The basic approach (following [34]) is to split the perturbation into
two parts: a puncture hP

ab (the most singular part) and a residual field hR
ab = hab − hP

ab.
The puncture is based on a local expansion (to some finite order) of the singular part
of hab, with compact spatial support imposed by hand. Such expansions are known
analytically at the level of the metric, and can be applied in a regular gauge (such
as Lorenz gauge) that confines the singularity to the worldline. The puncture field
approximately solves the linearized Einstein equation with point-particle stress energy,
however errors are introduced by the finite order of the expansion and the imposition
of compact spatial support. The idea of the “puncture scheme” [34] is to correct this
solution using the residual field, which satisfies the linearized Einstein equation with a
less singular “effective source”.

In calculating the residual field, however, one is faced with the same challenges
encountered earlier in solving the linearized Einstein equation about Kerr—but now with
an extended source. Our key insight is that this can be accomplished for hR

ab using the
“corrector tensor” reconstruction formalism recently developed by Green, Hollands, and
Zimmerman [35] (GHZ). Like the CCK procedure, the GHZ procedure begins at the level
of Weyl scalars, and reconstructs from these the metric perturbation. However, unlike
the CCK procedure, the GHZ procedure accounts for nonvanishing stress-energy by
adding a “corrector tensor”, determined from the stress-energy via ordinary differential
equations. (As part of this work, we calculate analytic expressions for the solution of
these equations.) The puncture scheme gives a residual field with a “softened” string
singularity compared to the CCK procedure, which we gauge-transform to lie in a
neighborhood of Sp (the “shadowless” gauge). Our final metric perturbation therefore
contains a singular puncture piece on the particle worldline, and a regular piece around
the sphere. This provides a metric perturbation suitable as input for second-order
calculations, and as we explain below, our approach offers other potential advantages
over the current no-string construction.

We divide our presentation into three parts. In the first part, Sec. 2, we review CCK
reconstruction, the no-string solution, and the GHZ corrector-field formalism. Using
the simple model problem of a static point mass in flat spacetime, we carry out the
GHZ procedure and illuminate its relationship to previous methods, highlighting (i) the
half-string singularity structure in the GHZ solution, (ii) how it can be transformed to
the no-string gauge and how it provides additional information beyond current no-string
calculations, and (iii) why the gauge singularities in both the half-string solution and
no-string solution render the second-order field equations ill defined. In the second
part, comprising Secs. 3 and 4, we develop our Teukolsky puncture scheme. Section 3
first extends the flat-spacetime calculations to the case of a generic, spatially compact
source in Kerr spacetime. Section 4 then draws on that general treatment to formulate
the puncture scheme. In the final part, Sec. 5, we return to the flat-spacetime model
problem to demonstrate the scheme, showing that it yields the correct value for the type
of quasi-invariant quantity typically calculated in self-force applications. We conclude
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with a summary discussion in Sec. 6.
To maintain focus on the core issues, we relegate some technical aspects of our

treatment to appendices. In particular, Appendix A summarizes the Geroch-Held-Penrose
(GHP) and Held refinements of the Newman-Penrose (NP) formalism; we rely on these
throughout our analysis, but we strive as far as possible to present our final results in a
form that does not rely on the reader being intimately familiar with them.

Notations and conventions: We adopt a mostly negative metric signature,
geometric units, and Wald’s notation [36] for abstract indices (a, b, c, . . .). A glossary of
commonly used symbols is provided at the end of the paper.

2. Metric reconstruction with a particle source: guide to the literature with an
illustration in Minkowski space

Our overarching context is an asymptotic expansion of the metric, of the form
gab + εhab + ε2jab +O(ε3), where gab is a Kerr metric of mass M and angular momentum
J = Ma, and ε is a formal parameter that counts powers of the mass ratio m/M . hab
satisfies the linearized Einstein equation,

Eab(h) = Tab, (1)

with a point-mass source

T ab = µ
∫
vavbδ4(x, xp(τ))dτ. (2)

Here we have absorbed the usual 8π into the mass µ = 8πm. τ is the particle’s proper
time, xp(τ) is its worldline, va is its four-velocity, and δ4(x, xp(τ)) is the covariant delta
function defined so that

∫
δ4(x, y)f(y)dV = f(x), where dV is the covariant integration

element. For applications to EMRIs, at leading order xp is approximated as a bound
geodesic in gab. Given the first-order perturbation, at points away from the particle,
the second-order perturbation should then satisfy the second-order vacuum Einstein
equation,

Eab(j) = −G(2)
ab (h, h), (3)

where G(2)
ab (h, h) ∼ ∂h∂h + h∂∂h; see Eq. (4) of Ref. [5]. Our primary goal is to solve

Eq. (1) for hab in a gauge that is sufficiently well behaved for us to ultimately solve
Eq. (3) for jab.

Moreover, we wish to avoid solving Eq. (1) directly and instead reconstruct hab from
a solution to the spin-weight-(+2) Teukolsky equation,

Oψ0 = SabTab, (4)

where ψ0 = T abhab. O, Sab, and T ab are all linear, second-order differential operators
given (along with Eab) in Appendix B. We do not need their explicit form for the present
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discussion, but we note that since Eq. (4) holds for any hab, it implies the operator
identity [37]

OT cd = SabEabcd (5)

and its adjoint T †abO† = EabcdS†cd, where we have used the fact that Eab is self-adjoint and
defined Eabcdhcd = Eab(h) to make the index structure clear.

In this section, we review existing methods of solving Eq. (1) using metric
reconstruction and demonstrate the GHZ method. This will set the stage for the
remainder of the paper.

2.1. Metric reconstruction and completion procedures

2.1.1. CCK-Ori reconstruction The traditional CCK reconstruction procedure special-
izes to vacuum, wherein we seek to solve Eab(h) = 0 with a given initial/boundary
condition on hab. From the solution to the vacuum Teukolsky equation, Oψ0 = 0, with
the corresponding initial/boundary conditions, one first obtains a spin-weight-(−2) Hertz
potential Φ by solving the inversion relation

Þ4 Φ = −2ψ0, (6)

where an overline indicates complex conjugation. For an appropriate choice of tetrad,
the operator Þ, defined in Eq. (A.4), reduces to a derivative along an outgoing principle
null vector la, meaning Eq. (6) is a fourth-order ordinary differential equation (ODE)
along outgoing null curves. Then, from Φ one obtains a metric perturbation

ĥab = 2 Re(S†abΦ), (7)

which satisfies the ingoing radiation gauge (IRG) conditions ĥablb = 0 = gabĥab.
For ĥab to be a solution to the Einstein equation with the given initial/boundary

conditions, Φ must satisfy the same boundary conditions as ψ0: e.g., outgoing wave
boundary conditions at infinity or ingoing wave boundary conditions at the horizon.
Given this condition, Eq. (6) enforces that Φ is also a solution to the adjoint Teukolsky
equation, O†Φ = 0 [15]. As first pointed out by Wald [37], it then follows from the
adjoint of the identity (5) that

Eab(ĥ) = 2 Re(T †abO†Φ) = 0. (8)

Moreover, it can be shown that T ab Re(S†abΦ) = −1
4Þ

4Φ, meaning Eq. (6) enforces that
ĥab has the same Weyl scalar as hab: T abĥab = T abhab = ψ0. A theorem due to Wald [12]
then implies that (up to gauge) ĥab can only differ from hab by a perturbation ġab
toward another Kerr metric, which can be absorbed into redefinitions of the background
parameters M and a.

In Ref. [15], Ori provided the first analysis of the CCK procedure in the nonvacuum
case. He obtained two explicit, closed-form solutions to Eq. (6) in terms of modes of ψ0

and modes of the Teukolsky source SabTab, for any spatially compact source. However,
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these solutions to Eq. (6) do not provide a solution to the Einstein equation. Assuming
ψ0 satisfies retarded boundary conditions, and restricting to the case of a point mass,
Ori showed that if one solves Eq. (6) subject to outgoing wave conditions at infinity,
obtaining a solution Φ+, then Φ+ becomes singular along a string emanating from the
particle to the horizon; likewise if one solves Eq. (6) subject to ingoing wave conditions at
the horizon, obtaining a solution Φ−, then Φ− becomes singular along a string emanating
from the particle to infinity. Furthermore, these solutions to Eq. (6) fail to satisfy
O†Φ± = 0 along the string, meaning the perturbations

ĥ±ab = 2 Re(S†abΦ±) (9)

also fail to satisfy the vacuum Einstein equation there. In short, CCK reconstruction
fails in nonvacuum. This failure is associated with the fact that no solution to the
nonvacuum Einstein equation (1) can satisfy the IRG conditions unless Tablalb = 0 [16],
and no solution can be put in the particular CCK form (7) unless Tablb = 0 [35].

2.1.2. The no-string solution The no-string construction to some extent overcame the
problem in Ori’s method by trading the string singularities for a singularity on a sphere
at the particle’s orbital radius. Let rp(u) be the orbital radius as a function of retarded
time, and let Sp be the surface r = rp(u). Construct ĥ+

ab outside Sp and ĥ−ab inside Sp.
In their respective regions, each of them is a vacuum solution, and from Wald’s theorem,
each can only differ from the complete solution by a perturbation of the form ġab. The
no-string solution is then obtained by adding these “completion” terms and gluing the
two vacuum solutions together at Sp:

hNab = (ĥ+
ab + ġ+

ab) Θ+ + (ĥ−ab + ġ−ab) Θ− +Dab δ(Sp), (10)

where Θ± ≡ Θ (±[r − rp(u)]) are Heaviside functions, and δ(Sp) ≡ δ(r − rp(u)) in Kerr-
Newman coordinates. To satisfy the nonvacuum Einstein equation, the mass and angular
momentum in hNab must jump by the particle’s energy E and azimuthal orbital angular
momentum L when crossing Sp, implying the completion terms must satisfy [18, 19]

ġ+
ab − ġ−ab = ∂gab

∂M
E + ∂gab

∂J
L. (11)

Typically, ġ−ab is absorbed into gab, leaving only ġ+
ab.

The field (10) is highly singular on Sp, containing both a jump discontinuity and
a Dirac delta there. Additionally, while the delta function is generically required in
order to satisfy the Einstein equation [17, 38], the current no-string reconstruction and
completion procedure does not provide a ready means of finding the coefficient Dab, which
has only ever been calculated in the case of a static particle in Minkowski spacetime [17].
This coefficient is not needed for first-order self-force calculations because the self-force
and other physical quantities can be found by taking limits to the particle from off
of Sp [17]. But as we will establish below, the time dependence of Dab provides an
important diagnostic on the behaviour of the solution.
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In general, one further adjustment is made to Eq. (10): a gauge perturbation
generated by a discontinuous vector ξa = ξa−Θ− is added to ensure that coordinate
frequencies have the same meaning on either side of Sp [19, 38, 39]. This condition is
enforced by imposing continuity of the stationary, axisymmetric pieces of the Boyer-
Lindquist components habtatb and habt

aϕb across Sp, for example. Such a gauge
transformation, sometimes called the “gauge completion” [26], is required to compute
dynamical effects on the particle’s orbit. Since the gauge perturbation Lξgab includes a
derivative of Θ−, it introduces another delta function, altering the value of the unknown
coefficient Dab.

Finally, we note one more crucial aspect of the no-string solution. In the frequency
domain, a point-particle source is not one-dimensional. Instead, it fills the orbital
libration region between the particle’s minimum and maximum orbital radius. Applying
CCK reconstruction is impossible inside the libration region, and no-string calculations
therefore rely on the method of extended homogeneous solutions [22, 27], in which the
vacuum solutions outside the libration region are analytically extended into it [40]. In
practice, this method can involve cancellations of very large numbers [27], introducing
the computational expense of arbitrary-precision arithmetic. We comment further on
this in Sec. 6.

2.1.3. The GHZ formalism A critical weakness of the current no-string construction
is that it cannot be applied to problems with spatially extended sources, which limits
its utility even in the context of first-order self-force applications. For example, it is
inapplicable in a puncture scheme, one of the standard methods of self-force theory [41].
With the GHZ formalism, we now have far more flexibility in tackling nonvacuum
problems. The GHZ procedure supplements Ori’s reconstructed metric perturbations (9)
with a corrector tensor x±ab:1

h±ab = 2 Re(S†abΦ±) + x±ab. (12)

Unlike the CCK-Ori perturbation ĥ±ab, these perturbations satisfy Eab(h±) = Tab. The
corrector tensor is chosen to satisfy x±ablb = 0 but not the tracefree condition gabx±ab = 0;
because of its nonzero trace, it can be made to satisfy the specific pieces of the Einstein
equation that ĥ±ab cannot, [Tab − Eabcd(x±cd)]lb = 0. Remarkably, these pieces of the
Einstein equation can be put in the form of a sequence of three ODEs along the integral
curves of la, given in (56)–(58) below. x+

ab is the solution that vanishes at infinity I +

(and everywhere outside Sp for a point particle); x−ab is the solution that vanishes at the
horizon H − (and everywhere inside Sp for a point particle). Therefore, in the GHZ
procedure, the only partial differential equation one must solve is the Teukolsky equation
for ψ0. Ori’s solution to the ODE (6) then provides the modes of Φ in closed form in
terms of modes of ψ0, and straightforward integration of three more ODEs yields xab.
1 GHZ also derived the adjoint Teukolsky equation satisfied by Ori’s Hertz potential, O†Φ = η, where
the source is the solution to Re(T †abη) = Tab − Eab(x). An alternative approach, presented by GHZ, is
to solve these equations rather than Eqs. (4) and (6). In this paper we opt to use Eqs. (4) and (6)
because (i) doing so allows us to exploit the existing solutions to those equations, and (ii) the source
η in the adjoint Teukolsky equation for Φ has the undesirable property of being spatially noncompact
even if Tab is not.
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As we illustrate below, the GHZ solutions h±ab for a point mass are precisely the
half-string solutions characterized in Ref. [17]. The GHZ procedure provides the first
systematic method of obtaining these solutions. Starting from them, we will show
how to (i) find a gauge transformation to the no-string solution (10), including the
Dirac-delta coefficient Dab, (ii) use Dab to determine the “gauge completion” that
settles the coordinate frequencies, and (iii) extend the no-string construction to generic
spatially compact sources. Although our description works with ψ0 and an IRG metric
perturbation, we note that an essentially identical construction applies if we work with
ψ4 and an ORG (outgoing radiation gauge) perturbation, with la replaced by an ingoing
principal null vector na. We also note that as originally formulated, the GHZ formalism
is restricted to sources that are compact in time, which excludes our case of interest.
Appendix G describes how we remove this limitation.

2.2. Model problem: static particle in flat spacetime

To give the reader a more concrete grasp of the form of the GHZ solution, we follow
Refs. [17, 34] by considering the simplest possible scenario: a static point particle in flat
spacetime. This simple example captures the essential features of the solution, and it
will serve as a model for our treatment of the general problem in Kerr. We specifically
calculate the half-string solution h−ab, which is regular at the origin; the regular-at-infinity
solution h+

ab can be easily found in the same way.
We adopt retarded coordinates (u, r, θ, ϕ) and the tetrad

l = ∂

∂r
, (13a)

n = ∂

∂u
− 1

2
∂

∂r
, (13b)

m = 1√
2r

(
∂

∂θ
+ i csc θ ∂

∂ϕ

)
(13c)

for the calculations in this section. We place the particle at a static position
xap(u) = (u, rp, θp, ϕp), with four-velocity v = ∂

∂u
, such that the only nonzero frame

components of the stress-energy (2) are

Tll = 2Tln = 4Tnn = µ

r2
p
δ(r − rp)δ2(Ω− Ωp), (14)

where δ2(Ω− Ωp) ≡ δ(cos θ − cos θp)δ(ϕ− ϕp).
We calculate the metric perturbation as a sum of spin-weighted spherical harmonics

sY`m(θ, ϕ), making frequent use of the identities in Appendix C and the spin-raising and
lowering operators ð̃ and ð̃′ given in Eq. (A.16). For convenience we define the shorthand
sY

p
`m ≡ sY`m(θp, ϕp), and we note in advance that all sums over the mode number m run

from −` to +`. Since the calculations in this section are straightforward, we keep them
terse and focus on their conclusions. For readers wishing to reproduce them, we note
that with our choice of tetrad, the only nonvanishing GHP and NP spin coefficients are
ρ = −1/r, ρ′ = 1/(2r), and β = β′ = cot θ/(2

√
2r).
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2.2.1. CCK-Ori metric reconstruction We begin by solving the Teukolsky equation (4)
for ψ0, assuming a stationary solution. With the standard mode decomposition
ψ0 = ∑

`≥2,m ψ`m0 (r) 2Y`m(θ, ϕ), the radial equation reads

r−6∂r(r6∂rψ
`m
0 )− (`− 2)(`+ 3)ψ`m0 = 2S`mδ(r − rp), (15)

where sS`m = µ Ȳ p
`mλ`,−s/(4r4

p), and λ`,s is defined in Eq. (C.1). The solution that is
regular at the origin and infinity is

ψ`m0 = −2C`m(r)
4r2 with sC`m(r) ≡

4r4
p sS`m

2`+ 1
r`<
r`+1
>

. (16)

Here we have defined r< ≡ min (r, rp) and r> ≡ max (r, rp).
Next, we find the regular-at-the-origin Hertz potential Φ = ∑

`≥2,m Φ`m(r) −2Y`m(θ, ϕ).
Appealing to Eq. (C.5) and (−1)msS`,−m = sS`m, we can write ψ̄`m0 = ψ`m0 and integrate
Eq. (6) as Φ`m = −2

∫ r
0 dr4

∫ r4
0 dr3

∫ r3
0 dr2

∫ r2
0 dr1ψ

`m
0 (r1). We then obtain

Φ`m = r2
−2C`m(r) + ΦS

`m(∆r)Θ+, (17)

where ∆r ≡ r − rp. The first term corresponds to the no-string Hertz potential
ΦN = Φ+Θ+ + Φ−Θ− used in current self-force calculations. In each of the two
regions r 6= rp, it satisfies the vacuum Teukolsky equation and the inversion relation
∂4
r Φ± = −2ψ0, and it is regular at r = 0 and ∞. The second term, ΦS

`m, contains the
half-string extending from r = rp to infinity. It is a homogeneous solution to ∂4

r ΦS = 0
given by the third-order polynomial

ΦS
`m = 4r2

p −2S`m
3∑
j=1

b`j(∆r)j, (18)

with constant coefficients b`1 = r2
p, b`2 = rp, and b`3 = `(`+ 1)/6.

Equation (18) is precisely the flat-spacetime reduction of the singular Hertz potential
derived by Ori [15]. The fact that it is singular can be deduced from its large-` behavior:
as pointed out in Ref. [17], the sum ∑

`m ΦS
`m −2Y`m diverges not only on the string, but

at every point in the region r > rp.2 Based on this, Ref. [17] concluded that this term
was ill defined. However, that conclusion was incorrect. While the sum is ill defined
as an ordinary function, it is well defined as a distribution, and in the region r > rp it
satisfies the equation identified by GHZ, O†ΦS = η, where η is supported only on the
string at (θ, ϕ) = (θp, ϕp). We explicitly evaluate the sum ∑

`m ΦS
`m −2Y`m in Appendix

D and find that the result is smooth everywhere except on the string.
The last step in the CCK-Ori procedure is to reconstruct the IRG metric ĥab =

2 Re(S†abΦ). The result again splits into no-string and string pieces,

ĥab = ĥNab + ĥSab Θ+. (19)
2 To see this, note that λ`,2 ∼ `−2 and b`m3 ∼ `2 imply ΦS

`m ∼ Y p
`m. Letting γ be the angle between

(θp, ϕp) and (θ, ϕ), and appealing to Eq. (C.4), we then have
∑
m ΦS

`m−2Y`m ∼ `P`(cos γ) ∼ `1/2 for
γ 6= 0 or ∼ ` for γ = 0.
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Away from Sp, these satisfy ĥNab = 2 Re(S†abΦN) and ĥSab = 2 Re(S†abΦS). The nonzero
frame components of the no-string piece are given by

ĥNnn = −
∑
`≥2,m

0C`m(r) Y`m, (20a)

ĥNnm̄ = 1√
2
∑
`≥2,m

−1C`m(r)
[
`Θ− − (`+ 1)Θ+

]
−1Y`m, (20b)

ĥNm̄m̄ = −
∑
`≥2,m

(`+ 2)(`− 1)−2C`m(r) −2Y`m, (20c)

and their complex conjugates. ĥNab is a solution to the linearized vacuum Einstein equation
in the regions r 6= rp and is regular at r = 0 and ∞. The nonzero frame components of
the string piece are

ĥSnn =
∑
`≥2,m

Fnn
(
Ȳ p
`m Y`m

)
, (21a)

ĥSnm̄ =
4r4

p√
2r

∑
`≥2,m

−1S`m −1Y`m +
∑
l≥2,m

Fnm̄
(
Ȳ p
`m Y`m

)
, (21b)

ĥSm̄m̄ = −
4r3

p∆r
r

∑
`≥2,m

(`+ 2)(`− 1)−2S`m −2Y`m, (21c)

and their complex conjugates.
We have suggestively written two of the terms as linear differential operators Fab

acting on ∑
Ȳ p
`m Y`m, with Fab given in Eq. (B.9). By virtue of the completeness

relation (C.3), these quantities can be written in terms of δ2(Ω − Ωp), and they will
cancel terms in the corrector tensor xab. The other terms in ĥSab, which we have written in
terms of the source modes sS`m, will remain in the final half-string metric hab = ĥab +xab.
We discuss their singularity structure below.

2.2.2. Corrector tensor We now complete the GHZ procedure by calculating the
corrector tensor xab. Its only nonzero components are xmm̄, xnm = x̄nm̄, and xnn,
and they satisfy the hierarchical sequence of ODEs (56)–(58), which here reduce to

∂r(r2∂rxmm̄) = r2Tll, (22)
1
2∂r[r

−2∂r(r2xnm)] = 1
2r∂rð̃xmm̄, (23)

−r−2∂r(rxnn) = −1
2

( 2
r2 ð̃′ð̃ + ∂2

r + 4
r
∂r + 2

r2

)
xmm̄

+ 1
2r

(
∂r + 3

r

)
(ð̃′xnm + ð̃xnm̄) + Tln. (24)

These can be integrated in sequence for the three components.
Integrating from the origin (i.e., imposing xab|r=0 = 0), we find

xab = xSab Θ+ with xSab = −Fab[δ2(Ω− Ωp)]. (25)
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This is made up of angular operators acting on δ2(Ω− Ωp), with a rational dependence
on r; again refer to the definition (B.9) of Fab. We highlight, in particular,

xSmm̄ = µ∆r
rrp

δ2(Ω− Ωp), (26)

which represents the only contribution to the trace gabhab. Unlike ĥSab, which has support
over the entire region r > rp, xab is supported only on the string. This is because Φ is
constructed through radial integrations of ψ0, which is nonzero everywhere, while xab is
constructed through radial integrations of Tab, which is supported only at the particle.

2.2.3. Total GHZ solution and transformation to the no-string gauge The total metric
hab = ĥab + xab once again divides into no-string and half-string pieces,

hab = ĥNab + hSab Θ+, (27)

where hSab = ĥSab + xSab. After decomposing the angular delta functions in xSab using
Eq. (C.3), we find a near cancellation between the terms involving Fnn and Fnm̄ in ĥSab
and those in xSab. However, the cancellation is inexact because ĥSab does not contain
` = 0, 1 modes. We are therefore left with the nonzero components

hSnn = x`=0,1
nn , (28a)

hSnm̄ =
4r4

p√
2r

∑
`≥2,m

−1S`m −1Y`m + x`=0,1
nm̄ , (28b)

hSm̄m̄ = ĥSm̄m̄, hSmm̄ = xSmm̄, and their complex conjugates.
The surviving pieces of ĥSab exhibit a power-law divergence on the string, which may

be found by evaluating the sums over ` using the method in Appendix D. This half-string
singularity has the form discussed in previous literature and displayed in Table I (locally
near the particle in a generic spacetime) and Eqs. (181)–(183) (in flat spacetime) of
Ref. [17]. Explicitly, it diverges as 1/γ2, where γ is the angle between (θp, ϕp) and (θ, ϕ).
xab has made two net additional contributions to the total metric: the ` = 0, 1 modes;
and the delta function (26) in the trace gabhab (mentioned in text in Ref. [17] but not
explained). Neither of these can ever arise from the Hertz potential because Φ can only
contain modes with ` ≥ |s| = 2 and because gabS†abΦ = 0.

How can we bring the metric (27) to the no-string form (10) currently used in
self-force calculations? From the general argument reviewed in Sec. 2.1, we know that
in the vacuum region r > rp, up to gauge, hab can only differ from ĥNab by ` = 0, 1
perturbations. It follows that the string field is pure gauge except its ` = 0, 1 piece, and
we can write it as

hSab = x`=0,1
ab + LξSgab (29)

for some vector ξS. A no-string solution hNab = hab − Lξgab, with ξa = ξS
aΘ+, is then

hNab = ĥNab + x`=0,1
ab Θ+ − 2ξSc gc(arb) δ(∆r), (30)
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where radxa = dr. It is straightforward to check that

ξSl = 2ξSn = µ
∑
`≥2,m

λ2
`,1 Ȳ

p
`m Y`m, (31a)

ξSm̄ = − µ∆r√
2rp

∑
`≥2,m

λ`,1 Ȳ
p
`m −1Y`m. (31b)

This vector is unique up to the addition of Killing vectors (which trivially contribute
nothing to LξSgab).

Equation (30) is in a no-string gauge but not yet in the form used in practice.
We can see from Eq. (B.9) that xab ∼ r at large r, implying that (30) is not in an
asymptotically flat gauge. More precisely, x`=0

ab ∼ r0 and x`=1
ab ∼ r. Removing these

gauge artifacts will put our no-string solution in the form used in current calculations. It
will also provide a new means of determining the gauge completion alluded to in Sec. 2.1.

Consider ` = 0. From Eqs. (25), (B.9), (C.3), and (C.4), the nonzero components
are

x`=0
nn Θ+ = x`=0

mm̄Θ+ = µ∆r
4πrrp

Θ+ =
(
−2m

r
+ 2α0

)
Θ+, (32)

where we have used µ = 8πm and defined α0 ≡ m/rp. The first term in parentheses is a
mass perturbation due to the particle’s mass. The second term is a gauge perturbation
corresponding to a rescaling of time and radius, u → (1 − α0)u and r → (1 + α0)r,
equivalent to a gauge transformation generated by

Ξ`=0 = α0u
∂

∂u
− α0r

∂

∂r
. (33)

However, if we restrict this transformation to the region r > rp, then it introduces yet
another kind of poor behaviour in the metric perturbation: the coefficient of δ(∆r)
in Eq. (30) picks up a term proportional to Ξa, which grows linearly with time. This
indicates that the time coordinate is discontinuous at r = rp, and it destroys the manifest
stationarity of the spacetime. We can only avoid this pathology by applying at least the
first term in the transformation (33) for all r; if we introduce any r dependence into
the linear-in-u term in Ξa, we necessarily introduce linear-in-u terms into the metric
perturbation.3 Simply applying Eq. (33) for all r, we keep our solution independent of u,
and we obtain a total monopole perturbation h̃`=0

ab = x`=0
ab Θ+ − LΞ`=0gab with nonzero

components
h̃`=0
nn = h̃`=0

mm̄ = −2m
r

Θ+ − 2α0Θ−. (34)

The treatment of the ` = 1 modes is very similar. The large-r behaviour x`=1
ab ∼ r is

associated with a uniform acceleration of the coordinate system, and removing it requires
a translation Ξa

`=1 ∼ u2. Preserving manifest stationarity of the solution again requires
applying this transformation for all r; we provide the details in Appendix E.
3 To see that this is true, note that ξa = β0u t

a + fa(r) generates the most general transformation that
preserves manifest stationarity and spherical symmetry. Here β0 is a constant, t = ∂

∂u
is the timelike

Killing vector, f = fu
∂

∂u
+ fr

∂

∂r
, and by “manifest stationarity” of a metric perturbation we mean

Lthab = 0.



New metric reconstruction scheme for gravitational self-force calculations 13

With this, our final no-string solution is brought to the form

h̃Nab = ĥNab + h̃`=0,1
ab − 2ξS(arb) δ(∆r), (35)

where h̃`=0,1
ab = x`=0,1

ab Θ+ − LΞ`=0,1gab. As expected, our result recovers the no-string
solution found in Ref. [17] (where the coefficient of δ(∆r) was found by explicitly solving
the Einstein equation). In our new construction, the gauge perturbation LΞ`=0,1gab for
r < rp has played the role of the gauge completion used in no-string self-force calculations
in Kerr. In those past calculations, the gauge completion was determined by imposing
continuity of certain metric components (or other fields) at r = rp. The GHZ procedure
has given us an alternative, more manifestly desirable criterion: the coefficient of the
delta function must respect the stationarity of the spacetime. We extend that criterion
to the EMRI scenario in the next section.

2.2.4. Lessons for the Kerr problem Our analysis of the simple model problem has
illuminated the relationship between the GHZ procedure and previous reconstruction
methods, and it implies several lessons that carry over to the realistic EMRI problem:

• The complete half-string solution (12) contains both a power-law divergence on the
string, arising from Ori’s Hertz potential, and an angular delta function supported
on the string, arising from the GHZ corrector tensor. Both pieces grow polynomially
with r at large r. There are nontrivial cancellations of delta-function content
between the Hertz term and the corrector tensor, but there will always remain a
delta function in the trace gabhab.
• The string delta function can be obtained in closed form from the stress-energy
tensor. But the power-law divergence arises from the Hertz potential, which will
only be obtainable as a sum of modes in Kerr. The sum converges as a distribution
but diverges (at all points with r > rp) as an ordinary function. While previous
literature was incorrect in deeming this sum inadmissible, we can still draw the
same conclusion: it is not obvious that this piece can be calculated in Kerr, where
only a finite number of modes can be computed.
• The GHZ procedure provides a new route to the no-string solution (10), via an

explicit transformation from the half-string solution. This new route determines the
coefficient Dab of the radial delta function. If the transformation puts the no-string
solution in an asymptotically flat gauge, then part of the transformation must
be extended to all r < rp to prevent Dab from growing with time. This provides
a greatly simplified means of obtaining the “gauge completion” for the no-string
solution. In the context of a bound geodesic in Kerr, ensuring that Dab does not grow
with time will ensure that the entire metric perturbation respects the tri-periodicity
of the orbit.
• The metric perturbation, whether in the half-string or no-string gauge, is too singular
to obtain a distributionally well-defined second-order field equation. At vacuum
points, the second-order metric perturbation jab should satisfy Eq. (3). The source
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term G
(2)
ab (h, h) ∼ h∂2h+ ∂h∂h is ill defined on the string in the half-string gauge

and on Sp in the no-string gauge. In either case, products of delta functions arise
on the singular surface. In the half-string case, the power-law divergence at the
string is likewise too singular for G(2)

ab to be well defined.

3. GHZ and the “shadowless” solution for spatially extended sources in Kerr

In this section, we extend our results from flat spacetime to Kerr. We also generalize the
analysis to allow for a stress-energy tensor Tab that is supported in a spatially extended
(but bounded) region rmin ≤ r ≤ rmax, where rmin/max are radii in the Kerr exterior; this
generalization is essential for our puncture scheme in subsequent sections. However,
because the calculations follow the flat-spacetime template, readers uninterested in the
technical details may skip to the summary in Sec. 3.4.

We allow Tab to be singular at the boundaries of its support, r = rmin and r = rmax.
Specifically, we allow it (and ψ0) to contain δ(r− rmin/max) and δ′(r− rmin/max). This will
allow hab to be discontinuous at these surfaces. That level of singularity is too strong to
obtain a well-behaved source in the second-order Einstein equation, but it is useful in
the simple demonstration of our puncture scheme in Sec. 5, and it is likely to be useful
for the puncture scheme in Kerr if restricted to first order.

Many of our results will be presented in a coordinate-independent form, but wherever
we refer to coordinate quantities, we adopt outgoing Kerr-Newman coordinates (u, r, θ, ϕ∗).
These are related to Boyer-Lindquist coordinates (t, r, θ, ϕ) by

u = t− r∗ ≡ t− r −
r2

+ + a2

r+ − r−
ln
(
r − r+

r+

)
+ r2

− + a2

r+ − r−
ln
(
r − r−
r+

)
, (36a)

ϕ∗ = ϕ− ϕ0(r) ≡ ϕ− a

r+ − r−
ln r − r+

r − r−
, (36b)

where r± = M ±
√
M2 − a2 are the inner and outer horizon radii. Similarly, when

we have call to refer to a specific tetrad, we adopt the Kinnersley tetrad, which has
Kerr-Newman components

l = ∂

∂r
, (37a)

n = r2 + a2

Σ
∂

∂u
− ∆

2Σ
∂

∂r
+ a

Σ
∂

∂ϕ∗
, (37b)

m = 1√
2Γ

(
ia sin θ ∂

∂u
+ ∂

∂θ
+ i csc θ ∂

∂ϕ∗

)
, (37c)

where Γ = r + ia cos θ, ∆ = r2 − 2Mr + a2, and Σ = r2 + a2 cos2 θ. With this choice,
the nonzero spin coefficients are given by Eqs. (A.9) and (A.12)

Our calculations will rely heavily on Held’s variant of the GHP formalism, reviewed
in Appendix A.2. We write all differential operators in terms of the Held operators Þ, Þ̃′,
ð̃, and ð̃′ defined in Eq. (A.13), which reduce to Eq. (A.16) in the Kinnersley tetrad and
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Kerr-Newman coordinates. We then write all background quantities in terms of the spin
coefficient ρ and a set of “Held scalars” Ω◦, Ψ◦, ρ′◦, and τ ◦, given in terms of the GHP
coefficients in Eqs. (A.15) and (A.18) [or explicitly in the Kinnersley tetrad in Eq. (A.19)].
All quantities adorned with a ◦ are annihilated by the GHP derivative Þ. This allows
us to solve differential equations of the form ÞF = G in a coordinate-independent way.
With our choice of tetrad and coordinates, Þ = la∂a = ∂

∂r
when acting on a scalar,

reducing the differential equation to a radial ODE along outgoing null rays. But we can
instead write it as an ODE in ρ using the fact that, when acting on an expression in
Held form,

Þ = la∇a = (la∇aρ) ∂
∂ρ

= ρ2 ∂

∂ρ
, (38)

where the last equality follows from Eq. (A.5). Here we have adopted the Kinnersley
tetrad in the intermediate equations, but the result Þ = ρ2 ∂

∂ρ
is valid in any tetrad

aligned with the principal null directions. Using Eq. (38), we can straightforwardly write
the solution to ÞF = G as F =

∫
dρG/ρ2, without specifying a tetrad or coordinate

system.
As we did in flat space, we find the GHZ solution h−ab that is regular in the region

r < rmin. The solution h+
ab can be found straightforwardly in the same way. We then

find the transformation to a “shadowless” gauge that generalizes the no-string gauge.

3.1. CCK-Ori reconstruction

We first describe the construction of Φ, and reconstruction of ĥab, for a spatially compact
source. Our description draws heavily from Ref. [15].

Assume we have solved the Teukolsky equation (4) for ψ0 with retarded boundary
conditions. Outside the source, ψ0 is a vacuum solution, which we label ψ+

0 for r > rmax

and ψ−0 for r < rmin. We can obtain the Hertz potential from ψ0 through four integrations
of Þ4 Φ = −2ψ0 [Eq. (6)]. If we integrate from the past horizon, then we obtain the
solution Φ−. As shown by Ori (see also Theorem 5 of GHZ), Φ− satisfies the vacuum
equation O†Φ− = 0 along each integral curve of la except those curves that pass through
the source. On those curves, Φ− is a nonvacuum solution both inside the source and in
its “shadow”: like the string in the particle case, this is the region filled by integral curves
of la that start from the source and extend to future null infinity. So, in particular, Φ−
is a vacuum solution in the entire region r < rmin. Analogously, if we instead integrate
Eq. (6) from future null infinity, we obtain a field Φ+ that is vacuum in the region
r > rmax.

In the region r > rmax, the two particular solutions Φ+ and Φ− can only differ by
a solution to the homogeneous equation Þ4Φ = 0. Using Eq. (38), we can write that
solution as

ΦS = d◦0 + d◦1
ρ

+ d◦2
ρ2 + d◦3

ρ3 (39)

for some Held scalars d◦i $ {i−4, i}, which are annihilated by Þ; this generalizes Eq. (18).
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Similarly generalizing Eq. (17), we therefore have

Φ = ΦN + ΦMΘM + ΦSΘ+
M, (40)

where it is understood that Φ ≡ Φ−. Θ+
M ≡ Θ(r − rmax) and Θ−M ≡ Θ(rmin − r) have

support in the vacuum regions r > rmax and r < rmin, and ΘM = (1 − Θ−M − Θ+
M) has

support inside the “matter region” rmin < r < rmax. The first term in Eq. (40) is

ΦN = Φ+Θ+
M + Φ−Θ−M, (41)

the generalization of the no-string Hertz potential. The second term in Eq. (40), ΦM, is
the potential inside the matter region, which vanished in the point-particle limit. We
will refer to ΦN as the shadowless Hertz potential, which is vacuum everywhere in its
domain {r < rmin} ∪ {r > rmax}; to ΦS as the shadow potential, which is nonvacuum in
the source’s shadow; and to ΦM as the matter potential.

From Φ, we can obtain the reconstructed field ĥab = 2 Re(S†abΦ) in the form

ĥab = ĥNab + ĥMabΘM + ĥSabΘ+
M, (42)

where
ĥNab = 2 Re(S†abΦ+)Θ+

M + 2 Re(S†abΦ−)Θ−M, (43)

ĥMab = 2 Re(S†abΦM), and ĥSab = 2 Re(S†abΦS). The shadow field ĥSab can be explicitly
evaluated to obtain

ĥSnn = 2 Re
{
− 2ρρ̄2τ ◦

(
ð̃d◦0 − τ ◦d◦1

)
− ρ̄2

(
ð̃2
d◦0 − 2τ ◦2d◦2

)
− ρ̄2

ρ

(
ð̃2
d◦1 − 2τ ◦ð̃d◦2

)
− ρ̄2

ρ2

(
ð̃2
d◦2 − 4τ ◦ð̃d◦3

)
− ρ̄2

ρ3

(
ð̃2
d◦3
)}

, (44a)

ĥSnm = −ρρ̄
(
2ð̃′d̄◦0 − 2τ̄ ◦d̄◦1 + Ω◦2ð̃′d̄◦2 + Ω◦3ð̃′d̄◦3

)
− ρ2ρ̄

(
Ω◦ð̃′d̄◦0 + Ω◦2ð̃′d̄◦1 + Ω◦3ð̃′d̄◦2 + Ω◦4ð̃′d̄◦3

)
− ρ̄

(
ð̃′d̄◦1 + Ω◦ð̃′d̄◦2 − 2τ̄ ◦d̄◦2 + Ω◦2ð̃′d̄◦3

)
+ 1
ρ̄

(
ð̃′d̄◦3

)
, (44b)

ĥSmm = 2d̄◦2 + 2ρ̄d̄◦1. (44c)

This expression determines the shadow field up to the four Held scalars d◦i . It appears
here for the first time.

The scalars d◦i can be determined from junction conditions at r = rmax. These
conditions read

ÞnΦS + ÞnΦ+ = ÞnΦM + [ÞnΦ] at r = rmax (45)

for n = 0, . . . , 3. Here [K] ≡ (limr→r+
max

K) − (limr→r−
max

K) denotes the jump in
a quantity K across the surface. The jumps can readily be expressed in terms of
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ψ0. Given our assumptions on ψ0, in a neighbourhood of r = rmax it has the form
ψ0 = A◦δ′(r− rmax) +B◦δ(r− rmax) plus a piecewise smooth function. Þ4Φ = −2ψ0 then
implies [Φ] = [ÞΦ] = 0, [Þ2Φ] = −2Ā◦, and [Þ3Φ] = −2B̄◦. The four conditions (45)
then reduce to equations for the four scalars d◦i upon substituting Eq. (39) for ΦS. Note
that because we have assumed ψ0 contains at most a δ′ at the boundaries, Þ2Φ contains
at most a jump discontinuity there, implying that no delta functions can arise in Eq. (42).

3.1.1. Mode construction The pieces of Φ can be found more directly if we adopt a
standard decomposition into spheroidal harmonics sS`mω, with4

ψ0 =
∫
dω

∑
`m

2R`mω(r)2S`mω(θ)eimϕ∗−iωu, (46)

and
Φ =

∫
dω

∑
`m

−2R`mω(r)−2S`mω(θ)eimϕ∗−iωu. (47)

In terms of the radial modes, the inversion relation Þ4 Φ = −2ψ0 reduces to

(−1)m ∂4

∂r4 −2R̄`,−m,−ω = −2 2R`mω. (48)

Here, to express the modes of Φ̄ in terms of the modes of Φ, we have taken the complex
conjugate of Eq. (47) and used the identity sS̄`mω = (−1)m+s

−sS`,−m,−ω. The inversion
relation (48) is to be solved subject to the junction conditions at r = rmin and r = rmax,

∂nr −2R
M
`mω = ∂nr −2R

−
`mω + [∂nr −2R`mω] at r = rmin, (49a)

∂nr −2R
S
`mω = ∂nr −2R

M
`mω − ∂nr −2R

+
`mω + [∂nr −2R`mω] at r = rmax (49b)

for n = 0, . . . , 3. As in the discussion below (45), the jumps [∂nr −2R`mω] can be expressed
in terms of the coefficients of any radial delta functions δ(k)(r − rmin/max) in 2R`mω.

First consider ΦN. If we impose retarded boundary conditions on ψ0, then in the
vacuum regions r > rmax and r < rmin, the radial function can be written as multiples of
the standard radial basis functions5 2R

out/down
`mω (r),

2R
+
`mω(r) = A+

`mω 2R
out
`mω(r) r > rmax, (50a)

2R
−
`mω(r) = A−`mω 2R

down
`mω (r) r < rmin, (50b)

where A±`mω are constants, and where the basis solutions behave as

sR
out
`mω ∼ r−1−2s for r →∞, (51a)

sR
down
`mω ∼ ∆−se−ikr∗−iωr∗+imϕ0(r) for r → r+ (51b)

with k ≡ ω −ma/(2Mr+). In the vacuum regions, the radial mode of Φ+ must likewise
be a constant multiple of −2R

out
`mω, and that of Φ− must be a constant multiple of −2R

down
`mω ;

4 We note that Ori instead decomposed into a more typical Boyer-Lindquist Fourier basis eimϕ−iωt,
meaning our radial functions are related to his by sR`mω = sR

Ori
`mωe

imϕ0−iωr∗ , with r∗ and ϕ0(r)
defined in Eq. (36).

5 For consistency we adopt Ori’s unusual nomenclature for the radial functions. What is here called
“down” is normally called “in” and “out” is normally called “up”
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as Ori showed, this ensures that Φ± satisfy Þ4Φ± = −2ψ±0 , and they are necessarily
the unique solutions because any homogeneous solution takes the form (39), which
violates O†Φ = 0 and therefore cannot be in Φ± in the vacuum regions. The constants
of proportionality between −2R

±
`mω and −2R

out/down
`mω can be easily found by evaluating

Þ4Φ− = −2ψ−0 at the horizon and Þ4Φ+ = −2ψ+
0 at large r [in the mode form (48)],

taking advantage of the simple forms of the basis solutions there. The result, expressed
with our conventions, is [15]

−2R
+
`mω(r) = −2(−1)mC+

`,−m,−ω A
+
`,−m,−ω −2R

out
`,−m,−ω(r) r > rmax, (52a)

−2R
−
`mω(r) = −2(−1)mC−`,−m,−ω A−`,−m,−ω −2R

down
`,−m,−ω(r) r < rmin, (52b)

where

C+
`mω = 16ω2

p
and C−`mω = 1

(ω + 2iq)(ω + iq)ω(ω − iq) . (53)

Here q = r+−r−, p is given by Eq. (21) in Ref. [15], and we have assumed that 2R
out/down
`mω

and −2R
out/down
`mω have the same normalization [i.e., the same constant coefficient in front

of the leading-order asymptotic forms in Eq. (51)]. After obtaining the modes of ψ0, one
can therefore immediately obtain the modes of the shadowless potential ΦN. This is the
procedure used to obtain the no-string potential in Refs. [22, 25, 27] (though beginning
from modes of ψ4 rather than ψ0).

Next consider ΦM in the matter region rmin < r < rmax. Its radial modes −2R
M
`mω are

given by the solution to the inversion relation (48) with the boundary conditions (49a) at
r = rmin. Since −2R

−
`mω satisfies the vacuum Teukolsky equation, we can use the vacuum

equation to express ∂2
r −2R

−
`mω and ∂3

r −2R
−
`mω in terms of −2R

−
`mω and ∂r −2R

−
`mω. The

boundary conditions therefore only involve −2R
−
`mω and its first derivative.

Finally consider ΦS in the region r > rmax. It is convenient to write Eq. (39) as
Φ = ∑3

i=0B
◦
i (u, θ, ϕ∗)ri, such that

−2R
S
`mω =

3∑
i=0

B`mω
i ri, (54)

where B`mω
i are the (spin-weight −2) coefficients in the spheroidal-harmonic expansion

of B◦i . Equation (49b) immediately becomes four linear, algebraic equations for the four
coefficients B`mω

i . The coefficients d◦i in Eq. (39) can then be calculated from B◦i using
r = −(ρ+ ρ̄)/(2ρρ̄) = −1

2(Ω◦ + 2/ρ), which determines

d◦0 = B◦0 −
1
8Ω◦(4B◦1 − 2B◦2Ω◦ +B◦3Ω◦ 2), (55a)

d◦1 = −B◦1 +B◦2Ω◦ − 3
4B
◦
3Ω◦ 2, (55b)

d◦2 = B◦2 −
3
2B
◦
3Ω◦, (55c)

d◦3 = −B◦3 . (55d)



New metric reconstruction scheme for gravitational self-force calculations 19

This completes the construction of Φ. In what follows, we will use ΦS in the form (39)
with the understanding that d◦i can be obtained from Eq. (55).

In Ref. [15], Ori provided an alternative method of constructing Φ directly from the
source for ψ0, without requiring ψ0 itself. Here, to emphasize the connection with the
no-string reconstruction method that has been employed in practice, we have instead
focused on starting from ψ0 to construct the “shadowless” field in the same manner
as one constructs the no-string field, and on elucidating what gets added to that field.
We have not attempted the alternative path of dividing Ori’s solution into the three
constituents in Eq. (40).

3.2. Corrector tensor

We now turn to the corrector tensor. The nonzero components of xab satisfy a hierarchy
of equations that may be compactly written in GHP form. They read [35]6

ρ2Þ
(
ρ̄

ρ3 Þ
[
ρ

ρ̄
xmm̄

])
= Tll (56)

for xmm̄,

ρ

2(ρ+ ρ̄)Þ
(

(ρ+ ρ̄)2Þ
xnm

ρ(ρ+ ρ̄)

)
= Tlm −

1
2{(Þ + ρ− ρ̄)(ð + τ̄ ′ − τ) + 2τ̄ ′(Þ− 2ρ)

− (ð− τ − τ̄ ′)ρ̄+ 2ρτ}xmm̄ (57)

for xnm, and

1
2(ρ+ ρ̄)2Þ

(
1

ρ+ ρ̄
xnn

)
= Tln − Re{ð′ð + (τ ′ − τ̄)ð′ + [ð(τ̄ + τ ′)]− 2τ ′τ − 2Ψ2

− 2ρ̄ρ′ + 2(ρ′Þ + ρÞ′)− Þ′Þ}xmm̄

− Re{[(Þ− 2ρ)(ð′ − τ̄) + (τ ′ + τ̄)(Þ + ρ̄)

− 2(ð′ − τ ′)ρ− 2τ̄Þ]xnm} (58)

for xnn.
We solve these equations in sequence by putting all quantities in Held form and

using Eq. (38). Integrating outward from the past horizon, for xmm̄ we find

xmm̄ = ρ̄

ρ

∫ ρ

ρ−
min

dρ2(1 + ρ2Ω◦)
∫ ρ2

ρ−
min

dρ1ρ
−4
1 Tll. (59)

To include the support of delta functions at rmin, the integrals run from ρ−min = ρ(rmin)−0+.
Also, the complex contour corresponding to increasing r along the real contour
6 Here we have made some simplifications to the equation of GHZ and corrected a minor typo.
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rmin < r < rmax at fixed angles is understood here and below. For xnm we get

xnm = 2ρ(ρ̄+ ρ)
∫ ρ

ρ−
min

dρ2

ρ4
2

(
1 + ρ2Ω◦
2 + ρ2Ω◦

)2 ∫ ρ2

ρ−
min

dρ1

ρ2
1

2 + ρ1Ω◦
1 + ρ1Ω◦ (Tlm +Nxmm̄), (60)

where N is the differential operator on the right-hand side of (57). Finally for xnn we
get

xnn = 2(ρ+ ρ̄)
∫ ρ

ρ−
min

dρ1

ρ4
1

(
1 + ρ1Ω◦
2 + ρ1Ω◦

)2

[Tln + Re(Uxmm̄) + Re(Vxnm)] , (61)

where U and V are the differential operators on the right-hand side of Eq. (58).
Following the pattern of Eq. (40), we write this solution as7

xab = xMabΘM + xSabΘ+
M, (62)

generalizing Eq. (25). The corrector tensor xMab inside the source is given by Eqs. (59)–(61)
with rmax > r > rmin. In the source-free region r > rmax, the integrals in Eqs. (59)–(61)
can be evaluated explicitly to find

xSmm̄ = a◦
(
ρ

ρ̄
+ ρ̄

ρ

)
+ b◦ (ρ+ ρ̄) , (63a)

xSnm = ρ̄Ω◦ð̃a◦ + (ρ+ ρ̄)2

ρ
τ ◦a◦ + ρ̄ð̃b◦ + (ρ+ ρ̄)2 τ ◦b◦ + 2ρ− ρ̄

ρ2 c◦ + ρ (ρ+ ρ̄) e◦, (63b)

xSnn = 2 Re
{

1
2
ρ+ ρ̄

ρ2 Þ̃′a◦ + (1 + ρρ̄Ω◦2)ð̃′ð̃a◦ + 2
(
ρ2 + 2ρρ̄

)
τ ◦τ̄ ◦a◦

+
(
ρ2

ρ̄
+ 3

2ρρ̄Ω◦
)

Ψ◦a◦ − 2ρ′◦a◦ + Þ̃′b◦ + 2ρρ̄τ̄ ◦ð̃b◦ + 2ρ2ρ̄τ ◦τ̄ ◦b◦ + ρ2Ψ◦b◦

+ ρ2ð̃′e◦ + 2ρ2ρ̄τ̄ ◦e◦ − ρ̄

ρ

(
4Ω◦ + 1

ρ

)
ð̃′c◦ + 4 ρ̄

ρ
τ̄ ◦c◦ + (ρ+ ρ̄) f ◦

}
. (63c)

The quantities a◦, b◦, c◦, e◦, f ◦ are integration “constants” with GHP weights listed in
Table 1. To show their general structure, we give the first two explicitly here:

a◦ = 1
2

∫ ρ+
max

ρ−
min

dρ2(1 + ρ2Ω◦)
∫ ρ2

ρ−
min

dρ1

ρ4
1
Tll −

ρmax

2 (1 + 1
2ρmaxΩ◦)

∫ ρ+
max

ρ−
min

dρ1

ρ4
1
Tll, (64a)

b◦ = 1
2

∫ ρ+
max

ρ−
min

dρ1

ρ4
1
Tll − a◦Ω◦, (64b)

where ρ+
max = ρ(rmax) + 0+. The remaining three are given in Eqs. (H.13), (H.14),

and (H.19) of Appendix H . These functions are annihilated by Þ; in Kerr-Newman
coordinates and the Kinnersley frame, they are functions of (u, θ, ϕ∗). We see from the
integral expressions that xSab is only nonzero in the shadow of the source [i.e., for values
of (u, θ, ϕ∗) where Tab is nonzero].
7 We assume for simplicity that the integrand in Eq. (61) does not contain a δ′(r − rmin/max). If it
does, then xnn will contain a delta function at r = rmin/max.
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Table 1. GHP weights {p, q} of the Held scalars a◦, . . . , g◦ȧ appearing in the GHZ
and shadowless solutions. The unlisted scalars ξ◦a have the weights ξ◦l $ {1, 1},
ξ◦n $ {−1,−1}, and ξ◦m $ {2, 0}.

a◦ b◦ c◦ d◦i e◦ f◦ g◦
Ṁ

g◦ȧ

{0, 0} {−1,−1} {1,−1} {i− 4, i} {−2,−4} {−3,−3} {−3,−3} {−2,−4}

3.3. Total GHZ solution and passage to the shadowless gauge

Combining the results of the previous two sections, we obtain the total solution

hab = ĥNab + hMabΘM + hSabΘ+
M, (65)

which we divide into the “no-shadow” field ĥNab outside the source, the “shadow field”
hSab = ĥSab + xSab, and the field inside the source, hMab = ĥMab + xMab. ĥSab is given in Eq. (44),
xSab in (63), ĥMab by 2 Re(S†abΦM), and xMab in Eqs. (59)–(61) (with rmax > r > rmin). Unlike
in the flat-spacetime result (27), there is no straightforward way to find cancellations
between the reconstructed field ĥSab and the corrector field xSab (or between ĥMab and xMab).

We transform this solution to a shadowless gauge following the familiar argument.
The shadow field must be pure gauge up to a perturbation toward another Kerr solution,
ġab, meaning

hSab = ġab + Lξgab. (66)

We solve this equation for ξa by putting all quantities in Held form. Doing so will enable
us to write each component of the equation in the form of a polynomial in ρ,∑

n

ρnX(n) ◦
ab = 0. (67)

Such an equation implies that each coefficient must vanish: X(n) ◦
ab = 0. (Proof: divide

by the highest power of ρ, then successively apply Þ using Þρ−1 = −1.)
To arrive at equations of the form (67), we must put ġab and Lξgab in Held form.

This will be facilitated by adopting the IRG condition

ġabl
b = 0 = ġabm

am̄b. (68)

3.3.1. Held form of ġab We can use the Held formalism to write a compact expression
for ġab in the IRG. We start by calculating it in the Kerr-Newman gauge as

ġKN
bc = Ṁ∂Mg

M,a
bc + ȧ∂ag

M,a
bc , (69)

where gM,a
bc is the Kerr metric written as a function ofM and a in outgoing Kerr-Newman

coordinates. Here Ṁ represents a perturbation to the mass at fixed spin parameter a,
and ȧ represents a perturbation to the spin parameter at fixed mass M . Since the black
hole angular momentum is J = Ma, ġKN

bc contains an angular momentum perturbation
J̇ = aṀ +Mȧ.
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We then transform to the IRG, defining

ġab = ġKN
ab + Lζgab, (70)

with a gauge vector ζa chosen such that ġablb = 0 = ġabm
am̄b. With Lζgab written as in

Eqs. (A.20)–(A.22), a lengthy calculation reveals that ζa must be chosen as

ζb = − ȧ

ρ◦′a
Re

{
τ ◦τ̄ ◦ρlb − τ̄ ◦mb

}
. (71)

The components of ġab are then given by

ġnn = (ρ+ ρ̄) g◦Ṁ + 2ρρ̄ (ρ+ ρ̄) Re
{1

2Ω◦ð̃′g◦ȧ + τ̄ ◦g◦ȧ

}
, (72a)

ġnm = ρ (ρ+ ρ̄) g◦ȧ, (72b)

ġmm = ġnl = ġml = ġll = ġm̄m = 0, (72c)

where

g◦Ṁ = Ψ◦Ṁ
M

$ {−3,−3} , (73)

g◦ȧ = τ ◦

2ρ◦′Ψ
◦ ȧ

a
$ {−2,−4} . (74)

In the Kinnersley tetrad, the Held scalars reduce to g◦
Ṁ

= Ṁ and g◦ȧ = i√
2Mȧ sin θ.

The perturbations Ṁ and ȧ can be evaluated using Abbott-Deser integrals [42],
which define gauge-invariant conserved charges for linear perturbations. We consider
a spherical shell Σt around the black hole, defined by {t = const., r1 < r < r2}, where
r2 > rmax > rmin > r1; here t can be any time function. Following the conventions in
Ref. [43], given a Killing field Xa of the background spacetime, we define the charge

QX(Σt) =
∫

Σt

T abXbdΣa, (75)

where dΣa is the future-directed surface element on Σt. Stokes’ theorem, together with
∇a(T abXb) = 0, shows that QX is conserved: QX(Σt2) = QX(Σt1) for any t1 and t2.

To relate QX to our Ṁ and ȧ, we express QX as the difference between two 2-surface
integrals. We define the 2-form

Fab(h) = Xc∇[aγb]c + γc[a∇b]X
c −X[a∇cγb]c, (76)

where γab ≡ hab −
1
2gabg

cdhcd. The Einstein equation implies T abXb = ∇bF
ab, and so

Stokes’ theorem implies

QX = 1
2

∫
∂Σ2

F ab(h)dΣab −
1
2

∫
∂Σ1

F ab(h)dΣab, (77)
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where ∂Σ1 and ∂Σ2 are the inner and outer spherical boundaries at r = r1 and r = r2.
These integrals are to be evaluated with the perturbation ĥNab at ∂Σ1 and with ĥNab + hSab
at ∂Σ2. A lemma due to van de Meent [19] establishes that the integrals receive no
contribution from ĥNab, which implies

QX = 1
2

∫
∂Σ2

F ab(hS)dΣab = 1
2

∫
∂Σ2

F ab(ġ)dΣab. (78)

In the last equality we have appealed to the fact that the integral vanishes for gauge
perturbations [43]. Finally, evaluation of the last integral with Xa = ta and Xa = ϕa

yields [43]
Qt = −Ṁ and Qϕ = J̇ . (79)

Therefore Ṁ and J̇ can be evaluated from Eq. (75). ȧ is then given in terms of these by
ȧ = (J̇ − aṀ)/M .

3.3.2. Held form of Lξgab Equations (A.20)–(A.22) express Lξgab in Held form, but
they leave ξa itself as an arbitrary function of ρ. We now use the gauge condition to
determine the dependence on ρ.

Given hSablb = 0 = ġabl
b, Eq. (66) implies

lbLξgab = 0. (80)

This equation has been considered in the past by GHZ and Ref. [44], for example. It
can be treated as yet another sequence of ODEs along the integral curves of la, with the
left-hand sides given in Eq. (A.20). Using Eq. (38) and integrating with respect to ρ, we
find the general solution

ξl = ξ◦l , (81a)

ξn = ξ◦n + 1
2

(
1
ρ

+ 1
ρ̄

)
Þ̃′ξ◦l + ρρ̄τ ◦τ̄ ◦ξ◦l + 1

2
(
Ψ◦ρ+ Ψ̄◦ρ̄

)
ξ◦l + ρτ̄ ◦Ω◦ξ◦m

− ρ̄τ ◦Ω◦ξ◦m̄ − ρτ̄ ◦ð̃ξ◦l − ρ̄τ ◦ð̃
′
ξ◦l , (81b)

ξm = 1
ρ̄
ξ◦m + ρ̄τ ◦ξ◦l − ð̃ξ◦l . (81c)

This determines ξa up to the three Held scalars ξ◦l $ {1, 1}, ξ◦n $ {−1,−1}, and
ξ◦m $ {2, 0}.

We now substitute Eq. (81) into the remaining components of Lξgab, given in



New metric reconstruction scheme for gravitational self-force calculations 24

Eqs. (A.21)–(A.22). The results are

(Lξg)mm̄ = 1
2

(
1
ρ

+ 1
ρ̄

)2

ρρ̄Þ̃′ξ◦l +
(
ρ′
◦
ρ̄+ ρ̄′◦ρ

)
ξ◦l − ρ̄ð̃ð̃′ξ◦l − ρð̃

′ð̃ξ◦l

+ (ρ+ ρ̄) ξ◦n + ρ

ρ̄
ð̃′ξ◦m − (ρ+ ρ̄) τ̄ ◦ξ◦m + ρ̄

ρ
ð̃ξ◦m̄ − (ρ+ ρ̄) τ ◦ξ◦m̄, (82)

(Lξg)mm = 2ð̃ξ◦m + 4ρ̄τ ◦ξ◦m − 2ρ̄ð̃ð̃ξ◦l , (83)

(Lξg)nm = 1
2 ρ̄ (ρ+ ρ̄) τ ◦ (ρ′◦ + ρ̄′◦) ξ◦l + 3ρ̄τ ◦Þ̃′ξ◦l + ρρ̄2Ω◦2τ ◦Þ̃′ξ◦l − ρ̄ρ′◦ð̃ξ◦l

+ ρ (ρ+ ρ̄) Ψ◦ð̃ξ◦l − 2ρρ̄τ̄ ◦ð̃2
ξ◦l −

1
2 ρ̄Ω◦ð̃Þ̃′ξ◦l −

1
2 ρ̄ (ρ+ ρ̄) τ ◦

(
ð̃ð̃′ + ð̃′ð̃

)
ξ◦l

+ ρ̄ð̃ξ◦n + ρ̄ (ρ+ ρ̄) τ ◦ξ◦n + 2ρρ̄τ ◦τ̄ ◦ξ◦m + ρρ̄2τ ◦τ̄ ◦Ω◦ξ◦m + 1
ρ̄
Þ̃′ξ◦m − ρ̄Ψ◦ξ◦m

+ 1
2 ρ̄
(
Ψ◦ + Ψ̄◦

)
ξ◦m + 2ρρ̄τ̄ ◦Ω◦ð̃ξ◦m − ρ (ρ+ ρ̄) Ω◦Ψ◦ξ◦m − ρ̄2Ω◦τ ◦ð̃ξ◦m̄

+ 1
2 ρ̄ (ρ′◦ + ρ̄′◦) Ω◦ξ◦m + ρ̄τ̄ ◦ð̃ξ◦m + ρτ ◦ð̃′ξ◦m − ρ̄ (ρ+ ρ̄) τ ◦2ξ◦m̄, (84)

and

(Lξg)nn = 2 Re
{

1
ρ
Þ̃′2ξ◦l − ρρ̄Ω◦τ̄ ◦ð̃Þ̃′ξ◦l − 2ρ2ρ̄τ̄ ◦2ð̃2

ξ◦l − ρ2ρ̄τ ◦τ̄ ◦
(
ð̃′ð̃ + ð̃ð̃′

)
ξ◦l

+ 3
2
ρ

ρ̄
(ρ+ ρ̄) Ψ◦Þ̃′ξ◦l − ρ2Ω◦Ψ◦Þ̃′ξ◦l − ρ′◦Þ̃

′
ξ◦l + 2ρ (ρ+ ρ̄) τ ◦τ̄ ◦Þ̃′ξ◦l

+ ρ2ρ̄Ω◦ρ′◦τ̄ ◦ð̃ξ◦l − ρ (ρ+ ρ̄) ρ′◦τ̄ ◦ð̃ξ◦l + 2ρ2ρ̄τ̄ ◦Ψ◦ð̃ξ◦l + ρρ̄ (ρ+ ρ̄) ρ̄′◦τ ◦τ̄ ◦ξ◦l

− 2ρ2ρ̄2Ω◦ρ′◦τ ◦τ̄ ◦ξ◦l + ρ2ρ′◦Ψ◦ξ◦l + Þ̃′ξ◦n + 2ρρ̄τ̄ ◦ð̃ξ◦n + 2ρρ̄2τ ◦τ̄ ◦ξ◦n

+ ρ2Ψ◦ξ◦n + 2ρΩ◦τ̄ ◦Þ̃′ξ◦m + 2ρ2ρ̄Ω◦τ ◦τ̄ ◦ð̃′ξ◦m + ρ (ρ+ ρ̄) Ω◦ρ′◦τ̄ ◦ξ◦m

− ρ2ρ̄Ω◦2ρ̄′◦τ̄ ◦ξ◦m − ρρ̄Ω◦
(
ρΨ◦ − ρ̄Ψ̄◦

)
τ̄ ◦ξ◦m + 2ρ2ρ̄2Ω◦τ ◦τ̄ ◦2ξ◦m

}
, (85)

where ξ◦m̄ ≡ ξ̄◦m.

3.3.3. Independent equations in Eq. (66) We now gather the ingredients in Eq. (66):
Eqs. (44) and (63) for hSab, Eq. (72) for ġab, and Eqs. (82)–(85) for Lξgab. Since l
components of Eq. (66) trivially vanish, the nontrivial components are mm̄, mm, mn,
and nn. We put these components in the form (67) by (i) dividing the entire equation
by a sufficiently high power of ρ̄ to eliminate all positive powers of ρ̄, and then (ii) using
Eq. (A.15) to replace 1

ρ̄
with 1

ρ
+ Ω◦.

By examining coefficients of powers of ρ, we identify seven independent equations:
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• From the mm̄ component, which does not involve ĥSab, we find

a◦ = Þ̃′ξ◦l + 1
2 ð̃ξ◦m̄ + 1

2 ð̃′ξ◦m, (86)

b◦ = −1
2
(
ð̃ð̃′ + ð̃′ð̃− ρ′◦ − ρ̄′◦

)
ξ◦l + ξ◦n + 1

2Ω◦
(
ð̃′ξ◦m − ð̃ξ◦m̄

)
− τ̄ ◦ξ◦m − τ ◦ξ◦m̄. (87)

• From the mm component, which does not involve xab, we find

d̄◦2 = ð̃ξ◦m, (88)

d̄◦1 = −ð̃ð̃ξ◦l + 2τ ◦ξ◦m. (89)

• From the nm component we find

ð̃′d̄◦3 + c◦ = Þ̃′ξ◦m, (90)

E◦ = Ψ◦ð̃ξ◦l − Ω◦Ψ◦ξ◦m + g◦ȧ, (91)

where
E◦ ≡ −ð̃′d̄◦0 − Ω◦ð̃′d̄◦1 − Ω◦2ð̃′d̄◦2 − Ω◦3ð̃′d̄◦3 + e◦. (92)

• From the nn component we find

F ◦ = 3
2
(
Ψ◦ + Ψ̄◦

)
Þ̃′ξ◦l + Ω◦τ̄ ◦Þ̃′ξ◦m − Ω◦τ ◦Þ̃′ξ◦m̄ + g◦Ṁ , (93)

where

F ◦ ≡ 2 Re
{
− 1

2 ð̃′2d̄◦1 − Ω◦ð̃′2d̄◦2 + τ̄ ◦ð̃′d̄◦2 −
3
2Ω◦2ð̃′2d̄◦3 + 4Ω◦τ̄ ◦ð̃′d̄◦3 + 1

4Ω◦2Þ̃′a◦

+ 1
2Ψ◦a◦ + 3

2Ω◦2ð̃′c◦ − 2Ω◦τ̄ ◦c◦ + f ◦
}
. (94)

All other equations that follow from Eq. (66) turn out to be expressible as
combinations of these seven. We provide the complete list of equations in Appendix
F. The seven independent equations are sufficient to determine ξ◦l , ξ◦n, and ξ◦m (up to
the addition of Killing vectors) in terms of a◦, b◦, c◦, d◦i , e◦, f ◦, g◦Ṁ , and g◦ȧ. Since there
are more equations than there are unknowns, the equations will also imply nontrivial
relationships between a◦, . . . , g◦ȧ.

In the next two sections, we outline how to solve Eqs. (86)–(91) and (93) for ξ◦l , ξ◦n,
and ξ◦m. Our method must be sufficiently general to cover the case of a particle on a
bound geodesic. In that case, the particle’s orbit has three (generically incommensurate)
frequencies of motion [4], and Tab has a discrete frequency spectrum containing all
harmonics of the orbital frequencies. In a well-behaved gauge, the metric perturbation
has this same set of discrete frequencies. The presence of zero-frequency modes in this
spectrum will imply that, just as we found in flat spacetime, a piece of ξa necessarily
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grows with u. To preserve the metric’s discrete frequencies, that growing piece of ξa
must be extended throughout the spacetime.

We split ξa = Y a + Za, where the temporal Fourier transform of Y a has support at
ω = 0, and where Za has a vanishing time average,

〈Za〉 ≡ lim
T→∞

1
2T

∫ T

−T
Zadu = 0. (95)

Here and below, it is understood that du integrals are performed in the above choice of
frame and coordinates – if we wanted to write invariant expressions we would need to
use the (GHP-) Lie-derivative [45]. It follows immediately that laLY gab = 0 = laLZgab,
i.e. that the corresponding gauge perturbations are in IRG. Consequently, the gauge
vector fields Y a, Za may be written separately as in (81) in terms of Y ◦l , Y ◦n , Y ◦m and
Z◦l , Z

◦
n, Z

◦
m, respectively. We further write Ya = Ξa + 〈ξa〉 as a sum of a growing-in-u

piece Ξa and a constant-in-u piece 〈ξa〉. These pieces will not separately produce pure
gauge perturbations in IRG and so separately cannot be written as in (81), but we can
nevertheless write

ξ◦l,n,m(u, θ, ϕ∗) = Ξ◦l,n,m(u, θ, ϕ∗) + 〈ξ◦l,n,m〉(θ, ϕ∗) + Z◦l,n,m(u, θ, ϕ∗). (96)

Here Ξ◦l,n,m + 〈ξ◦l,n,m〉 = Y ◦l,n,m corresponds to the decomposition into growing-in-u and
constant-in-u pieces at the level of Held scalars. The determination of Ya = Ξa + 〈ξa〉
(and the corresponding Held-scalars) will be referred to as the “stationary sector”, and
that of Za as the “oscillatory sector”.

3.3.4. Stationary sector Our first task will be to determine the growing piece Ξa in the
gauge vector Y a. Let Ξa be a gauge vector which is polynomial-in-u in retarded Kerr-
Newman coordinates. The gauge perturbation LΞgab can only preserve the frequencies
of the metric perturbation if LΞgab is independent of u, meaning LtLΞgab = 0, where
t = ∂

∂u
is the timelike Killing vector. Since Ltgab = 0, we have

LtLΞgab = LtLΞgab − LΞLtgab = L[t,Ξ]gab, (97)

where [t,Ξ]a is the commutator. The requirement LtLΞgab = 0 thereby implies
L[t,Ξ]gab = 0, meaning [t,Ξ]a can only be a linear combination of Killing vectors. [t,Ξ]a
evaluates to ∂uΞa in advanced Kerr-Newman coordinates, and so we conclude

Ξa = u(αta + βϕa), (98)

where ϕ = ∂

∂ϕ∗
is the axial Killing vector and α, β are real constants. In particular,

unlike in the flat-space calculation, here there cannot be any terms quadratic in u. The
reason is that in flat spacetime, ∂uΞa could be a linear combination of all Killing vectors
of flat spacetime, including the generators of boosts, which are themselves linear in u.
Similarly, Eq. (98) must also be modified in Schwarzschild to account for the spacetime’s
additional Killing vectors. We detail the Schwarzschild case in Appendix F.1.
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Next, we note that lbLtgab = 0 = lbLϕgab trivially. Therefore ta and ϕa can be
written in the form (81). A short calculation shows that the Held coefficients in that
form are

t◦l = 2t◦n = 1, t◦m = 0, (99)

ϕ◦l = 2ϕ◦n = −a sin2 θ, ϕ◦m = i sin θ√
2
. (100)

From this and Eqs. (98), (81), (96), we read off

Ξ◦l = 2Ξ◦n = u(α− aβ sin2 θ), (101a)

Ξ◦m = uβi sin θ√
2

. (101b)

We can now determine the coefficients α, β, as well as 〈ξ◦l,n,m〉, by substituting the
vector (96), into Eqs. (86)–(91) and (93) and picking out the stationary piece of each
equation. The results are

〈a◦〉 = α− 3
2aβ sin2 θ + 1

2
(

1L0
†〈ξ̄◦m〉+ 1L0〈ξ◦m〉

)
, (102a)

〈b◦〉 =− 1
2
(

1L0
†
0L0 + 1L0 0L0

† + 1
)
〈ξ◦l 〉+ 〈ξ◦n〉

− ia cos θ
(

1L0〈ξ◦m〉 − 1L0
†〈ξ̄◦m〉

)
+ ia sin θ√

2
(
〈ξ̄◦m〉 − 〈ξ◦m〉

)
, (102b)

〈d̄◦2〉 = 1
2aβ sin2 θ + −1L0

†〈ξ◦m〉, (102c)

〈d̄◦1〉 = 2ia2β sin2 θ cos θ − −1L0
†

0L0
†〈ξ◦l 〉 − i

√
2a sin θ〈ξ◦m〉, (102d)

2L0〈d̄◦3〉+ 〈c◦〉 = iβ sin θ√
2

, (102e)

〈E◦〉 = − iMa sin θ√
2

(α− aβ sin2 θ − ȧ/a) +M 0L0
†〈ξ◦l 〉

+ 2iMa cos θ〈ξ◦m〉, (102f)

〈F ◦〉 = 3M(α− aβ sin2 θ) + Ṁ. (102g)

Here we have written Held’s operators in terms of the Chandrasekhar-type operators
sLω=0

†, sLω=0 defined in (A.17). The equations can be straightforwardly solved by
expanding them in spin-weighted harmonics sY`m(θ, ϕ∗) (see Appendix C), noting that
(i) Chandrasekhar’s operators act as spin raising and lowering operators, and (ii) the
presence of trigonometric functions introduces nearest-neighbour coupling between `

modes. The spin weight of each quantity is s = (p − q)/2, where {p, q} are the GHP
weights given in Table 1. For example, 〈a◦〉 = ∑∞

`=0
∑
m〈a◦`m〉0Y`m.
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We first obtain α and β from the ` = 0 mode of Eq. (102a) and the ` = 1,m = 0
mode of (102e), finding

α =
√

1
4π 〈a

◦
00〉+ aβ, β = −i

√
3

4π 〈c
◦
10〉. (103)

This remarkably simple result fully determines Ξa in Eq. (98) in terms of integrals over
Tab.

There are multiple ways of finding the stationary pieces of the transformation, 〈ξ◦a〉,
from Eqs. (102a)–(102f). For example, Eq. (102c) determines the ` > 1 modes of 〈ξ◦m〉;
Eqs. (102d) and (102f) then determine the ` > 0 modes of 〈ξ◦l 〉 and the ` = 1 mode of
〈ξ◦m〉, up to terms proportional to ϕ◦l and ϕ◦m in (100); and Eq. (102b) then determines
〈ξ◦n〉. The ` = 0 modes are only determined to be proportional to the Killing terms in
Eq. (99).

Since there are more equations than unknowns, the equations also encode consistency
conditions on the various Held scalars a◦, . . . , g◦ȧ. Each of the scalars is an integral of the
stress-energy tensor, so these conditions may be reducible to stress-energy conservation.

3.3.5. Oscillatory sector The equations in the oscillatory sector are substantially simpler
than those in the stationary sector. We seek solutions for the oscillatory piece of ξ◦a,
denoted Z◦a in Eq. (96). To find it, we transform the equations into the frequency domain,
writing all quantities in the form

X◦(u, θ, ϕ∗) =
∫ ∞
−∞

dωX◦ω(θ, ϕ∗)e−iωu. (104)

From Eqs. (90), (86), and (87), we then read off in sequence,

−iωZ◦m,ω = 2Lωd̄◦3,ω + c◦ω, (105a)

−iωZ◦l,ω = a◦ω −
1
2 1Lω†Z◦m̄,ω −

1
2 1LωZ◦m,ω, (105b)

Z◦n,ω = b◦ω + 1
2
(

1Lω† 0Lω + 1Lω 0Lω† + 1
)
Z◦l,ω + ia cos θ

(
1LωZ◦m,ω − 1Lω†Z◦m̄,ω

)
+ ia sin θ√

2
Z◦m,ω −

ia sin θ√
2

Z◦m̄,ω, (105c)

where the Chandrasekhar type operators sLω, sLω† are as in (A.17). The remaining four
equations [(88), (89), (91), and (93) with stationary terms set to zero] become consistency
conditions. Again, the equations can be straightforwardly solved by expanding them in
spin-weighted harmonics sY`m(θ, ϕ∗), noting that the aω sin θ terms in Chandrasekhar’s
operators introduce nearest-neighbour coupling.

3.4. Summary: metric perturbation in a shadowless gauge

We have now found the gauge vector ξa, which we may decompose as

ξa = ξSa + Ξa, (106)
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where ξSa = 〈ξa〉 + Za. By adding −Lξgab to the GHZ solution (65), we eliminate the
shadow in the region r > rmax and arrive at the generalization of the no-string solution
for a spatially compact source in Kerr:

hNab = ĥNab + ˙̃gab + h̃MabΘM, (107)

where
ĥNab = 2 Re(S†abΦ+)Θ+

M + 2 Re(S†abΦ−)Θ−M (108)
is the shadowless reconstructed field in the vacuum region,

˙̃gab = ġabΘ+ − LΞgabΘ− (109)

is “what is left” of the shadow field outside the source after the transformation to the
shadowless gauge, and

h̃Mab = 2 Re(S†abΦM) + xMab − LξSgab − LΞgab (110)

is the field inside the source region. The Heaviside functions Θ±M are equal to 1 in the
vacuum regions r < rmin and r > rmax, respectively, and ΘM is equal to 1 in the region
rmin < r < rmax. In Eqs. (109) and (110), we have extended Ξa throughout the spacetime
to avoid linear growth of the metric perturbation, and we have allowed the gauge vector
ξaS to extend inside the matter region rmin < r < rmax. To prevent a shadow from forming
in the region r < rmin, we attenuate this vector to zero somewhere inside the matter
region.

Although we obtained this solution via a transformation from the GHZ solution
that contained a shadow, we note that ultimately, the construction is equivalent to (i)
reconstructing the shadowless solution outside the source region, in the same manner one
reconstructs the no-string metric perturbation for a point particle, (ii) applying GHZ
reconstruction in the interior of the source, with junction conditions at r = rmin enforcing
the Einstein equation is satisfied there, (iii) adding the gauge perturbations LΞgab and
LξSgab in the source region to ensure the Einstein equation is satisfied at r = rmax.8

To calculate the solution (107) in practice, one carries out the following procedure
(see Fig. 1):
Step 1 Solve the Teukolsky equation Oψ0 = SabTab for ψ0. At the level of a mode

decomposition (46), this yields the modes 2R`mω.
Step 2 From ψ0, obtain the shadowless Hertz potential ΦN, Eq. (41), in the regions

r < rmin and r > rmax, and the Hertz potential ΦM in the matter region.
In the mode decomposition (47), ΦN is given by Eq. (52), and ΦM is given
by the solution to Eq. (48) subject to the four junction conditions (49a) at
r = rmin.

Step 3 From ΦN, calculate ĥNab as in Eq. (43) and from ΦM, calculate ĥMab =
2 Re(S†abΦM).

8 To understand how these perturbations can contribute to the Einstein equation, consider the difference
between a perturbation LΘ+

M
ξgab, which is a vacuum perturbation, and Θ+

MLξgab, which is not.
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Tab

Solve
Oψ0 = SabTab

xM
ab

[Eqs. (59)–(61)]
ġab

[Eq. (72)]

ΦN

[Eq. (52)]
ΦM

[Eq. (48)]
ξSa = 〈ξa〉+ Za

[Eqs. (102), (105)]
Ξa

[Eqs. (98), (103)]

ĥNab = 2 Re(S†abΦ+)Θ+
M

+2 Re(S†abΦ−)Θ−M
ĥMab = 2 Re(S†abΦM) Attenuate ξS

a → 0
in rmin < r < rmax

Shadowless hN
ab

[Eq. (107)]

b.c.

H.s.H.s.

H.s.

Figure 1. Summary of reconstruction procedure in shadowless gauge, starting from
stress-energy tensor Tab. Here “H.s.” refers to the Held scalars required as input to the
gauge vectors ξS

a and Ξa.

Step 4 Add the correction ġab in the vacuum region r > rmax and the corrector
tensor xab in the matter region rmin < r < rmax. These corrections carry
invariant content in each region. Here ġab is in the IRG form (72), where the
mass and spin perturbations Ṁ and ȧ are given by Eq. (79) with Eq. (75).
The corrector tensor xab is given by Eqs. (59)–(61).

Step 5 Complete the metric perturbation by adding the gauge perturbation −LξSgab
in the matter region rmin < r ≤ rmax, attenuating ξSa to zero somewhere in
that region, and the gauge perturbation −LΞgab in the entire region r < rmax.
The vector Ξa is given by Eq. (98) with Eq. (103). Modulo its attenuation,
the vector ξSa is 〈ξa〉+Za, where Za is in the form (81) with ξ◦a → Z◦a , and 〈ξa〉
can be obtained from Eq. (81) by substituting ξ◦a → Ξ◦a + 〈ξ◦a〉 on the right-
hand side and then setting u = 0 (such that 〈ξa〉 includes the contribution
from u derivatives of Ξ◦a). The Held scalars Ξ◦a, 〈ξ◦a〉, and Z◦a are obtained
from Eqs. (101), (102) [as described below Eq. (103)], and Eq. (105).

Step 5 requires as input the Fourier modes of the quantities a◦, b◦, c◦, and d◦3 for all
frequencies, as well as the zero-frequency modes of d◦0, d◦1, d◦2, and e◦. Equations (H.7),
(H.13), and (H.14) give a◦, b◦, c◦, and e◦. Equation (55) gives d◦i in terms of B◦i , where
B◦i is obtained from the four junction conditions (49b) at r = rmax. The quantity f ◦,
given in Eq. (H.19), is not needed, but it may be used together with Eq. (93) as a
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consistency check.
However, we note that Step 5 can largely be skipped if one is only calculating

first-order self-force quantities because the quantities of interest [4] are invariant under
the transformation generated by ξS

a . In that case, Step 5 only involves finding Ξa, which
only requires the modes 〈a◦00〉 and 〈c◦10〉. We comment on this further in later sections.

4. Teukolsky puncture scheme

In the preceding section, we formulated metric reconstruction in a shadowless gauge
for an extended source. We now outline how that method can be used to calculate the
point-mass metric perturbation in a more regular gauge than the standard no-string and
half-string radiation gauges.

4.1. Singular and regular fields

A core feature of self-force theory is its division of the physical metric into singular
and regular pieces [5, 46]. The division is chosen such that (i) the regular piece is a
solution to the vacuum Einstein equations, and (ii) the motion of the particle is geodesic
in the effective metric gab + εhrab + ε2jrab + . . .. At linear order, this split has a simple
form: hab = hsab + hrab, where the singular field hsab is a certain particular solution to the
linearized Einstein equation with a point particle source,

Eab(hs) = Tab, (111)

and hrab is a certain homogeneous solution,

Eab(hr) = 0. (112)

In terms of hrab, the self-acceleration (as measured relative to a geodesic of the background
spacetime) is given by

vb∇bv
a = −ε2(gac + vavc) (2∇bh

r
cd −∇ch

r
db) vbvd. (113)

Based on the fact that hrab is a vacuum solution, Ref. [34] proposed long ago that one
might be able to calculate it by defining ψs

0 = T abhsab and ψr
0 = ψ0−ψs

0 and then carrying
out the CCK procedure starting from ψr

0. It is not obvious how to implement this idea
because hrab is only quasilocally defined and satisfies noncausal boundary conditions [46].
However, using our results from the previous section, we can formulate a variant of it
using the notion of a puncture and residual field.

We start with a local expansion of hsab around the particle. For example, in Fermi
normal coordinates centered on the particle, hsab can be written as9

hsab = −2mδab
s

+O(s), (114)
9 This differs by an overall minus sign relative to formulas in the literature due to our mostly negative
signature.
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where δab is the Kronecker delta and s is the geodesic distance to the particle. Here
we have adopted the Lorenz gauge condition ∇a

(
hab −

1
2gabg

cdhcd

)
= 0, which is the

common choice for the singular field. Expansions of the form (114), and expansions in a
similar covariant form, are known analytically through order s4 [47, 48] in the Lorenz
gauge and through order s2 in the highly regular gauge [8]. For our purpose we can take
hPab to be in either of these gauges.

We next define the puncture field hPab to be the local expansion of hsab truncated at
some finite order n and then attenuated to zero outside some finite region P around
the particle. The remainder, or residual field hRab = hab − hPab, satisfies the perturbed
Einstein equation with an effective source TR

ab,

Eab(hR) = TR
ab ≡ Tab − Eab(hP). (115)

If hPab is an nth-order puncture (i.e., if it includes terms through order sn), then TR
ab is a

Cn−2 field at s = 0. Section 4.3 discusses the behaviour of TR
ab and its consequences in

more detail.
Unlike hrab, the residual field hRab is globally defined. Since it reduces to hab outside

the support of the puncture, it also satisfies retarded boundary conditions. This means
one can calculate it simply by finding the retarded solution to Eq. (115). Historically,
this has always been done by imposing the same gauge condition on hRab as on hPab and
then solving Eq. (115) directly [5, 41]. This has meant in practice that hRab has always
been calculated in the Lorenz gauge. However, in principle hRab can be in any gauge; it
does not need to be in the same gauge as hPab. So, in particular, we can solve Eq. (115)
using the reconstruction procedure of the previous section. The resulting field hRab will
contain gauge singularities away from the particle, but they will be weaker than the
standard string (or no-string) singularity because the source TR

ab is less singular than
Tab. Alternatively stated, by putting the most singular piece of the field, hPab, in a
gauge that localizes the singularity to the particle, we leave a milder singularity for the
reconstruction procedure to transport away from the particle.

We discuss the reconstruction procedure for hRab next, and in Sec. 4.3 we assess its
singularity structure.

4.2. Reconstruction of the residual field in the shadowless gauge

We assume the particle’s worldline is a bound geodesic that oscillates between a minimum
and maximum radius. The support of the puncture, P , can then be confined to a region
with rmin < r < rmax, and our reconstruction procedure in Sec. 3.4 can be applied directly
to obtain hRab.

To see how the procedure applies, first note that hRab has an associated Weyl scalar

ψR
0 ≡ T abhRab = ψ0 − ψP

0 , (116)

which satisfies
OψR

0 = T eff
0 ≡ SabTR

ab = SabTab −OψP
0 (117)
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Worldline xp(τ)

Construct hP
ab

in Lorenz or
highly regular gauge

T ab = µ
∫
vavbδ4(x, xp(τ))dτ

ψP
0 = T abhP

ab

Solve
Oψ0 = SabTab

ψR
0 = ψ0 − ψP

0 ,
TR
ab = Tab − Eab(hP)

Reconstruct hR
ab

in shadowless gauge
(Steps 2–5 in Sec. 3.4)

hab = hP
ab + hR

ab

Figure 2. Summary of puncture scheme for constructing hab given a worldline xp(τ).
hab = hP

ab+hR
ab is a sum of two terms, a puncture hP

ab in Lorenz or highly regular gauge,
and a residual piece hR

ab which is reconstructed in the shadowless gauge.

with retarded boundary conditions. Similarly, there is a Hertz potential ΦR satisfying
Þ4 ΦR = −2ψR

0 , from which one can reconstruct ĥRab = 2 Re(S†abΦR). Finally there is a
corrector field xRab given by Eqs. (59), (60), and (61) with TR

ab substituted for Tab. Adding
these pieces together yields the GHZ solution 2 Re(S†abΦR) + xRab for hRab.

hRab can be brought to the shadowless gauge by solving (66) as described in Sec. 3.3.3.
hRab is then given by Eq. (107) with a label R placed on almost all quantities. (The label
“M” no longer refers to a “matter region”, since the source TR

ab is only an effective one,
but it does refer to the “middle region” rmin < r < rmax.) The lone quantity that does
not require an R label is ġab: the values of Ṁ and ȧ remain (79) with Eq. (75), where Tab
does not carry an R. This is a consequence of the facts that Eab(hP + hR) = Tab and that
hRab = hab outside the region P. Given these facts, we can follow the same derivation
that led to Eq. (79).

In summary, we have the following procedure, also illustrated in Fig. 2:

Step 0 Compute the puncture field hP
ab in the Lorenz or highly regular gauge.
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Step 1 Compute the puncture scalar ψP
0 = T abhPab and the retarded solution

to Oψ0 = SabTab. From them, compute the residual Weyl scalar
ψR

0 = ψ0 − ψP
0 .

Steps 2–5 Starting from ψR
0 and TR

ab, follow Steps 2–5 of the metric reconstruction
procedure in Sec. 3.4 to obtain hRab in the shadowless gauge.

Step 6 Add the puncture field to obtain the total metric perturbation
hab = hR

ab + hP
ab.

An alternative Step 1 would be to calculate ψR
0 as the retarded solution to Eq. (117),

without ever calculating ψ0. However, this would generally be more involved and
numerically expensive than obtaining ψ0 with a point-particle source.

Before concluding this section, we emphasize one important point: in the vacuum
regions r < rmin and r > rmax, the calculation of the shadowless field ĥN

ab =
2 Re(S†abΦ−)Θ−M + 2 Re(S†abΦ+)Θ+

M is wholly identical to the calculation for a point
particle. In each of the two disjoint regions, Φ− (for r < rmin) or Φ+ (for r > rmax) is
determined directly from the point-particle ψ0 in that region. It follows that our total
shadowless solution ĥN

ab + ˙̃gab in these regions is identical to the no-string solution, up to
the choice of gauge for ġab in the region r > rmax and the value of the gauge vector Ξa in
the region r < rmin (which is also tied to the gauge of ġab).

4.3. Softened string and regularity requirements

To serve our purposes, the metric perturbation hab = hR
ab + hP

ab should satisfy two
regularity requirements: (i) the self-force (113) should be calculable with the simple
replacement hrab → hRab, and (ii) G(2)

ab (h, h) ∼ h∂∂h+ ∂h∂h should be well defined as a
distribution. In the remainder of this section, we assess whether our puncture method
meets these requirements.

The field hab that we obtain with our procedure has two types of singularities: a
singularity in hPab at the particle, with the form (114) (or a similar form in the highly
regular gauge); and a softened string singularity in hR

ab that extends away from the
particle. In the shadowless gauge, the softened string singularity is confined to the
middle region rmin < r < rmax. We can understand its form by analyzing the form of
TR
ab together with the equations (56), (57), and (58) for xRab and the inversion relation

Þ4ΦR = −2ψR
0 for ΦR.

Start by considering TR
ab. We can write it as TR

ab = Eab(hs−hP) = Eab(hs,n+1)+O(sn),
where n is the highest power of s included in hP

ab, and h
s,n+1
ab is the order-sn+1 term in

the local expansion of hsab. Concretely, in the Lorenz gauge [48]

hs,n+1
ab ∼ (∆x)3n+6

s2n+5
0

, (118)

where xa are any smooth coordinates, ∆xa denotes the coordinate distance from a
reference point xp on the worldline, and (∆x)k denotes a polynomial of homogeneous
order k, which we can write as Paba1···ak

(xp)∆xa1 · · ·∆xak for some Paba1···ak
. The quantity
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s0 is the leading term in a coordinate expansion of s, given by
√
−(gab + vavb)∆xa∆xb

with gab and va evaluated at xp. hs,n+1
ab is Cn at s = 0 and scales as ∼ sn+1, implying TR

ab is
Cn−2 there and scales as ∼ sn−1. Using the fact that a derivative acts as ∂s0 ∝ (∆x)1/s0,
we can write

TR
ab ∼

(∆x)3n+8

s2n+9
0

. (119)

We bring Eq. (119) into a more explicit but simple form by adopting a local
coordinate system (τ, x, y, z) that is comoving with the particle and orthonormal on
the worldline, where τ is proper time along the worldline, x = y = z = 0 there, and
gab = diag(1,−1,−1,−1) there. Choose the axes such that l ∝ (∂τ +∂z) at the worldline,
where the constant of proportionality is positive. z < 0 then corresponds to r < rp,
and z > 0 to r > rp. It will also be useful to define the cylindrical coordinates (z, %, φ)
such that x = % cosφ and y = % sinφ. z will represent distance along the string, % will
represent a distance from it, and φ will represent the angle around it. An example of
such local coordinates is constructed explicitly in Ref. [48]. In these coordinates the
denominator in Eq. (119) is an odd power of s0 =

√
z2 + %2. The numerator is a sum of

terms of the form Pn1n2n3(τ)zn1(% cosφ)n2(% sinφ)n3 with n1 + n2 + n3 = 3n+ 8, where
Pn1n2n3 is a smooth function of τ .

Finding xRab and S
†
abΦR involves integrating such functions along integral curves of

la. For simplicity, we can extend the local coordinates off the worldline and choose the
normalization of la in such a way that l = lτ∂τ + ∂z, making z the parameter along the
integral curves. Along one of those curves, we then have Pn1n2n3(τ) = Pn1n2n3(τ0) +O(s),
where τ0 is the value of τ at which z = 0 on the curve. We can discard the subleading
term, meaning that Pn1n2n3 can be moved outside the integral.

If we now integrate a function of the form (119) with respect to z, with regular
boundary conditions at some z < 0, then we propagate the singularity at s = 0 along
the entire curve % = 0 for z > 0. More precisely, a Ck−1 function of (x, y, z) scaling
as ∼ sk near s = 0 is transported as a Ck function of (x, y) scaling as ∼ %k+1 near
% = 0. Hence, the integration increases the singularity’s dimension by one but reduces
its strength by one as well. Once we have introduced this string singularity through
a first integration, we have simple rules for how further linear operations affect the
strength of the singularity. Additional z integrations do not alter the scaling with % or
differentiability at % = 0, and z derivatives likewise have no affect unless they act on an
only once-integrated function. τ derivatives and multiplication by a smooth function
have no effect, while an x or y derivative decreases the scaling and differentiability by one
order. All of these statements are straightforwardly verified using the explicit functions
of (z, %, φ) described in the previous paragraph.

Now consider xRab and S
†
abΦR. By virtue of Eq. (56) and the above rules, xRmm̄ ∼ %n

at the string. Similarly, Eqs. (57) and (58) imply that xRmn ∼ %n−1 and xRnn ∼ %n−2. To
examine ΦR, first note that

ψR
0 = T ab(hab − hPab) = T ab(hrab) + T ab(hs,n+1

ab ) +O(sn). (120)
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Since ψ0 is gauge invariant, we can use the Lorenz-gauge fields in these equalities.
T ab(hrab) is C∞, while T ab(hs,n+1

ab ) has the same singularity structure as Eab(hs,n+1). So
ψR

0 has the same singular form (119) as TR
ab, meaning it scales as ∼ sn−1 and is Cn−2

at the particle. The inversion relation Þ4ΦR = −2ψR
0 then propagates this singularity

along the string, implying ΦR ∼ %n at the string. Consequently, the metric perturbation
S†abΦR is ∼ %n−2 at the string, like xRab. In all cases, a function scaling as ∼ %k is a Ck−1

function of (x, y) at % = 0
We can therefore conclude that, at worst, hRab behaves as ∼ %n−2 and is Cn−3 at the

string. Given this estimate, the highest-order puncture available in the literature would
lead to a ∼ %2, C1 residual field on the string. However, this very likely overestimates
the strength of the singularity. Our flat-spacetime results indicate that the strongest
singularities cancel between xRab and S

†
abΦR. Section 2.2.3 and Appendix D indicate that

without a puncture, xab and S†abΦ each behave as ∼ %−4. Here we formally write ∼ %−2−k

for the kth derivative of the angular delta function because it can be written as k + 2
derivatives of a function ∼ ln %.10 If we note that the unpunctured case corresponds
to n = −2, making TR

ab = Tab, then we see that this ∼ %−4 behaviour agrees with the
prediction from the general scaling arguments. But the total GHZ solution hab in the
flat-spacetime case diverges as only ∼ %−2, and this is also known to be true in Kerr [48].
This suggests that hRab could behave as ∼ %n for an nth-order puncture, rather than as
∼ %n−2. A more detailed local analysis, following the approach in Sec. III of Ref. [17],
could confirm this regularity conjecture. We defer that analysis to a future paper.

Characterizing the regularity of hab also entails assessing the behaviour of hRab at
s = 0. This is a simpler task because regardless of the string, an integral always
increases the scaling with s and a derivative always decreases it. Starting from
TR
ab ∼ ψR

0 ∼ sn−1, referring to Eqs. (56)–(58), and counting integrals and derivatives, we
infer xRmm̄ ∼ xRmn ∼ S

†
abΦR ∼ sn+1, and xRnn ∼ sn. However, the flat-space calculation

again suggests that the solution, specifically xRnn, will be more regular than this.
Equation (25) with (B.9) show that every component of xab behaves as ∼ s−1, two
orders more regular than the source (formally treating the angular delta function as
∼ 1/s2 and the three-dimensional delta function as ∼ 1/s3). This agrees with the generic
predictions above for xmm̄ and xmn, but it is one order more regular than predicted for
xnn. The additional order of regularity, which arises from cancellations on the right-hand
side of Eq. (24), suggests xRnn ∼ sn+1. Therefore we conjecture that hRab is generally two
orders smoother at s = 0 than TR

ab. Or in other words, for a puncture of order n, hRab is
Cn at s = 0.

We can now estimate the order n that is required to satisfy the two regularity
criteria listed at the beginning of the section. For this we adopt the two conjectures that
hRab contains a ∼ %n (Cn−1) string singularity and a ∼ sn+1 (Cn) singularity at s = 0.
The same analysis can also be performed with the worst-case estimates ∼ %n−2 (Cn−3)
and ∼ sn (Cn−1).

To see what is required to use hRab to calculate the self-force (113), we note that
10 This counting could be rephrased in terms of the order of the distribution.
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if hRab is C1 at s = 0, then hRab + hPab is related to the Lorenz-gauge (or highly regular
gauge) solution by a differentiable gauge transformation. It then follows [17, 49] that
we may use hRab in place of hrab in Eq. (113). Therefore any n ≥ 1 meets our requirement
for computing the self-force.

Now we turn to G(2)
ab (h, h). Since it is bilinear in its arguments, we may divide it into

G
(2)
ab (hP, hP), G(2)

ab (hP, hR) (defining it such that it is symmetric in its arguments whenever
the arguments differ), and G(2)

ab (hR, hR). G(2)
ab (hP, hP) is smooth away from the particle.

At the particle it behaves as ∼ s−4 if hPab is in the Lorenz gauge or as ∼ s−2 if hPab is in a
highly regular gauge. It is well understood how to obtain the physical solution to the
second-order field equation (3) with these sources [8, 50]. The cross terms G(2)

ab (hP, hR)
behave as ∼ %n−2 at the string (arising from two derivatives on hRab) and as ∼ s−3 at the
particle (arising from two derivatives on hPab). Using the area element %dzd%dφ, we see
that the string singularity is locally integrable if n ≥ 2. Since G(2)

ab (hP, hR) is linear in
hPab, its ∼ s−3 singularity at the particle arises from the action of a linear second-order
differential operator (with Cn coefficients) on the integrable function hPab, meaning it
is also well defined as a distribution if n ≥ 2. Last, G(2)

ab (hR, hR) behaves as ∼ %2n−4,
implying that G(2)

ab (hR, hR) is locally integrable at the string for any puncture with n ≥ 2.
Combining the above estimates, we infer that our regularity requirements are satisfied

if the puncture is of order n ≥ 2. Since n = 2 punctures are commonly used in practice
(e.g., in [9, 11]), this does not represent an obstacle. If our regularity conjectures are
incorrect, then the requirements for the puncture will be more stringent. However, the
next section will provide additional evidence for the validity of our conjectures.

5. Demonstration of the puncture scheme: return to flat spacetime

As a first test of our puncture scheme, we return to the model problem of a static
particle in flat spacetime. This will illustrate the procedure as well as confirm many of
its key aspects. We closely follow the steps outlined in Sec. 4.2, and we adopt the same
coordinates and tetrad as in Sec. 2.2.

5.1. Step 0: construction of hP
ab

The procedure begins by constructing a puncture. As mentioned above, typical puncture
schemes obtain the puncture from the singular field in the Lorenz gauge, in which it
has the easily identifiable, Coulomb-type structure (114) near the worldline. For the
static particle in flat spacetime, in inertial coordinates that are static with respect to
the particle, the leading-order term in Eq. (114) is the exact solution to Eab(h) = Tab,
and the regular field hrab vanishes. We write this solution in covariant form as

hLab = µ(gab − 2vavb)
4πs , (121)

defining va at points off the worldline by parallel transport. In the retarded coordinates
of Sec. 2.2, v = ∂u and the proper spatial distance from the worldline is s =
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r2 + r2

p − 2rrp cos γ, where γ is the angle between (θ, ϕ) and (θp, ϕp). We can
immediately write Eq. (121) in terms of the tetrad (13) by noting va = na + 1

2 l
a:

hLab = − µ

2πs(1
4 lalb + nanb +m(am̄b)). (122)

We take the punctured region to be a shell of radial width 2c > 0 extended in time:
P = S2 × {r ∈ (rp − c, rp + c)} × R, such that rmin = rp − c and rmax = rp + c. Inside
P we cut out the field around the particle completely. To do this, we introduce a radial
window function ζ with compact support around r = rp such that the puncture field
reads

hPab = ζhLab. (123)

In the Lorenz gauge, the residual metric is then simply the total Lorenz gauge metric
outside of P, or

hRab = (1− ζ)hLab. (124)

The residual field we obtain with our reconstruction procedure will necessarily be related
to this field by a gauge transformation.

To make our example concrete, we take the window function to be a box distribution
of width 2c centered at the particle,

ζ = Θ(r − rmin)−Θ(r − rmax) = ΘM. (125)

With this choice, the Lorenz-gauge residual field (124) identically vanishes in the puncture
region. As a consequence, the residual field we obtain with our procedure will be pure
gauge in this region.

In implementations of puncture schemes, the puncture is typically decomposed
into a basis of modes. Using the standard decomposition of 1/s in terms of Legendre
polynomials P`, we write

hLab = − µ

2π (1
4 lalb + nanb +m(am̄b))

∑
`≥0

r`<
r`+1
>

P`(cos γ), (126)

which can be expressed in terms of spherical harmonics using P`(cos γ) =
4π

2`+1
∑`
m=−` Ȳ

p
`mY`m. In our flat-spacetime toy problem, we have the luxury of obtaining

each `m mode as an exact function of r. However, in curved spacetime the modes are
obtained by directly performing the integral of the puncture against a spherical harmonic.
Evaluating those integrals analytically requires expanding them in powers of the radial
distance ∆r ≡ r − rp [51]. We can see the effect of this expansion by carrying it out on
Eq. (126). The only r dependence in the solution is

r`<
r`+1
>

= 1
r>

[
1− `±(∆r/rp) + 1

2`±(`± + 1)(∆r/rp)2 +O(∆r/rp)3
]
, (127)

where the ± signs in `± ≡ ±` apply for r > rp (+) and r < rp (−) respectively. The
nth-order term in this expansion grows as ∼ `n. Hence, if we truncate the expansion
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at any finite order, the sum over ` diverges for all ∆r 6= 0. Away from ∆r = 0, hPab is
perfectly smooth and the sum (126) converges exponentially with `, but the expansion in
∆r has made it divergent at all points (a consequence of ∆r = 0 being a singular point
of the sum). Because of this feature, we avoid such an expansion here. We comment on
the practical implications of Eq. (127) in the conclusion.

5.2. Step 1: construction of ψR
0

The puncture field (123) gives rise to a spin-(+2) Weyl puncture

ψP
0 = 1

2ð2hPll = 1
2ΘM ð2hLll = ΘMψ0 (128)

inside P. In this case, the differential operators are purely angular, meaning no
derivatives act on the window function ΘM. That will not be the case generically.

We already obtained the retarded ψ0 in Sec. 2.2.1. Due to the simple form of ψP
0 ,

the residual Weyl scalar is simply

ψR
0 = ψ0 − ψP = (1−ΘM)ψ0, (129)

equal to ψ0 outside P and vanishing inside. Its modes can be read off Eq. (16).

5.3. Steps 2 and 3: ΦR and the reconstructed field ĥR
ab

We next calculate the shadowless Hertz potential ΦR and reconstruct the field ĥRab.
Both in and outside the puncture region P, the fields satisfy ∂4

r Φ̄R = −2ψR
0 and

ĥRab = 2 ReS†abΦR. However, in the shadowless solution these equations do not necessarily
hold on the boundaries between regions.

Outside the puncture region, the relevant potential is the shadowless potential ΦN:

ΦR = ΦN = Φ+Θ+
M + Φ−Θ−M outside P. (130)

Φ± are the same functions appearing in the first term in Eq. (17). They satisfy the
inversion relation ∂4

r Φ̄± = −2ψ0, with Φ+ obtained by integrating from r =∞ and Φ−
obtained by integrating from r = 0.

Inside the puncture region, ψR
0 = 0, making the Hertz potential a solution to

∂4
rΦR = 0. We can hence write its modes as

ΦR
`m = ΦM

`m =
3∑
j=0

δ◦j,`mρ
−j in P, (131)

where we follow the notation of Sec. 3.4 in labelling the solution in this region with an
M. The coefficients δ◦j are determined by the junction conditions (49a) across rmin, which
in this case read simply ∂nr ΦM = ∂nr ΦN at r = rmin for n = 0, . . . , 3. These conditions



New metric reconstruction scheme for gravitational self-force calculations 40

enforce that ΦR does satisfy ∂4
rΦR = −2ψR

0 at rmin. Evaluating the junction conditions
and solving for δ◦j,`m, we find

δ◦0,`m = − µrpλ`,−2 Ȳ
p
`m

6(2 + `)(2`+ 1)(1− c/rp)2+`, (132a)

δ◦1,`m = − µλ`,−2 Ȳ
p
`m

2(1 + `)(2`+ 1)(1− c/rp)1+`, (132b)

δ◦2,`m = − µλ`,−2 Ȳ
p
`m

2rp`(2`+ 1)(1− c/rp)`, (132c)

δ◦3,`m = − µλ`,−2 Ȳ
p
`m

6r2
p(`− 1)(2`+ 1)(1− c/rp)`−1. (132d)

Since 0 < c/rp < 1, the factor (1 − c/rp)` decays exponentially with `. This implies
that, as expected, subtracting the puncture from the metric perturbation has eliminated
the string singularity in the Hertz potential. In the general case in Kerr, subtracting
a finite-order puncture will only soften the string; in the present model problem, the
leading-order puncture is the exact singular field, so the the string has been entirely
removed.

Moving to Step 3 in our procedure, we apply the reconstruction operator S†ab to
these potentials. Outside the punctured region, P, the reconstructed metric is

ĥRab = ĥN
ab =

2 Re(S†abΦ+), r > rmax,

2 Re(S†abΦ−), r < rmax,
(133)

and

ĥRab = ĥM
ab = 2 Re

S†ab 3∑
j=0

δ◦jρ
−j

 inside P. (134)

ĥM
ab is given explicitly by the formula (44) with the replacement d◦j → δ◦j and the

simplifications Ω◦ = τ ◦ = 0 and ρ = −1/r. ĥN
ab is identical to the no-string reconstructed

field (20), but now restricted to the region outside P.

5.4. Step 4: invariant correction terms

To complete the metric inside and outside of P , we must add two quantities containing
invariant information: the corrector tensor xRab in P , and an analog of ġab in the vacuum
region r > rmax.

Start with the analog of ġab, which is made up of the ` = 0, 1 modes. It must be
written in the IRG to be compatible with our gauge corrections in the next section. The
only nonvanishing ` = 0 piece is simply

h̃`=0
nn = −2m

r
for r > rmax. (135)

This is the flat-spacetime limit of Eq. (68); it differs from the m/r term in Eq. (32) by a
gauge refinement that eliminates the mm̄ component. The ` = 1 term is given by the
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terms proportional to the mass dipole moment µi in Eq. (E.1). µi here describes the
location of the center of mass (in this case, the particle’s position) relative to the origin
in Cartesian coordinates.

Now consider the corrector tensor xRab in P . It is obtained from the ODEs (22)–(24)
with xab replaced by xRab and Tab replaced by TR

ab = Tab − Eab(hP). The relevant NP
components of TR

ab are given in retarded coordinates by

TR
ll = 2TR

ln = −hLmm̄∂2
rΘM − 2

(
∂rh

L
mm̄ + 1

r
hLmm̄

)
∂rΘM, (136)

TR
lm = 0. (137)

For our box window function (125), the effective source consists entirely of terms
proportional to δ(r− rp± c) or δ′(r− rp± c). Integrating Eqs. (22)–(24) from the origin,
we obtain the solutions (59)–(61). The integrals are straightforwardly evaluated if we
use the simplifications ρ = −1/r and Ω◦ = 0 and read off the operators N , U , and V
from the right-hand sides of Eqs. (23) and (24). Evaluating them for rmin < r < rmax,
we find

xRmm̄ = 2∆r−
r

α◦ + β◦, (138)

xRnm = ∆r2
−(2rmin + ∆r−)

3r2rmin
ð̃α◦ + r3 − r3

min
3r2rmin

ð̃β◦, (139)

xRnn = − ∆r2
−

3r2rmin

[
2∆r−ð̃

′ð̃α◦ + (2r + rmin)ð̃′ð̃β◦
]

+ 2∆r−
r

α◦ + β◦, (140)

where ∆r− ≡ r − rmin, α◦ ≡ −1
2 (r∂rhLmm̄)

∣∣∣
r=rmin

, and β◦ ≡ − hLmm̄
∣∣∣
r=rmin

.
We observe that xRab goes to a nonzero value at r = rmin, joining discontinuously

to its zero value for r < rmin. This jump is due to the presence of δ′(r − rmin) in TR
ab.

It contrasts with the behaviour of the point-particle corrector tensor, which joined
continuously to zero at r = rp. However, we also observe that cancellations in the
right-hand side of Eq. (24) prevent a Dirac δ from arising in xRnn.

We stress that the solution’s radial nonsmoothness is an artifact of our choice of
window function. In practice a smooth window function can be chosen, which would lead
to a smooth corrector tensor at the window’s boundaries. Here we are more interested
in how our scheme smooths the string singularity in the GHZ solution. This can be
discerned from the angular functions α◦ and β◦, which can be read off Eqs. (126) or
(122). Explicitly,

α◦ = µ

8πrp
∑
`≥0

`(1− c/rp)`P`(cos γ),

= µ

8πrp
y(cos γ − y)

(1− 2y cos γ + y2)3/2 , y ≡ 1− c/rp ∈ (0, 1). (141)

When c 6= 0, α◦ and β◦ are smooth functions of angles. As expected, there is
no string singularity. We can see the string emerge in the c → 0 limit, shrinking
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the puncture region to zero size: at the angular location of the particle, we have
α◦(θp, ϕp) = µy(1− y)−2/(8πrp) ∼ 1/c2.

With the addition of h̃`=0,1
ab and xRab, our residual field is brought to the form

ĥ−abΘ−M +
(
ĥRab + xRab

)
ΘM +

(
ĥ+
ab + h̃`=0,1

ab

)
Θ+

M, (142)

where ĥ±ab ≡ 2 ReS†abΦ±. The residual field is smooth everywhere except at the window’s
boundaries. In the vacuum regions outside P, it is identical to the total no-string
point-particle solution. All together, it satisfies Eab(hR) = TR

ab at all points except
r = rmax.

5.5. Step 5: gauge correction terms

The final step in our calculation of hRab is to add the gauge perturbations −LΞgab and
−LξSgab in the region r ≤ rmax. Here ξ = Ξ + ξS is the vector that would bring the
solution in the region r > rmax into the shadow gauge. Ξ is made up of terms proportional
to u or u2, and (in our static context) ξS is the piece that is independent of u. These
terms must be added for r ≤ rmax in order to satisfy the field equations; without them,
the residual field differs from a solution to Eab(hR) = TR

ab by a field of the form Θ+
MLξgab,

which is not a vacuum solution. We must also extend Ξ throughout the region r ≤ rmax in
order to ensure that our time coordinate is continuous. However, ξS is to be attenuated to
zero in the puncture region, and since we allow ourselves to introduce radial singularities
in this simple demonstration, we can choose the attenuation ξS → ξSΘ+

M. This will bring
the field (142) to its final form:

hRab =
(
ĥ−ab − LΞgab

)
Θ−M +

(
ĥRab + xRab − LΞgab

)
ΘM

− 2ξS
(arb)δ(∆r+) +

(
ĥ+
ab + h̃`=0,1

ab

)
Θ+

M, (143)

where ∆r+ ≡ r − rmax.
By Eq. (81) the gauge vector we seek has the form

ξl = ξ◦l , ξn = ξ◦n − r∂uξ◦l , ξm = −rξ◦m − ð̃ξ◦l , (144)

after making various flat-spacetime simplifications. We can find ξ◦a by expanding Eqs. (86)–
(93) in spin-weighted spherical harmonics. For ` 6= 1, the resulting equations are a
specialization of the Schwarzschild results in Appendix F.1. As an internal consistency
check, we have calculated the complete GHZ solution in the region r > rmax, including
the corrector tensor and ΦS, independently found the gauge transformation to eliminate
them, and verified that the results agree with those obtained from the formulas in
Appendix F.1. However, since that calculation is not of intrinsic interest, we omit the
details here. Instead, we focus on finding the vector Ξa; this is of interest because it
directly affects the value of certain quasi-invariant quantities often calculated in self-force
applications, as described in the next section.
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Ξa is confined to the ` = 0, 1 piece of the gauge transformation. It can be calculated
from Eqs. (86), (87), and (90), which reduce to

a◦ = ∂uξ
◦
l + 1

2 ð̃ξ◦m̄ + 1
2 ð̃′ξ◦m, (145a)

b◦ = −1
2
(
2ð̃ð̃′ + 1

)
ξ◦l + ξ◦n, (145b)

c◦ = ∂uξ
◦
m. (145c)

The Held scalars on the left-hand side are given by the integrals (H.20) with Tab replaced
by TR

ab. These evaluate to

a◦ = α◦ + δ◦ + 1
2(β◦ + γ◦), (146)

b◦ = rminα
◦ + rmaxδ

◦, (147)

c◦ = − 1
3rminrmax

[
rmax(ð̃α◦ + ð̃β◦) + rmin(ð̃γ◦ + ð̃δ◦)

]
, (148)

where γ◦ ≡ hLmm̄|r=rmax , δ◦ ≡ 1
2(r∂rhLmm̄)|r=rmax . Substituting spin-weighted spherical

harmonic expansions into Eq. (145), solving for the coefficients ξ◦a,`m, substituting the
solutions into Eq. (144), and picking out the terms linear and quadratic in u, we find

Ξl = ua◦00Y00 + 1
2
∑
m

(
2ua◦1m + u2c◦1m

)
Y1m, (149a)

Ξn = 1
2Ξ00

l Y00 −
1
2
∑
m

(
Ξ1m
l + 2urc◦1m

)
Y1m, (149b)

Ξm = −1
2
∑
m

(
2ua◦1m + u2c◦1m + 2urc◦1m

)
1Y1m. (149c)

The ` = 0 terms can be written as Ξa
`=0 = ua◦00Y00t

a, in agreement with Eqs. (98) and
(103).

5.6. Calculation of a quasi-invariant quantity

The final step of our procedure is to add hPab to our residual field to obtain the total
metric perturbation. However, the residual field itself is usually the object of interest in
self-force applications, and we can use it as a strong check on our procedure.

In a typical self-force calculation, the physical outputs are quasi-invariants
constructed from the regular field on the particle. These are quantities that are invariant
within a class of gauges that manifestly preserve the metric’s asymptotic flatness and
set of discrete frequencies [4]. The most important example of such a quantity is the
Detweiler redshift hRab(xp)vavb [52], which has a central role in the first law of binary
mechanics [53], is closely related to the particle’s perturbed Hamiltonian [54] and to a
binary’s binding energy [55], and has facilitated numerous synergies between self-force
theory and other models of binary systems [4, 56].
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Although usually formulated in black hole spacetimes, hRabvavb has the same quasi-
invariance in flat spacetime. Under a smooth gauge transformation generated by a vector
field ξa, we have hRab → hRab + Lξgab, such that the transformation of hRabvavb is

(Lξgab)vavb = 2∂tξt; (150)

here t = u+ r is the usual time coordinate, in terms of which v = ∂
∂t
. Simultaneously,

we know from the general argument in Sec. 3.3.4 that ξa can only preserve manifest
stationarity (Lthab = 0) if ∂tξa vanishes or is a Killing vector. Hence, within the class
of manifestly stationary gauges, Eq. (150) vanishes or is equal to the t component of a
Killing vector. But if it is the latter it does not vanish in the limit r → ∞, violating
manifest asymptotic flatness. Therefore hRabvavb is invariant within the class of manifestly
stationary and asymptotically flat gauges.

In the present context, this implies that hRabvavb = 0 in all such gauges. To see this,
note that in the Lorenz gauge, hRabvavb = 0 trivially because hRab itself vanishes. Our
shadowless gauge falls within the same class, and so our residual field at the particle
should satisfy hRabv

avb = (ĥRab + xRab − LΞgab)vavb = 0. Note that Ξa is precisely the
type of vector that preserves manifest stationarity but contributes a nonzero amount to
LΞgabv

avb = 0; it brings the asymptotically nonflat shadow gauge to the asymptotically
flat shadowless gauge. The remainder of this section will confirm that hRabvavb = 0 in the
shadowless gauge and thereby verify that our Ξa is correct.

We first consider the ` > 1 contributions to hRabvavb. Since Ξa only contributes
` = 0, 1 modes, we require only ĥRabvavb = ĥRnn and xRabvavb = xRnn (recalling va = na+ la/2
and ĥRabl

b = xRabl
b = 0). To compute these we insert the coefficients δ◦i,`m from

Eq. (132) into (44a) and add the modes of xRnn given in (140) with coefficients
α◦`m = −1

2(r∂rhmm̄,`m)|r=rmin and β◦`m = −hmm̄,`m|r=rmin . We find that, mode-by-mode,
ĥRnn + xRnn = 0 for all x ∈P, and therefore at the particle

hRabv
avb = 0, ` > 1. (151)

Equivalently,
(ĥRab + xRab)vavb = (xRnn)`=0,1. (152)

We next consider the contributions from the ` = 0 and 1 modes. For this we need
(LΞgab)vavb = 2∂tΞt. From Eq. (149), we have Ξt = Ξn + 1

2Ξl = ua◦00Y00− ur
∑
m c
◦
1mY1m,

and so
(LΞgab)vavb = 2a◦00Y00 − 2rp

∑
m

c◦1mY1m(θp, ϕp) (153)

at the particle. To see how this combines with (xRnn)`=0,1, we need to examine the Held
scalars α◦, β◦, γ◦, and δ◦ appearing in a◦ and c◦ in Eq. (145) and in xRnn in Eq. (140).
From their definitions in terms of hLmm̄, and the mode decomposition of hLmm̄ in Eq. (126),
we derive the relationships α◦`=0 = 0, δ◦`=0 = −1

2γ
◦
`=0, α◦`=1 = 1

2β
◦
`=1, and δ◦`=1 = −γ◦`=1.

Substituting these into Eqs. (145) and (140), we find that the terms in Eq. (153) are
related to xRnn on the particle by

2a◦`=0 = (xRnn)`=0 = β◦`=0 and − 2rp
∑
m

c◦1mY1m = (x◦nn)`=1 = rp

rmin
β◦`=1. (154)



New metric reconstruction scheme for gravitational self-force calculations 45

So on the particle,
(xRnn)`=0,1 − (LΞgab)vavb = 0; (155)

the contribution from Ξa precisely cancels the contribution from the low modes of xRab.
Combining Eq. (155) with Eq. (152), we obtain our final result:

hRabv
avb = (ĥRab + xRab − LΞgab)vavb = 0. (156)

This provides the first significant validation of our puncture scheme in general and of
our method of determining the gauge completion −LΞgab in particular.

6. Discussion

Our aims in this paper were twofold: (i) to illuminate the relationship between the GHZ
procedure and prior reconstruction methods used in self-force calculations, and (ii) to
use the GHZ formalism to develop a Teukolsky puncture scheme that yields the metric
perturbation in a gauge that is more regular than the no-string radiation gauge currently
used.

On the first point, we have clarified how the GHZ procedure completes earlier
methods. Specifically, the corrector tensor completes Ori’s description of nonvacuum
reconstruction, thus determining the complete half-string solution (or half-shadow solution
for an extended source). In the case of the no-string solution, which is currently
used in practice, the GHZ procedure determines the coefficient of the Dirac delta
function supported on the sphere r = rp(t) that intersects the particle’s position at each
instant. Although that coefficient is not explicitly required to calculate the self-force
and related quantities, it is needed to have a complete solution to the linearized Einstein
equation. Moreover, it provides valuable information about whether the time coordinate
is continuous across the sphere. We have shown how to use that information to obtain a
simple formula for the “gauge completion” that ensures continuity of the time coordinate.
The gauge completion is the perturbation −LΞgab that must be added inside the sphere,
where Ξa is given by Eq. (98) with Eqs. (103), (64), and (H.13).

In order to develop our puncture scheme, we have also extended and fleshed out
the GHZ formalism for generic spatially compact sources. Our primary result in that
context, as summarized in Sec. 3.4 and Fig. 1, is a concrete, practical procedure for
constructing the metric perturbation in a “shadowless” gauge in which the corrector
tensor is confined to the interior of the source. In the point-particle limit, this reduces
to the no-string gauge.

That general procedure forms the basis of our puncture scheme, which is summarized
in Sec. 4.2 and Fig. 2, and which we demonstrated in Sec. 5. The key idea of the scheme
is to put the puncture in a well-behaved gauge and then reconstruct the residual field
using our shadowless reconstruction procedure. By putting the most singular piece of
the field in a more regular gauge, this procedure avoids the strong singularities that
extend off the particle in the half-string and no-string gauges.
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Our primary motivation for developing this method was to obtain a metric
perturbation that is sufficiently regular to use as input for second-order self-force
calculations. But we expect it to have benefits even for first-order applications. In
addition to providing a simple prescription for the gauge completion, it may also eliminate
the large-cancellation problem that arises in no-string calculations. Current self-force
calculations in the no-string gauge rely on CCK vacuum reconstruction in the frequency
domain, which fails inside the orbital libration region. To overcome this failure, they rely
on the method of extended homogeneous solutions to analytically extend the vacuum
solutions from outside the libration region. For orbits with moderate-to-high eccentricity,
this method involves large numerical cancellations requiring 30+ digits of precision [27].
Since the GHZ formalism allows non-pointlike sources, it has no fundamental need to use
extended homogeneous solutions in this way. Extended solutions are typically used in any
case, outside the no-string context, to overcome the Gibbs phenomenon associated with
Fourier series representations of nonsmooth fields [40], but since our puncture scheme
works with the residual field rather than the physical field, it involves smoother functions
that would suffer less severe Gibbs phenomena. When combined with series acceleration
methods, this may eliminate the need for extended solutions.

Another potential advantage of our method at first order is that it directly yields
the regular field on the particle, rather than requiring a mode-by-mode subtraction
of the singular field from the retarded field. While such subtraction is often simpler
than a puncture scheme, its current implementation in Kerr requires a computationally
expensive projection from spin-weighted spheroidal harmonics onto scalar spherical
harmonics [27], which our method avoids.

Our scheme also simplifies considerably when only first-order information is required.
This is because any quantity of interest will be invariant under the transformation
generated by ξS

a in Step 5 of the procedure. Hence, first-order calculations do not need
to calculate this vector.

This is borne out by the explicit demonstration of our puncture scheme in Sec. 5.
There we showed that our scheme yields the correct result for the type of quantity
often calculated in self-force applications, and we never required ξS

a . On the other
hand, these types of quantities are not invariant under transformations generated by
the gauge-completion vector Ξa, and our demonstration has validated our method of
obtaining Ξa.

Our demonstration also revealed a potential pitfall. Puncture schemes historically
have expanded each `m mode of the puncture in powers of radial distance ∆r from the
particle. Such an expansion has been required in practice to obtain analytical expressions
for each mode. As Eq. (127) makes clear, a puncture that has been expanded in this
way diverges at large ` for all values of ∆r. There is a subtle reason such divergences
have not posed a problem in the past: if we solve Eab(hR) = Tab − Eab(hP) for the `m
modes of hRab and impose the same gauge condition on hRab as on hPab, then the total
field hP,`mab + hR,`mab will be identical to the retarded field mode h`mab in that gauge. In a
gauge such as the Lorenz gauge, where hab is smooth away from the particle, this implies
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that hR,`mab necessarily cancels the large-` behaviour in hP,`mab . We cannot expect these
cancellations to occur in our puncture scheme, where the residual field is computed in a
different gauge than the puncture. This means that we cannot afford a ∆r expansion of
the puncture’s `m modes. Fortunately, they may not be needed. Our procedure utilizes
hPab in three ways: to compute ψP

0 , which is needed to find ψR
0 = ψ0 − ψP

0 ; to compute
TR
ab, which is needed to find xRab; and ultimately to obtain the total field hRab + hPab (in

scenarios where the total field is needed). The only one of these steps that requires `m
modes is the calculation of ψR

0 , which requires modes because in practice ψ0 is computed
at the level of modes. Hence, we only need to calculate ψP,`m

0 . At worst, this will involve
computing numerical integrals of ψP

0 against spin-weighted spheroidal harmonics, unless
an analytical method can be found that avoids a ∆r expansion.

We conclude by noting that our puncture scheme represents only one possible path
to obtaining the metric perturbation in a regular gauge. Other reconstruction methods
are also under development [57–61]. Although these are not yet able to reconstruct a
nonvacuum metric perturbation, they may soon offer a viable alternative to our method.

Acknowledgments

We thank Leor Barack, Sam Dolan, Chris Kavanagh, Maarten van de Meent, and Barry
Wardell for helpful discussions. AP gratefully acknowledges the support of a Royal
Society University Research Fellowship. AP and AS acknowledge the support of a Royal
Society Research Fellows Enhancement Award. SH is grateful to the Max-Planck Society
for supporting the collaboration between MPI-MiS and Leipzig U., grant Proj. Bez.
M.FE.A.MATN0003. VT is grateful to International Max Planck Research School for
support through the studentship.

Appendix A. GHP and Held formalisms

Appendix A.1. GHP Formalism

Throughout the paper we utilize the GHP formalism [62], which we now briefly review.
The GHP formalism, like the NP formalism, adopts a double-null tetrad

(la, na,ma, m̄a), in which
gab = 2l(anb) − 2m(am̄b). (A.1)

We choose the normalization nala = 1 and mam̄
a = −1 corresponding to mostly negative

signature for gab. The GHP formalism refines the NP formalism by putting equations in a
form that is invariant under the structure group of spin and boost transformations of the
tetrad. This group consists of two real-valued parameters and is isomorphic to the group
of multiplication by a complex number, λ. To express the weight of a GHP quantity f
we use the notation f $ {p, q}, meaning that under a spin and boost transformation

f −→ λpλ̄qf ⇐⇒: f $ {p, q}. (A.2)
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By writing equations purely in terms of quantities with a definite (homogeneous)
transformation law under spin and boost transformations, these are readily transformed
from any one choice of frame to another (similarly to writing geometric equations only
in terms of ∇a, Rabcd, etc.).

In particular, the tetrad legs are assigned the weights

l $ {1, 1}, n $ {−1,−1},
m $ {1,−1}, m̄ $ {−1, 1}, (A.3)

under this rule. The weights of the spin coefficients ρ, ρ′, τ, τ ′, σ, σ, κ, κ′ follow directly
from the weights assigned to the tetrad above by counting the numbers of the legs
appearing in their definition (see [62]). In particular, ρ $ {1, 1} and τ $ {1,−1}. The
GHP formalism also includes priming f ′ $ {−p,−q} and complex conjugation f̄ $ {q, p}
operations, which are already implicit in the naming of the above spin coefficients.

The remaining spin coefficients do not have definite weight and do not appear in
the GHP equations, but appear in the GHP derivative operators

Þ = la∇a − pε− qε̄, Þ′ = na∇a + pε′ + qε̄′,

ð = ma∇a − pβ + qβ̄′, ð′ = m̄a∇a + pβ′ − qβ̄, (A.4)

which are GHP covariant and have weights given by the corresponding weights of legs
(A.3); e.g. Þf $ {p+ 1, q + 1}.

The main utility of the GHP formalism is in the context of algebraically special
spacetimes because the tetrad legs can be chosen to be aligned with geometrically
preferred directions, leading to many simplifications. In any tetrad aligned with both
principal null directions of a type D metric we have κ = κ′ = σ = σ′ = 0 by the
Goldberg-Sachs theorem, so we shall always use such a tetrad in this paper. Whenever
possible in the course of our analysis, we also make simplifications using the GHP vacuum
Ricci equations [62]. In any vacuum type D metric and tetrad aligned with both principal
null directions, these read

Þρ = ρ2, Þ′ρ = ð′τ + ρρ̄′ − τ τ̄ −Ψ2, ðρ = (ρ− ρ̄)τ,
ðτ = τ 2, Þτ = (τ − τ̄ ′)ρ. (A.5)

These equations are supplemented in Kerr by

τ

τ̄ ′
= τ ′

τ̄
= −ρ

ρ̄
= −ρ

′

ρ̄′
= −Ψ1/3

2

Ψ̄1/3
2
, Þτ ′ = 2ρτ ′, ð′ρ = 2ρτ ′, (A.6)

which follow from the existence of a Killing tensor, the commutation relations, and the
Bianchi identities. The commutation relations also give rise to the further identities

Þ′ρ = ρρ′ + τ ′(τ − τ̄ ′)− 1
2Ψ2 −

ρ

2ρ̄Ψ̄2, (A.7)

ð′τ = ττ ′ + ρ(ρ′ − ρ̄′) + 1
2Ψ2 −

ρ

2ρ̄Ψ̄2. (A.8)
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Finally, we note two identities that reduce the number of terms required in many
manipulations. These are ðτ ′ = ð′τ and Þρ′ = Þ′ρ.

An example of an aligned tetrad is the Kinnersly frame, where the non-zero GHP
coefficients are given by

ρ = − 1
Γ̄
, ρ′ = ∆

2ΣΓ̄
, (A.9)

τ = ia sin θ√
2Σ

, τ ′ = iaρ2 sin θ√
2

, (A.10)

Ψ2 = −M
Γ̄3

(A.11)

and the remaining non-zero NP coefficients required for the GHP directional derivative
operators are

β = − ρ̄ cot θ
2
√

2
, β′ = β̄ − iaρ2 sin θ√

2
, ε′ = −ρ∆ + r −M

2Σ . (A.12)

Appendix A.2. Held Formalism

Held [63, 64] introduced a specialized version of the GHP formalism particularly adapted
to non-accelerating vacuum Type-D spacetimes such as Kerr that is extremely useful
when making covariant expansions in the quantity ρ (essentially the inverse radius). The
formalism involves a new set of operators, called Held derivatives,

Þ̃′ = Þ′ − τ̄ ð̃− τ ð̃′ + τ τ̄

(
p

ρ̄
+ q

ρ

)
+ 1

2

(
qΨ̄2

ρ̄
+ pΨ2

ρ

)
$ {−1,−1}, (A.13a)

ð̃ = 1
ρ̄
ð + qτ

ρ
$ {0,−2}, (A.13b)

ð̃′ = 1
ρ
ð′ + pτ̄

ρ̄
$ {−2, 0}. (A.13c)

Intrinsic to the formalism are the Held scalars, by which we mean quantities
annihilated by Þ. The point is that, if h◦ is a Held scalar, then so are its Held derivatives
but not the derivatives by Þ′, ð, ð′. Indeed, it follows from (A.6) that [63][

Þ, ð̃′
]
f =

[
Þ, ð̃

]
f = 0, (A.14)

for any f $ {p, q}. Additionally, [Þ, Þ̃′]f = 0 if f has “no ρ-dependence”, i.e. if it is a
Held scalar f = h◦ [63]. An example of a Held scalar is

Ω◦ = 1
ρ̄
− 1
ρ
$ {−1,−1}. (A.15)

When acting on Held scalars, the Held operators in outgoing Kerr-Newman coordinates
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and Kinnersley’s frame give

ð̃ = − 1√
2

(
∂

∂θ
+ i csc θ ∂

∂ϕ
+ ia sin θ ∂

∂u
− 1

2(p− q) cot θ
)
,

ð̃′ = − 1√
2

(
∂

∂θ
− i csc θ ∂

∂ϕ
− ia sin θ ∂

∂u
+ 1

2(p− q) cot θ
)
,

Þ̃′ = ∂

∂u
,

(A.16)

where the last equation holds only when acting on a Held scalar h◦. The operators ð̃
and ð̃′ are spin-raising and lowering operators when acting on spin-weighted spherical
harmonics sY`m; see Eq. (C.1). In the Kinnersley frame and outgoing Kerr-Newman
coordinates, Held’s operators are equal up to trivial normalization and notational change
to Chandrasekhar’s operators −sLω†, +sLω,

ð̃ ≡ −sLω† = − 1√
2

(
∂

∂θ
+ i csc θ ∂

∂ϕ
+ aω sin θ − s cot θ

)
,

ð̃′ ≡ +sLω = − 1√
2

(
∂

∂θ
− i csc θ ∂

∂ϕ
− aω sin θ + s cot θ

)
,

Þ̃′ = −iω,

(A.17)

when acting on a Held scalar with u-dependence e−iωu (here s = 1
2(p−q)). In addition to

the derivatives (A.13), Held introduced the coefficients τ ◦ $ {−1,−3}, ρ′◦ $ {−2,−2}
and Ψ◦ $ {−3,−3}. In a tetrad in which la and na are aligned with principal null
directions, the vacuum Ricci and Bianchi identities give the following relations between
GHP and Held coefficients:

τ = τ ◦ρρ̄, (A.18a)
τ ′ = −τ̄ ◦ρ2, (A.18b)

ρ′ = ρ′◦ρ̄− 1
2Ψ◦ρ2 −

(
ð̃τ̄ ◦ + 1

2Ψ◦
)
ρρ̄− τ ◦τ̄ ◦ρ2ρ̄, (A.18c)

Ψ2 = Ψ◦ρ3. (A.18d)

In the Kinnersley tetrad the Held scalars reduce to

τ ◦ = −ia sin θ√
2

, ρ′◦ = −1/2, Ψ◦ = M, Ω◦ = −2ia cos θ. (A.19a)

Appendix A.3. Tetrad components of a gauge perturbation

We frequently require expressions for a gauge perturbation Lξgab = 2∇(aξb) in Held form.
Here we write these expressions in a generic type D spacetime.



New metric reconstruction scheme for gravitational self-force calculations 51

The components along la are

(Lξg)ll = 2Þξl, (A.20a)

(Lξg)ln = Þξn + Þ′ξl + (τ ′ + τ̄) ξm + (τ + τ̄ ′) ξm̄

=
[
Þ̃′ + τ̄ ◦ρρ̄ð̃ + τ ◦ρρ̄ð̃′ − τ ◦τ̄ ◦ρρ̄ (ρ+ ρ̄)− 1

2
(
Ψ◦ρ2 + Ψ̄◦ρ̄2

) ]
ξl

+ Þξn −
(
τ̄ ◦ρ2ρ̄Ω◦

)
ξm +

(
τ ◦ρρ̄2Ω◦

)
ξm̄, (A.20b)

(Lξg)lm = (ð + τ̄ ′) ξl + (Þ + ρ̄) ξm

= ρ̄
(
ð̃− 2τ ◦ρ̄

)
ξl + (Þ + ρ̄) ξm. (A.20c)

The remaining components along na are

(Lξg)nn = 2Þ′ξn

= 2
[
Þ̃′ + τ̄ ◦ρρ̄ð̃ + τ ◦ρρ̄ð̃′ + τ ◦τ̄ ◦ρρ̄ (ρ+ ρ̄) + 1

2
(
Ψ◦ρ2 + Ψ̄◦ρ̄2

) ]
ξn, (A.21a)

(Lξg)nm = (ð + τ) ξn + (Þ′ + ρ′) ξm

= ρ̄
(
ð̃ + τ ◦(ρ+ ρ̄)

)
ξn

+
(
Þ̃′ + τ̄ ◦ρρ̄ð̃ + τ ◦ρρ̄ð̃′ + ρρ̄2τ ◦τ̄ ◦ − 2ρ2ρ̄τ ◦τ̄ ◦ + 1

2Ψ̄◦ρ̄2 + ρ′
◦
ρ̄

−Ψ◦ρ2 + 1
2ρρ̄ (ρ′◦ + ρ̄′◦) Ω◦ − 1

2ρρ̄Ψ̄◦2
)
ξm, (A.21b)

and the remaining components along ma are

(Lξg)mm = 2ðξm = 2ρ̄
(
ð̃ + ρ̄τ ◦

)
ξm, (A.22a)

(Lξg)mm̄ = (ρ′ + ρ̄′) ξl + (ρ+ ρ̄) ξn + ð′ξm + ðξm̄

=
[
ρ′
◦
ρ̄+ ρ̄′◦ρ− 1

2
(
Ψ◦ρ2 + Ψ̄◦ρ̄2

)
− 1

2
(
Ψ◦2 + Ψ̄◦2

)
ρρ̄− τ ◦τ̄ ◦ρρ̄(ρ+ ρ̄)

]
ξl

+ (ρ+ ρ̄) ξn + ρ
(
ð̃′ − τ̄ ◦ρ

)
ξm + ρ̄

(
ð̃− τ ◦ρ̄

)
ξm̄. (A.22b)

Appendix B. Linear differential operators

This appendix defines the linear differential operators E , O, S, T , their adjoints, and F .
The adjoint of a GHP covariant operator D is defined by the relation

ϕDψ = (D†ϕ)ψ +∇av
a (B.1)
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for arbitrary smooth tensor/GHP quantities ϕ and ψ of appropriate rank/weight so
that the above bilinear is a scalar of trivial GHP weight, and for some vector field va
constructed from ϕ and ψ and their derivatives.

The linearized Einstein operator, which maps a metric perturbation to its linearized
Einstein tensor, is

Eab(h) = 1
2
[
−∇c∇chab −∇a∇bh

c
c + 2∇c∇(ahb)c + gab

(
∇c∇ch

d
d −∇c∇dhcd

)]
. (B.2)

It is self-adjoint.
The wave operator O appearing in the Teukolsky equation is

O = 2 [(Þ− 4ρ− ρ̄)(Þ′ − ρ′)− (ð− 4τ − τ̄ ′)(ð′ − τ ′)− 3Ψ2] , (B.3)

and its adjoint is

O† = 2 [(Þ′ − ρ′)(Þ + 3ρ)− (ð′ − τ ′)(ð + 3τ)− 3Ψ2] . (B.4)

The operator Sab, which acts on a stress-energy to return the source in the Teukolsky
equation, is

SabTab = (ð− τ̄ ′ − 4τ) [(Þ− 2ρ̄)Tlm − (ð− τ̄ ′)Tll]
+ (Þ− ρ̄− 4ρ) [(ð− 2τ̄ ′)Tlm − (Þ− ρ̄)Tmm] , (B.5a)

and its adjoint is

S†ab = −lalb(ð− τ)(ð + 3τ)−mamb(Þ− ρ)(Þ + 3ρ)
+ l(amb)[(Þ− ρ+ ρ̄)(ð + 3τ) + (ð− τ + τ̄ ′)(Þ + 3ρ)]. (B.6)

The operator T ab, which acts on a metric perturbation to return its Weyl scalar ψ0,
is

T abhab = 1
2(ð− τ̄ ′)(ð− τ̄ ′)hll + 1

2(Þ− ρ̄)(Þ− ρ̄)hmm

− 1
2 [(Þ− ρ̄)(ð− 2τ̄ ′) + (ð− τ̄ ′)(Þ− 2ρ̄)]h(lm), (B.7)

and its adjoint is

T †ab = 1
2 lalb(ð− τ)(ð− τ) + 1

2mamb(Þ− ρ)(Þ− ρ)

− 1
2 l(amb){(ð + τ̄ ′ − τ)(Þ− ρ) + (Þ− ρ+ ρ̄)(ð− τ)}. (B.8)

Finally, the operator Fab that returns the corrector tensor in Eq. (25) is

Fab = µ∆r
3r2r2

p
lalb

[
(∆r)2ð̃′ð̃− 3rrp

]
+ µ(∆r)2(∆r + 3rp)

3r2r2
p

l(a
(
mb)ð̃

′ + m̄b)ð̃
)

− 2µ∆r
rrp

m(am̄b). (B.9)
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Appendix C. Spin-weighted spherical harmonics

We define the spin-weighted harmonics with the conventions of [65]:

sY`m ≡ λ`,|s|


(
√

2)s
(∏s−1

j=0 −jL0
†
)
Y`m, 0 < s ≤ `,

Y`m, s = 0,
(−
√

2)(−s)
(∏−(s+1)

j=0 jL0
)
Y`m, −` ≤ s < 0,

with λ`,s =

√√√√(`− s)!
(`+ s)! .

(C.1)

The angular derivatives sL0 and −sL0
† are given in Eq. (A.17). In our calculations in

flat spacetime, where we do not perform a Fourier decomposition, we instead use ð̃ and
ð̃′ when working with spherical harmonics. In terms of those operators, we can use the
replacements

(∏s−1
j=0 −jL0

†
)
→ ð̃s and

(∏−(s+1)
j=0 jL0

)
→ ð̃−s in the above definition.

The harmonics satisfy 0Y`m = Y`m, sY`m = 0 for ` < |s|, the identities

−sL0
†
sY`m =

√
(`− s)(`+ s+ 1)

2 s+1Y`m, (C.2a)

sL0 sY`m = −
√

(`+ s)(`− s+ 1)
2 s−1Y`m, (C.2b)

s+1L0 −sL0
†
sY`m = −(`− s)(`+ s+ 1)

2 sY`m, (C.2c)

sȲ`m = (−1)m+s
−sY`,−m, (C.2d)

and the completeness relation

δ2(Ω− Ωp) =
∑

`≥|s|,m
sȲ`m(θp, ϕp) sY`m(θ, ϕ). (C.3)

We also frequently appeal to the standard addition theorem for scalar harmonics,
∑̀
m=−`

Ȳ`m(θp, ϕp) Y`m(θ, ϕ) = 2`+ 1
4π P`(cos γ), (C.4)

where γ is the angle between (θp, ϕp) and (θ, ϕ), and cos γ = cos θ cos θp + cos(ϕ −
ϕp) sin θ sin θp. Addition theorems for higher spin weights are straightforwardly obtained
by applying ð̃ or ð̃′ to this relation.

If a spin-weight-s quantity f is expanded as f = ∑
`m f

`m
sY`m, then Eq. (C.2d)

implies that the complex conjugate of f can be expanded in spin-weight-(−s) harmonics
as f̄ = ∑

`m f̄
`m
−sY`m, where

f̄ `m = (−1)m+sf `,−m. (C.5)

Appendix D. Evaluation of singular mode sums

In Sec. 2.2.1, we found a string contribution to the Hertz potential, given by

ΦS =
∞∑
`=2

∑
m

ΦS
`m−2Y`m (D.1)
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with coefficients (18). Treated as an ordinary function, this sum diverges at all points.
However, it should be interpreted as a distributional solution, not as an ordinary function,
and the sum should be evaluated in the sense of distributions. The action of ΦS on a
spin-weight +2 test function φ(θ, ϕ) is therefore

〈ΦS, φ〉 = lim
N→∞

∫
φ

N∑
`=2

∑
m

ΦS
`m−2Y`mdΩ. (D.2)

This evaluates to the sum
〈ΦS, φ〉 =

∞∑
`=2

∑
m

ΦS
`mφ̄`m, (D.3)

where φ̄`m denotes the `m mode of φ̄ (rather than the conjugate of the `m mode of φ).
Equation (D.3) converges exponentially with ` because φ`m decays exponentially for any
smooth φ.

We can use this fact to find ΦS in closed form at all points off the string. We first
write ΦS as a different limit,

ΦS = lim
a→1−

∞∑
`=2

∑
m

a`ΦS
`m−2Y`m, (D.4)

where 0 < a < 1. The sum is exponentially convergent, yielding a smooth function for
each value of a. Writing the action on a test function as in Eq. (D.2), we find

〈ΦS, φ〉 = lim
a→1−

∞∑
`=2

∑
m

a`ΦS
`mφ̄`m =

∞∑
`=2

∑
m

ΦS
`mφ̄`m, (D.5)

in agreement with Eq. (D.2). It follows that Eq. (D.4) is the same distribution as (D.1).
But unlike Eq. (D.1), Eq. (D.4) can be evaluated as an ordinary smooth function away
from the string. The integral of that smooth function against a test function necessarily
agrees with the action of Eq. (D.1) for all test functions whose support excludes the
string.

To carry out this strategy, we rewrite Eq. (D.1) using Eqs. (C.4) and (C.1) as

ΦS = 4m
r2
p

ð̃′2
{[
r2
p∆r + rp(∆r)2

]
ΦS

1 + 1
6(∆r)3ΦS

2

}
, (D.6)

where

ΦS
1 = lim

a→1−

∞∑
`=2

a`(2`+ 1)
(`+ 2)(`+ 1)`(`− 1)P`(cos γ), (D.7)

ΦS
2 = lim

a→1−

∞∑
`=2

a`(2`+ 1)
(`+ 2)(`− 1)P`(cos γ). (D.8)

These sums can be evaluated using the generating function

f(a)(γ) ≡
∑
`=2

a`P`(cos γ) = 1√
1 + a2 − 2a cos γ

− 1− a cos γ (D.9)
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by expressing quantities of the form F (`)a` in terms of derivatives and integrals of a`;
for example, a`

`+1 = a−1 ∫ a
0 da1a

`
1. Explicitly, we write

ΦS
1 = lim

a→1−
a−2

∫ a

0
da1

∫ a1

0
da2

(
2a2

∫ a2

0
da3

d

da3
+
∫ a2

0
da3

)∫ a3

0
da4a

−2
4 f(a4)(γ), (D.10)

ΦS
2 = lim

a→1−
a−2

∫ a

0
da1a

2
1

∫ a1

0
da2a

−2
2

(
2a2

d

da2
+ 1

)
f(a2)(γ), (D.11)

which evaluate to

ΦS
1 = 1

4 + ln (sin(γ/2)) + cos γ
 1

12 + 1
2 ln

1− cos γ + 2 sin
(
γ
2

)
1− cos γ


− 1

2arctanh (sin(γ/2)) + 1
2 log(2 csc γ)

, (D.12)

ΦS
2 = −1

2 + cos γ
− 4

3 + 4
3 ln

1− cos γ + 2 sin
(
γ
2

)
1− cos γ

+ 1
3 log

−1 + cos γ + 2 sin
(
γ
2

)
1 + cos γ


− arctanh (sin(γ/2)) + ln(2 csc γ)

. (D.13)

For small γ, these behave as ΦS
1 ∼ γ2 ln γ and ΦS

2 ∼ ln γ. Since Eq. (D.6) involves
two derivatives of these quantities, we can infer ΦS ∼ 1/γ2. However, the derivatives
should be treated distributionally, meaning that angular delta functions may arise in
addition to (or instead of) the power-law divergence.

Appendix E. Dipole mode in flat spacetime

In this appendix we analyze the ` = 1 mode of the solution described in Sec. 2.2.3. We
can put the solution in more intuitive form by introducing Cartesian 3-vectors, with
indices i, j raised and lowered with the Kronecker delta δij. Specifically, we introduce
the unit vectors Ωi = (cosϕ sin θ, sinϕ sin θ, cos θ), which points toward the field point,
and Ωi

p = Ωi(θp, ϕp), which points toward the particle.
In terms of these quantities, from Eqs. (25), (B.9), (C.3), and (C.4), the nonzero

components of x`=1
ab are

x`=1
nn =

(
−2µiΩi

r2 + 2raiΩi

)
Θ+, (E.1a)

x`=1
nm̄ = −rm̄A

(
2µiΩi

A

r2 − 3piΩi
A

r
+ raiΩi

A

)
Θ+, (E.1b)

x`=1
mm̄ =

(
−6piΩi

r
+ 6siΩi

)
Θ+. (E.1c)

Here we have used cos γ = Ωi
pΩi in Eq. (C.4), introduced uppercase Latin indices A,B

for vectors on the sphere spanned by θA = (θ, ϕ), and defined Ωi
A = ∂AΩi. Uppercase
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indices are lowered and raised with the metric ΩAB of the unit sphere; our notation here
follows Ref. [46], for example. We have also introduced the 3-vectors ai = mΩi

p

r2
p
, si = mΩi

p

rp
,

pi = mΩi
p, and µi = mrpΩi

p.
The 3-vector µi is a mass dipole moment, representing the displacement (times

the mass m) of the center of mass relative to the origin. In Kerr, such a quantity
would be pure gauge because it would represent an order-ε displacement away from
the “center” of the black hole. But in flat spacetime, it is invariant under perturbative
gauge transformations, as it is an order-1 displacement that would require an order-1
translation to remove.

The ai, pi, and si terms in x`=1
ab are pure gauge in the region r > rp. In particular,

the ai terms represent a uniform acceleration of the coordinate system; see Eq. (10.37)
of Ref. [46]. We can eliminate these terms with a gauge transformation generated by

Ξ`=1 = αiΩi ∂

∂u
+ βiΩi ∂

∂r
+ r−1γiΩA

i

∂

∂xA
, (E.2)

where ΩA
i = ΩABδijΩj

B. αi, βi, and γi are functions of (u, r) given by

αi = 1
2aiu

2, (E.3a)

βi = −1
2aiu

2 − aiur − 3pi, (E.3b)

γi = −1
2aiu

2 − aiur − 3sir. (E.3c)

One can straightforwardly check that ∂uΞ`=1 is the generator of a boost in the direction
of the particle, ∂uΞ`=1 = ai

(
t ∂
∂xi + xi

∂
∂t

)
in inertial coordinates (t = u+ r, xi). Although

the pi terms in x`=1
ab do not need to be gauged away to obtain manifest asymptotic flatness,

doing so puts the metric perturbation in the canonical ∼ 1/r2 form of a stationary dipolar
perturbation.

It is easily checked that the ai terms in this transformation are unique: any
transformation that gauges away the ai terms in xab must have precisely this u dependence.
Just as for ` = 0, if we apply this transformation only for r > rp, then we introduce a
(quadratic-in-u) growth in the coefficient of the Dirac delta function in the no-string
solution. More generally, it is impossible to transition the transformation to zero in any
way without introducing such growth in the transition region.

On the other hand, the pi and si terms in the transformation can be deformed in
any desirable manner while preserving the ∼ 1/r2 form of the perturbation at large r.
For concreteness, we apply Ξa as written in Eq. (E.2) for all r, leading to the no-string
solution (35), but we keep in mind that only the linear-and-quadratic-in-u terms actually
need to be applied globally in this way.

Appendix F. Dependent equations in transformation to the shadowless gauge

This appendix lists the equations that follow from Eq. (66). These equations are divided
into independent and dependent ones and are constructed by first taking individual NP
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components and then expanding the result as a finite power series in ρ whose coefficients
are Held scalars. We thereby get equations for each power of ρ, but these are not
necessarily independent from each other:

• The mm̄ component of Eq. (66) gives:

mm̄ component of (66) =
(
ρ

ρ̄
+ ρ̄

ρ

)
(86) + (ρ+ ρ̄) (87). (F.1)

Then we divide by the highest power of ρ̄ and use 1/ρ̄ = 1/ρ+ Ω◦, to find that (86)
and (87) hold.
• The mm component of Eq. (66) gives:

mm component of (66) = 2(88) + 2ρ̄(89). (F.2)

Then we divide by the highest power of ρ̄ and use 1/ρ̄ = 1/ρ+ Ω◦ to find that (88)
and (89) hold.
• The nm component of Eq. (66) gives:

nm component of (66) = 1
ρ̄
(90)+ρ̄(F.4)+ρρ̄(F.5)+ρρ̄2Ω◦(F.6)+ρ2ρ̄Ω◦(91). (F.3)

Then we divide by the highest power of ρ̄ and use 1/ρ̄ = 1/ρ+ Ω◦ to find that (90),
(91) and the following equations hold.

− ð̃′d̄◦1 − Ω◦ð̃′d̄◦2 + 2τ̄ ◦d̄◦2 − Ω◦2ð̃′d̄◦3 + Ω◦ð̃a◦ + 4τ ◦a◦ + ð̃b◦ − Ω◦2c◦ =

− 1
2Ω◦ð̃Þ̃′ξ◦l + 3τ ◦Þ̃′ξ◦l − ρ′◦ð̃ξ◦l + ð̃ξ◦n + τ̄ ◦ð̃ξ◦m + τ ◦ð̃′ξ◦m −

1
2
(
Ψ◦ − Ψ̄◦

)
ξ◦m

+ 1
2 (ρ′◦ + ρ̄′◦) Ω◦ξ◦m, (F.4)

− 2ð̃′d̄◦0 − 2Ω◦ð̃′d̄◦1 + 2τ̄ ◦d̄◦1 − 2Ω◦2ð̃′d̄◦2 + 2Ω◦τ̄ ◦d̄◦2 − 2Ω◦3ð̃′d̄◦3 + 2τ ◦b◦ + 2e◦ =

− 2τ̄ ◦ð̃2
ξ◦l − τ ◦

(
ð̃ð̃′ + ð̃′ð̃

)
ξ◦l + 2Ψ◦ð̃ξ◦l + (ρ′◦ + ρ̄′◦) τ ◦ξ◦l + 2τ ◦ξ◦n + 2Ω◦τ̄ ◦ð̃ξ◦m

+ Ω◦τ ◦ð̃′ξ◦m + 2τ ◦τ̄ ◦ξ◦m − 2Ω◦Ψ◦ξ◦m − Ω◦τ ◦ð̃ξ◦m̄ − 2τ ◦2ξ◦m̄ + 2g◦ȧ, (F.5)

Ω◦τ ◦a◦ − τ ◦b◦ = 1
2τ
◦
(
ð̃ð̃′ + ð̃′ð̃

)
ξ◦l + Ω◦τ ◦Þ̃′ξ◦l −

1
2 (ρ′◦ + ρ̄′◦) τ ◦ξ◦l − τ ◦ξ◦n

+ τ ◦τ̄ ◦ξ◦m + Ω◦τ ◦ð̃ξ◦m̄ + τ ◦2ξ◦m̄. (F.6)
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• The nn component of Eq. (66) gives:

nn component of (66) =
(

1
ρ

+ 1
ρ̄

)
(F.8) + (F.9) + (ρ+ ρ̄) (93) + ρρ̄(F.10)

+ ρρ̄ (ρ+ ρ̄) (F.11) + ρ2ρ̄2(F.12). (F.7)

Then we divide by the highest power of ρ̄ and use 1/ρ̄ = 1/ρ+ Ω◦ to find that (93)
and the following equations hold.

Re
{
−ð̃′2d̄◦3 + Þ̃′a◦ − ð̃′c◦

}
= Þ̃′2ξ◦l , (F.8)

2 Re
{
−ð̃′2d̄◦2 + 4τ̄ ◦ð̃′d̄◦3 + 5

2Ω◦ð̃′2d̄◦3 + ð̃′ð̃a◦ − 2ρ′◦a◦ − 5
2Ω◦ð̃′c◦ + 4τ̄ ◦c◦

}
=

− (ρ′◦ + ρ̄′◦) Þ̃′ξ◦l + 2Þ̃′ξ◦n, (F.9)

2 Re
{
−ð̃′2d̄◦0−

3
2Ω◦ð̃′2d̄◦1−2Ω◦2ð̃′2d̄◦2+3Ω◦τ̄ ◦ð̃′d̄◦2+2τ̄ ◦2d̄◦2−

5
2Ω◦3ð̃′2d̄◦3+8Ω◦2τ̄ ◦ð̃′d̄◦3

+ 1
2Ω◦2

(
ð̃′ð̃ + ð̃ð̃′

)
a◦ + 6τ ◦τ̄ ◦a◦ + 3

2Ω◦
(
Ψ◦ − Ψ̄◦

)
a◦ + 2τ̄ ◦ð̃b◦ + Ψ◦b◦ − 3

2Ω◦3ð̃′c◦

+ 2Ω◦2τ̄ ◦c◦+ ð̃′e◦
}

= −Ω◦τ̄ ◦ð̃Þ̃′ξ◦l + Ω◦τ ◦ð̃′Þ̃′ξ◦l + 8τ ◦τ̄ ◦Þ̃′ξ◦l + 2Ω◦
(
Ψ◦ − Ψ̄◦

)
Þ̃′ξ◦l

− 2ρ′◦τ̄ ◦ð̃ξ◦l − 2ρ̄′◦τ ◦ð̃′ξ◦l + ρ′◦Ψ◦ξ◦l + ρ̄′◦Ψ̄◦ξ◦l + 2τ̄ ◦ð̃ξ◦n + 2τ ◦ð̃′ξ◦n +
(
Ψ◦ + Ψ̄◦

)
ξ◦n

+ Ω◦2τ̄ ◦Þ̃′ξ◦m + 2Ω◦ρ′◦τ̄ ◦ξ◦m + Ω◦2τ ◦Þ̃′ξ◦m̄ − 2Ω◦ρ̄′◦τ ◦ξ◦m̄, (F.10)

2 Re
{
− 1

2Ω◦ð̃′2d̄◦0 − τ̄ ◦ð̃
′
d̄◦0 −

1
2Ω◦2ð̃′2d̄◦1 + τ̄ ◦2d̄◦1 −

1
2Ω◦3ð̃′2d̄◦2 + Ω◦2τ̄ ◦ð̃′d̄◦2

+ Ω◦τ̄ ◦2d̄◦2 −
1
2Ω◦4ð̃′2d̄◦3 + 2Ω◦3τ̄ ◦ð̃′d̄◦3 + 1

2Ω◦2Ψ◦a◦ + τ ◦τ̄ ◦b◦ + 1
2Ω◦Ψ◦b◦ + 1

2Ω◦ð̃′e◦

+ τ̄ ◦e◦
}

= −τ̄ ◦2ð̃2
ξ◦l − τ ◦τ̄ ◦

(
ð̃ð̃′ + ð̃′ð̃

)
ξ◦l − τ ◦2ð̃

′2
ξ◦l + 1

4Ω◦2
(
Ψ◦ + Ψ̄◦

)
Þ̃′ξ◦l

+ Ψ◦τ̄ ◦ð̃ξ◦l + Ψ̄◦τ ◦ð̃′ξ◦l + (ρ′◦ + ρ̄′◦) τ ◦τ̄ ◦ξ◦l + 1
2Ω◦ρ′◦Ψ◦ξ◦l −

1
2Ω◦ρ̄′◦Ψ̄◦ξ◦l + 2τ ◦τ̄ ◦ξ◦n

+ 1
2Ω◦

(
Ψ◦ − Ψ̄◦

)
ξ◦n+Ω◦τ̄ ◦2ð̃ξ◦m+Ω◦τ ◦τ̄ ◦ð̃′ξ◦m−

1
2Ω◦τ̄ ◦

(
Ψ◦ − Ψ̄◦

)
ξ◦m−Ω◦τ ◦2ð̃′ξ◦m̄

− Ω◦τ ◦τ̄ ◦ð̃ξ◦m̄ −
1
2Ω◦τ ◦

(
Ψ◦ − Ψ̄◦

)
ξ◦m̄ + 2 Re

{1
2Ω◦ð̃′g◦ȧ + τ̄ ◦g◦ȧ

}
, (F.11)
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2 Re
{
− 1

2Ω◦2ð̃′2d̄◦0 − Ω◦τ̄ ◦ð̃′d̄◦0 −
1
2Ω◦3ð̃′2d̄◦1 + Ω◦τ̄ ◦2d̄◦1 −

1
2Ω◦4ð̃′2d̄◦2 + Ω◦3τ̄ ◦ð̃′d̄◦2

+ Ω◦2τ̄ ◦2d̄◦2 −
1
2Ω◦5ð̃′2d̄◦3 + 2Ω◦4τ̄ ◦ð̃′d̄◦3 + Ω◦2τ ◦τ̄ ◦a◦ − 1

2Ω◦3Ψ̄◦a◦ + 1
2Ω◦2Ψ◦b◦

+ 1
2Ω◦2ð̃′e◦ + Ω◦τ̄ ◦e◦

}
= −Ω◦τ̄ ◦2ð̃2

ξ◦l + Ω◦τ ◦2ð̃′2ξ◦l + 2Ω◦2τ ◦τ̄ ◦Þ̃′ξ◦l

+ 1
4Ω◦3

(
Ψ◦ + Ψ̄◦

)
Þ̃′ξ◦l + Ω◦Ψ◦τ̄ ◦ð̃ξ◦l −Ω◦Ψ̄◦τ ◦ð̃′ξ◦l + 1

2Ω◦2ρ′◦Ψ◦ξ◦l + 1
2Ω◦2ρ̄′◦Ψ̄◦ξ◦l

+1
2Ω◦2

(
Ψ◦ + Ψ̄◦

)
ξ◦n+Ω◦2τ̄ ◦2ð̃ξ◦m+Ω◦2τ ◦τ̄ ◦ð̃′ξ◦m+2Ω◦τ ◦τ̄ ◦ξ◦m−

1
2Ω◦2τ̄ ◦

(
Ψ◦ + Ψ̄◦

)
ξ◦m

+ Ω◦2τ ◦2ð̃′ξ◦m̄ + Ω◦2τ ◦τ̄ ◦ð̃ξ◦m̄ − 2Ω◦τ ◦τ̄ ◦ξ◦m̄ −
1
2Ω◦2τ ◦

(
Ψ◦ + Ψ̄◦

)
ξ◦m̄. (F.12)

Each of the explicitly written equations can actually be expressed as a combination
of the independent equations (86), (87), (88), (89), (90), (91), and (93):

(F.4) = −Ω◦2(90)− ð̃′(89)− Ω◦ð̃′(88) + ð̃(87) + Ω◦ð̃(86) + 4τ ◦(86), (F.13a)

(F.5) = 2(91) + 2τ̄ ◦(89) + 2Ω◦τ̄ ◦(88) + 2τ ◦(87), (F.13b)

(F.6) = −τ ◦(87) + Ω◦τ ◦(86), (F.13c)

(F.8) = Re
{
−ð̃′(90) + Þ̃′(86)

}
, (F.13d)

(F.9) = 2 Re
{

4τ̄ ◦(90)− 5
2Ω◦ð̃′(90)− ð̃′2(88) + Þ̃′(87) + ð̃ð̃′(86)− 2ρ′◦(86)

}
,

(F.13e)

(F.10) = 2 Re
{
ð̃′(91)− 3

2Ω◦3ð̃′(90) + 2Ω◦2τ̄ ◦(90) + 1
2Ω◦ð̃′2(89)− 2τ̄ ◦ð̃′(89)

− Ω◦2ð̃′2(88)− Ω◦τ̄ ◦ð̃′(88) + 2τ̄ ◦2(88) + 2τ̄ ◦ð̃(87) + Ψ◦(87) + Ω◦2ð̃ð̃′(86)

+ 6τ ◦τ̄ ◦(86) + 3Ω◦Ψ◦(86)
}
, (F.13f)

(F.11) = 2 Re
{1

2Ω◦ð̃′(91) + τ̄ ◦(91) + τ̄ ◦2(89) + Ω◦τ̄ ◦2(88) + τ ◦τ̄ ◦(87) + 1
2Ω◦Ψ◦(87)

+ 1
2Ω◦2Ψ◦(86)

}
, (F.13g)

(F.12) = 2 Re
{1

2Ω◦2ð̃′(91) + Ω◦τ̄ ◦(91) + Ω◦τ̄ ◦2(89) + Ω◦2τ̄ ◦2(88) + 1
2Ω◦2Ψ◦(87)

+ Ω◦2τ ◦τ̄ ◦(86) + 1
2Ω◦3Ψ◦(86)

}
. (F.13h)

The equations (F.13) thus do not give us new information but could be used for a
consistency check.



New metric reconstruction scheme for gravitational self-force calculations 60

Appendix F.1. Mode decomposition for Schwarzschild spacetime

In this subsection, we work out the nontrivial, independent equations in Sec. 3.3.3,
which are used to find ξ◦m, ξ

◦
n, ξ
◦
m, and hence the gauge vector field ξa, in the special

case of Schwarzschild spacetime. Generally, we proceed as in Kerr, except for two main
differences: (i) we use that in Schwarzschild, we have Ω◦ = τ ◦ = 0, which results in many
simplifications. (ii) On the other hand, Schwarzschild spacetime possesses two extra
Killing fields, which results in a more complicated form of the growing piece Ξa in ξa.

As in the Kerr case, we work in the Kinnersley frame and u, r, θ and ϕ are the
retarded Kerr-Newman coordinates which reduce to retarded Eddington-Finkelstein
coordinates. Taking into account the simplifications for Schwarzschild, ξa as in (81) is
given by

ξa =
(
ξ◦n − r∂uξ◦l −

M

r
ξ◦l

)
la + ξ◦l n

a +
(
rξ◦m + ð̃ξ◦l

)
m̄a +

(
rξ̄◦m + ð̃′ξ◦l

)
ma. (F.14)

We now work out what becomes of the non-trivial, independent equations for ξ◦m, ξ◦n,
and ξ◦m in Sec. 3.3.3, namely (86), (87), (88), (89), (90), (91) and (93). It is convenient
to decompose all these equations into spin-weighted spherical harmonics sY`m(θ, ϕ),
for which we adopt notations and conventions presented in Appendix C. The relations
needed here are (C.2). Additionally, as in the Kerr case, we decompose each component
into a growing (in u) part, a DC part, and an AC part as in (96).

For the growing in u part, we derive similarly as in Kerr that

Ξa = u(αta + βza + γya + δxa), (F.15)

where ta = ∂

∂t
, xa, ya, za generates an infinitesimal rotation around the x, y, z axis.

The real constants α, β, γ, δ are to be determined. Again, unlike in the flat spacetimes
calculation, there cannot be any terms quadratic in u in Ξa. The Killing vectors
ta, xa, ya, za, when written in the form (F.14), carry the Held coefficients

t◦l = 2t◦n = 1, t◦m = 0, (F.16a)

z◦l = z◦n = 0, z◦m = i sin θ√
2
, (F.16b)

y◦l = y◦n = 0, y◦m = −cosϕ− i cos θ sinϕ√
2

, (F.16c)

x◦l = x◦n = 0, x◦m = −sinϕ+ i cos θ cosϕ√
2

, (F.16d)
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Alternatively, in terms of spin-weighted spherical harmonics,

t◦l = 2t◦n =
√

4π 0Y0 0, t◦m = 0, (F.17a)

z◦l = 2z◦n = 0, z◦m = 2i
√
π

3 1Y1 0, (F.17b)

y◦l = 2y◦n = 0, y◦m =
√

2π
3 ( 1Y1 +1 + 1Y1−1), (F.17c)

x◦l = 2x◦n = 0, x◦m = −i
√

2π
3 ( 1Y1 +1 − 1Y1−1), (F.17d)

From this and Eqs. (F.15), (F.14) we can determine

Ξ◦l = 2Ξ◦n = α
√

4π 0Y0 0u, (F.18a)

Ξ◦m = 2iβ
√
π

3 1Y1 0u+ γ

√
2π
3 ( 1Y1 +1 + 1Y1−1)u− iδ

√
2π
3 ( 1Y1 +1 − 1Y1−1)u. (F.18b)

Next, we determine the coefficients α, β, γ, δ, as well as 〈ξ◦l,n,m〉 and Z◦l,n,m, by substituting
the vector (96), into Eqs. (86)–(91) and (93) and picking out the AC and DC parts of
each equation. Beginning with the DC part, the results are

〈a◦`m〉 =
√

4παδl,0δm,0 −
λ`,−1

2
√

2
(
〈ξ◦m,`m〉+ (−1)m〈ξ̄◦m,`−m〉

)
∀` ≥ 0, (F.19a)

〈b◦`m〉 = 1
2(λ2

`,−1 − 1)〈ξ◦l,`m〉+ 〈ξ◦n,`m〉 ∀` ≥ 0, (F.19b)

〈d̄◦2,`−m〉 = (−1)m λ`,−2√
2λ`,−1

〈ξ◦m,`m〉 ∀` ≥ 2, (F.19c)

〈d̄◦1,`−m〉 = (−1)(m+1) 1
2λ`,−2〈ξ◦l,`m〉 ∀` ≥ 2, (F.19d)

(−1)m+1 λ`,−2√
2λ`,−1

〈d̄◦3,`−m〉+ 〈c◦`m〉 = 2iβ
√
π

3 δl,1δm,0 +
√

2π
3 (γ − iδ)δl,1δm,1

+
√

2π
3 (γ + iδ)δl,1δm,−1 ∀` ≥ 1, (F.19e)

(−1)m λ`,−2√
2λ`,−1

〈d̄◦0,`−m〉+ 〈e◦`m〉 = M
λ`,−2√
2λ`,−1

〈ξ◦l,`m〉

+ i

√
4π
3 Mȧδ`,1δm,0 ∀` ≥ 1, (F.19f)

− 1
4λ`,−2

(
〈d◦1,`m〉+ (−1)m〈d̄◦1,`−m〉

)
+M〈a◦`m〉+ 2〈f ◦`m〉

= 3iM
√

4παδ`,0δm,0 +
√

4πṀδ`,0δm,0 ∀` ≥ 0. (F.19g)
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For example, we can determine α from the ` = 0 mode of (F.19a), whereas β, γ and δ
are determined from the ` = 1 mode of (F.19e), leading us to

α = 1√
4π
〈a◦0 0〉,

β = − i
√

3
4π 〈c

◦
1 0〉,

γ =
√

3
8π

(
〈c◦1 1〉+ 〈c◦1−1〉

)
,

δ = i

√
3

8π
(
〈c◦1 1〉 − 〈c◦1−1〉

)
.

(F.20)

There are multiple ways of finding the stationary pieces of the transformation, 〈ξ◦l,n,m〉
from these equations. We can first determine 〈ξ◦l,`m〉 and 〈ξ◦m,`m〉 from (F.19d) and
(F.19c). Then, get 〈ξ◦n,`m〉 from (F.19b) by substituting 〈ξ◦l,`m〉 into it.

We now turn to AC equations

Z◦m,ω `m = i

ω
c◦ω `m + (−1)m+1 iλ`,−2√

2λ`,−1ω
d̄◦3,−ω `−m ∀` ≥ 1, (F.21a)

Z◦l,ω `m = i

ω
a◦ω `m + iλ`,−1

2
√

2ω
(
Z◦m,ω `m + (−1)mZ̄◦m,−ω `−m

)
∀` ≥ 0, (F.21b)

Z◦n,ω `m = b◦ω `m −
1
2(λ2

`,−1 − 1)Z◦l,ω `m ∀` ≥ 0. (F.21c)

To solve these equations, we first obtain Z◦m,ω `m from (F.21a). Then, by substituting
Z◦m,ω `m into (F.21b) we get Z◦l,ω `m, which is then substituted into (F.21c) to yield the
final component Z◦n,ω `m. We note that dividing by ω, as in i

ω
c◦ω `m for example, is not

problematic as ω → 0 as c◦ω `m represents the AC part of c◦.

Appendix G. GHZ procedure for temporally noncompact sources

As formulated, the GHZ procedure applies to divergence free sources Tab such that the
causal future of its support does not intersect a neighborhood of H − and I −. This
assumption enters the construction of GHZ in the following ways: (i) we need to find the
retarded solution to the sourced (by SabTab) Teukolsky equations for ψ0, and this retarded
solution makes rigorous sense a priori only for sources which vanish sufficently far in
the past along any given null direction. (ii) While the corrector tensor x−ab is obtained
by forward integrations along the outgoing null curves tangent to la starting from H −

and is defined for sources Tab with or without its support excluding a neighborhood of
H − and I −, the proof that 2 Re(S†abΦ−) + x−ab is a solution of the Einstein equations
with the given source relies on the support assumptions about Tab. (Similarly, for the
construction of the quantities x+

ab,Φ+, we require integrations from I + backwards along
the integral curves of la, and in this case we require sufficient decay (peeling) towards I +

which we can expect for a source with suitable fall-off or support, but not in general.)
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For a point particle on a bound orbit which exists forever, Tab clearly does not fulfill
the above support property. Similarly, in the puncture method, the effective source
TR
ab is confined to rmin < r < rmax, but it is not confined to a finite time interval. The

resolution of this problem is to consider a cutoff source T Tab labelled by some time T far
in the past such that T Tab → Tab as T → −∞ pointwise in the exterior region r > r+, and
then to run the GHZ algorithm on this cutoff source. However, one potential obstacle to
this type of argument is that a naive cutoff does not yield a conserved source, as required
in order for there to exist any solution to the linearized Einstein equations in the first
place. Thus, we must take some care when constructing the cutoff source. First, we
pick some arbitrary (e.g., smooth) real-valued cutoff function χT (t) (here t is any time
function on the exterior of Kerr) which is = 1 for t ≥ −T and = 0 for t < −T − 1. Then
we consider:

T Tmm = χTTmm,

T Tnm = χTTnm,

T Tln = χTTln.

(G.1)

The remaining NP components of T Tab are then determined by complex conjugation and
the integration scheme described below in Appendix G.1, which is obtained imposing
the divergence-free condition and using the special properties of the type D background.
Given that the spatial support of the original Tab is confined to rmin < r < rmax, the
nature of this integration scheme implies that the support of T Tab is confined to the
causal future of that portion of support (e.g., the worldline) having t > −T − 1 (or more
generally of the set where T Tmm, T Tnm, T Tln are nonzero), and that ∇bT Tab = 0. In particular,
the causal future of the support of T Tab does not intersect a neighborhood of H − and
I −, meaning that we can apply the GHZ method. In fact the integration scheme implies
that, on its support, T Tab can differ from Tab only on that set of points which can be
reached from the region where χT is not identically equal to 1 by future directed integral
curves along na or la. In particular, in the limit when T → −∞, T Tab converges to Tab
uniformly on any compact subset of r > r+ (i.e., excluding H − and I −).

The GHZ scheme can be applied by construction to the cutoff source T Tab and yields
perturbations

h±,Tab = 2 ReS†abΦ±,T + x±,Tab , (G.2)

where ‘T ’ refers to the cutoff source, and where ± refers to the solution obtained
by, respectively, integrating the transport equations for the correctors x±,Tab or Hertz
potentials Φ± inwards from I + respectively outwards from H −. Due to the stated
convergence properties of T Tab, it can be shown that x±,Tab → x±ab pointwise at least away
from H − and I −. For the Hertz potentials Φ±,T , which are obtained from integrations
of the Weyl scalar ψT0 obtained from the source T Tab as the retarded solution to Teukolsy’s
equation, this is less clear to us but rather plausible. Indeed, convergence of ψT0 → ψ0 is
expected at least away from H − and I −, and this statement is expected to descend to
the reconstructed part, 2 ReS†abΦ±,T .
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Thus the upshot of our discussion is that we can in principle (up to a mathematical
proof of the above convergence statements) apply the GHZ method to the original source
Tab, with the understanding that the retarded solution ψ0 sourced by SabTab is obtained
by applying the retarded propagator to a suitably cut off source after which the cutoff
is removed. At the level of modes, this procedure is expected to be equivalent (up to
gauge) to the standard procedure of imposing the boundary conditions (51) on each
mode of the point-particle’s discrete frequency spectrum, as outlined in [5], for example.

Appendix G.1. Stress tensors of compact support

In any type-D background, the divergence of a symmetric rank 2 tensor Tab is given by

∇bTab = +
[
na(Þ′ − ρ′ − ρ̄′)

]
Tll

+
[
na(Þ− ρ− ρ̄) + la(Þ′ − ρ′ − ρ̄′)− m̄a(τ + τ̄ ′)−ma(τ ′ + τ̄)

]
Tln

−
[
m̄a(Þ′ − ρ′ − 2ρ̄′) + na(ð′ − τ ′ − 2τ̄)

]
Tlm

−
[
ma(Þ′ − 2ρ′ − ρ̄′) + na(ð− 2τ − τ̄ ′)

]
Tlm̄

+
[
la(Þ− ρ− ρ̄)

]
Tnn

−
[
m̄a(Þ− 2ρ− ρ̄) + la(ð′ − 2τ ′ − τ̄)

]
Tnm

−
[
ma(Þ− ρ− 2ρ̄) + la(ð− τ − 2τ̄ ′)

]
Tnm̄

+
[
m̄a(ð′ − τ ′ − τ̄)

]
Tmm

+
[
m̄a(ð− τ − τ̄ ′) +ma(ð′ − τ ′ − τ̄)− na(ρ+ ρ̄)− la(ρ′ + ρ̄′)

]
Tmm̄

+
[
ma(ð− τ − τ̄ ′)

]
Tm̄m̄

(G.3)

in GHP form.
In the context of the Kerr background, this formula can be used to construct a large

class of tensors such that supp(Tab) ∩ {r > r+} does not include an open neighborhood
of I − and an open neighborhood of H −. The construction is as follows. We first take
Tmm, Tnm, Tln, Tmm̄ to be arbitrary smooth functions of compact support inside some
compact set S ⊂ {r > r+}, so that their support in particular does not include an open
neighborhood of I − and an open neighborhood of H −.

The remaining NP components are then uniquely determined by the requirements
that (i) ∇aTab = 0, (ii) Tab is real and symmetric, (iii) supp(Tab) ∩ {r > r+} does
not include an open neighborhood of I − and an open neighborhood of H −. For the
proof of this claim, we note that in view of (ii) it is necessary to determine the NP
components Tlm, Tll, Tnn, with all other NP components then given by symmetry and
complex conjugation. These are 4 real components which are found using the 4 conditions
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of (i) by integrating successively the following ODEs, with boundary conditions given by
(iii).

1) By contracting the divergence (G.3) into na, it is found that Tnn must satisfy:

(Þ− ρ− ρ̄)Tnn = 2 Re
{

(ð′ − τ̄ − 2τ ′)Tnm + ρ′Tmm̄ − 1
2(Þ′ − ρ′ − ρ̄′)Tln

}
. (G.4)

The right side is known by assumption. This is an ordinary differential equation along
the orbits of la for Tnn which in view of (iii) must be integrated with trivial initial
conditions at H −. Thus, Tnn satisfies (iii) and is unique.

2) By contracting the divergence (G.3) into ma, it is found that Tlm̄ must satisfy:

(Þ′−ρ′−2ρ̄′)Tlm = −(τ+τ̄ ′)Tln−(Þ−2ρ−ρ̄)Tnm+(ð−τ−τ̄ ′)Tmm̄+(ð′−τ ′−τ̄)Tmm. (G.5)

The right side is known by assumption. This is an ordinary differential equation along
the orbits of na for Tlm which in view of (iii) must be integrated with trivial initial
conditions at I −. Thus, Tlm satisfies (iii) and is unique.

3) By contracting the divergence (G.3) into la, it is found that Tll must satisfy:

(Þ′ − ρ′ − ρ̄′)Tll = 2 Re
{

(ð′ − 2τ̄ − τ ′)Tlm + ρTmm̄ − 1
2(Þ− ρ− ρ̄)Tln

}
. (G.6)

The right side is known by assumption and 2). This is an ordinary differential equation
along the orbits of na for Tll which in view of (iii) must be integrated with trivial initial
conditions at I −. Thus, Tll satisfies (iii) and is unique.

The proof shows that if the support of Tmm, Tnm, Tln, Tmm̄ is originally chosen to
be contained in some compact set S ⊂ {r > r+}, then the support of the full Tab is
contained in the set of all points that can be reached from S by a future-directed orbit
of la or na: Tnn is obtained by integration along la of a quantity supported in S , and
then Tlm, Tll are obtained by intgration along na of quantities not involving Tnn, which
hence are also supported in S .

Everything we said goes through for distributional Tmm, Tnm, Tln, Tm̄m̄, too.

Appendix H. Held integration for xab

Here we utilize Held’s geometric integration formalism [63, 64] to derive integral
expressions for the corrector field xab in type-D spacetimes. We then relate these
results to the general solution for xSab as given in (63) to derive expressions for the
coefficients a◦, b◦, c◦, e◦ and f ◦ in terms of explicit radial integrals of the NP components
Tab. We take Tab to have spatially compact support away from the past horizon in the
radial interval rmin ≤ r ≤ rmax but otherwise leave it arbitrary. We integrate the source
from the past horizon r+ < rmin, where it vanishes, outwards along the orbits of the
outgoing principal null vector la to r =∞. We focus on the string piece xSab, which has
the general form (63) and ignore the contribution inside the source xM

ab, given already in
integral form in Eqs.(59), (60), and (61).

In practice we exchange integration variables from r to ρ using the relations
dr = ρ−2dρ, ρ̄ = ρ/(1 + ρΩ◦) and ρmax/min = ρ(rmax/min). Note that, as ρ is complex
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unless a 6= 0, the real integration contour corresponding to varying r along the real semi
axis r ≥ rmin at fixed (u, θ, ϕ∗), corresponds to a complex contour for ρ. The integrals
below are all understood in terms of this particular complex contour. To derive the
coefficients a◦, b◦, . . . , f ◦ , we express both the general solution (63) and our integral
forms of the solution as a Laurent polynomial in ρ whose coefficints are Held scalars.
Then the coefficients of ρ can be easily equated in both forms, leading to algebraic
relations for constants a◦, b◦, . . . , f ◦ expressing them as source integrals. To put things
into such a canonical form we simply multiply by an appropriate factor which eliminates
all positive powers of ρ̄, and then we use the relation 1/ρ̄ = 1/ρ+ Ω◦.

We start with the seed equation governing the trace component xmm̄, Eq. (56).
Integrating (56) with our assumptions on supp(Tab) gives the result (59), which we
recapitulate:

xmm̄ = ρ̄

ρ

∫ ρ

ρ−
min

dρ2(1 + ρ2Ω◦)
∫ ρ2

ρ−
min

dρ1ρ
−4
1 Tll, (H.1)

where ρ−min = ρ(rmin)− 0+. In the source-free region r > rmax, the solution (H.1) can be
rewritten as

xSmm̄ = C◦1
2 (ρ+ ρ̄) + C◦3

ρ̄

ρ
, (H.2)

where

C◦1 =
∫ ρ+

max

ρ−
min

dρ1
Tll
ρ4

1
, (H.3a)

C◦3 =
∫ ρ+

max

ρ−
min

dρ2(1 + ρ2Ω◦)
∫ ρ2

ρ−
min

dρ1
Tll
ρ4

1
− C◦1ρmax(1 + 1

2ρmaxΩ◦), (H.3b)

where ρ+
max = ρ(rmax) + 0+. To relate C◦1 and C◦3 in (H.2) to the coefficients a◦ and b◦ in

the general solution,

xSmm̄ = a◦
(
ρ

ρ̄
+ ρ̄

ρ

)
+ b◦ (ρ+ ρ̄) , (H.4)

we multiply both sides of Eqs. (H.2) and (H.4) by the homogeneous solution ρ/ρ̄ = 1+ρΩ◦
and replace all remaining instances of ρ̄ with ρ and Ω◦ to put the solution in canonical
form,

ρ

ρ̄
xSmm̄ = C◦3 + C◦1

2 ρ(2 + ρΩ◦) (H.5)

= a◦(2 + 2ρΩ◦ + ρ2Ω◦) + b◦ρ(2 + ρΩ◦), (H.6)

to find that
a◦ = 1

2C
◦
3 , b◦ = 1

2(C◦1 − Ω◦C◦3). (H.7)

Moving now to xnm, recall that

xnm = 2ρ(ρ̄+ ρ)
∫ ρ

ρ−
min

dρ2

ρ4
2

(
1 + ρ2Ω◦
2 + ρ2Ω◦

)2 ∫ ρ2

ρ−
min

dρ1

ρ2
1

2 + ρ1Ω◦
1 + ρ1Ω◦ (Tlm +Nxmm̄), (H.8)
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where N is the differential operator appearing on the RHS of (57). In the vacuum region
r > rmax, we have

xSnm = 2ρ(ρ+ ρ̄)
(
D◦3 −

D◦1
6ρ3 (1 + ρΩ◦)(2 + ρΩ◦) + I1(ρ)

)
, (H.9)

where the coefficients D◦1 and D◦3 are given by the integrals

D◦1 =
∫ ρ+

max

ρ−
min

dρ
2 + ρΩ◦

ρ2(1 + ρΩ◦)(Tlm +Nxmm̄), (H.10)

D◦3 =
∫ ρ+

max

ρ−
min

dρ2

(
1 + ρ2Ω◦

ρ2
2(2 + ρ2Ω◦)

)2 ∫ ρ2

ρ−
min

dρ1

ρ2
1

2 + ρ1Ω◦
1 + ρ1Ω◦ (Tlm +Nxmm̄)

− 1 + 2ρmaxΩ◦
6ρ3

max(2 + ρmaxΩ◦)
D◦1 (H.11)

in the interior of the source, and

I1(ρ) =
∫ ρ

ρ+
max

dρ2

ρ4
2

(
1 + ρ2Ω◦
2 + ρ2Ω◦

)2 ∫ ρ2

ρ+
max

dρ1

ρ2
1

2 + ρ1Ω◦
1 + ρ1Ω◦ (Nxmm̄) (H.12)

results from integration of xmm̄ in the vacuum region r > rmax. The integral I1 is needed
to determine c◦ and e◦. It has the general structure I1 = (ρ−ρmax)2ρ̄2

(ρ+ρ̄)ρ4 p3(ρ), where p3(ρ)
is a third-order polynomial in ρ. The ρ̄2 contribution from the numerator of I1 is the
highest power of ρ̄ in xnm, and must be factored out to put the solution in canonical
Laurent form. To compute the coefficients c◦ and e◦ we also put the general solution
(63b) in Laurent form.

After putting both the solutions in canonical form, equating coefficients of ρ−3 and
ρ2 gives

c◦ = −1
6

{ 2ρ2
max

1 + ρmaxΩ◦
(ð̃b◦ + Ω◦ð̃a◦) + 2D◦1

+ τ ◦ρ2
max(2 + ρmaxΩ◦)2

(1 + ρmaxΩ◦)4

[
ρ2
maxΩ◦b◦ + (2 + ρmaxΩ◦(4 + ρmaxΩ◦)) a◦

] }
, (H.13)

e◦ = 2D◦3 −
τ ◦(2 + ρmaxΩ◦)

6ρmax(1 + ρmaxΩ◦)4

(
4 + 10ρmaxΩ◦ + 9ρ2

maxΩ◦2 + 4ρ3
maxΩ◦3

)
a◦

− τ ◦(6 + 16ρmaxΩ◦ + 13ρ2
maxΩ◦2 + 4ρ3

maxΩ◦3)
6(1 + ρmaxΩ◦)4 b◦ − ð̃b◦ + Ω◦ð̃a◦

3ρmax(1 + ρmaxΩ◦)
. (H.14)

Lastly, for xnn, we take on the task of computing f ◦ from the final integral

xnn = 2(ρ+ ρ̄)
∫ ρ

ρ−
min

dρ1

ρ4
1

(
1 + ρ1Ω◦
2 + ρ1Ω◦

)2

(Tln + Re(Uxmm̄) + Re(Vxnm)) , (H.15)

where U and V are the differential operators on the RHS of (58) acting on xmm̄ and xnm,
respectively. We first rewrite the solution as

xnn = 2(ρ+ ρ̄)(E◦1 + I2(ρ)), (H.16)
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where

E◦1 =
∫ ρ+

max

ρ−
min

dρ1

ρ4
1

(
1 + ρ1Ω◦
2 + ρ1Ω◦

)2

(Tln + ReUxmm̄ + Re(Vxnm)) (H.17)

is a constant involving the stress-energy Tln and

I2(ρ) =
∫ ρ

ρ+
max

dρ1

ρ4
1

(
1 + ρ1Ω◦
2 + ρ1Ω◦

)2

(ReUxmm̄ + Re(Vxnm)) (H.18)

is determined by xmm̄ and xnm in the source free region r > rmax and must be evaluated
to determine f ◦. We find that I2 takes the simple form I2 = (ρ−ρmax)ρ̄2

ρ3(ρ+ρ̄) p5(ρ), where p5(ρ)
is an explicitly computed fifth-order polynomial in ρ. We then solve for f ◦ by multiplying
the general solution and the particular solution by 1/ρ̄2 to put them in canonical form
and equate coefficients. The result for f ◦ is

f ◦ = −Re

 1
2ρ2

max(1 + ρmaxΩ◦)(2 + ρmaxΩ◦)

− 2(ð̃′c◦ + ð̃c̄◦ − 2Þ̃′a◦) (H.19)

+
[
4ð̃ð̃′a◦ − 8ρ′◦a◦ + 4Þ̃′b◦ + 8τ̄ ◦c◦ + 8τ ◦c̄◦ + 2Ω◦(6Þ̃′a◦ − 5ð̃′c◦)

]
ρmax

+
[
2a◦(Ψ̄◦ + Ψ◦)− 8E◦1 + 8Ω◦

(
ð̃ð̃a◦ + Þ̃′b◦ − 2ρ′◦a◦ + 3τ ◦c̄◦ + τ̄ ◦c◦

)
+ 2Ω◦2(6ð̃c̄◦ − 4ð̃′c◦ + 7Þ̃′a◦)

]
ρ2
max

+
[
2(Ψ◦ + Ψ̄◦)b◦ + 2ð̃ē◦ + 2ð̃′e◦ + 4τ ◦ð̃′b◦ + 4τ̄ ◦ð̃b◦ + 24τ ◦τ̄ ◦a◦

+ 3Ω◦(a◦(3Ψ̄◦ −Ψ◦)− 4Ω◦E1)

+ 4Ω◦2(Þ̃′b◦ + 2ð̃ð̃′a◦ − 2ρ′◦a◦ + 6τ ◦c̄◦) + Ω◦3(16ð̃c̄◦ + 9Þ̃′a◦)
]
ρ3
max

+
[
8τ ◦τ̄ ◦b◦ + 4τ̄ ◦e◦ + 4τ ◦ē◦ + 4Ω◦

(
6τ ◦τ̄ ◦a◦ + (Ψ◦ + τ̄ ◦ð̃ + τ ◦ð̃′)b◦ + ð̃′e◦

)
+ Ω◦2

(
(9Ψ◦ − 3Ψ̄◦)a◦ − E◦1

)
+ 4Ω◦3

(
ð̃ð̃′a◦ + 2τ ◦c̄◦

)
+ 3Ω◦4(Þ̃′a◦ + 2ð̃c̄◦)

]
ρ4
max

+ 2Ω◦
[
2τ̄ ◦(e◦ + τ ◦b◦) + Ω◦

(
2τ ◦τ̄ ◦a◦ + Ψ◦b◦ + ð̃′e◦

)
+ Ω◦2Ψ◦a◦

]
ρ5
max

.
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In the Schwarzchild limit, where Ω◦ = τ ◦ = 0, the coefficients simplify to

a◦ = 1
2

∫ ρ+
max

ρ−
min

dρ2

∫ ρ2

ρ−
min

dρ1
Tll
ρ4 −

1
2ρmax

∫ ρ+
max

ρ−
min

dρ1
Tll
ρ4

1
, (H.20a)

b◦ = 1
2

∫ ρ+
max

ρ−
min

dρ1
Tll
ρ4

1
, (H.20b)

c◦ = −1
3

(
ρ2
maxð̃b

◦ + 2
∫ ρ+

max

ρ−
min

dρ

ρ2 (Tlm +Nxmm̄)
)
, (H.20c)

e◦ =
∫ ρ+

max

ρ−
min

dρ2

ρ4
2

∫ ρ2

ρ−
min

dρ1

ρ2
1

(Tlm +Nxmm̄) + c◦

2ρ3
max
− ð̃b◦

6ρmax
, (H.20d)

f ◦ = 1
4

∫ ρ+
max

ρ−
min

dρ1

ρ4
1

(Tln + Re(Uxmm̄) + Re(Vxnm))− 1
4(Ψ◦ + Ψ̄◦)(ρmaxb

◦ + a◦)

+ 1
4ρ2

max

(
ð̃′c◦ + ð̃c̄◦ − ρ3

max(ð̃
′
e◦ + ð̃ē◦)

)
− 1

2ρ2
max

(
(Þ̃′ + ρmaxð̃ð̃′ − 2ρmaxρ

′◦)a◦ + ρmaxÞ̃
′
b◦
)
. (H.20e)
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Glossary

Here we list some commonly used symbols for easier reference. Generally, we use the
GHP operators Þ, Þ′, ð, ð′ for coordinate invariant calculations in Kerr. When making
expansions or integrations in the NP scalar ρ, Held’s operators Þ̃′, ð̃, ð̃′ are more useful.
When requiring the coordinate form of ð̃, ð̃′ acting on quantities oscillating as e−iωu, we
use the Chandrasekhar operators sLω, sLω†.

Symbol Defined in
la, na, ma Eq. (37)
Þ, Þ′, ð, ð′ Eq. (A.4)

ρ, ρ′, τ , τ ′, Ψ2 Eq. (A.9)
Þ̃′, ð̃, ð̃′ Eq. (A.13)
τ ◦, ρ◦′, Ψ◦ Eq. (A.18)

Ω◦ Eq. (A.15)
a◦, b◦ Eq. (H.7)
c◦ Eq. (H.13)
d◦i Eq. (55)
e◦ Eq. (H.14)
f ◦ Eq. (H.19)

g◦
Ṁ
, g◦ȧ Eq. (73)

sLω, sLω† Eq. (A.17)
Eab Eq. (B.2)
O Eq. (B.3)
O† Eq. (B.4)
Sab Eq. (B.5a)
S†ab Eq. (B.6)
Tab Eq. (B.7)
T †ab Eq. (B.8)
sY`m Eq. (C.1)
〈. . . 〉 Eq. (95)
u, ϕ∗ Eq. (36)

ta, ϕa
∂

∂u
,
∂

∂ϕ∗
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