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Hypergraphs are a generalization of graphs in which edges can connect any number of ver-
tices. They allow the modeling of complex networks with higher-order interactions, and their
spectral theory studies the qualitative properties that can be inferred from the spectrum, i.e.
the multiset of the eigenvalues, of an operator associated to a hypergraph. It is expected that
a small perturbation of a hypergraph, such as the removal of a few vertices or edges, does not
lead to a major change of the eigenvalues. In particular, it is expected that the eigenvalues
of the original hypergraph interlace the eigenvalues of the perturbed hypergraph. Here we
work on hypergraphs where, in addition, each vertex–edge incidence is given a real number,
and we prove interlacing results for the adjacency matrix, the Kirchoff Laplacian and the
normalized Laplacian. Tightness of the inequalities is also shown.

KEYWORDS: networks, hypergraphs, eigenvalues, spectral theory, interlacing

1. Introduction

Hypergraphs are a generalization of graphs in which edges can connect any number of
vertices. They allow the modeling of bitcoin transactions [17], quantum entropies [2], chemical
reaction networks [12], cellular networks [15], social networks [20], neural networks [6], opin-
ion formation [16], epidemic networks [3], transportation networks [1]. Moreover, hypergraphs
with real coefficients have been introduced in [13] as a generalization of classical hypergraphs
where, in addition, each vertex–edge incidence is given a real coefficient. These coefficients
allow to model, for instance, the stoichiometric coefficients when considering chemical reac-
tion networks, or the probability that a given vertex belongs to an edge. In [13], also the
adjacency matrix and the normalized Laplacian associated to such hypergraphs have been
introduced, while the corresponding Kirchhoff Laplacian has been introduced in [9].
Here we study the spectral properties of these operators and we prove, in particular, inter-
lacing results. We show that, given an operator O (which is either the adjacency matrix, the
normalized Laplacian or the Kirchhoff Laplacian), then the eigenvalues of the operator O(G)
associated to a hypergraph G interlace the eigenvalues of O(G′), if G′ is obtained from G by
deleting vertices or edges. We also prove the tightness of these inequalities.
Since spectral theory studies the qualitative properties of a graph —and, more generally, of
a hypergraph— that can be inferred by the spectra of its associated operators, interlacing
results are meaningful as they offer a measure of how much a spectrum changes when deleting
vertices or edges. We refer the reader to [4,7,10,18] for some literature on interlacing results
in the case of graphs, simplicial complexes and hypergraphs.
The paper is structured as follows. In Section 2 we offer an overview of the definitions on
hypergraphs that will be needed throughout this paper. In Section 3 we recall the Courant–
Fischer–Weyl min-max principle and we apply it to characterize the eigenvalues of the ad-
jacency matrix, normalized Laplacian and Kirchhoff Laplacian associated to a hypergraph.
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In Section 4 we apply the Cauchy interlacing Theorem to prove various interlacing results,
and in Section 5 we prove some additional interlacing results for the normalized Laplacian,
using a generalization of the proof method developed by Butler in [4]. Finally, in Section 6
we draw some conclusions.

2. Definitions

We recall the basic definitions on hypergraphs with real coefficients, following [13].

Definition 2.1. A hypergraph with real coefficients (Fig. 1) is a triple G = (V,E, C) such
that:

• V = {v1, . . . , vn} is a finite set of nodes or vertices;

• E = {e1, . . . , em} is a multiset of elements ej ⊆ V called edges;

• C = {Cv,e : v ∈ V and e ∈ E} is a set of coefficients Cv,e ∈ R and it is such that

Cv,e = 0 ⇐⇒ v /∈ e. (1)

Fig. 1. A hypergraph with real coefficients that has 6 vertices and 2 edges.

From here on, we fix an hypergraph with real coefficients G = (V,E, C) and we assume
that each vertex is contained in at least one edge, that is, there are no isolated vertices.

Definition 2.2. Given e ∈ E, its cardinality, denoted |e|, is the number of vertices that are
contained in e.

Remark 2.1. The oriented hypergraphs introduced by Reff and Rusnak in [19] are hypergraphs
with real coefficients such that Cv,e ∈ {−1, 0, 1} for each v ∈ V and e ∈ E. Signed graphs are
oriented hypergraphs such that |e| = 2 for each e ∈ E, and simple graphs are signed graphs
such that, for each e ∈ E, there exists a unique v ∈ V and there exists a unique w ∈ V
satisfying

Cv,e = −Cw,e = 1.

Moreover, weighted hypergraphs are hypergraphs with real coefficients such that, for each
e ∈ E and for each v ∈ e, Cv,e =: ω(e) does not depend on v.

Definition 2.3. Given v ∈ V , its degree is

deg(v) :=
∑
e∈E

(Cv,e)
2. (2)

The n× n diagonal degree matrix of G is

D := D(G) = diag
(
deg(vi)

)
i=1,...,n

.
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Note that D is invertible, since we are assuming that there are no isolated vertices.

Definition 2.4. The n × n adjacency matrix of G is A := A(G) = (Aij)ij , where Aii := 0
for all i = 1, . . . , n and

Aij := −
∑
e∈E

Cvi,e · Cvj ,e for all i ̸= j.

Definition 2.5. The n×m incidence matrix of G is I := I(G) = (Iij)ij , where

Iij := Cvi,ej .

Definition 2.6. The normalized Laplacian of G is the n× n matrix

L := L(G) = Id−D(G)−1/2A(G)D(G)−1/2,

where Id is the n× n identity matrix.

Remark 2.2. In [13], the normalized Laplacian is defined as the n× n matrix

L(G) := Id−D(G)−1A(G),

which is not necessarily symmetric. Here we chose to work on L(G), which generalizes the
classical normalized Laplacian for graphs introduced by Fan Chung in [5], so that we can
apply the properties of symmetric matrices. From a spectral point of view, working on L(G)
or L(G) is equivalent. In fact,

L(G) = D(G)−1/2L(G)D(G)1/2,

hence the matrices L(G) and L(G) are similar and, therefore, isospectral.

The Kirchhoff Laplacian, in the context of hypergraphs with real coefficients, was intro-
duced by Hirono et al. [9]. We recall it and we introduce the dual Kirchhoff Laplacian.

Definition 2.7. The Kirchhoff Laplacian of G is the n× n matrix

K := K(G) = I(G) · I(G)⊤ = D(G)−A(G).

The dual Kirchhoff Laplacian of G is the m×m matrix

K∗ := K∗(G) := I(G)⊤ · I(G).

Remark 2.3. K(G) and K∗(G) have the same non-zero eigenvalues. It follows from the fact
that, if f and g are linear operators, then the non-zero eigenvalues of fg and gf are the same.

Given an n × n real symmetric matrix Q, its spectrum consists of n real eigenvalues,
counted with multiplicity. We denote them by

λ1(Q) ≤ . . . ≤ λn(Q).

Since the trace of an n× n matrix (i.e. the sum of its diagonal elements) equals the sum of
its eigenvalues, we have

n∑
i=1

λi(A) = 0,
n∑

i=1

λi(L) = n, and
n∑

i=1

λi(K) =
n∑

i=1

deg(vi).

The idea of the interlacing results that we will prove is to show how the removal of part of the
hypergraph effects the eigenvalues of its associated operators. We define two operations that
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can be done for removing part of a hypergraph: the vertex deletion and the edge deletion, as
generalizations of the ones in [18]. Similarly, we also define the restriction of a hypergraph
to a subset of edges.

Definition 2.8. Given v ∈ V , we let G \ v := (V \ {v}, Ev, Cv), where:
• Ev := {e \ {v} : e ∈ E};
• Cv := C \ {Cv,e : e ∈ E}.

We say that G \ v is obtained from G by a vertex deletion of v.

Definition 2.9. Given e ∈ E, we let G \ e := (V,E \ {e}, Ce), where

Ce := C \ {Cv,e : v ∈ V }.

We say that G \ e is obtained from G by an edge deletion of e. More generally, given F ⊆ E,
we denote by G \ F the hypergraph obtained from G by deleting all edges in F .

Definition 2.10. Given F ⊆ E, the restriction of G to F is G|F := (VF , F, C|F ), where
• VF := {v ∈ V : v ∈ e for some e ∈ F} and

• C|F := {Cv,e ∈ C : v ∈ VF and e ∈ F}.

3. Min-max principle

We recall the Courant–Fischer–Weyl min-max principle (Theorem 2.1 in [4]):

Theorem 3.1 (Min-max principle). Let Q be an n×n real symmetric matrix. Let X k denote
a k–dimensional subspace of Rn and x⊥X k signify that x⊥y for all y ∈ X k. Then

λk(Q) = min
Xn−k−1

(
max

x⊥Xn−k−1,x̸=0

x⊤Qx

x⊤x

)
= max

Xk

(
min

x⊥Xk,x̸=0

x⊤Qx

x⊤x

)
for k = 1, . . . , n.

In the case of the normalized Laplacian, by considering the substitution x = D1/2y,

x⊤Lx

x⊤x
=

(D1/2y)⊤L(D1/2y)

(D1/2y)⊤(D1/2y)
=

y⊤(D1/2LD1/2)y

y⊤Dy
,

where

y⊤(D1/2LD1/2)y = y⊤Ky = y⊤(II⊤)y = (y⊤I)(y⊤I)⊤ =
∑
e∈E

∑
vi∈V

yi · Cvi,e

2

.

Therefore, by the min-max principle,

λk(L) = min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)

 . (3)

Similarly,

λk(K) = min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i

 (4)
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and

λk(A) = min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

∑
vi,vj∈V, i̸=j

(
−yi · yj · Cvi,e · Cvj ,e

)
∑

vi∈V y2i

 . (5)

Remark 3.1. By the above characterizations, it is clear that the eigenvalues of L and K are
non-negative.

4. Cauchy interlacing

We recall the Cauchy interlacing Theorem (Theorem 4.3.17 in [11]) and we apply it in
order to prove interlacing results for A, L and K when vertices or edges are removed.

Theorem 4.1 (Cauchy interlacing Theorem). Let Q be an n×n real symmetric matrix and
let P be an (n− 1)× (n− 1) principal sub-matrix of Q. Then

λk(Q) ≤ λk(P ) ≤ λk+1(Q) for all k ∈ {1, . . . , n− 1}.

Corollary 4.2. Given v ∈ V ,

(1) λk(A(G)) ≤ λk(A(G \ v)) ≤ λk+1(A(G)), for all k ∈ {1, . . . , n− 1};
(2) λk(K(G)) ≤ λk(K(G \ v)) ≤ λk+1(K(G)), for all k ∈ {1, . . . , n− 1};
(3) λk(L(G)) ≤ λk(L(G \ v)) ≤ λk+1(L(G)), for all k ∈ {1, . . . , n− 1}.
Given e ∈ E,

4. λk(K(G)) ≤ λk(K(G \ e)) ≤ λk+1(K(G)), for all k ∈ {1, . . . , n− 1}.

Proof. Since A(G \ v) is an (n − 1) × (n − 1) principal sub-matrix of A(G), the first claim
follows from the Cauchy interlacing Theorem. The second and the third claim are analogous.
Similarly, since K∗(G \ e) is an (m − 1) × (m − 1) principal sub-matrix of K∗(G), by the
Cauchy interlacing Lemma we have that

λt(K
∗(G)) ≤ λt(K

∗(G \ e)) ≤ λt+1(K
∗(G)) for all t ∈ {1, . . . ,m− 1}.

Since K and K∗ have the same non-zero eigenvalues for any hypergraph (cf. Remark 2.3),
the claim follows.

We now apply the Cauchy interlacing Theorem in order to prove the following

Theorem 4.3. Let Q be an n×n real symmetric matrix, let M be an m×m real symmetric
matrix and assume that there exists a principal sub-matrix of both Q and M of size n− r =
m− l. Then,

λk−l(Q) ≤ λk(M) ≤ λk+r(Q), for all k ∈ {l + 1, . . . , n− r}.

Proof. Let P be a principal sub-matrix of both Q and M , of size n−r = m− l. By repeatedly
applying the Cauchy interlacing Theorem,

λj(Q) ≤ λj(P ) ≤ λj+r(Q) for all j ∈ {1, . . . , n− r}

and
λj(M) ≤ λj(P ) ≤ λj+l(M) for all j ∈ {1, . . . ,m− l}.
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Therefore,
λj(Q) ≤ λj(P ) ≤ λj+l(M) ≤ λj+l(P ) ≤ λj+l+r(Q),

for all j ∈ {1, . . . , n− l − r}. Hence,

λk−l(Q) ≤ λk(M) ≤ λk+r(Q), for all k ∈ {l + 1, . . . , n− r}.

Corollary 4.4. Given F ⊆ E such that G|F has t vertices,

λk−t+1(A(G)) ≤ λk(A(G \ F )) ≤ λk+t−1(A(G)) (6)

for all k ∈ {t, . . . , n− (t− 1)}, and

λk−t(L(G)) ≤ λk(L(G \ F )) ≤ λk+t(L(G)), (7)

for all k ∈ {t+ 1, . . . , n− t}.

Proof. Let w1, . . . , wt be the vertices of G|F . Then, A(G \ {w1, . . . , wt−1}) is a principal sub-
matrix of both A(G) and A(G \ F ). Similarly, L(G \ {w1, . . . , wt}) is a principal sub-matrix
of both L(G) and L(G \ F ). The claim follows by Theorem 4.3.

Remark 4.1. Corollary 4.4 is accurate in the sense that it is not possible to substitute, in the
claim, the inequalities in (6) by

λk−t+2(A(G)) ≤ λk(A(G \ F )) ≤ λk+t−2(A(G)),

and the inequalities in (7) by

λk−t+1(L(G)) ≤ λk(L(G \ F )) ≤ λk+t−1(L(G)).

The accuracy for A can be easily seen by considering the case where F consists of a single
loop ℓ (that is, an edge containing one single vertex). Clearly, removing one loop from the
hypergraph does not change its adjacency matrix and therefore the inequalities in (6), in this
case, can be re-written as

λk(A(G)) ≤ λk(A(G)) ≤ λk(A(G)).

The accuracy of (7) is shown by the next example.

Example 4.5. Let G := (V,E, C) be such that (Fig. 2):

• V = {v1, v2, v3};
• E = {e1, ℓ}, where e1 = {v1, v2, v3} and ℓ = {v1};
• Cv,e = 1 for each e ∈ E and each v ∈ e.

Then,

D(G) =

2 0 0
0 1 0
0 0 1

 , A(G) =

 0 −1 −1
−1 0 −1
−1 −1 0


and therefore

L(G) =

 1 1/
√
2 1/

√
2

1/
√
2 1 1

1/
√
2 1 1

 .
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Fig. 2. The hypergraph in Example 4.5.

Hence,

λ1(L(G)) = 0, λ2(L(G)) =
3−

√
5

2
, λ3(L(G)) =

3 +
√
5

2
;

while

L(G \ ℓ) =

1 1 1
1 1 1
1 1 1

 ,

therefore
λ1(L(G \ ℓ)) = 0, λ2(L(G \ ℓ)) = 0, λ3(L(G \ ℓ)) = 3.

In particular,
λ3(L(G \ ℓ)) > λ3(L(G))

and
λ2(L(G \ ℓ)) < λ2(L(G)).

This shows the accuracy of Corollary 4.4 for L.

5. Alternative interlacing for the normalized Laplacian

In the case when we remove an edge that is not a loop from a hypergraph, we can improve
Corollary 4.4 by partly generalizing, for L, Theorem 1.2 in [4].

Theorem 5.1. Given ê ∈ E of cardinality t ≥ 2,

λk−t+1(L(G)) ≤ λk(L(G \ ê)), (8)

for all k ∈ {t, . . . , n}. More generally, given F ⊆ E such that |e| ≥ 2 for each e ∈ F and∑
e∈F |e| = t,

λk−t+|F |(L(G)) ≤ λk(L(G \ F )).

Proof. Up to re-labeling of the vertices, assume that ê = {v1, . . . , vt} and let

Z :=

{
e2 − e1 ·

(
Cv1,ê

(t− 1)Cv2,ê

)
, . . . , et − e1 ·

(
Cv1,ê

(t− 1)Cvt,ê

)}
where e1, . . . , et are the first t standard unit vectors in Rn and therefore the condition y⊥Z
implies that∑
vi∈V

yi · Cvi,ê = y1 · Cv1,ê + y2 · Cv2,ê + . . .+ yt · Cvt,ê = y1 · Cv1,ê − (t− 1) · y1 ·
Cv1,ê

(t− 1)
= 0.
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By (3), we have

λk(L(G \ ê)) = min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E\ê

(∑
i∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)−

∑
vi∈ê y

2
i · C2

vi,ê



= min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

−
(∑

vi∈V yi · Cvi,ê

)2

∑
vi∈V y2i deg(vi)−

∑
vi∈ê y

2
i · C2

viê



≥ min
Xn−k−1

 max
y⊥Xn−k−1,y⊥Z,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)−

∑
vi∈ê y

2
i · C2

vi,ê



≥ min
Xn−k−1

 max
y⊥Xn−k−1,y⊥Z,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)



≥ min
Xn−k+t−2

 max
y⊥Xn−k+t−2,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)


= λk−t+1(L(G)).

In the third line we added the condition y⊥Z, that makes the second term of the numerator
vanish and that restricts the maximum over a smaller set. In the fifth line we considered
an optimization that includes the one in the fourth line as particular case. This proves the
claim.

As shown by the next example, Theorem 5.1 is accurate in the sense that it is not possible
to substitute, in the claim, the inequality (8) by

λk−t+2(L(G)) ≤ λk(L(G \ ê))

which becomes, for |ê| = t = 2,

λk(L(G)) ≤ λk(L(G \ ê)).

Example 5.2. Let G be the simple graph on 7 nodes in Fig. 3. By Theorem 2.1 and Theorem
3.1 in [14],

λ7(L(G)) >
4

3
= λ7(L(G \ ê)).

This shows the accuracy of Theorem 5.1.

Now, while Theorem 5.1 considers the removal of edges of cardinality ≥ 2, the following
result is about the removal of loops.

Proposition 5.3. If ℓ ∈ E is a loop, then

λk(G \ ℓ) ≥ λk(G)
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Fig. 3. The simple graph in Example 5.2.

for all k such that λk(G) ≥ 1, and

λk(G \ ℓ) ≤ λk(G)

for all k such that λk(G) ≤ 1.

Proof. Assume that ℓ = {v1} and λk(G) ≥ 1. By (3), we have

λk(L(G \ ℓ)) = min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

− y21 · C2
v1,ℓ∑

vi∈V y2i deg(vi)− y21 · C2
v1,ℓ



≥ min
Xn−k−1

 max
y⊥Xn−k−1,y ̸=0

∑
e∈E

(∑
vi∈V yi · Cvi,e

)2

∑
vi∈V y2i deg(vi)


= λk(L(G)),

since adding the same non-negative quantity to the numerator and to the denominator makes
the resultant fraction closer to 1. This proves the first claim. The proof of the second claim
is analogous.

6. Conclusions

We have shown that, if the structure of a hypergraph with real coefficients is perturbed
by removing (or adding) vertices and edges, then the eigenvalues of the perturbed hyper-
graph interlace those of the original hypergraph. We have proved various inequalities for
each operator that we considered (adjacency matrix, Kirchhoff Laplacian and normalized
Laplacian), and we have shown tightness of the inequalities. These results are in line with
intuition, because the spectra of the operators associated to a hypergraph encode important
structural properties of the hypergraph. For future directions, it will be interesting to apply
these interlacing results to problems arising in both pure mathematics and applied network
analysis.
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