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Abstract

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is

considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a

large topological charge, termed giant vortices, are notoriously difficult to realise and even when

externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of

many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic

Bose-Einstein condensates and other superfluid systems, their experimental realisation remains

elusive. Polariton condensates stand out from other superfluid systems due to their particularly

strong interparticle interactions combined with their non-equilibrium nature, and as such provide

an alternative testbed for the study of vortices. By non-resonantly exciting an odd number of

polariton condensates at the vertices of a regular polygon, we observe the formation of a stable

discrete vortex state with a large topological charge as a consequence of antibonding frustration

between nearest neighbouring condensates.
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Quantised vortices are fundamental topological objects playing an important role in

branches of physics ranging from superfluids and superconductors to high energy physics

and optics. They exist in classical matter fields, described by a complex-valued function

Ψ(r, t) =
√
ρ(r, t) exp[iS(r, t)], as singular points in two-dimensions, or lines in three-

dimensions, where ρ = 0 and the phase S winds around in multiples of 2π. The wind-

ing of a quantised vortex, also called topological charge, is the integer defined as m =

(1/2π)
∮
C
∇S · dl, where C is the closed contour around the vortex singularity. Although

the formation, structure, dynamics, and turbulence of quantised vortices has been subject

of intense research [1] many fundamental aspects of vortex dynamics such as its effective

mass [2] and applicable forces [3] are still not fully understood. Vortex motions, even in the

simplest configurations, such as the advection of a single vortex of unit charge by a constant

superflow have intrigued the scientific community [4].

The creation of multiply quantised vortices, or giant vortices, in ultra-cold atomic Bose-

Einstein condensates (BECs) has challenged researchers [5–8] since a multiply-charged vor-

tex, both in a uniform and sufficiently large condensate [9], as well as in a trapped con-

densate [10], is dynamically and thermodynamically unstable and tends to break into an

array of singly-charged vortices [11]. Numerous theoretical proposals address how to sta-

bilise multiply charged vortices such as, exploiting stronger than harmonic confinement and

fast rotation [6, 7], using a near-resonant laser beam [8], introducing a second species of

BEC [12], organising spatiotemporally modulated interactions [13], or with spin-orbit cou-

pling [14]. However, evidence that many vortices can merge and stay stable as a single giant

vortex remains elusive, as is the case in other quantum fluid systems such as superfluid

helium-3 and 4 [16, 17].

In mesoscopic superconducting materials vortices of large topological charge have al-

ready been reported [18–20] with numerical simulations corroborating the evidence, since

the available experimental techniques provided limited probing of the vortex core [20–22].

In many respects, these vortices have similar physics to giant vortices in atomic BECs but

with external rotation controlled through an applied magnetic field. By increasing the am-

plitude of the magnetic field, a vortex of multiplicity three was experimentally observed in

a strongly confined type-II superconductor [23]. Apart from quantised vortices that exist

on a non-zero, and usually uniform background, a new class of vortices was introduced the-

oretically and achieved experimentally in optics and atomic physics: those found in optical
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lattices of ultra cold BECs or periodic photonic structures of light called discrete vortex soli-

tons (DVSs) [24–26]. The core of such vortices lies on a negligible density background and

their phase winds to provide spatially localised circular energy flows between lattice sites.

In previous experimental realisations, the phase corresponding to multiple singly-charged

vortices was directly imprinted by laser beams that resulted in stationary DVSs [27], and

a double-charged vortex was shown in a hexagonal photonic lattice [28]. Similarly, a ring

network of dissipatively coupled lasers [29, 30] or optical parametric oscillators [31] may

establish a phase winding as an excited state. Non-equilibrium condensates, on the other

hand, offer alternative mechanisms for stabilisation of giant vortices such as inward particle

fluxes toward the trapped condensate’s centre [32].

Geometric frustration (henceforth frustration) occurs in magnetic systems when the rel-

ative arrangement of spins posses multiple degenerate ground state configurations [33]. It

has been intensely studied since 1950, when its formation was presented in a two dimen-

sional Ising net in a triangular lattice [34], and later in the three dimensional pychlore

lattice [35]. Frustration can be engineered into systems by controlling the geometry and

coupling strength between spins. Atoms trapped in a two dimensional optical lattice were

able to simulate different regimes of the XY Hamiltonian [36]. Similarly, frustration has also

been seen in lattices of coupled laser systems, a negatively coupled triangular lattices with

±2π/3 phase locking has been observed, leading to singly-quantised vortices and alternate

chirality in the lattice [37]. In strongly-coupled microcavity polariton lattices, frustration

caused the observation of a flat band in the dispersion of a Lieb lattice [38].

In this article, we realise frustrated polygons of polariton condensates as a platform

to create and study circulating currents leading to vortices of varying topological charge.

Polaritons are solid-state quasiparticles that result from the hybridisation of strongly cou-

pled excitons and photons in semiconductor microcavities. At low densities, they behave

as short-lived bosons (several picoseconds lifetime) that can undergo a power-driven phase

transition into a non-equilibrium condensate [39] remaining indefinitely stable under con-

tinuous non-resonant excitation. Polariton condensates and related phenomena have been

the subject of intense investigation for some time [40, 41], including quantised vortices and

their dynamics [42–51]. Unlike DVSs in purely optical systems or photonic crystals, where

the phase winding comes from the laser, in polariton graphs, vortices form spontaneously

during condensation. In this respect, they are closer to vortices in atomic condensates, but
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FIG. 1. (a) Schematic showing a quantum well microcavity. Non-resonant lasers (red cones) at

normal incidence create polariton condensates at their respective locations. (b,c) Example re-

duced Brillouin zone energies of angular Bloch modes (red dots) in an N = 5 and N = 6 polygon

respectively. Blue curves show band structure in the thermodynamic limit. (d,j) Experimental

condensate photoluminescence in real-space and (e,k) Fourier-space in a hexagon geometry, with

radii R = 16.9 µm and R = 14.7 µm, showing in-phase and anti-phase locked condensates respec-

tively. (f,l) Corresponding experimentally extracted real-space polariton phase maps. (g-i) and

(m-o) show simulations of the steady state polariton condensate wavefunction Ψ(r, t) using the

driven-dissipative Gross-Pitaevskii equation in the in-phase and anti-phase locked configuration

respectively. (g,m) Real-space density |Ψ(r)|2, (h,n) Fourier-space density |Ψ̂(k)|2, (i,o) and phase

arg (Ψ(r)). Image parameters for all panels are noted in SI, Section VI.

as we demonstrate, they do not require any external stirring, and even multiply charged

vortices are fully stabilised in the non-equilibrium polariton system. Also, unlike vortices in

ultra-cold atomic BECs, polariton giant vortices generate spiral velocity profiles towards the
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vortex centre [52]. Here, we consider ballistically expanding condensates at the vertices of a

regular polygon. Figure 1(a) shows a schematic of the microcavity system with a pentagon

non-resonant pumping geometry (red cones). The term “ballistically expanding” means that

the condensates are not confined in a potential minimum but are instead gain-localised due

to the tightly focused (∼2 µm full-width-half-maximum) optical excitation beams feeding

particles into the condensates. The advantage of such non-Hermitian localisation is the co-

herent polariton outflow from each pump spot, causing strong interference with neighbouring

condensates [53].

By incrementally raising the polygon’s pump power, polaritons eventually undergo con-

densation and the system is described by an order parameter Ψ(r, t) belonging to a polariton

mode with the highest optical gain. By tuning the separation distance between pump spots,

one can control the coupling between nearest neighbours [54], and therefore, the phase con-

figuration across the polygon. Although we present results on a single macroscopic coherent

polariton condensate across the entire polygon, we will refer also to the vertices of the poly-

gon as “individual” condensates, which can interfere and synchronise. The modes of the

entire system belong to a point symmetry operator CN of cyclic N -fold rotations, where N

is the number of condensates (vertices in the polygon). Being rotationally periodic, one can

apply Bloch’s theorem along the planar azimuthal angle ϕ such that Ψq,n(r) = eiqϕuq,n(r)

where uq,n(r, ϕ) = uq,n(r, ϕ + 2π/N) is the Bloch mode of the system and q = 2πm/L is

the quasimomentum along the polygon’s circumcircle for m ∈ Z satisfying |m| ≤ N/2, and

L = Na being the length of the polygon’s circumcircle. In Fig. 1(b,c) we show example

two energy branches of the discrete Bloch modes (red dots) for N = 5 and N = 6 poly-

gon respectively in the reduced Brillouin zone. The blue curves denote the bands in the

thermodynamic limit N →∞.

Previously, it was shown that condensation of ballistically expanding condensates can be

correlated with the ground state configuration of theXY Hamiltonian,HXY = −
∑

ij Jij cos (θi − θj),

where Jij and θij = θi− θj are the coupling strength and the relative phase between conden-

sates i and j respectively [54, 55]. The coupling strength Jij depends on the pump power,

the distance between condensates, dij = |ri − rj|, and the in-plane wavenumber kc of the

condensate polaritons expanding from their respective pump spots [53], all of which can

be controlled by tuning the pumping power and geometry using spatial light modulators.

If one tunes the system to have Jij > 0, then the coupling is said to be ferromagnetic
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and a solution with maximum polariton gain has all condensates locked in-phase; whereas

if Jij < 0 the coupling is said to be antiferromagnetic and the condensates try to be in

anti-phase (π phase). In a regular polygon with uniform nearest neighbour interactions, the

XY Hamiltonian becomes cyclic HXY = −J
∑N

i=1 cos θi,i+1, with the boundary condition

θ1 = θN+1. It is then understood that in-phase and anti-phase configurations are simply

modes with quasimomentum q = 0 and q = Nπ/L, at the centre and edges of the crystal

Brillouin zone respectively where polaritons have been observed to preferentially condense

into [56]. Correspondingly, Bloch modes between the centre and the edges of the Brillouin

zone, i.e. 0 < |m| < N/2, are simply vortices of winding number m.

When J < 0, and N is odd, the edges of the Brillouin zone become forbidden and

polaritons condense instead into the state closest to the edge which maximises the gain. For

odd numbered N this state is θi,i+1 = ±(N − 1)π/N . Interestingly, a superposition of the

two counter-propagating modes is not observed as stable solution of the frustrated polygon

system, but instead, a breaking of the parity symmetry occurs with the formation of a net

polariton current along the polygon circumcircle. Such symmetry breaking can only be

attributed to nonlinear effects in the condensate and has previously been reported in both

experiment [57, 58] and theory [59–61]. Solutions of lower vorticity (further away from the

Brillouin zone edge) are also stable and observable in measurements even though they do

not correspond to the highest gain of the XY model. Here, we report on the observation of

these parity-breaking solutions forming discrete vortex (or simply vortex) states in polygon

configurations of polariton condensates with winding number m. In the simplest case of

N = 3, the formation of a |m| = 1 vortex (θi,i+1 = ±2π/3) was observed in 2016 [54].

To experimentally control the condensate phase configurations we inject equidistant po-

lariton condensates at the vertices of a regular polygon. We preclude any correlation between

the phase of the pumping source and the realised phase configurations, by pumping polari-

ton condensates using non-resonant continuous wave optical excitation on a multiple InGaAs

quantum well semiconductor microcavity [62] (see Fig. 1(a)). For a description of the sam-

ple, and excitation and detection scheme, see Section I of the Supplementary Information

(SI). In addition, we simulate the dynamics of the polariton condensates using the two-

dimensional driven-dissipative Gross-Pitaevskii equation [63, 64] written for the condensate
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FIG. 2. (a,b) Real- and Fourier-space imaging of a hexagon and heptagon in different coupling con-

figurations achieved by tuning the radius. Two leftmost columns show condensation of a hexagon

into in-phase (m = 0) and anti-phase (m = 3) configurations whereas four rightmost columns

show in-phase (m = 0) and vortex-formation (m = ±1,±2,±3) of a heptagon. (c) Extracted (red

crosses) and calculated (black dots) mutual first-order coherence g(1) versus parameter d extracted

from the interferogram between condensates for different polygon configurations. The values of g(1)

lie upon the continuous function (green dot-dashed line) given by g(1)(x) = cos (2πmx/N), where

x has replaced the discrete parameter d. The point at d = 0 corresponds to the autocorrelation of

the condensate wavefunction at zero time-delay and is set as g(1)(0) = 1. The radii of the polygon

are written in the bottom left hand corner of the real-space images in (a).

wavefunction, Ψ(r, t), and the rate equation of the hot exciton reservoir, X(r, t):

i~
∂Ψ

∂t
=

[
(iΛ− 1)

~2

2m∗∇
2 + α|Ψ|2 + gX +GP (r) +

i~
2

(RX − γ)

]
, (1)

∂X

∂t
= −

(
Γ +R|Ψ|2

)
X + P (r), (2)

where m∗ is the polariton effective mass, α is the polariton-polariton interaction strength, g

is the interaction strength of polaritons with the exciton reservoir feeding the condensate, G

is the interaction strength of polaritons with the dark background of inactive excitons which
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do not scatter into the condensate, R is the scattering rate of reservoir excitons into the

condensate, P (r) is the non-resonant pump(s), γ is the rate of losses of condensed polaritons

through the cavity mirrors, Γ is the rate of redistribution of reservoir excitons between

the different energy levels, and Λ is a phenomenological energy relaxation parameter [65],

(simulation parameters can be found in SI, Section II).

We start by investigating stationary states characterised by in-phase and anti-phase bond-

ing between condensates in the absence of frustration. Figures 1(d-f) show experimental

results for real-space, Fourier-space (kx-ky momentum plane), and phase of the polariton

photoluminescence (PL) in a hexagon of radius R = 16.9 µm. The coupling is clearly distin-

guishable as J > 0 from the odd number of bright fringes between the vertices, evidencing

in-phase locking. Figures 1(j-l) show same measurements for a hexagon of radius R = 14.7

µm, where we now observe an even number of fringes between the vertices (J < 0), evi-

dencing anti-phase locking. Figures 1(g-i) and (m-o) show corresponding simulations of the

steady state, in-phase and anti-phase locked, polariton condensate wavefunction using the

driven-dissipative Gross-Pitaevskii equation in agreement with experimental observations.

Other polygon geometries for both in-phase and anti-phase configurations of the condensates

are given in the SI, Section III. We note that all image parameters (scales) are given in SI,

Section VI.

We investigate the system where we time-integrate over multiple instances of the con-

densate. Here, we are unable to directly observe the frustrated current in one direction,

or the other, due to the stochastic choice of chirality during condensation and so, relative

condensate phase readout through interferometric techniques averages out. In-phase and

anti-phase states with θi,i+1 = 0 or π are the notable exception which are observable in

averaged measurements because they are non-degenerate. Nevertheless, as we describe in

the following, two stochastically appearing counter-circulating currents (±m) give rise to a

spatially oscillating coherence pattern that allows us to uniquely determine the vortex state

|m| in averaged measurements. The first-order mutual coherence function,

g
(1)
ij =

〈Ψ∗
i Ψj〉√

〈|Ψi|2〉〈|Ψj|2〉
i, j ∈ {1, . . . , N}, (3)

describes the coherence properties between two condensates i and j with wavefunctions Ψi,j

in a polygon of N coupled condensates. In the following, we assume that nodes are labelled

sequentially 1, 2, ..., N along the polygon. For a circulating current of charge m along the
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polygon satisfying 〈|Ψi|2〉 = 〈|Ψj|2〉 the complex coherence function is given by g(1)(d) =

exp (i2πmd/N) where d = |i− j|. In the case of equal probabilities of the two stochastically

appearing degenerate counter-propagating currents with charge ±m the mutual coherence

function becomes a standing wave,

g(1)(d) = cos (2πmd/N). (4)

By extracting the mutual coherence function g(1)(d) along the polygon nodes we are able

to determine the charge |m| (or alternatively Bloch mode) of the stochastically appearing

degenerate currents. In Fig. 2(c) we show the measured (red crosses) values of the mutual

coherence function for the systems shown in Figs. 2(a,b). The first column displays the

in-phase hexagon with all relative phases at zero and a high coherence. The second column

shows an anti-phase hexagon again with a high coherence but now interchanging between

+1 and −1, reflecting the phase jumps along the polygon in the anti-phase configuration.

The black dots in the coherence graphs indicate the value calculated by Eq. (4) and the

green dashed line represents the g(1) function replacing d for a continuous variable.

The most interesting phase configuration is predicted for an odd number of condensates

in the frustrated regime (J < 0), shown for a heptagon in the final three columns with

the fourth column depicting a phase difference of θi,i+1 = ±2π/7 indicating a vortex of

|m| = 1, the fifth column has θi,i+1 = ±4π/7 for a vortex of |m| = 2, and the final column

has θi,i+1 = ±6π/7 for a vortex of |m| = 3. The real values of the g(1) are extracted from

interferograms between the selected condensates with d = 0 representing the interference

of a condensate with itself. We note that the in-phase heptagon (m = 0) is displayed in

the third column and has a high coherence between all condensates. The coupling J in

the polygon is controlled by altering the radius of the polygon, which we detail in the SI,

Section V. The extracted data (red crosses) is in good agreement with the predicted values.

It is instructive to compare the extracted coherence properties of the anti-phase state of

the hexagon with the frustrated states of the heptagon. In the former, clear switching

of g(1) between -1 and 1 can be seen which gives a total of three full periods around the

hexagon, whilst for the circulating states with θi,i+1 = ±2π/7, ±4π/7, ±6π/7 we observe

one, two and three total periods around the heptagon respectively. We also note that for the

circulating states in the heptagon the discrete values do not occur at the peak or trough of

the wave, except for the case of d = 0 but at intermediary values due to the averaged phase
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of the circulating state. These results evidence nontrivial phase configuration appearing in

the polygon polariton condensates which can be attributed to frustration and spontaneous

onset of a circulating polariton current. We point out that our results are in agreement with

the ensemble averaged measurements performed on lattices of coupled laser systems [66].

We provide further evidence on the formation of a circulating polariton current by in-

vestigating condensation in the single shot regime where a single instance of the condensate

polygon is excited and measured. Figure 3(a) shows the experimental real-space PL of a

frustrated pentagon (N = 5), wherein we observe an even number of interference fringes be-

tween neighbouring condensates. Figure 3(b) shows the Fourier-space PL where we observe

an absence of radial nodal lines in contrast to Fig. 1(k). We point out that the presence

of radial nodal lines in the Fourier space PL would evidence anti-phase locked condensates,

corresponding to standing wave formation along the polygon and a zero-net current. Here,

however, the lack of nodal lines suggests the presence of a net particle current along the

polygons edge. For comparison, we show numerical simulations in Figs. 3(e,f) of the real-

and Fourier-space density of the condensate wavefunction resulting in a stable discrete vor-

tex solution with a winding m = −1. We note that the winding number sign in simulation

is stochastically determined from random initial conditions.

Although the frustrated vortex regime can be classified from the nontrivial interference

patterns appearing in the real- and Fourier-space PL, it does not concretely verify the

presence of a vortex state. We therefore resolve the spatial phase distribution of the vortex

using off-axis digital holography [42] (see SI, Section I). During condensation, the vortex

formation stochastically results in either clock- or anticlock-wise winding of the phase along

the polygon edge. Averaging over several condensate instances would therefore skew direct

measurement of the phase. Instead, in order to view the vortex state, we utilise a single

condensate realisation detection scheme, whereby each image of the polygon is the result

of a single instance of the condensate formation. Figure 3(c) shows the experimental phase

of the condensates with a m = −1 vortex, extracted from its interferogram, where it can

be seen to spiral about the polygon’s centre. Figure 3(d) shows a zoomed in the region

corresponding to the black dashed square in Fig. 3(c). Figures 3(g,h) show a corresponding

real-space phase map from the simulation in Fig. 3(e,f). To further verify that the entire

condensate possesses a circulating current we directly measure the phase coming from the

bright emission spots at the polygon vertices where most of the condensate resides. The
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FIG. 3. Pentagon condensate with a charge m = −1 vortex. (a) Experimental real-space PL,

(b) Fourier-space PL, and (c,d) phase extracted from interferometry from a single instance of the

condensate. Simulated steady state m = −1 vortex wavefunction (e) real-space density, (f) Fourier-

space density, (g,h) and phase. (d,h) Zoomed in regions of the dashed squares in (c,g) respectively.

(i) Phase difference between adjacent condensates (black dots) around the polygon extracted from

the black circles in (c). The red line is the expected phase difference of θi,i+1 = 2π/5. Green and

blue dash-dotted lines mark the maximum deviation. (j) Line profile extracted along the black

circle in (d,h) demonstrating a full 2π phase winding. Yellow dots correspond to azimuthal angle

equal to zero. Experimental data is represented by the coloured disks and numerical simulation by

the black curve.

experimentally measured relative phase between neighbouring condensates is demonstrated

with black dots in Fig. 3(i), which are extracted from the regions denoted by black circles
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FIG. 4. Pentagon condensate with a charge m = 2 vortex. (a) Experimental real-space PL and

(b,c) phase extracted from interferometry from a single instance of the condensate. Simulated

steady state m = 2 vortex wavefunction (d) real-space density, (g) Fourier-space density, (e,f) and

real space phase. (c,f) Zoomed in regions of the dashed squares in (b,e) respectively. (h) Phase

difference between adjacent condensates (black dots) around the polygon extracted from the black

circles in (b). The red line is the expected phase difference of θi,i+1 = 4π/5. Green and blue

dash-dotted lines mark the maximum deviation. (i) Line profile extracted along the black circle

in (c,f) demonstrating a full 4π phase winding. Yellow dots correspond to azimuthal angle equal

to zero. Experimental data is represented by the coloured disks and numerical simulation by the

black curve.
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in Fig. 3(c). The relative phases are close to the expected vortex value of θi,i+1 = 2π/5

(red line) with a maximal deviation of 0.6 radians (blue and green dash-dotted lines). Line

profiles taken along the black circles in Figs. 3(d,h) are shown in Fig. 3(j) and unveil a full

2π phase winding about the vortex core, where the experimental data is represented by the

coloured disks and the numerical simulation by the black curve.

In Fig. 4 we show an experimental realisation of a frustrated pentagon condensate con-

taining a vortex of charge m = 2. Figure 4(a) shows the experimental real-space PL wherein

we again observe an even number of interference fringes between neighbouring condensates

in real-space. Figures 4(b,c) show the phase of the polygon condensate which can be seen

to wind about its centre characterised by two phase singularities at the core. Figures 4(d-g)

show a corresponding numerical simulation of a steady state m = 2 vortex. In Fig. 4(h)

we show the experimentally measured relative phase between neighbouring condensates, ex-

tracted from the regions denoted by black circles in Fig. 4(b), revealing the expected double

vortex phase difference of θi,i+1 = 4π/5 (red line) with a maximal deviation of 0.45 radians

(blue and green dash-dotted lines). Line profiles taken along the black circles in Figs. 4(c,f)

now unveil a full 4π phase winding about the vortex core (see Fig. 4(i)). We observe that the

line profile of the simulation (black dots, Fig. 4(i)) is not straight but has small oscillations

along the azimuthal angle. We attribute this to the system not being cylindrically symmet-

ric, and so, angular momentum is no longer a good quantum number and the 2D angular

harmonics eiwϕ should be replaced by angular Bloch solutions uq,n(r, ϕ)eiqϕ which in general

possess more complex phase structure leading to the extra modulation of the phase seen in

simulations, similar to what has been seen for vortices in optical lattices like in Ref. [26]. We

note that we do not externally imprint the vortex phase [67, 68], but we rather control the

dynamics of the coupling between condensates, which leads to the spontaneous formation

of these vortices. In Section IV in the SI we estimate the probability of vortex formation

through simulations of varying polygon radii, and irregularities.

We observe that in some instances for frustrated odd-numbered polygons the condensates

do not successfully “agree” with each other on which direction to form a current. This leads

to a state which does not have a single central vortex but rather forms a vortex-antivortex

pair as shown in Fig. 5. Figure 5(a,b) shows the experimental real-space magnitude of the

PL and phase respectively. The diagonal dashed lines are guide to the eye marking a split in

density across the condensate polygon. Figure 5(c) shows a zoomed in region corresponding
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FIG. 5. Pentagon condensate with a |m| = 1 vortex-antivortex pair. (a) Experimental real-

space PL and (b,c) phase extracted from interferometry from a single instance of the condensate.

Simulated steady state vortex-antivortex wavefunction (d) real-space density, (e,f) phase, and (g)

Fourier-space density. (c,f) Zoomed in regions of the dashed squares in (b,e) respectively. (h) Phase

difference between different condensates (black dots) in the polygon extracted from the black circles

in (b). (i) Line profiles extracted along the two dashed circles in (d,h). Yellow and green markers

correspond to azimuthal angle equal to zero. Experimental data is represented by the coloured

disks and numerical simulation by the black-dotted lines.

to the black dashed square. A vortex-antivortex pair can be observed with cores separated

by ∼ 1 µm. Figures 5(d-g) show a corresponding numerical simulation of a condensate
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steady state with a vortex-antivortex pair, obtained by displacing pump spot number 4 in

the pentagon by 2.8 µm radially outwards. Figure 5(h) shows that the measured phase

difference between the vertices 0-1, 1-2, 2-3, and 0-3 is equal to π whereas the phase of

condensate 4 is not well defined due to destructive interference, fracturing it into two parts.

Line profiles taken along the black circles in Figs. 5(c,f) unveil an opposite 2π phase winding

about each of the vortex cores (see Fig. 5(i)).

We lastly discuss some sources of discrepancies appearing between theory and observa-

tions. We firstly underline that the mean-field model [Eqs. (1) and (2)] assumes ideal and

symmetric conditions whereas experiment is always subject to some error in the position and

intensity of the excitation spots, and additionally sample disorder which cannot be avoided.

Second, we have only included a phenomonological energy relaxation mechanism Λ for sim-

plicity whereas better agreement between observations and theory can possibly be achieved

by including directly the dynamics of the exciton reservoir into the energy relaxation of the

polaritons [69].

Our experimental and numerical observations provide strong evidence of the presence of

stable polariton currents resulting in discrete vortices of winding numbers |m| ≥ 1 appearing

spontaneously in odd numbered polygon structures of exciton-polariton condensates. Con-

trolling the size of the polygon allows one to tune the coupling between condensates from

being in-phase locked to anti-phase locked. In the latter, for an odd numbered polygon,

the combined effects of antibonding frustration and parity symmetry breaking leads to the

formation of circulating polariton currents along the polygon’s edge, causing the presence

of vortices at the centre with winding number |m| ≤ (N − 1)/2 where N is the number

of condensates (vertices) in the polygon. The future outlook for these circulating currents

can involve tuning the geometry and the profile of the excitation beams such as to effec-

tively control the amount of the circulating polariton fluid, its tangential and inward radial

velocities fields, and even the density of the condensate residing in the central region of

the polygon around the core of the vortex. Thus, providing an flexible platform to study

light-matter vorticity.
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Observation of giant discrete vortices in exciton-polariton poly-

gon condensates: Supplementary Information

I. SAMPLE & EXPERIMENTAL METHODS

The semiconductor microcavity structure studied here is a planar, strain compensated

2λ GaAs microcavity with embedded InGaAs quantum wells (QWs). Strain compensation

was achieved by AlAs0.98P0.02/GaAs distributed Bragg reflector layers instead of the thin

AlP inserts in the AlAs layers used in Ref. [S1] as their effective composition could be

better controlled. The bottom distributed Bragg reflector consists of 26 pairs of GaAs and

AlAs0.98P0.02 while the top has 23 of these pairs, resulting in very high reflectance (>99.9%)

in the stop-band region of the spectrum. The average density of hatches along the [110]

direction was estimated from transmission imaging to be about 6/mm, while no hatches along

the [11̄0] direction were observed. Three pairs of 6 nm In0.08Ga0.92As QWs are embedded

in the GaAs cavity at the anti-nodes of the field as well as two additional QWs at the first

and last node to serve as carrier collection wells. The large number of QWs was chosen to

increase the Rabi splitting and keep the exciton density per QW below the Mott density [S2]

also for sufficiently high polariton densities to achieve polariton condensation under non-

resonant excitation. The strong coupling between the exciton resonance and the cavity mode

is observed with a vacuum Rabi-splitting of 2~Ω ∼ 8 meV. A wedge in the cavity thickness

allows access to a wide range of exciton-cavity detuning. All measurements reported here

are taken at ∆ ≈ −5.5 meV. The measured Q-factor is ∼ 12000, while the calculated bare

cavity Q-factor, neglecting in-plane disorder and residual absorption, is ∼ 25000. As the

emission energy of the InGaAs QWs is lower than the absorption of the GaAs substrate,

we can study the photoluminescence (PL) of the sample both in reflection and transmission

geometry. The transmission geometry, which is not available for GaAs QWs, allows us

to filter the surface reflection of the excitation, and has been widely utilised to probe the

features of polariton fluids [S3, S4] under resonant excitation of polaritons. Using real and

Fourier space imaging under non-resonant optical excitation, polariton condensation, and a

second threshold marking the onset of photon lasing, i.e. the transition from the strong to

the weak-coupling regime, was studied in this microcavity [S5].

In the experiments described here the sample was held in a cold finger cryostat at a
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FIG. S1. Experimental set up: mirrors (M, M*(periscope), M (mounted on translation stage), DM

(dichroic mirror)); lenses (L); polarising beamsplitter (PBS); non-polarising beamsplitter (NPBS);

half-wave plate (HWP); quarter-wave plate (QWP); long-pass filter (LP); and beam block (B).

Simultaneously, real-space PL is detected onto the uncoupled CCD and 2D Fourier space is pro-

jected onto the spectrometer allowing us to view either the 2D Fourier space or the energy resolved

dispersion by using the grating. The external seed laser is brought to be resonant with the PL by

going on the grating and detecting the PL from BS1 and the laser by removing block (B) in front

of BS2 and tuning the external laser. For the homodyne interferometry, the external seed laser is

split before the sample, along path 1, a small amount seeds one of the condensates, whilst along

path 2, the remainder is interfered with the PL on BS3. The path of the external seed laser is

shown in green, the PL is shown in red, and the excitation laser is shown in blue.

temperature of T ≈ 4 K. Continuous wave (CW) excitation is provided by a single mode

Ti:Sapphire laser modulated by an acousto-optic modulator (AOM) to form a quasi-CW

beam. We use non-resonant excitation from the epi side and utilise two different detections

schemes schemes: detect the emission from the substrate side so that the excitation is filtered

by the absorption of the GaAs substrate (transmission geometry), or detect the emission from

the epi side to prevent disruption of the Fourier space imaging (reflection geometry). The

optical excitation, for all the measurements reported in this work, is at the first reflectivity

minimum above the cavity stop band. The spatial profile of the excitation beam is modulated

to a regular polygon with Gaussian profiles at each vertex of approximately equal in diameter

spots using a reflective spatial light modulator (SLM). We use high numerical aperture

microscope objectives (0.4 ≤ NA ≤ 0.5) to focus the spatially modulated beam to ∼1-

2µm in diameter, at full width at half maximum, excitation spots and to collect the PL in
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reflection geometry. The PL from the sample can also be collected in transmission geometry

with ±25◦ collection angle, by a 0.42 NA microscope objective. The resonant seed laser

(Toptica) mode is first cleaned with pinhole (PH) to ensure a clean phase front. Then the

seed laser is split into two paths at PBS1 with a small amount down path 1, directed onto

the sample using a dichroic mirror (DM) which passes the excitation laser but reflects the

PL wavelength; and the rest down path 2 where the laser is interfered with the PL on BS3

for homodyne interferometry. The remainder of the excitation laser is filtered with a long

pass filter (LP) and the paths are brought to zero time delay by controlling mirror M which

is on a linear translational stage. Two-dimensional Fourier and real-space PL imaging are

obtained by projecting the corresponding space onto a cooled charge-coupled device (CCD)

camera.

Initially, we viewed the system by time averaging over multiple instances of the condensate

to obtain real- and Fourier-space images. The PL is then directed at a second SLM (not

shown) where the hologram design allowed us to investigate the first-order mutual coherence

function between any two condensates from the polygon [S6]. The selected PL was projected

onto a CCD in Fourier-space so that the mutual coherence between the two condensates

under investigation could be seen in the resultant interferogram. The magnitude of the |g(1)|

is extracted from the interferograms by fitting with

Iint = I1 + I2 + 2
√
I1I2|g(1)| cos (kx+ θ), (S1)

where Iint, I1 and I2 are read from line profiles along a direction x taken across the images

of the interference, reference arm 1, and reference arm 2, respectively [S7]. The fitting

parameters are the phase (θ), wavenumber (k) and coherence magnitude (|g(1)|), allowing

us to directly extract the phase and coherence for each dataset.

Since the phases across the polygon cannot be measured directly, we utilise homodyne

interferometry [S8] (see Fig. S1). We seed one of the condensates with part of an external

laser (Toptica) which is tuned to be resonant with the condensate. The external seed

perturbs the condensate to the frequency of the seed laser, by utilising the U(1) symmetry

breaking at the point of condensation, without interfering with the dissipative dynamics of

the condensate. The PL is then interfered with the remainder of the external seed laser on

the third non-polarising beam splitter (BS3). We then use off-axis digital holography [S9]

to extract both magnitude and phase of the condensate order parameter Ψ at the resonance
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energy ~ω of the seed laser. Furthermore, to view a single instance of the condensate, we

trigger the AOM once, thereby creating a single instance of the condensate which is 20− 60

µs in length. We synchronise the CCDs detecting real-, Fourier-space and energy resolved

dispersion to the AOM thereby ensuring that the CCDs record the entirety of each instance

of the condensate.

II. 2D GROSS-PITAEVSKII SIMULATION PARAMETERS

The values for the parameters appearing in Equations (1) and (2) to simulate the two-

dimensional driven-dissipative Gross-Pitaevskii equation are specified here. The polariton

mass and lifetime are based on the sample properties: m∗ = 0.35 meV ps2 µm−2 and

γ−1 = 5.5 ps. We choose values of interaction strengths typical of GaAs based systems:

α = 3.3 µeV µm2 and g = 2α. The redistribution rate of reservoir excitons is taken here as

comparable to the condensate decay rate Γ−1 = 5 ps and the damping parameter is chosen

small Λ = 0.05. The final two parameters are found by fitting numerical results to experiment

which gives ~R = 33 µeV µm−2, and G = 66 µeV µm−2. The n-th pump element (vertex) is

written as a Gaussian profile Pn(r) = P0e
−r2n/2w

2
RMS where rn =

√
(x− xn)2 + (y − yn)2, and

(xn, yn) denote the coordinates of the element. Here P0 denotes the pump power density,

and wRMS = 1.27 µm the RMS width (corresponds to a 3 µm full-width-half-maximum),

slightly larger than the incident light beam width in order to account for the small diffusion

of excitons from the pump spots.

III. EXPERIMENTAL NON-VORTEX CONFIGURATIONS

Condensate octagon and decagon geometries are displayed in Fig. S2, synchronised in

in-phase (left hand side) and anti-phase (right hand side) configuration with respect to

nearest-neighbour condensates. The in-phase states in Figs. S2(a,g) show the real-space

configuration with an odd number of fringes between nearest neighbour condensates (in this

case three fringes). In real- (Figs. S2(a,g)) and Fourier-space (Figs. S2(b,h)) both display a

bright spot at the centre indicating that all spots are in-phase. The phase in Figs. S2(c,i)

reflect the clear pattern in the real-space and it can be seen that the spot centres are all at

the same phase. Conversely, the anti-phase configurations have a dark spot at the centre
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(a) (c)(b) (d) (e) (f)

(j) (k) (l)(g) (h) (i)

In Phase Anti-Phase

FIG. S2. Real- (a,d), Fourier-space PL (b,e), and real-space phase (c,f) of an octagon condensate

in in-phase and anti-phase configurations. (g-l) Same measurements for a decagon condensate.

The real and Fourier space PL is time-averaged and displayed on a log scale between 0.01 and 1.

The phase is extracted from time-averaged interferograms with off-axis digital holography.

and display clear radial nodal lines in real- Figs. S2(d,j) and Fourier-space Figs. S2(e,k).

The corresponding polariton phase maps are shown in Figs. S2 (f,l), where neighbouring

spots can be clearly observed in anti-phase.

Similarly, in the non-frustrated regime (J > 0) odd numbered pump polygons will form

condensates in the in-phase configuration. The in-phase state has a bright fringe between

adjacent condensates as well as the bright central fringe in both real- and Fourier-space

images, as shown in Figs. S3(a,b,d,e,g,h) for a pentagon, heptagon and nonagon, respectively.

The corresponding polariton phase maps are shown in Figs. S3(c,f,i), where the neighbouring

spots can be seen to be in-phase.

IV. SIMULATED VORTEX FORMATION STATISTICS

In Fig. S4(a) (red dot-dashed curve) we show the probability of a |m| = 2 vortex forming

in a pentagon geometry by simulating Eq. (1) from stochastic initial conditions, averaged

over 30 realisations (Monte-Carlo methods). The horizontal axis represents the short dis-

tance d between neighbours (edge length) which is related to the polygons radius R through

the formula d = 2R sin (π/N). Between the regions of vortex formation, the probability of

in-phase solutions (blue curve) forming becomes dominant as expected. The probability is
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(d) (f)(e)

(g) (i)(h)

(a) (c)(b)

FIG. S3. Real- (a), Fourier-space PL (b), and real-space phase (c) of a pentagon in in-phase

configuration. Same measurements are shown for heptagon (d-f) and nonagon condensates (g-i).

Real- and Fourier-space PL is time-averaged and displayed on a log scale between 0.01 and 1. The

phase is extracted from time-averaged interferograms with off-axis digital holography.

estimated from the root-mean-square error of the condensate phase at each vertex,

ERR(θ̄) =

√√√√ 1

2N

[
N∑

n=1

(cos (θ̄)− cos (θn,n+1))2 + (sin (θ̄)− sin (θn,n+1))2

]
. (S2)

Here θ̄ is the expected phase configuration (e.g., θ̄ = 0 for in-phase configuration). At

the end of each simulation we classify the formation of the expected state successful when

ERR(θ̄) ≤ 0.05. The probability is then calculated as the number of successful formations

over number of realisations. In Fig. S4(b) we show the probability of in-phase (blue whole

line) and anti-phase (red dot-dashed line) configurations forming in a polygon of N = 6.

The results evidence that non-frustrated polygons have step-like domain walls separating

the regimes of in-phase and anti-phase configurations. This is in contrast to the frustrated

(e.g., N = 5) polygons shown in Fig. S4(a) where the vortex formation probability follows

a more complex distribution.

We also investigate the formation probability of a |m| = 2 vortex state for non-ideal
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FIG. S4. (a) Simulated probability of |m| = 2 vortex formation (red dot-dashed line) against prob-

ability of in-phase configuration (blue whole line) using Eq. (1) for a pentagon pumping geometry.

The average is done over 30 realisations of stochastic initial conditions. The horizontal axis denotes

the short distance between condensates (the edges of the polygon). (b) Simulated probability of

an anti-phase formation (red dot-dashed line) against probability of in-phase configuration (blue

whole line) using Eq. (1) for a hexagon pumping geometry. (c) Probability of |m| = 2 vortex

formation for increasing standard deviation in the randomly displaced vertex coordinates of the

pentagon.

pentagons. We introduce uncertainties to the coordinates of each pump vertex written

(xn + dx, yn + dy). Here, dx, dy are normally distributed random variables with zero mean

and standard deviation σ. In Fig. S4(c) we show the drop in probability of the |m| = 2

vortex forming for increasing standard deviation. These results carry an important message.

As the the number of pump spots increases the probability of maintaining a perfectly regular

polygon drops since experimental uncertainties are never fully avoided, and therefore the

probability of observing a vortex state diminishes. This challenge should then be overcome

by either designing an alternative discrete rotational geometry which favours more strongly

the formation of vortex states, or through future design of higher quality experiments.

V. RADIUS SCAN OF HEPTAGON

A scan of the radius of a heptagon was performed whilst integrating over multiple in-

stances of the condensate as the real-space shows in Fig. S5. The system was found to
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be quite robust and stable over the course of the measurement. The system is initially in

the “fifth” in-phase configuration at 19.81 µm corresponding to five bright fringes observed

between neighbouring condensates and a bright notch at the centre. Upon increasing the

radius, the system alters whilst it does retain five fringes between vertices, the centre now

has a small dark notch surrounded by a bright ring, most clearly seen at a radius of 21.12

µm corresponding to the first vortex state forming. Further increase of the radius caused

the state to fracture one or more of the condensates similar to the vortex-antivortex state

demonstrated in Fig. 5. Furthermore, at a radius of 22.53 µm, two of the condensates can

be seen in the integrated real-space to be splitting (middle left-hand and bottom left-hand

condensates), indicative that the frustration in the polygon has caused some of the conden-

sates to split. A different number of fringes can be seen between different vertices (either

five or six).

The next state to occur is seen at 23.29 µm with six fringes between vertices, where the

real-space pattern has a heptagon at its centre surrounding a dark notch, (Fig. S5, fourth row,

second image). The heptagon pattern in real-space comes from several instances of both

+θi,i+1 and −θi,i+1 being time integrated causing a merging of the patterns and reduced

visibility in the fringes. The heptagon then eventually returns to in-phase configuration at

a radius of 24.38 µm with seven fringes between neighbouring condensates (Fig. S5, bottom

row, third image).

VI. IMAGE PARAMETERS

We have used two colour scales to display the data in this work. The scaling in each

figure is such that it display’s the data clearly and is listed below per figure.

Figure 1: The real- and Fourier-space is displayed in false, logarithmic greyscale and satu-

rated between 0.001-1 (d,e,j,k) and 0.01-1 (g,h,m,n). The phase is displayed in a linear Red-

White-Blue scale between 0 and 2π (f,j,l,o). The scale bars represent 10 µm (d,f,g,i,j,l,m,o),

and 1 µm−1 (e,h,k,n).

Figure 2: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.005-1. The scale bars represent 10 µm row (a), and 1 µm−1 row (b).

Figure 3: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.01-1 (a,b,e,f). The phase is displayed in a linear Red-White-Blue scale
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21.55 µm 21.77 µm 21.98 µm 22.42 µm 22.53 µm

22.64 µm 22.75 µm 22.86 µm

21.12 µm

22.96 µm 23.08 µm

23.22 µm 23.51 µm 23.73 µm 23.95 µm

24.16 µm 24.27 µm 24.38 µm 24.49 µm

23.29 µm

24.60 µm

20.46 µm 20.90 µm

FIG. S5. Increasing the radius of a heptagon from ∼ 19.81 µm to ∼ 24.6 µm. The normalised

real-space can be seen to go from in-phase with five fringes between neighbouring condensates at

19.81 µm; to the first vortex state at 21.12 µm; to the second vortex state at 23.29 µm; and back to

in-phase at 24.38 µm, where seven fringes can be seen between neighbouring condensates. Between

these states there are several fractured states. The third vortex state, which would contain a

three-fold vortex with a full phase rotation of 6π was not observed in this run.

between 0 and 2π (c,d,g,h). The scale bars represent 10 µm (a,c,e,g), 1 µm (d,h), and 1

µm−1, (b,f).

Figure 4: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.01-1 (a,e,f), and 0.07-0.12 (b). The phase is displayed in a linear Red-
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White-Blue scale between 0 and 2π (c,d,g,h). The scale bars represent 10 µm (a,c,e,g), 5

µm (b), 1 µm (d,h), and 1 µm−1 (f).

Figure 5: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.05-1 (a), 0.116-0.17 (b), 0.01-1 (e,f). The phase is displayed in a linear

Red-White-Blue scale between 0 and 2π (c,d,g,h). The scale bars represent 10 µm (a,c,e,g),

5 µm (b), 1 µm (d,h), and 1 µm−1 (f).

Figure S2: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.01-1 (a,b,e,h,j,k), 0.004-1 (g) and 0.001-1 (d). The phase is displayed

in a linear Red-White-Blue scale between 0 and 2π (c,f,i,l). The scale bars represent 10 µm

(a,c,d,f,g,i,j,l), and 1 µm−1 (c,e,h,k).

Figure S3: The real- and Fourier-space is displayed in false, logarithmic greyscale and

saturated between 0.01-1 (a,b,e,g,h) and 0.04-1 (d). The phase is displayed in a linear Red-

White-Blue scale between 0 and 2π (c,f,i). The scale bars represent 10 µm (a,c,d,f,g,i), and

1 µm−1 (c,e,h).

Figure S5: All images are displayed in logarithmic mocha colour scale saturated between

0.001 and 1 to make the low intensity fringes more visible. All images are displayed on the

same scale and the scale bar in the bottom right represents 10 µm.
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