The University of Southampton
University of Southampton Institutional Repository

Multilevel structured low-density parity-check codes

Multilevel structured low-density parity-check codes
Multilevel structured low-density parity-check codes
Low-Density Parity-Check (LDPC) codes are typically characterized by a relatively high-complexity description, since a considerable amount of memory is required in order to store their code description, which can be represented either by the connections of the edges in their Tanner graph or by the non-zero entries in their parity-check matrix (PCM). This problem becomes more pronounced for pseudo-random LDPC codes, where literally each non-zero entry of their PCM has to be enumerated, and stored in a look-up table. Therefore, they become inadequate for employment in memoryconstrained
transceivers. Motivated by this, we are proposing a novel family of structured LDPC codes, termed as Multilevel Structured (MLS) LDPC codes, which benefit from reduced storage requirements, hardware-friendly implementations as well as from low-complexity encoding and decoding. Our simulation results demonstrate that these advantages accrue without any compromise in their attainable Bit Error Ratio (BER) performance, when compared to their previously proposed more complex counterparts of the same code-length. In particular, we
characterize a half-rate quasi-cyclic (QC) MLS LDPC code having a block length of 8064 that can be uniquely and unambiguously described by as few as 144 edges, despite exhibiting an identical BER performance over both Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh (UR) channels, when compared to a pseudorandom construction, which requires the enumeration of a significantly higher number of 24,192 edges.
485-489
Bonello, Nicholas
8a9b4532-2e4e-40e4-9207-49009756f1c2
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Bonello, Nicholas
8a9b4532-2e4e-40e4-9207-49009756f1c2
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Bonello, Nicholas, Chen, Sheng and Hanzo, Lajos (2008) Multilevel structured low-density parity-check codes. In IEEE International Conference on Communications. pp. 485-489 . (doi:10.1109/ICC.2008.96).

Record type: Conference or Workshop Item (Paper)

Abstract

Low-Density Parity-Check (LDPC) codes are typically characterized by a relatively high-complexity description, since a considerable amount of memory is required in order to store their code description, which can be represented either by the connections of the edges in their Tanner graph or by the non-zero entries in their parity-check matrix (PCM). This problem becomes more pronounced for pseudo-random LDPC codes, where literally each non-zero entry of their PCM has to be enumerated, and stored in a look-up table. Therefore, they become inadequate for employment in memoryconstrained
transceivers. Motivated by this, we are proposing a novel family of structured LDPC codes, termed as Multilevel Structured (MLS) LDPC codes, which benefit from reduced storage requirements, hardware-friendly implementations as well as from low-complexity encoding and decoding. Our simulation results demonstrate that these advantages accrue without any compromise in their attainable Bit Error Ratio (BER) performance, when compared to their previously proposed more complex counterparts of the same code-length. In particular, we
characterize a half-rate quasi-cyclic (QC) MLS LDPC code having a block length of 8064 that can be uniquely and unambiguously described by as few as 144 edges, despite exhibiting an identical BER performance over both Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh (UR) channels, when compared to a pseudorandom construction, which requires the enumeration of a significantly higher number of 24,192 edges.

Text
c-icc2008-2 - Version of Record
Restricted to Repository staff only
Request a copy

More information

Published date: 19 May 2008

Identifiers

Local EPrints ID: 452322
URI: http://eprints.soton.ac.uk/id/eprint/452322
PURE UUID: 76ba517c-316c-4490-8af5-dce29286d563
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 07 Dec 2021 17:31
Last modified: 25 Jan 2022 02:31

Export record

Altmetrics

Contributors

Author: Nicholas Bonello
Author: Sheng Chen
Author: Lajos Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×