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Local risk minimization analysis for contingent claims using weak
derivatives and running infimum processes

by Nikolas Karpathopoulos

In this thesis, we examine the local risk minimization approach and the Föllmer-
Schweizer decomposition, in certain credit risk models. We start by extending the
model proposed by Okhrati et al. (2014) to the non-smooth case for which the hedging
strategies are based on. Assuming that the evolution of the price of the underly-
ing asset is a Lévy process of finite variation, we investigate the local risk minimiza-
tion for a defaultable claim, whose default time is given through a first passage time
(structural framework) where the default barrier is constant. We derive the Kunita-
Watanabe (KW) decomposition through a solution of a partial-integro differential equa-
tion (PIDE) using non-smooth Itô’s formula of Okhrati and Schmock (2015). This allow
us to obtain a solution of a PIDE which is continuous but not necessarily smooth.

We also investigate a structural credit risk model using the local risk minimization
approach where the default is modelled via a random variable. In this model, the
underlying asset is a spectrally positive Lévy process and the compensator technique
are used to obtain the Föllmer-Schweizer decomposition for a contingent claim that is
prone to default from an investor’s point of view. In our analysis, we use a progressive
filtration G. We highlight that we do not assume that the H-hypothesis holds, which
states that a local martingale under the initial filtration F remains a local martingale
under the expanded filtration G.

Furthermore, we study the local risk minimization for a defaultable contingent claim
where the default time is exogenously defined though a hazard rate model depending
on both the underlying and its infimum. This allows us to introduce some particularly
interesting cases for claims that are subject to both endogenous and exogenous defaults.
The endogenous default is determined in a structural framework depending on the in-
fimum process with constant barrier. Similarly to the previous model, our construction
is made under a progressive filtration expansion G. In this setup, the underlying asset
is modelled through an exponential jump diffusion Lévy process. We aim at determ-
ining locally risk minimizing hedging strategies through solutions of either PDEs or
PIDEs. We also provide some applications and examples in credit risk modelling for
the diffusion and jump diffusion case.

Finally, under the setup of the above models, we provide some credit risk models
examples and their associated numerical implementations through solutions of PDEs
and PIDEs using finite differences.



Contents

List of Figures vi

Declaration of Authorship vii

Acknowledgments ix

Nomenclature xi

1 Introduction 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research aims and outcomes . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic definitions and preliminaries 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introduction to stochastic calculus . . . . . . . . . . . . . . . . . . . . . 9

2.3 Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Stochastic Integration for semimartingales and quadratic variation 13

2.3.2 Compensators and predictable quadratic variation . . . . . . . . 15

2.4 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Itô’s lemma for semimartingales and Lévy processes . . . . . . . 21

2.4.2 Compensation formula for Lévy integrals . . . . . . . . . . . . . 23

2.4.3 Reflected Lévy processes . . . . . . . . . . . . . . . . . . . . . . . 24

3 Introduction to credit risk modelling 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Merton’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 First passage models . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Extensions and drawbacks of first passage models . . . . . . . . . 33

3.3 Reduced form models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



3.3.1 Intensity based models . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Hazard rate models . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Quadratic hedging methods . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Risk minimization approach: martingale case . . . . . . . . . . . 44
3.4.2 Local risk minimization approach: semimartingale case . . . . . 48
3.4.3 Minimal martingale measure . . . . . . . . . . . . . . . . . . . . 51
3.4.4 Mean variance approach . . . . . . . . . . . . . . . . . . . . . . . 54

4 Hedging defaultable claims by Itô’s-formula: the case of non-smooth
functions 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Preliminaries and model description . . . . . . . . . . . . . . . . . . . . 58
4.3 Itô’s lemma for the non-smooth case for Lévy processes of finite variation 59
4.4 LRM for a defaultable claim . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 KW and GKW decompositions . . . . . . . . . . . . . . . . . . . 61
4.4.2 PLRM strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Partial information 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Types of partial information . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Filtration expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Initial expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Progressive expansion . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Filtration shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Locally risk minimizing hedging strategies under a random barrier 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Preliminaries and model description . . . . . . . . . . . . . . . . . . . . 82
6.3 Martingales associated with reflected Lévy process . . . . . . . . . . . . 86
6.4 Canonical decompositions under the progressive filtration expansion G 93
6.5 Hedging strategy for a defaultable claim under partial information . . . 97

6.5.1 Local risk minimization under G . . . . . . . . . . . . . . . . . . 101

7 Local risk minimization and the running infimum process 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Model description and preliminary results . . . . . . . . . . . . . . . . . 105

7.2.1 Closed form formulas of some canonical decompositions . . . . . 107
7.3 LRM hedging strategies of claims dependent on the running infimum

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Diffusion models and running infimum process . . . . . . . . . . . . . . 118
7.5 Jump-diffusion models and running infimum process . . . . . . . . . . . 121

ii



8 Numerical results 125

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Finite differences for advection equation . . . . . . . . . . . . . . . . . . 125

8.2.1 Various types of finite differences for the advection equation . . . 126

8.2.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Finite differences for the advection PIDE . . . . . . . . . . . . . . . . . 130

8.3.1 Truncation of integrals . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.2 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.3 Simulation results for the local risk minimization . . . . . . . . . 135

8.4 Finite differences for a 3D PIDE . . . . . . . . . . . . . . . . . . . . . . 136

8.4.1 Simulation results for the local risk minimization approach in G 140

8.5 PIDE and PDE for the hazard rate model . . . . . . . . . . . . . . . . . 143

8.5.1 Diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.5.2 PIDE Jump diffusion case . . . . . . . . . . . . . . . . . . . . . . 146

9 Conclusion and future work 149

9.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 152

A A martingale associated with the reflected Lévy process at its in-
fimum: jump diffusion case. 161

B Projection formulas 165

C Derivatives approximation through the Euler scheme 169

iii



iv



List of Figures

3.1 Illustration of a first passage model, when the underlying asset is con-
tinuous and the barrier is constant. . . . . . . . . . . . . . . . . . . . . . 31

3.2 Credit spread in Merton’s model with maturity T = 5, r = 0.05 and
volatility σ = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Relation between FS decomposition and GKW decomposition in the
continuous semimartingale case, through the MMM. . . . . . . . . . . . 53

6.1 Simulation results for Example 6.3, when (Xt)t≥0 is a compound Poisson,
where the jumps are exponentially distributed, with parameters λ = 20,
q = 200, T = 1 and µ = −λ

q . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 The underlying asset and the intensity process for the variance gamma
case presented in Example 6.4, with θ = 0.01, σ = 0.2, q = 0.5, T = 1
and µ = −0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Solution of the PDE (7.20) when K = 5 T = 1 σ = 0.2 on an interval
x ∈ [0, 10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Schematic representation of the Lax-Friedrich. . . . . . . . . . . . . . . . 127

8.2 Schematic representation of the Upwind scheme for µ < 0 and µ > 0. . . 128

8.3 Schematic representation of the Lax-Wendroff scheme. . . . . . . . . . . 128

8.4 Numerical results for the advection equation given by (8.11), with dt =
0.005 and dx = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.5 Analytic solution of f(t, x) for the martingale case with parameters T =
2, µ = 0.1, λ = 10 and δ = 100. . . . . . . . . . . . . . . . . . . . . . . . 134

8.6 Numerical solution of f(t, x), for the martingale case, using finite dif-
ferences, with parameters T = 2, λ = 10, δ = 100, µ = 0.1 and
Nx = Nt = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.7 Error of the numerical solution given the analytical value f(0, 0) =
0.125761 for various space steps with dt = dx

µ . . . . . . . . . . . . . . . . 135

8.8 The underlying asset Xt, and the number of shares θt, with default time
τ = 0.9820 and maturity time T = 2. . . . . . . . . . . . . . . . . . . . . 136

8.9 Simulation results for the non risky asset, the cost process, the value
process and the exponential asset with default time τ = 0.9820 and
maturity time T = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.10 Solution of the 3D PIDE (8.22) at t = 0 with δ = 200, λ = 20, T = 1
and µ = −0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

v



8.11 A sample path of the underlying asset under F and G along with number
of assets under G, with default time τ = 0.6360 and T = 1. . . . . . . . 141

8.12 Sample paths of the cost process, the non risky assets, the value process
and the exponential asset with default time τ = 0.6360 and T = 1 under
filtration G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.13 Simulation results for the PDE (7.22) when g = 0.05, xmin = ymin = 0.0,
xmax = 1.0, ymax = 0.7, σ = 0.2, Nx = Ny = 70, Nt = 200, T = 1 with
strike price K = 1.0 when b = 0.2 and b = 0.9. . . . . . . . . . . . . . . . 145

8.14 Graphical representation of the PDE (7.21) through interpolation of
h(t, x, y) when xmax = ymax = 9.0, g = 0.05, T = 1, σ = 0.2 Nx =
Ny = 70, Nt = 200 with strike price K = 5.0 when b = 4.0. . . . . . . . . 145

8.15 The underlying asset along with the optimal number of shares for the
diffusion model when g(t, x, y) = 0. . . . . . . . . . . . . . . . . . . . . 146

8.16 The solution of the PIDE of f(t, x, y) at t = 0 with various values of λ. . 148

vi



Declaration of Authorship

I, Nikolas Karpathopoulos, declare that the thesis entitled “Local risk minimization
analysis for contingent claims using weak derivatives and running infimum processes”
and the work presented in the thesis are both my own, and have been generated by me
as the result of my own original research. I confirm that

• this work was done wholly or mainly while in my candidature for research degree
at this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of other, this is always clearly attrib-
uted;

• where I have quoted from the work of other, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all the main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission.

Signed:

Date:

vii



viii



Acknowledgments

The completion of this thesis would not have been possible without the support and
encouragement of several people who I wish to acknowledge here.

First and foremost, I would like to thank my supervisors Dr Ramin Okhrati and Pro-
fessor Zudi Lu for their guidance and the invaluable suggestions that they made in my
dissertation. Especially, I would like to express my gratitude to Dr Okhrati for his
excellent supervision during my studies. Throughout this project I faced a numerous
challenges but with his support I managed to tackle them. I feel incredibly fortunate
working with him.

My thanks are also extended to the faculty of the Department of Statistics at the
University of Southampton for encouraging and helping me with this thesis with various
ways. The financial support from EPSRC is greatly appreciated.

At this point, I would also like to thank Professor James Vickers and Dr Antonis
Papapantoleon for serving as members of my PhD committee. Their insightful com-
ments improved greatly the quality of the current dissertation.

Special thanks goes to my mother Maria and her husband Christos for their encourage-
ment and unconditional love. I am thankful to my brother Dr Leonidas Karpathopoulos
who was always next to me whenever I needed his guidance and academic help. I am
also grateful to all my friends and my PhD colleagues and especially, Suttisak Wat-
tanawongwan for their support and making my life in Southampton more pleasant.

ix



In the memory of my father Sotiris.

To my family.

x



Nomenclature

FS Föllmer-Schweizer.

KW Kunita-Watanabe.

GKW Galtchouk-Kunita-Watanabe.

MMM minimal martingale measure.

MVT mean variance tradeoff.

LRM locally risk minimizing.

PLRM pseudo locally risk minimizing.

PIDE partial integro-differential equation.

SC structure condition.

The following class of processes is used throughout this thesis.

M, the space of martingales, 12.

Mloc, the space of local martingales, 12.

M2, the space of square integrable martingales, 12.

M2
loc, the space of locally square integrable martingales, 12.

V, the set of all real-valued and adapted càdlàg processes with finite variation paths,
12.

A, class of processes with integrable variation, 12.

xi



Aloc, class of processes with locally integrable variation, 12.

S(P), space of semimartingale, 14.

S2(P), space of square integrable semimartingales, 14.

E , the class of Doléans-Dade exponential processes, 52.

The space of the following functions are introduced.

Lp, space of functions whose p moment is Lebesgue integrable, 59.

L1
loc, space of locally integrable functions, 60.

C1,1,1, class of continuous differentiable functions with respect to t, x and y, 86.

For the notation bellow please refer to the page where the notations are initially
introduced.

P, the set of all convex equivalent
martingale measures, 54.

P2
e , 54.

B(R), Borel sigma algebra, 10.

R+
0 the set of all positive real numbers

including zero, 22.

D, 38.

L2(X), 45.

I2(X), 45.

Θ, 49.

ΘGLP , 55.

X̄, the supremum of X, 25.

X, the infimum of X, 25.

[·], quadratic variation, 14.

〈·〉, predictable quadratic variation, 16.

O, optional σ-field, 11.

P, predictable σ-field, 12.

xii



Chapter 1

Introduction

1.1 Preface

The 2007-2008 financial crisis and its consequences to financial institutions pinpointed
the importance of the counterparty credit risk modelling, in particular hedging and
pricing of contingent claims. Some of these claims are subject to default (hence called
defaultable claims) so their value after a specific time become worthless. A defaultable
claim is not fully hedgeable due to the existence of a non-tradable (intrinsic) risk and
the aim of a hedging strategy is to minimize investor’s risk. Let us start with the
definition of credit risk.

Credit risk is the risk of default caused by the failure of a borrower or a counter-party
to meet its obligations. The result of a default can lead to a company’s bankruptcy, as
it may not be able to meet its financial obligations. Defaultable claims are an essential
tool for managing this risk partially.

A corporate bond is considered as a debt obligation issued by a firm and sold to
investors. Bondholders who buy a corporate bond are actually lending money to a
firm contributing to its financial stability. Generally speaking, corporate bonds have
a higher probability of default than those issued by a government. Therefore, they
consist a typical case of defaultable claims. Mathematically speaking, given a fixed
time T > 0 which represents the maturity time and assuming that the dividend process
is zero, a defaultable claim H is defined by (K, K̃, Zt, τ) where

• K represents the payoff function at the maturity time T i.e. the amount of money
returned to investor if no prior default occurs.

• K̃ is the recovery claims representing the recovery payoff function received at the
maturity time T , in case that default occurs prior or at the maturity time T .

• (Zt)t≥0 is the recovery process, representing the amount of money that bond-
holders have to pay at time of default if this occurs prior or at the maturity time
T .
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Assuming that Bt = exp(
∫ t

0 rsds) then the discounted value of a defaultable claim H

has the form
H = K

BT
1{τ>T} + K̃

BT
1{τ≤T} + Zτ

Bτ
1{τ≤T}.

In the simple case when the recovery process (Zt)t≥0 is zero and K̃ = 0 then the
defaultable claim is of the form H = K

BT
1{τ>T}, this is the form of a defaultable zero

coupon bond.

Obviously, the default time has a fundamental role in the pricing and hedging of credit
risk. There are two major ways under which we can estimate the default probabilities.
The structural and the reduced form models.

In structural models the default time is modelled through a first-passage model, i.e.
the first time that the underlying asset hits a barrier. The barrier can be a constant
or a stochastic process. Thus, the default time has an economic interpretation as it is
associated with the underlying asset and it is endogenously defined. In these models, if
the underlying asset admits continuous paths, then investors are aware of the arrival of
the default event and has all the available information. In this framework, the pricing
and hedging of defaultable claims can be obtained through the famous Black-Scholes
model. However, these models have their limitations too. Assuming that the underlying
asset is modelled by an exponential Brownian motion with a drift term and investors
have full information then the default is a predictable stopping time. The predictability
of the stopping time implies that the short credit spread is zero which is an unrealistic
fact.

On the contrary, in reduced form models the credit event is defined by a completely
different perspective. More precisely, the stopping time is modelled through a hazard
rate (or intensity) process, therefore the default event is totally inaccessible and so
investors are unaware of its arrival. An advantage of this approach is that the short
credit spread is non-zero consistent with the market’s observations.

Dealing with hedging of contingent claim market completeness is not guaranteed, since
most of the times it is impossible to construct a hedging strategy against the occur-
rence of default. By definition of complete markets and assuming that the market is
arbitrage free, there exists a unique martingale measure so that a contingent claim
can be perfectly hedged. However, in real markets perfect hedging strategies do not
exist. In fact, for models where the underlying asset includes jumps or the volatility
term is stochastic, the market completeness property that the the contingent claim is
redundant (i.e. the contingent claim can be valued by reference of other contingent
claims) is violated. So, in incomplete markets, there are several martingale measures
and various market prices of risk. Evidently, hedging contingent claims in incomplete
markets is quite challenging and more interesting.

Quadratic hedging methods are quite popular and well-established criterion for hedging
defaultable claims in incomplete markets. They are divided into two different ap-
proaches: the so-called local risk minimization and the mean variance approach. In
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Schweizer (2001), both approaches are thoroughly analysed when the underlying asset
is a semimartingale. The mean variance approach is applicable for hedging strategies
whose portfolios are self-financing. The method was first introduced by Duffie and
Richardson (1991) and later on, it was extended by Schweizer (1992). On the other
hand, the local risk minimization is applied for a portfolio that is mean self-financing,
and its value at the maturity time T is equal with the contingent claim. In this thesis,
we study the local risk minimization, so let us describe the method in more detail.

The local risk minimization was introduced by Föllmer and Sondermann (1986) for
the case when the underlying asset is a martingale. Schweizer (2001) extended the
approach to the case when the underlying asset is a local martingale, through the
Galtchouk-Kunita-Watanabe (GKW) decomposition. Schweizer (1994) applies for the
first time the local risk minimization under partial information where the optimal
hedging strategy is obtained through predictable projections.

As previously mentioned, the local risk minimization is applied when the portfolio is
not self-financing but mean self-financing, meaning that the cost process should be a
local martingale. This is the main distinction between the local risk minimization and
the mean variance. Another important feature of this method is that the cost process
should be strongly orthogonal to the martingale part of the underlying asset.

The determination of the Föllmer-Schweizer (FS) decomposition is crucial in the con-
text of the local risk minimization approach. In certain cases, there are ways to obtain
this decomposition explicitly. In general, the FS decomposition can be obtained by
determining an equivalent martingale measure, the so-called minimal martingale meas-
ure. Moreover, under some appropriate conditions, such as the structure condition
(SC), the local risk minimization approach is equivalent to the pseudo-optimal local
risk minimizing strategy, which in many circumstances, is more flexible. The existence
of the FS decomposition can be proved through the SC, see Schweizer (2001).

1.2 Research aims and outcomes

The main aim of this dissertation is to study the local risk minimization in certain
partial information credit risk models when the underlying asset admits jumps. In
particular, we focus on the unification of the structural and the reduced form models in
credit risk modelling. This is made by extending the relationship between the default
time and the underlying asset for hedging contingent claims in incomplete markets.
We apply the local risk minimization approach for defaultable claims when there exists
dependency between the asset and the default time through intensity and hazard rate
models. To achieve this the analysis should be made under an appropriate filtration
expansionG such that F ⊂ G, where F represents the available information for investors.

In what follows, we summarize the aims of this thesis and more specifically:

• determining the canonical decomposition of a stochastic process under an enlarged
filtration (shown by G) without using the H-hypothesis,

3



• deriving the optimal semi-explicit solution for hedging strategies through the local
risk minimization method under some circumstances for certain contingent claim,
including defaultable ones,

• providing a unification of structural and reduced form models,

• solve appropriate PIDEs or PDEs numerically through finite differences.

In particular, we focus on hedging of contingent claims prone to default of the forms
F (XT )1{τ>T} or more generally F (XT , XT )1{τ>T}, where (Xt)t≥0 is the underlying
asset (or the exponential asset denoted by (Yt)t≥0), (Xt)t≥0 is the running infimum
process of (Xt)t≥0 and F is a real valued function. For the case when F (x) = c, where
c is a constant, then the contingent claim is a defaultable zero coupon bond.

In contrast to the general approach where the determination of the FS decomposition
is obtained through the GKW via a minimal martingale measure, in this work, we
obtain the KW and GKW decompositions directly without applying any Girsanov’s
theorem. Instead, we prove the existence of such decomposition directly through the
KW decomposition and with the help of PIDEs or PDEs. Therefore, semimartingales
and compensator techniques are crucial in this work.

Next, we highlight the main contributions by going through the relevant chapter of the
dissertation.

• First, in Chapter 4, we extend the model proposed by Okhrati et al. (2014). We
apply the local risk minimization for defaultable claim under which the default
time is defined through a structural model i.e. the first hitting time under which
the underlying asset becomes strictly negative. In this case, assuming that the
underlying asset is modelled through a finite variation Lévy process, Okhrati et al.
(2014) proved that the default time admits an intensity. The recovery and interest
rate are assumed to be zero. We generalize the approach of Okhrati et al. (2014)
in the following way. The hedging strategy has a semi-closed form determined
through a PIDE. The solution f = f(t, x) of this PIDE can be determined through
the Feyman-Kac formula. However, due to the absence of the diffusion term the
solution of the PIDE is not necessarily C1,1([0, T ]×R) causing problems especially
in the numerical implementations, see Cont et al. (2004) for a discussion. In this
chapter, we aim to fix this by applying the Itô’s formula for non-smooth functions
introduced in Okhrati and Schmock (2015).

• In Chapter 6, we analyse the local risk minimization for a defaultable claim where
the default time is modelled through a structural model whose barrier is a random
variable i.e. the true barrier is not observable to investors and all they can infer
is the probability distribution of this barrier. In our analysis, we investigate the
hedging strategy for a defaultable claim that pays certain amount at the maturity
if there is no pre-default event and zero otherwise. The underlying asset is mod-
elled by a spectrally positive Lévy process of finite variation. In Dong and Zheng

4



(2015), the existence of an intensity process in this structural framework is proved
and it admits an explicit form. Under the progressive filtration expansion, we de-
rive the GKW decomposition through a solution of appropriate 3-dimensional
(3D) PIDE f = f(t, x, y) which involves the running infimum process.

• Chapter 7 studies further the concept of local risk minimization using the run-
ning infimuum process investigating contingent claims that admits two types of
defaults. More specifically, our model captures an endogenous default (structural
framework) and an exogenous one determined through a hazard rate process. The
endogenous structural default time is given by the first hitting time under which
the asset will hit a constant barrier; representing the time of liquidation. In this
chapter, as an underlying asset we no longer work with finite variation processes.
Instead we use exponential jump diffusion processes, assuming that the Lévy
measure is absolutely continuous with respect to Lebesgue integral, making our
model more flexible and it offers a more realistic model for the asset values. We
derive appropriate canonical decompositions that allows us to determine the KW
and GKW decompositions under a progressive filtration expansion. The hedging
strategy is obtained in a semi-explicit form through appropriate PIDEs or PDEs.
More importantly, under some assumptions this unifies structural and reduced
form credit risk modelling. We provide examples of the hedging strategies when
the exponential underlying asset admits both continuous sample paths (such as
an exponential Brownian motion) and a jump diffusion Lévy process.

• Finally, in Chapter 8, we solve the corresponding PIDEs and PDEs numerically
through finite differences. For the integral terms, we consider the quadrature
trapezoidal rule introduced in Cont and Voltchkova (2005). For the time discret-
isation we apply the implicit-explicit scheme.

1.3 Thesis outline

In this section, we briefly describe the thesis structure, which contains seven main
chapters excluding the introduction, the conclusion and the appendices.

In Chapter 2, we provide the main mathematical tools which will be used throughout
this thesis. More specifically, we begin by the definition of semimartingales, the local
martingales and the Lévy processes. We also introduce some useful results for the
reflected Lévy processes.

A thorough literature review of credit risk modelling is analysed in Chapter 3. We
start with the introduction of structural models and the reduced form models. We also
study the quadratic hedging approaches where an emphasis is given to the local risk
minimization approach.

The reader who is familiar with the content of these two chapters can proceed directly
into the following chapter (Chapter 4), which is our first contribution.
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In Chapter 4, we apply the local risk minimization for a defaultable claim whose default
time admits an intensity. We obtain the KW and GKW decompositions through the
canonical decomposition of (f(t,Xt)1{τ>t})t≥0 assuming that the involved functions are
weakly differentiable.

Chapter 5 provides an overview of partial information models. It is possible to obtain
a reduced form model that admits an intensity through a structural model so that
the default time becomes totally inaccessible. This can be achieved by relaxing the
complete information assumption of the structural models. There are two major ways
under which we can introduce partial information in a structural model, see Jarrow and
Protter (2004). The first approach is to generalize a first-passage model by assuming
that the default threshold is a random variable with a known distribution see Giesecke
and Goldberg (2004), Giesecke (2006) and Giesecke (2001). Whereas, the second ap-
proach is to assume that the underlying asset is partially observed. For more details,
we refer to Duffie and Lando (2001), Kusuoka (1999) and Coculescu et al. (2008). In
this chapter, we also study the filtration expansion and filtration shrinkage in credit
risk modelling. The idea of filtration expansion is developed during 1970’s from Yor,
Jacod and Jeulin. There are two main kinds of enlargement of filtration: initial and
progressive filtration expansion. We analyse both types of expansions and we provide
their canonical decomposition.

Once again, the reader who is acquainted with filtration expansions can skip the pre-
vious chapter and continue to Chapters 6 and 7.

In Chapter 6, we apply the local risk minimization approach under a partial informa-
tion, assuming that the barrier in the structural model is a random variable following
a negative exponential distribution and as a result the default time admits an intensity
process. Since the intensity process involves a reflected Lévy process at the infimum,
we start by determining the canonical decomposition of (f(t,Xt −Xt,−Xt))t≥0 under
the available information to investors F, through the Itô’s formula for a smooth func-
tion f(t, x, y), i.e. f(t, x, y) ∈ C1,1,1([0, T ] × R+

0 × R). Given a progressive filtration
expansion G and since the default time τ is G is totally inaccessible stopping time,
we derive the canonical decomposition of (f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t))t≥0. Based on
this result, we determine the canonical decomposition of (f(t,Xt−Xt,−Xt)1{τ>t})t≥0

under G, which for the local martingale case can give us the GKW decomposition.

In Chapter 7, we introduce the local risk minimization for a hazard rate model such
that its intensity process (λt)t≥0 is defined as λt := g(t, Yt, Y t) where (Yt)t≥0 is the
exponential underlying asset Yt = exp(Xt) for a continuous and positive function
g(t, x, y) : [0, T ] × R+

0 × R+
0 → R+

0 , and the conditional survival probability under
F is P(τ > t | Ft) = e−

∫ t
0 g(s,Ys,Y s)ds. We follow the same technique as in the previous

chapter. Assuming that jumps of the underlying asset at the default time is zero, we
determine the canonical decomposition of (f(t, Yt, Y t)1{τ>t})t≥0 under the augmented
filtration G. The setup of this chapter leads to interesting credit risk models including
structural and reduced form models. We also study contingent claims that are sub-
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ject to two default events and investigate a unification of structural and reduced form
models.

In Chapter 8, we solve the PIDEs and PDEs introduced in Chapters 4, 6 and 7 (for
most of them when the underlying asset is a martingale) numerically through the finite
differences. We also simulate sample paths of the optimal hedging strategies.

The thesis conclusion along with some future work is presented in Chapter 9. In
Appendix A, we provide a useful martingale for the reflected Lévy process at its infimum
given that (Xt)t≥0 is a jump diffusion process. This result we help us to determine the
canonical decomposition of (f(τ ∧ t,Xτ∧t − Xτ∧t,−Xτ∧t))t≥0 under G in Chapter 7.
Also, in Appendix B, we analyse the optimal and predictable projections formulas.
Finally, in Appendix C, we introduce some trivial proofs to estimate the derivatives in
space and time numerically through the Euler scheme.
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Chapter 2

Basic definitions and
preliminaries

2.1 Introduction

This chapter provides some necessary mathematical tools for readers who are not famil-
iar with stochastic processes. We briefly describe the main mathematical background
which will be used throughout this thesis. Some fundamental properties for semimartin-
gales and Lévy processes are provided. The content of this chapter is mainly based on
Jacod and Shiryaev (2003), Protter (2004), Sato (1999), Papapantoleon (2008) and
Kyprianou (2014) and the references therein unless otherwise stated.

2.2 Introduction to stochastic calculus

In this section, we present some preliminary results of stochastic calculus in the con-
tent of martingales and local martingales. But first let us introduce some preliminary
definitions.

Throughout this Chapter we assume that F is the natural filtration generated by the
process (Xt)t≥0 i.e. F = (Ft)t≥0 where Ft = σ(Xs)0≤s≤t with t ∈ [0, T ].

Definition 2.1. Let (Ω,F ,P) be a probability space. We assume that there exist a
filtration F = (Ft)0≤t≤T , then we say that F satisfies the usual hypothesis if and only if

• F0 contains all the P-null sets.

• F is right continuous, i.e. Ft =
⋂
u>tFu, with t ∈ [0, T ].

Definition 2.2. A stochastic process (Xt)t≥0 is called F-adapted if and only if the
random variables Xt are Ft-measurable for all t ∈ [0, T ].

Definition 2.3 (Stopping time). A random variable τ : Ω→ [0,∞) is called a stopping
time if {τ < t} ∈ Ft, for all t ∈ [0, T ].
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In general, we classify the stopping times as follows.

Definition 2.4 (Classification of stopping times). There are three types of stopping
times:

• A stopping time τ is called predictable if there exists an increasing sequence of
stopping times {τn}+∞n=1, τn < τ , such that limn→∞ τn = τ .

• A stopping time τ is called accessible if there exists a localizing sequence of
predictable stopping times {τn}+∞n=1 such that

P(
+∞⋃
n=1
{ω : τn(ω) = τ(ω) <∞}) = P(τ <∞).

• Similarly, a stopping time τ is called totally inaccessible if P(τ = ς <∞) = 0,
for every predictable stopping time ς.

Remark 2.5. The concept of accessible and totally inaccessible stopping times plays a
fundamental role in the theory of credit risk modelling. As we will later see in the rest
of this dissertation, a predictable stopping time implies that the short credit spreads
are zero which is dreadful as it is inconsistent the market’s data. On the other hand,
a totally inaccessible stopping time admits an intensity and so the short-credit spread
is non zero and consistent with the market’s data. Note also that every stopping time
can be decomposed into an accessible and totally inaccessible times.

Definition 2.6 (Hitting time). Let A be a Borel set, A ∈ B(R), and (Xt)t≥0 be a
stochastic process. Then it yields

τ(ω) := inf {t > 0 : Xt ∈ A} ,

is a stopping time, and it is called a hitting time.

Remark 2.7. The hitting time (also called first passage time) is considered one of the
most appropriate ways to define the default time in credit risk modelling, since it has an
economic interpretation as it connects the default time with the evolution of the price
of the underlying asset. As we will see in Chapter 3, if the underlying asset is modelled
by a geometric Brownian motion the τ is a predictable stopping time. On the other
hand, if (Xt)t≥0 is a Lévy process of finite variation (see Section 2.4) then following
Protter (2004), Chapter III, Theorem 4, the default time τ is totally inaccessible and
therefore it admits an intensity. When the underlying asset is a jump diffusion process
(Brownian motion plus a jump process), the stopping time is neither predictable nor
totally inaccessible. We use these results in Chapters 4, 6 and 7, and under some
appropriate conditions we derive the hedging strategy for defaultable claims through
the local risk minimization approach.

Definition 2.8. Assume that τ is a stopping time. Then it generates a σ-algebra Fτ
given by

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0} , t ∈ [0, T ].

10



Definition 2.9 (Stopped process). Given a stopping time τ and a stochastic process
(Xt)t≥0, the process (Xτ

t )t≥0 X
τ
t := (Xτ∧t)t≥0 is called stopped process and it has the

following form
Xτ
t = Xτ∧t = Xt1{t<τ} +Xτ1{t≥τ}, t ∈ [0, T ].

Definition 2.10 (Càdlàg and càglàd). A stochastic process (Xt)t≥0 is said to be càdlàg,
if its paths are right continuous with left limits (for every t > 0 and s < t , Xt− =
lims→tXs). Equivalently, a process (Xt)t≥0 is càglàd, if its paths are left continuous
with right limits (for all t ∈ [0, T ] and s > t, Xt+ = lims→tXs).

Martingales play fundamental role in stochastic calculus. Martingales have constant
expectation. Bellow, we provide their definition.

Definition 2.11 (Martingale). A stochastic process (Xt)t≥0 adapted to the filtration
F is a martingale (respectively, supermartingale, and submartingale) if and only if :

• E [|Xt|] <∞, for every t ∈ [0, T ].

• For all t ≥ 0, and s ≤ t then E[Xt | Fs] = Xs a.s (respectively E[Xt | Fs] ≤ Xs,
and E[Xt | Fs] ≥ Xs).

Definition 2.12 (Local martingale). A stochastic process (Xt)t≥0 is a local martingale
if there exists an increasing sequence of stopping times {τn}+∞n=1, such that the stopped
process (Xτn

t )t≥0 remains a local martingale for all n.

Remark 2.13. Following Jacod and Shiryaev (2003), Chapter I, Theorem 4.18, it is
possible to show that every local martingale (Mt)t≥0 can be decomposed uniquely as
Mt = M0 +M c

t +Md
t , where (M c

t )t≥0 and (Md
t )t≥0 are respectively the continuous and

the discontinuous local martingale parts of (Mt)t≥0 and M0 = M c
0 = Md

0 = 0

Remark 2.14. Note also that every martingale is a local martingale. However, a local
martingale is not necessarily a martingale.

Having defined the càdlàg and càglàd processes, let us introduce the optional and
predictable σ-fields. We borrow their definitions from Jacod and Shiryaev (2003),
Chapter I. The notion of optional and predictable σ-fields play fundamental role in
projections and the theory of filtration expansion, as we will later see in Chapter 5. We
start with the definition of the optional σ-field.

Definition 2.15 (Optional σ-field). The optional σ-field O on Ω × R+
0 is generated

by all the non-anticipating, predictable and right continuous processes. Furthermore,
a process or a random set which is O-measurable is called optional.

Definition 2.15 does not incorporate the full-capacity of optional processes. The Pro-
position bellow introduces alternatives but fundamental ways to introduce optional
processes. For its proof, we refer to Jacod and Shiryaev (2003) Chapter I, Propositions
1.21, 1.23 and 1.24.
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Proposition 2.16. Let (Xt)t≥0 be an optional process. Then the following are equi-
valent

1. If τ is a stopping time then the stopped process (Xτ∧t)t≥0 is also optional.

2. If τ and ς are two stopping times and Y is and Fς-measurable. Then the processes
Y 1[ς,τ ], Y 1[ς,τ), Y 1(ς,τ ] and Y 1(ς,τ) are optional.

3. Every process (Xt)t≥0 that is adapted and càdlàg is also optional.

Definition 2.17 (Predictable σ-field). The predictable σ-field P on Ω × R+
0 is gen-

erated by all the non-anticipating and adapted left continuous processes. A process
which is measurable with respect to P is called a predictable.

We introduce the classes of martingales and local martingales, which will be used
extensively throughout this thesis.

Definition 2.18 (M andM2 space). We define asM the space of martingales, and
Mloc as the space of all the local martingales. We also denote asM2 the space of all
square integrable martingales, that is all martingales (Xt)t≥0 such that supt∈R+ E[X2

t ] <
∞. Similarly,M2

loc is the space of all the locally square-integrable martingales.

2.3 Semimartingales

In this section, we study some general properties of semimartingales. A semimartingale
is a process which can be expressed as the sum of a local martingale and a finite variation
process. The concept of compensators is also introduced.

To formalize our analysis of semimartingales, we first introduce some important classes
of predictable processes, see also Jacod and Shiryaev (2003).

We define V ar[X]t to be the variation process of (Xt)t≥0, that is the process such that
V ar[X]t(ω) is the total variation 1 of the function s→ Xs(ω) on the interval [0, t].

Definition 2.19. We define V as the set of all the real valued- càdlàg processes (ΛXt )t≥0,
with ΛX0 = 0 and their paths t → ΛXt (ω) have finite variation over a finite interval
t ∈ [0, T ].

Definition 2.20. The set A is the set of all the processes (ΛXt )t≥0 ∈ V such that they
have integrable variation i.e. E[V ar(ΛX)∞] < ∞. Similarly, the set Aloc is defined as
the localized class of A. In other words, a process (ΛXt )t≥0, (ΛXt )t≥0 ∈ Aloc, if its paths
have locally integrable variation.

Definition 2.21 (Semimartingale). A (càdlag) process (Xt)t≥0 is a semimartingale
if and only if it can be decomposed as a sum of two predictable processes i.e.

Xt = X0 +MX
t + ΛXt ,

1The total variation of a function g on interval [a, b] is given as V ar[g] = sup
∑n

i=1 |g(ti)− g(ti−1)|,
where the supremum is taken all over the partitions of [a, b] i.e. a = t0 < t1 < . . . < tn = b.
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where (MX
t )t≥0 is a local martingale, with MX

0 = ΛX0 = 0 and (ΛXt )t≥0 ∈ V.

Note that in general the above decomposition is not unique since the predictable part
(ΛXt )t≥0 may not be predictable. A typical example is the Cauchy process which a
pure jump Lévy process (see Section 2.4) and it does not have a finite mean nor finite
variation. In order to verify this, note that the Cauchy distribution is f(x) = 1

π
1

x2+1
and so its second moment

∫ x2

1+x2dx → 1 as x → ∞. Thus the decomposition of the
Cauchy process into the local martingale and the finite variation part contains strictly
large jumps and therefore its finite variation part is not predictable.

For any semimartingale we define its jumps as ∆Xt = Xt −Xt−.

Definition 2.22 (Special semimartingale). A semimartingale (Xt)t≥0 is called special
semimartingale, if it admits the canonical decomposition Xt = X0 + MX

t + ΛXt
with MX

0 = ΛX0 = 0, where (MX
t )t≥0 is a local martingale, (ΛXt )t≥0 ∈ V and (ΛXt )t≥0

is a predictable and unique process.

2.3.1 Stochastic Integration for semimartingales and quadratic vari-
ation

In this section, we introduce two objects that have a key role in our analysis: the quad-
ratic variation process and stochastic integration. As we will later see in Chapter 3,
Section 3.4, the value process of a trading strategy is expressed through a stochastic
integral of a predictable process with respect to Lévy process. Generally speaking, in
quadratic hedging approach the hedging strategy is in fact an orthogonal projection
of the contingent claim onto the linear subspace of hedgeable portfolios. The notion
of orthogonality is related with the quadratic covariation, i.e. we say that two semi-
martingales (Xt)t≥0 and (Yt)t≥0 are orthogonal if and only if their covariation process
([X,Y ]t)t≥0 is a uniformly integrable martingale. Therefore quadratic variation and
stochastic integration are essential in the theory of the local risk minimization. Note
that the quadratic variation process is expressed in a unique way and therefore every
semimartingale admits a quadratic variation process.

We start by briefly analysing the concept of stochastic integration for simple processes.
For the general theory of stochastic integration for semimartingales, we refer to Protter
(2004), Chapter II, or Jacod and Shiryaev (2003), Chapter 1, Section 4.

Let (Ht)t≥0 be a simple F-predictable process which can be represented as

Ht = H01t=0 +
∑

Hi1(Ti,Ti+1],

where 0 = T0 < T1 < T2... < Tn = T is a partition of [0, T ] and each Hi is a random
variable FTi measurable, then the stochastic integral with respect to a semimartingale
(Xt)t≥0 is given by

∫ T

0
HsdXs = H0X0 +

n∑
i=0

Hi(XTi+1 −HTi).
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The same result holds true for a sequence of simple processes (Hk
t )t≥0 such that

sup(t,ω)∈[0,T ]×Ω |Hk
t (ω) − Ht(ω)| → 0 as k → ∞ and so

∫ T
0 Hk

s dSs →
k→∞

∫ T
0 HsdSs.

Then we are able to approximate every càdlàg process by a sequence of simple ones
and so its stochastic integral is well defined, for more details, we refer to Cont and
Tankov (2004), Chapter 8.

A quite useful result which will be used quite often in this thesis is how we can decom-
pose a stochastic integral for a semimartingale. From the Doob-Meyer decomposition
we saw that a semimartingale is synthesized from a local-martingale and a finite vari-
ation process. Similar result we can get for the stochastic integration for semimartin-
gales. For more details, we refer to Klebaner (2004), Section 8.4.

Let (Xt)t≥0, be a semimartingale. Let (Ct)t≥0, be a predictable process satisfying the
following conditions

•
√∫ t

0 C
2
sd [MX ]s, where [MX ]t is the quadratic variation process of (MX

t )t≥0 (see
also Definition 2.25).

•
∫ t

0 |Cs|d V ar[ΛX ]s <∞, where V ar[ΛX ]t is the variation process of (ΛXt )t≥0.

Then the stochastic integral for a semimartingale can be decomposed as∫ t

0
CsdXs =

∫ t

0
CsdM

X
s +

∫ t

0
CsdΛXs , t ∈ [0, T ].

Remark 2.23. If τ is a stopping time then the stochastic integral for a stopped process
is ∫ τ∧t

0
CsdXs =

∫ t

0
Cs1{s≤τ}dXs =

∫ t

0
CsdXτ∧s.

Definition 2.24 (Space of semimartingales). We define S(P) to be the space of semi-
martingales and S2(P) the space of square integrable semimartingales.

Definition 2.25 (Quadratic variation). The quadratic variation process ([Xt])t≥0 of a
semimartingale (Xt)t≥0 is the càdlàg process, which is given by

[X]t = (Xt)2 − 2
∫ t

0
Xs−dXs, t ∈ [0, T ].

One way to calculate the quadratic covariation is through integration by parts. The
following Corollary provides its definition, see also Protter (2004), Chapter II.

Corollary 2.26 (Integration by parts formula). Let again (Xt)t≥0 and (Yt)t≥0 be se-
mimartingales. Then their product (XtYt)t≥0 is also a semimartingale and it yields

XtYt = X0Y0 +
∫ t

0
Xs−dYs +

∫ t

0
Ys−dXs + [X,Y ]t, t ∈ [0, T ].

The next Proposition investigates the properties of quadratic variation, for its proof,
we refer to Jacod and Shiryaev (2003), Chapter I, Proposition 4.49.
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Proposition 2.27. Assume that (Xt)t≥0 is a semimartingale and (Yt)t≥0 ∈ V, then
the following holds

1. The quadratic variation process ([X]t)t≥0 will be [X]t =
∫ t
0 ∆Xsd Ys, and XtYt =∫ t

0 Ys−dXs +
∫ t

0 XsdYs.

2. If (Yt)t≥0 is predictable then the quadratic covariation process ([X,Y ]t)t≥0 takes
the form [X,Y ]t =

∫ t
0 ∆YsdXs.

3. If (Yt)t≥0 is predictable process and (Xt)t≥0 is a local martingale, then ([X,Y ]t)t≥0

is also a local martingale.

4. If (Xt)t≥0, or (Yt)t≥0 is a continuous process then ([X,Y ]t)t≥0 = 0.

Definition 2.28. Denote by ([X]ct)t≥0 the continuous part of ([X]t)t≥0. Then it yields

[X]t = [X]ct +X2
0 +

∑
s≤t

(∆Xs)2

= [X]ct +
∑
s≤t

(∆Xs)2 , t ∈ [0, T ].

2.3.2 Compensators and predictable quadratic variation

An another vital tool which will be used throughout this dissertation is the notion of
predictable quadratic variation. As we will later see in Chapter 3, Section 3.4, the
hedging strategy in the local risk minimization approach can be expressed though the
Galtchouk-Kunita-Watanabe (GKW) decomposition using the predictable quadratic
covariation process of the value process and the underlying asset i.e. θt = d〈V,X〉t

d〈X〉t .
In contrast to the quadratic variation process which always exists, the predictable
quadratic variation is not necessarily exists. However, if we assume that the underlying
asset (Xt)t≥0 and the value of our portfolio (Vt)t≥0 are a square integrable martingales
and the quadratic covariation of the value of the contingent claim and the underlying
asset belongs to Aloc i.e. [V,X]t ∈ Aloc then the predictable quadratic covariation
process exists see Proposition 2.33. This result will be extensively used in Chapters 4,
6 and 7. First let us provide the definition of a compensator.

Definition 2.29 (Compensator). Assume that (ΛXt )t≥0 is a finite variation process
with ΛX0 = 0, and (ΛXt )t≥0 ∈ Aloc. A predictable process (Λpt )t≥0 is called compensator
of (ΛXt )t≥0 if and only if the process (ΛXt − Λpt )t≥0 is a local martingale.

The following Theorem provides an essential result for the compensators, see Jacod
and Shiryaev (2003), Chapter I, Theorem 3.18.

Theorem 2.30. For each predictable process (Ht)t≥0 such that
∫ t

0 HsdΛXs ∈ Aloc then∫ t
0 HsdΛps ∈ Aloc and

∫ t
0 HsdΛps =

(∫ t
0 HsdΛXs

)p
. Furthermore, the process

(∫ t

0
HsdΛXs −

∫ t

0
HsdΛps

)
t≥0

, t ∈ [0, T ],
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is a local martingale.

Definition 2.31. The predictable quadratic variation process (or sharp bracket pro-
cess) (〈X〉t)t≥0 of a semimartingale (Xt)t≥0 is the compensator of ([X]t)t≥0. That is
the unique predictable process that makes the process ([X]t − 〈X〉t)t≥0 into a local
martingale.

An equivalent characterization of the predictable quadratic variation is introduced in
the next Theorem. For its proof, we refer to Jacod and Shiryaev (2003), Chapter I,
Theorem 4.2.

Theorem 2.32. Let (Mt)t≥0 and (Nt)t≥0 are square integrable local martingales. Then
the predictable quadratic covariation (〈M,N〉t)t≥0 is the unique predictable process such
that the process (MtNt − 〈M,N〉t)t≥0 is a local martingale. Moreover,

〈M,N〉t = 1
4 (〈M +N,M +N〉t − 〈M −N,M −N〉t)

Note that if (Xt)t≥0 is continuous semimartingale (such that ∆Xt = 0) and X0 = 0,
then [X]t = 〈Xc〉t = 〈X〉ct = [Xc]t = [X]ct , with t ∈ [0, T ]. To see this, since (Xt)t≥0 is
continuous semimartingale then its conditional quadratic variation is also continuous.
Thus ([X]t)t≥0 is a predictable process and from the Doob-Meyer decomposition the
local-martingale part is zero and so [X]t = 〈X〉t.

The next Proposition investigates a case under which the predictable quadratic vari-
ations exists, see Jacod and Shiryaev (2003), Chapter I, Proposition 4.50.

Proposition 2.33. Assume that (Xt)t≥0 and (Yt)t≥0 are locally square integrable mar-
tingales. Then ([X,Y ]t)t≥0 ∈ Aloc and therefore its compensator (〈X,Y 〉t)t≥0 exists.

Example 2.34. Let (Nt)t≥0 be a Poisson process. Then (∆Nt)2 = ∆Nt and its
quadratic variation

[N ]t =
∑
s≤t

(∆Ns)2 =
∑
s≤t

1 =
∑
s≤t

∆Ns = Nt.

In order to find the predictable quadratic variation process (〈N〉t)t≥0 we know that the
process [N ]t − t = Nt − t is a martingale. Therefore the compensator of ([N,N ]t)t≥0

is 〈N,N〉t = t. More generally, assume that Xt = X0 + µt +
∑Nt
i=1 Yi i.e. (Xt)t≥0

is a compound Poisson process, where Yi are i.i.d. random variables with a given
distribution function fY . In this case, its quadratic variation ([X]t)t≥0 is

[X]t = X2
0 +

Nt∑
i=1
|Yi|2 = X2

0 +
∑
s≤t
|∆Xs|2

= X2
0 + λ

∫ t

0

∫
R
z2fY (z)dz, t ∈ [0, T ],

so the process ([X]t −X2
0 − λ

∫ t
0
∫
R z

2fY (z)dz)t≥0 is a martingale. Therefore the com-
pensator of ([X]t)t≥0 i.e. the predictable quadratic variation (〈X〉t)t≥0 with t ∈ [0, T ]
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will be
〈X〉t = X2

0 + λ

∫ t

0

∫
R
z2fY (z)dz, t ∈ [0, T ].

Notation 2.35. Throughout this thesis we use [X]Ft or [X]Gt , with t ∈ [0, T ], (equivalently
〈X〉Ft and 〈X〉Gt ) to be the quadratic (equivalently the predictable quadratic variation)
under filtrations F and G. Since the quadratic variation or covariation is defined path-
wise, the superscript could be removed; however, a predictable quadratic variation
depends on the filtration, and to avoid ambiguity, a superscript is required in this case.
To see why the predictable quadratic variation depends on the filtration, let us consider
the case when (Xt)t≥0 is simply a Brownian motion, i.e. Xt = Wt then we know that

[W ]t = lim
|Π|→0

N∑
i=1

(Wti+1 −Wti)2 (2.1)

where Π is the partition of t ∈ [0, T ] and

〈W 〉t = lim
|Π|→0

N∑
i=1

E[(Wti+1 −Wti)2 | Fti ] (2.2)

We know that as Π → 0, then for the Brownian motion we have [W ]t = 〈W 〉t = t. In
general, comparing Equations (2.1) and (2.2) we know that the predictable quadratic
variation depends on the filtration.

2.4 Lévy processes

There are several reasons why we need to allow jumps in the underlying asset and
not to restrict ourselves in diffusion processes. In real world, market completeness,
which simply states that the underlying asset is redundant in pricing and hedging of
contingent claims, is not robust from financial point of view. The underlying asset may
have abnormal vibrations (jumps) which is due to a new and important information
that arrives from the market and it has an prominent effect on the evolution of the
underlying asset. Thus there are various risks such that we cannot consider perfect
hedging strategies. Moreover, in credit risk the default time can be occurred suddenly
and diffusion models are not able to capture this event, since in this case the underlying
asset approaches the default barrier continuously. So, Lévy processes seems to be the
appropriate way for modelling the underlying asset.

In this section, we provide some fundamental results for Lévy processes. Lévy processes
are Rd-valued processes with independent and stationary increments. We provide some
important results for Lévy processes along with the corresponding Itô’s formula. We
start with their definition.

Definition 2.36 (Lévy process). A càdlàg process is a Lévy process if the following
conditions are satisfied
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1. (Xt)t≥0 has independent increments i.e. Xt+s −Xs is independent of Fs, for all
s, t in [0, T ] with t > s.

2. (Xt)t≥0 has stationary increments i.e. for any s, t in [0, T ] the distribution of
Xt+s −Xt and Xs have the same law.

3. (Xt)t≥0 is stochastically continuous i.e. for every t ∈ [0, T ], s ≤ t and, ε > 0,
lims→t P [|Xt −Xs| ≥ ε] = 0.

Definition 2.37 (Infinite divisibility). A real-valued random variable X has in-
finitely divisible distribution F if for any n ≥ 1 there is a sequence of i.i.d. random
variables X(1/n)

1 , X
(1/n)
2 , . . . , X

(1/n)
n such that X d= X

(1/n)
1 +X(1/n)

2 +. . .+X(1/n)
n , where

d represents the equality under the given distribution F .

Another way to define infinite divisibility is through convolutions. Following Sato
(1999) given a law PX the real valued random variable is infinitely divisible if ∀n
PX = P

X
(1/n)
1

× P
X

(1/n)
2

× . . . × P
X

(1/n)
n

is the n-convolution of PX . Therefore the
infinitely divisible distribution can also be defined as a distribution F , where the n-th
convolution remains a distribution. Typical examples of infinitely divisible distributions
are Gaussian, Cauchy, Poisson, exponential and geometric distribution.

The following Theorem provides a characterization of infinite divisible distributions
through characteristic functions, see Sato (1999), Theorem 8.1.

Theorem 2.38 (Lévy-Khintchine formula). Let PX be the law of a random variable
X. Then PX is infinitely divisible if and only if there exists a triplet (b, σ2, ν) with
b ∈ R, σ ≥ 0 and ν is the measure which satisfies the following condition

ν({0}) = 0 and
∫
R

(
1 ∧ |z2|

)
ν(dz) <∞,

such that ∫
R
eiuzPX(dz) = e−Ψ(z), z ∈ R,

where
Ψ(u) = exp

(
ibu− u2σ2

2 +
∫
R

(eiuz − 1− iuz1{|z|≤1})ν(dz)
)
. (2.3)

The triplet (b, σ2, ν) is called Lévy triplet, where ν is the Lévy measure, b is the drift
term and σ ≥ 0 is the Gaussian component.

Jump and Lévy measures have a key role for studying Lévy processes. The next Defin-
ition introduces the jump measure. See also Papapantoleon (2008).

[Jump measure] Let A ∈ B(R\{0}) such that 0 /∈ Ā, and let 0 ≤ t ≤ T . We define the
jump measure of the Lévy process (Xt)t≥0 as follows

N(ω; t, A) = # {0 ≤ s ≤ t : (Xs(ω)−Xs−(ω)) ∈ A}

=
∑
s≤t

1A(∆Xs(ω)), t ∈ [0, T ].
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We can see that the above equation forms a counting measure and it counts the number
of jumps of the process (Xt)t≥0 on the set A for t ∈ [0, T ].

Definition 2.39 (Lévy measure). Given a Lévy process (Xt)t≥0, then the Lévy measure
ν is given by

ν(A) : = E[N(1, A)] =
∫
ω∈Ω

N(ω; 1, A)dP(ω)

= E[
∑
s≤t

1A(∆Xs(ω))], ∀A ∈ B(R \ {0}), t ∈ [0, T ].

A fundamental result of Lévy processes is the Lévy-Itô decomposition which states
that every Lévy process can be decomposed into a continuous and a jump part. The
theorem bellow characterize this, see Papapantoleon (2008), Theorem 6.1.

Theorem 2.40 (Lévy-Itô decomposition). Consider a triplet (b, σ2, v) where b ∈ R,
σ ≥ 0 and ν is the Lévy measure satisfying ν({0}) = 0 and

∫
R(1 ∧ |x|2)ν(dx) < ∞.

Then there exists a probability space (Ω,F ,P) on which four independent processes exist
(X(1)

t )t≥0, (X(2)
t )t≥0, (X(3)

t )t≥0, (X(4)
t )t≥0,with t ∈ [0, T ], where (X(1)

t )t≥0 is a constant
drift (X(2)

t )t≥0 is a Brownian motion, (X(3)
t )t≥0 is a compound Poisson process and

(X(4)
t )t≥0 is a square integrable (pure jump) martingale with an a.s countable number

of jumps with magnitudes less than 1, on each finite interval. Taking Xt = X
(1)
t +

X
(2)
t + X

(3)
t + X

(4)
t we have that there exists a probability space on which (Xt)t≥0 is a

Lévy process with characteristic exponent

ψ(u) = iub− u2σ2

2 +
∫
R

(eiuz − 1− iuz1{|z|≤1})ν(dz), ∀u ∈ R.

In other words, every Lévy process (Xt)t≥0 can be decomposed to the following form

Xt = bt+ σWt +
∫ t

0

∫
|z|>1

zN(ds, dz) +
∫ t

0

∫
|z|≤1

zÑ(ds, dz), t ∈ [0, T ], (2.4)

where Ñ(dt, dz) = N(dt, dz)− ν(dz)dt is the compensated jump measure, (Wt)t≥0 rep-
resents the Brownian motion and N(dt, dz) is the jump measure on.

Clearly, the Lévy-Itô decomposition verifies that every Lévy process is also a semi-
martingale.

The next Theorem investigates whether or not the process (Xt)t≥0 has a finite activity,
see Sato (1999), Theorem 21.3, or Proposition 7.1 of Papapantoleon (2008).

Theorem 2.41. Let (Xt)t≥0 be a Lévy process with triplet (b, σ2, ν)

• if ν(R) < ∞ then the paths of (Xt)t≥0, with 0 ≤ t ≤ T have a finite number of
jumps on every compact interval a.s. In this case, (Xt)t≥0 has finite activity.

• if ν(R) = ∞ then the paths (Xt)t≥0 with 0 ≤ t ≤ T have a infinite number of
jumps on every compact interval a.s. In this case, (Xt)t≥0 has infinite activity.
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Similarly, a Lévy process has paths of finite variation if and only if there is no Brownian
motion part and the Lévy measure satisfies

∫
|z|≤1 |z|ν(dz) < ∞. For the following

Theorem we refer to Sato (1999), Theorem 21.9, or Papapantoleon (2008), Proposition
7.2.

Theorem 2.42. Let (Xt)0≤t≤T be a Lévy process with triplet (b, σ2, ν).

• If σ = 0 and
∫
|z|≤1 |z|ν(dz) < ∞, then almost all paths of (Xt)t≥0 for every

t ∈ [0, T ] have finite variation.

• If σ 6= 0 or
∫
|z|≤1 |z|ν(dz) =∞, then almost all paths of (Xt)t≥0 for every t ∈ [0, T ]

have infinite variation.

An emphasis to some particular types of Lévy processes should be given. We start with
the finite variation Lévy process. The following Lemma introduces the finite variation
process, see also Kyprianou (2014), Lemma 2.12.

Lemma 2.43 (Finite Variation). Let (Xt)t≥0 be a Lévy process of finite variation
with Lévy triplet (b, 0, ν), t ∈ [0, T ], then its Lévy-Itô decomposition has the form

Xt = µt+
∫ t

0

∫
R
zN(ds, dz) = µt+

∑
s≤t

∆Xs,

for every 0 ≤ t ≤ T with µ = b−
∫ 1
−1 zν(dz) and its Lévy-Khintchine formula is

E
[
eiuXt

]
= exp

[
t

(
iuµ+

∫
R

(eiuz − 1)ν(dz)
)]

.

Remark 2.44. In the above Lemma 2.43, note that the Lévy triplet is not given by
(µ, 0, ν) instead we still use (b, 0, ν).

Definition 2.45 (Subordinator). A Lévy process (Xt)t≥0 is called subordinator if
and only if Xt(ω), ω ∈ Ω, is an increasing function of t ∈ [0, T ].

An immediate consequence of subordinators is the following Lemma, see Kyprianou
(2014), Lemma 2.14.

Lemma 2.46. A Lévy process (Xt)t≥0 is a subordinator if and only if σ = 0, ν(−∞, 0) =
0,
∫

[0,1] zν(dz) <∞ and µ = −
(
b+

∫ 1
0 zν(dz)

)
≥ 0.

In light of Theorem 2.40 and Corollary 2.43 we provide the following processes. We
also refer to Papapantoleon (2008).

• A Lévy process with Lévy triplet (b, σ2, ν) is called spectrally negative, if it
has no positive jumps, equivalently ν(0,∞) = 0. Its Lévy-Itô decomposition has
the form

Xt = bt+ σWt +
∫ t

0

∫
z<−1

zN(ds, dz) +
∫ t

0

∫
−1<z<0

zÑ(ds, dz), 0 ≤ t ≤ T,
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and its Lévy-Khintchine formula has the form

E[eiuXt ] = exp
[
t

(
iub− u2σ2

2 +
∫ 0

−∞
(eiuz − 1− iuz1{z>−1})ν(dz)

)]
.

If (Xt)t≥0 is a spectrally negative with paths of finite variation, then it follows
that Xt = µt − St, where µ = −b +

∫ 0
−1 zν(dz) > 0 and (St)t≥0 is a driftless

subordinator.

• Similarly, a Lévy process is called spectrally positive, if ν(−∞, 0) = 0. In this
case the Lévy-Itô decomposition will be

Xt = bt+ σWt +
∫ t

0

∫
z>1

zN(ds, dz) +
∫ t

0

∫
0<z<1

zÑ(ds, dz), 0 ≤ t ≤ T,

and the Lévy-Khintchine formula is

E[eiuXt ] = exp
[
t

(
iub− u2σ2

2 +
∫ +∞

0
(eiuz − 1− iuz1{z>1})ν(dz)

)]
.

If (Xt)t≥0 is a spectrally positive with paths of finite variation, then it follows
that Xt = −µt+St, where µ = −b+

∫ 1
0 zν(dz) < 0 and (St)t≥0 is again a driftless

subordinator.

• A jump diffusion Lévy process (Xt)t≥0 with Lévy triplet (b, σ2, ν) has jumps of
finite variation if and only if

∫
|z|≤1 |z|ν(dz) < ∞. Its Lévy-Itô decomposition

resumes the following form

Xt = µt+ σWt +
∫ t

0

∫
R
zN(ds, dz), t ∈ [0, T ],

with µ = b−
∫ 1
−1 zν(dz) <∞, and the Lévy-Khintchine formula takes the form

E[eiuXt ] = exp
[
t
(
iuµ− u2σ2

2 +
∫
R

(eiuz − 1)ν(dz)
)]
.

Remark 2.47. Based on the Lemma 2.43 and the definition of the subordinators, then
any Lévy process of finite variation (Xt)t≥0 can be written as the difference of two
independent driftless subordinators

Xt = µt+ St − S′t, t ∈ [0, T ],

where µ = µ+ +µ−, µ ∈ R and (St)t≥0, (S′t)t≥0 are two independent driftless subordin-
ators. Please, see Kyprianou (2014), Exercise 2.8.

2.4.1 Itô’s lemma for semimartingales and Lévy processes

In this section, we briefly provide the main results of Itô’s formula for semimartingales.
We start with a simple version where the process (Xt)t≥0 has paths of finite variation,
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see Protter (2004), Chapter II, Theorem 31.

Theorem 2.48 (Change of variables). Let (Xt)t≥0 be a semimartingale with paths of
finite variation and t ∈ [0, T ]. We assume that the function f(x) ∈ C1(R). Then the
process (f(Xt))t≥0 is also a finite variation process and its form is given by

f(Xt) = f(X0) +
∫ t

0
f ′(Xs−)dXs +

∑
s≤t

{
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

}
= f(X0) +

∫ t

0
f ′(Xs−)dXc

s +
∑
s≤t
{f(Xs)− f(Xs−)} , t ∈ [0, T ],

where (Xc
t )t≥0 is the continuous martingale part of (Xt)t≥0.

For a general semimartingale we have the following Theorem, see Protter (2004),
Chapter II, Theorem 32.

Theorem 2.49 (Itô’s lemma for semimartingales). Let (Xt)t≥0 be a semimartingale
where t ∈ [0, T ] and let a function f(x) ∈ C2(R). Then the process (f(Xt))t≥0 is also
a semimartingale and it has the following form

f(Xt) = f(X0) +
∫ t

0
f(Xs−)dXs + 1

2

∫ t

0
f ′′(Xs−)d[X]cs

+
∑
s≤t

{
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

}
, t ∈ [0, T ].

For the multidimensional Itô’s lemma for semimartingales we refer to Klebaner (2004),
Section 8.10.

Based on Kyprianou (2014) we will briefly describe the Itô’s lemma for Lévy processes.

Assume that (Xt)t≥0 is a Lévy process of finite variationXt = µt+
∫ t
0
∫
R zN(ds, dz), t ∈

[0, T ], where µ = b−
∫ 1
−1 zν(dz) <∞, then we have the following Theorem.

Theorem 2.50. Let f : [0, T ] × R → R be a continuous function differentiable with
respect to t and x i.e. f(t, x) ∈ C1,1([0, T ]×R) then for a finite variation Lévy process
(Xt)t≥0 it yields

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂s
(s,Xs)ds+ µ

∫ t

0

∂f

∂x
(s,Xs)ds

+
∫ t

0

∫
R

(f(s,Xs− + z)− f(s,Xs−))N(ds, dz), t ∈ [0, T ].

The above Theorem can be extended for a general Lévy process, see Papapantoleon
(2008), or Jeanblanc et al. (2009) Section 11.2.4.

Theorem 2.51. Let f : [0, T ] × R → R be a continuous function differentiable with
respect to t ∈ [0, T ] and twice differentiable with respect to x i.e. f ∈ C1,2([0, T ]× R).
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Then for a general Lévy process (Xt)t≥0 with triplet (b, σ2, ν) of the form (2.4), we have

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs + 1

2

∫ t

0

∂2f

∂x2 (s,Xs−)d [X]cs

+
∫ t

0

∫
R

(f(s,Xs− + z)− f(s,Xs−)− z ∂f
∂x

(s,Xs−))N(ds, dz), t ∈ [0, T ].

Equivalently, we get

f(t,Xt) = f(0, X0) + σ

∫ t

0

∂f

∂x
(s,Xs−)dWs

+
∫ t

0

∫
|z|≤1

(f(s,Xs− + z)− f(s,Xs−))Ñ(ds, dz)

+
∫ t

0

∂f

∂t
(t,Xs)ds+ b

∫ t

0

∂f

∂x
(s,Xs)ds+ 1

2σ
2
∫ t

0

∂2f

∂x2 (s,Xs)ds

+
∫ t

0

∫
|z|>1

(f(s,Xs− + z)− f(s,Xs−))N(ds, dz)

+
∫ t

0

∫
|z|≤1

(f(s,Xs− + z)− f(s,Xs−)− z ∂f
∂x

(s,Xs−))ν(dz)ds, t ∈ [0, T ].

Note that the same result holds true for the multidimensional Itô’s formula for Lévy
processes, see for instance Jacod and Shiryaev (2003), Chapter 2.

2.4.2 Compensation formula for Lévy integrals

The following Theorem can be found in Kyprianou (2014), Theorem 4.4.

Theorem 2.52. Suppose that ψ : [0, T ]× R× Ω→ R+
0 is a function which satisfies

1. ψ(t, z)[ω] is measurable.

2. ∀t ∈ [0, T ] ψ(t, z)[ω] is Ft × B(R)-measurable.

3. with probability one ∀x ∈ R {ψ(t, x)[ω] : t ∈ [0, T ]} is a left continuous process.

Then
E
[∫ t

0

∫
R
ψ(s, z)N(ds, dz)

]
= E

[∫ t

0

∫
R
ψ(s, z)ν(dz)ds

]
.

An immediate consequence of Theorem 2.52 is the following result. For its proof, we
refer to Kyprianou (2014), Corollaries 4.5 and 4.6.

Corollary 2.53. Under the same assumptions of Theorem 2.52 then for all u ≤ t with
t ∈ [0, T ] we have

E
[∫ t

0

∫
R
ψ(s, z)N(ds, dz) | Fu

]
= E

[∫ t

0

∫
R
ψ(s, z)ν(dz)ds | Fu

]
.

If we further assume E
[∫ t

0
∫
R ψ(s, z)ν(dz)ds

]
<∞, then the process

(∫ t

0

∫
R
ψ(s, z)N(ds, dz)−

∫ t

0

∫
R
ψ(s, z)ν(dz)ds

)
t≥0

, t ∈ [0, T ],
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is a martingale.

Based on the Itô’s-lemma for Lévy processes (see Theorem 2.51 ) and the compensation
formula, we get the following Proposition. For its proof, we refer to Hilber et al. (2013),
Chapter10, Proposition 10.3.1.

Proposition 2.54 (Dynkin’s formula). Let (Xt)t≥0 be a real-valued Lévy process (b, σ2, ν)
of the form (2.4). Assume that there exist a function f(t, x) ∈ C1,1([0, T ]× R) and we
denote by A the following integro-differential operator

Af(t, x) = ∂f

∂t
(t, x) + b

∂f

∂x
(t, x) + σ2

2
∂2f

∂x2 (t, x)

+
∫
R

(
f(t, x+ z)− f(t, x)− z ∂f

∂x
(t, x)

)
ν(dz),

for every t ∈ [0, T ]. If we assume that the following integrability condition is satisfied∫
R
|f(t, x+ z)− f(t, x)− z ∂f

∂x
|ν(dz) <∞, ∀t ∈ [0, T ] and x ∈ R,

then the process(
f(t,Xt)− f(0, X0)−

∫ t

0
Af(s,Xs)ds

)
t≥0

, t ∈ [0, T ],

is a local martingale.

Proposition 2.54 will be used extensively throughout this thesis and especially in
Chapters 4, 6 and 7. It allow us to construct appropriate PIDEs using the Itô’s formula.

2.4.3 Reflected Lévy processes

When we need to determine the probability of default for a first passage model whose
barrier is a random variable with a known prior distribution, we need to take into
account the running infimum process of the underlying asset (Xt)t≥0. When the un-
derlying asset is a diffusion process then the probability of default can be calculated
through the reflection principle. But for the general case when the underlying asset
admits jumps the situation is slightly more complicated. As we will see in Chapter 6,
under the assumption that the underlying asset is a Lévy process of finite variation,
when the barrier is random with a given prior distribution, then its intensity process
involves the running infimum of the underlying asset. A short of extension of the pre-
vious model is made in Chapter 7 under the jump diffusion case, where in this case,
the default time is modelled through a hazard rate approach whose intensity is determ-
inistic function with respect to the underlying asset (Xt)t≥0 and its running infimum
(Xt)t≥0.

Considering the discussion above reflected Lévy processes are key parts in the theory of
credit risk modelling when investors have incomplete information regarding the default
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threshold. In this section, we introduce some fundamental results in the theory of the
reflected Lévy process.

Let again (Ω,F ,P) the probability space, and we assume that there exists a Lévy
process given in Definition 2.36.

Definition 2.55 (Reflected Lévy process). Let

X̄t = sup
0≤s≤t

Xs, Xt = inf
0≤s≤t

Xs, Rt = X̄t −Xt,

X̃t = −Xt, M̃t = sup
0≤s≤t

X̃s = −Xt,

Ñt = inf
0≤s≤t

X̃s = −X̄t, R̃t = M̃t − X̃t = Xt −Xt.

The processes (X̄t)t≥0, (Xt)t≥0 and (Rt)t≥0, are respectively, the supremum process,
the infimum process and the reflected Lévy process at the supremum. Simil-
arly, the processes (X̃t)t≥0 and (R̃t)t≥0 are the dual of (Xt)t≥0 and the reflected Lévy
process at the infimum.

We can see that the (X̄t)t≥0 and (−Xt)t≥0 are two non-negative and right continuous
processes. Also the reflected Lévy process at the infimum (Xt−Xt)t≥0, can be viewed
as the dual process of the reflected Lévy process at the supremum (X̄t −Xt)t≥0. Let
us investigate some crucial properties of reflected processes. We start with the Duality
Lemma, see Kyprianou (2014), Lemma 3.4.

Lemma 2.56 (Duality lemma). The processes
{
X(t−s) −Xt : 0 ≤ s ≤ t

}
and (X̃t)t≥0,

X̃t = −Xt have the same law under P.

A useful application of the Duality lemma is that it provides the relationship between
the supremum and infimum. The proof of the following Lemma can be found in Kyp-
rianou (2014), Lemma 3.5.

Lemma 2.57. For fixed t ∈ [0, T ], then the pairs (X̄t, X̄t−Xt)t≥0 and (Xt−Xt,−Xt)t≥0,

have the same law under P.

Assuming that (Xt)t≥0 is a spectrally negative Lévy process of finite variation, then
based on the Itô’s lemma we get the following result, see Kyprianou (2014), Exercise
4.2.

Corollary 2.58. Assume that (Xt)t≥0 is a spectrally negative Lévy process of finite
variation with 0 ≤ t ≤ T and X̄t = supXs. Since (X̄t)t≥0 is a continuous and non
decreasing process, then for a function f(y, x) ∈ C1,1(R+

0 × R) we get

f(X̄t, Xt) = f(X̄0, X0) + µ

∫ t

0

∂f

∂x
(X̄s, Xs)ds+

∫ t

0

∂f

∂y
(X̄s, Xs−)dX̄s

+
∫ t

0

∫ 0

−∞
(f(X̄s, Xs− + z)− f(X̄s, Xs−))N(ds, dz), t ∈ [0, T ].
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Martingales for the reflected Lévy processes

Let us briefly provide some useful martingales for the reflected Lévy process at the
supremum. We start with Asmussen-Kella-Whitt martingale, its proof can be found in
Jeanblanc et al. (2009), Proposition 11.2.6.7.

Proposition 2.59 (Asmussen-Kella-Whitt martingale). Assume that (Xt)t≥0 is a gen-
eral Lévy process (b, σ2, ν) of the form

Xt = bt+ σWt +
∫ t

0

∫
{|z|≤1}

zÑ(ds, dz) +
∫ t

0

∫
{|z|>1}

zN(ds, dz), t ∈ [0, T ],

where Ñ(dt, dz) = N(dt, dz) − dt ν(dz) is the compensated jump measure. We also
assume that (Rt)t≥0, Rt = X̄t − Xt is the reflected Lévy process, and (X̄t

c)t≥0 be the
continuous part of (X̄t)t≥0. Let f(x) ∈ C2(R+

0 ), then the process

(
f(Rt)− f(R0)− f ′(0)X̄c

t −
σ2

2

∫ t

0
f ′′(Rs)ds+ b

∫ t

0
f ′(Rs)ds

−
∫ t

0

∫
R

(
f(Rs− + hs(z))− f(Rs−) + z1{|z|≤1}f

′(Rs−)
)
ν(dz)ds

)
t≥0

,

with t ∈ [0, T ], is a local martingale, where ht(z) = −(z∧Rt−), is a predictable function.

Given a smooth function f(t, x) and a martingale we have the following Proposition,
see Nguyen-Ngoc and Yor (2005), Proposition 1.

Proposition 2.60. Let f : [0, T ]×R→ R, be a C1,1([0, T ]×R) function. Assume that
for 0 < c < d, S is a stopping time given by: S := inft{Xt /∈ (c, d)}. We further assume
that the process (f(S ∧ t,XS∧t))t≥0 is a martingale, ∀x ∈ (c, d). Then the process

(
f(t, Rt) +

∫ t

0

∂f

∂x
(s, 0)dX̄c

s +
∑
s≤t

(
f(s,∆X̄s)− f(s, 0)

)
1{∆X̄s>0}

)
t≥0

, t ∈ [0, T ],

is a local martingale, for all x ∈ (c, d), under P(· | R0 = x), and τ = inft{t : Rt /∈
(c, d)}.

Remark 2.61. Proposition 2.60 can also be applied for the reflected Lévy process at the
infimum, by replacing X̄t −Xt with Xt −Xt.

An another useful martingale for the reflected Lévy process will be proved in Chapters
6 and 7.
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Chapter 3

Introduction to credit risk
modelling

3.1 Introduction

The purpose of this chapter is to provide a literature review of credit risk modelling.
We start by describing the structural and the reduced form models and finally, we
present the concept of quadratic hedging approach.

In general, in credit risk modelling, there are two ways to formulate the default process:
reduced form and structural models. As we will later see in the structural models, the
default is determined through the underlying asset. These models have an economic
interpretation as the default can be calculated through the first passage time. Albeit,
for the case when the underlying asset values are modelled by continuous stochastic
processes, the default event is predictable and therefore investors can predict its arrival.
The predictability of default is strongly related to short credit spreads. Assuming that
the firm’s value process is modelled by a continuous semimartingale, in a structural
model, it can be concluded that for a short period of time, the risk of default does not
affect the firm and so short credit spreads are zero. In reality, this is unrealistic, and
these models are inconsistent with the market’s observations.

On the contrary, reduced form models avoid connecting the default time with the firm’s
value process directly. In this case, the default event is normally totally inaccessible
meaning that investors cannot predict its occurrence. In these models, the short credit
spread is non zero. So far based on the literature review, these models are divided
into two different approaches: the intensity based models and the hazard rate models.
Intensity models describe the default through an intensity process (λt)t≥0, such that the
process (1{τ>t} −

∫ τ∧t
0 λsds)t≥0 is a local martingale. Hazard rate models are focusing

on the conditional survival probability P(τ > t | Ft), where G = (Gt)t≥0 is an expanded
filtration such that Gt = Ft∨Nt where F = (Ft)t≥0 is the minimal filtration generated by
the underlying asset (Xt)t≥0 and N = (Nt)t≥0 is the filtration generated by (1{τ≤t})t≥0.
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The concept of hedging in incomplete markets is an active area of research. By the term
hedging, we mean that a future investor tries to countervail potential losses by con-
structing an appropriate portfolio. Mathematically speaking, there are various methods
to formulate an appropriate hedging. Among others are delta hedging, super-hedging,
utility maximization and quadratic hedging approaches etc. Typically, in incomplete
markets we use the last three methods. Let us briefly describe them.

We start with the delta hedging. Delta is defined as the first derivative of the option
price with respect to the corresponding underlying asset. In delta hedging, a trader tries
to offset from potential long and short positions that an underlying asset may have for
a short period of time. In simple words, we try to keep delta close to zero. A position
of a claim that has delta equals to zero is called delta neutral. Delta hedging is strongly
connected with the famous Black-Scholes model. In real financial markets, where the
underlying asset is geometric Brownian motion, for European contingent claims delta
has an analytical form. However, despite its simplicity, it is not very useful in the
presence of jumps, see Merton (1976) for more details.

The main idea of a superhedging approach is that we search for a self-financing strategy
such that the portfolio’s terminal value should be equal or greater than the value of
a contingent claim. So, given a contingent claim H then for a self-financing strategy
(φt)t≥0 we have

P
(
VT (φ) = V0 +

∫ T

0
φsdXs ≥ H

)
= 1.

To determine the price of superhedging involves calculating a non-trivial optimal prob-
lem: from a set of equivalent martingale measures (absolutely continuous to the physical
measure P) obtain the value of the claim H under the “least favourable” measure (see
Proposition 10.1 of Cont and Tankov (2004)). When the underlying asset (Xt)t≥0 ad-
mits jumps then the cost of superhedging is quite high, even for a European call option,
see Cont and Tankov (2004), Chapter 10.

An another and perhaps a more useful and general approach is the utility maximization.
This approach is related to a function U : R → R, which is concave and increasing,
called utility function. A key element of this approach is to specify an appropriate
utility function. A choice of a utility function can be Ua(x) = 1− exp(−ax) for a > 0.
Unfortunately, with this choice of utility function, the methods provides non-linear
pricing rules. The only choice when we can obtain linear pricing rules is by choosing
U(x) = −x2. With this specific form, we get the quadratic hedging. For a comprehens-
ive review of the method, we refer to Cont and Tankov (2004), Chapter 10 and Kallsen
(1999).

So, quadratic hedging specify an appropriate hedging strategy such that its risk is
minimized in the mean square sense. A major drawback of this approach is that the
future earnings or losses that a contingent claims may have are treated equally. On
the other hand, in certain cases quadratic approach provides an explicit form of the
hedging strategy. Local risk minimization and mean variance are the two quadratic
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methods.

The remainder of this chapter is structured as follows. We start by providing the main
idea of the structural models. This is described in Section 3.2. In Section 3.3, we
present the reduced form models. In Section 3.4, we analyse both quadratic methods.
An emphasis is placed on the local risk minimization approach since it is the heart of
our research.

3.2 Structural models

In this section, we briefly describe the structural models. For a rigorous description of
these models, we refer to Ammann (2001), Bielecki and Rutkowski (2004) and also to
Giesecke (2004). Throughout this section and unless otherwise stated, we assume that
the underlying asset (Xt)t≥0 is adapted with respect to the filtration F.

3.2.1 Merton’s model

The idea of pricing credit-risky bonds was first developed by Merton (1974). In this
model, the firm’s underlying asset is the main uncertainty. Under the physical measure
the value asset (Xt)t≥0 follows a geometric Brownian motion

dXt = µXtdt+ σXtdWt, t ∈ [0, T ],

where µ ∈ R, σ ∈ R are the mean rate and the volatility and (Wt)t≥0 is a Brownian
motion. The firm is financed by a zero coupon bond with face value K, and maturity
time T . If the firm does not fulfil its obligation at date T , then defaults. Thus, the
default time is given by

τ =

T if XT < K

∞ otherwise
,

meaning that if XT ≥ K the value of the assets at maturity is greater than its debt,
and bondholders receive the amount K as required, whereas shareholders receive the
reaming XT − K. On the contrary, if XT < K then the firm cannot pay back its
obligation K. Therefore, bondholders should take over the firm and to receive K−XT ,
and in this case shareholders do not receive anything. To summarize the bond holders
receive

BT
T = min(K,XT ) = K −max(0,K −XT ), (3.1)

this payoff is equivalent to a portfolio consisting of a non zero coupon bond with
face value K and an European put option with strike price K with maturity T . The
European put option works as an insurance protecting bondholders from default. Sim-
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ilarly, the shareholders receive

ET = max(0, XT −K),

which is equivalent to the payoff for an European call option with strike price K. The
discounted price of the equity is

E0 = BSCall(σ, T,K, r,X0) = X0Φ(d+)− e−rTKΦ(d−),

where BSCall refers to the Black-Scholes formula for a call option, Φ is the standard
normal distribution function and

d± =
(r ± 1

2σ
2)T − log( KX0

)
σ
√
T

.

The probability of default is given by

P(XT < K) = P(σWT < log( K
X0

)− (µ− 1
2σ

2)T )

= Φ
(

log( KX0
)− (µ− 1

2σ
2)T

σ
√
t

)
.

The price of the bond at time t = 0 whose payoff is given by (3.1) is

BT
0 = Ke−rT −BSPut(σ, T,K, r,X0), (3.2)

where BSPut is the Black-Scholes formula for a vanilla put option. Equation (3.2) can
be rewritten as

BT
0 = X0 −X0Φ(d+) + e−rTKΦ(d−).

In contrast to Merton’s model, the debt capital structure of a firm is usually more
complicated than a risky zero-coupon bond. To solve this, Geske (1977, 1979) invest-
igate the case for compound options. At each coupon payment date until the maturity
T , the equity holders can pay a coupon payment to the bondholders. Furthermore,
Geske (1977, 1979) provides a general pricing formula for a risky bond with arbitrary
and finite payments, based on the calculation of multidimensional normally distributed
integrals. He also investigates some effects such as sinking funds, payout restrictions
or safety covenants in the valuation formula.

Chance (1990) investigates the duration of a zero coupon bond based on Merton’s
model. He showed that the duration of a bond is a combination of a European put
option and a default-free coupon bond. Furthermore, he also proved that the higher is
the debt ratio, the shorter the duration will be. Therefore, a default prone zero coupon
bond has a shorter duration than a non risky one.
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Figure 3.1: Illustration of a first passage model, when the underlying asset is continuous
and the barrier is constant.

3.2.2 First passage models

Merton’s model has the drawback that the firm’s value defaults only at the maturity T .
This is considered to be unrealistic, since usually in case of default the firm consumes its
assets long before the maturity. Therefore Merton’s model cannot capture premature
events. First passage time models attempt to solve this problem, where the default
occurs as soon as the underlying asset crosses certain barriers.

The idea of the first passage models where introduced by Black and Cox (1976). In a
first-passage-model, the default time is given though

τ = inf{t : Xt < D}. (3.3)

The barrier D could be constant, a deterministic function, a random variable or a
stochastic process. The barrier in the Black and Cox (1976) model is assumed to be
an exponential and deterministic function

D(t) = Ke−k(T−t). (3.4)

An interesting case of the barrier (3.4) is when we substitute k with r. In this case,
the barrier will be the discounted value of the interest rate. Assuming that the barrier
is given by (3.4) and by observing that

{Xt < D(t)} = {(c− k)t+ σWt < log( K
X0

)− kT},

where c = µ− 1
2σ

2, then if we calculate the distribution of the infimum of the Brownian
motion, we get

P(0 ≤ τ ≤ t) = Φ
(

log( KX0
)− cT

σ
√
T

)
+ ( K

X0
e−kT )

2
σ2 (c−k)Φ

(
log( KX0

) + (c− 2k)T
σ
√
T

)
.

Similarly to the Merton’s model, the equity payoff is a European down and out call
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option, with strike price K a time dependent barrier D(t) and maturity time T

ET = max(XT −K, 0)1{MT≥D},

where Mt = infs≤tX0 exp((c − k)s + σWs) and D = K exp(−kT ). Following Merton
(1973), a closed formula for E0 can be derived. The payoff function of the risky bond
at time T is

K −max(K −XT , 0) + max(XT −K, 0)1{MT<D}.

The Black-Cox model is implemented for constant interest rates. Longstaff and Schwartz
(1995) extended it by assuming that the interest rate is a stochastic process (rt)t≥0 fol-
lowing the Vasicek model

drt = (a− brt)dt+ σrdW̃t, t ∈ [0, T ],

where a and b are constants, and (W̃t)t≥0 is a Brownian motion correlated with Wt

i.e. dW̃tdWt = ρdt. In Longstaff-Schwartz model, the default boundary is constant i.e.
D = k. Another example for stochastic interest rate, Kim et al. (1993) considered the
CIR process

drt = (a− brt)dt+ σr
√
rtdW̃t, t ∈ [0, T ].

In the first passage models, bond investors should immediately take over the firm
when default occurs. However, following Giesecke (2004), this is unrealistic since in
general firms need a period of time to reorganize their operation after default. The
reorganization of the firm can be modelled through an excursion approach. Assuming
that the barrier D is constant and given a positive and bounded functional f on [0,∞)2,
we introduce a continuous functional Q(X)

Q(X)t =
∫ t

0
f(s, t)1{Xs≤D}ds, t ∈ [0, T ].

The above term measures the risk of firm’s liquidation during a stopping time τLwhich
is given by

τL := inf{t > 0 : Q(Xt) > δ},

for some constant δ. For the case when δ = 0, it is easy to see that τL = τ , where τ
is the first passage time introduced in (3.3), when D is constant. For more details, we
refer to Giesecke (2004).

Credit spread for structural models

The credit spread is defined as the difference between the yield of a defaultable claim
and a default free zero bond. Based on this difference, we can get an idea of the extra
interest rate that investors have to pay in order to cover any possible future losses. Let
us assume that yc is the yield of a defaultable zero coupon bond and (rt)t≥0 is the yield
for the risk free zero coupon bond. Let also P̄ d(t, T ) be the discounted price of the
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Figure 3.2: Credit spread in Merton’s model with maturity T = 5, r = 0.05 and
volatility σ = 0.3.

default free bond, then the credit spread

S(t, T ) = 1
T − t

∫ T

t
(yc(s)− rt(s))ds = − 1

T − t
log(P

d(t, T )
P̄ d(t, T )

),

which can be rewritten as

S(t, T ) = − 1
T − t

lnP(τ > T | Ft), t < T, τ > t, (3.5)

For the Merton’s model, the credit spread has an analytical form, see Giesecke (2004).
Figure 3.2 displays the credit spread in the Merton’s model with maturity time T = 5
and volatility parameter σ = 0.3.

Equivalently, the short credit spread is just the limit of (3.5) (whenever it exists), as
T ↓ t, for a short period of time i.e.

lim
T↓t

S(t, T ) = − lim
T↓t

lnP(τ > T | Ft)
T − t

.

When the underlying asset values are modelled by a continuous process it can be
shown that the short credit spread for the structural models is zero. For instance, see
Giesecke (2006), Proposition 3.2. Short zero spreads means that for a small period of
time, investors do not request any compensation for their losses derived from the bond,
which from a financial point of view is not appealing. For applications of the short
credit spreads using jump processes, we refer to Okhrati (2014).

3.2.3 Extensions and drawbacks of first passage models

Following the first passage models, we have seen that the default time is a predictable
event and therefore there exists a sequence of pre-default events under which the in-
vestors can predict the arrival of credit event. For its mathematical meaning we refer
to Chapter 2, Definition 2.4. The notion of predictability of τ is strongly related to
credit spreads. We have seen that the credit spread for a short period of time tends to
zero. Therefore the value of a risky bond will be the same as the non risky one. As
consequence, investors have no reason to pay an extra yield for the risky bond. The
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empirical results derived from the structural models show that these models are not
very useful. For example, Eom et al. (2004) compare five different structural models,
and they concluded that these models are not very successful in pricing of corporate
bonds.

The introduction of jumps in the underlying asset is investigated by Zhou (2001). He
assumed that the dynamics of the firm’s value process (Xt)t≥0 follows a jump diffusion
process given by

dXt

Xt
= (µ− λq)dt+ σWt + (Π− 1)dYt, t ∈ [0, T ],

where dYt is a Poisson process with intensity λ > 0, q is a positive constant, Π is the
jump magnitude which follows log normal distribution, µ ∈ R is the expected value of
returns and σ > 0 is the volatility. Also, Π and dY are independent. A major advantage
of Zhou’s model is that by introducing jumps in the underlying asset the credit spread
remains positive consistent with the market’s data. Also, the model incorporates a
recovery rate, which is endogenously determined, linked with the underlying asset. Note
that when the evolution of the price of the underlying asset is a jump diffusion process,
the stopping time τ modelled though a first passage approach, is neither predictable
or totally inaccessible. This can be seen since if we are in the diffusion state then the
stopping time can be anticipated. However, when we are in the jump state then it
cannot be anticipated. This will be studied further in Chapter 7 .

Schoutens and Cariboni (2009), in Chapter 4, provide a first passage model for Lévy
processes, using as an underlying asset the exponential variance gamma process. In
their model the barrier D is constant, and they find the value of a down and out option
by solving a PIDE. .

3.3 Reduced form models

In contrast to the structural framework, in the reduced form models the default occurs
unexpectedly and without warning. There are no pre-default events and thus investors
cannot predict the time when a default happens. Relaxing the assumption of full
information to investors makes the default event an inaccessible stopping time. In this
case, the default is determined externally based on a point process.

Following Jeanblanc and Le Cam (2008), reduced form models are divided into two
different approaches. This categorization is based on the available information, equi-
valently to the reference filtration. The first approach is the intensity based models
where a unique flow of information exists and it is given by F. The second approach is
the hazard rate models where the computation relies on the introduction of an expanded
filtration G, F ⊆ G.
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3.3.1 Intensity based models

In the intensity based models the default time τ is an F-stopping time, where F repres-
ents the full available information to investors. In these models the probability of default
is associated with a process (λt)t≥0 called intensity or hazard rate. Let (Ω,F ,F,P) be
our space, where F = (Ft)t≥0, and F represents the available information that investors
have over time t. We define the point process (Nt)t≥0

Nt = 1{τ≤t} =

1 if τ ≤ t

0 else
,

where τ : Ω → R+ is a default time, which is an F-stopping time. Since (Nt)t≥0

is an increasing process and therefore is a submartingale, then from the Doob-Meyer
decomposition there exists a process (At)t≥0 such that the difference (Nt−At)t≥0 is a F-
local martingale. The process (At)t≥0 neutralizes the effect of (Nt)t≥0. A fundamental
property under which the intensity process exists is if the process (At)t≥0 is absolutely
continuous with respect to Lebesgue measure. If so, then the intensity process (λt)t≥0,
with At =

∫ τ∧t
0 λsds satisfies

λt = lim
h→0

1
h
E[At+h −At | Ft] = lim

h→0

1
h
P(τ ∈ (t, t+ h) | Ft), t ∈ [0, T ]. (3.6)

Assuming that intensity exists we provide some examples of it along with the probability
of default. Let us introduce some important cases for the intensity see also Giesecke
(2004).

• We start with the most trivial case, under which the intensity process is constant.
For example, we can assume that the process (Nt)t≥0 is a compound Poisson with
rate λ. In this case, the probability of default is P(τ ≤ T ) = 1− e−λT .

• Next, we consider the case when the intensity process is just a deterministic
function with respect to time t ≥ 0, i.e. λ = λ(t). A typical example is when the
counting process (Nt)t≥0 is a inhomogeneous Poisson process whose rate is given
by λ(t). Then the probability of default is P(τ ≤ T ) = 1− e−

∫ T
0 λ(s)ds.

• The most general case is when the intensity is formulated by a stochastic process
λ = (λt)t≥0. We consider (Nt)t≥0 to be a Cox-process, which is a generalization
of the compound Poisson process, whose rate is given by (λt)t≥0. If the increasing
process (At)t≥0 is absolutely continuous with respect to Lebesgue measure then,
the probability of default is given as P(τ ≤ T ) = 1− E[e−

∫ T
0 λsds].

We highlight the importance of continuity of intensity. If the compensator (At)t≥0

of the counting process (Nt)t≥0 is not continuous then the intensity process does not
exist. Let us now state some important result under which we examine the continuity
of (At)t≥0. We start with the most fundamental result given by the Theorem bellow,
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which analyses when the F-stopping time τ is totally inaccessible. For its proof, we
refer to Protter (2004), Chapter III, Section 5, Theorem 17.

Theorem 3.1 (Dellacherie’s theorem). Let F is the minimal filtration that makes τ
into a stopping time with P(τ = 0) = 0 and P(τ > t) > 0 for each t > 0. Let also
F (x) = P(τ ≤ x) be the law of τ , ∀x ≥ 0. Then the compensator (At)t≥0 of (Nt)t≥0

exists and it is given by

At =
∫ τ∧t

0

dF (s)
1− F (s−) , 0 ≤ t ≤ T.

Furthermore, if (At)t≥0 is continuous, which implies that F is continuous, then τ is
totally inaccessible and At = ln(1− F (τ ∧ t)).

Remark 3.2. Following Theorem 3.1, the process (At)t≥0 is continuous with respect to
the Lebesgue measure. Then the intensity process (λt)t≥0 is considered as the Radom-
Nikodym derivative of

(
dAt
dt

)
t≥0

. Furthermore, in many applications we need the pre-

dictability of the intensity, or equivalently
∫ t

0 λsds =
∫ t

0 λs−ds. Assuming that the
intensity process (λt)t≥0 is a càdlàg process then the last expression holds true since
the process (At)t≥0 is absolutely continuous with respect to Lebesgue measure.

Remark 3.3. Theorem 3.1 determines the compensator of (Nt)t≥0 when F = σ(τ ∧
t). Perhaps a more interesting result is to derive the compensator of (Nt)t≥0 given
a filtration F which is not the minimal one that makes τ into a stopping time and a
positive random variable L which is not a stopping time under the filtration F. Then
under an augmented filtration G, F ⊂ G, that renders L into a stopping time we can
derive the compensator of (Nt)t≥0. This is analysed in Chapter 5.

Apart from Theorem 3.1, in Janson et al. (2011) an the references therein, they studied
other cases under which the process (At)t≥0 is continuous. Their results are based on
the (Ãt)t≥0 compensator of (At)t≥0. A particularly interesting case is the following
one. If (At)t≥0 is a càdlàg process and let (Ãt)t≥0 be its compensator. Then for a given
constant K and if

E[At −As | Fs] ≤ K(t− s), a.s,

for all 0 ≤ s ≤ t, then the process (Ãt)t≥0 has paths absolutely continuous with respect
to Lebesgue measure such that Ãt =

∫ t
0 λsds. Zeng (2006) generalized the above result

for the case when Kt = (Kt)t≥0 is an F-predictable process. In Janson et al. (2011),
Theorem 2 (this is a result of Zeng (2006)) specified when the compensator (Ãt)t≥0 of
(At)t≥0 is absolutely continuous with respect to Lebesgue measure. This is achieved
if there exists an integrable process (Yt)t≥0 and its compensator (Ỹt)t≥0, such that
dỸt � dt i.e. the process (Ỹt)t≥0 is absolutely continuous with respect to Lebesgue
measure. In this case, if

E[At+h −At | Fs] ≤ E[Yt+h − Yt | Fs],

then we get Ãt = Ỹt for every t ∈ [0, T ].
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The following Theorem, investigates the intensity for a sub-filtration, see Janson et al.
(2011). For the definition of the optional projection and its properties we refer to
Appendix B.1.

Theorem 3.4. Assume that τ is an F-stopping time, with an intensity process
∫ t

0 λsdc(s).
Let H be a sub-filtration of F i.e. H ⊂ F, where τ is also H-stopping time. Then the
compensator of τ under H is

∫ t
0 λ
◦
sds, where λ◦s = E[λt | Fs] is the optional projection

of (λt)t≥0. Then we get that if the process

(
1{τ≤t} −

∫ t

0
λsds

)
t≥0

, t ∈ [0, T ],

is an F-local martingale, then the process

(
1{τ≤t} −

∫ t

0
λ◦sds

)
t≥0

, t ∈ [0, T ],

is a H-local martingale.

An immediate consequence of Theorem 3.4, along with Theorem 3.1, is that if the pro-
cess (At)t≥0 is absolutely continuous under the initial filtration F, then it will remains
absolutely continuous under H, which implies that the stopping time τ is a totally
inaccessible stopping time under the sub-filtration H.

Reduced form models were introduced by Jarrow and Turnbull (1995). Later on, they
were extended by Duffie and Singleton (1999), Madan and Unal (1998). Jarrow and
Turnbull (1995) introduced a simple discrete model. Assuming that the risk-free interest
rate follows the Markov property, they construct a lattice for the default and default-
free terms. Then they obtained a risk-neutral probability measure, under which they
determine the price of a defaultable claim in a recursive form. Moreover, they con-
structed a continuous time model equivalent to the discrete one. In this continuous
model, the credit event is exponentially distributed with intensity λ which is constant
and independent of the underlying asset. A major drawback of their model, is that the
intensity is constant. Jarrow et al. (1997) introduce a model under which the intensity
is no longer constant. This was achieved by relating the default probabilities with the
credit ratings.

Intensity calculation

In general, there are two major ways under which we can calculate the intensity process.
Before providing them, let us introduce an essential definition.

Definition 3.5 (class (D)). Let (Xt)≥0 be a right continuous F-supermartingale, and
let T be the collection of all finite stopping times (respectively Ta, the set of all stopping
times bounded by α). We say that (Xt)t≥0 belongs to class D if and only if the collection
of random variables {Xτ , τ < ∞}, for all finite stopping times τ ∈ T , is uniformly
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integrable (respectively {Xτ , τ < ∞}, for all the finite stopping times Tα is uniformly
integrable).

Similarly, the process (Xt)t≥0 belongs to the class DL or locally to the class D, if
(Xt)t≥0 ∈ D on every interval [0, α], 0 ≤ α <∞.

Perhaps the most important result is the following Theorem, see Meyer (1966), Chapter
VII.

Theorem 3.6 (Meyer’s approximation). Let (Xt)t≥0 be a right continuous potential 1

of class D, and let (Aht ) be an increasing process given by

Aht =
∫ t

0

Xs − E[Xs+h | Fs]
h

, t ∈ [0, T ].

Moreover, for every stopping time τ we have that

Aτ = lim
h→0

Ahτ ,

in the sense of the weak topology σ(L1, L∞).

We remark that the process (1τ≤t)t≥0 belongs to the class D but it is not a poten-
tial, so the above Theorem cannot be used. However, the process (1{τ>t})t≥0 ∈ D
and it is a potential therefore by applying Meyer’s theorem we get that the process(
1{τ>t} +

∫ t
0 λsds

)
t≥0

is a martingale. Since 1{τ≤t} = 1 − 1{τ>t}, then we also get

that the process
(
1{τ≤t} −

∫ t
0 λsds

)
t≥0

is a martingale. In other words, the process

(
∫ t

0 λsds)t≥0, is the compensator of (1{τ≤t})t≥0. Similarly to Meyer’s theorem we have
the following interesting Theorem, see Aven (1985).

Theorem 3.7 (Aven’s approximation). Let (Nt)t≥0 be a counting process adapted to
F, and assume that there exists an intensity process (λt)t≥0 such that

λt = lim
hn→0

E [Nt+h −Nt | Ft]
hn

, t ∈ [0, T ].

Furthermore, assume that there exist processes (mt)t≥0, (Mt)t≥0. Then the following
statements hold for (λt)t≥0 and (mt)t≥0

1. For each t ∈ [0, T ]
lim
n→∞

Mn
t = λt, a.s.

2. For each t ∈ [0, T ] there exists for almost all ω an n0 = n0(t, ω) such that

|Mn
s (ω)− λs(ω)| ≤ ms(ω), s ≤ t, n ≥ n0.

3.
∫ t

0 msds <∞a.s., for all t ∈ [0, T ].
1An adapted cádlág process (Xt)t≥0 is a potential if it is a non-negative supermartingale such that

limt→∞ E[Xt] = 0.
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Then the process
(
Nt −

∫ t
0 λsds

)
t≥0

is an F-local martingale, i.e. the process (
∫ t

0 λsds)t≥0

is the compensator of (Nt)t≥0.

It is worth mentioning that when the underlying asset admits jumps we can construct a
structural model under which there exists an intensity process. For example, in Okhrati
(2014), Theorem 3.1, the author determined the intensity process when the underlying
asset (Xt)t≥0 is a jump-diffusion process with jumps of finite variation for a structural
model whose default time is given by the first time when (Xt)t≥0 is strictly negative.
Based on this result and along with the result of Guo and Zeng (2008) in the next
chapter (Chapter 4), we determine the hedging strategy of a defaultable claim through
the solution of a PIDE.

Affine intensity models

After proving the existence of the intensity and specifying its model, the next step is
to determine the probability of default through the intensity. In general this is not
easy task, however, Duffie and Kan (1996) provide a useful tool under which we can
calculate the default probabilities. Assume that the intensity process can be expressed
as

λ(y) = p+ q · y, y ∈ R,

or using processes,
λt = λ(Yt) = p+ q · Yt,

where Yt = (Y 1
t , Y

2
t , . . . , Y

n
t ) is a multidimensional Markov process, p ∈ R+, and q ∈

R+, n is a n-dimensional positive constant q = (q1, q2, . . . qn). Let Y0 be the initial state,
then the probability of default is given through

P(τ ≤ T ) = 1− exp(P (T )−Q(T )Y0),

the parameters P, and Q are determined through a Riccati ordinary differential equa-
tion, along with some boundary conditions. As an application let us investigate the
case when the process (Yt)t≥0 follows the CIR process.

Example 3.8. Assume that d = 1, and let (Yt)t≥0 follows the CIR dynamics

dYt = c(µ− Yt) + σ
√
YtdWt, t ∈ [0, T ],

where c > 0, σ > 0 and µ ∈ R. Under some calculations we have

E[Yt] = Y0e
−ct + µ(1− e−ct),

and
V ar[Yt] = Y0

σ2

c
(e−ct − e−2kt) + µσ2

2c (1− e−ct)2.
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If we assume that 2cµ > σ2, and Y0 > 0, and by letting λ(y) = y we get

Q(T ) = 2(eγT − 1)
(γ − c)(eγT − 1) + 2γ ,

P (T ) = 2cµ
σ2 log

(
2γe(γ−c)T2

(γ − c)(eγT − 1) + 2γ

)
,

where γ =
√
c2 + 2σ2.

Pricing rule for intensity models

Assume thatH is the payoff at the maturity time, and is FT -measurable, and integrable
random variable. We further assume that the interest rate is zero, then in this case we
have

E[H1{τ>T} | Ft] = 1{τ>t}(Dt − E[∆Dτ1{τ≤T} | Ft]), ∀t ∈ [0, T ], (3.7)

where (Dt)t≥0, Dt = eAtE[He−AT | Ft] = E[eAt−AT | Ft]. If we assume that the
intensity exists such that At =

∫ t
0 λsds, then formula (3.7) becomes

E[H1{τ>T} | Ft] = 1{τ>t}E[He−
∫ T
t
λsds | Ft] (3.8)

For the general case, when there exists a recovery process F-predictable (Rt)t≥0, then
from Duffie et al. (1996) the pricing rule (3.7) becomes

E[H1{τ>t}Ft] = 1{τ>t}(Dt − E[exp(−
∫ τ

t
rsds)∆Dτ | Ft]),

where

Dt = E
[∫ T

t
Ruλu exp

(
−
∫ u

t
(rv + λv)dv

)
du | Ft

]

+ E
[
H exp(−

∫ T

t
(rv + λv)dv) | Ft

]
, t ∈ [0, T ],

We have seen that by introducing jumps in a structural model the stopping time be-
comes totally inaccessible. In general, it is not easy to determined the intensity when
we are dealing with jump processes. Guo and Zeng (2008), introduced a first passage
model, where the underlying asset is a general Hunt process 2 with Lévy system (U,K)
3. Then the totally inaccessible part of the stopping time admits an intensity, see also
Janson et al. (2011) Corollary 10. We will further analyse their model using a finite
variation Lévy process in Chapter 4.

2Hunt process is a quasi left continuous process satisfying the strong Markov property.
3Lévy systems for Markov processes is the structure that characterizes the jump behaviour of a

Hunt process, K represents the kernel on R and U is a continuous additive functional.
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3.3.2 Hazard rate models

The hazard rate approach is based on the calculation of the conditional probability
Zt = P(τ > t | Ft), where G = (Gt)t≥0 represents the augmented filtration Gt = Ft∨Nt,
where N = (Nt)t≥0 is the σ-algebra generated by the default process (Nt)t≥0 and as
always F = (Ft)t≥0 is the filtration generated by the underlying asset process (Xt)t≥0.

Obviously, Ft represents the cumulative distribution function of the default time τ .
Thus for a given density function q(t) then

Ft = P(τ ≤ t | Ft) =
∫ t

0
q(s)ds.

The survival probability is given by Zt = P(τ > t | Ft) = 1 − Ft. One important
assumption that we should make when studying hazard rate models is Zt < 1. If we
assume that Zt = 1, then with probability one the default event will never occur.

Definition 3.9 (Hazard process). Let Zt < 1, then the F-hazard process of the stopping
time τ , denoted by (Γt)t≥0, Γt =

∫ τ∧t
0 λsds and it is defined through the formula

Zt = 1− Ft = e−Γt or Γt = − ln(1− Ft) = − ln(Zt) ∀t ∈ [0, T ].

Remark 3.10. Similarly to the intensity models, the process (Nt −
∫ τ∧t

0 λsds)t≥0 is a
G-martingale.

Hazard rate and filtration expansion

Let us describe the idea of filtration expansion applied in hazard rate models. Note
that more detailed analysis for filtration expansion along with the appropriate canon-
ical decomposition will be made in Chapter 5. Since we are dealing with a filtration
expansion, it may useful to introduce the H′ and H hypothesis.

Definition 3.11 (H′ and H hypothesis). A F-semimartingale we say that satisfies the
H′ hypothesis if and only if it remains a semimartingale under the augmented filtration
G. Similarly, an F-local martingale satisfies the H hypothesis if and only if it remains
a local martingale under the filtration G.

Note that for the case of progressive enlargement the H′ hypothesis is always valid
until the stopping time τ . If (Xt)t≥0 is an F-local martingale and τ is a G-stopping
time then (Xτ∧t)t≥0 is a G-semimartingale. Assume that (Zt)t≥0, Zt := P(τ > t | Ft),
which from the Doob-Meyer decomposition under F, we have Zt = Mt − Kt, where
(Mt)t≥0 is a local martingale and (Kt)t≥0 is an increasing and predictable process. Let
us also define the process (εt)t≥0, εt = (∆XτNt)t≥0 and the process (Bt)t≥0 be the
F-predictable dual projection of (εt)t≥0. Then using Jeulin’s formula, see Jeulin and
Yor (1978), under the progressive filtration expansion G of F we have that the process

(
Xτ∧t −

∫ τ∧t

0

d 〈X,M〉Fs +Bs
Zs−

)
t≥0

, t ∈ [0, T ],
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is a G-local martingale.

Assuming that the process (εt)t≥0 is zero, which implies that the G-stopping time τ
avoids all the F-stopping times, then following Protter (2004)Chapter VI, above formula
is simplified (

Xτ∧t −
∫ τ∧t

0

d 〈X,M〉Fs
Zs−

)
t≥0

, t ∈ [0, T ],

is a G-local martingale.

Honest and initial times are the most common applications of the H′ hypothesis. Let
us first provide their definitions.

Definition 3.12 (Honest time). A random variable τ is said to be an honest time if
for every t <∞ there exists an F-measurable random variableWt, under which τ =Wt

on the sets {τ ≤ t}.

For the initial time we borrow its definition from Jeanblanc and Le Cam (2009)

Definition 3.13 (Initial time). Let Pt(ω, dx) be the regular conditional distribution
of τ and assume that η is a σ-finite measure. Then a positive random variable τ is
called initial time if the regular conditional distribution is absolutely continuous with
respect to the σ-finite measure η i.e. Pt(ω, dt)� η(dt) with t ∈ [0, T ].

Based on the Definition 3.13 there exists a family of F-adapted processes (aθt )t≥0 such
that

Zt = P(τ > t | Ft) =
∫ +∞

t
aθt η(du).

Now let us briefly provide the canonical decompositions for a progressive filtration
expansion, when τ is an honest or an initial time.

• For the case when the default time is an honest time under filtration G and
(Xt)t≥0 is a F-semimartingale, then under the progressive filtration expansion G
of F the process

(
Xt −

∫ τ∧t

0

d 〈X,M〉Fs + dBs
Zs−

+ 1{τ≤t}
∫ t

τ

d 〈X,M〉Fs + dBs
Fs−

)
t≥0

, t ∈ [0, T ],

is a G-local martingale

• If τ is an initial time and aθ is the density of the conditional law of τ introduced
in Definition 3.13, then under the progressive filtration G of F we have that the
process

(
Xt −

∫ τ∧t

0

d 〈X,G〉Fs + dBs
Zs−

−
∫ t

τ∧t

d
〈
X, aθ

〉F
s

aθs−
|θ=τ

)
t≥0

, t ∈ [0, T ],

is also a G-local martingale.

A rigorous study of the initial times under the progressive filtration expansion can be
found in Jeanblanc and Le Cam (2009).
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Pricing rule for hazard rate models

Regarding the pricing rule for hazard rate models following Bielecki and Rutkowski
(2004), Chapter 5, Corollary 5.1.1, we know that for any random variable H G-
measurable and let G = N ∨ F, then we have

E[1{t<τ≤s}H | Gt] = 1{τ>s}E[1{t<τ≤s}eΓtH | Ft]. (3.9)

Comparing the two pricing rules, following (3.8) and Corollary (3.9), we can see that
the pricing rule of the intensity based models is more complicated since we need to
calculate the jump term of (Dτ∧t)t≥0. As an illustration Jeanblanc and Le Cam (2008)
calculate the price of a zero coupon bond with constant intensity, using the intensity
pricing rule.

Credit spread for reduced form models

For the intensity based models following Proposition 5.10 of Giesecke (2006), we have
that for any F-totally inaccessible stopping time

lim
T↓t

S(t, T ) = λt, a.s, for all t ∈ [0, T ].

The same result holds true for the hazard rate models under the expanded filtration G.

In contrast to the structural models, in reduced form models the default event occurs as
a complete surprise and therefore investors cannot predict the default time. However,
a major disadvantage of these models is that the default process has no economic
interpretation.

3.4 Quadratic hedging methods

In the previous two sections, we described models for pricing defaultable claims. Let
us now describe the idea of hedging in incomplete markets.

In complete markets where arbitrage opportunities are absent, a contingent claim H

can be perfectly hedged uniquely. A contingent claim H is said to be attainable if
there exists a self-financing strategy (φt)t≥0 and VT (φ) = H. An attainable claim
can be represented as a stochastic integral of an underlying asset plus a constant that
represents the initial cost. The integrand provides sequential hedging that it is self-
financing. Through the non-arbitrage assumptions, a market is complete if and only
if every contingent claim is attainable. In this case, there exists a unique martingale
measure under which we have perfect hedging, see Bingham and Kiesel (2004), Chapter
6, for more details.

On the other hand, in an incomplete market claims fail out to be represented in terms
of a stochastic integral with respect to the underlying asset as there is an intrinsic
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risk. In this case, there is no unique martingale measure. For non attainable claims,
it is impossible to assume that VT (φ) = H and on the same time the strategy to
be self-financing. Quadratic hedging approaches are considered proper methods for
hedging defaultable claims in incomplete markets. Their aim is to find a strategy
with a minimum hedging cost in the mean square sense. They are divided into two
different but quite similar methods. The local risk minimization and the mean variance
approaches.

If we prefer to hedge contingent claim such that the terminal condition VT (φ) = H but
the strategy is not self-financing then we choose the local risk minimization approach.
Since the self-financing condition is not valid, in this method we assume that the cost
process is a local martingale so that the strategy is a mean-self-financing. We look for
a non self-financing hedging strategy φt = (θ, η)t and given that the cost process is a
local martingale and the hedging error is minimized in the following sense

inf
θ
E
[
(CT (φ)− Ct(φ))2 | Ft

]
.

The method was introduced by Föllmer and Sondermann (1986) and later Föllmer and
Schweizer (1991) extended it to the semimartingale case.

On the other hand, if we prefer a self-financing strategy but the terminal condition
VT (φ) = H is not valid any more, we choose the mean variance approach. In this
method the hedging strategy tries to minimize the risk globally. We look for self-
financing strategies φt = (θ, η)t with initial capital V0 such that the hedging error is
minimized in the mean square sense as follows

inf
θ
E

(V0 +
∫ T

0
θsdXs −H

)2
 .

The method was first introduced in a general framework by Schweizer (1992). A disad-
vantage of this method is that in certain circumstances the hedging strategy is difficult
to calculate it. An excellent review analysing both approaches is presented in Schweizer
(2001).

When the underlying asset is a (local) martingale the two methods coincide. In this
case, the methodology boils down to the determination of the GKW decomposition.
For the semimartingale case, we need to introduce appropriate martingale measures
and then to determine the GKW decomposition.

3.4.1 Risk minimization approach: martingale case

Let (Ω,F ,P) be a probability space equipped with a filtration F = (Ft)0≤t≤T that
satisfies the usual hypothesis. We assume that the underlying asset (Xt)t≥0 is an F-
local martingale under the physical measure P.

To formalize the theory we need to introduce some terminology. We start by defining

44



the space L(X) and the notion of self-financing pre-strategies.

Definition 3.14. We denote by L(X) the linear space of all real valued predictable
processes (θt)t≥0 integrable with respect to (Xt)t≥0 i.e. we say that (θt)t≥0 ∈ L(X) if∫ t

0 θsdXs < ∞, see alsoDellacherie and Meyer (1982) Chapter VI for more details. A
self-financing pre-strategy is any pair (V0, θt) such that V0 is an F0-measurable random
variable and (θt)t≥0 ∈ L(X). We associate the value process of (V0, θt) given by

Vt = V0 +
∫ t

0
θsdXs, t ∈ [0, T ].

The predictability of the process (θt)t≥0 in Definition 3.14 is quite essential. This is the
informational restriction so that (θt)t≥0 cannot anticipate fluctuations of (Xt)t≥0.

Definition 3.15. We define the space L2(X) to be the space of all real F-predictable
processes (θt)t≥0 such that

‖θ‖L2(X) :=
(
E
[∫ T

0
θ2
sdXs

]) 1
2

<∞.

The following Lemma shows that the stochastic integral of (θt)t≥0 with respect to
(Xt)t≥0 is well defined given that (θt)t≥0 ∈ L2(X). Its proof can be found in Schweizer
(2001).

Lemma 3.16. Let (Xt)t≥0 be a P-local martingale. We assume that (θt)t≥0 ∈ L2(X),
then the stochastic integrals

∫ t
0 θsdXs are well defined. Moreover, the space I2(X) :={∫ t

0 θsdXs | θt ∈ L2(X)
}
is well defined and a subspace of M2

0(P) (the space of square
integrable martingales null at time zero).

Definition 3.14 we define the pre-trading strategy. In the theory of risk minimization
since we are working with orthogonal martingales, we need further to assume that
(θt)t≥0 ∈ L2(X). A pre-strategy in which we have the extra condition that (θt)t≥0 ∈
L2(X) we call it RM-strategy ( or L2-strategy). The Definition bellow formulate this.

Definition 3.17 (RM-strategy). An RM-strategy (φt)t≥0 is any pair φt = (θ, η)t such
that (θt)t≥0 ∈ L2(X) and η = (ηt)t≥0 is a F-adapted and real valued process such that
the value process Vt(φ) = θtXt + ηt is a right continuous and square integrable process
under F, for all t ∈ [0, T ].

Based on Lemma 3.16, since the stochastic integral
∫ t
0 θsdXs is well defined and a local

martingale, we are able to provide the definition of the cost process. We also define the
risk process.

Definition 3.18 (Cost and risk process). Let (φt)t≥0 be a RM-strategy, then the cost
process is given by

Ct(φ) := Vt(φ)−
∫ t

0
θsdXs, 0 ≤ t ≤ T,

and the risk process is
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Rt(φ) := E
[
(CT (φ)− Ct(φ))2 | Ft

]
, 0 ≤ t ≤ T.

If the hedging strategy (φt)t≥0 is self-financing strategy then its cost process is constant
which implies that the risk process is zero. However, in incomplete markets this is no
longer true. For all the hedging strategies with VT (φ) = H we aim to minimize the risk
process in a suitable way. The following definition describes this.

Definition 3.19. A RM-strategy φ is called risk minimizing strategy if for any other
RM-strategy (φ̃t)t≥0 such that VT (φ) = VT (φ̃), P a.s., we have

Rt(φ) ≤ Rt(φ̃), P− a.s., ∀t ∈ [0, T ].

The proof of the following Lemma can be found in Schweizer (1994).

Lemma 3.20. An RM-strategy (φt)t≥0 is risk-minimizing if and only if

Rt(φ) ≤ Rt(φ̃), P a.s,

for every t ∈ [0, T ] and for every RM-strategy (φ̃t)t≥0 which is admissible continuation
of (φt)t≥0, in the sense that VT (φ) = VT (φ̃), P a.s. θs = θ̃s for s ≤ t and ηs = η̃s for
s < t.

As we have already mentioned an RM-strategy is not self-financing. However, it turns
out that an RM is a mean self-financing. The definition is given as follows, see also
Schweizer (2001).

Definition 3.21. An RM-strategy (φt)t≥0 is mean-self-financing strategy if and only
if the cost process (Ct(φ))t≥0 is a P-(local) martingale.

Remark 3.22. Remember that a (RM) strategy is called self-financing if and only if
the cost process (Ct)t≥0 has constant paths. Then following Definition3.21, any self-
financing strategy is also a mean self-financing.

A quite equivalent result is the following Lemma, for its proof, see Schweizer (1994).

Lemma 3.23. If (φt)t≥0 is a risk minimizing RM-strategy, then it is also mean-self-
financing.

An essential tool for studying the KW and GKW decompositions is the orthogonality
of two local martingales.

Definition 3.24 (Orthogonality). Two martingales (Xt)t≥0, (Yt)t≥0 ∈ M2 are said to
be (strongly) orthogonal if and only if their product (XtYt)t≥0 is also a martingale.

An important consequence of orthogonality is the following Proposition, see Jacod and
Shiryaev (2003), Chapter I, Proposition 4.15.
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Proposition 3.25. Assume that (Xt)t≥0, (Yt)t≥0 ∈ M2. Then there is equivalency
between:

1. (Xt)t≥0 and (Yt)t≥0 are strongly orthogonal in the sense of Definition 3.24.

2. 〈X,Y 〉Ft = 0.

Let us provide the definition of KW and GKW decompositions which will be used
extensively throughout this thesis. For its proof, we refer to Ansel and Stricker (1993).

Definition 3.26 (Kunita-Watanabe decomposition). Let (Xt)t≥0 be an F-local mar-
tingale. Then any (Yt)t≥0 local martingale can be decomposed as

Yt = Y0 +
∫ t

0
θsdXs + Lt, 0 ≤ t ≤ T,

where (θt)t≥0 is an F-predictable and integrable process, and (Lt)t≥0 is a square integ-
rable martingale orthogonal to the local martingale (Xt)t≥0. The above decomposition
is called Kunita-Watanabe (KW) decomposition.

For the martingale case, the determination of the RM hedging strategy for a contingent
claim H ∈ L2(FT ,P) boils down calculating the GKW decomposition.

Definition 3.27 (Galtchouk-Kunita-Watanabe decomposition). Let (Xt)t≥0 be an F-
local martingale and H be an FT -measurable random variable which can be de-
composed as

H = H0 +
∫ T

0
θsdXs + LT ,

where (θt)t≥0 is an F-measurable and integrable process, and (Lt)t≥0 is a square in-
tegrable F-local martingale, orthogonal to (Xt)t≥0. The above decomposition is called
Galtchouk-Kunita-Watanabe (GKW) decomposition.

Following Föllmer and Sondermann (1986), using Definition 3.27, and since the space
I2(X) = {

∫ t
0 θsdXs | θt ∈ L2(X)} is a subspace of M2

0(P) then any defaultable claim
H ∈ L2(FT ,P) can be uniquely expressed through the GKW decomposition as follows

H = E[H | F0] +
∫ T

0
θHu dXu + LHT , P− a.s., (3.10)

where (θHt )t≥0 ∈ L2(X) and is local martingale (LHt )t≥0 orthogonal to the local mar-
tingale (Xt)t≥0.

The next Theorem characterizes the uniqueness of the risk minimizing strategy under
the martingale case. For its proof, we refer to Schweizer (2001), Theorem 2.4.

Theorem 3.28. Assume that (Xt)t≥0 , with 0 ≤ t ≤ T , is a P-local martingale.
Then for any contingent claim H ∈ L2(FT ,P) admits a unique risk minimizing RM
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hedging strategy (φ∗t )t≥0, with VT (φ∗) = H, P a.s. Based on (3.10), the hedging strategy
φ∗t = (θ∗t , η∗t )t≥0 can be determined by

θ∗t = θHt , 0 ≤ t ≤ T,

Vt(φ∗) = E[H | Ft] := V ∗t , 0 ≤ t ≤ T,

Ct(φ∗) = E[H | F0] + LHt 0 ≤ t ≤ T.

Based on Theorem 3.28 the process (θHt )t≥0 can be determined through

θHt = d 〈V,X〉Ft
d 〈X〉Ft

, t ∈ [0, T ].

Remark 3.29. We remind the reader that under the local martingale case the two
quadratic approaches are the same. Under the martingale case we need to determine
the GKW decomposition.

3.4.2 Local risk minimization approach: semimartingale case

In this section, we assume that the process (Xt)t≥0 is no longer a martingale, but
merely a semimartingale under P. In general, the risk minimizing strategies under the
semimartingale case do not exist. The following Proposition verifies this. For its proof,
we refer to Föllmer and Schweizer (1991).

Proposition 3.30. If (Xt)t≥0 is semimartingale under the physical measure P, a con-
tingent claim H admits in general no risk minimizing strategy (φt)t≥0 with VT (φ) = H,
Pa.s.

Following Proposition 3.30 since the risk-minimizing strategy does not exist in the
semimartingale framework under the original pricing measure P, we need to find a less
forceful conditions such that the variability of the risk process is determined locally.
This is given in Definition 3.36.

Since (Xt)t≥0 is a semimartingale then from Doob-Meyer decomposition it can be de-
composed as

Xt = X0 +MX
t + ΛXt , t ∈ [0, T ],

where (MX
t )t≥0 is an F-local martingale and (ΛXt )t≥0 is an F-predictable process, with

paths of finite variation and ΛX0 = 0. We assume that (ΛXt )t≥0 is absolutely continuous
with respect to

(〈
MX

〉F
t

)
t≥0, such that

ΛXt =
∫ t

0
asd

〈
MX

〉F
s
, 0 ≤ t ≤ T. (3.11)

for some predictable process (at)t≥0.We also introduce the mean variance tradefoff
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(in short MVT) process, (Kt)t≥0

Kt :=
∫ t

0
ksd

〈
MX

〉F
s
, 0 ≤ t ≤ T,

where (kt)t≥0, kt = a2
t .

A vital and quite technical condition for determining a local risk minimizing strategy
is the following.

Definition 3.31 (Structure condition (SC)). We say that the process (Xt)t≥0 satisfies
the structure condition (SC) if and only if the MVT process (Kt)t≥0 is finite P a.s.

Remark. Note that when (Xt)t≥0 is a continuous semimartingale then the SC is auto-
matically satisfied, for more details, see Schweizer (1995).

The local risk minimization depends on the determination of the GKW decomposition
under the minimal martingale measure (MMM) which is equivalent to determining
the FS decomposition under the physical measure P. The FS decomposition was first
introduced by Föllmer and Schweizer (1991), where they determined the MMM when
(Xt)t≥0 is a continuous semimartingale. An extension is made to the discontinuous case
by Ansel and Stricker (1992) assuming that (Xt)t≥0 is locally bounded. The Definition
bellow introduces the FS decomposition.

Definition 3.32 (FS decomposition). A random variable U admits the Föllmer
Schweizer (in short FS) decomposition if and only if can be written as

U = U0 +
∫ T

0
θUs dXs + LUT ,

where (LUt )t≥0 is a local martingale orthogonal to the martingale part of (Xt)t≥0 i.e.
(MX

t )t≥0 and U0 is a constant.

Definition 3.33 (Θ-space). We denote Θ as the space of all processes (θt)t≥0 ∈ L(X)
for which the stochastic integral

∫ t
0 θsdXs is in the space of square integrable semi-

martingales. Equivalently (θt)t≥0 must be predictable with

E

∫ T

0
θ2
sd[MX ]Fs +

(∫ T

0

∣∣∣θsdΛXs
∣∣∣)2

 <∞.
Definition 3.34. An L2 strategy is a pair φt = (θ, η)t, where (θt)t≥0 ∈ Θ and η =
(ηt)t≥0 is a real valued process F-adapted such that the value process (Vt)t≥0, Vt(φ) =
θtXt + ηt is a right continuous and square integrable for all t ∈ [0, T ].

For the martingale case i.e. the process (Λt)t≥0 is zero, we have Θ = L(X) and therefore
the RM-strategy coincides with the L2 strategy.

The following Definition introduces the notion of small perturbations. This will help us
to define the LRM strategies. At the moment, let us stay to the one dimension. Note
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that similar results has been introduced to the multidimensional case, see Schweizer
(2008) for more details.

Let q = {t0, t1, . . .} be a partition of [0, T ], with mesh size |q| = maxti,ti+1∈q(ti+1 − ti).
A sequence of partitions (qn) is called increasing if qn ⊆ qn+1 for all n.

Definition 3.35. A small perturbation is an L2 strategy ∆ = (δ, ε) such that δ is
bounded, the variation of the stochastic integral

∫ t
0 δsdΛs is uniformly bounded for

every t, ω and δT = εT = 0. For any subinterval (s, t] of [0, T ] we define the small
perturbations

∆ |(s,t]:= (δ1(s,t], ε1[s,t)).

The main idea of the local risk minimization is that we minimize the risk locally. The
strategy is “optimal” even if there exist small perturbations. The Definition bellow
describes the LRM strategies.

Definition 3.36 (LRM strategy). For an L2 strategy (φt)t≥0, a small perturbation ∆
and a partition q of [0, T ] we set

rq(φ,∆) :=
∑

tt,ti+1∈q

Rti

(
φ+ ∆ |(ti,ti+1]

)
−Rti(φ)

E[〈MX〉Fti+1
− 〈MX〉Fti | Fti ]

1(ti,ti+1].

The strategy (φt)t≥0 is called locally risk minimizing (LRM) if

lim
n→∞

inf rqn(φ,∆) ≥ 0 (P �
〈
MX

〉F
),−a.e on [0, T ]),

for every small perturbation ∆ and every increasing sequence (qn)n∈N of partitions
ending to the identity.

The idea of determining LRM hedging strategies is restricted to the class of of self-
financing strategies. The following Lemma present this. For the proof see Schweizer
(2001).

Lemma 3.37. Assume that (
〈
MX

〉F
t
)t≥0 is P strictly increasing. If an L2 strategy is

LRM then it is also mean self-financing.

The following Theorem provide sufficient conditions such that an LRM strategy exists.
For its proof, we refer to Schweizer (2001).

Theorem 3.38. Assume that (Xt)t≥0 is a semimartingale, and it satisfies the SC,
(MX

t )t≥0 ∈ M2
0(P) and

(〈
MX

〉F
t

)
t≥0 is P a.s. strictly increasing. Also we further

assume that (ΛXt )t≥0 is P a.s. continuous, and E[KT ] < ∞. Let H ∈ L2(FT ,P) be a
contingent claim, and φ be an L2 strategy with VT (φ) = H. Then φ is LRM strategy
if φ is mean self-financing and the martingale (Ct(φ))t≥0 is strongly orthogonal to the
martingale part of (Xt)t≥0, (MX

t )t≥0.

50



Definition 3.39 (PLRM strategy). Let H be a contingent claim, H ∈ L2(FT ,P). An
L2 strategy φ with VT (φ) = H, P a.s., is called pseudo-locally risk minimizing (PLRM)
or pseudo optimal for H if (φt)t≥0 is mean self-financing and the martingale Ct(φ) is
orthogonal to (MX

t )t≥0.

We emphasize here, that if the MVT process is uniformly bounded with respect to t
and ω then SC is satisfied and there exists an PLRM hedging strategy.

From Theorem 3.38 and the above Definition the determination of the LRM strategy is
given through the PLRM strategy by obtaining the FS decomposition. An important
and necessary condition for this is that the underlying asset should satisfy the SC and
the defaultable claim must be attainable. The following Proposition describes this, for
its proof, see Schweizer (2001).

Proposition 3.40. A contingent claim H ∈ L2(FT ,P) admits a pseudo optimal L2

strategy φ, with VT = H, P a.s. if and only if it can be written as

H = H0 +
∫ T

0
θHu dXu + LHT , P a.s,

where H0 ∈ L2(F0,P), (θHt )t≥0 ∈ Θ, and (LHt )t≥0 ∈ M2
0 orthogonal to (MX

t )t≥0.
Moreover, the hedging strategy φt = (θ, η)t is given by

θt = θHt , 0 ≤ t ≤ T,

the cost process is
Ct(φ) = H0 + LHt , 0 ≤ t ≤ T,

and its value process

Vt(φ) = Ct(φ) +
∫ t

0
θudXu = H0 +

∫ t

0
θHu dXu + LHt , 0 ≤ t ≤ T. (3.12)

3.4.3 Minimal martingale measure

A key element for the relation between the FS and GKW decompositions is the MMM.
Through this measure we can determine the FS decomposition explicitly. It was in-
troduced by Föllmer and Schweizer (1991) and Schweizer (1995), when (Xt)t≥0 is a
continuous semimartingale. Choulli et al. (2010) determined it when (Xt)t≥0 is a Lévy
process. Ceci et al. (2015b) determined the MMM for a jump diffusion process when
there exists an asymmetric information in the underlying asset through projections.
In general, the characterization of the MMM remains an open problem. For the rest
of this section, we restrict ourselves to the case when (Xt)t≥0 is merely a continuous
semimartingale. The Definition bellow introduces the MMM.

Definition 3.41. A martingale measure P̂ ≈ P will be called minimal if

P̂ = P on F0,
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and if any square integrable P martingale which is orthogonal to (MX
t )t≥0 under P

remains a martingale under P̂:

(Lt)t≥0 ∈M2 and
〈
L,MX

〉F
t

= 0 =⇒ (Lt)t≥0 is a martingale under P̂.

In general to determine the MMM, we need to find martingale density. Following
Föllmer and Schweizer (1991) when (Xt)t≥0 is a semimartingale, the MMM can be
defined as

dP̂
dP

= E(−
∫
adMX)T .

The process (Ĝt)t≥0 Ĝt = E(−
∫ t

0 asdM
X
s ) = exp(−

∫ t
0 asdM

X
s − 1

2
∫ t

0 a
2
sd〈MX〉s) is the

density, and E is the Doléans-Dade stochastic exponential, see Protter (2004) Chapter
II for its properties. The process (G̃t)t≥0 should be a uniformly integrable martingale.
In general, the density (Ĝt)t≥0 is the unique strong solution of the following stochastic
differential equation

dĜt = −Ĝt−atdMt, Ĝ0 = 1.

For the case when (Xt)t≥0 is a continuous semimartingale then (Ĝt)t≥0 has the following
explicit form

Ĝt = exp
(
−
∫ t

0
asdM

X
s −

1
2

∫ t

0
a2
sd 〈X〉

F
s

)
, 0 ≤ t ≤ T,

and we have the following useful Theorem, see Föllmer and Schweizer (1991).

Theorem 3.42. Assume that (Xt)t≥0 is continuous semimartingale. Then the follow-
ing statements are valid

1. The MMM P̂ is uniquely determined.

2. P̂ exists if and only if

Ĝt = exp
(
−
∫ t

0
asdM

X
s −

1
2

∫ t

0
a2
sd 〈X〉

F
s

)
, 0 ≤ t ≤ T, (3.13)

is a square integrable martingale under P; in that case P̂is given by dP̂
dP = ĜT .

3. The MMM preserves orthogonality: based on Proposition 3.25, we know that any
(Lt)t≥0 ∈M2 with

〈
L,MX

〉F
t

= 0 under P satisfies
〈
L,MX

〉F
t

= 0 under P̂.

Following Theorem 3.42 then since (Ĝt)t≥0 is a P square integrable martingale then

• (ĜtXt)t≥0 is a P martingale.

• (Ĝt
∫ t

0 θsdXs)t≥0 is a P martingale, for every (θt)t≥0 ∈ Θ.

Based on (3.12), it is easy to see that for a pseudo optimal L2 strategy φ for a contingent
claim H, the product ĜtVt(φ) is also a P̂ martingale. Therefore the value process
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Figure 3.3: Relation between FS decomposition and GKW decomposition in the con-
tinuous semimartingale case, through the MMM.

(Vt(φ))t≥0 is a P̂-(local) martingale. Let us define the value process under P̂

V H,P̂
t := E[H | Ft], 0 ≤ t ≤ T. (3.14)

For the special case when (Xt)t≥0 is a continuous semimartingale under P, then it
will be a local martingale under P̂, and its value process (V H,P̂

t )t≥0 admits a GKW
decomposition, and we get

V H,P̂
t = V H,P̂

0 +
∫ t

0
θH,P̂u dXu + LH,P̂t , 0 ≤ t ≤ T, (3.15)

where (θH,P̂t )t≥0 ∈ L(X), and (LH,P̂t )t≥0 is a local martingale orthogonal to (Xt)t≥0

under P̂.

The Theorem bellow introduces the relationship between the MMM and the FS decom-
position. For its proof, see Schweizer (2001).

Theorem 3.43. Assume that (Xt)t≥0 is continuous and hence it satisfies the SC. We
further assume that the strictly positive P-local martingale (Ĝt)t≥0 given by (3.13), is a
square integrable martingale. Define the MMM P̂ as dP̂

dP = ĜT and let the value process
under P̂ given by (3.14). Then if either

H admits a Föllmer Schweizer decomposition

or
V H,P̂

0 ∈ L2(P), θH,P̂ ∈ Θ, and LH,P̂ ∈M2(P),

then for t = T (3.15) becomes

V H,P̂
T = V H,P̂

0 +
∫ T

0
θH,P̂u dXu + LH,P̂T ,

and it gives the Föllmer Schweizer decomposition of H and (θH,P̂t )t≥0 determines a
pseudo optimal L2 strategy for H. A sufficient condition is that the MVT process
(Kt)t≥0 is uniformly bounded.

An intuitive explanation of Theorem 3.43 is that under the assumption that (Xt)t≥0 is a
continuous semimartingale calculating the optimal local risk minimization strategy boils
down to the determination of the GKW decomposition, under the MMM P̂. Assuming
that the contingent claim H can be expressed as a function of the random variable XT
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then determining the value process (3.15) under the MMM can be reduced into solving
a partial differential equation. Similar idea will be used in Chapters 4, 6 and 7 where
assuming that (Xt)t≥0 or (Yt)t≥0 with Yt = exp(Xt) is a Lévy process , and without
using the minimal martingale measure, then the value process will be expressed through
a PIDE.

3.4.4 Mean variance approach

We turn now our attention to the mean variance approach. As we have seen the local
risk minimization method is applied at the maturity, VT = H, P a.s. On the contrary,
in the mean variance approach we do not need to impose this condition, but instead
the self-financing condition is applied. This method minimizes the difference between
the contingent claim and the value of the portfolio at the maturity time T .

Let Θ2 be the space such that all the stochastic integrals of the form Ut(θ) :=
∫ t
0 θ

H
u dXu,

that satisfies UT (θ) ∈ L2(P). Given a contingent claim H ∈ L2(P) which is FT -
measurable, then if we assume that there exists a linear subspace Θ ⊂ Θ2, the mean
variance approach is determined by

minimize
θ∈Θ

E

(H − V0 −
∫ T

0
θHs dXs

)2
 .

Definition 3.44 (Mean variance optimal strategy). A mean variance strategy is any
pair (V0, θt) such that (θt)t≥0 ∈ Θ and V0 ∈ R. If H ∈ L2(P) is contingent claim then
an mean variance strategy (V mvo, θmvo)t is called mean variance optimal strategy for
H if it minimizes

E
[
(H − VT (V0, θ))2

]
=
∥∥∥∥∥H − V0 −

∫ T

0
θudXu

∥∥∥∥∥
2

L2(P)
,

over all mean variance strategies (V0, θt).

When the underlying asset (Xt)t≥0 is a martingale we have seen that the optimal mean
variance hedging strategy can be determined through the GKW decomposition. How-
ever, when we are dealing with semimartingales then the situation is more complicated,
and we need to introduce the variance optimal martingale measure.

Let us denote by P the set of all convex equivalent martingale measures and

P2
e :=

{
Q ∈ P | dQ

dP
∈ L2(P)

}
⊆ P,

be the set of all equivalent martingale measures with square integrable density, and we
assume that P2

e 6= ∅

Definition 3.45. The variance optimal martingale measure P̃ is the unique element of
P2
e such that minimizes

∥∥∥dQdP ∥∥∥L2(P)
=
√

1 + V arP
[
dQ
dP

]
for all Q ∈ P2

e .
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Definition 3.46. The space ΘGLP consists of all (θt)t≥0 ∈ L(X) such that UT (θ) is in
L2(P) and the process Ut(θ) =

∫ t
0 θsdXs is uniformly integrable for every Q martingale

measure, Q ∈ P2
e (X). The space ΘS consists of all (θt)t≥0 ∈ L(X) such that U(θ) is in

the space of square integrable semimartingales.

The space ΘS is a generalization of the L2(X) introduced in the martingale space.
Following Schweizer (2001), an advantage of the ΘGLP is that in this space duality
formulations are more manageable in the theoretical framework. The next Theorem is
the section’s main result, for its proof, we refer to Schweizer (2001).

Theorem 3.47. Let H ∈ L2(P) be a contingent claim and write the GKW decompos-
ition of H under the variance optimal martingale measure P̃ with respect to (Xt)t≥0

as
H = EP̃[H] +

∫ T

0
ξH,P̃u dXu + LH,P̃T = V H,P̃

T ,

with
V H,P̃
t := EP̃[H | Ft] = EP̃[H] +

∫ t

0
ξH,P̃u dXu + LH,P̃t , 0 ≤ t ≤ T.

Then the mean variance optimal strategy for H is given by

V mvo
0 = EP̃[H],

and

θmvot = ξH,P̃t − ζ̃t

Z̃t

(
V H,P̃
t− − EP̃[H]−

∫ t

0
θmvou dXu

)
= ξH,P̃t − ζ̃t

∫ t−

0

1
Z̃u
dLH,P̃u , 0 ≤ t ≤ T,

where
Z̃t := EP̃

[
dP̃
dP
| Ft

]
= Z̃0 +

∫ t

0
ζ̃udXu, 0 ≤ t ≤ T,

for a process (ζ̃t)t≥0 ∈ ΘGLP .

Biagini and Cretarola (2009, 2012), determine a hedging strategy for a continuous
semimartingale asset, through the LRM under partial information. More specifically,
in their models the default time is determined through the hazard rate. Okhrati (2019)
studied the LRM for a defaultable claim whose asset is modelled by a continuous
semimartingale and when there exists a delay in the information between investors and
a company’s management board. Heath et al. (2001), compared the two quadratic
approaches and they provide numerical results for a hedging strategy with stochastic
volatility. Kohlmann et al. (2010) apply the mean variance approach when the asset is
a quasi left continuous semimartingale with bounded jumps.

In general when the asset (Xt)t≥0 is a jump diffusion process, determining the LRM
hedging strategy is not an easy task. More precisely, when (Xt)t≥0 is a discontinuous
process, then the GKW and FS decompositions do not coincide under the minimal
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martingale measure P̂. The main reason for this is that orthogonality is no preserved
between the measures P and P̂. Given that (Xt)t≥0 is a discontinuous semimartingale,
Choulli et al. (2010) compared the two decompositions and proved their relationship.
Ceci et al. (2015b) extended the results of Choulli et al. (2010) by determining the
GKW decomposition through an MMM for a semimartingale that admits jumps when
investors have a restricted available information in the underlying asset.
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Chapter 4

Hedging defaultable claims by
Itô’s-formula: the case of
non-smooth functions

4.1 Introduction

In this chapter, we provide an application of the local risk minimization (LRM) ap-
proach under complete information for investors using non-smooth Itô’s formula. Our
approach is based on Okhrati et al. (2014), who developed a hedging strategy for a
defaultable claim, where the default time is modelled through a structural model with
constant barrier and the underlying asset is a Lévy process of finite variation. The
hedging strategy can be derived through the GKW decomposition based on a solu-
tion of a PIDE. However, a drawback of this model is that the solution of this PIDE
is not necessarily smooth which brings some limitations especially in the numerical
implementations.

In general, if the solution of a PIDE represented as f(t, x) is a smooth function, then
it has a probabilistic representation given by the Feynman-Kac formula. However, for
models when the asset is modelled by a pure jump process with infinite activity and so
the diffusion component does not exists, the smoothness of the conditional expectation
derived by the Feynman-Kac formula does not always hold. In this case, the jump
components of a PIDE behave as convection terms. For more details, we refer to Cont
et al. (2004). Another problem is that sometimes the initial\terminal condition of a
PIDE (f(T, x) = F (x) or f(0, x) = F (x)) is not continuous or differentiable. Basically,
in most cases in quantitative finance F (x) is not smooth, for example exotic options.

Assuming that a function is continuous and it admits weak derivatives, Okhrati and
Schmock (2015) extended the Itô’s formula for Lévy processes for the non-smooth case.
This is a generalization of the Meyer’s-Itô formula of Lévy processes. Using the above
result, we extend Okhrati et al. (2014) model to the non-smooth case.

57



The chapter is organized as follows. In Section 4.2, we give some auxiliary results
describing the default time which is modelled trough a structural framework. In Section
4.3, we analyse the Itô’s formula for non-smooth functions. Also, in Section 4.4, the
hedging strategy through the local risk minimization approach is obtained.

4.2 Preliminaries and model description

Let (Ω,F ,P) be a probability space equipped with a filtration F, F = (Ft)0≤t≤T , and
it is the filtration generated by the underlying asset process (Xt)t≥0.

Assumption 4.1. We assume that the underlying asset (Xt)t≥0 is a Lévy process of
finite variation, with triplet (b, 0, ν), where ν is the Lévy measure on R \ {0}. From
Lévy-Itô decomposition the process has the following representation

Xt = u+ µt+
∫ t

0

∫
R
zN(ds, dz), X0 = u > 0, t ∈ [0, T ], (4.1)

where N(dt, dz) is the jump measure with intensity ν(dz)dt,
∫
R z

2ν(dz) < ∞ and µ =
b−

∫ 1
−1 zν(dz). The process may have finite activity i.e. ν(R) <∞ or not (ν(R) =∞),

and we assume that for the case ν(R) <∞, the Lévy measure is continuous.

Let τ be a stopping time which is given through

τ = inf{t : Xt < 0}, (4.2)

with the convention that τ =∞, if Xt ≥ 0. We remark that the available information
F, generated by the underlying asset (Xt)t≥0 is complete, however, the stopping time
is a totally inaccessible one.

Remark 4.2. Note that the stopping time introduced in (4.2) is strictly negative. Fur-
thermore, the stopping time (4.2) cannot be positive, since in this case it will not be
totally inaccessible (see also Theorem 4.4). The result is a special case of Theorem 1.3
of Guo and Zeng (2008).

In the financial environment, it may be useful to introduce the exponential underlying
asset, (Yt)t≥0, Yt := eXt . In this case, the stopping time can also be defined as τ :=
inf {t : Yt < D}, where the barrier D is constant 0 < D < eu. This is consistent with
the first passage models introduced in Section 3.2.2. Note also that in this case, the
stopping time can be expressed as τ = inf{t : Xt < log(D)} and the model based on
(4.2) can incorporate this case as well.

Following Kyprianou (2014), Chapter 7, we provide some general results in to order to
justify why the default time, defined in (4.2), is a totally inaccessible stopping time.

Definition 4.3. A Lévy process (Xt)t≥0 creeps downwards at level x = 0 if

P(Xτ = 0) > 0,
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where τ is introduced in (4.2).

The following Theorem characterizes when a finite variation Lévy process creeps down-
wards. For its proof we refer to Kyprianou (2014), Theorem 7.11.

Theorem 4.4. Let (Xt)t≥0 be a Lévy process which is not a compound Poisson (i.e.
the Lévy measure can also take infinite values). Then (Xt)t≥0 creeps downwards if and
only if (Xt)t≥0 is of finite variation with Lévy-Knitchine formula

Ψ(θ) = −iθµ+
∫
R{0}

(1− eiθz)ν(dz), where µ < 0.

Since the process (Xt)t≥0, given by (4.1), is not a compound Poisson since from As-
sumption 4.1 the process may have infinite activity and its drift µ is positive, then the
process never creeps downwards and therefore the stopping time occurs at a jump time
of (Xt)t≥0. Using Theorem 4, Chapter III of Protter (2004), then the stopping time is
totally inaccessible. The later implies that the indicator process (1{τ≤t})t≥0 admits an
intensity (λt)t≥0. Since P(τ = 0) = 0 then by applying Theorem 1.3 of Guo and Zeng
(2008), the intensity process is given through

λt = 1{τ>t}ν(−∞,−Xt], t ∈ [0, T ], (4.3)

and thus the process
(
1{τ≤t} −

∫ t
0 1{τ>s}ν(−∞,−Xs]ds

)
t≥0

is an F-local martingale.

Note that the process (
∫ t
0 1{τ>s}ν(−∞,−Xs]ds)t≥0 is well defined and finite almost

surely, see Okhrati et al. (2014), Lemma A.2.

Our goal here is to find a hedging strategy for a defaultable claim which its payoff is
given by F (XT )1{τ>T}, F (x) ∈ L1

loc(R), using the Itô’s formula for the non smooth
case, introduced by Okhrati and Schmock (2015), when the default time τ is given by
(4.2). We assume that the underlying process (Xt)t≥0 is a pure jump Lévy process of
finite variation, defined in (4.1).

4.3 Itô’s lemma for the non-smooth case for Lévy pro-
cesses of finite variation

We begin with the introduction of some basic results of the Itô’s formula for the non
-smooth case, when the underlying asset is of finite variation, see Okhrati and Schmock
(2015).

Let us first provide the essential definitions of Lp(A) spaces and L1
loc(A), A ⊂ R.

Definition 4.5 (Lp space). Let (Ω,F ,m) be a measurable space, andm is the Lebesgue
measure. If f : Ω→ C is a measurable function on Ω, then we define

Lp(A) :=
{
f :

∫
A
|f |pdm is finite

}
, 0 < p <∞,
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and its norm is given by

‖f‖p =
(∫

A
|f |pdm

) 1
p

.

Definition 4.6. A measurable function f : Ω → C is called locally integrable if for
every open set A we have

∫
A |f(x)|dm <∞ where m is Lebesgue measure. We denote

this space by L1
loc(Ω).

L1
loc(Ω) = {f : f |A ∈ L1(A) ∀A ⊂ Ω, A compact},

Similarly, the space Lploc(Ω), p ≥ 1 is

Lploc(Ω) = {f : f |A ∈ Lp(A) ∀A ⊂ Ω, A compact}, ∀p ≥ 1.

Definition 4.7 (Weak derivative). Suppose that a ∈ Nd0 is a multi-index. Then a
function f ∈ L1

loc(A), A ⊂ R is weakly differentiable and its ath weak derivative denoted
by ∂af is given b∫

A
(∂af(x))ϕ(x)dx = (−1)|a|

∫
A
f(x)(∂aϕ(x))dx, ∀ϕ ∈ C∞c (A). (4.4)

More generally, for a function f : R+
0 × A → R then f ∈ L1

loc(R
+
0 × A) has weak

derivatives ∂af ∈ L1
loc(R

+
0 ×A) given by∫

[0,∞)×A
(∂af(x))ϕ(x)dx = (−1)|a|

∫
[0,∞)×A

f(x)(∂aϕ(x))dx ∀ϕ ∈ C∞c (R+
0 ×A).

An intuition behind the Definition 4.7 is that weak derivatives behave like ordinary
derivatives except on sets with zero measure. Weak derivatives ignore sets of zero
measure as integration neglects sets whose measure is zero.

The following Lemma reveals the boundedness of the weak derivative. For the proof,
we refer to Okhrati and Schmock (2015).

Lemma 4.8. Assume that f ∈ L1
loc(A) has the weak derivative ∂af ∈ L1

loc(A). Suppose
that ϕ ∈ C∞(Rd) is a test function with support K such that ϕ ≥ 0 ∀x ∈ Rd. In this
case, we have

|∂a(f ∗ ϕ)(x)| ≤ sup
z∈A∩Λ(x)

|∂af(z)|,

where Λ(x) = {y ∈ Rd : x− y ∈ K}.

Assumption 4.9. We assume that the measure qt(B) = P(Xt ∈ B) ,where B ⊂ A is
Borel measurable set and t ∈ [0, T ], is absolutely continuous with respect to Lebesgue
measure.

Remark 4.10. Note that if B = [0, t] × A where A ∈ B(R) then Assumption 4.9 is the
amount of time that the Lévy process spends on the Borel set A. By the absolute
continuity of measure qt(·) and using Proposition 3.1 of Okhrati and Schmock (2015)
it is equivalent to assume that both Xt ∈ A and Xt− ∈ A for each t ∈ [0, T ].
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Remark 4.11. Note also that Assumption 4.9 is valid for the finite variation case for
the infinity activity case when the Lévy measure is absolutely continuous with respect
to Lebesgue measure. For the finite activity case it is not valid. To see this, following
Sato (1999) Remark 27.3, when (Xt)t≥0 is a compound Poisson then the measure qt(·)
is expressed as

qt(A) = e−tν(A)
+∞∑
k=0

tkνk

k! ,

which is not continuous as P(Xt = 0) > 0 for t ∈ [0, T ].

The following Theorem establishes the non-smooth Itô formula for infinite activity Lévy
processes and it is the main result of Okhrati and Schmock (2015).

Theorem 4.12. Assume that f : [0, T ]× A→ R is a continuous function on R+
0 × A

such that f ∈ L1
loc([0, T ] × A), supp(f) ⊂ [0, T ] × A and A is open set in R. Also,

let the weak derivatives ∂f
∂t ,

∂f
∂x ∈ L1

loc([0, T ] × A) be locally bounded defined by (4.4).
Suppose that (Xt)t≥0 is a finite variation Lévy process with triplet (b, 0, ν) given by
(4.1) satisfying Assumption 4.9 such that ∀t ∈ [0, T ] Xt and Xt− are in A, then we
have almost everywhere

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂s
(s,Xs)ds+ µ

∫ t

0

∂f

∂x
(s,Xs)ds

+
∫ t

0

∫
R

(f(s,Xs− + z)− f(s,Xs)N(ds, dz), t ∈ [0, T ].

4.4 LRM for a defaultable claim

In this section, we provide the main results of this chapter. Our aim is to determine the
LRM for a defaultable claim of the form F (XT )1{τ>T} when F ∈ L1

loc(A), A is an open
set of R and the stopping time τ is defined in (4.2). Note that our analysis is made
for a simple defaultable claim where there is no recovery rate in case of default and
absent of an interest rate. We derive the LRM through the Kunita-Watanabe (KW)
decomposition by determining the canonical decomposition of (f(t,Xt)1{τ>t})t≥0. In
simple words, through a solution of a PIDE which is not necessarily smooth, for the
local martingale case we derive the GKW decomposition.

4.4.1 KW and GKW decompositions

Note that all the discussions are arguments of this sections are direct extensions of
Okhrati et al. (2014). More precisely, we use the non-smooth version of the Itô’s
formula developed in Okhrati and Schmock (2015) and extend the results of Okhrati
et al. (2014).

Before we start our analysis we impose the following integrability condition.
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Assumption 4.13. Let f(t, x) be function such that f ∈ L1
loc([0, T ]×A) and supp(f) ⊂

[0, T ] × A, for some open set A ⊂ R. Then we impose the following integrability
condition ∫

R
|f(t, x+ z)− f(t, x)|ν(dz) <∞, ∀t ∈ [0, T ] and x ∈ A.

As already mentioned, our methodology is primarily based on the solution of an ap-
propriate PIDE. The Assumption bellow provides the general form of the PIDE.

Assumption 4.14. A function F = F (x) belongs to class (?) if there exist a function
f ∈ L1

loc([0, T ]×A), A ∈ R, f = f(t, x) which is the solution of the following PIDE

Af(t, x) = (AP (t, x)− xAf(t, x)− αf(t, x))∫
R z

2ν(dz) α, ∀0 ≤ t ≤ T and x ∈ A,

and f(T, x) = F (x) ∀x ∈ R, where P (t, x) = xf(t, x), α = µ +
∫
R zν(dz) and the

operator A is given by

Af(t, x) = ∂f

∂t
(t, x) + µ

∂f

∂x
(t, x)−

∫
(−∞,−x]

f(t, x+ z)ν(dz)

+
∫
R

(f(t, x+ z)− f(t, x))ν(dz), ∀x ∈ R, t ∈ [0, T ].
(4.5)

We proceed to find the canonical decomposition of (f(t,Xt)1{τ>t})t≥0.

Proposition 4.15. Let (Xt)t≥0 be a finite variation Lévy process given by (4.1) satis-
fying Assumption 4.9 or equivalently Xt, Xt−belong in A ⊂ R. Let f : [0, T ]×A→ R be
L1
loc([0, T ]×A) continuous function, such that supp(f) ⊂ [0, T ]×A and its derivatives

∂f
∂x ,

∂f
∂t ∈ L

1
loc([0, T ]×A) are locally bounded, satisfying (4.4). We further assume that

f(t, x) satisfies Assumption 4.13. Then the process (Ut)t≥0, Ut = f(t,Xt)1{τ>t} is a
F-semimartingale and it admits the following decomposition

Ut = U0 +Ot +
∫ t

0
Af(s,Xs)1{τ>s}ds, t ∈ [0, T ], (4.6)

where (Ot)t≥0 is an F-local martingale and the operator A is given by (4.5).

Proof. Since f ∈ L1
loc(R

+
0 × A) with A ⊂ R, then (f(t,Xt))t≥0 is an F-special semi-

martingale and using the integration by parts formula (see Definition 2.26) the process
(f(t,Xt)1{τ≤t})t≥0 can be decomposed as follows

f(t,Xt)1{τ≤t} =
∫ t

0
1{τ<s}df(s,Xs) +

∫ t

0
f(s,Xs−)d(1{τ<s}) + [f(�, x), 1{τ≤�}]Ft . (4.7)

Note that the process Zt = (f(t,Xt)1τ≤t)t≥0 is an F-semimartingale, since the three
terms given in (4.7) are also semimartingales. Since the weak derivatives ∂f

∂x ,
∂f
∂t are
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locally bounded, using Theorem 4.12 we have that

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂s
(s,Xs)ds+ µ

∫ t

0

∂f

∂x
(s,Xs)ds

+
∫ t

0

∫
R

(f(s,Xs− + z)− f(s,Xs−))N(ds, dz), t ∈ [0, T ].
(4.8)

The rest of the proof follows in a similar way to the proof of Proposition of Okhrati
et al. (2014), the only difference is that instead of classical Itô’s formula for smooth
functions, we use the version given by (4.8).

Having determined the canonical decomposition of (f(t,Xt)1{τ>T})t≥0 we are able to
determine the KW decomposition, see Chapter 3, Section 3.4.

The next Theorem determines the process (θt)t≥0. For the definition of the orthogon-
ality we refer to Definition 3.24.

Theorem 4.16. Assume that (Xt)t≥0 satisfies Assumptions 4.1 and 4.9. We further
assume that f(t, x) : [0, T ]×R→ R is a non smooth function, such that f ∈ L1

loc([0, T ]×
A) and supp(f) ⊂ [0, T ]×A. Its weak derivatives ∂f

∂t ,
∂f
∂x are locally bounded satisfying

(4.4). Moreover, we presume that [U,X]Ft ∈ Aloc. Then the process Ut = f(t,Xt)1{τ>t},
whose canonical decomposition is given in Theorem 4.15, has the following form

Ut = f(t,Xt)1{τ>t} = U0 +
∫ t

0
θsdXs + Lt, t ∈ [0, T ] (4.9)

where the process (Lt)t≥0 is orthogonal to the martingale part of (Xt)t≥0 and the process
(θt)t≥0 is given through

θt = Kf(t,Xt−)∫
R zν(dz) 1{τ>t}, t ∈ [0, T ], (4.10)

for some operator Kf(t, x) = AP (t, x) − xAf(t, x) − αf(t, x), and α = µ +
∫
R zν(dz).

Finally, for t = T and for F ∈ L1
loc we have

UT = F (XT )1{τ>T} = U0 +
∫ T

0
θsdXs + LT . (4.11)

Proof. From the canonical decomposition of (Ut)t≥0, in Proposition 4.15, we have that

Ot := (f(t,Xt)1{τ>t} −
∫ t

0
Af(s,Xs)1{τ>s}ds)t≥0, t ∈ [0, T ],

and similarly for P (t, x) = xf(t, x)

O
(1)
t := (P (t,Xt)1{τ>t} −

∫ t

0
AP (s,Xs)1{τ>s}ds)t≥0, t ∈ [0, T ],

are F-local martingales with 0 ≤ t ≤ T . We need to determine the KW decomposition,
see Definition 3.26, of (Ot)t≥0 with respect to (MX

t )t≥0. By assumption, we know that
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[U,X]Ft ∈ Aloc and following Proposition 2.27, we get that [U,X]Ft = [O,MX ]Ft . Let
Q

(1)
t :=

∫ t
0 Af(s,Xs)1{τ>s}ds and Q(2)

t :=
∫ t

0 AP (s,Xs)1{τ>s}ds. From integration by
parts formula for semimartingales, see Corollary 2.26, we have

UtXt = U0X0 +
∫ t

0
Us−dXs +

∫ t

0
Xs−dUs + [U,X]Ft . (4.12)

Since UtXt = U0X0 +O
(1)
t +Q

(2)
t then from (4.12) we get that the process(

[U,X]Ft −
(
Q

(2)
t −

∫ t

0
Xs−dQ

(1)
s −

∫ t

0
Us−dΛs

))
t≥0

, t ∈ [0, T ],

is an F-local martingale. Therefore the process (〈U,X〉Ft )t≥0 is given through

〈U,X〉Ft = Q
(2)
t −

∫ t

0
Xs−dQ

(1)
s −

∫ t

0
Us−dΛs

=
∫ t

0
(AP (s,Xs)−Xs−Af(s,Xs)− f(s,Xs)α) 1{τ>s}ds, t ∈ [0, T ],

where α = µ+
∫
R zν(dz). We proceed with the calculation of (〈X〉Ft )t≥0. Since [X]Ft ∈

Aloc and [MX ]Ft = [X]Ft , then

〈X〉Ft =
∫ t

0

∫
R
z2ν(dz)ds, t ∈ [0, T ]. (4.13)

The above argument shows that (〈U,X〉Ft )t≥0 is absolutely continuous with respect to
(〈X〉Ft )t≥0 and the Radon-Nikodym derivative is in fact equal to (θt)t≥0 and t ∈ [0, T ].
Next we define (Lt)t≥0 as follows

Lt = Ot − U0 −
∫ t

0
θsdM

X
s , t ∈ [0, T ].

Breaking down the last decomposition leads to the following equation:

Ut −
∫ t
0 Af(s,Xs)1{s<τ}ds = U0 +

∫ t
0 θsd(X − ΛX)s + Lt,

where ΛXt = µt +
∫ t

0
∫
R zν(dz)ds. It is easy to show that 〈L,MX〉Ft = 0 and hence the

(Lt)t≥0 is orthogonal to the martingale part of (Xt)t≥0 i.e. (MX
t )t≥0. Since f(t, x)

satisfies Assumption 4.14 from the above decomposition we obtain (4.9).

Finally, by letting t = T and since f(T, x) = F (x), for a function F ∈ L1
loc then the

decomposition (4.11) is well defined.

Remark 4.17. In light of Theorem 4.16 the process (θt)t≥0 has the following semi-explicit
form

θt =
∫
R zf(t,Xt− + z)ν(dz)−

∫
(−∞,−Xt−] zf(t,Xt−)ν(dz)− f(t,Xt−)

∫
R zν(dz)∫

R z
2ν(dz) 1{τ≥t}.

The following Corollary investigates the case when (Xt)t≥0 is a local martingale.
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Corollary 4.18. Assume that (Xt)t≥0 is an F-local martingale and we further assume
that Assumptions 4.1 and 4.9 are satisfied. Let f(t, x) : [0, t] × R → R be the solution
of the following PIDE

Af(t, x) = 0, t ∈ [0, T ], x ∈ A,

where A is an open subset of R, with a terminal condition

f(T, x) = F (x),

where F ∈ L1
loc(R), belongs to class (?). We also assume that [U,X]Ft ∈ Aloc . Then

the GKW decomposition has the form

UT = F (XT )1{τ>T} = U0 +
∫ T

0

AP (s,Xs−)∫
R z

2ν(dz) 1{τ≥s}dXs + LT ,

where the process (Lt)t≥0 is a F-local martingale orthogonal to (Xt)t≥0.

Proof. Since (Xt)t≥0 is a local martingale then α = 0, and the operator Af(t, x) is also
zero. Then the process (θt)t≥0 is reduced to θt = AP (t,Xt−)∫

R z
2ν(dz) 1{τ≥t}.

For the rest of this subsection, we are working with finite activity Lévy
processes and we further assume that the Lévy measure is absolutely con-
tinuous with respect to Lebesgue measure. In this case, under the assumption
that the terminal condition of the PIDE f(T, x) = F (x) is smooth, the use of non-
smooth Itô’s formula is redundant. We use these results primarily in Chapter 8 , in
which we solve the PIDEs numerically through finite differences.

In light of Corollary 4.18, let us present an Example specifying the number invested in
the risky asset (Xt)t≥0 which is the process (θt)t≥0, see also Okhrati et al. (2014).

Example 4.19. Let (Xt)t≥0 be a spectrally negative Lévy process of finite variation
i.e.

Xt = X0 + µt+
∫ t

0

∫ 0

−∞
zN(ds, dz), µ > 0, t ∈ [0, T ].

For the case when (Xt)t≥0 has finite activity, then it can be represented as a compound
Poisson process with intensity λ, Xt = X0 + µt +

∑Nt
j=1 Yj , where the i.i.d random

variables Yj follow a given prior distribution. For example, we can assume that Yj
follow negative exponential distribution with parameter δ, i.e. h(z) = δ exp(δz)1{z≤0}.
In order (Xt)t≥0 to be a martingale, we can choose µ = λ

δ . If we further assume that
the terminal condition F (x) ∈ L1

loc(A) is constant given by K, from Corollary 4.18, the
process (θt)t≥0 is given by

θt =
δ2 ∫ 0
−Xt− zf(t,Xt− + z)h(z)dz + δf(t,Xt−)

2 1{τ≥t}, t ∈ [0, T ], (4.14)

where f(t, x) is the solution of the PIDE introduced in Corollary 4.18 with terminal
condition f(T, x) = K.
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For the special case when K = 1, Example 4.19 represents the indicator process 1{τ>T}
and the solution of the PIDE introduced in Corollary 4.18 has an analytical represent-
ation. In this case, it is easy to see that P(τ > T ) = f(0, X0). In Chapter 8 we solve
this PIDE numerically through finite differences and we provide its error.

Furthermore, the result can be extended to the case when (Xt)t≥0 is not necessarily a
spectrally negative. In this case we can obtain the structure of the default time. Note
that from Assumption 4.1 since

∫
R z

2ν(dz) <∞ is square integrable and [1{τ>t}, Xt]t ∈
Aloc , we may derive the distribution of the default time, see Propositions 5.1 and 5.2
in Okhrati et al. (2014).

Remark 4.20. Its not hard to see that Example 4.19 can also be applied when F (x) is a
real valued function and not just a constant, e.g. the payoff of a European call option,
F (x) = max(x−K, 0). In this case the process (θt)t≥0 has the same form as in (4.14).

4.4.2 PLRM strategies

The above construction leads to the determination of the PLRM and not of the LRM.
However, following Chapter 3, Theorem 3.38, if we assume that (Xt)t≥0 ∈ M2, the
F-predictable quadratic variation process (〈Xt〉Ft )t≥0 is strictly increasing, and if the
structure condition (SC) holds, then the PLRM leads to the LRM, which yields that
the FS decomposition exists, see Chapter 3, Proposition 3.40. Based on Assumption
4.1 since

∫
R z

2ν(dz) <∞ then we know that (Xt)t≥0 is square integrable.

It remains to prove that the SC for the process (Xt)t≥0 is uniformly bounded. Note that
based on Assumption 4.1 (Xt)t≥0 is square integrable, i.e. Xt ∈ S2(P) (see Definition
2.24). Once again, from Doob-Meyer decomposition we know that the process (Xt)t≥0

can be written as Xt = X0 +MX
t + ΛXt , where the process (ΛXt )t≥0 is given by

ΛXt = µt+
∫ t

0

∫
R
zν(dz), t ∈ [0, T ].

Since 〈MX〉F = 〈X〉F, where the process (〈X〉Ft )t≥0 is given through (4.13) which is
increasing, then (ΛXt )t≥0 can be rewritten as

ΛXt =
∫ t

0

µ+
∫
R zν(dz)∫

R z
2ν(dz) d 〈X〉Fs , t ∈ [0, T ].

Following Section 3.4.2, we know that the MVT process (Kt)t≥0 is

Kt =
∫ t

0

(
µ+

∫
R zν(dz)∫

R z
2ν(dz)

)2

d 〈X〉Fs , t ∈ [0, T ],

and it is uniformly bounded for all ω ∈ Ω, t ∈ [0, T ]. Thus we showed that all the
sufficient conditions, in order a PLRM strategy to exist, are met.

Until now, we have characterized the process (θt)t≥0 which represents the amount of
money invested in the risky asset (Xt)t≥0. Using Proposition 4.1 of Okhrati et al.
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(2014), which basically an immediate result of Proposition 3.40, we can determine the
number of shares invested in the non risky asset (ηt)t≥0 along with the value process
(Vt)t≥0 of our portfolio φt = (θ, η)t and its cost process (Ct)t≥0.

If we further assume that the solution of the PIDE, introduced in Assumption 4.14,
f(t, x) ∈ L2(R+

0 × A) for an open set A of R and (θt)t≥0 belongs to the Θ-space (see
Definition 3.33) then by applying Proposition 4.1 of Okhrati et al. (2014) there exists
an L2-strategy (see Definition 3.34) φt = (θt, ηt) such that the process (Lt)t≥0, which
is strongly orthogonal to the martingale part of (Xt)t≥0 i.e. (MX

t )t≥0, is

Lt = Ut − U0 −
∫ t

0
θsdXs,

the value process (Vt)t≥0 for the optimal portfolio φt = (θt, ηt)t is

Vt(φ) = U0 −
∫ t

0
θsdXs,

the amount of money invested in the non risky asset at time t ≥ 0 (ηt)t≥0 is

ηt = Vt − θtXt,

and finally the cost process is given by

Ct = U0 + Lt.
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Chapter 5

Partial information

5.1 Introduction

The main objective of this chapter is to provide the appropriate literature review for the
partial information models. As we have seen in Chapter 3, the structural models assume
that investors have complete information about the underlying asset value and its
barrier, whereas in the reduced form models the information is less detailed. Although
both approaches seem to be disjoint actually, they are not. For example, in Chapter
4, we saw a model that although it is a structural it admits an intensity like reduced
form ones. In this chapter, we briefly describe these models.

The chapter is organized as follows. Section 5.2 provides the types of partial information
that investors may have. Section 5.3 describes the types of filtration expansion: initial
and progressive. We analyse both of them. Finally, Section 5.4 describes the concept
of filtration shrinkage.

5.2 Types of partial information

Jarrow and Protter (2004) tried to bridge the gap in these two approaches by providing
a unified approach based on the information that a modeller has. It seems natural
to assume that market investors are not privileged, as they do not have the same
information as equity holders. Usually, the management board of a firm has precise
knowledge of the firm’s economic state, whereas bond holders have just a snapshot of
it. This is the main idea of partial information models.

Generally speaking, there are two major ways under which we can build a hybrid model.
The first method is for given a first passage model, its barrier D is random. The
second method assumes that the underlying asset values modelled by process (Xt)t≥0

are partially observed. Alternatively, we may assume that investors cannot observe
neither the barrier nor the underlying asset, see Giesecke (2004). Both approaches we
will explain them in this section.
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Let us briefly describe some advantages of incomplete information models, see also
Giesecke and Goldberg (2004, 2008). First, these models preserve the endogenous prop-
erty that a structural model has plus the short term uncertainty that reduced models
have i.e. the default event is a totally inaccessible stopping time usually defined through
an intensity process which implies positive short credit spreads. Therefore, from an
economic perspective, incomplete information models are more flexible and reason-
able, since investors may not have a precise and meticulous aspect of the firm’s value.
Moreover, following Giesecke and Goldberg (2004), these models provide tractable for-
mulas for pricing contingent claims. Lastly, they try to present a unified perspective
which integrates the best aspects of reduced form models and the structural models.

Duffie and Lando (2001) are among the first ones who introduced a model with in-
complete information. In their model, investors cannot observe the underlying asset
(Xt)t≥0 directly. Instead, investors receive a noisy periodic accounting report of the as-
set. That is given a partition 0 = t1, t2 . . . , tn = T of [0, T ] investors observe a discrete
process (Yt)t≥0, Ytk = Xtk + Utk , where Utkare normally distributed random variables
independent of Xtk . Kusuoka (1999) extended Duffie’s and Lando’s model to the con-
tinuous case. In his model, investors observe the barrier, but they receive continuous
noisy reports for a process (Yt)t≥0 with drift µ = f(t,Xt).

Coculescu et al. (2008) introduced a structural model with a noisy asset, where the
market observes a continuous process which is correlated with the underlying asset. In
this model, the default threshold is a continuous function of time. Similarly, to Duffie
and Lando’s model in this model, the default process admits an intensity. A study of
a structural model with unobservable barrier is also made by Hillairet and Jiao (2012).
In this paper, they determine the default probabilities for the cases when there exists
a random barrier under a filtration expansion. They also provide numerical results for
these probabilities.

Giesecke and Goldberg (2004) introduced a structural model where investors cannot
observe its barrier. In their model (I2-model), the barrier is independent of the under-
lying asset. Although their model does not admit an intensity, it has a flexible reduced
form pricing formula. Since the barrier is unobservable to investors, a prior distribution
for the barrier should be given. They used a scaled beta distribution for the barrier.
Finally, they provide a comparison between their model, Merton model and the Black-
Cox model. In contrast to the structural models, their model provides positive short
spreads which is consistent with the empirical observations. Giesecke and Goldberg
(2008) further examines the I2 model by investigating the risk premium. The risk
premium is a mapping that connects the default probabilities of a martingale measure
and the original pricing measure.Giesecke (2006) investigate a structural model whose
barrier D is a random variable, but he connected the prior distribution of the barrier
with the infimum of the underlying asset. If the prior distribution of D exists then the
default time is totally inaccessible, however, the intensity process does not exist. On
the contrary, if the underlying asset is partially observed then the default time is totally
inaccessible and an intensity process exists. Finally, if we have incomplete information
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about both the barrier and the underlying asset then again an intensity process exists.
His construction is primarily based on the theory of enlargement of filtrations which
will be analysed in Section 5.3.

All the previous works are formed when the underlying asset is continuous. Dong and
Zheng (2015) construct a structural model where the barrier is a random variable and
the underlying asset is a Lévy process of finite variation. We thoroughly describe their
model in Chapter 6 and we apply the local risk minimization for defaultable claims.

5.3 Filtration expansion

Based on the discussion above, it is evident that the concept of filtration expansion
plays a fundamental role in the incomplete information models. If we choose to analyse
a model from an investor’s perspective, then we need to work under smaller or an
enlarged filtration to determine the default time which should be totally inaccessible.

The main objective of filtration expansion is to find an appropriate enlarged filtration
G := (Gt)t≥0 such that Ft ⊂ Gt for all t ≥ 0, that makes a positive random vari-
able L a stopping time under G. There are some important questions that should be
addressed when we are dealing with the theory of filtration expansion. First and fore-
most, what are the appropriate conditions under which an F-local martingale remains
a G-semimartingale? Can we determine the canonical decomposition under G? In this
section, we try to answer these questions.

Roughly speaking, there are two main kinds of enlargement of filtration: initial fil-
tration expansion and progressive filtration expansion. The initial filtration expansion
is defined as the filtration G generated by the F and the filtration generated by the
positive random variable L. On the other hand, the progressive filtration expansion is
defined as the smallest right continuous filtration G which includes F and the natural
filtration generated by the process (1{t≥L})t≥0. Another interesting filtration expan-
sion is introduced by Guo and Zeng (2008), which is equivalent of progressive filtration
expansion. Their result plays fundamental role studying the canonical decomposition
of semimartingales stopped at τ , see for instance Kchia et al. (2013). Given a positive
random variable L which is a G-stopping time, then for a given filtration F its expansion
will be

Ft ∧ {t < L} = Gt ∧ {t < L}, t ∈ [0, T ].

Among many we mention the following surveys regarding filtration expansion: Jeulin
and Yor (1978), Jeulin (1980), Yor (1978) and Jacod (1985) which are not available in
English. Protter (2004) has devoted a chapter in both initial and progressive filtration
expansions (Chapter VI). Kchia et al. (2013) establish a relationship between the ca-
nonical decomposition of initial and progressive filtrations expansions. In particular,
in their Lemma 3, they showed that both types of filtration expansions coincide after
L, see their Definition 1 for the precise definition of how two filtrations coincide. Quite
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recently, Aksamit and Jeanblanc (2017) provide a good survey describing both expan-
sions with a financial point of view. In this section, we briefly describe the initial and
progressive filtration expansions along with their canonical decomposition.

5.3.1 Initial expansion

The initial enlargement of the reference filtration F is defined as

G =
⋂
s>t

(Fs ∨ σ(L)) .

In initial filtration expansion there is no general results so that H′ hypothesis is applied.
However, following Jacod (1985), we know that if the law of a positive random variable
L is continuous then H′ hypothesis holds. Condition 5.1 describe this.

We assume that (E, E) is a standard Borel space and E its Borel sets.

Condition 5.1 (Jacod’s condition). For each t there exists a positive σ-finite measure
ηt on (E, E) such that Pt(ω, ·)� ηt(·) a.s on ω; where Pt(ω, dx) refers to the family of
the regular conditional distributions with respect to F such that Pt(:, A) is a version of
P(L ∈ A | Ft), and ηt is the corresponding family of laws of L.

We refer as O(F) and P(F) to be the space of the F-optional and F-predictable fields
introduced in Definitions 2.15 and 2.17. The following Theorem plays fundamental
role when we study canonical decompositions under the initial filtration expansion. It
proposes that the H′-hypothesis, i.e. an F-semimartingale is also a G-semimartingale
(see also Definition 3.11), given that Condition 5.1 holds. For its proof we refer to
Jacod (1985).

Theorem 5.2. Under the Condition 5.1 any F-semimartingale is a G-semimartingale.

An equivalent result of condition 5.1 is the following:

Condition 5.3. The Condition 5.1 is equivalent to the following condition: there is a
positive σ-finite measure η on (E, E) such that Pt(ω, ·)� η(·) for each t > 0 and ω.

Given now condition 5.3, we can also assert that H′ is again applied. The following
Proposition describe this. For its proof, we refer to Jacod (1985).

Proposition 5.4. Assume that Condition 5.3 is satisfied. In this case, every F-
semimartingale is also a G-semimartingale.

In order to have simple statements, let us introduce an auxiliary space Ω̂ equipped with
a filtration F̂ =

(
F̂t
)
t≥0

with t ∈ [0, T ], such that

Ω̂ := Ω× E, F̂ :=
⋂
s>t

(Fs × E),
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and note that in this space we have

P(F̂) = P(F)× E , O(F̂) ⊃ O(F)× E .

Jacod (1985) in Lemma 1.8 formulates the existence of an O(F̂)-measurable càdlàg
process (pxt )t≥0, with x ∈ E, which is considered as a version of a density process
pxt (ω) = Pt(ω,dx)

η(dx) in the sense:

• For each x ∈ E px is a F-(local) martingale. Furthermore, if we denote as TX =
inf{t ≥ 0 : qxt− = 0}, then pxt > 0 and pxt− > 0 on t ∈ [0, TX) and pxt for
t ∈ [T x,+∞).

• For each t the measure η(dx)pxt (ω) on E is a version of Pt(ω, dx)

Establishing the notion of the version of a density we are ready the F-predictable
projection of (Yt)t≥0, which is given in the following Lemma. See also Jacod (1985),
Lemma 1.10. The definition of the predictable projection can be found in Appendix B.

Let the function (x, ω, t)→ Yt(ω) be a P(F̂)-measurable which is positive or bounded.
The F-predictable projection of the process (Yt(L))t≥0 is

p(Y (L))t =
∫
R
pt−(u)Yt(u)η(du), t ∈ [0, T ].

The next Theorem provides the canonical decomposition under G, for its proof, we
refer to Jacod (1985).

Theorem 5.5. Assume that (Mt)t≥0 is a continuous F-local martingale. Then there
exists a P(F)-measurable function (x, ω, t)→ kt(ω) such that

〈p,M〉Ft =
∫ t

0
ksps−d 〈M〉Fs . (5.1)

Furthermore, for the function kt defined above satisfying (5.1) we have

1. ∫ t

0
|ks(L)|d 〈M〉Fs <∞ a.s ∀t ∈ [0, T ],

2. and the following process is a G-local martingale

(
Mt −

∫ t

0
ks(L)d 〈M〉Fs

)
t≥0

, t ∈ [0, T ].

Theorem 5.5 assumed that the process (Mt)t≥0 is a continuous local martingale. We
proceed to the general case, when (Mt)t≥0 is just a local martingale. In particular, we
consider the F-stopping times

Rn := inf
t

(
qt− ≤

1
n

)
,

73



and in this case we get ∪n[0, Rn] = {q− > 0}.

The following theorem is the main result of this section, its proof can be found in Jacod
(1985), Theorem 2.5.

Theorem 5.6. Let (Mt)t≥0 be an F-local martingale.

1. For all x that do not belong to set B dependent on (Mt)t≥0-η negligible, and for
all integers n the stopped process [q,M ]Rnt has paths of locally integrable variation
( i.e. belongs to Aloc). Therefore it’s compensator, under F, exists and is equal
to the predictable quadratic covariation process 〈p,M〉Rnt on the set

⋃
n[0, Rn] .

2. There exists a predictable process (At)t≥0 and an F̂-predictable function (x, ω, t)→
kt(ω) such that for all x /∈ B

〈p,M〉Ft =
∫ t

0
ksps−dAs, a.s on ∪n {t ≤ Rn}, t ∈ [0, T ].

Also if (Mt)t≥0 is square locally integrable, then we can take At = 〈M,M〉t.

3. If the process (At)t≥0 and the function kt verify condition 2 we have

∫ t

0
|ks(L)|dAs <∞, a.s, t ∈ [0, T ],

and the following process is a G-local martingale,

(
Mt −

∫ t

0
ks(L)dAs

)
t≥0

, t ∈ [0, T ].

5.3.2 Progressive expansion

Let us proceed with the progressive filtration expansion of the reference filtration F.
We assume that a given positive random variable L : Ω→ R+ is honest, see Definition
3.12. Then following Protter (2004), Chapter VI, Section 3, the filtration

GL =
⋂
u>t

G0
u, where G0

t := Ft ∨ σ(L ∧ t), (5.2)

is a progressive expansion of F that makes L a stopping time. Under the assumption
that L is an honest time (see Definition 3.12) or equivalently L is the end of an optional
set, then as we will see, it has been shown in Yor (1978) that if (Xt)t≥0 is an F-local
martingale is still a GL semimartingale. In this section, we will determine the canonical
decomposition under GL.

At the moment we will not make any assumption about the random variable L. For
this reason, following Jeulin and Yor (1978), we work under a bigger filtration that
includes GL such that

Γ ∈ G⇔ {Γ ∈ G and ∃Γt ∈ Ft : Γ ∩ {L > t} = Γt{L > t}} .
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Remark 5.7. Note that for all t ≥ 0 then GLt ⊂ Gt, and the random variable L is a
stopping time under both filtrations G and GL. Moreover, for any G-stopping time τ ,
there exists an F-stopping time S such that τ ∧ L = S ∧ L.

There exists a useful property that GL inherits, which is given in the Lemma bellow.
For its proof, see Jeulin and Yor (1978), Lemma 1.

Lemma 5.8. Let (Ht)t≥0 be a G-predictable process. Then there exists a F-predictable
process (Jt)t≥0 such that

Ht1{t≤L} = Jt1{t≤L}, t ∈ [0, T ].

The process (Zt)t≥0 which is the F-optional projection of (1{L>t})t≥0 plays fundamental
role. It is also known as the Azema F supermartingale. For its properties we refer to
Appendix B. Let Zt =◦ 1{L>t} then its canonical decomposition will be

Zt = Mt −At, t ∈ [0, T ], (5.3)

where (At)t≥0 is an increasing F-adapted and integrable process which is the F-predictable
compensator of (Zt)t≥0 and (Mt)t≥0 is a F-local martingale. Yor (1978) proved that
P(ZL− > 0) = 1. A consequence of Lemma 5.8 is the following Proposition. For its
proof see Jeulin and Yor (1978), Proposition 2.

Proposition 5.9. Let (Ht)t≥0 be a G-predictable process and (Zt)t≥0 be the Azema
F-supermartingale with canonical decomposition given by (5.3). Then the process(

HL1{L≤t} −
∫ t∧L

0

Hs

Zs−
dAs

)
t≥0

, t ∈ [0, T ],

is a G-local martingale.

The next Theorem characterizes the canonical decomposition in G of the stopped pro-
cess (XL∧t). For its proof, we refer to Jeulin and Yor (1978), Theorem 1. We remind
the reader that we do not make any hypothesis about L except that it is a positive
random variable with values in (0,+∞).

Theorem 5.10. Let (Xt)t≥0 be an F-local martingale, and (Zt)t≥0 be the Azema F-
supermartingale with canonical decomposition given by (5.3). We denote by (Bt)t≥0

the F-predictable dual projection of the G-adapted process (εt)t≥0, εt = (1{L≤t}∆XL)t≥0

and Ct = 〈X,M〉Ft +Bt. Then the processes

(
Xt1{t<L} +

∫ L∧t

0

dBs − d 〈X,M〉Fs
Zs−

)
t≥0

, t ∈ [0, T ],

and (
XL∧t −

∫ L∧t

0

1
Zs−

1{Zs−<1}dCs
)
t≥0

, t ∈ [0, T ],

are G-local martingales.
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Protter (2004) under the assumption that the stopping times in G avoids all the stop-
ping times in F 1 simplified the above Theorem since in this case the process (Bt)t≥0

is zero.

To determine the canonical decomposition for the case after the default Xt1{L≥t}we
need to make an assumption which is often quite natural: we assume that L is the end
of an optional set. As we will see, a random variable is the end of an optional set if
and only if is an honest time.

The Theorem bellow characterizes the connection between an honest random variable
and the optional set. For its proof, we refer to Protter (2004), Chapter VI, Theorem
14.

Theorem 5.11. The random variable L is an honest time if and only if there exists
an optional set Λ ⊂ [0,∞]× Ω such that L(ω) = sup{t ≤ ∞ : (t, ω) ∈ Λ}.

Let us investigate the case when the random variable L is a honest time. In this case,
the progressive filtration expansion GL is given by

GLt = {A ∈ G, ∃At, Bt and A = {At ∩ (t < L)} ∪ {Bt ∩ (L ≤ t)}} . (5.4)

Remark 5.12. Note that for all t ≥ 0 then Ft ⊂ GLt and so the positive random variable
L is a stopping time in GL. Furthermore, if S is an F stopping time then

GLS = {A ∈ G | ∃AS ∈ FS , A ∩ {t < L} = AS ∩ {S < L}} .

Yor (1978) proved the following fundamental result.

Theorem 5.13. If (Xt)t≥0 is a F-semimartingale, where t ∈ [0, T ], then the processes
(Xt1{t<L})t≥0 and (XL∧t)t≥0 are semimartingales under GL.

A stronger result of Theorem 5.13 is the following Theorem, see Yor (1978), Theorem
2.

Theorem 5.14. If (Xt)t≥0 is an square integrable F-local martingale, t ∈ [0, T ], then
the process X̃t = Xt1{t<L} and X̄t = XL∧t are quasimartingales 2 under GL.

The next Lemma connects the filtrations G and GL. For its proof, we refer to Jeulin
and Yor (1978), Lemma 2.

Lemma 5.15. Let L be the end of an F optional set (honest time) and assume that
F, GL and G are the filtrations defined above satisfying the usual hypothesis such that
F ⊂ GL and GL ⊂ G. Then the following assertions are equivalent

1We say that a G stopping time L avoids all the stopping times in F if and only if P(L = S) = 0 for
all the F stopping times S.

2An GL-adapted càdlàg process (Xt)t≥0 is called quasimartingale if for each t ≥ 0 we have E[Xt] <∞
and V ar[Xt] <∞.
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1. If (XL
t )t≥0 is G-local martingale stopped at L, 0 ≤ t ≤ T ; then (Xt)t≥0 is also an

F-local martingale.

2. Assume that (Yt) is a G-local martingale stopped at L, where 0 ≤ t ≤ T . We
further assume that the random variable YL is GLt with t = L measurable. Then
(Yt)t≥0 is also GL-local martingale.

Similarly to Lemma 5.8, we derive an equivalent result for the filtration GL, see also
Protter (2004), Chapter VI, Theorem 17 along with its proof.

Lemma 5.16. Assume that L is an honest time and let (Ht)t≥0 be a GL-predictable
process. Then there are two F-predictable processes (Jt)t≥0 and (Kt)t≥0 such that

Ht = Jt1{t≤L} +Kt1{L<t}, t ∈ [0, T ].

In light of Proposition 5.9 and assuming that the random variable L is an honest time,
let us determine the canonical decomposition of the stopped process (XL

t )t≥0 under
GL, for its proof, we refer to Jeulin and Yor (1978).

Proposition 5.17. Assume now that L is an honest time and let (Ht)t≥0 be a GL-
adapted process, where GL := (GLt ) is introduced in (5.4) and (Zt)t≥0 is the Azema
F-supermartingale whose canonical decomposition is given in (5.3). Then the process

(
HL1{L≤t} −

∫ L∧t

0

Hs

Zs−
dAs

)
t≥0

, t ∈ [0, T ],

is a GL-local martingale.

The next Theorem, provides the canonical decomposition of an F-local martingale for
the general case, not only for a stopped process. For its proof, we refer to Jeulin and
Yor (1978).

Theorem 5.18. Let (Xt)t≥0 be an F-local martingale with t ∈ [0, T ], and we assume
that L is an honest time. Once again, we denote by (Bt)t≥0 the F-predictable dual
projection of the GL-adapted process (εt)t≥0, εt = (1{L≤t}∆XL)t≥0 and Ct = 〈X,M〉Ft +
Bt. Then the process

(
Xt +

∫ t

0
1{L<s}

1
1− Zs−

dCs −
∫ L∧t

0

1
Zs−

1{Zs−<1}dCs
)
t≥0

, t ∈ [0, T ],

is a GL-local martingale.

Guo et al. (2009) introduced the concept of delay information. Investors may have
full information but they receive with a delay. An example of a delay information is
formulated as (Ft−δ)t≥0 for some δ > 0, where (Ft)t≥0 is the natural filtration generated
from the underlying asset 3. By applying a progressive filtration expansion on the delay

3 For the proper definition of delay filtration in continuous and discrete case please see Definitions
1 and 3 of Guo et al. (2009)
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filtration, they determine the intensity process. They also made a comparison between
the continuous and discrete delay case.

5.4 Filtration shrinkage

In contrast to Duffie and Lando model described above, Cetin et al. (2004) provide an
alternative model based on filtration shrinkage. They obtained a reduced form model
which admits an intensity through a structural model. Let us briefly describe their
model.

Assume that the underlying asset is a Brownian motion of the following form

dXt = σdWt, X0 = x, t ∈ [0, T ],

and the barrier in the structural model is zero

g(t) := sup {s ≤ t : Xs = 0} ,

the random function g(t) describes the last time when the underlying asset (Xt)t≥0 hits
the zero level. Let

τa = inf
{
t > 0 : t− g(t) ≥ a2

2 , where Xs < 0 for s ∈ (g(t−), t)
}
.

The stopping time τa is the first time when the underlying asset is strictly negative.
Based on Cetin et al. (2004), investors cannot observe the underlying asset directly.
Instead, an investor only observes when the underlying asset may have positive or
negative cash flows. Given that the firm has negative cash balances for an a2

2 units of
time, then after this period, the default time for the structural model is defined as the
first time when the firm will reproduce a positive cash balance and more precisely, it
is occurred as soon as cash balances double their size. In this case, the process (Yt)t≥0

for the reduced form model is given by

Yt =

Xt t < τa,

2Xτa t ≥ τa,

with 0 ≤ t ≤ T and the default time will be

τ = inf {t ≥ τa : Yt = 0} (5.5)

Let

sign(x) =

1 x > 0,

−1 x ≤ 0.

Set F̃ := (F̃t)0≤t≤T the filtration generated by the process (sign(Yt))t≥0, and let F
be its right continuous version. Then clearly we have F ⊂ G. Moreover, Cetin et al.
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(2004) proved that the stopping time defined in (5.5) admits an intensity (λt)t≥0, λt =
1{t>τa} 1

2(t−ḡt−) , where ḡt := sup {s ≤ t; Ys = 0}.

Cetin (2012) discussed the pricing of defaultable claims in a structural framework as-
suming that the underlying asset, which is a general continuous diffusion process, is
unobservable. Although the default time for the underlying asset is predictable, using
an observable diffusion process and under filtration shrinkage he provided an expli-
cit representation of the intensity. His framework is based on the non linear filtering
theory.

Perhaps the most known result in filtration shrinkage is the Stricker’s theorem. The
following Theorem provides it. For its proof, we refer to Stricker (1977), Theorem 3.1.

Theorem 5.19 (Stricker’s theorem). Assume that (Xt)t≥0 is a a semimartingale under
the filtration G. Let also F be a sub-filtration of G, F ⊂ G, such that (Xt)t≥0 is F-
adapted. Then (Xt)t≥0 remains a semimartingale under F.

A disadvantage of Stricker’s theorem is that the process (Xt)t≥0 should be also adapted
to the sub-filtration F. Föllmer and Protter (2011) investigated the case when the pro-
cess (Xt)t≥0 is no longer F-adapted. Semimartingales and quasimartingales maintain
their form into a smaller filtration and they are semimartingales in the smaller filtra-
tion, although their canonical decomposition may be changed. This is also true for
martingales. On the contrary the situation for local martingales is more complicated.
For example, if (Xt)t≥0 is a G-local martingale and F-adapted, then it may not be a
local martingale under F. The optional projection of a local martingale onto a filtration
which is not adapted may not remain a local martingale. We provide their main results.

For the rest of this section, we assume that (Xt)t≥0 ∈ L1 for all t ∈ [0, T ].

We start investigating the martingale case. In fact the optional projection of a G-
martingale is martingale in F. The Theorem bellow analyses this, for its proof, see
Föllmer and Protter (2011).

Theorem 5.20. Assume that (Xt)t≥0 is a G-martingale. Then the optional projection
of (Xt)t≥0 onto F is again a martingale for the filtration F.

When the process is supermartingale (decreasing process) we have the following result,
see Föllmer and Protter (2011) for its proof.

Theorem 5.21. Let (Xt)t≥0 be a supermartingale for G. Then ◦(Xt)t≥0 is a super-
martingale for F.

Let (Xt)t≥0 be a G measurable process, and suppose that the optional projection of
(|X|t)t≥0, ◦(Xt)t≥0 is indistinguishable from a finite valued process, where the optional
projection is taken on F ⊂ G. If we let Yt =◦ (X+

t ) −◦ (X−t ), then (Yt)t≥0 defines an
optional projection of (Xt)t≥0.

The following Theorem shows that if the optional projection of a G-semimartingale
exists and is finite, then it also an F-semimartingale. For its proof, we refer to Föllmer
and Protter (2011).
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Theorem 5.22. Let (Xt)t≥0 be a semimartingale for G such that ◦(|X|t)t≥0 exists
and is a finite valued process, where ◦(|X|t)t≥0 is the optional projection of (|X|t)t≥0

onto the filtration F ⊂ G. Then from Theorem 5.21 ◦(Xt)t≥0 exists and it is an F-
semimartingale.

Let us investigate the case when (Xt)t≥0 is a G-local martingale.

For the special case when (Xt)t≥0 is positive G-local martingale and adapted to the sub-
filtration F, then it remains a local martingale under F. The following result describes
this. For the proof, we refer to Stricker (1977).

Theorem 5.23. Let (Xt)t≥0 be a positive G-local martingale and we assume that is
adapted to the sub-filtration F. Then (Xt)t≥0 is also an F-local martingale .

We proceed with the case when (Xt)t≥0 is no longer a positive local martingale.

If there exists a decreasing sequence of G stopping times that remains stopping times
in F then its optional projection ◦(Xt)t≥0 is an F-local martingale. The next Theorem
illustrate this. For the case when the process (Xt)t≥0 is not F-adapted, then its local
martingale property is violated. This was shown through a three-dimensional Bessel
process, see Föllmer and Protter (2011), for more details.

Theorem 5.24. Let (Xt)t≥0 be a G-local martingale, and ◦(Xt)t≥0 be the optional
projection of (Xt)t≥0 onto the sub-filtration F. Then ◦(Xt)t≥0 is a F-local martingale
if there exists a reduced sequence of stopping times (τn)n≥1 for (Xt)t≥0 in G which
are also F stopping times. Conversely, if (Xt)t≥0 is positive and ◦(Xt)t≥0 is a F-local
martingale, then a reducing sequence of stopping times for ◦(Xt)t≥0 in F is also a
reducing sequence in G.
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Chapter 6

Locally risk minimizing hedging
strategies under a random barrier

6.1 Introduction

In Chapter 4, a hedging strategy is obtained under a unique flow of information for
a defaultable claim of the form F (XT )1{τ>T}, through the LRM approach. In this
chapter, an extension is made assuming that we have partial information. More spe-
cifically, we assume that the default time time is defined through a structural model
whose barrier is a random variable. Then, we obtain a semi-explicit hedging strategy
through a PIDE.

In Chapter 5, we saw that there are two major ways to introduce partial information in
credit risk modelling. One approach is to assume that the barrier on the first passage
time is random. Giesecke (2006) was the first who introduced incompleteness on the
barrier, where the underlying asset is a geometric Brownian motion. Based on this
framework Dong and Zheng (2015) obtained a structural model with a random barrier
when the underlying asset is a finite variation Lévy process. The second method is to
assume that the underlying asset is partially observed but the barrier is constant. Duffie
and Lando (2001) discussed this through a discrete noisy asset process and Kusuoka
(1999) extended it to the continuous case. Alternatively, we may assume that neither
the barrier nor the underlying asset can be observed. Finally, we can also assume that
there exists a delay in the available information. Guo et al. (2009) investigated and
compared continuous and discrete delay filtrations. In Okhrati (2019), semi-explicit
solutions of hedging strategies of defaultable claims are obtained under delayed data
through solving PDEs.

Regarding applications of hedging strategies under partial information, Ceci et al.
(2015b, 2017) obtained a LRM approach assuming that the asset, which is a jump
diffusion process, is partially observed. Ceci et al. (2014) provided the GKW decom-
position under delayed information.
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In this chapter, we obtain semi-explicit solution of LRM hedging strategies for a spec-
trally positive Lévy process of finite variation, assuming that the barrier follows a
negative exponential distribution. Dong and Zheng (2015) proved that the intensity of
such a structural model exists and it has an explicit form. Based on this result and
in the spirit of Okhrati et al. (2014), a hedging strategy for a defaultable claim of the
form F (XT − XT ,−XT )1{τ>T}, is obtained through PIDE given that F is a smooth
function and (Xt)t≥0 is the infimum process of (Xt)t≥0.

There is an indicator process in the intensity of Dong and Zheng (2015) which brings
some regularity problems for the existence of smooth solutions for our PIDEs. This
will make parts of our proofs heuristic as we cannot establish the existence of such
smooth solution or it may not even exist though the numerical solutions look reasonable.
However, in the next chapter (Chapter 7), we will not have this regularity problems in
our approach.

An application of Lévy spectrally positive processes on option valuation is given in
Chan (2005). Spectrally positive processes are also used to manage the insurance risk
see Klüppelberg et al. (2004) for more details. The general properties of the spectrally
positive processes have been analysed in Bertoin (2000).

The structure of this chapter is organized as follows. In Section 6.2, we briefly describe
the model for the default time. In Section 6.3, we prove some useful martingales for
the reflected Lévy process at its supremum and infimum. In Section 6.4, we derive
the canonical decomposition of (f(t,Xt − Xt,−Xt)1{τ>t})t≥0 under the progressive
expanded filtration G. Finally, in Section 6.5, we derive the hedging strategy through
the LRM in G.

6.2 Preliminaries and model description

Let (Ω,G,P) be a probability space equipped with a filtration F, where F = (Ft)0≤t≤T

is the available information for investors generated by a spectrally positive Lévy process
of finite variation i.e. F = σ(Xs)0≤s≤t, for all t ∈ [0, T ], with Lévy triplet (b, 0, ν), and
X0 = u, u > 0. The process (Xt)t≥0 has the following Lévy-Itô decomposition

Xt = X0 + µt+ St, t ∈ [0, T ], (6.1)

where µ < 0, µ = −b−
∫ 1

0 zν(dz) and St is a subordinator. Alternatively, (6.1) can be
written as

Xt = X0 + µt+
∫ t

0

∫ +∞

0
zN(ds, dz), t ∈ [0, T ],

where N(dt, dz) is the jump measure with intensity ν(dz)dt.

We impose the following Assumption.

Assumption 6.1. The Lévy measure ν is absolutely continuous with respect to Le-
besgue measure, and it satisfies

∫∞
0 zν(dz) < ∞ (or equivalently E[Xt] < ∞) and∫+∞

0 z2ν(dz) <∞ (equivalently V ar[Xt] <∞).
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We assume that the default time is defined as

τ = inf {t > 0 : Xt ≤ D} . (6.2)

For the case when (Xt)t≥0 is greater than D for every t ∈ [0, T ], we assume that τ =∞.

We assume that the random barrier D follows a negative exponential distribution i.e.
P(D ≤ x) = ex ∀x < 0. Also, D is assumed to be independent of (Xt)t≥0.

Note that the prior distribution of the random barrier D must have a support on
(−∞, X0) since it allows us the default time τ to be totally inaccessible. Moreover,
we use negative exponential distribution for the barrier following the same setup as in
Giesecke (2006).

Let G = (Gt)0≤t≤T be the enlarged progressive filtration expansion of (Ft)0≤t≤T and τ ,
which includes Gτ i.e. Gτ ⊂ G. Following Section 5.3.2, it is given by

Gτt =
⋂
u>t

G0
t , G0

t = Ft ∨ σ(τ ∧ t), t ∈ [0, T ].

Based on Section 5.3.2, the form of G is

Gt = {B ∈ G : ∃Bt ∈ Ft, B ∩ {τ > t} = Bt ∩ {τ > t}} .

Remark 6.2. Recall that both filtrations G and Gτ coincide before τ . Also, in Guo and
Zeng (2008) it is shown that the compensator of τ under both filtration expansions G
and Gτare identical.

We assume that the filtration G is complete and satisfies the usual hypothesis that
makes τ a stopping time. Since τ is a G-totally inaccessible stopping time, then Dong
and Zheng (2015), under Assumption 6.1, obtained the G compensator of (Nt)t≥0,
Nt = 1{τ≤t} i.e. At =

∫ t
0 λsds, where the intensity (λt)t≥0 is given through

λt = 1{τ>t}(−µ1{Xs−Xs=0}1{µ<0} + Π(Xt −Xt)), (6.3)

where (Xt)t≥0, Xt := infs≤tXs, and the process

(
Nt −

∫ t

0
λsds

)
t≥0

, t ∈ [0, T ], (6.4)

is G-local martingale, where

Π(x) :=
∫ ∞

0
(1− e−z)ν(x+ dz), x ≥ 0, (6.5)

and
ν(x+ dz) := ν((x+ z, x+ z + dz]).

If the Lévy measure ν admits a density π then ν(x+ dz) := π(x+ z)dz.

Next, we provide two examples illustrating the intensity (λt)t≥0. The first example is
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(a) A sample path of (Xt)t≥0 (b) A sample path of intensity process, and
Π(Xt −Xt).

Figure 6.1: Simulation results for Example 6.3, when (Xt)t≥0 is a compound Poisson,
where the jumps are exponentially distributed, with parameters λ = 20, q = 200, T = 1
and µ = −λ

q .

a compound Poisson with exponential distribution, which is a finite variation process
with finite activity, while the second one is a variance gamma Lévy process (finite
variation process with infinite activity). Both of these applications can be found in
Dong and Zheng (2015).

Example 6.3. Let (Xt)t≥0 defined by

Xt = X0 + µt+
Nt∑
i=1

ei, t ∈ [0, T ],

where µ is a constant, µ < 0, (Nt)t≥0 is Poisson process with intensity λ and ei are
exponentially distributed random variables with parameter q,. The Lévy density is
defined as π(z) = qe−qz. In this case the intensity (λt)t≥0 (6.3) becomes

λt = 1{τ>t}
(
−µ1{Xt−Xt=0} +

∫ +∞

0
(1− e−z)ν(Xt −Xt + z)dz

)
= 1{τ>t}

(
−µ1{Xt−Xt=0} +

∫ +∞

0
(1− e−z)λqe−q(Xt−Xt+z)dz

)
= 1{τ>t}

(
−µ1{Xt−Xt=0} + λ

q + 1e
−q(Xt−Xt)

)
.

Example 6.4. Let (Xt)t≥0 be a variance gamma process V G(t;σ, q, θ), of finite vari-
ation where θ is the drift term of a Brownian motion, σ is the volatility of the Brownian
motion and q the rate of a time changed gamma process. Following Madan et al.
(1998), the variance gamma process can be obtained through time-changed (given
by a gamma process) Brownian motion whose drift term can also be derived based
on a gamma process i.e. Xt = θΓ(t; 1, q) + σW (Γ(t; 1, q)). Also, they showed that
the process can be expressed as the difference of two independent gamma processes
X(t;σ, q, θ) = Γ(t; c+, q+) − Γ(t; c−, q−) and in this case the process (Xt)t≥0 with the
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Figure 6.2: The underlying asset and the intensity process for the variance gamma case
presented in Example 6.4, with θ = 0.01, σ = 0.2, q = 0.5, T = 1 and µ = −0.2.

additional drift term µ with µ < 0 has the form

Xt = X0 + µt+ Γ(c+, q+)− Γ(c−, q−),

where c± = 1
2

√
θ2 + 2σ2

q ±
θ
2 and q± = c2

±q, and its infinite activity Lévy measure has
the form

ν(dz) =


c2
−
q−

exp
(
− c−
q−
|z|
)

|z| dz, for z < 0,

c2
+
q+

exp
(
− c+
q+

)
z dz, for z > 0.

In this case the intensity (λt)t≥0 (6.3) is given by

λt = 1{τ>t}

(
−µ1{Xt−Xt=0} +

∫ +∞

0
(1− e−z)

c2
−
q−
e
− c−
q−

(z+Xt−Xt) 1
(z +Xt −Xt)

dz

)
.

Since the default time is given by (6.2) and the default event is given via {τ ≤ t} =
{Xt ≤ D}, the conditional survival probability at time t under the filtration F is given
by

Zt = P (τ > t | Ft) = P(D > Xt) = FD(Xt), (6.6)

where FD(x) is the prior distribution of D. Note that since D follows negative expo-
nential distribution, then FD(Xt) = eXt . Following Giesecke (2006), Definition 5.1, the
unique non decreasing F-predictable process (At)t≥0, At =

∫ t
0 λsds is given through

At =
∫ t

0

dKs

Zs−
, 0 ≤ t ≤ T,

where (Kt)t≥0 is the unique F-predictable compensator of 1 − Zt = E[1{τ≤t} | Ft] =
P(τ ≤ t | Ft).

We need to determine the process (Kt)t≥0. According to Giesecke (2001) if (Zt)t≥0 is
continuous then Kt = −Zt and At = − ln(Zt). However, if (Zt)t≥0 is discontinuous
then calculating (Kt)t≥0 is non-trivial. Dong and Zheng (2015), in Lemma 3.2 and
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Proposition 3.11, characterized the likelihood process under the reference filtration F
as follows

Lemma 6.5. If h > 0 and kht := 1
hE[Kt+h −Kt | Ft], then

kht = eXt
1
h
E
[
1− e−(m−Xh)

] ∣∣∣∣∣
m=Xt−Xt

, t ∈ [0, T ],

if (Xt)t≥0 is spectrally positive Lévy process, then

k̃t = lim
h↓0

kht = eXt(−µ1{Xt−Xt}1{µ<0} + Π(Xt −Xt)), ∀ t ∈ [0, T ], a.s.

Based on Remark 3.15 of Dong and Zheng (2015) and using the Meyer’s approximation
theorem, see Theorem 3.6, we conclude that the F-compensator of P(τ > t | Ft) is given
by Kt =

∫ t
0 k̃sds for all t ∈ [0, T ] P-almost surely.

6.3 Martingales associated with reflected Lévy process

In this section, we present some martingales related to the reflected Lévy process at
supremmun, and infimum. Our results and proofs are based on Nguyen-Ngoc and Yor
(2005), who apply the Kennedy martingales, see Kennedy (1976), for Lévy processes.
More precisely, given a Lévy process of finite variation, and C1,1,1([0, T ] × R+

0 × R)
function, under a boundary condition, we manage to obtain the canonical decomposi-
tion of the reflected Lévy process at supremmum (f(t, X̄t−Xt, X̄t))t≥0 and at infimum
(f(t,Xt −Xt,−Xt))t≥0, where (X̄t)t≥0, and (Xt)t≥0 are the supremmum and the in-
fimum of (Xt)t≥0. First, let us introduce the d-dimensional compensation formula, see
Jeanblanc et al. (2009), Proposition 11.2.3.

Lemma 6.6 (d-dimensional compensation formula). Let (Zt)t≥0 be a d-dimensional
Lévy process, and ν its Lévy measure. We assume that H : Ω× [0, T ]×Rd → R+

0 be a
positive Borel measurable function where for every t ∈ [0, T ]

∫ t
0 ds

∫
Rd\{0}Hs(ω, z)ν(dz) <

∞, and Ht(ω, 0) = 0. Then

E

∑
s≤t

Hs(ω,∆Zs)1{∆Zs 6=0}

 = E
[∫ t

0
ds

∫
Rd\{0}

Hs(ω, z)ν(dz)
]
.

Equivalently, the process∑
s≤t

H(s,∆Zs)1{∆Z 6=0} −
∫ t

0

∫
Rd\{0}

H(s, z)ν(dz)


t≥0

, (6.7)

is an F-local martingale.

We also need the following integrability condition.

86



Assumption 6.7. Assume f(t, x, y) : [0, T ]×R+
0 ×R→ R is a C1,1,1([0, T ]×R+

0 ×R).
Let the function f(t, x, y) satisfy the following integrability conditions∫ x

−∞
|f(t, x+ z, y)− f(t, x, y)|ν(dz) <∞, ∀t ∈ [0, T ], x ≥ 0 and y ∈ R,

and ∫ +∞

x
|f(t, 0, y + z − x)− f(t, x, y)|ν(dz) <∞, ∀t ∈ [0, T ], x ≥ 0 and y ∈ R.

The following Proposition is an application of Nguyen-Ngoc and Yor (2005), Proposition
4.

Proposition 6.8. Let (Xt)t≥0 be a finite variation Lévy process, Xt = X0 + µt +∑
s≤t ∆Xs, and its Lévy measure ν is absolutely continuous with respect to Lebesgue

measure. Assuming that f(t, x, y) : [0, T ] × R+
0 × R → R is a C1,1,1([0, T ] × R+

0 × R)
function that satisfies Assumption 6.7 and

Lf(t, x, y) = ∂f

∂t
− µ∂f

∂x
+
∫ x

−∞
(f(t, x− z, y)− f(t, x, y))ν(dz)

+
∫ +∞

x
(f(t, 0, y + z − x)− f(t, x, y))ν(dz), ∀t ∈ [0, T ], x ≥ 0, y ∈ R,

where ∂f
∂x (t, 0, y) + ∂f

∂y (t, 0, y) = 0, then the process

(
f(t, X̄t −Xt, X̄t)− f(0, X̄0 −X0, X̄0)−

∫ t

0
Lf(s, X̄s −Xs, X̄s)ds

)
t≥0

, t ∈ [0, T ],

is an F-local martingale.

Proof. Since (Xt)t≥0 is a finite variation process by applying the change of variable
formula, see Theorem 2.48, it yields

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0) +
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds

+
∫ t

0

∂f

∂x
(s, X̄s− −Xs−, X̄s−)dX̄s

−
∫ t

0

∂f

∂x
(s, X̄s− −Xs−, X̄s−)dXs

+
∫ t

0

∂f

∂y
(s, X̄s− −Xs−,X̄s−)dX̄s

+
∑
s≤t
{f(s, X̄s −Xs, X̄s)− f(s, X̄s− −Xs−, X̄s−)

−
(
∂f

∂x
+ ∂f

∂y

)
(s, X̄s− −Xs−, X̄s−)∆X̄s

+ ∂f

∂x
(s, X̄s− −Xs−, X̄s−)∆Xs}, t ∈ [0, T ],

where ∆Xs = Xs −Xs−, and ∆X̄s = X̄s − X̄s.
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Since (Xt)t≥0 and (X̄t)t≥0 are of finite variation then dXc
t = dXt − ∆Xt and dX̄c

t =
dX̄t−∆X̄t, where (Xc

t )t≥0, (X̄c
t )t≥0 are the continuous local martingale part of (Xt)t≥0

and the path-by-path continuous part of (X̄t)t≥0 respectively. Note that since (X̄t)t≥0

is of finite variation it yields [X̄c]t = [X̄]ct = [X− X̄, X̄]ct = 0 with t ∈ [0, T ]. The above
result can be rewritten as

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0) +
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds

+
∫ t

0
(∂f
∂x

+ ∂f

∂y
)(s, X̄s− −Xs−, X̄s−)dX̄c

s

−
∫ t

0

∂f

∂x
(s, X̄s− −Xs−, X̄s−)dXc

s

+
∑
s≤t
{f(s, X̄s −Xs, X̄s)− f(s, X̄s− −Xs−, X̄s−)}, t ∈ [0, T ],

or equivalently

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0) +
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds

+
∫ t

0
(∂f
∂x

+ ∂f

∂y
)(s, X̄s− −Xs−, X̄s−)dX̄c

s

− µ
∫ t

0

∂f

∂x
(s, X̄s −Xs, X̄s)ds

+
∑
s≤t
{f(s, X̄s −Xs, X̄s)− f(s, X̄s− −Xs−, X̄s−)}, t ∈ [0, T ].

Using the support property Xt− = Xt = X̄t− = X̄t on supp(dX̄c), the term
∫ t

0

(
∂f

∂x
+ ∂f

∂y

)
(s, 0, X̄s)d(X̄)c,

is eliminated using the boundary condition,

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0,

therefore it yields

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0) +
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds

− µ
∫ t

0

∂f

∂x
(s, X̄s −Xs, X̄s)ds

+
∑
s≤t
{f(s, X̄s −Xs, X̄s)− f(s, X̄s− −Xs−, X̄s−)}.

Suppose that z defines the jumps of (Xt)t≥0 at time t and let (Rt)t≥0, Rt = X̄t −Xt

be the reflected process of (Xt)t≥0. We note that (X̄t)t≥0 can be written as

X̄t = max
(
X̄t−, Xt

)
, t ∈ [0, T ], (6.8)
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and we investigate the following cases

• If z < Rt−or Xt < X̄t− then from (6.8), max(X̄t−, Xt) = X̄t−, which implies that
X̄t = X̄t−. In this case the reflected process becomes Rt = X̄t− − Xt and if we
add and subtract Xt− then Rt = X̄t −Xt− − (Xt −Xt−) = Rt− − z.

• If z ≥ Rt−or Xt ≥ X̄t− and from (6.8), we have that max(X̄t−, Xt) = Xt and
thus X̄t = Xt, which yields Rt = 0.

The above summation can be expressed as an integral using jump measure N(dt, dz).
That is

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0)

+
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds− µ

∫ t

0

∂f

∂x
(s, X̄s −Xs, X̄s)ds

+
∫ t

0

∫ +∞

−∞

(
f(s, X̄s− −Xs− − z, X̄s−)− f(s, X̄s− −Xs−, X̄s−)

)
1{z<Rs−}N(ds, dz)

+
∫ t

0

∫ +∞

−∞

(
f(s, 0, X̄s−−(X̄s−−Xs−)+z)−f(s, X̄s−−Xs−, X̄s−)

)
1{z≥Rs−}N(ds, dz).

Then using Lemma 6.6 and assuming that Ñ(dt, dz) is the compensated jump measure,
Ñ(dt, dz) = N(dt, dz)− ν(dz)dt, we have

f(t, X̄t −Xt, X̄t) = f(0, X̄0 −X0, X̄0)

+
∫ t

0

∂f

∂s
(s, X̄s −Xs, X̄s)ds− µ

∫ t

0

∂f

∂x
(s, X̄s −Xs, X̄s)ds

+
∫ t

0

∫ +∞

−∞
(f(s, X̄s− −Xs− − z, X̄s−)− f(s, X̄s− −Xs−, X̄s−))1{z<Rs−}ν(dz)ds

+
∫ t

0

∫ +∞

−∞
(f(s, X̄s− −Xs− − z, X̄s−)− f(s, X̄s −Xs,−X̄s))1{z<Rs}Ñ(ds, dz)

+
∫ t

0

∫ +∞

−∞
(f(s, 0, X̄s− − (X̄s− −Xs−) + z)− f(s, X̄s− −Xs−, X̄s−))1{z≥Rs−}ν(dz)ds

+
∫ t

0

∫ +∞

−∞
(f(s, 0, X̄s−− (X̄s−−Xs−) + z)−f(s, X̄s−−Xs−, X̄s))1{z≥Rs−}Ñ(ds, dz).

Since
∫ t

0
∫+∞
−∞ (f(s, X̄s−−Xs−− z, X̄s−)− f(s, X̄s−−Xs−, X̄s−))1{z<Rs−}Ñ(ds, dz) and∫ t

0
∫+∞
−∞ (f(s, 0, X̄s−− (X̄s−−Xs) + z, )− f(s, 0, X̄s−−Xs−, X̄s))1{z<Rs−}Ñ(ds, dz) are

F-local martingales, then by the continuity of the Lévy measure and if we define the
operator

Lf(t, x, y) = ∂f

∂t
(t, x, y)− µ∂f

∂x
(t, x, y) +

∫ x

−∞
(f(t, x− z, y)− f(t, x, y))ν(dz)

+
∫ +∞

x
(f(t, 0, y − x+ z)− f(t, x, y))ν(dz), ∀t ∈ [0, T ].
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Given that Assumption 6.7 is satisfied, it follows that the process(
f(t, X̄t −Xt, X̄t)− f(0, X̄0 −X0, X̄0)−

∫ t

0
Lf(s, X̄s −Xs, X̄s)ds

)
t≥0

,

with t ∈ [0, T ], is an F-local martingale.

Let (Xt)t≥0, Xt := inf0≤s≤tXs be the infimum process of (Xt)t≥0. It is known that
(Qt)t≥0, Qt = sup0≤s≤t(−Xs) = −Xt and from Lemma 2.56 and Proposition 6.8 we
obtain the following result.

Proposition 6.9. Assume that (Xt)t≥0 is a finite variation Lévy process i.e. Xt =
X0 + µt +

∑
s≤t ∆Xs and its Lévy measure ν is absolutely continuous with respect to

Lebesgue measure. Let also f(t, x, y) : [0, T ]×R+
0 ×R→ R be a C1,1,1([0, T ]×R+

0 ×R)
function

Lf(t, x, y) = ∂f

∂t
+ µ

∂f

∂x
+
∫ +∞

−x
(f(t, x+ z, y)− f(t, x, y))ν(dz)

+
∫ −x
−∞

(f(t, 0, y − z − x)− f(t, x, y))ν(dz), ∀t ∈ [0, T ], x ≥ 0, y ∈ R,

that satisfies∫ +∞

−x
|f(t, x+ z, y)− f(t, x, y)|ν(dz) <∞, ∀t ∈ [0, T ], x ≥ 0, y ∈ R,

and ∫ −x
−∞
|f(t, 0, y − z − x)− f(t, x, y)|ν(dz) <∞, ∀t ∈ [0, T ], x ≥ 0 y ∈ R,

such that the boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0,

is also satisfied, then the process(
f(t,Xt −Xt,−Xt)− f(0, X0 −X0,−X0)−

∫ t

0
Lf(s,Xs −Xs,−Xs)ds

)
t≥0

,

with t ∈ [0, T ], is an F-local martingale.

Proof. First, since (Xt)t≥0 is a process of finite variation then its Lévy-Itô decomposi-
tion has the form

Xt = X0 + µt+
∫ t

0

∫
R
zN(ds, dz), t ∈ [0, T ].
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If
∫ t

0
∫
R |z|N(ds, dz) <∞ then the process

(∫ t

0

∫
R
zN(ds, dz)− t

∫
R
zν(dz)

)
t≥0

, t ∈ [0, T ],

is an F-local martingale. Moreover, since the Lévy measure ν is continuous, then it
admits a density m, such that ν(z) =

∫ z
−∞m(y)dy. Now, let Yt = −Xt, Yt = Y0 − µt+∑

s≤t(−∆Xs) and ν̂ its Lévy measure. We claim that ν̂ can be written as

ν̂(z) =
∫ +∞

−z
m(y)dy. (6.9)

It is easy to verify (6.9) for the case when the process is a compound Poisson. For
example, if Xt =

∑Nt
i=1 Ui, where Ui are i.i.d. random variables, and its Lévy measure

ν will be ν(z) =
∫ z
−∞ λmU (y)dy. For the process (Yt)t≥0, Yt = −Xt =

∑Nt
i=1(−Ui), its

cumulative distribution function is

P(−U ≤ y) = P(U ≥ −y) = 1− FU (−y),

and its density will be m−U (y) = F ′U (−y) = mU (−y). Thus the Lévy measure ν̂ has
the following for

ν̂(z) =
∫ z

−∞
mU (−y)λdy

=
−y=u

−
∫ −z

+∞
mU (u)λdu

=
∫ +∞

−z
mU (u)λdu.

The same hold true for the general case due to Assumption 6.1. Since Proposition 6.8
is valid for any Lévy process of finite variation and observing that the reflected Lévy
process Rt = Ȳt − Yt = (−Xt) +Xt = Xt −Xt, we get that the process(

f(t, Ȳt − Yt, Ȳt)− f(t, Ȳ0 − Y0, Ȳ0)−
∫ t

0
Lf(s, Ȳs − Ys, Ȳs)ds

)
t≥0

,

with t ∈ [0, T ], is an F-local martingale, where

Lf(t, x, y) = ∂f

∂t
+ µ

∂f

∂x
+
∫ x

−∞
(f(t, x− z, y)− f(t, x, y))ν̂(dz)

+
∫ +∞

x
(f(t, 0, y + z − x)− f(t, x, y))ν̂(dz)

= ∂f

∂t
+ µ

∂f

∂x
+
∫ x

−∞
(f(t, x− z, y)− f(t, x, y))q(−z)dz

+
∫ +∞

x
(f(t, 0, y − x+ z)− f(t, x, y))q(−z)dz.
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Setting u = −z, we obtain

∂f

∂t
+ µ

∂f

∂x
−
∫ −x

+∞
(f(t, x+ u, y)− f(t, x, y))q(u)du

−
∫ −∞
−x

(f(t, 0, y − u− x)− f(t, x, y))q(u)du

= ∂f

∂t
+ µ

∂f

∂x
+
∫ +∞

−x
(f(t, x+ u, y)− f(t, x, y))q(u)du

+
∫ −x
−∞

(f(t, 0, y − x− u)− f(t, x, y))q(u)du.

Therefore, under the operator

Lf(t, x, y) = ∂f

∂t
+ µ

∂f

∂x
+
∫ +∞

−x
(f(t, x+ u, y)− f(t, x, y))ν(du)

+
∫ −x
−∞

(f(t, 0, y − u− x)− f(t, x, y))ν(du),

and subject to the boundary condition ∂f
∂x (t, 0, y) + ∂f

∂y (t, 0, y) = 0, the process

(
f(t,Xt −Xt,−Xt)− f(0, X0 −X0,−X0)−

∫ t

0
Lf(s,Xs −Xs,−Xs)ds

)
t≥0

,

with t ∈ [0, T ], is an F-local martingale.

An immediate consequence of Proposition 6.9 is the next Lemma. We stress that for
the spectrally positive case the running infimum process (Xt)t≥0 is strictly decreasing.

Lemma 6.10. Let (Xt)t≥0 be a spectrally positive of finite variation Lévy process i.e.
Xt = X0 + µt + St, µ < 0 and its Lévy measure ν is absolutely continuous with
respect to Lebesgue measure. We assume that f(t, x, y) : [0, T ] × R+

0 × R → R is a
C1,1,1([0, T ]× R+

0 × R) function, and for every t ∈ [0, T ], x ≥ 0 and y ∈ R let

Lf(t, x, y) = ∂f

∂t
+ µ

∂f

∂x
+
∫ +∞

0
(f(t, x+ z, y)− f(t, x, y))ν(dz), t ∈ [0, T ],

and if
∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0,

then the process(
f(t,Xt −Xt,−Xt)− f(0, X0 −X0,−X0)−

∫ t

0
Lf(s,Xs −Xs,−Xs)ds

)
t≥0

,

with t ∈ [0, T ] is an F-local martingale.
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6.4 Canonical decompositions under the progressive fil-
tration expansion G

In this section, given a C1,1,1([0, T ] × R+
0 × R) function f : [0, T ] × R+

0 × R → R, we
provide the canonical decomposition of (f(t,Xt −Xt,−Xt)1{τ>t})t≥0 when (Xt)t≥0 is
a spectrally positive Lévy process of finite variation, under filtration G. This result will
be used in Section 6.5 to help us to determine the hedging strategy φt = (θt, ηt), using
the LRM approach.

We first need to extend the canonical decomposition introduced in the Lemma 6.10 to
the expanded filtration G. In Chapter 5, we saw that a local martingale under filtration
F, is not always G-local martingale. However, given a F-local martingale (Xt)t≥0 and a
G-measurable stopping time τ , then the process (Xτ∧t)t≥0 is a G-semimartingale. From
Theorem 5.10 the process (Xτ∧t)t≥0 has the following canonical form under G(

Xτ∧t −
∫ τ∧t

0

(〈X,M〉Fs + dBs)
Zs−

)
t≥0

, t ∈ [0, T ],

where (Zt)t≥0 is the Azema supermartingale under F, Zt = P(τ > t | Ft), and (Mt)t≥0

is the martingale part of (Zt)t≥0. The process (Bt)t≥0 is the optional dual projection
of the process (1{τ≤t}∆Xτ )t≥0. Under the assumption that G-stopping time τ avoids
all the F-stopping times i.e. P(τ = ς) = 0, for all F-stopping times ς, Protter (2004),
in Chapter VI, simplified the above decomposition with Bt = 0. Alternatively, we can
assume that ∆Xτ = 0. Since the underlying asset is a spectrally positive process, in
Theorem 6.13 we will also prove that ∆Xτ = 0.

Our first goal is to find the canonical decomposition of f(τ ∧ t,Xτ∧t − Xτ∧t,−Xτ∧t)
under the filtration G, given that the Lévy process (Xt)t≥0 is spectrally positive and of
finite variation, with X0 = u, u > 0.

Assumption 6.11. Let f(t, x, y) : [0, T ] × R+
0 × R → R be a C1,1,1([0, T ] × R+

0 × R)
function. Then f(t, x, y) satisfies the integrability condition

∫ +∞

0
|f(t, x+ z, y)− f(t, x, y)|ν(dz) <∞,

for every t ∈ [0, T ], x ≥ 0 and y ∈ R.

The following Lemma is a direct application of Protter (2004), Chapter VI, Theorem
15.

Lemma 6.12. Assuming that f(t, x, y) : [0, T ]×R+
0 ×R→ R is a C1,1,1([0, T ]×R+

0 ×R)
function and (Xt)t≥0 is a spectrally positive of finite variation Lévy process, given by
(6.1) with X0 = u. We also assume that f(t, x, y) satisfies Assumption 6.11, also the
Lévy measure ν satisfies Assumption 6.1. Then the process

(
f(τ ∧t,Xτ∧t−Xτ∧t,−Xτ∧t)−f(0, X0−X0,−X0)−

∫ τ∧t

0
Lf(s,Xs−Xs,−Xs)ds

)
t≥0

,
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is a G-local martingale,where τ is a G-totally inaccessible stopping time and the operator
Lf(t, x, y) is defined in 6.10.

Proof. Let

Mt =
(
f(t,Xt −Xt,−Xt)− f(0, X0 −X0,−X0)−

∫ t

0
Lf(s,Xs −Xs,−Xs)ds

)
t≥0

,

be the F-local martingale defined in Proposition 6.10. From Protter (2004), Chapter
VI, Theorem 15, it yields that the stopped martingale (Mτ∧t)t≥0 is a G-semimartingale
and the process (

Mτ∧t −
∫ τ∧t

0

1
Zs−

d 〈Z, f〉Fs
)
t≥0

, t ∈ [0, T ],

is a G-local martingale. First note that since (Xt)t≥0 is a spectrally positive process
its running infimum is continuous. Therefore the process (Zt)t≥0, Zt = eXt is a con-
tinuous one. Since both (Xt)t≥0 and (Zt)t≥0 are of finite variation then [f(·, X· −
X ·,−X ·), Z·]Ft = 0, which implies that 〈f(·, X·,−X ·,−X ·), Z·〉

F
t = 0. So the process

(Mτ∧t)t≥0 is an G-local martingale, and the result is straightforward.

As a result we get the following Theorem, which is the main part of this section.

Theorem 6.13. Assume that the Lévy measure ν satisfies Assumption 6.1 and f(t, x, y)
is C1,1,1([0, T ] × R+

0 × R), which satisfies Assumption 6.11. Let also (Xt)t≥0 be a
spectrally positive Lévy process of finite variation introduced in (6.1). Then the process
(Ut)t≥0, Ut = f(t,Xt −Xt,−Xt)1{τ>t} has the following canonical decomposition

Ot =
(
Ut − U0 −

∫ τ∧t

0
Af(s,Xs −Xs,−Xs)ds

)
t≥0

, (6.10)

is a G-local martingale, where the operator Af(t, x, y) is given as

Af(t, x, y) : = ∂f

∂t
(t, x, y) + µ

∂f

∂x
(t, x, y) + µf(t, x, y)1{x=0}

+
∫ +∞

0
(f(t, x+ z, y)− f(t, x, y))ν(dz)

−
∫ +∞

0
f(t, x, y)(1− e−z)ν(x+ dz), t ∈ [0, T ], x ≥ 0, y ∈ R,

(6.11)

subject to the mixed boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0.

Proof. Let Ut = f(t,Xt −Xt,−Xt)1{τ>t} and we know that

f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t) = Ut + f(τ,Xτ −Xτ ,−Xτ )1{τ≤t}, t ∈ [0, T ],

which implies

Ut = f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t)− f(τ,Xτ −Xτ ,−Xτ )1{τ≤t}.
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Therefore we need to calculate the compensators of f(τ ∧ Xτ∧t − Xτ∧t,−Xτ∧t) and
f(τ,Xτ − Xτ ,−Xτ )1{τ≤t}. We start with the first one. From Lemma 6.12, we have
that the process

M
(1)
τ∧t =

(
f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t)− f(0, X0 −X0,−X0)

−
∫ τ∧t

0
Lf(s,Xs −Xs,−Xs)ds

)
t≥0

, t ∈ [0, T ],

is a G-local martingale. Then based on the Assumption 6.11, and using the compensa-
tion formula, Lemma 6.6, the process (f(τ∧t,Xτ∧t−Xτ∧t,−Xτ∧t))t≥0 can be written as
f(τ∧t,Xτ∧t−Xτ∧t,−Xτ∧t) = M

(1)
τ∧t+Λfτ∧t, where Λfτ∧t =

∫ τ∧t
0 Lf(s,Xs−Xs,−Xs)ds.

Thus the compensator of f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t) is
∫ τ∧t

0
Lf(s,Xs −Xs,−Xs)ds, t ∈ [0, T ].

We proceed with the second term. From Proposition 2.27 we know that

[
f(·, X· −X ·,−X ·), 1{τ≤·}

]G
t

=
∫ t

0
∆fsd(1{τ≤s}).

We will prove that ∆f(τ,Xτ −Xτ ,−Xτ ) = 0 through contradiction.

Let τ = inf{t ≥ 0 : Xt < 0}. From the definition of creeping, we know that the
process creeping downwards and therefore Xτ ≤ 0. Let ω ∈ Ω fixed and assume
that ∆Xτ (ω) ≥ 0, where ∆Xτ = Xτ − Xτ−and Xτ− = lims→τ−Xs.On the other
hand, since the process, since the process (Xt)t≥0 is spectrally positive then ∆Xτ ≥ 0
i.e. Xτ (ω) ≥ Xτ−(ω). Also for each s ≤ τ we have that Xs(ω) ≥ 0 which implies
Xτ−(ω) ≥ 0. If Xτ (ω) > Xτ (ω), since Xτ−(ω) ≥ 0, thus we obtain Xτ (ω) > 0 which is
a contradiction. Thus we must have ∆Xτ (ω) = 0 for all ω ∈ Ω. This can be also verified
from Figure 6.1a, where the process (Xt)t≥0 cross the default barrier continuously.

Moreover, following Kyprianou (2014), Section 7.5, since the process creeps downwards,
and (Xt)t≥0 has negative jumps, then it must hit 0, i.e. τ{0} = inf {t > 0 : Xt = 0} ,
which suggests that the above argument is valid for any stopping time of the form
τ = inf{t > 0 : Xt ≤ 0}. This can be generalized for any barrier D ≤ 0, τ = inf{t > 0 :
Xt ≤ D}. We note that the above result holds for any filtration F or the augmented
G ⊂ F. Finally, since the process (Xt)t≥0, and the function f(t, x, y) are continuous
then we obtain that ∆f(τ ∧ t,Xτ∧t −Xτ∧t,−Xτ∧t) = 0. Therefore we get that

[f(·, X· −X ·,−X ·), 1{τ≤·}]Gt =
∫ τ∧t

0
∆f(s,Xs −Xs,−Xs)d(1{τ≤s}) = 0,

which implies that∫ τ∧t

0
f(s,Xs−Xs,−Xs)d(1{τ≤s}) =

∫ τ∧t

0
f(s−, Xs−−Xs−,−Xs−)d(1{τ≤s}). (6.12)
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It is easy to see that

f(τ,Xτ −Xτ ,−Xτ )1{τ≤t} =
∫ t

0
f(s,Xs −Xs,−Xs)d(1{τ≤s}), t ∈ [0, T ],

note that from (6.12) the processM (2)
t := (1{τ≤t}−

∫ τ∧t
0 λsds)t≥0 is a G-local martingale

and it yields

f(τ,Xτ −Xτ ,−Xτ )1{τ≤t} =
∫ t

0
f(s,Xs −Xs,−Xs)d(1{τ≤s})

=
∫ t

0
f(s−, Xs− −Xs−,−Xs−)d(1{τ≤s})

=
∫ t

0
f(s−, Xs− −Xs−,−Xs−)dM (2)

s

+
∫ τ∧t

0
f(s,Xs −Xs,−Xs)λ̃sds,

where λ̃t = −µ1{Xt−Xt=0} + Π(Xt −Xt). Therefore the compensator of (Ut)t≥0 is

∫ τ∧t

0
Lf(s,Xs −Xs,−Xs)− f(s,Xs −Xs,−Xs)(−µ1{Xs−Xs=0} + Π(Xs −Xs))ds,

where Π(x) is the function introduced in (6.5).

The following Lemma simplifies the above Theorem in the 2-dimensional case.

Lemma 6.14. Assume that the Lévy measure satisfies Assumption 6.1 and (Xt)t≥0 be
a spectrally positive Lévy process of finite variation introduced in (6.1). Let g(t, x) be
a C1,1([0, T ]× R+

0 ) function satisfying the following integrability condition:

∫ +∞

0
|g(t, x+ z)− g(t, x)|ν(dz) <∞, ∀t ∈ [0, T ]and x ≥ 0.

Then the process (Ut)t≥0, Ut = g(t,Xt −Xt)1{τ>t} has the following decomposition

(
Ut − U0 −

∫ τ∧t

0
Ag(s,Xs −Xs)ds

)
t≥0

, t ∈ [0, T ],

is a G-local martingale and the operator Ag(t, x) is given by

Ag(t, x) : = ∂g

∂t
(t, x) + µ

∂g

∂x
(t, x) + µg(t, x)1{x=0} +

∫ +∞

0
(g(t, x+ z)− g(t, x))ν(dz)

−
∫ +∞

0
g(t, x)(1− e−z)ν(x+ dz), ∀t ∈ [0, T ], x ≥ 0,

subject to the Neumann boundary condition

∂g

∂x
(t, 0) = 0.

Proof. The proof is direct application of Theorem 6.13, for a continuous and differen-
tiable function g(t, x), with f(t, x, y) := g(t, x).
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6.5 Hedging strategy for a defaultable claim under partial
information

The main part of this section is devoted to the determination of the hedging strategy
for a defaultable claim with a payoff of the from F (XT − XT ,−XT )1{τ>T}, for a
continuous function F : R+

0 × R → R. Calculating the canonical decomposition of
(f(t,Xt−Xt,−Xt)1{τ>t})t≥0 under filtration G, is a crucial step to determine (θt)t≥0.
We next turn our attention to the determination of (θt)t≥0 without applying the H-
hypothesis. The following Lemma provides the form of (Xτ

t )t≥0 under the expanded
filtration G.

Lemma 6.15. Under the Assumption 6.1, the stopped process (Xτ
t )t≥0 is a square

integrable G-special semimartingale of the form

Xτ
t = X0 +MX

τ∧t +
∫ τ∧t

0
Lf1(s,Xs −Xs,−Xs)ds, t ∈ [0, T ], (6.13)

where (MX
τ∧t)t≥0 is a G-local martingale, the operator Lf(t, x, y) is given by Lemma

6.10, and
f1(t, x, y) = (x− y), t ∈ [0, T ], x ≥ 0, y ∈ R. (6.14)

Simplifying (6.13), we get Xτ∧t = X0 + MX
τ∧t + ΛXτ∧t, where (ΛXτ∧t)t≥0 is a G-adapted

càdlàg process of finite variation with the following form

ΛXτ∧t = µτ ∧ t+
∫ τ∧t

0

∫ +∞

0
zν(dz)ds, t ∈ [0, T ].

The G-predictable quadratic variation is given by

〈Xτ 〉Gt =
∫ τ∧t

0

∫ +∞

0
z2ν(dz)ds, t ∈ [0, T ]. (6.15)

Proof. Let f1(t, x, y) = (x− y). Then f1(t,Xt −Xt,−Xt) = (Xt −Xt − (−Xt)) = Xt.
If we apply Lemma 6.12, then then process

MX
τ∧t :=

(
Xτ
t −X0 −

∫ τ∧t

0
Lf1(s,Xs −Xs,−Xs)ds

)
t≥0

, t ∈ [0, T ],

is a G-local martingale. Thus the process (Xτ
t )t≥0, under G, has the form

Xτ
t = X0 +MX

τ∧t +
∫ τ∧t

0
Lf1(s,Xs −Xs,−Xs)ds, t ∈ [0, T ].

Next, we calculate 〈Xτ 〉Gt . Once again, following Assumption 6.1 since
∫+∞

0 z2ν(dz) <
∞, we know that (Xt)t≥0 is a square integrable and G-adapted. From Proposition 2.27
[Xτ ]Gt ∈ Aloc, which yields that the G-predictable quadratic variation 〈Xτ 〉Gt exists.

First, we calculate the quadratic variation [Xτ ]Gt . Following Definition 2.25, we know

[Xτ ]Gt = X2
τ∧t − 2

∫ τ∧t

0
Xs−dXs, t ∈ [0, T ]. (6.16)
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Note that ∫ τ∧t

0
Xs−dXs =

∫ τ∧t

0
Xs−dM

X
s

+
∫ τ∧t

0
Xs−Lf1(s,Xs −Xs,−Xs)ds, t ∈ [0, T ].

(6.17)

Let f2(t, x, y) = (x − y)2, then f2(t,Xt −Xt,−X) = X2
t . Again, by applying Lemma

6.12, it follows that

M̂τ∧t :=
(
X2
τ∧t −X2

0 −
∫ τ∧t

0
Lf2(s,Xs −Xs,−Xs)ds

)
t≥0

, t ∈ [0, T ], (6.18)

is a G-local martingale. Plugging (6.17), and (6.18) into (6.16) then

[Xτ ]Gt = M̂τ∧t +
∫ τ∧t

0
Lf2(s,Xs −Xs,−Xs)ds

− 2
(∫ τ∧t

0
f1(s,Xs−,−Xs−,−Xs−)dM̂s

)
− 2

(∫ τ∧t

0
f1(s,Xs −Xs,−Xs)Lf1(s,Xs −Xs,−Xs)ds

)
.

Thus, the compensator of ([Xτ ]Gt )t≥0 i.e. (〈Xτ 〉Gt )t≥0 is given by

〈Xτ 〉Gt =
∫ τ∧t

0

(
Lf2(s,Xs −Xs,−Xs)

− 2f1(s,Xs −Xs,−Xs)Lf1(s,Xs −Xs,−Xs)
)
ds.

Assumption 6.16. Let f(t, x, y) be C1,1,1([0, T ]×R+
0 ×R) function which is the solution

of the following PIDE

Af(t, x, y) := (AP (t, x, y)− (x− y)Af(t, x, y)− f(t, x, y)α)∫+∞
0 z2ν(dz)

α, 0 ≤ t ≤ T,

where α = µ +
∫+∞

0 zν(dz), P (t, x, y) = (x − y)f(t, x, y) , with t ∈ [0, T ], x ≥ 0 and
y ∈ R given a terminal condition

f(T, x, y) = F (x, y), x ≥ 0, y ∈ R,

and subject to the boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0.

Remark 6.17. Note that due to the existence of the indicator function in operator
Af(t, x, y) given by (6.11), the existence of a smooth solution in the above PIDE
is not guaranteed or it may not even exist. One way of fixing this problem could
be to use the non-smooth version of Itô’s formula and investigate the existence of a
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solution that is just weakly differentiable. As we assume that Assumption 6.16 holds,
this makes the proof of the following results a bit heuristics though the numerical
results look reasonable. In the next chapter (Chapter 7), the intensity of our models
are continuous, and hence irregular terms (such as indicator function in the operator
Af(t, x, y) introduced in (6.11)) would not exist in the PIDEs.

We conclude this section with the determination of the hedging strategy (θt)t≥0.

Theorem 6.18. Let the process (Xτ
t )t≥0 given by (6.13) and we assume that Assump-

tion 6.1 holds. Furthermore, let [U,Xτ ]t ∈ Aloc. We also assume that f(t, x, y) is the
solution of the PIDE given in Assumption 6.16. Then for all t ∈ [0, T ] we have the
following decomposition

Ut = f(t,Xt −Xt,−Xt)1{τ>t} = U0 +
∫ t

0
θsdX

τ
s + Lτ∧t

= U0 +
∫ t

0
θs1{τ≥s}dXs + Lτ∧T , t ∈ [0, T ],

and for t = T

UT = F (XT −XT ,−XT )1{τ>T} = U0 +
∫ T

0
θsdX

τ
s + Lτ∧T

= U0 +
∫ T

0
θs1{τ≥s}dXs + Lτ∧T ,

where F (x, y) is the PIDE’s terminal condition, and the process (θt)t≥0 is given by

θt = Kf(t,Xt −Xt,−Xt)∫+∞
0 z2ν(dz)

, t ∈ [0, T ],

for some operator

Kf(t, x, y) = AP (t, x, y)− (x− y)Af(t, x, y)− f(t, x, y)α,

where P (t, x, y) = (x − y)f(t, x, y), Af(t, x, y) is given from (6.11) and α = µ +∫+∞
0 zν(dz). The process (Lτ∧t)t≥0 is orthogonal to the martingale part of (Xτ

t )t≥0 i.e.
(MX

τ∧t)t≥0.

Proof. Let (Ut)t≥0 be a process as given in Theorem 6.13, and f1(t, x, y) = (x− y) is a
smooth function. From Theorem 6.13 we know that the process

Ot =
(
Ut − U0 −

∫ τ∧t

0
Af(s,Xs −Xs,−Xs)ds

)
t≥0

, t ∈ [0, T ],

is a G-local martingale. Then the process

O
(1)
t :=

(
P (t,Xt −Xt,−Xt)1{τ>t} − P (0, X0 −X0,−X0)

−
∫ τ∧t

0
AP (s,Xs −Xs,−Xs)ds

)
t≥0

, t ∈ [0, T ],
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is also a G-local martingale, where P (t,Xt −Xt,−Xt) is defined in Theorem 6.13 and
the operator A is given by (6.11). Since [U,X]Gτ∧t = [O,MX ]Gτ∧t, then the two processes
have the same compensator. Once again, we obtain the KW decomposition of (Ot)t≥0

with respect to (MX
τ∧t)t≥0. Since [O, M̂ ]Gτ∧t ∈ Aloc, its compensator exists and is given

by
〈
O,MX

〉G
τ∧t. From the integration by parts formula with X0 = u, u > 0, we have

UtX
τ
t = U0X0 +

∫ t

0
Us−dX

τ
s +

∫ t

0
Xτ
s−dUs + [U,Xτ ]Gt .

Let again define F (1)
t :=

∫ τ∧t
0 Af(s,Xs − Xs,−Xs)ds, and F

(2)
t :=

∫ τ∧t
0 AP (s,Xs −

Xs,−Xs)ds. From the above integration by parts formula, we have

[U,Xτ ]Gt −
(
F

(2)
t −

∫ τ∧t

0
Us−Uf1(s,Xs −Xs,−Xs)ds−

∫ τ∧t

0
Xs−dF

(1)
s

)
=
(
O

(1)
t −

∫ τ∧t

0
Us−dM

X
s −

∫ τ∧t

0
Xs−dOs

)
.

Therefore the G-predictable quadratic covariation is given by

〈
O, M̂ τ

〉G
t

=
∫ τ∧t

0

(
AP (s,Xs −Xs,−Xs)

− f(s,Xs −Xs,−Xs)Lf1(s,Xs −Xs,−Xs)

−XsAf(s,Xs −Xs,−Xs)
)
ds

=
∫ τ∧t

0

(
AP (s,Xs −Xs,−Xs)

− f(s,Xs −Xs,−Xs)Lf1(s,Xs −Xs,−Xs)

− f1(s,Xs −Xs,−Xs)Af(s,Xs −Xs,−Xs

)
ds, t ∈ [0, T ].

Since the G-predictable quadratic variation 〈Xτ 〉Gt is given by (6.15), then the process
(θt)t≥0 is given by

θt = Kf(t,Xt− −Xt−,−Xt−)∫+∞
0 z2ν(dz)

, t ∈ [0, T ],

where Kf(t, x, y) = AP (t, x, y) − f1(t, x, y)Af(t, x, y) − f(t, x, y)Lf1(t, x, y). Next, we
can define the Glocal martingale (Lt)t≥0 which represents the hedging error as

Lt = Ot − U0 −
∫ τ∧t

0
θsdM

X
s ,

and the rest of the proof follows very similar steps as in Theorem 4.16 under the
progressive filtration G. Also, by letting t = T along with the boundary condition
introduced in Assumption 6.16 the theorem is proved.

Remark 6.19. It’s not hard to see that the process (θt)t≥0 introduced in Theorem 6.18
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takes the following form

θt =
∫+∞

0 zf(t,Xt− −Xt− + z,−Xt−)ν(dz)− f(t,Xt− −Xt− −Xt−)
∫+∞

0 zν(dz)∫+∞
0 z2ν(dz)

,

(6.19)
with t ∈ [0, T ].

6.5.1 Local risk minimization under G

In Theorem 6.18, the optimal number of shares (θt)t≥0 through the KW decomposition
is obtained. However, we still need to provide the appropriate conditions such that the
FS decomposition exists. This is achieved by calculating the MVT process, see Chapter
3, Section 3.4.2.

The next corollary investigates the special case where (Xτ∧t)t≥0 is a G-local martingale.

Corollary 6.20. Let (Xτ
t )t≥0 be a G-square integrable local martingale and f(t, x, y)

be the solution of the following PIDE

Af(t, x, y) = 0, ∀ 0 ≤ t ≤ T, x ≥ 0 and y ∈ R,

with a terminal condition f(T, x, y) = F (x, y) subject to the boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0,

then in this case, the GKW decomposition is

UT = F (XT −XT ,−XT )1{τ>T} = U0 +
∫ T

0

AP (s,Xs− −Xs−,−Xs−)∫+∞
0 z2ν(dz)

dXτ
s + Lτ∧T ,

where the operator Af(t, x, y) is introduced in Theorem 6.13 and P (t, x, y) = (x −
y)f(t, x, y).

Proof. If the operator Lf1(t, x, y), where f1 = (x− y), is zero then from Theorem 6.15
the process (Xτ∧t)t≥0 is a G-local martingale. In this case, from the PIDE introduced
in Assumption 6.16, it implies that Af(t, x, y) = 0.

Following Example 4.19 and assuming that the underlying asset has the form Xt =
X0 + µt+

∑
Yj , where the i.i.d. random variables follow exponential distribution with

parameter δ, h(z) = δ exp(δz) for z ≥ 0 and µ = −λ
δ , for the simple case when the

payoff function F (x, y) is constant and equal to one and f(t, x, y) is the solution of the
PIDE introduced in Corollary 6.20, the process (θt)t≥0 has the following representation

θt = δ2 ∫+∞
0 zf(t,Xt −Xt + z,−Xt)h(z)dz − δf(t,Xt −Xt,−Xt)

2 1{τ≥t}.
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I would also point out the following when implementing the PIDE in Chapter 8. Despite
the irregularities (the indicator function in the operator (6.11)) in our PIDE for the
above example, in Section 8.4, we provide a heuristic implementation for its solution.

Based on Theorem 6.18, let us further introduce a particular interesting example.

Example 6.21. Let (Xτ
t )t≥0 with 0 ≤ t ≤ T be a G-semimartingale of the form (6.13)

and f(t, x, y) is the solution of the PIDE introduced in Assumption 6.16, but let now
the terminal condition be given as

f(T, x, y) = F (x− y) := max((x− y)−K, 0).

Then the optimal number of shares (θt)t≥0 with t ∈ [0, T ] is given by (6.19).

We remark that the above decomposition determines the PLRM and not the LRM.
However, following Assumption 6.1 since

∫+∞
0 z2ν(dz) < ∞ then the process (Xτ

t )t≥0

is square integrable and if MVT process is uniformly bounded, we can find the LRM
through the PLRM. So the FS decomposition exists.

Following the same argument as in Chapter 4, it is not hard to see that the MVT process
is uniformly bounded and so the SC holds true. In order to determine the optimal
hedging strategy φ = (θt, ηt)t apart from (θt)t≥0, we need to certify the processes: the
amount of money invested in the non-risky asset (ηt)t≥0, the value process (Vt)t≥0 and
finally the cost process (Ct)t≥0. Note that the definitions of Θ-space and of an L2-
strategy, introduced in Definition 3.33 and 3.34, can be formulated in G as well. Once
again, if we assume that the solution f(t, x, y) of the PIDE introduced in Assumption
6.16 is square integrable i.e. f(t, x, y) ∈ L2(R+

0 ×R+
0 ×R), then all these processes exist

by applying directly Proposition 4.1 of Okhrati et al. (2014).
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Chapter 7

Local risk minimization and the
running infimum process

7.1 Introduction

In this chapter, we analyse the LRM approach of certain contingent claims that might
be prone to two types of default events. The first is an endogenous (or structural)
default event defined by the first hitting time of the underlying asset to a barrier, and
the second default event is caused exogenously which is modelled by a hazard rate
process. The first type of default is arising due to specific risk and the second one is
because of systematic risk. In our model, the market is not necessarily complete, i.e.
the existence of a unique martingale measure (under which any contingent claim can be
perfectly hedged and uniquely priced) is not guaranteed. In our study, the underlying
asset is modelled by a jump-diffusion Lévy process with finite variation jumps.

Regarding hedging defaultable claims using the LRM approach, Biagini and Cretarola
(2009) and Biagini and Cretarola (2012) study defaultable markets through the FS
decomposition based on hazard rate models where the default intensity is modelled by
a hazard rate process and underlying asset is modelled using a geometric Brownian
motion. However, none of this approach can explain neither the effect of internal and
external default events simultaneously nor they apply PDE (or PIDE) approaches.

In what follows, we specifically discuss the contribution of our work. First, we obtain
semi-explicit solution of hedging strategies in the LRM framework, when the default-
able claim is subject to both structural (caused specifically by the underlying assets)
and exogenous default events (caused systematically by external risk factors). This is
an improvement over the existing credit risk models where the default event is linked
to either a structural default event (normally modelled by a predictable stopping time),
like Merton’s model Merton (1974) ( see Chapter 3), or completely unpredictable mod-
elled via totally inaccessible stopping times such as hazard rate based models in Duffie
and Singleton (1999), Jarrow and Turnbull (1995) and Jeanblanc and Le Cam (2008),
(see again Chapter 3). In the context of jump processes, it is also possible to model
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structural credit risk events using totally inaccessible stopping times, see Okhrati et al.
(2014).

To understand this further, consider a default time which is modelled by the first hitting
time a jump-diffusion process to a certain barrier. This hitting time is a stopping time
but it is neither predictable nor totally inaccessible this is because the default can
happen in two fashions, either through a sudden jump or via a continuous crossing
of the barrier. Under diffusion process, the stopping time is predictable and under
pure jump process, it is totally inaccessible, but it is neither one under jump-diffusion
processes.

This is achieved using the running infimum process as an auxiliary process in addition
to the underlying asset. In other words, the strategies are determined by using not
only the underlying process but also its running infimum. As we mentioned earlier, we
do not use the minimal martingale measure, instead we determine hedging strategies
through either PDEs or PIDEs depending on whether or not the underlying asset is
continuous.

However, this extra dimension would allow us to manage the risk of more complicated
defaultable claims. For instance, we can extend models such as Okhrati et al. (2014)
where the default time is totally inaccessible and the underlying asset is finite variation
Lévy process. More specifically, we improve their work by letting the underlying asset
to be a jump-diffusion Lévy process and a general hitting time.

In addition, we allow for correlation between the endogenous and exogenous risk factors.
This is done through modelling default rate dependent on both the underlying asset
and the running infimum process. In order to model the default event via τ , we assume
that P(τ > t | Ft) = e−

∫ t
0 g(s,Ys,Y s)ds, t ≥ 0, where g(t, x, y) is a non-negative continuous

function.

In our methodology, we first derive the canonical decomposition of f(τ∧t, Yτ∧t, Y τ∧t)t≥0

under the expanded filtration G, where (Yt)t≥0 models the underlying asset and (Y t)t≥0,
Y t = inf0≤s≤t(Yt) assuming that the default time τ is a G totally inaccessible stopping
time. Following an equivalent method as in Chapter 6, under the progressive filtration
expansion a hedging strategy for a defaultable claim of the form F (YT , Y T )1{τ>T}, is
obtained given a measurable function F .

Finally, we must point out a limitation of our model which is that for certain models,
we need to assume that ∆Yτ = 0. This means that the default time does not coincide
with any jump of the underlying asset.

The chapter is structured as follows. In Section 7.2, the model and some preliminary
results are introduced. In Section 7.2.1, we analyse the canonical decomposition of
(f(t, Yt, Y t)1{τ>t})t≥0 under G. The hedging strategy through the FS decomposition is
obtained in Section 7.3. In Section 7.4, we focus on models based on diffusion processes,
and section 7.5 is devoted to models based on jump-diffusion processes.

104



7.2 Model description and preliminary results

Suppose that (Ω,G,P) is a complete probability space equipped with the filtration
F, where F = (Ft)t≥0 is the available information to investors generated by a jump-
diffusion Lévy process with jumps of finite variation, i.e. Ft = σ({Xs; 0 ≤ s ≤ t}),
for all t ≥ 0, with Lévy triplet (b, σ2, ν), and X0 = u, u > 0. Without any loss in
generality, we can assume that F0 contains all the P-null sets of G, then Theorem 31 of
Chapter I of Protter (2004) shows that filtration F is a right-continuous filtration, i.e.
this filtration satisfies the usual hypotheses.

If the jump component of (Xt)t≥0 is of finite variation then the process (Xt)t≥0 admits
the following Lévy-Itô decomposition

Xt = X0 + µt+ σWt +
∫ t

0

∫
R
zN(ds, dz), t ∈ [0, T ], (7.1)

where µ ∈ R, µ = b−
∫

[−1,1] zν(dz), σ ≥ 0,Wt = (Wt)t≥0 is a standard Brownian motion,
and N(dt, dz) is the jump measure of the process (Xt)t≥0 with intensity ν(dz)dt.

Assumption 7.1. The Lévy measure ν is absolutely continuous with respect to Le-
besgue measure and

∫
|z|≥1 z

2ν(dz) <∞ and
∫
|z|≥1 e

2zν(dz) <∞.

We suppose that the default-free market is composed of two assets, a risky asset mod-
elled by the stochastic process Yt = (Yt)t≥0, defined by Yt = eXt , t ∈ [0, T ], and a
risk-free asset. We further assume that the interest rate is zero, and so the risk-free as-
set admits the value of one at all times. Note that under Assumption 7.1, Propositions
3.13 and 3.14 of Cont and Tankov (2004) imply that for all t ≥ 0, Xt and Yt = eXt are
square-integrable.

Next, we need to specify a defaultable market (hence defaultable claims) within our
setup, in order to do so, first, we need to model the arrival rate of default as follows.

Assumption 7.2. Suppose that τ is a non-negative G-measurable random time mod-
elling the default time of a firm with the asset values modelled by (Yt)t≥0 such that
P(τ = 0) = 0 and P(τ > t) > 0, for all 0 ≤ t ≤ T . Furthermore, we assume that it
admits a hazard rate process, i.e. there is a stochastic process (λt)t≥0 of the following
form

λt = g(t, Yt, Y t), t ∈ [0, T ], (7.2)

where for t ≥ 0, Yt = eXt, Y t := infs≤t Ys is the running infimum process of (Yt)t≥0,
and g : R+

0 × R+
0 × R+

0 → R+
0 is a continuous function, such that

Zt := P(τ > t | Ft) = e−
∫ t

0 g(s,Ys,Y s) ds.

Note that Y t = eXt, where Xt = infs≤tXs, and so (Y t)t≥0 inherits some sample path
properties of (Xt)t≥0.
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Remark 7.3. In Assumption 7.2, if Zt = 1 for all t ∈ [0, T ] (for instance when g(t, x, y)
is identically zero), then τ > t, P-almost surely for all t ∈ [0, T ], i.e. the market is
default-free and we let τ =∞.

We model a defaultable claim by the triplet (H, τ, T ), where H is a non-negative FT -
measurable random variable, τ is as in Assumption 7.2, and T is the maturity of the
claim. More precisely, the holder of this claim claim receives H, if τ > T and nothing
otherwise, i.e. the payoff is H1{τ>T}; this means that the recovery process is considered
zero here. Furthermore, we let H = F (YT , Y T ), where F : R+

0 × R+
0 → R+

0 is a real
valued function; hence, the defaultable claims admits the following form

F (YT , Y T )1{τ>T}. (7.3)

In order to motivate our study further, we have a closer look at (7.3) through providing
an interesting example. Consider a firm whose equity is modelled by (Yt)t≥0 with
t ∈ [0, T ]. This firm has just issued a debt modelled by R(YT ) where R(x) is a real-
valued function, R : R+

0 → R+
0 . The debt is subject to two types of default, one

structural (we also called endogenous or internal) and the other is exogenous caused by
external factors. More precisely, the debt will be settled if the firm does not go through
liquidation before the maturity. The liquidation time which is a structural default time
can be modelled by ζ = inf{t : Yt ≤ b} where 0 < b < Y0 is a specified constant. We
assume that if the firm’s values fall under b, the equity holders liquidate it.

The firm could be also subject to an exogenous default event modelled by τ . Therefore,
the debt will be settled if ζ > T and τ > T . However, {ζ > T} = {Y T > b}, then the
firm’s debt is a special case of (7.3) for F (x, y) = R(x)1{y>b}.

Since τ is not necessarily an F-stopping time, an expansion of this reference filtration
is required. Let G = (Gt)t≥0 be the right continuous progressive filtration expansion of
F by τ given by

Gt = Ft ∨Nt, t ≥ 0, (7.4)

where Nt, t ≥ 0 is the sigma-algebra generated by the default indicator 1{τ≤t}, t ≥ 0.
Recall that based on the definition of the progressive filtration expansion defined in
(5.2) since we have already assumed that the filtration G is right continuous then the
intersection is redundant and so G0 = G. Following Kchia et al. (2013), we further
assume that G satisfies

Gt ∩ {τ > t} = Ft ∩ {τ > t}. (7.5)

Equation (7.5) is also the filtration expansion introduced in Guo and Zeng (2008).
Recall that (7.5) is automatically satisfied for the progressive filtration expansion, see
Guo and Zeng (2008) for a discussion. Under this assumption, Kchia et al. (2013)
proved that (7.4) determine the canonical decomposition of a semimartingale.

It is easy to show that Nt = σ({τ ≤ u;u ≤ t}), t ≥ 0. By Theorem I.25 of Protter
(2004), N is a right continuous filtration; hence we can assume that G is completed
and satisfies the usual hypotheses.
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If λt > 0, for all t ≥ 0, then τ is a G-totally inaccessible stopping time. Furthermore,
by Proposition 5.1.3 of Bielecki and Rutkowski (2004), the process(

1{τ≤t} −
∫ τ∧t

0
λsds

)
t≥0

,

is a G-local martingale, see also Li and Rutkowski (2014).

Remark 7.4. As it is pointed out earlier, this framework could incorporate both features
of structural and reduced form credit risk modelling. For example, if τ = ∞ and
F (x, y) = R(x) for all x ≥ 0 and y ≥ 0 for a real-valued function R(x), then there is no
default present in (7.3) and so the claim is default-free. If F (x, y) = R(x) for all x ≥ 0,
y ≥ 0 and Zt < 1 then we are in the context of a reduced form model. If Zt = 1 for
all t ≥ 0 then τ =∞, N is the trivial filtration and so F = G. In this case, the model
reduces to a structural one. We provide examples of structural credit risk models in
Sections 7.4 and 7.5.

Moreover, we need an additional technical assumption which is crucial in some of the
jump models that we study.

Assumption 7.5. We assume that ∆Xτ = 0.

Under Assumption 7.5, we have ∆Xτ = ∆Yτ = ∆Y τ = 0. A sufficient condition for
this assumption to hold is that the G-stopping time τ avoids all the F-stopping times,
i.e. P(τ = ς) = 0, for all F-stopping times ς. Assumption 7.5 is automatically satisfied
for diffusion models.

7.2.1 Closed form formulas of some canonical decompositions

In this section for a given finite horizon 0 < S ≤ ∞ we obtain explicit forms of certain
canonical decompositions. These results are applied in the next section for finite time
horizons. A function f : [0, S]×R+

0 ×R+
0 → R is called C1,2,1([0, S]×R+

0 ×R+
0 ) if it is

C1,2,1 on [0, S] × R+ × R+ and the indicated derivatives admit continuous extensions
to [0, S] × R+

0 × R+
0 . Sometimes, we use the notation f ∈ C1,2,1([0, S] × R+

0 × R+
0 )

to show this. Other relevant notations are interpreted similarly. For instance, h ∈
C1,2,1([0, S]× R+

0 × R) indicates that h(y, x, y) is C1,2,1on [0, S]× R+ × R.

Given a function f ∈ C1,2,1([0, S]×R+
0 ×R+

0 ), we provide a closed-form formula of the
canonical decomposition of (Ut)t≥0, defined by Ut = f(t, Yt, Y t)1{τ>t}, 0 ≤ t ≤ S, in G;
we remind that Yt = eXt , where Xt = (Xt)t≥0 is the Lévy process (7.1). This canonical
decomposition is used in Section 7.3 to determine the hedging strategies using the LRM
approach. Let us first introduce some integrability conditions.

Assumption 7.6. Let 0 < S ≤ ∞ and f : [0, S] × R+
0 × R+

0 → R such that f ∈
C1,2,1([0, S] × R+

0 × R+
0 ). It is assumed that function f(t, x, y) satisfies the following
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integrability conditions∫ +∞

− ln(x
y

)
|(f(t, xez, y)− f(t, x, y)− zx∂f

∂x
(t, x, y))|ν(dz) <∞,

and ∫ − ln(x
y

)

−∞
|(f(t, xez, xez)− f(t, x, y)− zx∂f

∂x
(t, x, y))|ν(dz) <∞,

for all 0 ≤ t ≤ S, x ≥ 0 and y ≥ 0.

To start with, we obtain the canonical decomposition of the stopped process

(f(τ ∧ t, Yτ∧t, Y τ∧t))0≤t≤S , 0 < S ≤ ∞

under the augmented filtration G, which is analysed in the following Lemma.

Lemma 7.7. Assume that 0 ≤ S ≤ ∞ f : [0, S] × R+
0 × R+

0 → R and g : [0, S] ×
R+

0 × R+
0 → R+

0 are respectively C1,2,1([0, T ] × R+
0 × R+

0 ) and continuous functions
on their respective domains. Furthermore, suppose that the function f(t, x, y) satisfies
Assumption 7.6, for the given S, τ follows Assumption 7.2, and (Xt)t≥0 is a Lévy

process satisfying Assumptions 7.1 and 7.5. If the condition ∂f

∂y
(t, y, y) = 0, holds for

all t ∈ [0, T ], y ≥ 0, then the process(
f(t ∧ τ, Yt∧τ , Y t∧τ )− f(0, Y0, Y 0)−

∫ τ∧t

0
Lf(s, Ys, Y s)ds

)
t≥0

is a G-local martingale, where for all 0 ≤ t ≤ T , x ≥ 0, and y ≥ 0, the operator
Lf(t, x, y) is defined by

Lf(t, x, y) = ∂f

∂t
(t, x, y) + βx

∂f

∂x
(t, x, y) + σ2

2 (x2∂
2f

∂x2 (t, x, y) + x
∂f

∂x
(t, x, y))

+
∫ +∞

− ln(x
y

)
(f(t, xez, y)− f(t, x, y)− zx∂f

∂x
(t, x, y))ν(dz)

+
∫ − ln(x

y
)

−∞
(f(t, xez, xez)− f(t, x, y)− zx∂f

∂x
(t, x, y))ν(dz),

for β = E[X1 −X0].

Proof. Let the function h : [0, S]×R+
0 ×R

+
0 → R be defined by h(t, x, y) = f(t, ex−y, e−y).

Then h(t,Xt−Xt,−Xt) = f(t, Yt, Y t) and
∂h

∂x
(t, 0, y)+ ∂h

∂y
(t, 0, y) = 0. By Proposition

A.2, the following process

(
h(t,Xt −Xt,−Xt)− h(0, X0 −X0,−X0)−

∫ t

0
L∗h(s,Xs −Xs,−Xs)ds

)
t≥0

,

is an F-local martingale where the operator L∗ is defined in Proposition A.2. After
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simplifying L∗h, this leads to the F-local martingale (Mt)t≥0, defined by

Mt = f(t, Yt, Y t)− f(0, Y0, Y 0)−
∫ t

0
Lf(s, Ys, Y s)ds, 0 ≤ t ≤ S.

Following Assumption 7.5, since ∆Yτ = 0, based on Protter (2004), Chapter VI, The-
orem 15, the stopped process (Mτ∧t)t≥0 is a G-semimartingale, and the process(

Mτ∧t −
∫ τ∧t

0

1
Zs−

d 〈Z, f(·, Y, Y )〉Fs
)
t≥0

, 0 ≤ t ≤ S,

is a G-local martingale, where Zt = P(τ > t | Ft) = e−
∫ t

0 g(s,Ys,Y s)ds, 0 ≤ t ≤ T .
Moreover, the process (Zt)t≥0 is continuous and of finite variation and so [f(·, X· −
X ·,−X ·), Z·]Ft = 0, which implies that 〈f(·, X −X,−X), Z〉F = 0. Therefore the pro-
cess (Mτ∧t)t≥0 is a G-local martingale.

Proposition 7.8. Let (Xt)t≥0 satisfy Assumptions 7.1 and 7.5. We also assume that
f : [0, S]×R+

0 ×R
+
0 → R is a C1,2,1([0, S]×R+

0 ×R
+
0 ) function satisfying Assumption 7.6

for a given S and Zt < 1 for all 0 ≤ t ≤ S. If the default time τ satisfies Assumption
7.2, then the process (Ut)t≥0 defined by Ut = f(t, Yt, Y t)1{τ>t}, 0 ≤ t ≤ S admits the
following canonical decomposition:

Ut = U0 +
∫ τ∧t

0
Af(s, Ys, Y s)ds+Ot, 0 ≤ t ≤ S,

where O = (Ot)t≥0 is a G-local martingale, and the operator Af(t, x, y) is given by

Af(t, x, y) = Lf(t, x, y)− f(t, x, y)g(t, x, y).

Proof. It is easy to see that Ut = f(τ ∧ t, Yτ∧t, Y τ∧t) − f(τ, Yτ , Y τ )1{τ≤t}. By Lemma
7.7, the process (Mf

τ∧t)t≥0, where Mf
t , 0 ≤ t ≤ S is defined by

Mf
t = f(t, Yt, Y t)− f(0, Y0, Y 0)−

∫ t

0
Lf(s, Ys, Y s)ds, 0 ≤ t ≤ T,

is a G-local martingale. So the process (f(τ ∧ t, Yτ∧t, Y τ∧t))t≥0 can be rewritten as
f(τ ∧ t, Yτ∧t, Y τ∧t) = f(0, Y0, Y 0) + Mτ∧t + Λfτ∧t, where (Λfτ∧t)t≥0 is a G-predictable
process given by Λfτ∧t =

∫ τ∧t
0 Lf(s, Ys, Y s)ds, with t ∈ [0, S].

Next, we proceed with the process (f(τ, Yτ , Y τ )1{τ≤t})t≥0. Since functions f(t, x, y)
and g(t, x, y) are continuous, based on the Assumption 7.5, we have ∆f(τ, Yτ , Y τ ) = 0
and so ∫ t

0
∆f(s, Ys, Y s)d(1{τ≤s}) = ∆f(τ, Yτ , Y τ )1{τ≤t} = 0, 0 ≤ t ≤ S. (7.6)

Note that the process (M (1)
t )t≥0 defined by M

(1)
t = 1{τ≤t} −

∫ τ∧t
0 λsds, t ≥ 0, is a
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G-local martingale. So for 0 ≤ t ≤ S, we get

f(τ, Yτ , Y τ )1{τ≤t} =
∫ t

0
f(s, Ys, Y s)d(1{τ≤s}) =

∫ t

0
f(s, Ys− , Y s−)d(1{τ≤s})

=
∫ t

0
f(s, Ys− , Y s−)dM (1)

s +
∫ τ∧t

0
f(s, Ys, Y s)g(s, Ys, Y s)ds,

where the second equality is due to (7.6). The result is then proved by defining the
operator Af(t, x, y) := Lf(t, x, y)− f(t, x, y)g(t, x, y).

7.3 LRM hedging strategies of claims dependent on the
running infimum process

In this section, we determine semi-closed-form formulas for the LRM hedging strategies
of defaultable claim F (YT , Y T )1{τ>T}.

Assumption 7.9. Suppose that the Lévy measure ν satisfies:∫ ∞
−∞

(ez − z − 1) ν(dz) <∞, and
∫ ∞
−∞

(e2z − 2z − 1) ν(dz) <∞.

Remark 7.10. In case of the finite variation Lévy processes where
∫
R |z|ν(dz) < ∞

the conditions of the Assumption 7.9 are equivalent to
∫
|z|≤1(ez − 1)ν(dz) < ∞ and∫

|z|≤1(e2z − 1)ν(dz) <∞.

Lemma 7.11. Under Assumptions 7.1, 7.5, and 7.9, the stopped process (Yτ∧t)t≥0 is a
square integrable G-special semimartingale with the following canonical decomposition:

Y τ
t = X0 +MY

τ∧t + ΛYτ∧t, t ∈ [0, S], (7.7)

where ΛYt = α
∫ t

0 Ysds, α = µ + σ2

2 +
∫∞
−∞(ez − 1) ν(dz), and (MY

τ∧t)t≥0 is a G-local

martingale. The G-predictable quadratic variation process (〈Y τ 〉Gt )t≥0 is equal to

〈Y τ 〉Gt = γ

∫ τ∧t

0
Y 2
s ds, t ∈ [0, S], (7.8)

where γ = σ2 +
∫∞
−∞(e2z − 2ez + 1) ν(dz).

Proof. Let f1 : [0, T ]×R+
0 ×R+

0 → R be defined by f1(t, x, y) = x. Then f1(t, Yt, Y t) =
Yt, and by applying Lemma 7.7 for function f1(t, x, y), we obtain

Yτ∧t = Y0 +MY
τ∧t +

∫ τ∧t

0
Lf1(s, Ys, Y s)ds, 0 ≤ t ≤ T,

where (MY
τ∧t)t≥0 is a G-local martingale. The canonical decomposition of (Y τ

t )t≥0 is
then followed by simplifying Lf1(s, Ys, Y s), s ≥ 0, and letting ΛYt =

∫ t
0 Lf1(s, Ys, Y s)ds,

t ∈ [0, T ].
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Next, we calculate its G-predictable quadratic variation process (〈Xτ 〉Gt )t≥0. From the
definition of quadratic variation, we know that [Y τ ]Gt = Y 2

τ∧t − 2
∫ τ∧t

0 Ys−dYs. The
canonical decomposition of the integral term in the above equation is easily obtained
by noting that∫ τ∧t

0
Ys−dYs =

∫ τ∧t

0
Ys−dM

Y
s + α

∫ τ∧t

0
Y 2
s ds, 0 ≤ t ≤ T.

In order to obtain the decomposition of (Y 2
τ∧t)t≥0, let f2 := [0, T ] × R+

0 × R+
0 → R,

f2(t, x, y) = x2 then f2(t, Yt, Y t) = Y 2
t , t ≥ 0. By applying Lemma 7.7 one more time, it

follows that the process M̂t = (M̂τ∧t)t≥0 defined by M̂t = Y 2
t −

∫ t
0 Lf2(s, Ys, Y s)ds, t ≥

0, is a G-local martingale. So, we obtain

[Y τ ]Gt = M̂τ∧t +
∫ τ∧t

0
Lf2(s, Ys, Y s)ds− 2

∫ τ∧t

0
Ys−dM

Y
s − 2α

∫ τ∧t

0
Y 2
s ds, t ≥ 0,

hence [Y τ ]Gt is locally of integrable variation and its compensator, i.e. (〈Y τ 〉Gt )t≥0 is
given by

〈Y τ 〉Gt =
∫ τ∧t

0

(
Lf2(s, Ys, Y s)− 2αY 2

s

)
ds, t ∈ [0, T ].

The result is proved, once we simplify Lf2(t, Yt, Y t)− 2αY 2
t , t ∈ [0, T ].

Our semi-closed-form solutions of LRM hedging strategies are based on solutions of
PIDEs specified in the following Assumption.

Assumption 7.12. Suppose that f : [0, T ]×R+
0 ×R

+
0 → R (here S = T ) is a measurable

function such that f ∈ C1,2,1([0, T )× R+
0 × R+

0 ), and it is the solution of the following
PIDE

Af(t, x, y) = (AP (t, x, y)− xAf(t, x, y)− f(t, x, y)xα)
xγ

α, t ∈ [0, T ), x ≥ 0, y ≥ 0,

where α and γ are defined in Lemma 7.11, for (t, x, y) ∈ [0, T )× R+
0 × R+

0 , Af(t, x, y)
is defined by

Af(t, x, y) = Lf(t, x, y)− f(t, x, y)g(t, x, y),

the operator L is the same as in Lemma 7.7, P (t, x, y) = xf(t, x, y), AP (t, x, y) is
defined like Af(t, x, y), and the following conditions are satisfied: first for all t ≥ 0,
x ≥ 0, and y ≥ 0, we have ∂f

∂y (t, y, y) = 0, and second

f(t, x, y)→ F (x, y), as t→ T, point-wise for all x ≥ 0 and y ≥ 0,

where F (x, y) is introduced in Equation 7.3.

In the next Theorem we determine the canonical decomposition of (f(t ∧ T, Yt∧T ,
Y t∧T )1{τ>t∧T})t≥0 in G.

Before we start describing the theorem let us briefly describe some key points that will
be used in its proof.
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Let us recall ourselves that our model encompasses discontinuous payoffs, e.g. barrier
options whose barrier depends on the running infimum process. In fact, the terminal
condition F (x, y) in the PIDE introduced in Assumption 7.12 might not be even smooth.
However, the solution f(t, x, y) of the PIDE is defined on the entire domain [0, T ]. One
way to fix this problem is to apply Itô’s lemma for non-smooth functions for the jump
diffusion case. Extending our construction using non-smooth functions including local
times its left as a future work.

Alternatively, we may apply the same technique introduced in Okhrati (2019), Pro-
position 4.1. Their construction is made under a delayed information whose asset is
modelled by continuous semimartingale, whereas ours is made under a progressive fil-
tration expansion and when the underlying asset is a jump diffusion process, making
our calculations more perplexing. In our proof we use convergence results in uniformly
on compacts in probability (abbreviated as u.c.p.)1. For more details about u.c.p. con-
vergence, we refer to Protter (2004), Chapter II. One rather technical condition is that
for a sequence of local martingales {(Mn

t )t≥0}n=1,2... converges to a local martingale
(Mt)t≥0 in u.c.p., if and only if supn sups≤t |∆Ms| is locally integrable. Now, let us
state the following Theorem.

Theorem 7.13. Suppose that (Xt)t≥0 is given by Equation (7.1) and Zt < 1. Further-
more, let Assumptions 7.1, 7.2, 7.5 (with S = T ) and 7.9 be in force. We also assume
that f : [0, T ) × R+

0 × R+
0 → R is a continuous function, it satisfies Assumption 7.12,

and ([U,Xτ ]Gt )t≥0 belongs to Aloc. Then, we have the following decompositions

Ut∧T = f(t ∧ T, Yt∧T , Y t∧T )1{τ>t∧T} = U0 +
∫ t

0
θs−1{s<T}dY τ

s + Lt

= U0 +
∫ t

0
θs−1{s≤τ}1{s<T}dYs + Lt, P-a.s.,

where for 0 ≤ t < T , the process (θt)t≥0 is given by

θt = Kf(t, Yt, Y t)
γY 2

t

,

for (t, x, y) ∈ [0, T )× R+
0 × R+

0 , the operator K is defined by

Kf(t, x, y) = AP (t, x, y)− xAf(t, x, y)− f(t, x, y)xα,

P (t, x, y) = xf(t, x, y), the operator A is defined in Proposition 7.8, and the process
(Lt)t≥0 is a G-local martingale orthogonal to the local martingale part of (Y τ

t )t≥0 (i.e.
(MY

τ∧t)t≥0) in G.

In particular, for t = T we obtain

UT = F (YT , Y T )1{τ>T} = U0 +
∫ T

0
θs−1{s<T}dY τ

s + LT , (7.9)

1We say that a sequence of of processes (Xn
t )t≥0 converges to a process (Xt)t≥0 in u.c.p. if for each

t ≥ 0 sup0≤s≤t |Xn
s −Xs| converges to 0 in probability.
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where F (x, y) is the PIDE’s terminal condition,

Proof. Take an integer n ≥ 1 and let f (n) : [0, a(n)]× R+
0 × R+

0 → R be the restriction
of f on to the set [0, a(n)]× R+

0 × R+
0 , where a(n) = T − 1

n . From Proposition 7.8 for
S = a(n), we know that the processes O(n) = (O(n)

t )t≥0 and (O(1,n)
t )t≥0 with t ∈ [0, a(n)]

defined by

O
(n)
t = U

(n)
t − U (n)

0 −
∫ τ∧t

0
Af (n)(s, Ys, Y s)ds, U (n)(t, Yt, Y t) = f (n)(t, Yt, Y t)1{τ>t},

and

O
(1,n)
t = P (n)(t, Yt, Y t)1{τ>t} − P (n)(0, Y0, Y 0)−

∫ τ∧t

0
AP (n)(s, Ys, Y s)ds, t ∈ [0, a(n)],

are G-local martingale where P (n)(t, x, y) = xf (n)(t, x, y), 0 ≤ t ≤ a(n), x ≥ 0, and
y ≥ 0. We determine the KW decomposition of (O(n)

t )t≥0 with respect to (MY
t )0≤t≤a(n).

More precisely, we show that O(n)
t =

∫ t
0 θ

(n)
s dMY

s + L
(n)
s , with 0 ≤ t ≤ a(n), where

(θ(n)
t )t≥0 is a G-predictable process (that we determine in closed form) and (L(n)

t )t≥0,
where 0 ≤ t ≤ a(n), is a G-local martingale orthogonal to (MY

t )t≥0 with L(n)
0 = 0. Note

that since [O(n),MY ]Gt is locally of integrable variation, its compensator in G exists and
given by

〈
O(n),MY

〉G
t
with 0 ≤ t ≤ a(n). From the integration by parts formula, we

have

U
(n)
t Y τ

t = U
(n)
0 Y0 +

∫ t

0
U

(n)
s− dY

τ
s +

∫ t

0
Y τ
s−dU

(n)
s + [U (n), Y τ ]t, t ∈ [0, a(n)].

Let F (1,n)
t =

∫ τ∧t
0 Af (n)(s, Ys, Y s)ds and F

(2,n)
t =

∫ τ∧t
0 AP (n)(s, Ys, Y s)ds for 0 ≤ t ≤

a(n). From the above integration by parts formula, we obtain

[U (n), Y τ ]Gt −
(
F

(2,n)
t −

∫ τ∧t

0
U

(n)
s− Lf

(n)
1 (s, Ys, Y s)ds−

∫ τ∧t

0
Ys−dF

(1,n)
s

)
=
(
O

(1,n)
t −

∫ τ∧t

0
U

(n)
s− dM

Y
s −

∫ τ∧t

0
YsdO

(n)
s

)
, 0 ≤ t ≤ a(n).

(7.10)

The right-hand side of the last equation is locally of integrable variation by Lemma
3.11, Chapter I of Jacod and Shiryaev (2003). The bracket on the left hand side of
(7.10) is also locally of integrable variation by Lemma 3.10, Chapter 1, of Jacod and
Shiryaev (2003). Therefore, ([U (n), Y τ ]Gt )0≤t≤a(n) is locally of integrable variation. By
Theorem 2.30, ([U (n), Y τ ]Gt )0≤t≤a(n) admits a compensator in Gwhich is basically the
G-predictable quadratic covariation process of (O(n)

t )t≥0 and (MY
t )t≥0with t ∈ [0, a(n)]

and from (7.10) we have

〈
O(n),M

〉G
t

=
∫ τ∧t

0

(
AP (n)(s, Ys, Y s)−f (n)(s, Ys, Y s)Ysα−YsAf (n)(s, Ys, Y s)

)
ds.

From here, we observe that the measure defined by
〈
O

(n)
· ,MY

·

〉G
t
is absolutely continu-

ous with respect to the measure defined by 〈Y τ
· 〉

G
t with the Radon-Nikodym derivative
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(θ(n)
t )t≥0 given by θ(n)

t = Kf (n)(t,Yt,Y t)
γY 2
t

, 0 ≤ t ≤ a(n). Therefore, the KW decomposition

of (O(n)
t )t≥0 with respect to (MY

t )t≥0 is equal to

O
(n)
t =

∫ τ∧t

0
θ(n)
s dMY

s + L
(n)
τ∧t, t ∈ [0, a(n)], (7.11)

where (L(n)
τ∧t)t≥0 is orthogonal to (MY

τ∧t)t≥0.

On the other hand, by breaking down KW decomposition (7.11), we obtain

U
(n)
t −

∫ τ∧t

0
Af (n)(s, Ys, Y s) ds = U

(n)
0 +

∫ τ∧t

0
θ(n)
s dYs −

∫ τ∧t

0
αθ(n)

s Ysds+ L
(n)
t ,

with t ∈ [0, a(n)]. Consider the above decomposition at sn(t) = t∧a(n) for t ∈ [0, a(n)]
and n ≥ 1. Since f (n) is the restriction of f on [0, a(n)]× R+

0 × R+
0 , from the previous

decomposition, for t ∈ [0, a(n)], we obtain

f(sn(t), Ysn(t), Y sn(t))1{τ>sn(t)} −
∫ τ∧sn(t)

0
Af(s, Ys, Y s)ds =

U0 +
∫ τ∧sn(t)

0
θs dYs −

∫ τ∧sn(t)

0
αθsYsds+ L

(n)
sn(t).

However, since f(t, x, y) satisfies Assumption 7.12, we have Af(s, Ys, Y s) = αθsYs on
[0, τ ∧ sn(t)], hence we get

f(sn(t), Ysn(t), Y sn(t))1{τ>sn(t)} = U0 +
∫ τ∧sn(t)

0
θs dYs + L

(n)
sn(t), t ∈ [0, a(n)]. (7.12)

Next we take the limit as n → ∞. Note that (f(sn(t), Ysn(t), Y sn(t))1{τ>sn(t)})t≥0

converges to (f(t∧T, Yt∧T , Y t∧T )1{τ>t∧T})t≥0 in u.c.p. as n→∞. Since f(t, x, y) is not
necessarily partially differentiable on {T}×R+

0 ×R+
0 , the process (θt)t≥0 might not be

well defined when t = T . So in taking the limit of the integral term of (7.12), one should
consider this. Obviously, we have

∫ τ∧sn(t)
0 θsdYs =

∫ τ∧t
0 θs1{s<T}1{s≤T− 1

n
}dYs, and so

by part iii of Theorem 4.31, Chapter I, of Jacod and Shiryaev (2003), (
∫ τ∧sn(t)

0 θs1{s<T}
dYs)t≥0 converges to

∫ τ∧t
0 θs1{s<T}dYs in u.c.p. Therefore, L(n)

sn(·) converges to a process
(Lt)t≥0 in u.c.p.

We show that (Lt)t≥0 is a G-local martingale. Note that for all t ∈ [0, a(n)] we have

sup
u≤t
|∆L(n)

sn(u)| ≤ sup
u≤t
|∆f(u ∧ T, Yu∧T , Y u∧T )|+ sup

u≤t
|f(u ∧ T, Yu∧T , Y u∧T )|

+ sup
u≤t
|θu∧T ||∆Y τ

u∧T |.
(7.13)

The process (Lt)t≥0 is the limit of G-local martingales, and it can be shown that (Lt)t≥0

is a G-local martingale, if supn≥1 supu≤t |∆L
(n)
sn(u)| is locally integrable2. From (7.13), it

is enough to show that the right-hand side of this equation is locally integrable. Since

2This is a result from George Lowther’s blog (see Theorem 6 of https://almostsure.wordpress.
com/2009/12/24/local-martingales/).
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(f(t∧ T, Yt∧T , Y t∧T ))t≥0 admits a canonical decomposition and since local martingales
are locally integrable, then the second term on the right-hand side of (7.13) is locally
integrable.

The first term on the right-hand side of (7.13) is also locally integrable because a càdlàg
adapted process is locally integrable if and only if its jumps are locally integrable. Since
(θt)t≥0 is G-predictable, càglàd, it is locally bounded and hence we may assume that it
is uniformly bounded. Also, note that (Yt)t≥0 admits a canonical decomposition, and so
(Y τ
t )t≥0 and ∆Y τ

t are locally integrable. Therefore, supn≥1 supu≤t |∆L
(n)
sn(u)| is locally

integrable and hence (Lt)t≥0 is a local martingale. Therefore, by taking the limit of
(7.12) in u.c.p., we obtain

f(· ∧ T, Y·∧T , Y ·∧T )1{τ>·∧T} = U0 +
∫ ·∧T

0
θ1{s<T} dY τ + L·, (7.14)

where L is aG-local martingale. Note that L(n)
sn(t) = Lsn(t) = L

T− 1
n

t and so 〈L(n)
sn(·),M

Y 〉Gt =

〈L,MY 〉T−
1
n

t = 0, t ≥ 0 in G, because (L(n)
sn(t))t≥0 is orthogonal to (MY

t )t≥0. We also

note that 〈L,MY 〉T−
1
n increases to

〈
L,MY

〉G
·∧T

, hence
〈
L,MY

〉G
·T

= 0 and so (Lt)t≥0

is orthogonal to (MY
t )t≥0. This proves the first part of the theorem.

Finally, by letting t = T , and considering the boundary condition for the PIDE of the
Assumption 7.12 the next part of the theorem is proved.

Certain payoff functions such as binary are not continuous. The following result covers
also this case.

Theorem 7.14. Suppose that (Xt)t≥0 is given by (7.1), Zt < 1, and let Assumptions
7.1, 7.2, 7.5, and 7.9 are in force. We also assume that f : [0, T ]×R+

0 ×R
+
0 → R satisfies

Assumption 7.12 and ([U,Xτ ]Gt )t≥0 ∈ Aloc. Then we have the following decompositions

F (YT , Y T )1{τ>T} = f(0, X0) +
∫ T

0
θs−1{s<T}dY τ

s + LT , (7.15)

for 0 ≤ t < T and the process (θt)t≥0 is given by

θt = Kf(t, Yt, Y t)
γY 2

t

, t ∈ [0, T ),

for (t, x, y) ∈ [0, T )× R+
0 × R+

0 and the operator Kis given by

Kf(t, x, y) = AP (t, x, y)− xAf(t, x, y)− f(t, x, y)xα,

where P (t, x, y) = xf(t, x, y) the operator A is defined in Proposition 7.8 and the pro-
cess (Lt)t≥0 is a G-local martingale orthogonal to the martingale part of (Y τ

t )t≥0 (i.e.
(MY

t )t≥0) in G.

Proof. Define Tn = a(n) = T − 1
n , n ≥ 1. If we apply Theorem 7.13 for T := Tn we
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obtain

Ut∧Tn = f(t ∧ Tn, Yt∧Tn , Y t∧Tn)1{τ>t∧Tn} = U0 +
∫ t

0
θs−1{s≤Tn}dY

τ
s + L

(n)
t ,

P-a.s. where (L(n)
t )t≥0 is a G-local martingale orthogonal to the local martingale part

of (Y τ
t )t≥0 i.e. ((MY

t )t≥0) in G. Then by letting n→∞ and using similar argument as
in the proof of Theorem of 7.13, the result is proved.

Remark 7.15. Note that in the non-martingale case, i.e. when α is non-zero we have

θt = Af(t, Yt, Y t)
αYt

, t ∈ [0, T )

Corollary 7.16. Consider the same setup as Theorem 7.13, and in addition assume
that (Y τ

t )t≥0 is a G-square integrable martingale. Suppose that f : [0, T ]×R+
0 ×R

+
0 → R

satisfies the following PIDE:

Af(t, x, y) = 0, 0 ≤ t < T, x ≥ 0, y ≥ 0,

f(t, x, y)→ F (x, y) point-wise as t→ T , and ∂f

∂y
(t, y, y) = 0 for all 0 ≤ t < T , x ≥ 0,

and y ≥ 0. Then in this case we have

F (YT , Y T )1{τ>T} = f(0, X0, X0) +
∫ T

0

AP (s, Ys−, Y s−)
γY 2

s−
1{s<T}dY τ

s + LT ,

where (Lt)t≥0 is a G-local martingale orthogonal to (MY
τ∧t)t≥0 the operator A is intro-

duced in Proposition 7.8, and P (t, x, y) = xf(t, x, y).

Proof. Since (Y τ
t )t≥0 is a martingale, we have α = 0. Since f(t, x, y) is the solution of

the PIDE of Assumption 7.12 then Af(t, x, y) = 0, and the result easily follows from
Theorem 7.13.

The orthogonal decompositions (7.12) and (7.15) resemble that of FS decomposition, as
it admits the same format. Nevertheless, further integrability conditions are required
to turn it to an FS decomposition, and hence PLRM and LRM strategies. Note, that
we can introduce the spaces Θ and L2-strategies under filtration G. See also Definitions
2.24 and 3.34.

Suppose that we are given the payoff H = F (YT , Y T ) for which we have the orthogonal
decomposition

F (YT , Y T )1{τ>T} = U0 +
∫ T

0
θs−dY

τ
s + LT , (7.16)

as in (7.9) of Theorem 7.13. Following Proposition 3.40, the existence of the PLRM
hedging strategy Φ is equivalent to U0 ∈ L2(Ω,G0,P), θ ∈ Θ, (Lt)t≥0, L0 = 0 and
(MY

t )t≥0,MY
0 = 0 are square integrable martingales, and (Lt)t≥0 is strongly orthogonal

to (MY
t )t≥0, i.e. (LtMY

t )t≥0 is a G-martingale process.
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Equation (7.16) is known as the FS decomposition, and as pointed out its existence
is equivalent to the existence of PLRM hedging strategies. However, PLRM hedging
strategies might not be the same as LRM ones. For PLRM hedging strategies to
coincide with the LRM ones, certain conditions must hold for the first one being the SC
condition. We say that the SC condition holds, if there is a G-predictable process (ζt)t≥0

such that ΛYt =
∫ t

0 ζs d
〈
MY

〉G
s
, and the MVT process defined by K̂t =

∫ t
0 ζ

2
s d

〈
MY

〉G
s

is finite.

From Theorem 3.38 we know that LRM and PLRM hedging strategies coincide if there
conditions are met: i) the SC condition holds, ii)

〈
MY

〉G
t

is strictly increasing, iii)
E[K̂t] < ∞. In our model we have that ζt = a

γYt−
and K̂t = α2

γ t, which is uniformly
bounded for every t ∈ [0, T ]. Therefore all these conditions are satisfied if γ 6= 0.

So far we have determined the process (θt)≥0 representing the amount of money invested
in the risky asset (Y τ

t )t≥0 in G whose canonical decomposition is introduced in Lemma
7.11. By applying Proposition 4.1 of Okhrati et al. (2014) in G we can formulate the
processes: (ηt)t≥0, the value process (Vt)t≥0 of a hedging strategy φ = (θt, ηt) along
with its cost process (Ct)t≥0.

Remark 7.17. In the next section, we apply Theorem 7.13 to obtain semi-explicit solu-
tions for hedging strategies in our framework by specifying g(t, x, y) explicitly. For
instance, one can consider the following choices:

• The simplest example is when g(t, x, y) is constant.

• A company’s asset value that is far from its historical infimum should be less
prone to default for t ≥ 0, this rate should decrease as Yt − Y t increases, for
instance for t ∈ [0, T ] and α > 0 one can choose g(t, Yt, Y t) = e−a(Yt−Y t) or
g(t, Yt, Y t) = 1

Yt−Y t+α
. Alternatively, one can consider g(t, Yt, Y t) = e−aYt which

indicates that as the asset values decreases the default rate increases as well.

• Suppose that the default time is independent from the underlying asset and admit
a probability density function, g(t, x, y) = dτ (t)

1−Dτ (t) , t ∈ [0, T ], x ≥ 0 and y ≥ 0
where dτ andDτ are respectively the probability density and distribution function
of τ .

The results of this section are in the context of reduced form models as Zt < 1 for
all t ≥ 0. Consider a structural credit risk model in which g(t, x, y) is identically zero
which means that Zt = 1 for all t ≥ 0 and hence τ = ∞. In order to obtain similar
results for this structural model we cannot simply let g(t, x, y) = 0 and use Theorem
7.13 as this supposes the assumption Zt < 1 for all t ≥ 0. Nevertheless, starting from
Proposition 7.8 and following the same arguments of this section (which we skip it
here), we can obtain similar results. Since g(t, x, y) = 0 the operator A is the same
as L, no filtration is required i.e. F = G and the assumption ∆Xτ = 0 is no longer
required. For illustration purposes we provide the following main result for the case
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when g(t, x, y) = 0. The proof is omitted as it is almost identical to the proof of
Theorem 7.13.

Theorem 7.18. Suppose that (Xt)t≥0 is given by (7.1), g(t, x, y) = 0 for all t ∈ [0, T ],
x ≥ 0, y ≥ 0, and Assumptions 7.1 and 7.9 are in force. We also assume that f :
[0, T ] × R+

0 × R+
0 → R satisfies Assumption 7.12 and [X]Ft ∈ Aloc. Then we have the

following decomposition

F (YT , Y Y ) = f(0, Y0, Y 0) +
∫ T

0
θs−1{s<T}dYs + LT , (7.17)

where for 0 ≤ t < T the process (θt)t≥0 is given by

θt = K
∗f(t, Yt, Y t)
γY 2

t

, t ∈ [0, T )

for all (t, x, y) ∈ [0, T )× R+
0 × R+

0 , the operator K∗ is defined by

K∗f(t, x, y) = LP (t, x, y)− xLf(t, x, y)− xαf(t, x, y),

where P (t, x, y) = xf(t, x, y) and the process (Lt)t≥0 is an F-local martingale orthogonal
to the martingale part of (Yt)t≥0 (i.e.(Mt)t≥0) in F.

7.4 Diffusion models and running infimum process

In this section, we focus on underlying processes with continuous sample paths, i.e.
Yt = eX0+µt+σWt , µ ∈ R, σ > 0, t ∈ [0, T ]. Our main goal in this section is to
obtain, the FS decomposition with the understanding that under the hypotheses of
Proposition 4.1 of Okhrati et al. (2014), this orthogonal decomposition leads to the FS
decomposition and hence LRM hedging strategies.

Proposition 7.19. Let the underlying process (Yt)t≥0 follows Yt = eX0+µt+σWt, σ > 0,
t ≥ 0. Suppose that Assumption 7.2 holds, and there is a continuous function f :
[0, T ) × R+

0 × R+
0 → R such that for all (t, x, y) ∈ [0, T ) × R+

0 × R+
0 , f satisfies the

following PDE

∂f

∂t
(t, x, y) + σ2

2 x
2∂

2f

∂x2 (t, x, y)− f(t, x, y)g(t, x, y) = 0, (7.18)

together with the boundary conditions f(T, x, y) = F (x, y) and ∂f

∂y
(t, y, y) = 0, for all

(t, x, y) ∈ [0, T ]× R+
0 × R+

0 . Then, we obtain

F (YT , Y T )1{τ>T} = U0 +
∫ T

0
θs1{s≤τ}1{s<T}dYs + LT , (7.19)

where F (x, y) is the PIDE’s terminal condition, for all 0 ≤ t < T , (θt)t≥0 where
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(a) Payoff function f(T, x) = max(x−K, 0)
and f(0, x). (b) 3D representation of f(t, x) on a domain

[0, 1]× [0, 10].

Figure 7.1: Solution of the PDE (7.20) when K = 5 T = 1 σ = 0.2 on an interval
x ∈ [0, 10].

θt = ∂f(t, Yt, Y t)
∂x

, t ∈ [0, T ).

The process (Lt)t≥0 is a local martingale orthogonal to the local martingale part of
(Y τ
t )t≥0 i.e. (MY

τ∧t)t≥0. Furthermore, suppose that (MY
τ∧t)t≥0 and (Lt)t≥0 are square

integrable martingales, and (θt)t≥0 belongs to Θ space (see Definition 3.33) for all
0 ≤ t < T . Then the FS decomposition of the claim F (YT , Y T )1{τ>T} is given by
(7.19).

Proof. Since there are no jumps in (Yt)t≥0, then from Lemma 7.11, α = µ + σ2

2 and
γ = σ2, and all the integral terms disappears based on the Lévy measure ν disappear.
Then the PIDE of Assumption 7.12 reduces to the PDE (7.18). The result then follows
from Theorem 7.13.

In light of Proposition 7.19, we can discuss three cases:

• We start with the simplest case in which we want to hedge a claim H that only
depends on Y , for instanceH = max(YT−K, 0), K > 0. This claim is default free,
but it can be still analysed using the previous proposition by letting g(t, x, y) = 0,
F (x, y) = max(x −K, 0). Since g(t, x, y) = 0, 1{τ>t} = 1, for all t ∈ [0, T ], and
so the sigma-algebra N is trivial, hence F ∨ N = F. We are in fact in the setup
of Black-Scholes model, the three dimensional PDE reduces to two dimensional,
and the hedging strategies are obtained through solving the following PDE

∂f

∂t
(t, x) + σ2

2 x
2∂

2f

∂x2 (t, x) = 0, (7.20)

together with the boundary conditions f(T, x) = max(x−K, 0) for all x ≥ 0.

• Next, we consider a structural credit risk model in which the default time T is
defined by T = inf{t ≥ 0;Yt < b} where 0 < b < Y0 is a pre-specified constant
barrier. Note that T is a predictable time and does not admit an intensity.
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Suppose that we want to hedge the claim max(YT − K, 0)1{T >T}, K > 0. We
can use Proposition 7.19 for this case by letting g(t, x, y) = 0 (since there is no
exogenous default) and F (T, x, y) = max(x − K, 0)1{y≥b}. Then we can easily
observe that F (T, YT , Y T ) = max(YT −K, 0)1{T >T}, and the hedging strategies
are determined through solving the following PDE:

∂f

∂t
(t, x, y) + σ2

2 x
2∂

2f

∂x2 (t, x, y) = 0,

together with the boundary conditions f(t, x, y)→ F (x, y) = max(x−K, 0)1{y≥b}
as t→ T and ∂f

∂y
(t, y, y) = 0 for all t ∈ [0, T ), x ≥ 0, and y ≥ 0.

• We can study a reduced form credit risk model in which the default time in which
the default time τ follows Assumption 3.40 with an intensity g(t, Yt), t ≥ 0, and
assume that Zt < 1 for all t ≥ 0. Note that τ is totally inaccessible stopping time.
Suppose that we want to hedge the claim max(YT −K, 0)1{τ>T}, K > 0. We can
use Proposition 7.19 for this case by letting F (x, y) = max(x −K, 0). Then the
three dimensional PDE reduces to two dimensions, and the hedging strategies are
determined through solving the following PDE

∂f

∂t
(t, x) + σ2

2 x
2∂

2f

∂x2 (t, x)− f(t, x)g(t, x) = 0, 0 ≤ t ≤ T, x ≥ 0,

along with the boundary condition f(t, x, y)→ F (x, y) = max(x−K, 0) as → T ,
for all x ≥ 0.

• Finally, let us consider the most interesting case in which a claim is subject to both
internal and exogenous defaults (a double default model). More specifically, let
say that a payoff max(YT −K, 0) is paid if T > T and τ > T , where T = inf{t ≥
0;Yt < b} (for a fixed known barrier 0 < b < Y0) and τ satisfies Assumption 7.2,
in other words, we ant to hedge the defaultable claim max(YT −K, 0)1T >T 1τ>T .

We can use Proposition 7.19 for this case by letting F (T, x, y) = max(x −
K, 0)1{y≥b}. Then we can easily observe that F (T, YT , Y T ) = max(YT−K, 0)1{T >T},
and the hedging strategies are determined through solving the following PDE:

∂f

∂t
(t, x, y) + σ2

2 x
2∂

2f

∂x2 (t, x, y)− f(t, x, y)g(t, x, y) = 0, (7.21)

together with the boundary conditions f(T, x, y)→ F (x, y) = max(x−K, 0)1{y≥b}
as t→ T and ∂f

∂y
(t, y, y) = 0 for all t ∈ [0, T ), x ≥ 0, and y ≥ 0.

For numerical purposes, it might be easier to use the change of variable h(t, x, y) =
f(t, ex−y, e−y).Thus the PDE changes to

∂h

∂t
(t, x, y) + σ2

2 (∂
2h

∂x2 (t, x, y)− ∂h

∂x
(t, x, y))− h(t, x, y)g(t, ex−y, e−y) = 0, (7.22)

with the conditions ∂h
∂x(t, 0, y) + ∂h

∂y (t, 0, y) = 0 and h(t, x, y) → max(ex−y −
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K, 0)1{e−y≥b} as t→ T .

7.5 Jump-diffusion models and running infimum process

First, we consider a structural credit risk modelling under a jump-diffusion process.

Proposition 7.20. Let (Xt)t≥0 be given by Equation (7.1), and let Assumptions 7.1
and 7.2 hold. We also assume that f(t, x, y) is the solution of the following PIDE:

Lf(t, x, y) = (LP (t, x, y)− xLf(t, x, y)− f(t, x, y)xα)
xγ

α, t ∈ [0, T ], x ≥ 0, y ≥ 0,
(7.23)

where α and γ are given in Lemma 7.11, the operator Lf(t, x, y) is defined in Lemma
7.7, P (t, x, y) = xf(t, x, y), and the following conditions are satisfied for all x ≥ 0 and
y ≥ 0:

f(t, x, y)→ F (x, y) as t→ T, and ∂f

∂y
(t, y, y) = 0.

Moreover, we further assume that ([U, Y τ ]Gt )t≥0 ∈ Aloc. Then we obtain

F (YT , Y T ) = U0 +
∫ T

0
θs−1{s<T}dYs + LT ,

where F (x, y) is the PIDE’s terminal condition, the process (θt)t≥0 θt = B(t, Yt, Y t),
where B(t, x, y) is given by

σ2 ∂f
∂x (t, x, y)
γ

+ 1
2

(σ2 − 2α+ 2β)f(t, x, y)
γx

+

∫+∞
− ln(x

y
)(ezf(t, xez, y)− zf(t, x, y)− f(t, xez, y))ν(dz)

γx

+
∫− ln(x

y
)

−∞ (ezf(t, xez, xez)− zf(t, x, y)− f(t, xez, xez))ν(dz)
γx

,

(7.24)

and the process (Lt)t≥0 is an F-local martingale orthogonal to the martingale part of
(Yt)t≥0 in F.

Proof. Since the claim F (YT , Y T ) is default-free, we can assume that g(t, x, y) = 0,
for all (t, x, y) ∈ R+

0 × R+
0 × R+

0 which means that τ = ∞ and so 1{τ>t} = 1 for all
t ∈ [0, T ). Also, the two operators A and L coincide and so f(t, x, y) satisfies the PIDE
in Assumption 7.12. The result is then a direct application of Theorem 7.13.

Remark 7.21. In the previous proposition the assumption ∆Xτ = 0 is not required.
Note that how the strategies (7.24) in the jump diffusion model differ from those of
diffusion models in Proposition 7.19.

Example 7.22. Suppose that we are in the setup of the previous proposition, and let
ζ = inf{t : Yt < b} where 0 < b < Y0 is a fixed constant. Note that ζ is an F-stopping
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time, but it is not necessarily an F-predictable or an F-totally inaccessible stopping
time. Suppose that for example we want to find LRM hedging strategies of the claim
max(YT −K, 0)1{ζ>T}, K > 0. Since {ζ > T} = {Y t ≥ b}, these hedging strategies can
be found by using the previous proposition and just adjusting the terminal condition,
i.e. F (x, y) = max(x−K, 0)1{y≥b}.

This has improved the result of Okhrati et al. (2014) in two main folds, first, the
underlying process can now be an exponential jump-diffusion process rather than a
finite variation Lévy process, second the internal default time ζ does not need to be
totally inaccessible, and hence it does not need to admit an intensity.

Obtaining these hedging strategies, would of course depend on solving the PIDE in
(7.23). For instance, if (Yt)t≥0 is an F-local martingale, then α = 0, and the PIDE
(7.23) reduces to

∂f

∂t
(t, x, y) + x(β + σ2

2 )∂f
∂x

(t, x, y) + σ2

2 x
2∂

2f

∂x2 (t, x, y)

+
∫ +∞

− ln(x
y

)
(f(t, xez, y)− f(t, x, y)− zx∂f

∂x
(t, x, y))ν(dz)

+
∫ − ln(x

y
)

−∞
(f(t, xez, xez)− f(t, x, y)− zx∂f

∂x
(t, x, y))ν(dz) = 0

(7.25)

with the condition ∂f

∂y
(t, y, y) = 0, for all y ≥ 0, and f(t, x, y) → max(x−K, 0)1{y≥b}

as t→ T for all x ≥ 0 and y ≥ 0.

We also point out that if the payoff to hedge does not depend on (Y t)t≥0, for instance
max(YT −K, 0), then the three dimensional PIDE reduces to two dimension, and the
boundary condition ∂f

∂y
(t, y, y) = 0 is redundant. More precisely, in this case, we have

b = 0 and ζ =∞, hence 1{y≥b} = 1.

Furthermore, for numerical implementations it might be easier to use the change of
variable h(t, x, y) = f(t, ex−y, e−y). Then the PIDE (7.25) can be further simplified to:

∂h

∂t
(t, x, y) + (β + σ2

2 )∂h
∂x

(t, x, y) + σ2

2
∂2h(t, x, y)

∂x2

+
∫ +∞

−x
(h(t, x+ z, y)− h(t, x, y)− z ∂h

∂x
(t, x, y))ν(dz)

+
∫ −x
−∞

(h(t, x+ z, x+ z)− h(t, x, y)− z ∂h
∂x

(t, x, y))ν(dz) = 0,

(7.26)

with the conditions ∂h∂x(t, 0, y)+ ∂h
∂y (t, 0, y) = 0 and h(t, x, y)→ max(ex−y−K, 0)1{e−y≥b}

as t→ T .

The Example bellow provides specific forms for the hazard rate function g(t, x, y).

Example 7.23. Let the process (Xt)t≥0 be given by Equation (7.1), and let Assump-
tions 7.1 and 7.9 hold. Suppose that the default time is independent of the underlying
asset. We also assume that f(t, x, y) is the solution of the PIDE given in Assump-
tion 7.12 where g(t, x, y) is for example can be defined by either one of a constant,

122



g(t, x, y) = − −D
′
τ (t)

1−Dτ (t) , g(t, Yt, Y t) = e−a(Yt−Y t), and g(t, Yt, Y t) = 1
Yt − Y t + a

where

a > 0 is a constant. Moreover, we further assume that ([U, Y τ ]Gt )t≥0 is of locally integ-
rable variation. Suppose that F (x, y) = max(x−K, 0)1{y≥b}. A similar interpretation
of the diffusion case shows that in this example, the claim is subject to types of default,
one indigenous and the other exogenous. Then for all 0 ≤ t ≤ T , we have the following
decomposition

F (YT , Y T )1{τ>T} = U0 +
∫ T

0
θs−1{s≤τ}1{s<T}dYs + LT ,

where F (x, y) is the PIDE’s terminal condition, the process (θt)t≥0, θt = B(t, Yt, Y t) ,
where B(t, x, y) is given by (7.24). Moreover, the process (Lt)t≥0 is orthogonal to the
martingale part of (Y τ

t )t≥0 i.e. (MY
τ∧t)t≥0.

For example, if (Yt)t≥0 is an F-martingale, then through the transformation h(t, x, y) =
f(t, ex−y, e−y), the PIDE of Assumption 7.12 reduces to

∂h

∂t
(t, x, y) + (β + σ2

2 )∂h
∂x

(t, x, y) + σ2

2
∂2h

∂x2 (t, x, y)− h(t, x, y)g(t, ex−y, e−y)

+
∫ ∞
−x

(h(t, z + x, y)− h(t, x, y)− z ∂h
∂x

(t, x, y))ν(dz)

+
∫ −x
−∞

(h(t, z + x, x+ z)− h(t, x, y)− z ∂h
∂x

(t, x, y)) ν(dz) = 0,

with the conditions ∂h
∂x(t, 0, y) + ∂h

∂y (t, 0, y) = 0 and for h(t, x, y) → max(ex−y −
K, 0)1{e−y≥b} for t→ T .
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Chapter 8

Numerical results

8.1 Introduction

In this chapter we provide the simulation results for the PIDE’s and the PDE along with
the hedging strategies given in Chapters 4, 6 and 7. The discretisation of the PIDEs is
accomplished via finite differences. The discretisation of the integral terms follows the
methodology proposed by Cont and Voltchkova (2005) by introducing the trapezoidal
quadrature rule. For the models introduced in Chapters 4 and 6, the absence of the
Brownian motion in our models leads to the fact that the PIDE are hyperbolic. To treat
their PDE part we apply the Lax-Wendroff approach. The majority of the simulations
are made in Matlab R-2017 on a personal computer with Intel i7-4510U 2.6 GHz and
8 GB RAM.

The chapter is organized as follows. We start by introducing the finite differences for
the advection equation. This is described in Section 8.2 and we compare the main
methods used to descritize the advection PDE. In Section 8.3, we solve numerically the
PIDE introduced in Chapter 4. We also simulate a trajectory of the optimal hedging
strategy. Moreover, in Section 8.4, we descritize the PIDE proposed in Chapter 6
along with a sample path of the optimal hedging strategy. Finally, in Section 8.5, we
descritize the corresponding parabolic PDE and PIDE introduced in Chapter 7 through
finite differences.

8.2 Finite differences for advection equation

This section is focused on the investigation of the finite differences for hyperbolic PDEs.
We begin by providing some examples of hyperbolic PDEs.
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Hyperbolic PDEs

• Advection equation (or one way wave equation)

∂f

∂t
(t, x) + µ

∂f

∂x
(t, x) = 0,

f(0, x) = F (x), x ∈ R
(8.1)

• Wave equation

∂2f

∂t2
(t, x) = µ

∂2f

∂x2 ,

f(0, x) = F (x), x ∈ R.

Emphasis will be placed on the discretisation of the advection equation (8.1) using
finite differences. This is the simplest hyperbolic PDE and its analytical solution given
the initial data is

f(t, x) = F (x− µt).

8.2.1 Various types of finite differences for the advection equation

Central differences

A typical approach that someone may consider to descritize the advection equation is
to apply central differences in space and forward differences in time. That is

∂f

∂x
= f(t, x+ dx)− f(t, x− dx)

2dx +O(dx2), (8.2)

and for the time discretisation by taking explicit scheme

∂f

∂t
(t, x) = f(t+ dt, x)− f(t, x)

dt
+O(dt). (8.3)

If we consider the approximated numerical solution given as fni = f(tn, xi), where
xi = x0 + idx and tn = ndt then plugging (8.2) and (8.3) into (8.1) leads to the
following scheme

fn+1
i = fni − µ

dt

2dx(fni+1 − fni−1). (8.4)

However, as we will later see, in an illustrated application, the above scheme is un-
stable as spurious oscillations occurred. This can be verified by investigating the Von
Neumann stability analysis. Consider k = µ dtdx and assume that the solution has the
form fni = gn(ξ)eνidxξ, where ν =

√
−1. In order for the above approach to be stable,

we have to find appropriate conditions such that |g| < 1. If we substitute the solution
into (8.4) we get

gn+1(ξ)eνidxξ = gn(ξ)eνidxξ − k

2
(
gn(ξ)eν(i+1)dxξ − gn(ξ)eν(i−1)dxξ

)
.
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Figure 8.1: Schematic representation of the Lax-Friedrich.

If we divide by gn(ξ)eνidxξ, it yields

g(ξ) = 1− k

2 (eνdxξ − e−νdxξ) = 1− νk sin(dxξ).

By introducing the variable θ = ξdx gives g(θ) = 1−νk sin(θ) and |g(θ)| =
√

1 + k2 sin(θ)
≥ 1 for all k and θ, which proves that the approach is unconditionally unstable. Thus,
alternative approaches should be considered. There are various numerical methods for
hyperbolic PDEs. We begin describing the simplest one, the Lax Friedrich approach.

Lax-Friedrichs scheme

In the above approach, given in (8.4), if we substitute fni by taking its average using
fni+1 and fni−1 then we get

fn+1
i = 1

2(fni+1 + fni−1)− µ dt

2dx(fni+1 − fni−1),

or in a matrix form fn+1 = Afn

A =


0 a 0 0

b 0 . . . 0

0 . . . . . . a

0 0 b 0

 ,

where a = 1
2 − µ

dt
2dx and b = 1

2 + µ dt
2dx . The method is stable with error convergence

O(dt + dx). Again, by applying the Von Neumann stability analysis, doing the same
calculations as above, it yields

g(ξ) = 1
2(eνidxξ + eνidxξ)− k

2 (eνidxξ − eνidxξ)

= cos(dxξ)− 2k sin(dxξ).

After some algebra we get that |g(θ)| ≤ 1, θ = ξdx, if and only if 1 − (µdtdx )2 ≥ 0,
which leads to |µ| dtdx ≤ 1. This is called Courant-Friedrichs and Lewy condition (CFL)
and it is crucial to be valid, otherwise the scheme is unstable. This is the significant
difference in the discretisation between the hyperbolic and parabolic partial differential
equations.This means that in the hyperbolic equations the time-step dt should be at
least smaller than the space-step dx. It is worth mentioning that due to its slow
accuracy, the above approach is not commonly used.
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Figure 8.2: Schematic representation of the Upwind scheme for µ < 0 and µ > 0.

Upwind method

One main reason why the central differences fail is that at each time n+1 fn+1
i depends

on fni+1 and fni−1. One way to fix this, is to take the space derivatives with respect to
where the flow of information comes. In other words, you examine if the parameter µ is
positive or negative. If µ > 0 then the space discretisation is made through backward
differences, otherwise we use forward ones. Having this in our mind, the upwind method
is defined as

fn+1
i − fni
dt

=

−
µ
dx(fni − fni−1), if µ > 0

− µ
dx(fni+1 − fni ), if µ ≤0

. (8.5)

The method is first order in time and space stable O(dt, dx). In order the method to
be stable, once again the CFL condition needs to be satisfied.

Lax-Wendroff scheme

i− 1 i i+ 1

n+ 1

n

Figure 8.3: Schematic representation of the Lax-Wendroff scheme.

The Lax-Wendroff scheme is an essential extension of the Lax-Friedrich approach. This
method is very useful when the initial data F (x) is a continuous function. Applying
Taylor expansion of f(t+ dt, x) leads to

f(t+ dt, x) = f(t, x) + dt
∂f

∂t
(t, x) + dt2

2
∂2f

∂t2
(t, x). (8.6)

Based on (8.1) we can see that

∂f

∂t
= −µ∂f

∂x
(t, x). (8.7)

∂2f

∂t2
= −µ ∂

2f

∂x∂t
(t, x) = µ2∂

2f

∂x2 (t, x). (8.8)
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Plugging (8.7), (8.8) into (8.6), it yields

f(t+ dt, x) = f(t, x)− µdt∂f
∂x

(t, x) + µ2dt
2

2
∂2f

∂x2 (t, x).

Then if we apply finite differences in space and time we get

fn+1
i = fni − µdt

fni+1 − fni−1
2dx + µ2dt

2

2 (
fni+1 − 2fni + fni−1

dx2 ). (8.9)

The extra term µ2 dt2
2
∂2f
∂x2 is an artificial diffusion, and it cancels any oscillations made

by the central differences. It is obvious that the approach is a second order accurate
in space and time O(dt2, dx2). We can write (8.9) in a matrix form fn+1 = Afn, for a
matrix A

A =


a b 0 0

c a
. . . 0

0 . . . . . . b

0 0 c a

 , (8.10)

where a = −µ2 dt2
dx2 , b = − µ

2dx + µ2 dt2

2dx2 and c = µ
2dx + µ2 dt2

2dx2 . Regarding the Von
Neumann stability analysis, once again fni = gn(ξ)eνidxξ and plugging it to (8.9) then

g(θ) = 1− k

2 (eνdxξ − e−νdxξ) + k2

2 (e−kdxξ − 2 + ekdxξ)

= 1− kν sin(θ)− 2k2 sin2(θ2),

and
|g(θ)|2 = 1− 4k2(1− k2) sin4(θ2),

which implies g(θ) < 1 if and only if the CFL condition is satisfied. Alternate methods
such as the Leap-frog approach, or the Beam-Warming method can be found in Li et al.
(2017), Chapter 3, and LeVeque (2007), Chapter 10.

8.2.2 Numerical example

Example 8.1. We consider the following PDE

∂f

∂x
(t, x) + ∂f

∂x
(t, x) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (8.11)

with initial condition be a Gaussian peak given by

f(0, x) = F (x) = exp(−100(x− 0.5)2). (8.12)

Figure 8.4 shows the numerical results for the three methods discussed in the previous
section. Figure 8.4a provides the results for the Lax-Wendroff approach and the upwind,
compared with the analytic solution f(t, x) = exp(−100(x − t − 0.5)2). Figure 8.4b
gives the central differences scheme. The grid spacing is dt = 0.005 and the time step
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dx = 0.01. Note that CFL condition is satisfied since the Courant number dt
dx = 0.5.

From Figure 8.4b, we can see that the central differences are unstable as expected.
Moreover, from Figure 8.4c, we observe that the Lax-Wendroff approach is more ac-
curate than the upwind scheme.
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(8.11), at time t = 0.46.
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Figure 8.4: Numerical results for the advection equation given by (8.11), with dt = 0.005
and dx = 0.01.

8.3 Finite differences for the advection PIDE

The PIDEs can be treated using finite differences or finite elements method. In finite
differences, we descritize the PIDE on an equidistant grid on an appropriate domain.
The integral terms can be approximated either through Fast Fourier transforms (FFT),
see Carr and Mayo (2007), Andersen and Andreasen (2000) or using quadrature meth-
ods such as trapezoidal rule, see Cont and Voltchkova (2005). On the other hand, in
finite elements instead of discretizing the PIDE directly, we have first to choose an
appropriate Galerkin basis like wavelet functions or regular triangulations. The dis-
cretisation of PIDEs using wavelet basis has been studied in Matache et al. (2005) and
Hilber et al. (2013) Chapter 12. For a comprehensive review and comparison of both
approaches we refer to Hilber et al. (2009).

In this section, we descritize the model in Chapter 4 through finite differences. The in-
tegral term is approximated through trapezoidal rule. Since the PIDE is hyperbolic, we
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use the Lax-Wendroff approach. Application of the Lax-Wendroff approach in PIDEs
has already been investigated in Almendral and Oosterlee (2007), where they found the
price of an American option under the variance gamma process (infinite activity). We
focus on the martingale case i.e. β = 0. In this case we have the following PIDE

Af(t, x) =∂f

∂t
(t, x) + µ

∂f

∂x
(t, x)−

∫
(−∞,−x]

f(t, x+ z)ν(dz)

+
∫
R

(f(t, x+ z)− f(t, x))ν(dz), 0 ≤ t ≤ T, and x ∈ R,
(8.13)

with terminal condition f(T, x) = F (x) = 1.

Assuming that ν(R) < ∞ (finite activity), then the Lévy measure admits a density
h(z), ν(dz) = λh(z)dz, where h(z) = δeδz1{z≤0}. We rewrite (8.13) as

∂f

∂t
= Lf(t, x), t ∈ [0, T ], x ∈ R,

where Lf(t, x) is the infinitesimal operator given as

Lf(t, x) =− µ∂f
∂x

(t, x) + λ

∫ −x
−∞

f(t, x+ z)h(z)dz

− λ
∫
R
f(t, x+ z)h(z)dz + λf(t, x).

(8.14)

Following Cont and Voltchkova (2005), in order to solve the PIDE we have to apply an
appropriate boundary condition f(t, x) = g(t, x), ∀x /∈ Ω.

As in Example 4.19, we assume that the underlying asset (Xt)t≥0 has the form

Xt = u+ µt+
Nt∑
j=1

Yj µ, u > 0,

where Yj are i.i.d. random variables such that −Yj ∼ exponential(δ). Note that in
order (Xt)t≥0 to be a martingale, we take µ = λ

δ .

Suppose that Ω = [xmin, xxmax], and t = [0, T ] then the localized problem is

∂f

∂t
(t, x) = Lf(t, x) on [0, T ]× Ω, Ω = [xmin, xmax]

f(T, x) = 1,

f(t, x) = g(t, x), ∀x /∈ Ω.

8.3.1 Truncation of integrals

We can truncate the integral terms by replacing the infinite domain to a proper bounded
domain. Thus, we have to find appropriate bounds BL and BR for the integrals. These
bounds correspond to truncating the large jumps of the Lévy process (Xt)t≥0. Since
Yj follows negative exponential distribution with parameter δ and mean 1

δ , we can
estimate BL and BR. The Lévy density can be written as ν(dz) = λh(z)dz, where
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h(z) = δ exp(δz)1{z≤0}. Having this result then clearly BR = 0, since the support of
this distribution is (−∞, 0]. Now we proceed to find the lower bound BL. Following
Cont and Voltchkova (2005), if the given function f(t, x) satisfies the Lipschitz condition

|f(t, x1)− f(t, x2)| ≤ L |x1 − x2| ,

then ∣∣∣∣∫ 0

−∞
(f(x+ z)− f(z))h(z)dz −

∫ 0

BL

(f(x+ z)− f(z))h(z)dz
∣∣∣∣ < ε,

which implies

≤
∣∣∣∣∫ 0

−∞
(x+ z − x)h(z)dz −

∫ 0

BL

(x+ z − x)dz
∣∣∣∣

≤ L
∫ BL

−∞
|z|h(z)dz = L

∫ BL

−∞
|z|δeδzdz

= −δe−BL
( 1
δ2 + BL

δ

)
≤ eBL(1−δ) = ε.

Thus, by solving with respect to BL we obtain BL = − log(ε)
(1−δ) . We choose KL such that

BL ⊆ (KL − 1
2)dx where ε = 10−6.

8.3.2 Finite differences

We proceed now to the numerical discretisation with finite differences. Let fni =
f(tn, xi), where tn = ndt and xi = xmin + idx, i = 0, 1 . . . Nx, for dt = T

Nt
and

dx = (xmax−xmin)
Nx−1 . We split the operator L (8.14) into L = D + J , where D is the

space derivative ∂f
∂x and J is the operator for the jump integrals. Since the PIDE is

hyperbolic, we apply the Lax-Wendroff approach for the operator.

(Df)i = −µfi+1 − fi−1
2dx + µ2dt

fi+1 − 2fi + fi−1
2dx2 , µ > 0,

or in a matrix form, assuming that Dfn = A, whose form has already been introduced
in (8.10). Regarding the jump terms J , based on Cont and Voltchkova (2005), we
apply the trapezoidal quadrature rule with the same space step dx.

(J f)i = −λ
∫ 0

−∞
f(t, xi + z)h(z)dz + λ

∫ −xi
−∞

f(t, xi + z)h(z)dz + λf(t, x)

= −λJ1f(t, xi) + λJ2f(t, xi) + λf(t, xi).
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It remains to calculate the two integrals. For the first integral following Cont and
Voltchkova (2005), it yields

J1f(t, xi) =
∫ 0

−∞
f(t, xi + z)h(z)dz ≈

∫ 0

BL

f(t, xi + z)h(z)dz

≈
k0∑

k=KL

fni+khk,

where k0 is the index representing the value at x = 0 and the cumulative density
function (PDF) is approximated by

hk ≈
∫ (k+ 1

2 )dx

(k− 1
2 )dx

h(z)dz = dx

2
(
h(k − 1

2dx) + h(k + 1
2dx)

)
.

For the second integral, we obtain

J f2(t, x) =
∫ −x
−∞

f(t, x+ z)h(z)dz =
∫ 0

−∞
f(t, x+ z)1(−∞,−x]h(z)dz

≈
∫ 0

BL

f(t, xi + z)1[BL,−xi]h(z)dz ≈
k0∑

k=KL

fi+k1[KL,−xi]hk.

Calculating the operator (J f)i is the most expensive part in our discretisation. Regard-
ing the points which lie outside the domain, we use the boundary condition f(tn, xi) =
g(tn, xi) = 1 for all xi /∈ Ω.

For the time discretisation we apply the implicit-explicit scheme, see Cont and Voltch-
kova (2005), with the following form

fn+1 − fn

dt
= Dfn+1 + J fn, (8.15)

after rearranging the terms it yields

(I − dtD)fn+1 = (I + dtJ )fn, (8.16)

fn |n=T = 1.

If we set B = (I + dtJ )fn and b = (I − dtD)fn+1, where fn, fn+1 are time depend-
ent vectors, then we have to solve a linear system Bf̄ = b for f̄ = (f1, f2, . . . , fNt).
Regarding the convergence and stability of the above approach, we refer to Cont and
Voltchkova (2005).

The linear system introduced in (8.16) can be solved using iterative methods. The
main idea of iterative methods, is to find a proper sequence of solutions such that
limu→∞ f̄

(u) → f̄ . There are various iterative methods for solving linear systems.
Typical examples are the Gauss-Seidel, the Jacobi and the successive over-relaxation
(SOR) methods. In this thesis, for the linear system generated by (8.16), we use the
generalized minimum residual method (GMRES). For more details about the algorithm
and its convergence, we refer to LeVeque (2007), Chapter 4.
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(a) Analytic solution of
f(0, x).

(b) Analytic solution of f(t, x).

Figure 8.5: Analytic solution of f(t, x) for the martingale case with parameters T = 2,
µ = 0.1, λ = 10 and δ = 100.

The implicit explicit scheme given in (8.15) provides an error of the form O(dt, dx2).
In Almendral and Oosterlee (2007) to improve the accuracy, they proposed a second
order Backward Difference formula (BDF2) with an error O(dt2, dx2) as follows

3
2f

n+1 − 2fn + 1
2f

n−1

dt
= Dfn+1 + J (2fn − fn−1).

We proceed providing the numerical results for the aforementioned PIDE. From the
Feynman-Kac formula it is known that the solution of the PIDE (8.13) has the form

f(t, x) = 1− P (τ ≤ T − t | X0 = u) .

The above formula is valid for any distribution of jumps. For the case when the jumps
of (Xt)t≥0 are exponentially distributed (also negative exponential), then f(t, x) has
an analytic form. The solution can be found in Rolski et al. (2008), Theorem 5.6.3.
Figure 8.5, provides the graphs for f(0, x) and f(t, x) respectively, using Mathematica.

To validate our numerical results, we focus on the value f(0, 0). Using the parameters
T = 2, µ = 0.1, λ = 10 and δ = 100, then analytic solution at time t = 0 has value
f(0, 0) = 0.125761, whose value is represented by a red dot on Figure 8.5a.

We continue with the numerical results using finite differences. Figure 8.6 displays the
solution obtained by the finite differences, on a domain x ∈ [−0.5, 0.5], t ∈ [0, 2], when
the Lévy density follows negative exponential distribution.

Figure 8.7 simulates the error for the numerical value f(t = 0, x = 0), given that the
analytic value is 0.125761.
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Figure 8.6: Numerical solution of f(t, x), for the martingale case, using finite differences,
with parameters T = 2, λ = 10, δ = 100, µ = 0.1 and Nx = Nt = 500.
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Figure 8.7: Error of the numerical solution given the analytical value f(0, 0) = 0.125761
for various space steps with dt = dx
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8.3.3 Simulation results for the local risk minimization

In this section, we simulate the hedging strategy φt = (θt, ηt)t≥0. Let us remind
ourselves that the optimal number of shares is given by

θt = Kf(t,Xt−)∫
R z

2ν(dz) 1{τ>t}, t ∈ [0, T ]. (8.17)

Since the underlying asset is a spectrally negative process with exponential Lévy density
k(z) defined above, then from Example 4.19, we know that the optimal number of shares
is

θt =
δ2 ∫

[−Xt−,0) f(t,Xt− + z)h(z)dz + δf(t,Xt−)
2 1{τ≥t}, t ∈ [0, T ],

the martingale (Lt)t≥0 which is the hedging error is

Lt = f(t,Xt)1{τ>t} − f(0, X0)−
∫ t

0
θsdXs, (8.18)

the value process is given by

Vt = f(0, X0) +
∫ t

0
θsdXs, t ∈ [0, T ], (8.19)
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the amount of money invested in the non-risky asset is given by

nt = Vt − θtXt, t ∈ [0, T ], (8.20)

and the cost process
Ct = f(0, X0) + Lt, t ∈ [0, T ]. (8.21)

Since we have already derived the numerical solution of f(t, x), it remains to simulate a
sample path of the underlying asset. For this reason, we use Monte-Carlo methods, see
Cont and Tankov (2004), Chapter 8. Then the process (f(t,Xt))t≥0 can be obtained
through interpolation.

In Figure 8.8, a path of the underlying asset (Xt)t≥0 along with the optimal number
of shares (θt)t≥0 invested in the underlying asset are shown. The default time is τ =
0.9820, and the probability of default, after 1000 iterations, is P(τ ≤ 2) = 1 − P(τ >
2) = 0.729. Figure 8.9 displays a sample path of the cost process (Ct)t≥0, the value
process (Vt)t≥0, the amount of money invested in the non-risky asset (ηt)t≥0, the process
(Lt)t≥0, which orthogonal to the martingale part of (Xt)t≥0 and the process (Kt)t≥0,
Kt =

∫ t
0 θsdXs, which is used to simulate L. Note that all these processes remain

constant after the default.

(a) The underlying asset (Xt)t≥0.
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(b) The number of shares (θt)t≥0.

Figure 8.8: The underlying asset Xt, and the number of shares θt, with default time
τ = 0.9820 and maturity time T = 2.

8.4 Finite differences for a 3D PIDE

We proceed to the discretisation of the PIDE given in Chapter 6, for the martingale
case. We remind the reader that we need to solve numerically the following PIDE

∂f

∂t
(t, x, y) + µ

∂f

∂x
(t, x, y) + µf(t, 0, y)

+λ

∫ +∞

0
(f(t, x+ z, y)− f(t, x, y))h(z)dz−λ

∫ ∞
0

f(t, x, y)h(x+ z)dz = 0, t ∈ [0, T ],

(8.22)
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(c) The cost process (Ct)t≥0.
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(d) The process (Kt)t≥0, Kt =∫ t
0 θsdXs.
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Figure 8.9: Simulation results for the non risky asset, the cost process, the value process
and the exponential asset with default time τ = 0.9820 and maturity time T = 2.
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where h(z) is an exponential Lévy density with parameter δ with mean 1
δ , h(z) =

δ exp(−zδ)1{x≥0} and a terminal condition

f(T, x, y) = F (x, y) = 1,

subject to the following boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0, (8.23)

and a Dirichlet boundary condition

f(t, x, y) = g(t, x, y), ∀t ∈ [0, T ], x, y /∈ Ω,

where Ω = [xmin, xmax]× [ymin, ymax]. First, let us introduce the Kronecker product of
two matrices.

Definition 8.2. The Kronecker product of two matrices A ∈ Rn1×m1 , B ∈ Rn2×m2 is
defined as follows

C := A�B =


a1,1B a1,2B · · · a1,m1B

a2,1B a2,2B · · · a2,m1B
...

...
...

...
an1,1B an1,2B · · · an1,m1B

 ∈ Rn1n2×m1m2 .

We remark that if A and B are square matrices m ×m then their Kronecker product
A�B will also be a square matrix m2 ×m2.

We define
∂f

∂t
= Df(t, x, y) + J f(t, x, y),

where
Df(t, x, y) = −µ∂f

∂x
(t, x, y)− µf(t, 0, y), µ < 0, (8.24)

and

J f(t, x, y) = −λ
∫ +∞

0
f(t, x+ z, y)h(z)dz + λf(t, x, y)

+ λ

∫ +∞

0
f(t, x, y)h(x+ dz)dz (8.25)

= −J1f(t, x, y) + λIx,y + J2f(t, x, y).

We start by discretizing (8.24) using finite differences. Note that apart from the bound-
ary condition there is no dependency of the variable y. Let us consider f(t, x, y) =
f(tn, xi, yj) := fni,j . Then

Dfi,j = −µ
fni+1,j − fni−1,j

2dx + µ2 dt

2dx2 (fni+1,j − 2fni,j + fni−1,j)− µfn0,j ,
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by rewriting the above equation in a matrix form, we have that

Ax(i, i+ 1) = − µ

2dx + µ2dt

2dx2 ,

Ax(i, i) = −µ
2dt

dx2 ,

Ax(i, i− 1) = µ

2dx + µ2dt

2dx2 ,

Ax =


a0 b 0 0

c a
. . . 0

0 . . . . . . b

0 0 c a

 ,

where a0 = −µ− µ2dt
dx2 , a = −µ2dt

dx2 , b = −µ
2dx + µ2dt

2dx2 , and c = µ
2dx + µ2dt

2dx2 . The matrix Dfni,j
can be easily obtained through the Kronecker product, Dfni,j := A where A = Iy ⊗Ax,
and Iy is the identity matrix with respect to the variable y.

Let us proceed with the discretisation of J fni,j . Following the same methodology applied
above, we get

(J1f)i,j ≈
KR∑
k=0

fni+k,jhk,

where hk :=
∫ (k+ 1

2 )dx
(k− 1

2 )dx h(z)dz. For the grid points outside our domain we apply the
boundary condition f(t, x, y) = g(t, x, y) = 1 ∀x, y /∈ Ω.

Regarding the second integral term J2f(t, x, y), since in the integral there is no de-
pendency on the function f(t, x, y) and if we define λ̂ ≈ λ

∫∞
0 h(x + z)dz, we obtain

J2fi,j ≈ λ̂Ix � Iy.

Again, for the time discretisation, we apply the explicit implicit scheme which leads

(I − dtD)fn+1 = (I + dtJ )fn,

fn |n=T = 1.

As for the boundary condition, rewriting (8.23), using central differences in space we
obtain

fi+1,j − fi−1,j
2dx + fi,j+1 − fi,j−1

2dy = 0,

thus for i = 0 we have

f1,j − f−1,j
2dx + f0,j+1 − f0,j−1

2dy = 0.

The value f−1,j is called “ghost point” and it yields that

f−1,j = f1,j + dx

dy
(f0,j+1 − f0,j−1). (8.26)
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The boundary condition should satisfy the PIDE. Then at (tn, xi = 0, yj) the differences
looks like

fn+1
0,j − fn0,j

dt
= −µ

fn+1
1,j − f

n+1
−1,j

2dx + µ2dt

2dx2 (fn+1
1,j − 2fn+1

0,j + fn+1
−1,j)− µf

n+1
0,j + rhs.

Substituting (8.26), we obtain

fn+1
0,j − fn0,j

dt
= −µ

(fn+1
0,j+1 − f

n+1
0,j−1)

2dy + µ2dt

2dx2

(
2fn+1

1,j − 2fn+1
0,j

+ dx

dy
(fn+1

0,j+1 − f
n+1
0,j−1)

)
−µfn+1

0,j + rhs.

Thus before we apply the implicit explicit scheme for the time discretisation, the de-
rivatives ∂f

∂x |x=0 and∂
2f
∂x2 |x=0 becomes

µ
∂f

∂x

∣∣∣∣
x=0
≈ µ(f0,j+1 − f0,j−1)

2dy ,

and due to Lax-Wendroff approach we have

µ2dt
∂2f

∂x2

∣∣∣∣
x=0
≈ µ2dt

2dx2

(
2f1,j − 2f0,j + dx

dy
(f0,j+1 − f0,j−1)

)
.

Figure 8.10, provides the graph of the solution of the above PIDE at t = 0 zoomed
at x = 1, with parameters µ = −0.1, Nx = 150, Ny = 150, Nt = 375, x ∈ [0, 4],
y ∈ [−2, 2], and T = 1. Please note that in contrast to the PIDE in the previous
section, there is no closed form to investigate the error.
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Figure 8.10: Solution of the 3D PIDE (8.22) at t = 0 with δ = 200, λ = 20, T = 1 and
µ = −0.1.

8.4.1 Simulation results for the local risk minimization approach in
G

In this section, we provide the simulations for the hedging strategy. Assuming that
(Xt)t≥0 is spectrally positive of finite variation and given that the Lévy measure admits
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(a) The underlying asset (Xt)t≥0, along
with its infimum process (Yt)t≥0 =
infs≤tXs, and the reflected process (Rt)t≥0,
Rt = Xt − Yt, under filtration F.
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(b) The underlying asset (Xτ
t )t≥0 under fil-

tration G.
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(c) The number of shares (θt)t≥0 under
filtration G.

Figure 8.11: A sample path of the underlying asset under F and G along with number
of assets under G, with default time τ = 0.6360 and T = 1.

an exponential Lévy density i.e. ν(dz) = λh(z)dz such that h(z) = δ exp(−zδ)1{z≥0},
then we have seen in Chapter 6 that the number of shares is given by

θt = δ2 ∫+∞
0 zf(t,Xt− −Xt− + z,−Xt−)h(z)dz − δf(t,Xt− −Xt−,−Xt−)

2 1{τ≥t}.

Figure 8.11 depicts a sample path of the underlying asset (Xt)t≥0 and its reflected
process Rt = Xt−Xt under F, along with the underlying asset (Xτ

t )t≥0 and the number
of shares (θt)t≥0 under G with maturity time T = 1 and default time τ = 0.6360.

The random barrier D follows an exponential distribution independent of (Xt)t≥0 with
parameter q = 100 and mean 1

q . The probability of default is P(τ ≤ 1) = 0.682. Finally,
Figure 8.12 simulates a sample path for the cost process, the portfolio’s value, and the
amount of money invested in the non-risky asset.
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(a) The process (ηt)t≥0.
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(b) The process (Lτ∧t)t≥0.
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(c) The cost process (Ct)t≥0.
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(d) The process (Kt)t≥0, Kt =
∫ t

0 θsdX
τ
s .
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(e) The value process (Vt)t≥0
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(f) The exponential asset exp(Xτ
t )t≥0.

Figure 8.12: Sample paths of the cost process, the non risky assets, the value process
and the exponential asset with default time τ = 0.6360 and T = 1 under filtration G.
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8.5 PIDE and PDE for the hazard rate model

In this section, we provide the numerical solution of the PDE and the PIDE introduced
in Chapter 7. We begin by solving the corresponding PDE.

8.5.1 Diffusion model

We want to numerically solve the following PDE

∂h

∂t
= Af(t, x, y), ∀t ∈ [0, T ] and x, y ∈ R,

for an operator Lf(t, x, y) defined as follows

Af(t, x, y) := −σ
2

2
∂2h

∂x2 (t, x, y) + σ2

2
∂h

∂x
(t, x, y) + h(t, x, y)g(t, ex−y, e−y),

along with a terminal condition h(T, x, y) = max(ex−y −K, 0)1{e−y≥b} and

∂h

∂x
(t, 0, x) + ∂h

∂y
(t, 0, y) = 0.

To descritize the above PDE we also need some additional boundary conditions. In our
discretisation, we apply the following boundary conditions

h(t, x, y) = max(exp(x)−K, 0), as y → 0, (8.27)
∂h

∂y
(t, x, y) = 0, as y → −∞, ∂h

∂y
(t, x, y) = 0, as y → +∞, (8.28)

∂h

∂x
(t, x, y) = 0, as x→ −∞, ∂h

∂x
(t, x, y) = 0, as x→ +∞. (8.29)

As always the function h(t, x, y) is approximated by hni,j = h(tn, xi, yj). For simplicity,
we assume that g(t, ex−y, e−y) is a positive constant given by g. First, to approximate
∂h
∂x(t, x, y) and ∂2h

∂x2 (t, x, y) we apply central differences. So at each time level we get
∂h
∂t = Ahi,j where

Ahi,j = −σ
2

2
hi+1,j − 2hi,j + hi−1,j

dx2 + σ2

2
hi+1,j − hi−1,j

2dx + ghi,j . (8.30)

Alternatively, (8.30) can be rewritten as

Ahi,j = ahi,j + bhi−1,j + chi+1,j ,

where

a = σ2

dx2 + g, b = − σ2

2dx2 −
σ2

4dx, c = − σ2

2dx2 + σ2

4dx.

Given an (Nx, Ny) grid point we can construct a matrix A of size (Nx ×Ny, Nx ×Ny)
with elements a, b, c introduced above. Note that in our case before we apply the
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boundary condition, the movements for the variable y is zero.

For the time discretisation we apply the θ-scheme, and so at each time level tn we have

hn+1
i,j − hni,j

dt
= (1− θ)Lhn+1

i,j + θLhni,j , (8.31)

where for θ = 1 we obtain the explicit scheme for θ = 0 the implicit scheme and finally
for θ = 0.5 the Crank-Nicolson method, see Li et al. (2017), Chapter 4 for more details.
In this thesis, we use θ = 0.5. Equivalently, (8.31) is formulated in a matrix scheme as

(I − dt(1− θ)A)hn+1 = (I + dtθA)hn,

hn |n=T= max(exp(xi − yj)−K, 0)1{exp(−yj≥b)}.

To treat the boundary condition ∂h
∂x(t, 0, y) + ∂h

∂y (t, 0, y) = 0 we follow the same steps
as in Section 8.4. Therefore at x = 0 the partial derivatives ∂h

∂x |x=0 and ∂2h
∂x2 |x=0 can

be approximated as
σ2

2
∂h

∂x
|x=0≈

σ2

2

dx
dy (hk0,j+1 − hk0,j−1)

2dx ,

and
σ2

2
∂2h

∂x2 |x=0≈
σ2

2
2hk1,j − 2hk0,j + dx

dy (hk0,j+1 − hk0,j−1)
dx2 ,

where k0 is the index representing the value at x = 0 and k1 is the subsequent (from
right) index of k0.

In the same way, we handle the Neumann boundary conditions (8.28) and (8.29). The
discretisation of the Dirichlet boundary condition (8.27) is straightforward.

To obtain the solution of the PDE (7.21) for f(t, x, y) we interpolate the solution of
h(t, x, y). First, we solve the PDE for h(t, x, y) introduced above when x ∈ [−5, 5], y ∈
[−2.4, 4.6] and then we apply interpolation f(t, x̃, ỹ) = h(t, log(xy ),− log(y)) with x̃ =
ỹ ∈ [0, 9]. Figure 8.14 illustrates the payoff function f(T, x, y) = max(x −K, 0)1{y≥b}
along with the solution of the PDE (7.21) at t = 0 when b = 4 and K = 5. We proceed
determining the process (θt)t≥0 for the diffusion model. For simplicity, we assume that
there is no default i.e. g(t, x, y) = 0. Then (θt)t≥0 can be obtained based on Theorem
7.18 θt = ∂f

∂x (t, Yt, Y t). Using central differences and linear interpolation we obtain:

θt = ∂f

∂x
(t, Yt, Y t) =

fni+1,j − fni−1,j
2dx .

In Figure 8.15, we display the sample paths of the exponential Brownian motion with
a drift term µ and the optimal number of shares (θt)t≥0 for the diffusion PDE when
X0 = 0.01, µ = 0.1, σ = 0.2, b = 4.0, maturity time T = 1 and a strike price K = 5.0.
Similar graphs for the value process (Vt)t≥0 the cost process (Ct)t≥0 and (ηt)t≥0 can be
obtained, following the same procedure as we did in Sections 8.3.3 and 8.4.1.
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(a) Payoff function h(T, x, y) when b = 0.2.
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(b) Solution of h(t, x, y) at t = 0 when b = 0.2.
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(c) Payoff function h(T, x, y) when b = 0.9.

0
0

0.05

0.1

0.15

0.2

0.25

x

0.5

Solution at t=0

0.70.6

y

0.50.40.30.21 0.10

(d) Solution of h(t, x, y) at t = 0 when b = 0.9.

Figure 8.13: Simulation results for the PDE (7.22) when g = 0.05, xmin = ymin = 0.0,
xmax = 1.0, ymax = 0.7, σ = 0.2, Nx = Ny = 70, Nt = 200, T = 1 with strike price
K = 1.0 when b = 0.2 and b = 0.9.

(a) Payoff function f(T, x, y) when b = 4.0. (b) Solution for f(t, x, y) at t = 0 when b = 4.0.

Figure 8.14: Graphical representation of the PDE (7.21) through interpolation of
h(t, x, y) when xmax = ymax = 9.0, g = 0.05, T = 1, σ = 0.2 Nx = Ny = 70,
Nt = 200 with strike price K = 5.0 when b = 4.0.
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(a) A sample path of the exponential un-
derlying asset (Yt)t≥0 when µ = 0.1 and
σ = 0.2.
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Figure 8.15: The underlying asset along with the optimal number of shares for the
diffusion model when g(t, x, y) = 0.

8.5.2 PIDE Jump diffusion case

Once again, we would like to solve numerically the PIDE for h(t, x, y) introduced in
Example 8.11

∂h

∂t
(t, x, y) = Lh(t, x, y), t ∈ [0, T ), x ∈ R and y ∈ R,

h(T, x, y)→ F (x, y) = max(x−K, 0)1{e−y≥b} as t→ T,

along with the boundary condition ∂f
∂x (t, 0, y) + ∂f

∂y (t, 0, y) = 0, where

Lh(t, x, y) = −(β + σ2

2 )∂h
∂x

(t, x, y)− σ2

2
∂2h

∂x2 (t, x, y) + h(t, x, y)g(t, ex−y, e−y)

−
∫ +∞

−x
(h(t, x+ z, y)− h(t, x, y)− z ∂h

∂x
(t, x, y))ν(dz)

−
∫ −x
−∞

(h(t, x+ z, x+ z)− h(t, x, y)− z ∂h
∂x

(t, x, y))ν(dz).

(8.32)

As always we assume that ν(dz) < ∞, therefore the Lévy measure admits a Lévy
density of the form ν(dz) = λq(z)dz , where

q(z | µJ , σJ) = 1√
2πσ2

J

e
− (x−µJ )2

2σ2
J .

Therefore (8.32) becomes

Lh(t, x, y) = −(β + σ2

2 + a1(x) + a2(x))∂h
∂x

(t, x, y)− σ2

2
∂2h

∂x2 (t, x, y)

+ h(t, x, y)(g(t, ex−y, e−y) + c1(x) + c2(x))

− λ
∫ +∞

−x
h(t, x+ z, y)q(z)dz − λ

∫ −x
−∞

h(t, x+ z, x+ z)q(z)dz,

(8.33)
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where

a1(x) = λ

∫ +∞

−x
zq(z)dz, a2(x) = λ

∫ −x
−∞

zq(z)dz,

c1(x) = λ

∫ +∞

−x
q(z)dz, c2(x) = λ

∫ −x
−∞

q(z)dz,

along with h(t, x, y) = p(t, x, y) for all x, y /∈ Ω, with Ω = [xmin, xmax] × [ymin, ymax].
Since our payoff is a knock out barrier option, following Cont and Voltchkova (2005),
we assume that p(t, x, y) = 0 for all x, y /∈ Ω.

We split the above operator Lh(t, x, y) in (8.33) as Lh(t, x, y) = Dh(t, x, y)+J h(t, x, y)
where

Dh(t, x, y) = −(β + σ2

2 + a1(x) + a2(x))∂h
∂x

(t, x, y)− σ2

2
∂2h

∂x2 (t, x, y)

+ h(t, x, y)(g(t, ex−y, e−y) + c1(x) + c2(x)),
(8.34)

and

J h(t, x, y) = −λ
∫ +∞

−x
h(t, x+ z, y)q(z)dz − λ

∫ −x
−∞

h(t, x+ z, x+ z)q(z)dz

= −λJ1h(t, x, y)− λJ2h(t, x, y).
(8.35)

For the discretisation of the operator Dh(t, x, y) in (8.34), we apply the same methodo-
logy as in Section 8.5.1. It remains to descritize the integral terms in (8.35). Following
Section 8.3.2, it yields

J1h(t, x, y) =
∫ +∞

−x
h(t, x+ z, y)q(z)dz =

∫
R
h(t, x+ z, y)1[−x,+∞)q(z)dz

≈
∫ BR

BL

h(t, xi + z, y)1[−xi, BR]q(z)dz ≈
KR∑
k=KL

hi+k,j1[−xi,KR]qk,

Similarly, for the second integral term we get that

J2h(t, x, y) =
∫ −x
−∞

h(t, x+ z, x+ z)q(z)dz ≈
∫ BR

BL

h(t, xi + z, xi + z)1[BL,−xi]q(z)dz

≈
KR∑
k=KL

hi+k,i+k1[KL,−xi]qk,

with qk =
∫ (k+ 1

2 )dx
(k− 1

2 )dx h(z)dz. The bounds BL and BR can be derived following similar
calculations of Section 8.3.1. More precisely,

q(z) ≥ ε⇔ −µJ −
√
−2σ2

J log(εσJ
√

2π/2) ≤ z ≤ µJ +
√
−2σ2

J log(εσJ
√

2π/2).

Thus BL = −µJ −
√
−2σ2

J log(εσJ
√

2π/2), and BR = −BL. Also KL and KR are such
that [BL, BR] ⊆ [(KL − 0.5)dx, (KR + 0.5)dx]. See also Chan and Hubbert (2010).
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(a) Solution of f(t, x, y) at t = 0 when λ = 0. (b) Solution of f(t, x, y) at t = 0 when λ = 0.2.

(c) Solution of f(t, x, y) at t = 0 when λ = 0.5. (d) Solution of f(t, x, y) at t = 0 when λ = 5.

Figure 8.16: The solution of the PIDE of f(t, x, y) at t = 0 with various values of λ.

The boundary condition ∂h
∂x(t, 0, y) + ∂h

∂y (t, 0, y) = 0 is descritized in the same way as in
the diffusion case. For the time discretisation, we apply the implicit explicit scheme as
in the previous sections.

In Figure 8.16, we provide the solution of the PIDE for f(t, x, y) by solving the above
PIDE of h(t, x, y) for various values of λ and then applying linear interpolation with
the following data β = 0.1, σ = 0.2, b = 4, µJ = 0.05, σJ = 0.1 with maturity time
T = 1 and strike price K = 5.

A trajectory of the number of shares (θt)t≥0 can be derived following similar results as
in Section 8.4.1.
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Chapter 9

Conclusion and future work

The last chapter of this thesis is devoted on providing a thesis summary along with
some future work. We describe our main contributions along with their limitations.

9.1 Thesis summary

The main purpose of this dissertation is to provide semi-explicit solutions of LRM
hedging strategies in defaultable markets under some circumstances including partial
information to some extent. In this work, the LRM is analysed when the underlying
asset is a Lévy process or its exponential. Let us highlight the main parts of this thesis.

In Chapter 4, we discussed the LRM when the default time is modelled through a
structural model whose barrier is constant. In our analysis we used finite variation
Lévy processes. The hedging strategy is determined by applying the Itô’s formula
for non-smooth functions. This provides us the flexibility to work with PIDEs whose
solutions are continuous but not necessarily smooth in the strong sense.

In Chapter 6, we extend the model discussed in Chapter 4. More specifically, we
determine the GKW decomposition given that the default time is modelled through
a structural model whose barrier follows a negative exponential distribution. In this
case, the underlying asset is a spectrally positive and of finite variation Lévy process.

In Chapter 7, we developed a model through a different technique based on hazard rate
approach. Given that the underlying asset is an exponential jump diffusion process, we
proposed a new model whose default time is defined through a hazard rate model that
involves the running infimum process. Furthermore, we provided examples where claims
are prone both to structural and exogenous defaults, and hence a unified framework
for both structural and reduced form modelling. Then we determined the hedging
strategy which has a semi-explicit form based on the LRM approach through PDEs
and PIDEs.

Our analysis is made under the physical measure. We determine the KW decomposition
and equivalently the GKW decomposition through appropriate PIDEs. In Chapter 8
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we solved numerically the PIDE’s through finite differences. The integral terms are
descritized through the trapezoidal rule.

9.2 Future work

In this thesis, our future work is going to be focused on Chapters 4, 6, 7 and 8.

The models introduced in Chapters 4, 6 can be extended in various ways. Firstly, in
our analysis we develop a hedging strategy for a defaultable claim with a simple payoff
function. We need to apply our methodology for more general contingent claims, such as
a European contingent claim, whose payoff at the maturity depends on the underlying
asset and a strike price. Furthermore, our analysis in these chapters is made with Lévy
processes of finite variation. It would be interesting to extend it to general case for
the jump diffusion processes. Chapter 7 can be served as a platform to tackle these
problems.

Our work in Chapter 6 is based on spectrally positive processes of finite variation.
Based on ∆Xτ = 0 this allow us to obtain a PIDE which can be solved easily. How-
ever, working with these processes in finance is not always very popular though there
are some applications already. It is worthwhile considering to extend our analysis for
spectrally negative processes. The main difficulty here is how we will obtain the process(∫ τ∧t

0 ∆f(s,Xs −Xs,−Xs)d(1{τ≤s})
)
t≥0

. Having this result and combining the spec-
trally positive and negative processes, we are able to derive the general finite variation
case.

The hazard rate model introduced in Chapter 7 can be used to analyse financial-
insurance derivatives, see Vandaele and Vanmaele (2009) and Ceci et al. (2015a). In
these models, the default is defined through human mortality and our model could be
implemented, as one can assume that human mortality is independent of market asset
values.

The partial information models that we analysed concern the default time. Alternat-
ively, we may assume that the underlying asset is partially observed. In this setup, the
non-linear filtering theory plays fundamental role. Generally speaking, in the filtering
theory approach the process (Xt)t≥0 is not observed directly, however there exists a
process (Yt)t≥0 correlated to (Xt)t≥0. The filtration generated by the process (Yt)t≥0,
FY = σ(Ys)0≤s≤t provides the available information.

The main goal of the filtering approach is to specify the conditional distribution πt of
the unobservable process (Xt)t≥0 given FY . Ceci and Colaneri (2012) investigated the
non-linear filtering problem when (Xt)t≥0 and (Yt)t≥0 are jump diffusion processes with
common jumps. In their analysis, the determination of the conditional distribution πt is
made through the solution of the Kushner-Stratonovich stochastic differential equation.
By solving an appropriate PIDE, we believe that their model can be used to determine
the hedging strategy through the LRM approach when the underlying asset is partially
observed.
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From a theoretical point of view, we saw that the intensity process of a reduced form
model describes the credit spread of a defaultable claim. It is important if we can com-
pare our intensity models introduced in this thesis using a real data and to investigate
their fitness.

In the present work, the FS decomposition is obtained without using minimal mar-
tingale measures. Instead we obtain it by solving appropriate PIDEs. Determining
hedging strategies through a minimal martingale measure is worth investigating. Un-
der a unique flow of information the GKW decomposition analysed in Chapter 4 can be
obtained through the minimal martingale measure introduced in Choulli et al. (2010).
Furthermore, based on Ceci et al. (2015b) the partial information models introduced
in Chapters 6 and 7 can also be analysed through a minimal martingale measure.

One major drawback of the LRM is that we are working with mean self-financing i.e. the
cost process is a local martingale. An intuitive explanation of this is that a contingent
claim might have intermediate and unexpected profits or losses. On the other hand,
the mean variance approach does not have this restriction, but we no longer work
with admissible strategies. It is worth considering, whether we are able to apply the
mean variance approach in our models by introducing an appropriate mean variance
optimal measure, see Kohlmann et al. (2010). Note that under the martingale case
both approaches are the same.

Our analysis is devoted to a single (one-dimensional) underlying asset. A useful ex-
tension can be made to the multidimensional setting. This can be achieved based on
Schweizer (2008), who has already developed the theory of LRM for multidimensional
assets. A quite interesting result is to establish our construction when there is a cor-
relation between the default times or in the underlying assets. In this framework, Lévy
copulas should be applied.

More complicated and useful numerical methods studying the PIDEs need further de-
veloping. Our simulations are made by using compound Poisson processes i.e. when
the Lévy measure has finite activity. Dealing with infinite activity Lévy processes such
as variance gamma processes is more challenging and financially more interesting. The
algorithm for this case is well established and already known see Cont and Tankov
(2004) Chapter 12, Cont and Voltchkova (2005) and Almendral and Oosterlee (2007).
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Appendix A

A martingale associated with the
reflected Lévy process at its
infimum: jump diffusion case.

This chapter consists a basic and a quite useful result for the reflected Lévy process at
its infimum.This result will be used in Chapter 7. More precisely, for 0 ≤ S ≤ ∞ and
a C1,2,1([0, S] × R+

0 × R) function under some circumstances we obtain the canonical
decomposition of (f(t,Xt −Xt,−Xt))0≤t≤S .

Assumption A.1. Let 0 ≤ S ≤ ∞ and f : [0, S] × R+
0 × R → R be a C1,2,1([0, S] ×

R+
0 × R) function. Then f(t, x, y) satisfies the following integrability conditions

∫ +∞

−x
|f(t, x+ z, y)− f(t, x, y)− z ∂f

∂x
(t, x, y)|ν(dz) <∞,

and ∫ −x
−∞
|f(t, 0, y − x− z)− f(t, x, y)− z ∂f

∂x
(t, x, y)|ν(dz) <∞,

for every 0 ≤ t ≤ S, x ≥ 0 and y ∈ R.

Proposition A.2. Let (Xt)t≥0 be a Lévy process Xt = X0 + µt + σWt +
∑
s≤t ∆Xs

with β = E[X1 − X0] and its Lévy measure ν is absolutely continuous with respect to
Lebesgue measure. Let f(t, x, y) : [0, S] × R+

0 × R → R be a C1,2,1([0, T ] × R+
0 × R)

function satisfying Assumption A.1, with 0 ≤ S ≤ ∞ then for an operator L∗f(t, x, y)
is given as

L∗f(t, x, y) = ∂f

∂t
+ β

∂f

∂x
+ σ2

2
∂2f

∂x2 +
∫ +∞

−x
(f(t, x+ z, y)− f(t, x, y)− z ∂f

∂x
)ν(dz)

+
∫ −x
−∞

(f(t, 0, y − z − x)− f(t, x, y)− z ∂f
∂x

)ν(dz),

for all t ∈ [0, S], x ≥ 0 and y ∈ R, and if the boundary condition

∂f

∂x
(t, 0, y) + ∂f

∂y
(t, 0, y) = 0,
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is satisfied, then the process(
f(t,Xt −Xt,−Xt)− f(0, X0 −X0,−X0)−

∫ t

0
L∗f(s,Xs −Xs,−Xs)ds

)
t≥0

,

is an F−local martingale.

Proof. By Theorem 2 of Whitney (1934), we can smoothly extend f to R+
0 × R × R.

Since (Xt)t≥0 is a Lévy process by applying Itô’s formula for semimartingales with
0 ≤ t ≤ S, it yields

f(t,Xt −Xt,−Xt) = f(0, X0 −X0,−X0) +
∫ t

0

∂f

∂s
(s,Xs −Xs,−Xs)ds

+
∫ t

0

∂f

∂x
(s,Xs− −Xs−,−Xs−)dXs + 1

2

∫ t

0

∂2f

∂x2 (s,Xs− −Xs−,−Xs−)d[X −X]cs

−1
2

∫ t

0

∂2f

∂y2 (s,Xs− −Xs−,−Xs−)d[X]cs + 1
2

∫ t

0

∂2f

∂x∂y
(s,Xs− −Xs−,−Xs−)d[X −X]cs

+
∑
s≤t

{
f(s,Xs− −Xs−,−Xs−)− f(s,Xs− −Xs−,−Xs−)

+(∂f
∂x

+ ∂f

∂y
)(s,Xs− −Xs−,−Xs−)∆Xs −

∂f

∂x
(s,Xs− −Xs−,−Xs−)∆Xs

}
,

where ∆Xs = Xs − Xs−, ∆Xs = Xs − Xs− and (Xc
t )t≥0, (Xc

t)t≥0 are respect-
ively the continuous local martingale part of (Xt)t≥0 and the path-by-path continu-
ous part of (Xt)t≥0. Since (Xt)t≥0 is of finite variation then [X]ct = [X −X,−X]ct =
0. Using the support property Xt− = Xt = Xt− = Xt on supp(dXc), the term∫ t

0

(
∂f
∂x + ∂f

∂y

)
(s, 0,−Xs)d(X)cs is eliminated using the boundary condition ∂f

∂x (t, 0, y) +
∂f
∂y (t, 0, y) = 0,. Based on this and since [X]ct = σ2, the above result can be rewritten
as follows

f(t,Xt −Xt,−Xt) = f(0, X0 −X0,−X0) +
∫ t

0+

∂f

∂s
(s,Xs −Xs,−Xs)ds

+ σ2

2

∫ t

0

∂2f

∂x2 (s,Xs −Xs,−Xs)ds+ β

∫ t

0

∂f

∂x
(s,Xs −Xs,−Xs)ds

+
∑
s≤t

{
f(s,Xs−Xs,−Xs)−f(s,Xs−−Xs−,−Xs−)− ∂f

∂x
(s,Xs−−Xs−,−Xs−)∆Xs

}
.

Suppose that z defines the jumps of (Xt)t≥0 at time t i.e. z = ∆Xt and let (Rt)t≥0,
Rt = Xt −Xt We note that (Xt)t≥0 can be written as

Xt = min (Xt, Xt−) , (A.1)

and we investigate the following cases

• If z ≤ Rt−or Xt −Xt− ≤ Xt− −Xt− =⇒ Xt ≤ Xt− for all t, then from Equation
(A.1), min(Xt, Xt−) = Xt, which implies that Xt = Xt and so Rt = 0.

• If z > Rt−or Xt−Xt− ≥ Xt−−Xt− =⇒ Xt ≥ Xt− and from Equation (A.1), we
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have that min(Xt, Xt−) = Xt− and thus Xt = Xt−.X̄t = X̄t−. In this case the
process (Rt)t≥0 becomes Rt = Xt− − Xt, and if we add and subtract Xt− then
Rt = Xt− −Xt− − (Xt −Xt−) = Rt− − z.

The above summation can be expressed as an integral using jump measure N(dt, dz).
That is

f(t,Xt −Xt,−Xt) = f(0, X0,−X0,−X0) +
∫ t

0

∂f

∂s
(s,Xs −Xs−,−Xs)ds

+σ2

2

∫ t

0

∂2f

∂x2 (s,Xs −Xs,−Xs)ds+ β

∫ t

0

∂f

∂x
(s,Xs −Xs,−Xs)ds

+
∫ t

0

∫ +∞

−∞

(
f(s, 0, Xs− − z)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z≤Rs−}N(ds, dz)

+
∫ t

0

∫ +∞

−∞

(
f(s,Xs− −Xs− + z,−Xs−)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z>Rs−}N(ds, dz).

Then using Lemma 6.6 and assuming that Ñ(dt, dz) is the compensated jump measure,
Ñ(dt, dz) = N(dt, dz)− ν(dz)dt, we have

f(t,Xt −Xt,−Xt) = f(0, X0 −X0,−X0) +
∫ t

0

∂f

∂s
(s,Xs −Xs,−Xs)ds

+σ2

2

∫ t

0

∂2f

∂x2 (s,Xs −Xs,−Xs)ds+ β

∫ t

0

∂f

∂x
(s,Xs −Xs,−Xs)ds

+
∫ t

0

∫ +∞

−∞

(
f(s, 0, Xs− − z)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z≤Rs−}ν(dz)ds

+
∫ t

0

∫ +∞

−∞

((
f(s, 0, Xs− − z)− f(s,Xs −Xs−,−Xs)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z≤Rs}Ñ(ds, dz)

+
∫ t

0

∫ +∞

−∞

(
f(s,Xs− −Xs− + z,−Xs−)− f(s,Xs− −Xs−,−Xs−)

+z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z>Rs−}ν(dz)ds

+
∫ t

0

∫ +∞

−∞

(
f(s,Xs− −Xs− + z,−Xs−)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)

1{z>Rs−}Ñ(ds, dz).
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Since the terms ∫ t

0

∫ +∞

−∞

(
f(s, 0, Xs− − z)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)
1{z≤Rs−}Ñ(ds, dz),

and ∫ t

0

∫ +∞

−∞

(
f(s,Xs− −Xs− + z,−Xs−)− f(s,Xs− −Xs−,−Xs−)

−z ∂f
∂x

(s,Xs− −Xs−,−Xs−)
)
1{z>Rs−}Ñ(ds, dz),

are F-local martingales, then by the continuity of the Lévy measure and if we define
the operator

L∗f(t, x, y) : = ∂f

∂t
+ β

∂f

∂x
+ σ2

2
∂2f

∂x2 +
∫ +∞

−x
(f(t, x+ z, y)− f(t, x, y)− z ∂f

∂x
)ν(dz)

+
∫ −x
−∞

(f(t, 0, y − z − x)− f(t, x, y)− z ∂f
∂x

)ν(dz),

for all t ∈ [0, S], x ≥ 0 and y ∈ R, it follows that the process(
f(t,Xt −Xt,−Xt)− f(X0 −X0,−X0−)−

∫ t

0
L∗f(s,Xs −Xs,−Xs)ds

)
t≥0

,

with t ∈ [0, S], is an F-local martingale.
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Appendix B

Projection formulas

In this chapter, we briefly analyze the optional and predictable projections. The fol-
lowing Theorem describes the optional and predictable projection. For its proof, we
refer to Dellacherie and Meyer (1982), Chapter VI.

Theorem B.1 (Optional and predictable projection). Let (Xt)t≥0 be a positive or
bounded measurable process. Then there exists an optional process (Yt)t≥0 and a pre-
dictable process (Zt)t≥0 such that

E[Xτ1{τ<∞} | Fτ ] = Yτ1{τ<∞} a.s for every stopping time τ , (B.1)

E[Xτ1{τ<∞} | Fτ−] = Zτ1{τ<∞}a.s for every predictable stopping time τ . (B.2)

The processes (Yt)t≥0 and (Zt)t≥ are unique within an evanescent set. They are called
the optional projection and predictable projection of (Xt)t≥0 and they are denoted by
(◦Xt)t≥0 and (pXt)t≥0.

Let us investigate some fundamental properties of the predictable and optional projec-
tion. Following Dellacherie and Meyer (1982) we have the following Remark.

Remark B.2. The optional and predictable projections have the following properties:

1. Let (Xt)t≥0 and (X̃t)t≥0 be positive or bounded measurable processes with op-
tional projections (Yt)t≥0, (Ỹt)t≥0 and predictable projections (Zt)t≥0,(Z̃t)t≥0. As-
suming that Xt ≤ X̃t a.s for all t, then in this case we have Yt ≤ Ỹt and Zt ≤ Z̃t
a.s for all t. Moreover, given a positive constant K and if |Xt| ≤ K uniformly for
all t then |Yt| ≤ K, and |Zt| ≤ K.

Finally, if (Xt)t≥0 and (X̃t)t≥0 are two positive or bounded processes introduced
above, then for their linear combination (aXt + bX̃t)t≥0 admits an optional pro-
jection (aYt + bỸt)t≥0 and its predictable projection is (aZt + bZ̃t)t≥0, for all
a, b ∈ R.
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2. In discrete case with the convection that F−1 = F0, the optional projection is
Yn = E[Xn | Fn] and the predictable projection Zn = E[Xn | Fn−1], n ≥ 0.

3. In order to prove B.1 and B.2, it suffices to show without conditioning E[Xτ1{τ<∞}] =
E[Yτ1{τ<∞}] for every stopping time τ . Similarly, for the predictable projection
E[Xτ1{τ<∞}] = E[Zτ1{τ<∞}] for every predictable stopping time τ .

4. If (Xt)t≥0 is a measurable process and (Ht)t≥0 is a bounded and optional process
(respectively predictable) then

◦(HX)t = Ht
◦Xt (respectively p(HX)t = Ht

pXt).

5. For the case when (Xt)t≥0 is not bounded or positive we may define the optional
projection as follows: Assume that (Xt)t≥0 is a measurable process. Then its
optional projection exists, if the optional projection of the positive measurable
process (|X|t)t≥0 is indistinguishable 1 from a finite process. In this case we have

Yt =◦ Xt =◦ X+
t −◦ X−t .

6. Let (Xt)t≥0 be an adapted measurable process. Then there exists an optional
process (Yt)t≥0 such that it is a modification 2of (Xt)t≥0.

The next Theorem provides the relation between the two projection. For its proof we
refer to Dellacherie and Meyer (1982), Chapter VI.

Theorem B.3. Let (Xt) be a positive or bounded measurable process. The set of (t, ω)
such that ◦Xt(ω) 6=p Xt(ω) is a countable union of graphs of stopping times.

The next Theorem is essential for the definition of the dual projection. For its proof
,see Dellacherie and Meyer (1982), Chapter VI, Theorem 57.

Theorem B.4. Assume that (Xt)t≥0 is a positive and measurable process and let
(Yt)t≥0 and (Zt)t≥0 be its optional and predictable projection. Let (At)t≥0 be an in-
creasing process, then

E
[∫

[0,∞)
XsdAs

]
= E

[∫
[0,∞)

YsdAs

]
,

and if (At)t≥0 is predictable then
1We say that two stochastic process (Xt)t≥0 and (Yt)t≥0 are indistinguishable if and only if

P(Xt = Yt for all t∈ R+) = 1.

2Two processes (Xt)t≥0 and (Yt)t≥0 are a modification of each other if

P(Xt = Yt) = 1 for all t∈ R+.
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E
[∫

[0,∞)
XsdAs

]
= E

[∫
[0,∞)

ZsdAs

]
.

Having Theorem B.4 we can define the dual projection as follows.

Definition B.5 (Dual projection). Let (At)t≥0 be a raw 3 integrable increasing process.
Then the optional (respectively predictable) dual projection of (At)t≥0 is the optional
(respectively predictable) increasing process (Bt)t≥0 defined by

E
[∫

[0,∞)
XsdBs

]
= E

[∫
[0,∞)

◦XsdBs

]
,

and for the case of predictable projection

E
[∫

[0,∞)
XsdBs

]
= E

[∫
[0,∞)

pXsdBs

]
.

3An increasing process not necessarily F-adapted but whose paths are positive increasing and right
continuous is called raw process.
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Appendix C

Derivatives approximation
through the Euler scheme

In this chapter, we express the derivatives in space using the Euler method.

Forward difference

From Taylor series we know that

f(x) = f(x0) + (x− x0) df
dx

+ (x− x0)2

2!

(
d2f

dx2

) ∣∣∣∣
x0

.

Assume that we want to compute the derivative df
dx at a given point x = xi. For

simplicity, we assume that f(x) = fi at x = xi. Therefore, for

x = xi,

x− x0 = dx,

f(x) = f(x0 + dx) = fi+1.

Then the value of fi+1 using the Taylor scheme can be written as

fi+1 = fi + dx

(
df

dx

)
i
+ (dx)2

2!

(
d2f

dx2

)
i

+ (dx)3

3!

(
d3f

dx3

)
i

. (C.1)

Solving with respect to df
dx we have

(
df

dx

)
= fi+1 − fi

dx
− dx

2!

(
d2f

dx2

)
− dx3

3!

(
d3f

dx3

)
︸ ︷︷ ︸

O(dx)

,

and therefore we get
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(
df

dx

)
i

= fi+1 − fi
dx

+O(dx).

Backward difference

Similarly to the forward difference, backward difference can be obtained by using the
Taylor series expansion of f(x) at x = xi−1 which yields

fi−1 = fi − dx
(
df

dx

)
i
+ dx2

2!

(
d2f

dx2

)
i

− dx3

3!

(
d3f

dx3

)
, (C.2)

or (
df

dx

)
i

= fi − fi−1
dx

+ dx

2

(
d2f

dx2

)
i

− dx2

3!

(
d3f

dx3

)
i︸ ︷︷ ︸

O(dx)

.

Therefore (
df

dx

)
i

= fi − fi−1
dx

+O(dx).

Central difference

The forward and backward differences are first order accurate approximations of the
first derivative. On the other hand, central difference is a second order accurate method.
In order to obtain this formula, by subtracting (C.1) from (C.2), we have

fi+1 − fi−1 = 2dx
(
df

dx

)
i
+ 2dx

3

3!

(
d3f

dx3

)
i

.

Hence

(
df

dx

)
i

= fi+1 − fi−1
2dx + 2dx

2

3!

(
d3f

dx3

)
i︸ ︷︷ ︸

O(dx2)

,

or equivalently, (
df

dx

)
i

= fi+1 − fi−1
2dx +O(dx2).
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