The University of Southampton
University of Southampton Institutional Repository

The effect of time spent in rehabilitation on activity limitation and impairment after stroke

The effect of time spent in rehabilitation on activity limitation and impairment after stroke
The effect of time spent in rehabilitation on activity limitation and impairment after stroke

Background: Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation. Objectives: To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation. Search methods: We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search. Selection criteria: We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death. Data collection and analysis: Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs. Main results: The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants. Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI −0.02 to 0.28; P = 0.09; I 2 = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI −0.11 to 0.29; P = 0.36; I 2 = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI −0.03 to 0.53; P = 0.08; I 2 = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I 2 = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I 2 = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06). Authors' conclusions: An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.

1465-1858
Clark, Beth
bc71de33-092b-467e-806a-df2ff4e1175c
Whitall, Jill
9761aefb-be80-4270-bc1f-0e726399376e
Kwakkel, Gert
5fd0fc86-e067-4aea-8ede-6644bdbabdc6
Mehrholz, Jan
9aa61e49-fa1f-44fa-a5ff-199019573421
Ewings, Sean
326656df-c0f0-44a1-b64f-8fe9578ca18a
Burridge, Jane
0110e9ea-0884-4982-a003-cb6307f38f64
Clark, Beth
bc71de33-092b-467e-806a-df2ff4e1175c
Whitall, Jill
9761aefb-be80-4270-bc1f-0e726399376e
Kwakkel, Gert
5fd0fc86-e067-4aea-8ede-6644bdbabdc6
Mehrholz, Jan
9aa61e49-fa1f-44fa-a5ff-199019573421
Ewings, Sean
326656df-c0f0-44a1-b64f-8fe9578ca18a
Burridge, Jane
0110e9ea-0884-4982-a003-cb6307f38f64

Clark, Beth, Whitall, Jill, Kwakkel, Gert, Mehrholz, Jan, Ewings, Sean and Burridge, Jane (2021) The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database of Systematic Reviews, 2021 (10), [CD012612]. (doi:10.1002/14651858.CD012612.pub2).

Record type: Review

Abstract

Background: Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation. Objectives: To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation. Search methods: We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search. Selection criteria: We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death. Data collection and analysis: Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs. Main results: The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants. Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI −0.02 to 0.28; P = 0.09; I 2 = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI −0.11 to 0.29; P = 0.36; I 2 = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI −0.03 to 0.53; P = 0.08; I 2 = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I 2 = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I 2 = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06). Authors' conclusions: An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.

Text
The effect of time spent in rehabilitation on activity limitation and impairment after stroke (Review) - Version of Record
Restricted to Repository staff only
Request a copy
Text
Cochrane Corner Article - revised - Other
Restricted to Repository staff only
Request a copy

More information

Published date: 25 October 2021

Identifiers

Local EPrints ID: 452365
URI: http://eprints.soton.ac.uk/id/eprint/452365
ISSN: 1465-1858
PURE UUID: f94eb7fe-fdb0-40a6-8154-01617ff3a9d5
ORCID for Beth Clark: ORCID iD orcid.org/0000-0003-4493-166X
ORCID for Sean Ewings: ORCID iD orcid.org/0000-0001-7214-4917
ORCID for Jane Burridge: ORCID iD orcid.org/0000-0003-3497-6725

Catalogue record

Date deposited: 08 Dec 2021 18:48
Last modified: 21 Nov 2024 02:58

Export record

Altmetrics

Contributors

Author: Beth Clark ORCID iD
Author: Jill Whitall
Author: Gert Kwakkel
Author: Jan Mehrholz
Author: Sean Ewings ORCID iD
Author: Jane Burridge ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×