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Abstract 
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Doctor of Philosophy in Finance 

by Musab Al Malahmeh 

 

This thesis investigates the impact of the security breach on the Bitcoin cross-market prices by 

shedding new light on the influences of cyberattacks from several angles. Therefore, the thesis was 

divided into three separate but interconnected studies that explore the effect of cybercrime by using 

several empirical strategies to understand the complex behaviour of Bitcoin cross-market prices 

after breach events. Chapter two investigates the impact of security breaches on the relationship 

between Bitcoin cross-market prices.  Continuous security breach often triggers a collapse of 

investors’ sentiment resulting in an expected diversification of investment across platforms or 

exchange currencies. Moreover, being able to identify a pattern in such security breaches helps in 

the formation of an adaptive prediction of Bitcoin prices. Thus, the researcher studied the 

relationships among 14 Bitcoin market prices. Further, he employed network theory to study the 

impact of breach events on the Bitcoin price network. The findings of the undirected network reveal 

that cybercrime influenced the topological structure of the Bitcoin prices network. Also, the impact 

pattern depended on the size of economic loss generated after breach events. Moreover, security 

breaches can change the crucial players in the Bitcoin prices network. 

Chapter three examines the causal relationships between cross-market Bitcoin prices after 

experiencing a security breach.  The researcher employed rolling estimations of a time-varying 

network to reveal the changes that occurred in the topological structure of the Bitcoin cross-market 

prices network pre and post each cybercrime. He also classified the changes to most senders and 

receivers of information among Bitcoin pairs pre and post each breach event. The study sheds light 

on the temporal dimension of the network and the magnitude of the information spillover between 

Bitcoin cross-market prices through time. The contagion effects of cyber-attacks are mainly 

highlighted by showing evidence of the change in the flow of information between the Bitcoin prices 

network post each security breach. Moreover, the most interesting pattern was that the Bitcoin pair 

that represents the location of the Bitcoin platform became more active in sending information or 

Effective Transfer Entropy (ETE) in the network. 
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Chapter Four provides comprehensive evidence by classifying security breaches that targeted the 

Bitcoin platform into several categories. Also, the influences of each category are traced to show the 

impact of the three main classifications on the Bitcoin markets network. The Effective Transfer 

Entropy (ETE) models was used to evaluate the interdependency among Bitcoin pairs and to shed 

light on the network adjustment during episodes of turbulence. Further, network analysis is adopted 

to reveal the change in the causality relationships. The findings suggest that each category of 

cyberattack has a unique impact on the Bitcoin cross-market prices. More precisely, the cyberattack 

that influences the availability of cryptocurrencies’ platforms and generates money loss appears to 

increase the information transition among Bitcoin markets which may increase the contagion risk in 

the Bitcoin prices network. Meanwhile, the cybercrime under the confidentiality category reduces 

the causality linkages in the network.  
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1.1 Research Context 

In the history of money development and to replace the barter system, humans developed the idea 

to switch to an entity that can serve as a medium of exchange Schweikart (1991). The entity could be 

anything available regardless of the value of that object. Over time, the goldsmith’s note became 

more convenient as a store of value, where ancestors deposited their precious items with 

goldsmiths and used that note in their trading activities (Wray, 2012). However, during the 17th 

century and by the government order, central banks replaced the goldsmith's note with fiat money 

(Wray, 2012). This, in turn, meant that money was managed by governmental authority and 

replaced the old form of money from individual assets to paper notes to play a dominant role as we 

witness nowadays. However, with the new Internet technologies and the evolution of e-commerce, 

the need for a new cash payment system has emerged, with different online payment systems being 

introduced, such as PayPal  (Chuen, 2015). Meanwhile, the concept of digital currency has also 

begun to emerge and evolve (Khairuddin, 2019) where digital currency developed into several forms 

starting from electronic cash as credit or debit card, to virtual currency that opened the door to 

borderless technologies that helped to send and receive money and exchanges quickly in the case of 

the conventional currencies (Bureau, 2016). Virtual currency can be categorised into two classes. 

The concept of virtual currency first emerged in 1996; the first non-cryptocurrency was called E-gold. 

Later another digital currency was introduced in 2006 called Liberty Reserve but since this digital 

currency was used for money laundering the US government decided to stop its use (Resnick et al., 

2006).  

 The second form of virtual currency was in the form of cryptocurrency. Bitcoin was the first 

cryptocurrency founded by an anonymous entity , but can be called  Satoshi Nakamoto in 2009 

(Nakamoto, 2008b). Notably, the emergence of Bitcoin coincided with the financial crisis in 2008 

where people's trust in the traditional financial systems was at its lowest level (Marella et al., 2020). 

On 3 January, 2009, the first Bitcoin was founded, and the first notable deal that used Bitcoin 

occurred on 22 May 2010, where 10,000 Bitcoins were paid for two slices of pizza.Over time, and a 

decade since its inception, Bitcoin has become a central component in the present global economy.  

Indeed, market capitalisation for Bitcoin exceeded one trillion dollars in 2021 since the early uses of 

Bitcoin in 2009 (coinmarketcap, 2021). Further, during 2021, Bitcoin has experienced a new price 

particularly  – Therefore, the rapid demand for cryptocurrencies.  1US dollar ,000level exceeded $60

                                                           
1 https://coinmarketcap.com/ 
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Bitcoin – raised the necessity for more studies to understand the nature of the growing t digital cash 

system during the last decade.  

Cryptocurrencies such as Bitcoin suffer from serious drawbacks. Because authorities or any legal 

entities cannot intervene in Bitcoin, this may make Bitcoin vulnerable to price manipulation, which 

may generate more risk (Gandal et al., 2018). Also, The cryptocurrencies markets are unregulated 

and, because of the lawless nature and an uncontrollable environment, they can be vulnerable to 

abuse by hackers and thieves (Feder et al., 2018b).In general, users, platforms or wallets, merchants, 

and Bitcoin miners are the main four main parties of interest in the Bitcoin market (Shcherbak, 

2014). However, each Bitcoin stakeholder is exposed to certain kinds of risk that arise from 

cyberattacks. For instance, Bitcoin miners are exposed to several types of security breaches, such as 

Dropping Transactions (Sigurdsson et al., 2018) and  51% Attacks (Shanaev et al., 2019). On the other 

hand, merchants that accept Bitcoin as a medium of exchange also suffer from double-spending 

attacks and malleability attacks (Hassan et al., 2020, Pinzón and Rocha, 2016). Meanwhile, Bitcoin 

users deal with several cybercrime techniques; for example, DNS hijacking, account hijacking, SIM 

swapping, and site defacing (Sigurdsson et al., 2018). In the same vein, the Bitcoin market and 

wallets facing the same risk of security breach events. The security system vulnerability of the 

Bitcoin platform is exploited by malicious entities when they plan to steal money from the platform 

(Conti et al., 2018). And Bitcoin market price manipulation (Gandal et al., 2018). 

In 2019 there was approximately more than US $4 billion of theft in the cryptocurrencies market, 

compared to $1.7 and $1.2 billion of crypto crimes in 2018 and 2017, respectively (Forbes, 2019). 

There are several reasons behind cybercrimes.  Rauchs and Hileman (2017) reported that 75% of 

cryptocurrencies’ platforms consider Two-factor authentication (2FA) as an option compared with 

25% of platforms that provide this authentication process as obligatory. In the same vein, Anise and 

Lady (2017) stated that only 28% of investors used 2FA  compared with 56% who had never heard 

about this method. Cryptocurrencies’ platforms not only suffer from the loss of cryptocurrencies 

because of security breaches but incur costs after dealing with security breaches as the platform 

needs labour and time to repair the damaged system. Moreover, the reputation of the platform may 

be negatively impacted after the announcement of the cybercrime incident. Therefore, 

cryptocurrencies’ platforms may lose the opportunity to expand their client base in the future 

(Shanaev et al., 2019). 
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1.2 Research Aims 

The overall aim of this thesis was to shed light on the impact of cyberattacks on the Bitcoin cross-

market prices network from different angles. The thesis highlights a promising investment such as 

Bitcoin by adopting reliable analytical methods to empower stakeholders, policymakers, and 

scholars to reduce the uncertainty after breach events, which can assist them in making a coherent 

financial decision. 

The aims of each chapter are as follows: 

Chapter Two aims to trace the influences of cyberattacks that target the Bitcoin platform and incur 

money loss by employing the undirected network among Bitcoin prices to examine the changes that 

occur in the topological structure of the network pre and post each cybercrime. Also, by relying on 

centrality measures, one of the aims is to rank the top key players between the Bitcoin prices 

network and to identify whether any patterns emerge after cyberattacks. 

Chapter Three aims to detect the information transmission between Bitcoin cross-market prices 

after Bitcoin platforms experienced a security breach that led to Bitcoin going missing. In addition, 

the chapter aims to recognise whether cyberattacks can change the main receivers and prime givers 

of information in the network. The dynamic network analysis was considered to measure the 

temporal dimension of the Bitcoin network and the magnitude of the information spillover between 

Bitcoin cross-market prices in time. Which can help to highlight the contagion risk of cyberattacks 

among Bitcoin prices.  

Chapter Four aim to examine the influence of the different type of cyber-attacks that targeted the 

Bitcoin platform and conduct a comparison for the changes that may occur in the spread of 

information among Bitcoin cross-market prices. Moreover, one of the aims is to identify the market 

reaction by trace and compare the spillover effect (contagion) after the network experienced 

different forms of security breaches. 
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1.3 Research Objectives 

The research objectives of the thesis were divided into the following main objectives for each 

chapter as follows: 

The research objectives in Chapter Two are: 

 To empirically quantify the relationship among Bitcoin cross-market prices. 

 To examine the topological structure of the undirected network and compare the results pre 

and post security breaches. 

 To identify the most influential Bitcoin prices in the network through centrality measures. 

 To identify any response pattern that occurred after security breaches. 

The research objectives in Chapter Three are: 

 To design directed networks of Bitcoin pairs and the linkages in the network that depend on 

the effective Transfer Entropy (ETE). 

 To empirically estimate the influence of breach events on the topological structure of the 

network. 

 To detect any changes in the top transmitter and net receiver after the platform experienced 

cyberattacks. 

 To trace the adjustment in the flow of information among Bitcoin pairs through dynamic 

network analysis. 

The research objectives in Chapter Four are: 

 To design a network that represents the causality relationship between Bitcoin cross-market 

prices. 

 To classify security breaches that targeted Bitcoin platform depending on the threat posed. 

 To detect the contagion risk of cyberattacks and create a comparison between the 

influences of the three main categories after the network experienced each type of attack.  

 To capture any pattern that occurred after the network suffers from each category of 

security breach. 
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1.4 General Literature Review and Contributions 

Recent attention has focused on Bitcoin to identify the characteristics of the new financial cash 

system, such as its proclivity to speculative bubbles (Cheah and Fry, 2015) and Bitcoin price’s high 

volatility (Katsiampa, 2017). In the same vein, Bitcoin can also be described as a speculative 

investment (Baur et al., 2018; Baek and Elbeck, 2015). Other studies have focused on the ability of 

Bitcoin in hedging (Bouri et al., 2017a, 2017b). However, the main aim of this thesis is to evaluate 

the impact of cyberattacks on the Bitcoin cross-market prices network. Thus, the current work 

focuses primarily on literature that examined the influence of security breaches on virtual currency. 

Moreover, a number of different cryptocurrencies have unique and distinct working mechanisms; 

thus, focusing on the Bitcoin allows us to trace the impact of breach events more thoroughly and 

efficiently. 

Because of the lawless nature and an uncontrollable environment, cryptocurrencies can be 

vulnerable to abuse by hackers and thieves (Feder et al., 2018b). Moore and Christin (2013) adopted 

a logistic regression to examine 40 Bitcoin exchanges and found that security breach is more likely to 

target well-known platforms; they reported that 45% of the platforms in the study sample had 

closed. Rosati et al. (2017) reported that illegal activities, such as cyberattacks, could not be 

predicted, either when they happen or how many times they could occur. Corbet et al. (2019) traced 

17 hacking events that targeted the eight most liquid cryptocurrencies within less than a year and 

pointed out that volatility increases after each security breach. The Attorney General Office of New 

York (2018) provided a detailed report to inspect fraud and manipulation. They found that these 

types of events could occur only at the cryptocurrency exchange level. Furthermore, they pointed to 

insufficient precautionary procedures to evade suspicious behaviour in most trading platforms. 

Gandal et al. (2018) noted that the price of the Bitcoin in Mt.Gox was subject to manipulation 

motivated by the unexplained price jump within only two months. More recently, Corbet et al. 

(2019a) traced 17 hacking events that targeted the eight most liquid cryptocurrencies within less 

than a year and, after employing a DCC-GARCH model, they showed that the correlations between 

cryptocurrencies increase after cyberattack.  

 Chapter Two contributes to the current literature that examines the influences of a security 

breach on Bitcoin exchange rates by providing an opportunity to advance our knowledge of 

the impact of the security breach on the topological structure of the Bitcoin prices network, 

about which little is known. It also contributes to the literature by capturing the response 

pattern of the Bitcoin cross-market prices network after experiencing cyberattacks, which 



29 | P a g e  
 

can provide some evidence to investors and stakeholders to take more precise financial 

decisions.  

The hacking of cryptocurrency hot wallets and platforms has recently become more widespread and 

more severe (Corbet et al., 2019). There have been several cyberattacks that have managed to rob 

different types of cryptocurrencies. For instance, in 2018 one of the largest heists took place in 

Coincheck when the platform lost approximately $5002 million. Caporale et al. (2020b) conducted a 

non-linear Markov switch to evaluate the cyberattack impact on the returns of four 

cryptocurrencies. They argued the probability of cryptocurrencies being influenced negatively by 

cyberattacks and remained within low volatility throughout August 2015 – February 2019. Shanaev 

et al. (2019) analysed the data from 13 cryptocurrencies to examine the influence of 14 individual 

51% attacks. They concluded that there were ‘pump and dump’ schemes after each attack and that 

cyberattacks have a negative influence on the return of cryptocurrencies. Azqueta-Gavaldón (2020) 

investigated the impact of media coverage of security breach that targeted the cryptocurrencies 

market. After using the Granger causality test, the author described a causal relationship between 

narratives related to cybercrimes and cryptocurrencies prices.  

 The findings in Chapter Three make an essential contribution to the field by showing that 

cyberattacks can change the Bitcoin prices network structure. Moreover, after using high 

frequency data (6-hours frequency) the chapter contributed by showing that the Bitcoin pair 

that represents the location of the Bitcoin platform became more active in sending 

information. Referring to the contagion risk of cyberattacks from one market to all other 

Bitcoin markets. Finally, Chapter Three aims to contribute to the growing literature by 

exploring the dynamic dimension of how the network of Bitcoin price evolves after breach 

events. 

Several studies investigated the impact of cyberattack that influences the availability of the 

Bitcoin platform (Johnson et al., 2014, Feder et al., 2017, Abhishta et al., 2019). Meanwhile, 

cyberattacks can be destructive and generate money loss. Thus, a number of researchers 

considered this type of cyberattack that targeted the Bitcoin platform (Pinzón and Rocha, 2016, 

Sigurdsson et al., 2018, Hassan et al., 2020). However, only limited attention has been paid to 

examining the impact of breach events that cause unauthorised access to the Bitcoin cross-

market prices.  

                                                           
2 See www.hackmageddon.com  a database collect all cyberattacks that occurred around the world. 
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Several attempts have been made to investigate the spillovers among cryptocurrencies. 

Koutmos (2018) analysed the data from 18 major cryptocurrencies and concluded that 

cryptocurrencies had become more interconnected so the risk of contagion had become 

significantly possible. Caporale et al. (2021) examined the daily data for Bitcoin, Ethereum and 

Litecoin to highlight the changes that may occur in the volatility spillover after the market 

experienced a security breach. In their comprehensive examination, they were able to show that 

cyberattacks increase the linkages among three major cryptocurrencies.  

 Chapter Four makes a contribution to current related works on the impact of breach events 

by demonstrating a comparison for different type of cyberattacks to trace the changes that 

may occur in the information transmission among Bitcoin cross-market prices. Also, it 

provides evidence that each type of cyberattack has a unique impact on the Bitcoin prices 

network. 
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1.5 Thesis Structure 

The structure of this thesis comprised five themed chapters, including this introductory chapter. The 

remaining sections are planned as the following: 

Chapter Two presents the impact of the security breaches on the relationship between cross-

market Bitcoin prices. In this chapter, network theory is employed to explore the changes that 

occurred pre- and post-cybercrimes. It also discusses who the key player among the Bitcoin pair was 

by relying on the network centrality measurements.  

Chapter Three focuses on the changes that occurred in the causality relationship as a response to 

the cyberattack events and shows the impact of breach event on the top senders and receivers in 

the directed network. The dynamic analysis is included in this chapter to estimate the depth of the 

impact of cyberattacks. 

Chapter Four sheds light on the different types of cyberattacks and sets up a comparison to 

capture the network adjustment on the Bitcoin pair interdependency. Several breach events are 

included in this chapter to confirm that the same pattern happened after each security breach from 

the same category. 

 Chapter Five comprises the conclusions drawn by this thesis and presents the main implications of 

this work.  
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Chapter 2                                                                      

Who is the Key Player in the Cross-market Bitcoin 

Prices Network after a security breach?  
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2.1 Introduction  

In 2008, a novel paper introduced a new cash system, without intervention from any authority or 

legal entity, known as Bitcoin (BTC) (Nakamoto, 2008a). This decentralised system provides more 

privacy to individuals, especially for those who unwilling to sharing their banking information, as 

they only need a digital signature to use Bitcoin. However, Bitcoin and other cryptocurrencies have 

been subjected to several cyberattacks. According to Gattiker (2004), a security breach can be 

defined as any event that generates unauthorised access, which bypasses the security mechanisms, 

to any kind of device, network, service, and database. In 2018 there was approximately $1.7 billion 

of theft in the cryptocurrencies market (CNBC, accessed 25 April 2019) and many Bitcoin exchange 

platforms dealt with several security breaches, such as the well-known Bitcoin exchange Mt.Gox, 

which was subjected to a number of breaches in 2012 and 2014.  

The aim of this chapter was to trace the influence of hacking events that targeted Bitcoin exchange 

platforms and generated money loss by constructing a network dependant on the relationship 

among Bitcoin exchanged prices in various currencies and then examine the changes that occurred 

in the topological structure of the network pre- and post-cybercrime.  Depending on centrality 

measures, the study also aimed to classify the most crucial Bitcoin pairs pre and post each event. 

Finally, it aimed to recognise the network response pattern as a reaction to breach events.  

The present study contributes to the current literature that examines the influences of a security 

breach on Bitcoin exchange rates in several ways. First, it sheds light on the link between the size of 

economic losses and the impact of cyberattacks. Second, it contributes by introducing evidence that 

cyberattacks can influence the most influential and crucial player of the Bitcoin cross-market prices 

in the network and change the key player after an attack. Third, the current work contributes to the 

literature by examining six cyberattacks events on 14 Bitcoin markets by employing network theory. 

This study addresses the central question of how cybersecurity on Bitcoin exchange platforms can 

influence the structure of the cross-market Bitcoin price network. Another critical question is 

whether there was a shifting pattern in the network over various points of attack. Drawing upon 

centrality measures, as specified in section three, this raises an additional question about how a 

security breach can impact the network and change the ranking of the most crucial Bitcoin/currency 

pairs pre and post each event. 
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The present study fills an empirical gap by providing concrete evidence that the network structure of 

Bitcoin market exchange prices has changed as a response to cyberattacks. Figure A 1 and Table 1- 1 

in the appendix, illustrates the area that this study targets in a quest to fill the gap between three 

major aspects wherein the intersection between two major aspects (two circles) represents areas of 

study that have been investigated and there was reported evidence of the relationship between 

them. However, in the area where the three major aspects intersect, no previous study has 

investigated the impact of cyberattacks on the relationship among the Bitcoin cross-market prices 

network. Several studies (such as Yip et al., 2012, Leukfeldt, 2015, Phillips et al., 2015), have 

employed a network analysis approach to examine and assess the risks of cybercrime. Meanwhile, 

there has been limited use of the network analysis approach and graph theory in the Bitcoin market 

(Baumann et al., 2014, Lischke and Fabian, 2016). In the same vein, several studies have investigated 

the impact of security breaches on the Bitcoin ecosystem (Vasek and Moore, 2015, Feder et al., 

2018a, 2018b). However, to the best of the author’s knowledge, this is the first paper that 

encompasses three significant aspects and traces the impact of cybersecurity attacks and breach 

events on the topological structure of the cross-market Bitcoin price network.  

The rest of the paper is structured as follows. Section 2 sets out the theoretical scope of the study by 

looking at the academic literature on Bitcoin and network theory. Section 3 describes the data and 

the methodology, by using network analysis and centrality measures. Section 4 presents the 

empirical results. Section 5 concludes. 
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2.2 Related Work  

In recent years, there has been increasing attention to cryptocurrencies markets. The past 10 years 

have seen increasingly rapid advances in the field of cryptocurrencies; Bitcoin, the first 

cryptocurrency, was introduced in 2009 (Nakamoto, 2008a). Compared to other cryptocurrencies, 

Bitcoin has been identified as the major cryptocurrency with a significant market capitalisation of 

almost $89 billion (CoinMarketCap, 2019). Therefore, more recent attention has been given to 

identifying the characteristics of the new financial cash system, such as its proclivity to speculative 

bubbles (Cheah and Fry, 2015) and the Bitcoin price’s high volatility (Katsiampa, 2017). In the same 

vein, Bitcoin can also be described as a speculative investment (Baur et al., 2018, Baek and Elbeck, 

2015). Other studies have focused on the Bitcoin exchange rate and draw our attention to the 

determinant of the exchange rate and the motivation behind the price fluctuations (Li and Wang, 

2017). Others have investigated the ability to use Bitcoin in hedging (Bouri et al., 2017a, Bouri et al., 

2017b). Cheah et al. (2018) drew attention to crucial evidence that there is a fractional cointegration 

in the cross-market Bitcoin prices and point out the inefficiency of the Bitcoin market and the 

influence of uncertainty on the market. This point of view is supported by  Gillaizeau et al. (2019a) 

who questioned the cross-market Bitcoin prices from another angle and pointed out that 

uncertainty has a high impact on the spillover into volatility. They further added that the Bitcoin 

exchange rate to Euro currency can be categorised as high connectivity with other cross-market 

prices. As the number of studies examining Bitcoin increases, it may help to expand our knowledge 

and understanding to obtain some insight into the characteristics of cryptocurrencies markets. Thus, 

this paper examines cross-market Bitcoin prices allied with a nascent but growing literature that 

highlight the impact of cyberattacks on Bitcoin prices. 

Several attempts have reported the impact of security breach that targeted cryptocurrencies market 

as showed in table 1-1 in the appendix, where recent evidence suggests that cryptocurrencies 

market are not isolated completely. A number of authors examined the spillover among 

cryptocurrencies and commodities.  Huynh et al. (2020) employed Transfer Entropy to examine the 

spillover between gold and 14 different types of cryptocurrencies.  They argued that a portfolio 

consists of cryptocurrencies and gold can be considered as a good combination, where gold plays a 

significant role as a hedging tool in that portfolio. Similarly, Gkillas et al. (2020) identified the 

spillover effect after using high-frequency data between crude oil, gold, and Bitcoin. They described 

the robust association between gold and Bitcoin; likewise the relation between Bitcoin and crude oil. 

This point of view was supported by (Ji et al., 2019b), who addressed the weak linkage between 

energy commodities and the top five cryptocurrencies included in the study. Drawing on Granger 
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causality test and transfer entropy (Jang et al., 2019) identifies causal association between asset 

markets and Bitcoin market. And there was dynamic interactions from Bitcoin market with major 

asset markets. The volatility spillover between Bitcoin market and other asset markets such as 

bonds, commodities, stocks, currencies and equities was examined by Bouri et al. (2018). They 

argued that Bitcoin takes more volatility compared with the amount of volatility that transfers it. 

Furthermore, linear and non-linear contagion was studied between traditional financial markets and 

Bitcoin market, Matkovskyy and Jalan (2019) claimed that after the first use of Bitcoin futures there 

was highly contagion effect from traditional financial markets to Bitcoin market. However, Zeng et 

al. (2020) drew attention to the connectedness between Bitcoin and financial markets. They 

described the connectedness between the study variables as weak. In summary, Bitcoin plays a 

central role in hedging effectiveness and diversification risk for many assets, however in term of safe 

haven Bitcoin can only serve for a few financial markets. Furthermore, the effect of cyber-attacks on 

the linkages between Bitcoin markets networks and other asset markets is nearly underexplored. 

2.2.1 Security breaches in cryptocurrencies markets 

The digital currencies markets are unregulated and, because of the lawless nature and an 

uncontrollable environment, they can be vulnerable to abuse by hackers and thieves (Feder et al., 

2018b). Moore and Christin (2013) recorded these by adopting a logistic regression to examine 40 

Bitcoin exchanges and argued that security breach is more likely to target well-known platforms; 

they further pointed out that 45% of the platforms included in the study had closed, indicating that 

there is a higher chance that the less popular platforms shut down their services. However, the 

unexpected exit of one of the largest Bitcoin exchange, Mt.Gox in 2014, shows that even a well-

known platform might be subjected to cyberattacks which force the platform to close. Rosati et al. 

(2017) reported that illegal activities, such as cyberattacks, could not be predicted, either when they 

happen or how many times they could occur.  Numerous studies attempted to explain the influence 

of security breaches on the virtual currency through a variety of criminal activities, including stealing  

“brain” wallets (Vasek et al., 2016), money laundering (Möser et al., 2013), Pump and Dump 

Schemes (Feder et al., 2018b) and suspicious activity, such as Ponzi schemes (Vasek and Moore, 

2015). The comprehensive study by Bacao et al. (2018) drew attention to the dominant role of 

Bitcoin and there was a strong correlation among the five cryptocurrencies included in their study. 

Drawing on a wider range of studies, Conti et al. (2018) undertook a broad survey of the challenges 

faced by Bitcoin security and argued that Bitcoin has been subjected to different forms of security 

breaches, such as double spending, mining pool attacks and Bitcoin network attacks, all of which can 
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target the Bitcoin platform, wallet, and mining activities. As noted in the report released by the 

Attorney General’s Office of New York (2018), fraud and manipulation events could occur only at the 

cryptocurrency exchange level. The results showed that there are insufficient precautionary 

procedures and a lack of cybersecurity protocols to evade suspicious behaviour in most trading 

platforms. The report also, unsurprisingly, pointed out that several cryptocurrency platforms did not 

provide security protection.  

The influence of cyberattacks can depend on the nature of the breach, whereby cybercriminals have 

adopted several methods and different ways of attacking, each of which has its own effect on the 

markets (Campbell et al., 2003). Distributed denial-of-service (DDoS) is an example of such cyber-

attacks that influence the availability of exchange services. Vasek et al. (2014) investigated 142 

distributed denial-of-service attacks that targeted cryptocurrency markets, especially on 40 Bitcoin 

services, and found that this kind of attack was more likely to target platrform services, e-wallets 

and large mining pools because cybercriminals receive significant gains from these areas compared if 

they targeted individuals. In the same vein, after examining  37 DDoS attacks that targeted well-

known Bitcoin exchange Mt.Gox, Feder et al. (2018a) argued that the trading activities were affected 

on the day the denial-of-service occurred. Indeed, mining malware or mining botnets are other 

methods for cybercriminals, whereby they try to hijack computer CPU power from a significant 

number of users around the world and use it in Bitcoin mining (Huang et al., 2014). Similarly, 

cybercriminals can manipulate the Bitcoin price. By relying on the data leaked from the largest 

Bitcoin exchange, Mt.Gox, in early 2014, Feder et al. (2018b) pointed out that the price of the Bitcoin 

in Mt.Gox was subject to manipulation. Motivated by the unexplained price jump within only two 

months, where the price rose by more than $800 in late 2013, the study presented evidence in the 

form of two suspicious activities that influenced the Bitcoin price. This argument was supported by 

Griffin and Shams (2018), who investigated the suspicious relationship between a digital currency 

called “Tether” and other cryptocurrencies, including Bitcoin, pointing out that when the Bitcoin 

price declines, the demand for Tether rises, which can later drive the Bitcoin price to increase. They 

concluded that Bitcoin and other cryptocurrencies prices had been manipulated, by using Tether as a 

tool to offer price support. Collectively, these studies can provide support to this study’s argument, 

as they provide evidence of the critical role of breach events and their influence on the Bitcoin 

market.  
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2.2.2 Market efficiency of Bitcoin and investors’ sentiment 

This study is a quest to establish a network of cross-market Bitcoin prices and to evaluate how the 

structure of the network can change after experiencing cybercrime events over time, particularly 

focusing on the large-scale breaches which have occurred in the last five years. Therefore, after the 

security breach hit the Bitcoin market, this incident may deliver new information to the market. 

Thus, it is crucial to shed light on Bitcoin market efficiency to recognise to which degree Bitcoin price 

reacts to the news. An early study conducted by Urquhart (2016) examined the Bitcoin price in USD 

from 2010 until mid-2016, employing a battery of tests. The results revealed that the market was 

significantly inefficient over the whole period; however, the findings also showed that the market 

could be efficient if the sample was split and that can be only in the latter period. This argument that 

the Bitcoin market is inefficient was supported by (Al-Yahyaee et al., 2018, Zargar and Kumar, 2019). 

Conversely, following a review of Urquhart (2016), Nadarajah and Chu (2017) used eight different 

tests and found that the Bitcoin market could be efficient but in a weak form. Similarly, this point of 

view was supported by (Tiwari et al., 2018) and Sensoy (2019), who provided in-depth research by 

using high-frequency data to analyse Bitcoin prices in US dollars and the Euro. They found that, 

depending on the intraday data, the level of market efficiency increased.  

The recent evidence suggests that the level of Bitcoin market efficiency has increased, as Vidal-

Tomás and Ibañez (2018) showed that several pieces of research focused only on the weak form of 

efficiency and that there is an absence of studies that examine the other levels of market efficiency, 

as introduced by (Fama, 1970). Therefore, Vidal-Tomás and Ibañez presented semi-strong efficiency 

after adopting an event study to examine two leading Bitcoin platforms – the Mt.Gox exchange and 

the Bitstamp exchange. The study observed public information in the form of monetary policy news 

and events regarding the Bitcoin market. So, after they traced the market reaction to negative and 

positive news, they concluded that the Bitcoin market tends to be more efficient, particularly with its 

events, where the Bitcoin price is influenced by it is own good and bad announcements. On the 

other hand, on the subject of monetary policy news, the Bitcoin prices did not show any response, 

indicating that the market was not efficient in that case. Overall, drawing on the studies examining 

the Bitcoin market efficiency, there seems to be some evidence to indicate that the level of 

efficiency increases over time and that the Bitcoin Price can reflect its own incident.  

In 2018 and 2019, overall of 98 published works in Finance Research Letters having the keyword 

Bitcoin. This growing academic attention in this topic follows one of the most important events 

when the price of the Bitcoin rose from $1,000 to approximately $20,000 during the 2017–2018 in 
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just a few months. For researchers, the Bitcoin market has received considerable critical attention 

because the abundance of available data and the unique structure of the new cash system. The 

robust attendance of individual investors make the Bitcoin market an ideal place to arbitrage 

opportunities between platforms, the Bitcoin price’s high volatility, weak regulation and lack of 

fundamental value. Thus, this make Bitcoin much popular among investors and scholars. 

One of the characteristics of the new financial cash system such as Bitcoin, its proclivity to 

speculative bubbles (Cheah and Fry, 2015). Where the sentiment can become more influence on the 

period around the Bitcoin price bubble (Guégan and Renault, 2021).  Baig et al. (2019) examined the 

relationship among investors sentiment and the price level of Bitcoin and suggest that there was a 

strong positive relation. Furthermore, Eom et al. (2019) suggested that Investor sentiment has 

several effect on Bitcoin, where it has an information effect to predict Bitcoin volatility, and in term 

of predictability of Bitcoin price fluctuations. Several studies argued that the price of Bitcoin effect 

by social network sentiment (López-Cabarcos et al., 2019). Also, investors’ sentiment disagreement 

generate significant high volatility in Bitcoin prices (Ahn and Kim, 2020). On the other hand, 

Happiness sentiment cab be considered as a robust predictor for Bitcoin returns, additionally, Bitcoin 

returns seem to be less driven to the sentiment related to macroeconomic news compared with 

sentiment diffused through social media (Naeem et al., 2021). 

 Azqueta-Gavaldón (2020) investigated the impact of media coverage of cryptocurrency narratives 

and its causal relationship with prices. Furthermore, he listed four types of narrative, one of which 

was the media coverage of security breaches in cryptocurrencies markets. The author argued that 

there was a unidirectional causal between narratives related to cybercrimes and prices. Thus, the 

announcement of the incident that the Bitcoin market or platform targeted by security breaches this 

might influence the investors’ sentiment. Therefore, continuous security breach often triggers a 

collapse of investors’ sentiment resulting in an expected diversification of investment across 

platforms or exchange currencies.  

2.2.3 Social Network theory 

2.2.3.1 Social network analysis  

Network theory becomes a key aspect in evaluating the impact of a financial crisis and the market’s 

turbulence (Han, 2019). In recent years, there has been increasing interest in using network analysis 

in different stock markets, such as the Brazilian stock market (Abreu et al., 2019), the Chinese stock 

market (Han, 2019), and the Global stock market (Lee et al., 2019). In addition, the use of this 
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framework has also been adopted in the foreign exchange market (Mai et al., 2018) and the 

commodity markets (Bekiros et al., 2017, Zhang and Broadstock, 2018). 

Most importantly, several studies have use network analysis to try to shed light on the changes 

which occur in the topology feature of the financial network after dealing with shocks (Kuzubaş et 

al., 2014, Cheng and Zhao, 2019). Therefore, their findings can support this paper as we aim to build 

a network depending on the correlation between Bitcoin exchanged prices in various currencies to 

assess the impact of security breach events. Thus, this framework of complex network analysis can 

be adopted to describe the changes in the Bitcoin network structure. 

The behaviour of the individual exchange price of Bitcoin into another currency is generally 

examined by time series analysis. However, as the Bitcoin exchange price expands to various 

currencies, it becomes more challenging to capture the complex inter-relationship between cross-

market prices and to show the hidden information in huge time series. Therefore, to evaluate the 

influence of security breaches on Bitcoin cross-market exchange prices, network theory can provide 

an analytical tool to view a complex interrelationship and capture the impact of a certain event on 

the interconnections between the variables, which can help to explain a certain phenomenon (Allen 

and Babus, 2009).   

In complex networks, there are significant numbers of nodes that interact with other nodes and 

each one has a different level of impact on the network at a certain point of time. Hence, it is 

important to minimise losing valuable information in the network and to recognise the vital nodes 

during any events, or to identify the most vulnerable nodes throughout a time of turbulence, which 

can enable an appropriate response. Thus, centrality measures have a crucial role in social network 

analysis, by offering a mechanism to rank and classify the nodes in the network (Heiberger, 2014). 

Recently, many researchers have paid particular attention to using centrality measures to categorise 

and rank the key players in a complex network (Riquelme et al., 2018, Saito et al., 2016, Bloch et al., 

2017). The development of this concept is shown as a flowchart in Figure 1, below.  

Figure 1: Development of previous studies introduced by well-known researchers. 
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(Bavelas, 1950) (Beauchamp, 1965, Bonacich, 1972, Borgatti and Everett, 1997, Freeman, 1978, 

Brandes, 2001, Kitsak et al., 2010, Newman, 2001, Opsahl et al., 2010, Zeng and Zhang, 2013, Liu et 

al., 2013, Liu et al., 2016, Wang et al., 2017). 

 

2.2.3.2 Bitcoin and Network analysis 

A growing body of literature has examined Bitcoin by using network analysis from a different point 

of view. Lischke and Fabian (2016) examined the Bitcoin network by presenting graph analysis and 

used centrality measures to characterise the Bitcoin network. They pointed out that the small-world 

phenomenon can be present in the network. On the other hand, Ober et al. (2013) adopted network 

theory to examine the degree of anonymity in Bitcoin. Zięba and Śledziewska (2018) studied the 

relationship between prices of cryptocurrencies by using the minimum spanning tree method, and 

they reported that Bitcoin plays crucial roles in the cryptocurrency market. They also pointed out 
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that there was no significant contagion from Bitcoin demand shocks to other virtual currency in the 

market. Drawing on the same method, (Francés et al., 2018) employed the minimum spanning tree 

technique,  and analysed 16 cryptocurrencies, to show that Ethereum has a vital role and plays as a 

benchmark currency instead of Bitcoin. In the same vein, Stosic et al. (2018) questioned the 

behaviour of the cryptocurrency network and compared it to the different financial markets and, by 

using minimum spanning trees, they argued that the cryptocurrency market has a unique behaviour 

that can differ from other financial markets. 
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2.3 Data and Methodology  

2.3.1 Data characteristics  

The data in this chapter were collected from two websites (www.bitcoinity.org and 

www.bitcoincharts.com), covering the period between 1/11/2013 – 30/12/2018, for the 14 

Bitcoin/currency pairs that are included in this chapter, as shown in Table A 1, in the appendix. The 

cross-market Bitcoin price was obtained from different exchange platforms, which can fairly 

represent the market trading activities, and have a decent market share in the targeted currency 

over the study period. Moreover, the reason behind selecting several platforms for one Bitcoin pair 

was back to the reason that some platforms closed after a certain time; for instance, Mt.Gox, in the 

case of BTC/JPY. Therefore, to construct continuous time series data, the author gathered data from 

other exchange platforms that can fairly represent the whole market. In addition, this study 

employed a daily weighted price which can reflect the trading activities throughout the day.  

As mentioned earlier in the second part of this chapter, a security breach can target a Bitcoin mining 

platform, wallets, individuals, or exchange platforms. In addition, these cybercriminals can cause 

enough chaos beginning with stealing Bitcoin from different targets or blocking platform services 

and even diverting computer power from a significant number of users around the world to achieve 

control of mining power (Shanaev et al., 2019). Therefore, the damage caused by cyberattacks may 

pose a systemic threat to the exchange platforms and may also cause reputational penalties that can 

devalue traded Bitcoin. Thus, this chapter examines the influence of breach events that have 

targeted Bitcoin exchanges and caused money loss. The security breaches considered in this chapter 

were collected depending on public sources on the Internet that published reports and news articles 

over the period 2014–2018, which covers several episodes of security breaches, as presented in 

Table 1. The table consists of a list of six events and contains the dates of cybercrime and the names 

of the Bitcoin platforms that experienced large-scale security breaches, recording the amount of 

Bitcoin missed and the cost of each breach at the time it happened.  

Table A 3 in the appendix reports the summary statistics for each returns series. The number of 

observations, 1,887, are for all variables except for BTC/CNY, where in October 2017, the chain 

government decided to end Bitcoin trading. BTC/SGD have the highest value of standard deviation 

where BTC/JPY and BTC/GBP show a high range of maximum value. On the other hand, BTC/VND 

reported the minimum values of returns compared with other cross-Bitcoin exchange rates. 

BTC/RUB and BTC/VND achieved the highest daily average return. In addition, all positive values of 

skewness imply that the cross-market exchange returns are skewed to the right, while in cases of 
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negative value they are skewed to the left. Meanwhile, all cross-market returns series displays 

leptokurtic behaviours, with higher values for BTC/JPY and BTC/GBP. The Jarque-Bera test results for 

all returns series indicate a non-normality distribution.  

Table 1: Cyberattacks targeted Bitcoin exchange platforms between (2014- 2018). 

Note: The event collection depended on public sources that published reports and news regarding 
each breach.  

2.3.2 Methodology 

The impact of cyber-attacks on the cryptocurrencies market has been measured using several 

approaches (Conti et al., 2018). This study employed social network analysis to capture the influence 

of security breaches on the cross-market Bitcoin prices network. The advantages of adopting this 

method are reflected in its ability to display results as a visualised network or as a graph, which can 

give the chance to examine the impact pre and post each event for all the variables included in the 

study. Moreover, this model can provide tools that assess the topological structure of the Bitcoin 

exchange prices network and sort them according to the role they played in the network. Finally, by 

establishing a network of Bitcoin exchange prices pre and post each attack considered in this 

chapter, the method helps by detecting and capturing whether a pattern emerged after cyber-

attacks.  

To estimate the effect of these events, the analysis was conducted in two steps. First, the data were 

divided into six samples. Each sample represented an event where cyberattacks targeted a Bitcoin 

exchange platform. The study focused on each attack by analysing the three months pre and post 

each attack. After selecting a time window, the weighted undirected network constricted, depending 

on the significant correlation between the cross-market Bitcoin prices. Second, the key factors of the 

topological structure of the cross-market Bitcoin price network were computed and the results were 

compared to assess any influence that may have occurred in the network. Also, the study used 

No Date Bitcoin Missed Amount  Platform Country of Platform 

1 14-Feb-2014    850,000  $473,000,000 Mt.Gox Japan 

2 5-Jan-2015      19,000  $5,200,000 Bitstamp EU 

3 15-Jan-2016         1,300  $6,000,000 Cryptsy  United States 

4 2-Aug-2016    120,000  $72,000,000 Bitfinex Hong Kong 

5 22-Apr-2017         3,816  $5,000,000 Yapizon South Korea 

6 20-Sep-2018         5,966  $38,000,000 Zaif Japan 

Total   1,000,082 $599,200,000     
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centrality measures, which enabled the ranking of the Bitcoin exchange prices to illustrate the 

changes that may have occurred pre and post each cyber-attack. 

2.3.2.1 Network constriction  

A network representation of cross-market Bitcoin prices can be shown by a graph G (V, E), where the 

notation V signifies the actors, elements, or nodes In this study, it refers to the Bitcoin prices in 

various currencies which are drawn in the asset graph as circles. On the other hand, E is a set of 

edges or links that state the relations between Bitcoin exchange prices. Edges can be drawn as a line 

that connects two Bitcoin markets in cases there was a significant correlation between nodes (Lee et 

al., 2019). Networks can be classified depending on the direction of the relationship between nodes, 

where, in an undirected network, the edges between two nodes are always the same, indicating that 

there is a relationship but without any information about the direction of this relationship and which 

nodes influence the other nodes. On the other hand, in a directed network, the edges represent the 

connection between nodes and also show the direction of this relationship. In network theory, the 

two nodes i and j can be called connected if there exists at least one way that i and j lie in one path 

in the network. The network can be considered connected when every pair of its nodes is 

connected; otherwise, it is called disconnected (Serrat, 2017). Moreover, the density of a graph is 

the total number of present edges divided by the maximum number of possible edges in this graph 

(Silverman, 2018). The value of density ranges between zero and one, and if all possible pairs of 

edges are present, then the density of the network equals one, and the network can be considered 

as a complete graph. However, if all possible edges are not present in the network, then the density 

equals zero, and the network is a disconnected graph. Therefore, the higher value of density can be 

a positive indicator that signifies a decent level of the interrelationship between the nodes (Bitcoin/ 

currency). In an undirected network with N nodes, the maximum possible number of links equals:  

 the density of a network =  
𝑁(𝑁−1)

2
.      (1) 

The daily continuously compounded Bitcoin exchange rate return was computed by taking the first 

difference of the log-transformed daily weighted price series, and by using the Pearson correlation 

coefficient, a well-known measure that can capture the relationship to compute the correlations 

between variables of a study. It can be expressed as follows: 

𝜌𝑖𝑗 =  
∑ (𝑒𝑖− �̅�)(𝑐𝑖−𝑐̅)𝑛

𝑖=1

√∑ (𝑒𝑖− �̅�)𝑛
𝑖=1  √∑ (𝑐𝑖−𝑐̅)𝑛

𝑖=1

 ,         (2) 
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where ρij is the significant correlation for two variables ei and ci. The average returns of the cross-

market Bitcoin prices were denoted as ē and ć, with n being the sample size. In this chapter, 

correlations between cross-market Bitcoin returns are estimated over the whole period, as well as in 

rolling samples (with each sample representing an event where cyber-attacks hit Bitcoin platforms) 

to uncover possible differences in  “normal” and “cyber-attack” times. The two pairs of Bitcoin 

exchange prices are assumed to behave similarly if the correlation ρij between the returns of Bitcoin 

exchange prices is equal to or higher than the specified threshold (θ  = 0.6). Therefore, for any 

relationships under the specified threshold, these values are ignored. This study employs a different 

level of threshold to check the robustness of this study’s analysis results by changing the specified 

threshold to θ = 0.7 and examining the changes that may occur in the Bitcoin network structure after 

cyberattacks and any difference of centrality measurement. To visualise a network graph based on 

the correlation results between all cross-market Bitcoin prices, the adjacent matrix A is constructed 

as: 

1   if ρij ≥= θ and i ≠ j  Aij = 

0 otherwise. 

 

2.3.2.2 Centrality measurement 

A significant volume of published studies has highlighted the importance of centrality in the context 

of network theory, where researchers used centrality measures to categorise and rank the key 

players in a complex network (Du et al., 2015, Nie et al., 2016, Grassi et al., 2019). Each one of these 

centrality measures has a certain role that can capture the unique features of each variable in the 

network (nodes). In the network, a node that has a higher centrality value may consider a crucial 

element. Thus, the researcher employed several centrality measurements in this chapter and 

computed the centrality measurements pre and post each cyberattack to assess the influence of 

these events on the unique features of Bitcoin prices. Additionally, the aim was to capture and 

understand the changes that occurred in the network's behaviour after the experience of security 

breaches. 

2.3.2.3 Degree Centrality (DC) 

Degree centrality is a well-known concept in graph theory and it can be a useful measurement to 

examine the centrality in undirected networks. It measures the importance of a node due to its 

connection with other nodes, which is defined by the number of links or edges that exist with other 
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nodes in the graph. In this current case, this measurement helps to rank Bitcoin prices due to the 

number of connections with other cross-market Bitcoin prices. In undirected networks, the degree of 

node i is given as:  

 𝐷𝑐(𝑖) =  ∑ 𝐴𝑖𝑗  𝑁
𝑗=1 = ∑ 𝐴𝑗𝑖 𝑁

𝑖=1    ,               (3) 

Where N is the number of neighbours for node𝑖. Indeed, a higher value of node degree implies that 

the Bitcoin pair has more relationships than other nodes in the network. However, this 

measurement looks only at the numbers of edges linked into a node and ignores the weight of the 

edge. Therefore, as this study employed undirected weighted networks, the analysis was extended 

to include the weighted degree centrality (WDC) of a node to label how strong the relationships 

among Bitcoin markets are. This can be defined as follows: 

𝑊𝐷𝐶(𝑖) =  ∑ 𝑊𝑖𝑗
𝑁
𝑗=1   ,         (4) 

Where N represents the number of neighbours of node 𝑖 and Wi,j states the weighted value of edge 

that linked node 𝑖  with node j. A higher value of weighted degree centrality (WDC) implies that 

Bitcoin exchanged currencies have a higher association to other Bitcoin prices. Comparing the results 

of the DC and WDC measurements pre and post breach events can provide a better understanding 

of the changes that happened in the network structure. Also, such a comparison can indicate any 

changes in the most critical players in the Bitcoin prices network. 

2.3.2.4 Betweenness centrality (BC) 

 The second notable centrality measurement is betweenness centrality (BC) which measures and 

ranks all nodes in the network that acts as a gatekeeper between other nodes. In other words, it 

measures the number of times that a node is found as a bridge to link other nodes on the shortest 

path. Freeman (1978) initially developed this concept and later Brandes (2001) and Opsahl et al. 

(2010) developed a formula of betweenness to be calculated on weighted networks. The Bitcoin pair 

that has the higher value of betweenness indicates the important role of this pair in the network, by 

being a gatekeeper or acting as a reference for other Bitcoin prices. Therefore, those Bitcoin 

exchange rate prices with a higher value of betweenness, in general, perform a vital role in the 

Bitcoin cross-market price network, due to their capability to raise the overall efficiency of the 

network (Kim et al., 2011). The betweenness centrality of node i is given as: 
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𝐶𝑏(𝑖) = 2/(𝑁 − 1)(𝑁 − 2) ∑ (
𝜎𝑟,𝑑(𝑛)

𝜎𝑟,𝑑
)   𝑟≠𝑛≠𝑑  , (5) 

Where r and d are nodes in the network. In this current case it is the cross-market Bitcoin price,  σr,d 

signifies the number of shortest paths from r to d, and σr,d (n) is the number of shortest paths that n 

found between the r to d nodes. Again, the higher value of BC for a specific Bitcoin pair implies the 

vital role that the node played in the network because it can control the flow and movement of 

information and news between many other Bitcoin exchange rate nodes. After examining the 

influence of pre and post security breach on Bitcoin prices, this type of centrality can help to indicate 

the behavioural pattern emerging in the network after suffering from breach events. In particular, 

this can be shown by tracing the performance of the Bitcoin pair that represents the location of the 

trading platform that was damaged by cyberattacks.  

2.3.2.5 Closeness centrality (CC) 

Closeness centrality was first introduced by Dijkstra (1959) to calculates the shortest paths between 

node (i) to all other nodes in the network. Over the past decade, much more published research on 

computing the shortest paths in the network has become available (Peay, 1980, Wasserman and 

Faust, 1994, Newman, 2001; Yang and Knoke, 2001, Opsahl et al., 2010). This measurement ranks all 

nodes in the network as being a broadcaster. In other words, closeness centrality computes the time 

that is needed to disseminate some information from a particular Bitcoin/currency to other cross-

market Bitcoin prices in the network. Although it is quite similar to betweenness centrality, this 

measurement (CC) is more appropriate in conditions where a Bitcoin/currency acts as a generator of 

information, rather than being a gatekeeper in a case of betweenness. However, this type of 

centrality measurement in the network is influenced by the numbers of nodes in the network. It can 

be expressed as follows: 

𝐶𝐶(𝑖) = 1/< 𝐿(𝑠, 𝑡) >    ,                           (6) 

Where <L(s,t)> is denoted as the length of the shortest path between node s and node t. The value 

of closeness centrality (CC) ranges from zero to one for each node in the network. In our case, the 

higher value of closeness centrality signifies that a pair of Bitcoin impacts the whole cross-market 

Bitcoin network prices and has the ability to quickly disseminate information.  
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2.3.2.6 Eigenvector Centrality (EC) 

The final centrality measurement is eigenvector centrality (EC), which was first introduced by Katz 

(1953) and developed by Bonacich (1972). The idea was to classify the nodes in the network not only 

based on how many nodes have a direct connection with other nodes in the network, but to extend 

this further by focusing on the influential role of the node over the whole network and include other 

indirect connections in the count.  Eigenvector Centrality (EC) takes into account the power of the 

connection or the weight of edges. Therefore, the node that has a relationship with other influential 

nodes (in this study’s case, with other influential Bitcoin/currency) will have a higher value of 

eigenvector centrality. In other words, this type of measurement sorts the nodes, depending on the 

most active node in the network that has a connection with other higher effective nodes. It can be 

calculated as follows: 

𝐸𝐶𝑥𝑖
=

1

𝜆
 ∑ 𝑋𝑗𝑗 ∈ 𝑀(𝑣)

=  
1

𝜆
 ∑ 𝐴𝑖𝑗 𝑥𝑗𝑗 𝜖 𝐺  ,                           (7) 

Where 𝜆 denotes as a constant. Aij indicates the adjacency matrix, G is the total graph, and M(V) 

implies the number of neighbours to node Xi. In our analysis, a higher value of eigenvector centrality 

(EC) between Bitcoin cross-market prices implies that this pair has a connection to other strong 

Bitcoin pairs and might be important to help shed light on the role that Bitcoin/currency plays in the 

network. 
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2.4 Main Results  

Before analysing the influence of cybercrime on the cross-market Bitcoin price network from time 

window to time window, the author first looks to the evolution of the Bitcoin prices associations 

through the years included in this study. The findings are represented in Figure 2, below, and show 

the evolutionary behaviour of the average significant correlation between all Bitcoin cross-market 

returns included in this study. In 2014 the average correlation was 0.435 compared to 0.54 in 2018; 

in total, the average correlation in Bitcoin cross-market prices had significantly increased. Thus, the 

density of the network of Bitcoin exchange rate dependant on the relationship is expected to 

increase, referring to more association within the undirected network. 

Figure 2: Evolution of Bitcoin prices relationship.  

 

2.4.1 Network analysis and centrality measurement 

The core aim of this chapter was to investigate the influence of security breaches on the Bitcoin 

prices network. In this part, evidence of the influence of cybersecurity in the form of six sections is 

presented. Each one represents an event where a Bitcoin platform experienced significant 

cyberattack events that generated money loss and Bitcoin theft, as shown in Table 1, above. In 

general, the line (edges) in all graphs in this section represents a significant correlation between 

nodes, and the thickness of the line shows the value of the correlation, while a thin line implies a 

weak correlation.  
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2.4.2 Mt.Gox Bitcoin platform 

During the beginning of 2014 – specifically 1  February – the well-known Japanese Bitcoin exchange, 

Mt.Gox, was subjected to massive cyberattacks, which resulted in more than 850 thousand Bitcoin 

missed, with a total cost of around 470 million dollars being stolen, as reported in Table 1. Also, 

Figure A 3 in the appendix demonstrates the structure of the Bitcoin exchange rate network before 

the Mt.Gox experienced cybercrime, and illustrates the changes that occurred in the network after 

the cybercrime. However, because of the high network density, the comparison is difficult. Thus, 

Table A 4 in the appendix shows the basic topological features of cross-market Bitcoin prices 

network pre- and post-cyberattack. The results indicate that the number of edges decreased after 

Mt.Gox suffered from the security breach, implying that the relationship among Bitcoin exchange 

rates dropped. In the same vein, the average degree, Avg. weighted degree and network density 

dropped as a response to cyberattacks, which implies that the network topological structure 

changed, and the cross-market Bitcoin price became less correlated after the cyberattack. 

Next, the author computed the centrality measurement for the correlation network of cross-market 

Bitcoin prices for a different level of threshold (θ), as specified in section four in this paper. Figure A 

3 in the appendix demonstrates the Bitcoin cross-market prices pre- and post- cyber-attacks at the 

threshold value of θ >0.6. The results of the network graph show that several Bitcoin/currency pairs 

disconnected at this level of threshold. On the other hand, after adjusting the value of the threshold 

to θ >0.7, the same results indicate that the most crucial Bitcoin/currency changed in the network. 

To find the most central Bitcoin pair depending on centrality measurement, the top five Bitcoin 

markets that have the highest value for each centrality measurement were selected. Table A 5 and 

Table A 6 in the appendix show the rank of the best Bitcoin pair that played a significant role in the 

network. indeed, the top five Bitcoin exchange rates had more relationships than the other pairs, 

and they had more control in distributing the information across the Bitcoin network. Also, they 

were capable of spreading or receiving any newly arrived news or information more quickly to other 

nodes in the network. but as this study employs an undetected network, it can only be argued that 

the top five Bitcoin pairs can play an important role without referring to the direction of the 

influences. Thus, after the cyberattack hit Mt.Gox, the ranking of the essential Bitcoin/currency pairs 

changed. Notably, as the Mt.Gox platform is a Japanese platform, the BTC/JPY pairs lost the role 

they was playing before the cybercrime event in both levels of thresholds. Before the cyberattacks, 

BTC/JPY was in the top five Bitcoin pairs that have a unique role in the network, but after the 

cyberattacks, BTC/JPY lost its influences in the network compared with other Bitcoin markets and 

had fewer relationships in the network.  
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2.4.3 Bitstamp Bitcoin exchange 

At the beginning of 2015, the European platform was subjected to a security breach. In total, at least 

19 thousand Bitcoin went missing, with approximately $5 million stolen, as reported in Table 1. 

Thus, Figure A 4 in the appendix represents the Bitcoin networks pre and post the breach events. 

The asset graph indicates that the network becomes more active after the breach and more 

connected; however, the graph is complex and it is hard to notice the differences. Thus, the changes 

in the key factor of the topological features are reported in Table A 7 in the appendix and signify the 

response of the Bitcoin network to the cyberattack event. In this event, the topological features of 

the network increased, with significant changes at threshold level 0.7, inferring that the network 

becomes more active and the relationships among Bitcoin pairs increased. However, the topological 

features pattern changed compared with the pattern that occurred in Mt.Gox where the key factor 

of topological features decreased after the security breach. 

The impact of cyberattacks on the most crucial player in the network, depending on the centrality 

measurement, can be seen in Table A 8 and Table A 9  in the appendix, which represents the Bitcoin 

network pre and post the breach event for thresholds of 0.6 and 0.7 respectively. The results 

reported in Table A 8 indicate that the BTC/EUR, BTC/USD and BTC/CNY were the top three 

influential currencies in the network and the BTC/EUR still played a crucial role since the Mt.Gox 

incident or post the cyberattack. Interestingly, post the cyberattacks, BTC/USD became the first key 

player in most measurements (EC, DC and WDC) and such as BTC/JYP back to perform an important 

role depending on CC measurement. In addition, BTC/CNY became more active and influential in the 

network depending on BC measurement after the attack. The same results hold after using a 

threshold equal to 0.7, where pre the attacks the market was still influenced by the breach that 

happened on the Mt.Gox platform. Here it can be seen that BTC/EUR was at the top in the list; 

however, the same pattern appears again, where the currencies that represent the location of the 

Bitcoin platform that were influenced by the security breach become less active in the network and 

the pair lost its unique role in the network. This argument can be supported if the pattern also 

occurred in all events included in this chapter.  

2.4.4 Cryptsy Bitcoin exchange 

In the middle of January 2016, another Bitcoin platform located in The United States of America 

experienced a security breach that resulted in losing more than 1300 Bitcoin. The estimated cost of 

the breach was more than $US6 million, depending on the price during that period.  Figure A 5 in the 
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appendix indicates the structure of the Bitcoin exchange rate network pre and post the cybercrime 

that targeted the Cryptsy platform. Moreover, it illustrates the changes that occurred in the 

network. The basic topological features of cross-market Bitcoin prices network pre and post the 

cyberattack are reported in Table A 10 in the appendix. The findings show the same pattern of 

topological features after cyberattacks hit the Bitstamp platform where the number of all topological 

features increases after the attacks at all levels of threshold. Therefore, the Bitcoin network 

topological structure changed, and the cross-market Bitcoin price became more connected after this 

cyberattack.  

The results of the centrality measurement in Table A 11 in the appendix indicate the strongest and 

the most influential Bitcoin/currency pairs where at a threshold level 0. 6, we can see that pre the 

cybercrime the influence role of BTC/USD in the network were the highest powerful pairs in the 

network depending on all centrality measurement. It is noted that the Bitcoin network was still 

under the influence of the previous cyberattacks that targeted Bitstamp in 2015. However, BTC/JPY 

and BTC/EUR started to gain significant roles in the network. On the other hand, after the Cryptsy 

platform experienced the security breach the rank of most influencers among Bitcoin pairs changed, 

whereby the BTC/USD dropped to fourth place, and other Bitcoin markets became more active in 

the network. Other evidence in Table A 12 in the appendix shows the results at the 0.7 threshold, 

which confirms the same change that occurred to the response pattern after cybercrime, where the 

rank of the key player changed. Thus, these results provide further evidence that cyberattacks can 

change the topological structure of the Bitcoin and change the key player in the network. In 

addition, the results for the Cryptsy platform support the claim that the Bitcoin/currency pairs that 

represent the location of Bitcoin platform that suffered from cyber-attacks become less active in the 

network. 

2.4.5 Bitfinex Bitcoin exchange   

The well-known Bitcoin platform located in Hong Kong experienced cybercrime in 2016. As reported 

in Table 1, the total amount stolen was approximately 72 million dollars which makes this security 

breach the second largest attacks on a Bitcoin platform since Mt.Gox in 2014. Figure A 6 in the 

appendix illustrates the Bitcoin cross-market prices network pre and post the attacks. In this event, 

the topological features’ pattern after each attack changed dramatically. All topological structures of 

the network sharply decreased, as reported in Table A 13 in the appendix. For instance, the total 

number of edges pre-cybercrime was 91; however, post the breach event, the number of edges 

decreased to 76.  This decrease applied on all network features which indicates that the level of the 
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relationship among Bitcoin markets decreased. Remarkably, the same network adjustment occurred 

after the security breach hit Bitfinex and Mt.Gox. Indeed, the Bitcoin prices network react differently 

compared with what happened with the Bitstamp and Cryptsy platforms that did not experience 

cyberattacks on such a large scale as Mt.Gox and Bitfinex did. This offers further evidence that the 

size of the cybercrime can have different influences on the topological features of the Bitcoin prices 

network. 

The centrality measurement results indicate adjustment in the top five influential Bitcoin markets at 

both the threshold values of 0.6 and 0.7. Figure A 6 presents the changes that happened after 

cyberattacks in comparison with several levels of threshold. The asset graph depicts the reaction of 

the Bitcoin prices network, where the network became less connected and some Bitcoin pairs 

disconnected in the network – for example, BTC/SGD and BTC/RUB. In the same vein, the breach 

event also impacted the most influencing Bitcoin pair. Table A 14 and Table A 15 in the appendix 

report the changes pre and post the breach event where the effect of the cyberattacks changed the 

rank of the strongest and influential currencies, whereby the Bitcoin pair BTC/USD was playing a 

significant role in the network pre the breach event. However, after the cybercrime, BTC/EUR and 

BTC/JPY become more central in the network at threshold levels of 0.6 and 0.7, respectively. On the 

other hand, the cyberattacks targeted a Bitcoin platform (Bitfinex) which is located in Hong Kong and 

BTC/HKD not included in this study. Thus, we can only shed light on the changes that took place at 

the top key Bitcoin pair without tracing the previous pattern.  

2.4.6 Yapizon Bitcoin exchange 

Another Bitcoin exchange in South Korea was targeted by cybercrime. The Yapizon platform suffered 

a security breach that resulted in more than 3800 Bitcoin missing, which was estimated more than 

$5 million based on the prices during the time of the event. Figure A 7 in the appendix demonstrates 

a comparison between Bitcoin pairs network pre and post the cyberattack with several levels of 

threshold, where BTC/CNY had weak connections with other Bitcoin markets in both time windows. 

Notably, that was before the china government decided to end Bitcoin trading.  The basic topological 

features in Table A 16 in the appendix show that all the topological factors increased markedly after 

the cyberattack. Moreover, the Bitcoin prices network became more connected and with a higher 

network density in different values of the threshold. Therefore, the results confirm the pattern that 

occurred after security breach and support this study’s claim that the size of the cyberattacks has 

different influences on the Bitcoin topological factors. Conversely, in the case of Yapizon platform, 

the response pattern is the same as the response pattern in the cases of Bitstamp and Cryptsy. 



55 | P a g e  
 

The centrality measurement results, reported in Table A 17 and Table A 18 in the appendix, show 

that the ranking of the most central nodes in the network changed. Although BTC/ KRW played a 

critical role before the attack,   the central role for BTC/KRW did not remain after the cybercrime. 

The same behaviour of the Bitcoin network pre and post each cyberattack depending on centrality 

measurement results. Where the Bitcoin cross-market price that represents the location of the 

Bitcoin platform became less active in the network after the event at the different threshold values.  

2.4.7 Zaif Bitcoin exchange 

The final event included in this chapter occurred in Japan. The Zaif platform was targeted by 

cybercrime in 2018 and lost around 38 million dollars. There were slight changes in the key factor of 

the topological features to cross-market Bitcoin prices network pre and post the cyberattacks on the 

Zaif platform. The changing results in the graph can be noticed in Figure A 8: The Bitcoin cross-

market price network pre- and post-cybercrime on Zaif platform. in the appendix. The results of the 

influences of the breach event illustrates the same behaviour when Bitcoin cross-market prices 

network received the announcement of cyberattacks. In this case, all key factors of the topological 

features to cross-market Bitcoin prices network post-cyberattacks increased. This provides further 

evidence that the size of security breach has a vital power to influence the topological features of 

the Bitcoin prices network. 

The centrality measurement results indicate the changes in the top five most influential currencies in 

the Bitcoin cross-market prices network for both threshold levels, 0.6 and 0.7. Also, the findings 

display the same behaviour of main players in the Bitcoin network pre and post each cyberattack. 

When the cyberattacks targeted a Japanese platform (Zaif) there was a significant role for BTC/JPY in 

the network pre the attacks at all threshold levels as shown in Table A 20 and Table A 21,  where 

BTC/JPY and BTC/USD were the top central Bitcoin pairs in the network. However, after the 

cybercrime, BTC/PLN and BTC/KRW came in the top list of the most influencers in the network. 

Therefore, the effects of cyberattacks on the centrality and influential currencies have the same 

pattern regardless of the size of the cyberattacks. The Bitcoin pairs that denote the location of the 

platform become inactive in the network after the breach event, and this can be found at different 

levels of threshold.  
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2.4.8 Robustness. 

Figure A 9 in the appendix displays the Histogram of the probability distributions for Bitcoin cross 

market prices.  The correlation matrix among all Bitcoin pairs present a strong relationship, where 

the correlation submatrices tilted to higher values heavily, but with some spikes at the right side. 

Which the histogram and The Jarque-Bera test results in section three indicates to non-normality 

distribution. Therefore, we implemented assessments to the probability distributions to make sure 

that the Bitcoin prices network did not built depends on random relations. We considered the time 

series for each Bitcoin cross market prices and re-sort them depending on a random variable. 

Consequently, we generated 10,000 simulations, to re-estimate the correlation matrix relaying on 

the new randomized Bitcoin cross market prices series. As a results we built a probability distribution 

that depicted in Figure A 10 in the appendix. Referring that the correlations below -0.3 or above 0.3 

not caused by random effects.  We observe very similar results for the rest of events included in this 

chapter. Therefore, the results  of the correlation that was used to build the Bitcoin prices network 

was statistical significance, as we employed higher value of correlation at level 0.6 and 0.7. 
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2.5 Conclusions  

The central questions posed at the opening of this chapter were how cybersecurity that targeted 

Bitcoin exchange platforms can influence the structure of Bitcoin network prices. The study also 

enquired how the security breaches can impact the network and change the ranking of the most 

crucial Bitcoin pair pre and post each breach event. It is now possible to state that the investigation 

shows the changes that occurred in the topology structure after using rolling estimations pre and 

post security attacks and differentiate between the influence of cyberattacks depending on the size 

of the breach event and the amount of Bitcoin lost because of this type of criminal activity. Also, by 

using centrality measurement to assess the influence of a security breach on the crucial active 

Bitcoin pairs in the network, the most obvious finding was that these types of shocks can change the 

ranking of the central Bitcoin/currency pair in the network.  

Depending on the centrality measurement results, one can clearly observe that there was a pattern 

after all security breaches included in the study. It was shown that the performance of the Bitcoin 

pairs that represented the place of trading platform that was subjected to cyberattacks became less 

active and dominant in the network regardless of the size of attack. Moreover, a pattern appeared 

depending on the size of the cyberattacks; the large scale of cybercrime decreased the topological 

features to cross-market Bitcoin prices network. On the other hand, the small scale of cyber-attacks 

increased the topological features of the cross-market Bitcoin prices network.  

Not surprisingly, the influence of cybersecurity on Bitcoin is one of the most significant current 

discussions in this nascent literature, particularly amongst portfolio managers, who want to 

understand how the Bitcoin exchange prices interact in the market after dealing with cyberattacks. 

The results hold implications for investors and portfolio managers to construct the best investment 

strategy that reduces the expected loss after a breach event because, as the finding suggests, 

security breaches strengthen cross-market linkages among Bitcoin markets, therefore decreasing 

portfolio diversification. Also, investors should not ignore the risk of cyberattacks if they occurred in 

other platforms in which they did not hold investments, and should also pay particular attention to 

the Bitcoin pairs that represent the place where the trading platform was hacked. Another 

important practical implication is that cryptocurrency investors need to understand the role of 

security breaches’ scale that targeted Bitcoin platforms. These findings suggest several courses of 

action that can be taken by platform supervisors and information security managers of the Bitcoin 

exchange platforms to be aware of the potential risk of a security breach on the Bitcoin network 

structure. The findings also raise the need to develop policies for avoiding the spread of 
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cyberattacks’ influences on the Bitcoin cross-market prices. Finally, the current findings add to a 

growing body of literature and enhance our understanding of the influences of cybercrimes, and the 

role of key players in the Bitcoin cross-market prices to act as gatekeeper or their ability to spread 

information as a response to this type of security breaches. The current study has only examined the 

cyberattacks that targeted Bitcoin platform; however there were several cyber-attacks that targeted 

mining platform and cryptocurrency investors. The most significant limitation lies in the fact that the 

study cannot examine the security breaches that occurred before 2014 due to the missing data in 

the Bitcoin cross-market prices. 

This work plants the seeds for future research that assesses the impact of cybercrime on Bitcoin 

cross-market prices. The results of the study reveal the need for further investigation to show the 

impact of different types of cyberattacks on the relationships among Bitcoin cross-market prices. 

The findings also highlight the need to analyse the size of cyberattacks impact on other 

cryptocurrencies markets. In future investigations, it might be possible to use a different method to 

examine the influence of cybercrime on the Bitcoin market. 
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Chapter 3                                                                 

Information Spillover, Cross-Market Bitcoin Prices 

and Cyberattacks: Evidence from a Dynamic 

Entropy Network  
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3.1 Introduction  

Trust is an essential component in the financial transactions and payments systems. Therefore,  the 

cash system was built on trust (Marmefelt, 2018, Tsiakis and Sthephanides, 2005). However, with 

new Internet technologies and the evolution of e-commerce, the need for a new cash payment 

system has emerged, with different online payment systems being introduced, such as PayPal  

(Chuen, 2015).  Meanwhile, during the financial crisis in 2008 and when people's trust in traditional 

financial systems was at its lowest level, a paper introduced a new cash system which was without 

intervention from authority or any legal entity and known as Bitcoin (BTC) (Nakamoto, 2008). As 

cryptocurrencies – particularly Bitcoin – adopted Blockchain technology, the level of transparency 

increased compared with the traditional financial system. Because of this, people’s trust in this 

system increased and they began to use cryptocurrencies to transfer money across international 

borders (Marella et al., 2020). However, cryptocurrencies such as Bitcoin suffer from serious 

drawbacks. First, because there is no intervention from authorities or any legal entities, this may 

make Bitcoin vulnerable to manipulation, which may generate more risk (Gandal et al., 2018). 

Second, cryptocurrencies do not employ names or social security as proof of ownership; instead, 

they use a public key address, which is a 32-bit code comprising a combination of numbers and 

characters (Nakamoto, 2008). As a result, cryptocurrencies offer an instrument for illegal trade, tax 

evasion and money laundering (Brezo and Bringas, 2012). Finally, sometimes the cryptocurrencies 

market prices are extremely volatile for several reasons (Conti et al., 2018), one of which is the 

impact of security breaches that target cryptocurrency wallets or exchange platforms – for instance, 

the large scale cyberattacks that hit Mt.Gox in 2014.  

In general, the estimated cost of security breaches in 2014 was about $500 billion for the global 

economy, equivalent to around 0.7% of the world's income. However, this amount significantly 

increased in 2018 to almost $600 billion of cybercrime events, or 0.8% of the world's income (Lewis, 

2018). In 2019 there was approximately more than $4 billion of theft in the cryptocurrencies market, 

compared to $1.7 billion of crypto crimes in 2018 (Forbes, 2019). The aim of the current study was to 

investigate the influence of cyberattacks on information transmission between Bitcoin cross-market 

prices and to trace the changes that may occur in the causal relationships among Bitcoin prices. In 

addition, the study aimed to shed light on the temporal evolution of Bitcoin cross-market prices pre, 

during, and post each security breach, and  to classify the main senders and receivers of information 

among Bitcoin pairs pre and post breach events, which can help to detect any contagion risk after 

Bitcoin prices network experienced security breach. The central question in this chapter seeks to 

address how the security breaches influence the flow of information between Bitcoin cross-market 
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prices and whether security breaches that target the Bitcoin platforms can change the leading 

Bitcoin exchange price sender or receiver of information. 

This study contributes to the growing area of research by exploring Bitcoin markets’ exchanges in 

various currencies over the last five years, which covers several major security breach events. Also, 

the current study investigated diverse periods by employing Effective Transfer Entropy and 

presenting the results using asset graphs to capture the co-movements and dynamic causalities of 

the examined networks. Another contribution was to capture the response pattern, which occurred 

in the flow of information between the cross-market Bitcoin prices after experiencing cyberattacks 

and the response pattern in the temporal evolution of Bitcoin cross-market prices pre, during, and 

post each security breach. Finally, the study findings reveal the potential impacts of cybercrime for 

investors, speculators, and Bitcoin exchange platform managers.  

Several studies have shown an increased interest in the role of cyberattacks influencing the 

cryptocurrencies market, but few researchers have been able to draw on any systematic research 

(Conti et al., 2018, Corbet et al., 2019b). Meanwhile, this concept of cybercrime and its impact on 

cryptocurrencies has recently been challenged by a number of scholars (Hamrick et al., 2018, 

Shanaev et al., 2019, Azqueta-Gavaldón, 2020, Caporale et al., 2020b), demonstrating the impact 

from several points of view. However, in reviewing the literature, as showing in Table 1-2 in the 

appendix show the two groups of studies where group A represents the works that addressed the 

influence of cybercrimes in the cryptocurrencies market, meanwhile group B represent the studies 

that examined the spillover in the cryptocurrencies market. Thus, it was identified that little is 

known about the impact of security breaches on the information spillover among Bitcoin cross-

market prices. Also, much uncertainty still exists about the temporal evolution of the Bitcoin cross-

market prices network after experiencing a security breach.  

The rest of this paper is structured as follows. Section 2 discusses works related to the study by 

looking at the academic literature on the cybercrime-targeted cryptocurrencies market. Section 3 

describes the data and the methodology, which was network analysis and Effective Transfer Entropy 

(ETE). Section 4 presents the empirical results. Finally, Section 5 conclude. 
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3.2 Related Work 

A large and growing body of literature is paying particular attention to the impact of cybercrime on 

the financial sector as a whole (Lagazio et al., 2014, Kopp et al., 2017, Bouveret, 2018), as well as 

banking sectors (Malik and Islam, 2019, Wang et al., 2020), stock markets (Anderson et al., 2013, 

Kamiya et al., 2020) and the Bond market (Iyer et al., 2020). In the case of cryptocurrencies, a 

number of studies examined the impact of cybercrimes on cryptocurrencies (Gandal et al., 2018, 

Shanaev et al., 2019, Caporale et al., 2020b). Cybercrimes in cryptocurrencies can be distinguished 

into two general forms. First, there is cybercrime arising from cryptocurrency usage; for instance, 

money laundering (Vandezande, 2017), ransomware (Zimba et al., 2018), terrorism financing and 

darknet markets (Chainalysis, 2020). The immoral uses of cryptocurrencies have led to an increase in 

the number of related ethical problems (Martin and Christin, 2016). The Silk Road website is the best 

example of cyber criminality using darknet markets. Because of the lawless nature and the provision 

of anonymity in digital currencies, users of the Silk Road abuse this feature by using Bitcoin or other 

cryptocurrencies to complete drugs or guns deals. However, the FBI arrested the owner of Silk Road 

and shut down the website in November 2013. The price of Bitcoin fell after the closure of the Silk 

Road website from approximately 146$ to 108$. The FBI reported that Silk Road accounts formed 

approximately 5% of the Bitcoin economy (Hill, 2013). However, the survival of Bitcoin following the 

closing of the Silk Road website is an indication of Bitcoin’s resilience. 

The second form of cybercrimes are the security breaches that target the cryptocurrencies 

themselves. The hacking of cryptocurrency hot wallets and platforms has become more widespread 

recently and more severe. Several cyberattacks have managed to steal different types of 

cryptocurrencies. For instance, the largest heist in the Bitcoin market occurred in 2014, when 

Mt.Gox lost approximately $470 million (Gandal et al., 2018). Another large hacking event in the 

cryptocurrencies market was in 2018, when Coincheck lost $500 million in the initial offering for 

NEM coins.  Therefore, in this chapter the author examined the influences of security breaches that 

targeted Bitcoin platform and caused money loss by showing the changes that occurred in the causal 

relationships among Bitcoin pairs, and also traced the dynamic evolution of Bitcoin cross-market 

prices network after each security breach. 

Drawing on a broader range of studies, Conti et al. (2018) provided a broad review of the challenges 

that Bitcoin faces and argued that Bitcoin has been subjected to different types of cybercrime, such 

as double spending, mining pool attacks and Bitcoin network attacks, all of which can target the 

Bitcoin platform, wallet, and mining activities. In another major study, Corbet et al. (2019b) 
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reviewed the published literature based on the cryptocurrencies market for the period 2009 -2018. 

The authors set out four main categories of the current literature, each covering a distinct areas. 

They argued that cyber criminality in the cryptocurrencies market distinctly investigated. However, 

drawing on extensive range of sources, they identified 10 research gaps in the current literature. 

 Shanaev et al. (2019) analysed the data from 13 cryptocurrencies to examine the influence of 14 

individual 51% attacks. They concluded that there were ‘pump and dump’ schemes after each 

attack, and the market becomes more efficient after 51% attacks, indicating that cyberattacks have a 

negative effect on the return of cryptocurrencies. However, most of the cryptocurrencies included in 

the study were not leading cryptocurrencies. Therefore, the study did not provide evidence of the 

influence of 51% attacks on the leading cryptocurrencies, such as Bitcoin or Ethereum. Thus, it would 

be beneficial to examine the influences of this type of cyberattack, especially after the Crypto 

platform Gate.io announced at the beginning of January 2019 that it had suffered a 51% attack. The 

hacker managed to transfer a total of 54,200 Ethereum Classic (HUILLET, 2019). 

Caporale et al. (2020a) draw our attention to distinctive groups of cyberattacks affecting the returns 

for five leading cryptocurrencies – Bitcoin, Ethereum, Litecoin, XRP and Stellar. They also claimed 

that cyberattacks can affect cryptocurrencies platforms in all countries included in their study, 

although the US cryptocurrency platforms were less vulnerable to a security breach. However, this 

research was unable to make a distinction between the types of cyberattacks that targeted 

cryptocurrencies: for example, DDoS attacks on cryptocurrencies platforms (Feder et al., 2018), 51% 

attacks (Caporale et al., 2020a), double-spend attacks (Pinzón and Rocha, 2016), and pump and 

dump schemes (Hamrick et al., 2018). In the same vein, Azqueta-Gavaldón (2020) investigated the 

impact of media coverage of cryptocurrency narratives and its causal relationship with prices. 

Furthermore, he listed four types of narrative, one of which was the media coverage of security 

breaches in cryptocurrencies markets. After using the Granger causality test, the author argued that 

there was a unidirectional causal between narratives related to cybercrimes and prices. However, 

this method of analysis has several limitations; the most serious limitation is that it depends heavily 

on the number of lags selected. Moreover, the study used the BTC/USD as a proxy of 

cryptocurrencies prices. Likewise, Francés et al. (2018) drew on the minimum spanning tree 

technique, by analysing 16 cryptocurrencies, and concluded that Ethereum has a vital role and acts 

as the benchmark currency rather than Bitcoin. 

A number of authors reported the impact of cyberattacks on cryptocurrencies. Caporale et al. 

(2020b) conducted a non-linear Markov switch to evaluate the cyberattack impact on the returns of 
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four cryptocurrencies. They argued for the probability of cryptocurrencies being influenced 

negatively by cyberattacks and remaining within low volatility throughout August 2015 – February 

2019.  Similarly, Corbet et al. (2019a) traced 17 hacking events that targeted the eight most liquid 

cryptocurrencies within less than a year and, after employing a DCC-GARCH model, they pointed out 

several findings. First, the correlations between cryptocurrencies increase after cyberattack. Second, 

the volatility also increases after each security breach. Finally, they provide evidence that in the 

hours before a hacking event there were abnormal returns and drop to zero when the hack event is 

revealed publicly. However, the findings would have been much more persuasive if the authors had 

considered a period of more than one year. 

This chapter was a quest to analyse the exchange of information between Bitcoin cross-market 

prices as seen by Transfer Entropy. The concept of Transfer Entropy has been addressed in several 

scientific investigations, relating to, for instance, social networks (Ver Steeg and Galstyan, 2012), in 

the context of medicine (Valenza et al., 2017), dynamical systems (Mao and Shang, 2017), causal 

influences (Razak and Jensen, 2014), and in the field of thermodynamics (Auconi et al., 2019). A 

number of studies in the finance literature have applied Transfer Entropy, such as in the Stock 

markets (He and Shang, 2017, Dimpfl and Peter, 2018), Real Estate markets (Ji et al., 2018) and 

Commodity markets (Bekiros et al., 2017). In terms of application in the cryptocurrency field, a 

growing body of literature has employed this concept; for example, drawing on the concept of 

Transfer Entropy, Ji et al. (2019) were able to construct a network to show the information spillover 

between various commodities and five major cryptocurrencies. In addition,  Dimpfl and Peter (2019) 

investigated the four major cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple)  to show the 

differences between using linear methods and nonlinear approaches to detect information transfer. 

Moreover, they argued that Granger-causality tests or VAR model are not suitable to capture the 

dependencies within a system, particularly with the new financial products such as cryptocurrencies. 

Moreover, depending on intraday data, they highlighted how the linkages and dependencies 

between cryptocurrencies mostly have a nonlinear nature. Thus, in this chapter the author 

employed the nonlinear Transfer Entropy model to trace the change contagion risk of cyberattacks 

among Bitcoin markets.  
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3.3  Data and Methodology  

3.3.1 Data characteristics  

The data were collected from the www.bitcoincharts.com website, covering the period between 

1/10/2014 – 5/8/2019, for the 10 major Bitcoin/currency pairs included in this chapter, as shown in 

Table B 1, in the appendix. The cross-market Bitcoin price was obtained from different exchange 

platforms for each currency, which were selected because they would fairly represent the market 

trading activities and have a decent market share in the targeted currency over the study period. 

Moreover, the reason behind selecting several platforms for one exchange currency was because 

some platforms closed after a particular time; for instance, the Japanese Bitcoin platform, Zaif, 

stopped providing services in the market after security breach. Moreover, some of the platforms lost 

their market share, such as in the case of the Canadian platform Quadrigacx, where the data were 

obtained from this platform until December 2018, and then the rest of the data were gathered from 

the Karken platform. Therefore, to construct continuous time-series data, data were gathered from 

other exchange platforms in order to fairly represent the whole market, since Bitcoin was traded 

every minute throughout the entire year.  

As this study uses specific events related to security breaches that rarely occurred during the entire 

sample period the examination of narrow window lengths is required. This study employed 6-hours 

frequency depending on the Coordinated Universal Time (UTC) timestamp. The market liquidity 

plays a crucial role in selection of the data frequency. For instance, employing less than 6 hours, such 

as 1, 5, 10, 15, 30 or 60 minutes, may often lead to unreliable and spurious results because there 

were missing data due to low liquidity in the cross-Bitcoin prices, particularly during 2015 and 2016.  

On the other hand, statistical problems may have arisen if the study had used more than 6-hours 

frequency, which would have influenced the results because of the effects of small sample size. 

A security breach was considered in this study to be any attack that targeted only the Bitcoin 

platform and generated money loss. The breach events were collected from public sources on the 

Internet that published reports and news articles over the period 2015–2019, which included several 

episodes of security breach and covered several cybersecurity scales, to shed light on the influence 

of the size of the breach on the information flow between Bitcoin cross-market prices. Table 2, 

below, lists  seven events and contains the dates of the cybercrime and the names of the Bitcoin 

platforms that experienced security breaches, recording the amount of Bitcoin missed and the cost 

of each breach at the time it happened.  
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The daily continuously compounded Bitcoin exchange rate return was computed by taking the first 

difference of the log-transformed daily weighted price series.Table B 2 in the appendix reports the 

summary statistics for each returns series. The number of observations was 6236 for all variables 

except for BTC/CNY, whereas in October 2017, the China government decided to end Bitcoin trading; 

thus, the number of observations was 3533 for BTC/CNY. BTC/AUD has the highest value of standard 

deviation, followed by BTC/CAD. The maximum Bitcoin return was in BTC/BRL, and minimum values 

were for BTC/PLN. Depending on the average return, BTC/CAD, BTC/GBP and BTC/EUR achieved the 

highest daily average returns. Also, the positive values of skewness implies that the cross-market 

exchange returns were skewed to the right. In contrast, they were skewed to the left in cases of 

negative value. Meanwhile, the All Cross-market returns series displayed leptokurtic behaviours, 

with higher values for BTC/PLN and BTC/CNY. The Jarque-Bera test was significant and the results for 

all returns series indicated a non-normality distribution. Augmented Dickey Fuller test signified that 

all returns series are stationary. 

Table 2: Cyberattack-targeted Bitcoin exchange platforms between 2015 and 2019 

No Date Bitcoin missed Amount  Platform Country of platform 

1 5-Jan-2015 19,000 5,200,000 Bitstamp UK 

2 15-Jan-2016 1,300 6,000,000 Cryptsy  United States 

3 2-Aug-2016 120,000 72,000,000 Bitfinex Hong Kong 

4 22-Apr-2017 3,816 5,000,000 Yapizon South Korea 

5 20-Sep-2018 5,966 38,000,000 Zaif Japan 

6 26-Jan-2019 8 28,200 LocalBitcoins Finland (EU) 

7 7-May-2019 7,000 41,000,000 Binance Malta 

Total 157,090 167,228,200   

Note: The event collection depended on public sources that published reports and news regarding 

each breach.  
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3.3.2 Methodology 

In order to understand how cyberattacks influence the flow of information between cross-Bitcoin 

prices and the dynamic causalities, the sample was divided into seven sections. Each section 

represents an event or security breach that targeted the Bitcoin platform. Furthermore, for analysis 

purposes, each section was also divided into pre-cyberattack and post-cyberattack. There were 360 

observations for every window span, which represented three months pre the breach, and three 

months post the cyberattack. This might be characterised as an acceptable compromise, and not to 

dilute too many extreme/peak events. Moreover, not applying a small sample size had a 

simultaneous effect. 

Identifying the magnitude and the direction of interdependence and flow of information among time 

series in any systems is a crucial topic. Different authors have measured causalities and the flow of 

information in a range of approaches. Granger causality is one of the most well-known tools to 

capture the causality relationship. Urquhart (2018) examined the causality relationship between 

Bitcoin volatility and return from one side, and Bitcoin attention, in the form of Google trends, from 

the other side. Furthermore, he argued that there was no significant causal relationship between the 

variables of the study. However, Corbet et al. (2019b) proposed using Granger causality to study the 

same variables examined by Urquhart ( 2018) and found that there was a bi-directional causality 

between the variables. Similarly, Shen et al. (2019) also found significant causality between Bitcoin 

return and the number of tweets. A significant problem with the Granger causality method is that it 

depends highly on the number of lags chosen. Also, Granger causality is limited in its capacity to 

examine the amount or the magnitude of information flow between nodes in the network; it can 

only show the direction of the relationship.  

In this chapter, the author suggests using the nonlinear approach, Transfer Entropy, which is a tool 

for analysing time-series causalities. Dimpfl and Peter (2019) showed the differences between using 

linear methods and nonlinear approaches to detect information flow and argued that Granger-

causality tests or VAR are limited in their ability to capture the dependencies within a system, 

particularly in the new financial product such as cryptocurrencies markets. Therefore, the author 

decided to employ Effective Transfer Entropy (ETE), as this method avoids the limitations of the 

previously mentioned approaches.  
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3.3.2.1 Transfer Entropy 

To capture the contagion effect among the Bitcoin market and to recognise the source of the 

information transmitter pre and post cyberattacks, the nonparametric method of Transfer Entropy 

was adopted. This method was developed by Schreiber (2000) and can help to capture the 

directionality between Bitcoin prices. More importantly, this method can be considered as a 

powerful technique to quantify the connection strength and asymmetric properties in a dynamic 

system. Generally, the Shannon Transfer entropy was derived by the theory of information, which 

was introduced by the American mathematician, Claude Shannon. The main challenge According to 

Shannon was how to re-create a message sent from another location (Shannon, 1948). When 

anyone analyzes a group of potential incidents with probability of occurrence pi,i = 1, · · · , n, then a 

measure H(p1, p2, · · · , pn) of the uncertainty of an event's result given such a distribution of 

probabilities should have the main aspects: 

 H(pi) should be continuous in pi. 

 If all probabilities are similar, then H should be a monotonically climbing function of n. 

 If a selection is decomposed into different options with probability cj, j = 1,…., k, then H = 

∑ 𝑐𝑖 𝐻𝑘𝑘
𝑖=1  where Hk is the value of the function H for every selection. 

Therefore, Claude Shannon identified the function which meets all three characteristics by 

𝐻 =  − ∑ 𝑝𝑖  𝑙𝑜𝑔2𝑝𝑖
𝑛
𝑖=0                                                            (1) 

The Shannon entropy quantifies the average amount of bits required to encode a variable X. 

However, variable X may influenced from the interaction with other variables. Therefore, we can 

assume that variable X is a Markov process of degree 𝑘, on another words the state in+1 of the 

variable X is determined by its 𝑘 past states. More mathematically, the time series of variable X is a 

Markov state of degree 𝑘 if  

𝑝 (𝑖𝑛+1|𝑖𝑛, 𝑖𝑛−1, … , 𝑖0) = 𝑝 (𝑖𝑛+1|𝑖𝑛, 𝑖𝑛−1, … , 𝑖𝑛−𝑘+1)                    (2) 

Where 𝑝(𝐴|𝐵) is the conditional probability of A given B, defined as : 

𝑝(𝐴|𝐵) =  
𝑝 (𝐴,𝐵)

𝑝 (𝐵)
                                                                                           (3) 
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The expression (2) referring to the conditional probability of state 𝑖𝑛+1 of variable X on all its earlier 

states is the equal as the conditional probability of 𝑖𝑛+1 on its 𝑘 prior statuses, meaning that it does 

not depend on states previous to the 𝑘 th previous states of the same variable. Transfer Entropy 

measures the amount of information that flows from one variable to another variable which can 

reduce the uncertainty, the concept is represented in Figure 1. More formally, suppose there are 

two discrete and stationary variables (X and Y) and they interact within a period. Therefore, to 

compute the flow of information from Y to X, we cannot only rely on the past state of variable X, but 

also need to include the information contained in variable Y. Where in the process of 

communication between the two-time series (X and Y). That interaction may generate influences 

from the time series of variable Y to another time series of variable X.  

Figure. 1: Schematic representation of transfer entropy.  

 

 

Thus, The Transfer Entropy is defined as: 

𝑇𝐸𝑌→𝑋(𝛫, 𝑙) = ∑ [𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) 𝑙𝑜𝑔2 𝑝 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

)]

𝑖𝑛+1,𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)

−  ∑ [𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) 𝑙𝑜𝑔2 𝑃 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

)]

𝑖𝑛+1,𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)

 

The Transfer Entropy of Y to X becomes simpler: 

𝑇𝐸𝑌→𝑋(𝛫, 𝑙) = ∑ [𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) 𝑙𝑜𝑔2

𝑝(𝑖𝑛+1,|𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)

)

𝑃(𝑖𝑛+1,|𝑖𝑛
(𝑘)

)
]

𝑖𝑛+1,𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)  ,                                    (4) 

where 𝑖𝑛 is the number of observations of X series, 𝑗𝑛 refers to the number of elements for variable 

Y, the element K donates previous states of the variable X, and 𝓁 shows the prior states of the 

variable Y.  𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

)  represents joint probability between the previous states of the 

variables, and 𝑃 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

) denotes the conditional probability of the state of variable X on all its 

past states. Meanwhile, regarding 𝑝 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

), this part of the equation shows the conditional 
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probability, where, if variable X depends on another variable Y, we assume that the state of X 

depends on the previous states of the source Y. We assume that 𝑘 = 𝓁 = 1 following the previous 

literature from empirical research in financial markets (Bekiros et al., 2017) and other literature 

which analyses information interdependence in cryptocurrency markets (Ji et al., 2019). However, 

we will verified by computing the case where 𝑘 = 𝓁 = 2, and tracing whether using greater values k 

and 𝓁 may provide some better outcomes. Figure B 12 and Figure B 13 displays a heat map of 

effective transfer entropy matrix (ETE), displaying higher-value causal relationships with brighter 

color and lower value interactions with darker tones. Figure B 12 display effective transfer entropy 

matrix (ETE) in case of 𝑘 = 𝓁 = 1. Meanwhile, Figure B 13 demonstrate the effective transfer entropy 

matrix (ETE) in case of 𝑘 = 𝓁 = 2. By comparing the first Figure and the second heat maps, there was 

no noticeable change between them. Thus, calculating transfer entropy can be time-consuming, 

especially when there are a number of events to evaluate. Therefore, throughout this chapter the 𝑘 

= 𝓁 = 1 employed to compute effective transfer entropy matrix (ETE). 

3.3.2.2 Effective Transfer Entropy (ETE) 

Effective Transfer Entropy (ETE) was proposed by Sensoy et al. (2014) and can be considered as an 

improved approach to Transfer Entropy. This method can help to reduce the limitations of Transfer 

Entropy that usually contain much noise caused by random series and the data may be non- 

stationary. These effects can be reduced if the Transfer Entropy of a randomised time series can be 

calculated. To break any causality relation between variables and elements in the time series 

dependencies, this approach randomly shuffles each time series individually, but preserves the 

individual probability distributions for each variable. An Effective Transfer Entropy matrix (ETE) may 

be calculated as shown in equation (2), below, whereby subtracting the Randomised Transfer 

Entropy matrix (RTE) from the Transfer Entropy matrix (TE) is defined as follows: 

                 ETEY→X = TEY→X − RTEY→X.       (5) 

The calculation of Effective Transfer Entropy may involve a significant computational burden, 

particularly as the influences pre and post of seven breach events are examined, as shown before in 

Table 2. Therefore, this study used the results of the Effective Transfer Entropy, since it provides 

more accurate and robust results compared with Transfer Entropy. The “RTransferEntropy” package 

proposed by Behrendt et al. (2019) was used to analyse the data. 
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3.3.2.3 Asset Graphs of Effective Transfer Entropy 

Depending on the network theory, there are two types of network – directed and undirected. The 

classification of network type depends on the direction of the relationship between nodes.  In an 

undirected network, the edges between two nodes are always the same, indicating that there is a 

relationship, but without any evidence about the direction of this relationship and which nodes 

influence the other nodes. On the other hand, in a directed network, the edges represent the 

connection between nodes and also show the direction of this relationship. This study employed a 

method that could capture the magnitude and the direction of flow of information among Bitcoin 

cross-market prices, and thus it adopted the asset graph method to represent the results of Effective 

Transfer Entropy (ETE) and to reveal the hidden information within the results of ETE.   

To estimate the effect of these cybercrime events on Bitcoin markets, the analysis was conducted in 

two stages. First, the influence of security breach pre and post each attack was measured, where 

every time window represented three months, with 360 observations for the Bitcoin cross-market 

returns. Depending on the Effective Transfer Entropy matrix the author built a directed network in 

the form of an asset graph. Thus, the key factors of the topological structure of the network were 

computed, and the results were compared to results gained pre- and post-cybercrimes. 

Furthermore, the top senders and receivers of information pre and post each attack were ranked 

which can provide evidence of whether there was a contagion effect generated after the security 

breach.  The second stage shed light on the network dynamics analysis, to trace the dynamic 

influences of the security breaches on the Bitcoin cross-markets and provide evidence on the 

adjustment of the flow of information as a dynamic response regarding breach events. The study 

applied moving windows, each period covering one month, with 120 observations for each period.   

The network consists of a node linked with edges. In this chapter, the node in the network signifies 

Bitcoin cross-market prices for 10 Bitcoin pairs. Moreover, the network edges represent the 

significant value of Effective Transfer Entropy and the direction of information flow. The changes in 

the main factors of the topological structure of the network were the central focus of the chapter. 

To trace the influence of security breaches in the Bitcoin platforms, each key factor was computed 

pre and post each cyberattack to compare the results and to evaluate the impact of this type of 

breach. The number of edges represents the total number of connections in the network; moreover, 

the average degree denotes the number of each Bitcoin exchange price having direct connections 

with another Bitcoin pair. Also, the graph density shows the total number of present edges divided 

by the maximum number of possible edges in the graph. All these key factors of the topological 
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structure can help to provide an indicator of the level of interaction in the network. Similarly, as this 

study employs a directed network, the edges can be divided into ingoing and outgoing links. 

Therefore, the node degree is also divided into the IN-Node Degree (Ndin), which computes the sum 

of all edges pointing to a particular node, and the Out-Node Degree, which measures the sum of all 

edges pointing out to a specific node. Finally, IN-Node Strength (NSin) represents the sum of the 

weights of all edges that point to a certain node, whilst Out-Node Strength (NSout) calculates the sum 

of the weights of all edges that begin pointing to a specific node.  

Closeness centrality was first introduced by Dijkstra (1959) to calculates the shortest paths between 

node (i) to all other nodes in the network. Over the past decade, much more published research on 

computing the shortest paths in the network has become available (Peay, 1980, Wasserman and 

Faust, 1994, Newman, 2001; Yang and Knoke, 2001, Opsahl et al., 2010). This measurement ranks all 

nodes in the network as being a broadcaster. In other words, closeness centrality computes the time 

that is needed to disseminate some information from a particular Bitcoin/currency to other cross-

market Bitcoin prices in the network. this measurement (CC) is more appropriate in conditions 

where a Bitcoin/currency acts as a generator of information, rather than being a gatekeeper in a 

case of betweenness. can be expressed as follows: 

𝐶𝐶(𝑖) = 1/< 𝐿(𝑠, 𝑡) >    ,                           (6) 

Where <L(s,t)> is denoted as the length of the shortest path between node s and node t. The value 

of closeness centrality (CC) ranges from zero to one for each node in the network. In our case, the 

higher value of closeness centrality signifies that a pair of Bitcoin impacts the whole cross-market 

Bitcoin network prices and has the ability to quickly disseminate information. For directed networks 

the Closeness centrality can be divided into IN- Closeness and OUT- Closeness. And we will employ 

this measurement to calculate how many steps need to infect all other nodes. As we estimating the 

influence of cyberattacks on Bitcoin cross market price, it would be helpful to identify the contagion 

risk and how the cyberattacks change the interactions among Bitcoin prices network.  
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3.4 Main Results 

Several studies have highlighted the impact of cybercrimes on the cryptocurrencies market, as 

discussed in the related work section (Gandal et al., 2018, Corbet et al., 2019a, Shanaev et al., 2019, 

Caporale et al., 2020b). This study aimed to measure the influence of security breaches that targeted 

the Bitcoin platforms, by tracking the influences of seven cybercrime events and by calculating the 

Effective Transfer Entropy to show the changes that could happen to the information spillover and 

the contagion risk of breach events in the network. 

3.4.1  Asset graphs for Effective Transfer Entropy 

In this section, the study employed Effective Transfer Entropy to evaluate the causal relationship 

among Bitcoin cross-market prices, presenting the results by using asset graphs. The study 

considered several key factors to trace the changes in the topological structure of the network and 

also to examine the changes in the direction and the magnitude of information flow in the network. 

The analysis is divided into two sections, whereby the first section focused on the changes that 

occurred in the network within the three-month period, and the second section analysed the 

temporal (dynamic) dimension of Effective Transfer Entropy linkages between Bitcoin cross-market 

prices.  

3.4.1.1 Information flow using Effective Transfer Entropy 

The study was designed to assess the influence of cyber-attacks on Bitcoin cross-market prices.  The 

effect of the security breach on information flows was traced by analysing pre and post each breach 

event. Based on the results of Effective Transfer Entropy, Figure B 1 in the appendix illustrates the 

Bitcoin cross-market prices pre and post the cyberattacks that targeted the Bitstamp platform in 

2015. However, it was shown that after the Bitcoin platform suffers from loss as the result of a 

security breach, the network of information interchange between the Bitcoin cross-market prices 

interacts as a response to this event. The reaction post the breach event is depicted in Figure B 1 in 

the appendix whereby it can be seen that the number of links between nodes increased 

dramatically, and the direction of the information flow also changed. Furthermore, the network 

becomes more active after the breach event. The differences between pre and post security breach 

are highlighted in Table B 3 in the appendix.  This reveals several findings: (i) the cyber-attack that 

targeted Bitstamp influences the topological features of the network; (ii) all the key factors 

increased after the attack, indicating that the amount of information flows increased after the attack 
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and (iii) the network became more active in comparison with the network before the security 

breach. 

Moreover, the results obtained from Table B 4 in the appendix present the changes which occurred 

to the directions of the causality or information flows among Bitcoin markets, whereby the top 

senders and receivers of the Effective Transfer Entropy pre and post the cybercrime have changed 

due to breach events. Before the attack, BTC/BRL, BTC/ GBP and BTC/PLN were the top three 

receivers of information. However, after the breach, the top Bitcoin receivers of information became 

BTC/AUD, BTC/BRL, and BTC/JPY, respectively. Meanwhile, the top senders of ETE also changed to 

become BTC/USD, BTC/GBP and BTC/EUR, which are the three main transmitters of information in 

the network after the breach event. Nevertheless, the Bitcoin pair, BTC/EUR, continued to have a 

significant role in the network and remained an influential sender of the information in the network. 

Interestingly, the Bitcoin pair that represented the location of the Bitcoin platform became more 

active in the network when sending information while, in the case of the Bitcoin platform Bitstamp, 

the BTC/EUR continued to play a central role in the network. These findings can indicate the 

contagion risk of a security breach in the Bitcoin markets. 

The network of information flow for the bitcoin prices pre and post the American platform Cryptsy, 

cybercrime can be compared in Figure B 2 in the appendix. It can be seen that the network become 

more connected, which refer to the increase of information transferred between bitcoin cross prices 

after the security breach Table B 5 in the appendix compares the key factor of topological features 

results obtained from ETE. It is apparent from this table that the number of edges and the Graph 

density increased, meaning that the information transferred in the network increased. However, the 

node strength was decreased as a response of cyber-attacks. Signify the influence of this type of 

event on the strength of the information spillover between bitcoin cross market prices. 

On the other hand, the rank of the most senders and receivers of the Effective Transfer Entropy pre 

and post the cybercrime reported in Table B 6 in the appendix. Where before the cybercrime 

BTC/BRL, BTC/ AUD and BTC/PLN was the top three receivers of information. However, after the 

breach event, the top bitcoin receivers of information become BTC/AUD, BTC/EUR and BTC/GBP, 

respectively. Strong evidence of the influence of cyber-attacks on the network, where pre the breach 

the BTC/EUR was the top sender of information in the network, however after the breach BTC/EUR 

become in the top list of receivers of information.  In the same vine, the top senders of ETE also 

changed. Where the leading ETE sender pre the security breach was BTC/GBP and BTC/EUR, but 

after the breach occurred the results indicate that the top senders of information become BTC/USD, 
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BTC/KRW and BTC/CAD respectively.  Interestingly, the Bitcoin pair that represents the location of 

the Bitcoin platform become more active in the network. Where in the case of Cryptsy platform, the 

pair BTC/USD convert from receiving information to become the top sender of the information in 

the network after the breach. 

Effective Transfer Entropy analysis was used to measure the impact of the security breach that 

targeted the Bitfinex exchange in 2016. Figure B 3 in the appendix compares the impact of cyber-

attacks. To distinguish between these two networks, Table B 7 in the appendix differentiate the 

critical factor of topological features outcomes obtained from analysis pre and post the cyber-

attacks. Obviously, from this table, the number of edges and the Graph density marked increase, 

showing that the transfer of information in the network raised and the network become more 

connected. However, the node strength in the network was decreased as a response of cyber-

attacks. Denote the influence of this type of event on the amount of information spillover between 

bitcoin cross market prices. The rank of the most senders and receivers of the Effective Transfer 

Entropy pre and post the cybercrime reported in Table B 8 in the appendix. Where before the 

cybercrime BTC/GBP, BTC/ BRL and BTC/PLN was the top three receivers of information. However, 

after the breach event, the top bitcoin receivers of information become BTC/BRL, BTC/AUD and 

BTC/PLN, respectively.  In the same vine, the top senders of ETE also changed. Where the key players 

of sending ETE pre the security breach was BTC/CNY and BTC/EUR, but after the breach occurred the 

results indicate that the top senders of information become BTC/JPY, BTC/EUR and BTC/ KRW 

respectively. Therefore, this is strong evidence of the influence of cyber-attacks on the network, 

where pre the breach the BTC/CNY was the top sender of information in the network, however, 

after the breach, BTC/JPY become in the top list of the sender of information. 

The impact of the security breach that targeted the Yapizon platform in 2017 is depicted in Figure B 

4 in the appendix. To compare between these two networks, Table B 9 in the appendix summarised 

the results of topological features obtained from ETE analysis. Obviously from this table, the number 

of edges and the density of the graph marked raised, referring to the bitcoin cross market prices 

network become more connected, also the transmission of information in the network raised. 

However, the node strength in the network was slight decrease as a response of cyber-attacks. 

Denote the influence of this type of event on the Effective Transfer Entropy between bitcoin cross 

market prices. The rank of the most senders and receivers of the Effective Transfer Entropy pre and 

post the cybercrime reported in Table B 10 in the appendix. The results show that pre the 

cybercrime BTC/BRL, BTC/ JPY and BTC/PLN was the top three receivers of information. But after the 

breach event targeted the South Korea platform, the top bitcoin receivers of information become 
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BTC/PLN, BTC/EUR and BTC/GBP respectively.  In the same vine, the top senders of ETE also 

changed. Where the key players of the top node that transfer ETE pre the security breach was 

BTC/USD and BTC/GBP, on the other hand after the breach occurred the results reveal that the main 

senders of information become BTC/JPY, BTC/KRW and BTC/ CNY respectively.  Interestingly, the 

Bitcoin pair that represents the location of the Bitcoin platform BTC/KRW become more active in the 

network.  

Under the same rationale as before, the study employs the ETE asset graphs to examine the rest of 

the events included in the study. Where the comparison between the bitcoin cross market prices 

networks pre and post each attack is depicted in Figure B 5 in the appendix for the cybercrime that 

targeted Zaif platform. The most striking result to emerge from the data is that the results signify 

that the security breach always has the same influences on the topological features of the network 

and the strength of the information spillover between bitcoin prices. Table B 11 in the appendix, 

show the results of the changes occur in the topological features for Zaif and LocalBitcoins 

respectively. This result shows that every time that bitcoin platform experience security breach, the 

network becomes more connected compared with network pre the attacks. The number of edges 

and the graph density increased. Further analysis showed that the security breach changes the main 

senders and receivers in the bitcoin prices network. Table B 12 in the appendix presents the impact 

of cybercrime on the top node strengths. The most surprising findings that the Bitcoin pair that 

represents the location of the Bitcoin platform become more active in the network. Where in the 

case of the Japanese Bitcoin exchange Zaif, BTC/JPY become in the top list of the sender of 

information.  

Meanwhile, in case of the LocalBitcoins exchange located in Finland, the BTC/EUR played a crucial 

role after the cyber-attacks. Figure B 6 in the appendix compares the impact of cyber-attacks. To 

distinguish between these two networks, Table B 13 in the appendix differentiate the critical factor 

of topological features outcomes obtained from analysis pre and post the cyber-attacks. Obviously, 

from this table, the number of edges and the Graph density marked increase, showing that the 

transfer of information in the network raised and the network become more connected. However, 

the node strength in the network was decreased as a response of cyber-attacks. Denote the 

influence of this type of event on the amount of information spillover between bitcoin cross market 

prices. The rank of the most senders and receivers of the Effective Transfer Entropy pre and post the 

cybercrime reported in Table B 14 in the appendix. Where before the cybercrime BTC/BRL, BTC/ PLN 

and BTC/KRW was the top three receivers of information. However, after the breach event, the top 

bitcoin receivers of information become BTC/GBP, BTC/BRL and BTC/CAD, respectively.  In the same 
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vine, the top senders of ETE also changed. Where the key players of sending ETE pre the security 

breach was BTC/GBP and BTC/BRL, but after the breach occurred the results indicate that the top 

senders of information become BTC/KRW, BTC/EUR and BTC/ AUD respectively. Therefore, this is 

strong evidence of the influence of cyber-attacks on the network. 

The network of information flow for the bitcoin prices pre and post for the well-known Bitcoin 

platform Binance can be compared in Figure B 7 in the appendix. It can be seen that the network 

become more connected, which refer to the increase of information transferred between bitcoin 

cross prices after the security breach Table B 15 in the appendix compares the key factor of 

topological features results obtained from ETE. It is apparent from this table that the number of 

edges and the Graph density increased, meaning that the information transferred in the network 

increased. However, the node strength was decreased as a response of cyber-attacks. Signify the 

influence of this type of event on the strength of the information spillover between bitcoin cross 

market prices. 

On the other hand, the rank of the most senders and receivers of the Effective Transfer Entropy pre 

and post the cybercrime reported in Table B 16 in the appendix. Where before the cybercrime 

BTC/GBP, BTC/ CAD and BTC/KRW was the top three receivers of information. However, after the 

breach event, the top bitcoin receivers of information become BTC/KRW, BTC/ GBP and BTC/JPY, 

respectively.  In the same vine, the top senders of ETE also changed. Where the leading ETE sender 

pre the security breach was BTC/AUD and BTC/KRW, but after the breach occurred the results 

indicate that the top senders of information become BTC/USD, BTC/ CAD and BTC/JPY respectively. 

Table B 25 in the appendix, show the IN- closeness node of the ETE to cross-market Bitcoin prices in 

time. Which can gives some information on the numbers of steps to cyberattack risk infect all the 

nodes in the Bitcoin cross market prices. Overall, there was no fix pattern after the cyberattack 

event where in case of Bitstamp, Yapizon and Zaif platform the number of steps to send the risk of 

breach events increased, where the total steps in case of Bitstamp raise from 33 to 66, Yapizon from 

37 to 63. Lastly, after the security breach targeted Zaif platform the distance of spread the risk of 

cyberattack increased 45 to 50. On the other hands, after the cybercrime targeted Cryptsy, Bitfinex, 

LocalBitcoins and Binance. The number of edges needed to spread the infection dropped to more 

than half in case of LocalBitcoins and Binance. On the same vein, the average in- Closeness centrality 

indicates to the average numbers of connections that each node need it to spread or broadcast the 

information transmitted among the nodes in the network.  
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Closeness centrality computes the time that is needed to disseminate some information from a 

particular Bitcoin pairs to other cross-market Bitcoin prices in the network. Table B26 to Table 32 in 

the appendix, present in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- 

and post-cyberattacks. Knowing that closeness centrality did not only considered the direct edges or 

connections but also compute the indirect relation between Bitcoin pairs node. The difference 

between in and out closeness is the direction of the edges. Thus in the out- closeness considered 

only the edges that indicate from targeted node to its relation with other node in the network. it can 

be seen from the tables the changes occurred pre and post the breach events.  

   Overall, two main findings signify the impact of breach events on the Bitcoin prices network. First, 

the network becomes more active after the cyberattacks but with less information exchanged 

among the Bitcoin pairs. Second, the pattern that appears signifies that the Bitcoin pairs that 

represent the location of the Bitcoin platform that suffered a security breach become the main 

source of information in the network; therefore, the finding indicates the contagion risk of security 

breaches in the Bitcoin markets.  
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3.4.1.1.1 Robustness Test 

Transfer Entropy usually suffers from the noise contained in the TE matrices due to non-stationarity 

variables. However, these effects can be reduced if the model proposed by (Sensoy et al., 2014) is 

adopted. Effective Transfer Entropy (ETE) can be seen as a more efficient and consistent estimation 

method of Transfer Entropy (TE) that provides robust results. To eliminate any causality among 

variables, this method randomly shuffles each time series individually to subtract the effects of 

noise. Figure B 14 and Figure B 15 in the appendix represent the heat map of Transfer Entropy 

matrix and Effective Transfer Entropy matrix respectively. while the values of the TE was much 

higher than the value of ETE, where the range values of TE was from 0 to 0.108, meanwhile the 

range of ETE was from 0 to 0.07. Notably, the results of Effective Transfer Entropy smaller than TE by 

0.0379 which is represent the Randomised Transfer Entropy. And by calculating ETE we subtracting 

the random values which is depicted in Figure B 15.  

 

3.4.1.2 Dynamic analysis 

In this section, the study analyses the dynamic dimension of causality relations among the examined 

Bitcoin cross-market prices, which helps to follow the adjustment of ETE.  To achieve this, the study 

employed non-overlapping windows, each comprising data of one month, with 120 observations for 

each window span. The reason for this was to avoid the statistical problems caused by small sample 

sizes and to reduce the possibility of a particular event occurring during the examined period, which 

might influence the analysis. The dynamic network structure in this section was computed on the 

basis of significant ETE for non-overlapping windows and to rolling window approach. 

Figure B 8 and Figure B 9 in the appendix represent the Out-Node strengths and IN-Node strengths 

of ETE between Bitcoin cross-market prices respectively. Indeed, each line graph represents a breach 

event included in this chapter, and each line reflects the flow of information for each Bitcoin pair. 

Periods 1 to 3 represent the episodes pre the security breach, while periods 4 to 6 show the 

exchange of information among Bitcoin cross-market prices as a reaction to the cybercrime. Thus, 

Period 4 represents one month after the cyberattack hit the Bitcoin platform. In general, the trends 

of Out-Node strengths and IN-Node strengths usually rise and fall together. Therefore, Bitcoin pairs 

behave similarly as a block in most cases. However, the interesting result was in Period 4, where the 

Bitcoin market received the news or the announcement of cyber-attack, thus, there was a sharp 

increase in the exchange of information in the Bitcoin prices network during the cybercrime period. 
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Moreover, although there was a strong peak in the exchange of information during the breach 

period, there was a dramatic drop in Out-Node strengths and IN-Node strengths after one month 

following the event. This can be seen in all events included in the study. Throughout Period 5, the 

exchange of information was at the lowest level for all Bitcoin cross market prices, and there was a 

little spillover of information between Bitcoin cross-market prices after the breach events.  

 

Table B 17 in the appendix compares the main factors of topological features obtained from ETE 

analysis in time. It can be seen from the results that all topological features rose during the 

cybercrime time (period 4). The rapid increases indicate that the networks became more connected 

and the flow of information also increased during the attack period. However, after one month 

following the cybercrime, all topological features dropped dramatically. Where in case of Bitstamp 

platform the spillover information increased after the breach event to 0.24, but the information 

transition decreased to 0.05. The strong degree before the cyberattack targeted Cryptsy platform was 

0.13 but after the breach event the strong degree rise to 0.31 and later dropped to 0.07. the 

information flow during the security breach event increased to 0.27, however after only one month 

of the attack the information flow declined to 0.048. On the other hand, in case of Yapizon, Zaif, 

LocalBitcoins and Binance the strong degree during the cybercrime steep rise by 0.37, 0.22, 0.13 and 0.06 

respectively. Although there is a clear peak but after one month of the announcement of the breach event the 

information spillover dropped to 0.13, 0.06, 0.01 and 0 correspondingly. Under the same rationale as before 

the rest of topological features show the same response pattern after all the cyberattacks. 

 Moreover, Table B 18 to Table B 24 in the appendix show a statistic of ETE that captures 

evolutionary pattern of network following various magnitudes of cyberattacks. The most surprising 

finding is that the Bitcoin pair that represented the location of the Bitcoin platform became more 

active in the network. In the case of the Cryptsy platform, the pair BTC/USD transformed from being 

receivers of information pre the breach event, to become the top source of information in the 

network after the breach. Where pre the breach event the average ETE for BTC/USD was around 

0.10, but after the security breach the average ETE for the pair BTC/USD become 0.31. In the same 

vein, after the security breach targeted the Yapizon platform, the BTC/KRW became more active in 

the network with average ETE post the cyber attack 0.32 . Conversely, the Japanese Bitcoin exchange 

Zaif that suffered from cyberattack BTC/JPY became the main transmitter of information in the 

network with average ETE about 0.25 . While, in the case of the LocalBitcoins exchange located in 

Finland, the BTC/EUR played a crucial role after the cyberattacks. Thus, the results signifies that the 
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Bitcoin pairs that represent the location of the Bitcoin platform that suffered a security breach 

become the main source of information in the network; therefore, the finding indicates the 

contagion risk of security breaches in the Bitcoin markets.  

According to recent research, while studying financial time series, some structural breaks should be 

taken into account. However, a few sub-samples or non-overlapping periods may insufficient to 

highlight the dynamic interaction (Sensoy and Tabak, 2016). Therefore, we adopt a rolling window 

approach to do a robustness check for the previous dynamic analysis to obtain more reliable findings 

of the dynamic causality relations among the examined Bitcoin cross-market prices. We choose six 

months (720 observations) time window and a 7-day shift (28 observations), with 120 observations 

for every window span. Since it is long enough to avoid the statistical problems caused by small 

sample sizes. Also, to reduce the possibility of a particular event occurring during the examined 

period. Jiang et al. (2018) estimate data obtained to Bitcoin market and show that rolling window 

method can serve to obtain more robust results and reduce the random errors.  

In Figure B 8 and Figure B 9 in the appendix represent the rolling window estimation of IN-Node 

strengths and OUT-Node strengths between Bitcoin cross-market prices respectively. We plot the 

separate node IN and Out strengths for each of the cyber attacks included in this chapter. Notably, 

the IN and Out strengths only rise sharply during the period that Bitcoin platform influenced by 

breach event. although there is a clear peak in IN and Out strengths but there is a sharp drop of flow 

of information among Bitcoin prices, in another words, Both In and Out strengths of ETE rose during 

the cyber attack event before rapidly dropping afterward. Which indicates that that there was fast 

rise and fast drop of spillover of information transmitted among Bitcoin cross market returns during 

the breach events.  the uniform behavior for IN and Out strengths of Bitcoin cross market prices 

usually rise and fall together, probably because they behave like a block during severe episodes. 

Lastly, the results from the rolling window method of the ETE are in full accordance with the 

aforementioned findings of non-overlapping estimations. 

The Bitcoin platform has valuable databases and assets in the form of cryptocurrencies that could be 

hacked. Initially, the Bitcoin platform invests in security management to mitigate the risk of security 

breach. The probability of a successful cybercrime depend on the level of the Bitcoin platform 

investment in security management. However, maintaining a lower likelihood of getting security 

breach is more expensive. As a result, removing the threat of being hacked is surprisingly difficult. 

Therefore, the impact of cybercrime can take several form. Where some of security breach goal is to 

steal money (Gandal et al., 2018), steal sensitive information or to block the services provided by 
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cryptocurrencies platforms which may influence the Bitcoin platform reputation (Kamiya et al., 

2021).The aim of the current chapter was to examine the influence of cyberattacks that targeted 

Bitcoin platform and generate money loss. From the Table B 17 in the appendix we can compare and 

rank the significance of cyberattacks depending on the change that occurred to the amount of 

information pre and post each breach events. Overall the amount of strong degree decreased on 

average after the cybercrimes. Where the average of ETE decreased by 12%, 4%, 42%, 28% and 82% 

for Bitstamp, Cryptsy, Bitfinex, Zaif and Binance respectively. Under the same rationale as before, 

the amount of strong degree increased on average after cyberattacks on Yapizon and LocalBitcoins 

by 32% and 20% respectively. The non-uniform behaviour of the market reaction to the breach 

event probably because of the size of the money theft, Table 2 show that breach event that targeted 

Yapizon and LocalBitcoins platform generated less stolen money compared with other cyberattacks. 

Therefore, we can rank the significance of cyberattacks depends on the size of the security breach.  

To sum up, the dynamic analysis indicates that during the breach period Bitcoin prices began to 

interact with this type of event. It also signifies the spread of the impact of security breaches among 

Bitcoin prices as the average degree increased. In addition, the evidence that emerged from the 

findings especially after the significant decrease in the exchange of information one month after the 

breach event indicates the contagion risk and the spread of the impact of cyber-attacks among 

Bitcoin markets.  

3.5 Conclusions 

The purpose of the current chapter was to determine the impact of a security breach on the causal 

relationships between Bitcoin cross-market prices, by adopting the complex network theory and 

analysing the data based on Effective Transfer Entropy (ETE). Overall, the current study found that 

the results indicate several crucial patterns that occur after the Bitcoin platform suffers a security 

breach. First, after a cybercrime, the topological features of the Bitcoin prices network increased and 

the network became more connected, whereby the number of edges, the graph density and the 

average node degree increased after all the breach events included in this chapter. However, the 

transfer of information between Bitcoin prices decreased. Second, the amount of exchanged 

information or the magnitude of interdependence among Bitcoin markets reduced after the cyber-

attack. Third, the most interesting pattern was that the Bitcoin pair that represents the location of 

the Bitcoin platform became more active in the network. Therefore, the security breach can 

generate contagion risk as the findings suggest that the Bitcoin pair that represents the location of 
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the breach event becomes the main source of information in the network. However, this finding 

might support the formation of an adaptive prediction of Bitcoin prices. 

Further analysis showed that the size of cyberattack did not play a crucial role in changing the 

response pattern in the spillover of the information network. Where such a breach generated a high 

amount of loss, for instance, the Bitfinex event, it had the same results as cyberattacks that did not 

generate a significant amount of loss, such as the LocalBitcoins event. The dynamic analysis was 

implemented to trace the impact of cyberattacks on Bitcoin cross-market price networks over time. 

The dynamic analysis has shown that during the security breach period all topological features rise 

quickly after a Bitcoin network suffers from a cyberattack. Meanwhile, one month after the breach, 

all network topological features drop quickly. As this pattern was repeated post all events included 

in the chapter. Therefore, it can be concluded that the changes in the network were caused by the 

influence of cyberattacks that may compromise the Bitcoin markets network to the contagion risk of 

spreading the impact of breach events in all Bitcoin cross-market prices. Indeed, these results match 

earlier studies; for Corbet et al. (2019a) traced 17 hacking events that targeted the eight most liquid 

cryptocurrencies within less than a year. They pointed out that volatility increased after each 

security breach and provided evidence that, in the hours prior to a hacking event, there were 

abnormal returns; however, the abnormal returns dropped to zero when the hacking event was 

revealed publicly. The present chapter makes several contributions to the literature and adds to the 

growing body of works about the way this type of cybercrime influences the Bitcoin exchange prices. 

It also enhances our understanding of the ability of criminals to generate contagion risk in the 

Bitcoin markets. Therefore, the finding raises the importance of improving security measures and 

techniques to reduce the frequency of hacking events, and to maintain efficient policies and 

protocols that can avoid the spread of security breach influences. The present study findings suggest 

to portfolio managers and investors the need to understand that, if a security breach targeted 

another Bitcoin platform located in a different country that they do not have investments in, they 

should not feel that their investment is safe, because the impact of cyberattacks still exists and 

because the contagion risk of a security breach that may expose their investment to the risk 

remains. Therefore, they need to consider several procedures to construct the best investment 

strategy. Also, security managers of cryptocurrency platforms need to enhance their security 

measures to reduce the risk of similar future cybercrime. In the same vein, Bitcoin exchange 

managers need to be aware of the impact of security breaches, which may result in the loss of 

traders’ confidence in the platform and lead traders to place their trust in other competitors, which 

can mean the platform faces significant reputational and financial risks.  
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Several limitations need to be acknowledged. The author planned to use weekly moving widows in 

the dynamic analysis. However, the data frequency affected the selection of the sample size.  The 

study could not employ less than 6 hours, such as 1, 5, 10, 15, 30 and 60 minutes, because of the 

missing data due to low liquidity in the Bitcoin markets in some periods, particularly during 2015. 

Moreover, the current chapter has only examined the impact of hacking events that targeted 

cryptocurrency exchanges and generated substantial monetary losses. Therefore, it would be 

interesting to examine the influences of a security breach that targeted other cryptocurrencies. 

Moreover, future research could assess the effect of different types of a security breach, which not 

only generate monetary losses. 
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Chapter 4                                                             

Revisiting the Risks of Various Types of Cyberattack 

on Bitcoin Markets 
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4.1 Introduction  

Blockchain can be considered as the heart of Bitcoin, thus, this innovative technology makes Bitcoin 

relatively safer (Chuen, 2015). However, Bitcoin is still susceptible to the impact of cyberattacks 

where the risk of cyberattacks does not come from breaching the Bitcoin algorithm itself; instead, 

the cybercriminals can use malicious methods to harm the holders of Bitcoin such as Account 

Hijacking, 51% attack, site defacing, SIM Hijacking, and many other methods (Conti et al., 2018). A 

security breach can generate several forms of damage. Some of the cyberattacks result in money 

loss (Gandal et al., 2018). Another type of breach event can create unauthorised access to a 

customer’s personal data, or a security breach can influence the web page of a platform to become 

inaccessible for the traders (Feder et al., 2017).  

It can be very complicated to examine the influence of cyberattacks = very (Sigurdsson et al., 2018). 

The cost of a security breach does not stop only in the amount of money that the platform lost from 

the attack, but exceeds that to include the costs related to identifying and fixing problems caused by 

the security breach. Another cost is the possibility that the cryptocurrency platform can face legal 

liability. The negative effect of the announcement of cybercrime can be destructive to the platform’s 

reputation and investor trust which may lead to a loss in current and future traders. Therefore, some 

cryptocurrency platforms did not report the hack event at the time of the breach; for instance, in the 

case of the Cryptsy platform that was subjected to a security breach in 2014, but the exchange 

management did not inform the investors of the incident until 2016 (Higgins, 2016). The current 

chapter aims to classify cyber security attacks into three main categories to understand how the 

nature of cybercrimes can influence Bitcoin cross-market price network and to identify the market 

reaction by tracing and comparing the spillover effect (contagion) after the network experienced 

each type of attack. Also, the study aims to trace the changes in the top transmitter and receivers of 

information between Bitcoin/currency pairs pre and post each event.  

The present chapter contributes to the current literature that studies the effects of cybercrimes on 

the Bitcoin markets in several ways. Initially, it sheds new light on the influence of the different type 

of cyberattacks and conducts a comparison of the changes that may occur in the information 

transmission among Bitcoin cross-market prices. Furthermore, it provides evidence that each type of 

cyberattack has a unique impact on the Bitcoin network. In addition, the finding in this chapter may 

enhance our knowledge to differentiate between cyberattacks, as much uncertainty still exists 

where, to the best of the author’s knowledge, no previous studies have attempted to differentiate 

between the impact of cyberattacks in terms of it unique influences in the Bitcoin prices network. 
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Several studies attempted to investigate the linkages between cryptocurrencies, and the changes 

that may occur over time (Boako et al., 2019, Ji et al., 2019a, Antonakakis et al., 2019, Katsiampa, 

2019, Koutmos, 2018). Meanwhile, the influence of security breach on cryptocurrencies markets was 

also examined by several studies (Shanaev et al., 2019, Gandal et al., 2018, Caporale et al., 2020, Xia 

et al., 2020). The summary of the relevant literature that collaborate to examine the main 

classifications of security breach that targeted the Bitcoin market shown in table 1-3 in the 

appendix . Until recently, little discussion has focused on the impact of cyberattacks on the linkages 

between Bitcoin and other cryptocurrencies (Caporale et al., 2021). However, the effect of 

cybercriminals on the linkages among Bitcoin cross-market prices requires further attention.  Also, 

much uncertainty still exists about how different types of security breaches can influence the 

information spillover among Bitcoin cross-market prices differently.  

The rest of this chapter is structured as follows. Section 2 presents the literature related to the 

study. Section 3 describes the data and the methodology and addresses the network analysis and 

Effective Transfer Entropy (ETE). Section 4 presents the empirical results. Section 5 concludes the 

chapter. 
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4.2 Related Work  

A large and growing body of literature pays particular attention to the impact of cybercrime on the 

cryptocurrencies market. The current literature that studied the influence of security breach can be 

divided into two main categories. The first group examined the impact of the security breach as a 

general concept without determining a specific method of cybercrime. Some of the literature 

examined the impact of security breaches that influence the Bitcoin platforms. Moore and Christin 

(2013) examined the impact of cybercrimes that targeted cryptocurrencies platforms and concluded 

that there was an inverse relationship between platform closures that suffered from breach events 

and the transaction volume. This argument was supported by (Moore, 2018) after he tracked the 

impact of cyberattacks on Bitcoin platforms, and pointed out that after the platform faced the risk of 

breach events the possibility of shutdown increased. However, a recent study by Oosthoek and 

Doerr (2020) posited that exchange closures as a result of hacking events show a declining trend. 

By drawing on the general concept of cyberattacks and without determining which type of 

cyberattack was included in the study  Corbet et al. (2019) traced 17 hacking events that targeted 

the eight most liquid cryptocurrencies within less than a year. They found that volatility increased 

after each security breach. Also, the study provided evidence that hours before a hacking event 

there were abnormal returns. However, the abnormal returns drop to zero when the hack event is 

revealed publicly. The study was limited, though, as the authors considered a short period of time 

within less than a year. On the other hand, after including a more extended period throughout 

August 2015 – February 2019,  Caporale et al. (2020) argued that the probability of cryptocurrencies 

influenced negatively by cyber-attacks and remained within low volatility.  

The second group of studies examined the impact of cybercrimes.  Those studies pay particular 

attention to the impact of a certain type of security breach that targeted the cryptocurrencies 

market. These included  double spending attacks (Ruffing et al., 2015, Hassan et al., 2020, Pinzón 

and Rocha, 2016), 51% attacks on Bitcoin (Shanaev et al., 2019), pump and dump schemes(Hamrick 

et al., 2018), DDoS attacks (Abhishta et al., 2019, Feder et al., 2017), Bitcoin hijacking (Apostolaki et 

al., 2017) and spam transactions in Bitcoin (McGinn et al., 2016). 

Collectively, although these groups of studies examined the influence of security breaches on the 

cryptocurrencies market from different perspectives.  However, many of the studies have a 

limitation to differentiate between several forms of security breaches that may influence the market 

differently. In contrast, other researchers have been able to specify the analysis depending on a 
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certain method of cyberattacks. Therefore, the present study attempted to distinguish between the 

impacts of several forms of security breaches and shed light on the market reaction after 

experiencing each kind of security breach.  

4.2.1 Determinants of cyberattacks 

It is crucial to understand the incentives behind security breaches where the damage generated 

from security breaches vary depending on the attacker’s aims. In some cases, the cybercriminals 

found a security defect in the cryptocurrencies platform system and took the opportunity to steal 

money from the market or trader’s accounts; for example, the security breach that incurred Mt.Gox 

significant losses of around US$470 million in 2014 (Gandal et al., 2018). On the other hand, some of 

the security breaches aimed to obtain non-economic gains, by gaining unauthorised access to stored 

data, aiming to steal sensitive information that can be used in future cybercrime. Moreover, several 

cybercrimes intended to block the services provided by cryptocurrencies platforms (Abhishta et al., 

2019). Thus, this paper introduces three main classifications for the security breach that targeted the 

Bitcoin platforms depending on the threat posed. Further, it examines whether there were any 

influences on the interdependency between Bitcoin cross-market prices and compares the impact 

for the three main categories. 

4.2.1.1 Confidentiality. 

In this category, the study includes any security breaches that cause unauthorised access and create 

a leak of personal information for traders. In any cash system trust is an important element and 

plays a critical role (Khairuddin, 2019). However, the trust in the traditional finance system has been 

tested as a result of incidents causing challenges in accountability and integrity; for instance, the 

financial crisis in 2008 and the collapse of Lehman Brothers (Marella et al., 2020). Therefore, as the 

concept of trust evolves (Luna-Reyes et al., 2004), these incidents opened up the opportunity to 

suggest a new cash system (peer-to-peer) without intervention from a third party (Nakamoto, 

2008b). However, trust in the electronic cash system such as Bitcoin and other cryptocurrencies 

faced major challenges; for example, cyberattacks that break the confidentiality may reduce the 

level of trust in the Bitcoin traders (Sas and Khairuddin, 2015, Xia et al., 2020). There is limited 

knowledge among the cryptocurrencies traders about how the new electronic cash system such as 

Bitcoins works, and the need to protect their investment from any risk. Therefore, building 

confidence in Bitcoin users was the responsible of the cryptocurrencies market by providing a set of 

procedures that ensure the investments’ protection for Bitcoin users (Marella et al., 2020).  
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To use the services that are provided from any Bitcoin platform the customers need to follow several 

procedures to verify their identity. The process is known as “Know-Your-Customer” (KYC) where, in 

general, the cryptocurrencies market requires personal information such as name, date of birth, 

email, physical address and a scanned copy of the customer’s ID document. However, on several 

occasions, the databases that include the personal information of the Bitcoin customers were 

targeted from a security breach.   

Group Types of security breaches Authors 

Theft 

dropping transactions  Sigurdsson et al., (2018) 

51% attacks  Shanaev et al., (2019) 

double-spending attacks Hassan et al., (2020) 

malleability attacks  Pinzón and Rocha, (2016) 

DNS hijacking  Dai et al., (2017) 

account hijacking  Mirian et al.,( 2019) 

SIM swapping  Sigurdsson et al., (2018) 

price manipulation Gandal et al.,(2018) 

mining botnets Huang et al., (2014) 

prices manipulated Griffin and Shams (2018) 

Confidentiality 

Fake app Xia et al., (2020) 

Site defacing Weimann (2016) 

phishing scams  Chen et al., (2020)  

Availability 

 DDoS Vasek et al. (2014) 

 DDoS Johnson et al., (2014) 

 DDoS Feder et al. (2017) 

 DDoS Abhishta et al. (2019) 

 DDoS Feder et al. (2018a) 

Note: Categorize the literature into three different classes, each category represent the works that 
examined the impact of cyber attacks on Bitcoin markets 
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Table C. 1 in the appendix shows an example of five breach events that caused the leak of the 

personal data of thousands of customers. 

Cybercriminals follow several methods to steal private data. Vulnerability in the platform security 

system can be an invitation to the attackers to steal all the data that they can get. For example, the 

Ledger platform experienced a cyberattack that compromised the personal details of one million 

clients (Ledger, 2020). Site defacing, fake app (Xia et al., 2020) or phishing scams (Chen et al., 2020) 

are other techniques that the attackers use to deception the users of cryptocurrencies. In this scam, 

the attacker created a fake website by using the Google AdWords service. The reason behind that 

was to make their fake website show at the top of Google search results, as shown in Figure C. 2 in 

the appendix. This scam targeted Bittrex platform users (hackread.com, 2017). The fake address 

directed the users to a phishing website that looked identical to the original site as shown in Figure 

C. 3 in the appendix. The cybercriminal then not only could steal credentials data, but could also take 

all the cryptocurrencies in the victim's account (Weimann, 2016). 

4.2.1.2 Availability. 

The availability category includes any cyberattacks that prevent traders from using the website 

services in the targeted platform.  This kind of cyber criminality do not create a leak of private data 

or money loss; however,  it does harm the platform which incurs costs after dealing with a 

cyberattack where the platform needs labour and time to repair the system damaged. Moreover, if 

the cryptocurrencies platform experienced cyberattacks that influence the availability, where the 

website of the platform will be unreachable for brokers and investors for hours, this might sustain 

loss for them, as they missed any opportunity to make a profit during the unavailability hours. In 

addition, this type of attack may harm the reputation of the exchange, the  result being that the 

cryptocurrencies platforms may suffer from losing the opportunity to expand their client’s base in 

the future (Feder et al., 2017). 

A distributed denial-of-service (DDoS) attacks one of the common examples of cyberattacks that 

influence the availability of cryptocurrencies platforms. In denial-of-service (DoS), as shown in Figure 

C. 1 in the appendix,  the attacker tries to send a significant amount of requests to flood the victim’s 

machine or network and prevent all services on the website from being fulfilled (Eliyan and Di Pietro, 

2021). However, this kind of attack can be solved by blocking the source of this attack. On the other 

hand, a distributed denial-of-service (DDoS) attack is a step further from DoS attacks. In this case, 
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the criminal first recruits thousands of computers around the world by infecting them with malware, 

as shown in Figure C. 1 in  Supplement to Chapter 4 

the appendix. The attacker uses those infected devices to create thousands of requests to overload 

the platform servers and prevent any user from accessing the services in the targeted website 

(Hoque et al., 2017). However, as the attacker uses more than one source of the attack, unlike the 

case with the DoS attack that only uses one source, it takes several hours to solve the problem.  The 

DDoS attack can shut down all website services, degrade the website performance, or influence part 

of the platform services’ availability. These methods do not stop all trading activities on the website 

but force the platform to temporarily disable some of its services.  For example, in 2018 the well-

known cryptocurrency platform Binance announced that new registration services temporarily 

closed as a response to 240,000 fake new account registrations within only one hour (Binance, 

2018).  

Previous studies have examined the impact of distributed denial-of-service (DDoS) attacks on 

Bitcoin. Vasek et al. (2014) examined 40 DDoS attacks events between 2011 and 2013. And they 

argue that DDoS attacks targeted big mining pool much more than smaller ones. And mining pools 

were much attractive to DDoS attacks compared with platform services. This point of view was 

supported by (Johnson et al., 2014). In the same vein, Feder et al. (2017) traced the impact of DDoS 

attacks on Mt.Gox exchange, one of the biggest Bitcoin platforms during the study sample and 

reported that, during the days of the attacks, there was a shift in transaction volume. However, the 

study was limited as they employed a model that suffers from endogeneity issues to estimate the 

impact. Recently, Abhishta et al. (2019) questioned whether DDoS attacks can influence the 

cryptocurrency platform and pointed out that, after including 17 DDoS events that targeted the 

Bitfinex platform, on 13 occasions the market recovered within a short period. However, in other 

events, the market needed more than one day to recover the losses. Therefore, they provided 

evidence of the negative impact of DDoS on the platform and stated that the impact depends on the 

size of the attack and how long the DDoS lasts until the market is able to provide the normal services 

before the breach event took place. 
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4.2.1.3 Theft. 

The theft category consists of any cyberattacks that targeted cryptocurrencies platform to steal 

Bitcoin and incur losses. In 2019 there was approximately more than $4 billion of theft in the 

cryptocurrencies market, compared to $1.7 and $1.2 billion of crypto crimes in 2018 and 2017, 

respectively (Forbes, 2019). The most destructive cybercrime was in the well-known Japanese 

Bitcoin exchange, Mt.Gox, with 470 million dollars being stolen (Bloomberg, 2014). In general, users, 

platforms or wallets, merchants, and Bitcoin miners are the main four interested parties of Bitcoin 

(Shcherbak, 2014). However, each Bitcoin stakeholder was exposed to certain kinds of risk that arise 

from cyberattacks. For instance, Bitcoin miners are exposed to several types of security breaches, 

such as dropping transactions (Sigurdsson et al., 2018) and  51% attacks (Shanaev et al., 2019). On 

the other hand, merchants that accept Bitcoin as a medium of exchange also suffer from double-

spending attacks and malleability attacks (Hassan et al., 2020, Pinzón and Rocha, 2016). Meanwhile, 

Bitcoin users have to deal with several cybercrime techniques; for example, DNS hijacking (Dai et al., 

2017), account hijacking (Mirian et al., 2019), SIM swapping and site defacing (Sigurdsson et al., 

2018).  

The Bitcoin market and wallets also face the same risk of security breach events. The security system 

vulnerability of Bitcoin platforms is one of the methods that malicious entities exploit when they 

plan to steal money from any platform (Conti et al., 2018) as well as Bitcoin market price 

manipulation (Gandal et al., 2018). Thus, there was a significant impact of security breaches that 

targeted the Bitcoin platform as the evidence presented in Chapter Two and Three shows. The 

Bitcoin cross-market price network depending on the correlation and Transfer Entropy was 

influenced from this type of events. 

4.2.2 Spillover and contagion in Bitcoin Market. 

The interconnection among cryptocurrencies and the linkages with other investment have become 

crucial topic for arbitrage, management of risk, portfolio management and hedging (Antonakakis et 

al., 2019). In particular, when investing in the cryptocurrencies market, customers need to be aware 

of the possibility that they may be vulnerable to the contagion risk. Recently, spillover in the 

cryptocurrencies market has been researched from different perspectives. The relation between 

spillover across the cryptocurrency and the changes of regulation were investigated by Borri and 

Shakhnov (2020), they pointed out that if the country adjusts the regulations related to the 
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investment in the cryptocurrencies market, that may influence on domestic and international 

cryptocurrency markets. 

 A number of authors examined the spillover among cryptocurrencies and commodities.  Huynh et 

al. (2020) employed Transfer Entropy to examine the spillover between gold and 14 different types 

of cryptocurrencies.  They argued that a portfolio consists of cryptocurrencies and gold can be 

considered as a good combination, where gold plays a significant role as a hedging tool in that 

portfolio. Similarly, Gkillas et al. (2020) identified the spillover effect after using high-frequency data 

between crude oil, gold, and Bitcoin. They described the robust association between gold and 

Bitcoin; likewise the relation between Bitcoin and crude oil. This point of view was supported by (Ji 

et al., 2019b), who addressed the weak linkage between energy commodities and the top five 

cryptocurrencies included in the study. On the other hand, by drawing on the concept of spillover 

effects between cross-market Bitcoin prices, Gillaizeau et al. (2019b) tracked the effects of volatility 

spillover among the top five cross-market Bitcoin prices. They provided some evidence that Bitcoin 

to EUR was playing a central part as it represents the net receiver of volatility and that, when the 

uncertainty in the cross-market price increased, this may possess more chance to the effect of 

volatility spillover in the market.  

Several attempts have been made to investigate the spillover among cryptocurrencies. Koutmos 

(2018) analysed the data from 18 major cryptocurrencies and concluded that cryptocurrencies had 

become more interconnected, and that the risk of contagion become significantly possible. Also, 

they confirmed the central role of Bitcoin among the top 18 cryptocurrencies included in the study. 

Likewise, Qureshi et al. (2020) asserted that the dependency between cryptocurrencies has 

increased. Moreover, Katsiampa et al. (2019) analysed the direction of spillover volatility among 

Bitcoin, Ether and Litecoin and they found that Bitcoin transfers its shock effects to both 

cryptocurrencies. However, the study would have made more contributions to the field if the 

authors had considered more than three cryptocurrencies in the study. Meanwhile, the arguments 

that Bitcoin has a leading role in the cryptocurrencies market have been contested recently by 

several researchers.  In their detailed analysis of the contagion and the connectedness across the top 

nine cryptocurrencies, Antonakakis et al. (2019) concluded that Ethereum transfers shock to Bitcoin 

and connectedness among cryptocurrencies increased over time. This argument was supported by a  

more recent study, where  Lahiani and Jlassi (2021) were able to show the leading role of Ethereum 

in the cryptocurrencies market.  



95 | P a g e  
 

There has been little quantitative analysis of the impact of security breaches on the spillover effect 

in the cryptocurrencies market. Caporale et al. (2021) examined the daily data for Bitcoin, Ethereum 

and Litecoin to highlight the changes that may occur in the volatility spillover after the market 

experienced a security breach. In their comprehensive examination, they were able to show that 

cyberattacks increase the linkages among three major cryptocurrencies and  they also addressed the 

leading role of Bitcoin compared with the rest of the cryptocurrencies included in the study. 

However, the study would have been more persuasive if the authors did not include all cyberattacks 

that occurred in all sectors, such as Government, Industry and Financial during 2015-2020 but 

instead focused on the cybercrime that targeted the cryptocurrencies market. Moreover, the study 

examined all security breach events that targeted the cryptocurrencies market, but the main 

weakness was including all breach events regardless of the nature of the cybercrime, where each 

type of cyberattack creates unique damage that might have a different kind of influence. 

 Although several studies have examined the impact of a security breach on cryptocurrencies, so far, 

however, there has been little discussion about the impact of cybercrime on the spillover in the 

cryptocurrencies market. The need to highlight the impact of different kinds of cyberattacks on the 

Bitcoin cross-market prices also needs more study. 
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4.3 Data and methodology  

4.3.1 Data  

4.3.1.1 Bitcoin cross-market price data 

Several platforms provide the service to buy/sell Bitcoin at diverse exchange prices. In this chapter, 

all data of exchange rates against Bitcoin are obtained from Bitcoincharts website3. This chapter 

considers eight major Bitcoin/currency pairs, which may provide a robust view of the Bitcoin market 

performance;  namely, the US dollar (USD), the South Korean Won(KRW),  the Japanese yen (JPY), 

the Australian dollar (AUD), the British pound (GBP),  the Euro (EUR), the Polish zlotys (PLN) and  the 

Canadian dollar (CAD). The data covered the period between 1 January 2017 and 31 October 2020, 

which incorporates several security breach events, as shown from  

Group Types of security breaches Authors 

Theft 

dropping transactions  Sigurdsson et al., (2018) 

51% attacks  Shanaev et al., (2019) 

double-spending attacks Hassan et al., (2020) 

malleability attacks  Pinzón and Rocha, (2016) 

DNS hijacking  Dai et al., (2017) 

account hijacking  Mirian et al.,( 2019) 

SIM swapping  Sigurdsson et al., (2018) 

price manipulation Gandal et al.,(2018) 

mining botnets Huang et al., (2014) 

prices manipulated Griffin and Shams (2018) 

Confidentiality 

Fake app Xia et al., (2020) 

Site defacing Weimann (2016) 

phishing scams  Chen et al., (2020)  

Availability 

 DDoS Vasek et al. (2014) 

 DDoS Johnson et al., (2014) 

 DDoS Feder et al. (2017) 

 DDoS Abhishta et al. (2019) 

 DDoS Feder et al. (2018a) 

Note: Categorize the literature into three different classes, each category represent the works that 
examined the impact of cyber attacks on Bitcoin markets 

  

                                                           
3 www.Bitcoincharts.com 
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Table C. 1 to Table C. 3, in the appendix. 

The platform that owns the most market trading activities and market share was the method to 

select the ideal platform. Therefore, to compare between several markets the Bitcoinity 4website 

was accessed for further evaluation between Bitcoin platforms. In some cases, the cross-market 

Bitcoin price was obtained from different exchange platforms for each currency to construct 

continuous time series, as shown in Table C. 4 in the appendix. Because some platforms such as the 

Canadian Bitcoin platform Quadrigacx, quit the market and stopped providing services during 2019, 

thus data were gathered from other exchange platforms. 

Because one of the aims of this paper is to trace the influence of a different class of security breach 

on the Bitcoin cross-market price network, several security breaches are included in this chapter. 

However, recently, cyberattacks and hacking events have become more frequent (Caporale et al., 

2021).  Thus, to focus on the impact of breach events and to reduce any chance that the data may be 

influenced by other news or information arrival to the market, the author employed high-frequency 

data at the level of 15-min frequency. The intention behind using a 15-min frequency was for several 

reasons. First, choosing less than 15 min data may lead to an increase in the amount of missing data 

due to low liquidity in some markets. Second, as the aim was to examine the data within narrow 

window lengths for each event, thus, less frequent data such as daily or hourly data may expose the 

model to statistical issues due to the small sample size.  

Table C. 5 in the appendix reports the descriptive statistics. Among the Bitcoin cross-market prices, 

the GBP (0.00254) shows the highest return followed by the USD (0.00253), while the EURO 

(0.00238) witnessed the lowest return compared with others Bitcoin returns. On the other hand the 

standard deviation is bouncing from KRW (0.08328) with the highest value, while PLN (0.06998) is 

the least. According to the Dickey-Fuller test, all Bitcoin exchange rates series are stationary. 

Moreover, the Jarque-Bera test indicates that all the series under examination in this study exhibit 

departure from normality. 

4.3.1.2 Cyber-attack data 

The damage caused by breach events differs based on the cybercriminal’s intentions. Therefore, in 

this chapter cyberattacks were classified into three main categories in order to explore their 

different impacts, as shown in Tables C.1- C.3 in the appendix. The hack events were obtained from 

                                                           
4www. Bitcoinity.org 
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the Hackmageddon5website, a public source of any security breach that happened around the world. 

Security breach influences all Bitcoin traders, platforms or wallets, merchants, and Bitcoin miners 

(Shcherbak, 2014). Thus, only cyberattacks that targeted the Bitcoin platforms were included. Since 

the study aimed to classify the breach events, the author examined each events and gathered more 

specific information about them from several sources, such as blogs, status page or Twitter account 

for the platform that suffered from the breach, Google news search, and news sites.  

Because of the uniqueness of each category of cyberattack, a specific type of evidence or 

information was needed. The specific information cannot only help with differentiating between the 

three main categories but also to compare between the breach events in the same category. The 

availability group include any cyberattacks that block customers from using the website services in 

the targeted platform; for example, a DDoS attack. The time of the breach and the damage caused 

to the trading platform was a piece of critical information for the availability category. On the other 

hand, the theft category consists of any cyberattacks that targeted cryptocurrencies platform to 

steal Bitcoin and incur losses. Thus, the numbers of Bitcoin missed, the time of the breach, and the 

amount of economic loss was essential information for this category. Finally, the confidentiality 

category consists of any cyberattacks that targeted the Bitcoin platform to gain unauthorized access 

to a database and generate leaks of personal information. The category also includes the number of 

traders who incurred damage from having their personal information exposed and the time of the 

announcement of the breach events. 

                                                           
5 www.hackmageddon.com 
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4.3.2 Methodology 

The study aims to estimate the influence of the different types of cyberattacks that take place and 

conduct a comparison for the changes that may occur in the information transmission among Bitcoin 

cross-market prices. Therefore, the data were divided into sections. Each section represents an 

event or security breach that targeted a Bitcoin platform. Then to trace the adjustment of spillover 

effects in the network, each breach event was divided into 14 days pre- and post-cyberattacks 

included in the study. The narrow window lengths have a number of attractive benefits. First, they 

focus more on the events and gain close insights into the impact of the incident. Second, hacking 

events become more frequent (Caporale et al., 2021); thus, increasing the window lengths may 

influence the results because an extended period can include more events within the same sample 

which may affect the analysis. Therefore, using narrow window lengths helps avoid the problem with 

the analysis. There were 2688 observations for each breach event. The Bitcoin return was calculated 

by logarithm return.  

The aim of this chapter was to estimate the risk of cyberattacks on the interconnections of the 

Bitcoin prices network, we will divided the sample into two sub sample to compare the influence 

pre- and post each breach events. However, identifying the potential location of the break point in 

the sample is often unknown. Thus, a number of methods were used to detect the structural break. 

Such as The Chow Test (Chow, 1960), The CUSUM Test (Brown et al., 1975) and The Hansen and 

Nyblom Tests (Hansen, 1992). Depending on least squares principles Bai and Perron (2003) proposed 

a model to capture structural break by employing multiple linear regression with N breaks.  

𝑦𝑡 =  𝑥𝑡
′𝛽 + 𝑧𝑡

′𝛿𝑗 + 𝑢𝑡                 (1) 

𝑡 =  𝑇𝑗−1 + 1, … , 𝑇                       (2) 

where 𝑗 = 1, … , 𝑚 + 1 . The dependent variable 𝑦𝑡 is to be modeled as a linear combination of 

regressors with both time-invariant coefficients 𝑥𝑡
′, and time variant coefficients 𝑧𝑡

′. This model can 

be rewritten in formation of matrix as 

𝑌 = 𝑋𝛽 + 𝑍𝛿 + 𝑈                   (3) 

This approach requires a specific number of Maximum breaks be given. Thus, we select one break 

point for each sample and for the test specification we choose global information criteria as a test 
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method. Table C24 in the appendix, show the Bai & Perron results. Thus, depending on the break 

point date we divided the sample into pre and post sub sample to examine the significance of 

security breaches.  

 A number of methods were used to measure the interconnectedness in the cryptocurrencies 

markets. Koutmos (2018) used the VAR model to examine the volatility spillover in the 

cryptocurrencies market. On the other hand, volatility spillover among the cryptocurrencies market 

was studied by  Omane-Adjepong and Alagidede (2019) and they employed the wavelet-based 

methods. Similarly, extreme price and extreme correlation approach were used to analyse the 

contagious risk in the cryptocurrencies market (Gkillas and Katsiampa, 2018, Gkillas and Longin, 

2018). Corbet et al. (2019b) proposed using Granger causality to trace the relationship in the 

cryptocurrencies markets. However, each model has its advantages and drawbacks.  

using a mean-variance decision-theoretic framework for Bitcoins, following the papers of 

(Mukherjee and Padhi, 2021); (Mukherjee et al., 2021); (Broll and Mukherjee, 2017); (Eichner and 

Wagener, 2012). Direct risk can be modelled in a similar way to (Bolt and van Oordt, 2019), by 

modelling the decision of the speculator between investing in a risk-free bond denominated in the 

established currency and speculation on Bitcoins. Under the assumption of absence of lending and 

borrowing in virtual currency, the return on a position in Bitcoins in terms of the established 

currency is determined only by the change in the (spot) exchange rate (in terms of Bitcoins defined 

in units of actual currency: GBP, USD etc.), 𝑆. Let us consider one period with two dates: 𝑡=0, 𝑡=1 

(where 𝑡=1 is the steady state, where we have, two potential outcomes. Given technological 

uncertainties, potentially adverse regulatory policies, or successful introductions of other virtual 

currencies, two extreme events may occur at 𝑡=1. Either the cryptocurrency payment network will 

end up in its stationary equilibrium. This stationary equilibrium is such that the number of Bitcoin 

users (i.e., consumers and merchants) equal the equilibrium values obtained from two-sided market 

theory. It is assumed that the number of Bitcoin users remains in this equilibrium thereafter. 

Alternatively, the payment network will be abandoned, in which case, there will be no users at 𝑡=1 

and thereafter. Let us, here consider the first possibility in this context of the decision problem). 

Hence, at 𝑡=1, the wealth of a speculator investing in 𝑧0 units of virtual currency is, 

𝑊1=𝑅 (𝑊𝑊0−𝑆0𝑧0)+𝑆1𝑧0                                              (4) 

Decision variable is 𝑧0. where 𝑊1 is wealth at time 𝑡, 𝑅 denotes the gross return on bonds 

denominated in the traditional currency and where 𝑆1 denotes the imperfectly predictable future 
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exchange rate. We assume that individual risk-averse speculators take the current exchange rate 𝑆0 

as given. In (4), cyber-attacks can be introduced as: 

𝑊1=(𝑊0−𝑆0𝑧0)+𝑆1 (1−�̃�)𝑧0                                                 (5) 

Where �̃� is the ex-post loss in the future spot rate of BTC owing to cyber-attacks. We assume �̃� is a 

mean-zero background risk. In this framework, we assume the speculator’s preferences are given by 

a two-parameter utility function: 

𝑈=(𝑣𝑊,𝜇𝑊)                                                       (5) 

We are making the following assumption regarding the speculator’s preference function. The 

marginal utility with respect to (w.r.t. hereafter) 𝜇𝑊 is positive while the marginal utility w.r.t. 𝑣𝑊 as 

negative: i.e., 𝑈(𝑣𝑊,𝜇𝑊)>0, 𝑈𝑣(𝑣𝑊,𝜇𝑊)< 0. In other words, we are assuming that the preference 

satisfies non-satiation (increasing in 𝜇𝑊) and the speculator is risk-averse (decreasing in 𝑣𝑊). The 

indifference curves are upward-sloped and strictly convex in (𝑣𝑊,𝑊)-plane. 

the selection of the method adopted in this chapter depended on the finding by Dimpfl and Peter 

(2019) where they highlighted the differences between using linear methods and nonlinear 

approaches to detect interconnectedness in the cryptocurrencies markets. They concluded that the 

nonlinear model avoids the limitations of linear methods, particularly in the case of dealing with 

cryptocurrencies data. Thus, the nonlinear model Transfer Entropy (ET) proposes better approaches 

to trace the impact of cyberattacks on the interconnectedness among Bitcoin cross-market price. 
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4.3.3 Transfer Entropy and Effective Transfer Entropy (ETE) 

The term ‘Entropy’ was first recognised in the thermodynamics field (Dugdale, 2018). It was used to 

describe the dispersion of heat or the temperature in any system (Greven et al., 2014). In other 

words, Entropy was labelled as the amount of chaos in any system. Later, in his theory of 

information, Claude Elwood Shannon reflected the concept of Entropy in the Communication 

framework (Shannon, 1948) which is known as the Shannon Entropy. More recently the concept of 

Transfer Entropy was developed by Schreiber (2000). Notably, this non-parametric model can be 

considered as a measure of interdependency and can capture the flow of information in a dynamic 

system. More formally, suppose we have two discrete and stationary variables, X and Y and that, in 

the case of computing the next state of variable X, knowing that there was interaction among X and 

Y. Therefore, the next state of the variable X will depend on its previous state and the information 

transaction from a variable Y to a variable X, which can be considered as the average of information 

contained in the variable Y (source of information) about the next state of the destination X (receiver 

of information) that did not already exist in the previous state of X. The Transfer Entropy from Y to X 

is defined as follows:  

𝑇𝐸𝑌→𝑋(𝛫, 𝑙) = ∑ [𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) 𝑙𝑜𝑔2

𝑝(𝑖𝑛+1,|𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)

)

𝑃(𝑖𝑛+1,|𝑖𝑛
(𝑘)

)
]

𝑖𝑛+1,𝑖𝑛
(𝑘)

,𝑗𝑛
(𝑙)  ,  (6)  

where𝑖𝑛  is the number of observations of X series, and 𝑗𝑛 refers to the number of elements for 

variable Y; the element K donates to previous states of the variable X, and 𝓁 shows the prior states of 

the variable Y.   𝑃 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) represents the joint probability between the previous states of the 

variables, and 𝑃 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

) denotes the conditional probability of the state of variable X on all its 

prior states. Meanwhile, 𝑝 (𝑖𝑛+1, |𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) in this part of the equation shows the conditional 

probability, where, if variable X depends on another state of variable Y, we assume that the state of 

X depends on the previous states of the source Y. Also, we conjecture that 𝑘 = 𝓁 = 1 follows the 

previous literature from empirical research in financial markets (Bekiros et al., 2017) and other 

literature which analyses information interdependence in cryptocurrency markets (Ji et al., 2019b, 

Huynh et al., 2020).  

Transfer Entropy usually suffers from the noise contained in the TE matrices due to non-stationarity 

variables. However, these effects can be reduced if the model proposed by (Sensoy et al., 2014) is 

adopted. Effective Transfer Entropy (ETE) can be seen as a more efficient and consistent estimation 
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method of Transfer Entropy (TE) that provides robust results. To eliminate any causality among 

variables, this method randomly shuffles each time series individually to subtract the effects of 

noise. An Effective Transfer Entropy matrix (ETE) can be calculated as shown in equation (2), below, 

whereby the Randomized TE matrix is subtracted from the TE matrix as follows: 

                 ETEY→X = TEY→X − RTEY→X       (7), 

where RTE Y→X indicates the shuffled version of the TE which breaks the dependencies among X and 

Y. The “RTransferEntropy” package proposed by (Behrendt et al., 2019) was used to analyse the 

data. And we considered the Effective Transfer Entropy matrix since it provides more robust results 

compared with Transfer Entropy. 

In this chapter, the aim is to explore both interdependences among Bitcoin prices and contagions in 

the form of the change in the Bitcoin network topological features pre- and post-cyberattacks. 

Network theory can provide a comprehensive tool to understand the contagion effects among 

Bitcoin cross-market prices resulting from the influences of security breaches. It can also provide an 

analytical method to view the complex relationship in the form of a graph. This helps to capture the 

changes in the interconnections among Bitcoin prices under examination to explain certain 

phenomena. Figure 1 illustrates an example of a directed network where the network consists of a 

number of nodes linked with edges. In this example as depicted in Figure 1, Node (A) has a 

significant role as a top sender to other nodes. Thus, Node (A) can be called a hub. However, in the 

case of Node (B) which can represents the top receiver in the network, as all the edges or links were 

pointing to Node (B), therefore it can be called authority. In the same vein, Node (A) has the top Out-

Node Degree (NDout), while Node B can be classified as the top IN-Node Degree (Ndin) since all the 

links show only one direction toward Node (B). The graph density shows all possible links that can be 

in the network. The value of graph density ranges from zero which mean no links between all the 

nodes in the network. Meanwhile, when the network density is equal to one, that means that all 

possible links in the network exist. In Figure 1 the maximum number of the edges in the network 

equals 12. Therefore, graph density in the network depicted in Figure 1 equals 0.417 as several 

edges were missing.  
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Figure 3: Directional Network 
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4.4 Main Results  

In this chapter, three main classifications were introduced for the security breach that targeted the 

Bitcoin platform depending on the threat posed as shown in Tables C1 to C3, in the appendix. 

Furthermore, the author examined whether there were any influences on the spillover among 

Bitcoin cross-market price and differentiated between the impacts of each main category. 

The first set of analyses traces the influence of security breach depending on the availability 

category. Table C.2 in the appendix presents the DDoS attacks that targeted the Bitcoin platform 

Bitfinex on several occasions. Figures C.4 to C.8 in the appendix present the network transformation 

that occurs in the net receivers and senders after the market suffers from cyberattack. Table C.6 in 

the appendix compares the network topological features among the five events included in this 

study. It can be seen from Table C.6 that the spillover among the eight bitcoin prices was increased. 

On average, the number of edges after most breach events steady increased. Therefore, the findings 

indicate the network adjustment, where the Bitcoin market network becomes more connected and 

the transfer of information among Bitcoin prices increased. Also, the graph density increased after 

the Bitcoin market experienced the DDoS attacks on the Bitfinex platform. However, no significant 

network reaction was found in the case of a DDoS attack in February 2017 where all the network 

topological features remain at the same level pre and post the breach event. 

 The flow of information in the Bitcoin network was examined to observe the impact of DDoS attacks 

on the Bitcoin prices network. Interestingly, strong evidence was found to signify that DDoS attacks 

increase the dependency between Bitcoin prices. However, depending on the damage generated 

from DDoS attacks, the results show that the network reacts differently. On the other hand,  in the 

case of DDoS attacks that create a reduction of the performance of the platform, there were no 

dramatic changes in the network – for instance, the DDoS attacks in February 2017 and June 2017. 

Meanwhile, the results show a significant change in the spillover among Bitcoin network prices in 

the case of the DDoS attack that forced the Bitcoin platform to stop the services temporarily where, 

on average, effective Transfer Entropy reveals that there has been a marked rise in the flow of 

information in the network. The interdependency between Bitcoin prices increased by 25%, 19% and 

279% in the case of events that occurred in December 2017, May 2018, and February 2020, 

respectively. In contrast, Tables C.9 to C.13 in the appendix compared the top sender and receiver in 

the network. Although there was a change pre and post the breach events for the key sender and 

receiver, no significant pattern appears after the breach events in the top receivers and transmitters 

in the network. 
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The second set of analyses focuses on the effect of different types of vulnerabilities that caused the 

stealing of money. Table C.3 in the appendix shows the security breach events based on economic 

loss generated. Table C.8 in the appendix summarises the topological features pre and post breach 

events. It is apparent from this table that the Bitcoin prices network become more connected, as the 

number of edges increased after all breach events. Moreover, the magnitude of transfer information 

among the Bitcoin prices raised as the average node strength increased, indicating that the 

connections or the information transaction in Bitcoin cross-market prices network increased as a 

response to the announcement of this type of cybercrime. Figures C.14 to C.18 in the appendix 

illustrate the adjustment on the network after the platform experienced a security breach. There 

was a clear trend of graph density, which highlights the influence of the theft breach on the Bitcoin 

cross-market prices. 

The results shown in Tables C.19 to C.23 in the appendix indicate that the main senders and 

receivers in the network have been changed after theft breaches. The most striking result to emerge 

from the analysis confirms the same pattern mentioned in the third chapter where the Bitcoin pair 

that represents the Headquarter location of the Bitcoin platform that experienced a breach became 

more active in sending information in the network. Initially, BTC/KRW was the top receiver of the 

information in the network before the South Korean platform Yapizon experienced a cyberattack. 

However, after the attack, BTC/KRW played a significant role to become the third transmitter of 

information in the network. In the same vein, BTC/JPY become more active after the Japanese 

platform Zaif suffered a cyberattack. Also, BTC/UK remained as the top sender of information even 

after a British platform, Cashaa, deal with a security breach. Therefore, the results reveal evidence 

that the contagion risk of security breach can be seen, particularly if the platform suffers economic 

loss.  

The final set of analyses examined the influence of certain type of security breaches depending on 

the confidentiality category. In several events, security breaches can lead to the leak of personal 

data for traders. Table C.1 in the appendix shows the cyberattacks that gain unauthorised access to 

steal personal data for thousands of traders. The results obtained from the preliminary analysis are 

summarised in Table C.7 in the appendix. Interestingly the number of edges decreased after this kind 

of breach, indicating the reduction of the flow of information between the network nodes. In 

addition, the amount of information transmitted dropped after the platform suffered the data leak. 

Also, the analysis showed that the same pattern occurred in all events included in this category, 

where all network topological features declined after confidentiality breaches. Figures C.9 to C.13 in 

the appendix reveal the dramatic vicissitudes in the network where the graph density decreased 
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after the cyberattacks. Interestingly, there was a kind of a relationship between the size of the 

breach and the reduction of dependency among Bitcoin prices. The more users   that were affected 

by the security breaches, the greater the decline in the amount of information exchanged in the 

network. In the case of Trezor, Ledger, and Keepkay the number of accounts subject to leaks was 

nearly 80000 and the reduction of ETE was approximately 24%compared with the Ledger where 

personal data were exposed for almost one million users, causing a severe decline in the 

interdependency among Bitcoin price to 45%. The same pattern applies to the rest of the events, 

where Coinmama, Bithumb and Trident suffered from unauthorised access to steal personal data for 

450,000, 318,000 and 266,000 users respectively. Also the decrease of the strength of the 

information spillover between Bitcoin prices was 45%, 31% and 31%, correspondingly. Tables C.14 to 

C.18 in the appendix report the dominant role of top receivers and the main source of information. 

Most notably the BTC/USD and BTC/JPY play a leading role as sources of information after the 

confidentiality cyberattacks. Meanwhile, no significant changes were found on the recipient of the 

information, where BTC/ PLN remains as the top information receiver pre and post the security 

breach.  

Notably, the distribution of in-degree and out-degree values show the possible to find certain 

memory distribution. Real-world networks, whether  biological or social,  can be decried as 

inhomogeneous connective structures, in which interconnections are almost distributed as a power-

law, where few nodes in the network have a number of relationships  compared with the vast 

majority of node in the same network with very few edges commonly known as scale-free networks 

(Barabási and Albert, 1999). Thus, we took the recent two breach events for each category and try to 

examine the distribution of in-degree and out-degree for each breach events. Figures C.19 to C.24 

display the histogram pre- and post each cyberattacks. Regarding to availability cybercrime depicted 

in Figures C.19 to C.20. The evidence suggested that there was very weak form of scale-free in case 

of Bitfinex 5-2018 for both out degree and in degree. Meanwhile, there was a strong form of scale-

free in case of Bitfinex 2-2020, where both in degree and out degree distribution clustered into one 

side. On the other hand, the form of the distribution of in-degree and out-degree after theft events 

represented in Figures C.21 to C.22. There was moderated form of scale-free property post the 

security breach that targeted KuCoin 9-2020. However, after the breach event on Cashaa 7-2020 the 

degree distribution show a strong form of scale-free. Remarkably, regarding to confidentiality 

category the histogram of in and out degree post the cybercrimes did not present a strong form of 

scale-free property. 
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Based on the evidence previously reported, it is possible to characterize the networks under analysis 

as scale-free in the sense of  

Overall, these results provide important insights into the diverse influences of cyberattacks on the 

Bitcoin cross-market prices. The observed differences were spotted in the network adjustment and 

the contagion risk of cyberattacks, where (i) the network reacts similarly in the case of availability 

attacks and theft breaches, (ii) the linkages or edges increased after breach events and (iii) the 

amount of information transmitted among Bitcoin price are also increased. Thus, the findings are 

consistent with previous research by Caporale et al. (2021) which shows that cyberattacks increase 

the linkages among cryptocurrencies. On the other hand, the network reacts contrarily in case of 

confidentiality breaches where there has been a marked decline in the linkages among Bitcoin price, 

and the amount of information diminished after the breach events.  
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4.5 Conclusions  

The main aim of this chapter was to differentiate among the effect of several categories on the 

Bitcoin cross-market prices. Thus, since this difference has been found between the three main 

classifications, the findings reported in this chapter appear to support the assumption that each type 

of cyberattack has it is own influences on the Bitcoin cross-market prices where the impact of the 

availability category appears to increase the links between the Bitcoin prices network. This indicates 

that the risk of cyberattacks has spread, but the effect has actually been that the network has 

become more active and information spillover has increased. However, the magnitude of the impact 

of the availability attack depends on the damage caused; that is, the DDoS attacks that led to the 

temporary suspension of the platform services caused much more damage in the network compared 

to the attacks that only affected the performance of the website. 

On the other hand, the confidentiality group impacted the Bitcoin markets differently. As the volume 

of information exchange between the Bitcoin prices network decreased after this type of breach. 

The effect of contagion risk under the confidentiality class was in the form of reducing the transfer 

of information in the network. Also, the finding sheds new light on the issue as the size of the data 

leak plays a central role;  more personal data leaked can cause a greater decrease in the linkages 

between Bitcoin price, and. the risk of cyberattack become more contagious in the Bitcoin price 

network. This highlights the leading role of Bitcoin pairs BTC/JPY and BTC/USD to become the source 

of information after this type of breach event. 

In terms of the theft category, the interconnectedness of the Bitcoin price network increased after 

the breach events. The contagion risk of cyberattacks was in the form of increasing the amount of 

information exchanged and the dependence between Bitcoin prices. It is also worth noting that the 

location of the platform that experienced a security breach has a significant role to indicate the main 

information transmitter after the cybercrime. 

The evidence from this chapter suggests fundamental implications for both trade and platform 

managers. First, traders in the cryptocurrencies market can build an investment strategy to gain 

speculative profits particularly after the Bitcoin platform influenced by a cyberattack. Also, the 

traders should pay particular attention to the risk of the security breach as it can be a contagion 

even if it happened on a different platform. Moreover, investors need to gain more knowledge 

about different techniques and methods to secure their accounts; for example, using web browsers 

with security extension, or having software that can reduce phishing schemes. The cryptocurrencies 
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users need to follow several procurers to protect their investment, by activating two-factor 

authentication, avoiding using untrusted public Wi-Fi, and not choosing weak passwords. In addition, 

the cryptocurrencies investors that trade in several platforms should be aware not to appoint the 

same email or password.  

Second, platform managers gain more knowledge about the way that security breach risk can spread 

in the Bitcoin market; therefore there is the need to have a controlling strategy that can reduce the 

influences of cyberattacks. Platform managers need to make additional efforts to separate more 

literacy about the best procedures that traders can follow to protect their accounts. Also, they need 

to increase the awareness of the common fraud schemes so the traders can avoid cybercriminals. 

Moreover, security managers in any Bitcoin platform should look forward to developing new 

technologies that can help to reduce cybercrimes and employ new practices such as machine 

learning, or fingerprinting devices.  

The study has confirmed the findings of Caporale et al. (2021) which found that security breach plays 

a significant role in raising in the relations among cryptocurrencies. Thus, this chapter extends the 

body of knowledge by providing additional evidence that different types of breach event can affect 

the Bitcoin market in diverse ways. However, the current investigation has only shed light on the 

influence of cybercrime on the Bitcoin market. More broadly, it would be interesting to compare the 

influence of the different types of security breaches that targeted several cryptocurrencies. 
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Chapter 5 Conclusion  

 

The main aim of this thesis was to evaluate the impact of cyberattacks on the Bitcoin cross-market 

prices network from various perspectives. The thesis sheds light on cyberattacks that only targeted 

the Bitcoin platform, as security breach can target other cryptocurrencies or other Bitcoin 

stakeholders – for example, Bitcoin miners.  The major findings are that security breach events 

influenced the Bitcoin market prices and changed the structure of Bitcoin prices.  In respect to 

Chapter Two, after using rolling estimations pre and post each event, the investigation has shown 

that the size of the attacks plays a crucial role. The results found evidence that large-scale breach 

events reduce the relationship between Bitcoin pairs. Moreover, the results of the centrality 

measurement analysis refer to the influence of cyberattacks on the Bitcoin pair that represents the 

location of the platform that suffers the cyberattack, where the Bitcoin pair lost the central role in 

the network that was built on the significant relationship among Bitcoin cross-market prices. The 

pattern was confirmed based on the appearance of the same pattern in all breach events. 

Chapter Three investigated the causality relationship among Bitcoin markets and the network 

adjustments after the Bitcoin platform suffered from cyberattacks. The findings in this chapter 

suggest that breach events influenced the network of the Bitcoin price structure where, during the 

breach events, the network become more connected as the information transactions increased, 

referring to high interdependency among network nodes during the attack episode. Meanwhile, the 

dynamic network analysis indicates that, one month after the security breach event, the flow of 

information in the Bitcoin prices network dropped, pointing to the destructive power of cyberattacks 

that can impact the Bitcoin markets network. Finally, the effective Transfer Entropy (ETE) confirmed 

the pattern that the Bitcoin pair that represents the location of the platform that suffers the 

cyberattack becomes more active in sending information to other Bitcoin markets. Therefore, this 

finding provides crucial evidence of the contagion risk of cyberattack among Bitcoin cross-market 

prices. 

Chapter Four was designed to classify security breaches that targeted the Bitcoin platforms 

depending on the threat posed, determine the effect of different types of cyberattacks that targeted 

the Bitcoin platform, and conduct a comparison for the changes that may occur in the Bitcoin 

network. The most obvious finding that each breach category has a unique impact on the Bitcoin 
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prices network where a cyberattack that caused money loss and influenced the platform availability 

increased the interdependency among Bitcoin markets. But breach events that cause a leak of 

personal data influenced the network differently, where the network became less connected and 

the flow of information between Bitcoin pairs decreased. Also, the results of the confidentiality 

group indicate the relation between the size of the breach and the reduction of the flow of 

information magnitude in the network. 

 The results hold implications for investors and portfolio managers to be aware of the contagion risk 

of the security breaches. Thus, they can construct an investment strategy to reduce the risk of 

money loss after breach events. In addition, these results suggest that Bitcoin platforms managers 

need to take set courses of action to enhance the security protocols and increase Bitcoin traders’ 

awareness on how to secure their account and not to fall victim to cybercriminals. The current 

findings have thrown up general suggestions required to be addressed when tracing the impact of 

cyberattacks. Accordingly, further research that is interested in the influence of security breaches 

needs to pay particular attention to the nature of the cyberattacks and the damage that they 

generated as the finding in Chapter Four shows evidence that each type of security breach poses 

different influences in the Bitcoin markets. Moreover, the market has become more attractive as a 

result of which the frequency of breach events has increased recently. Therefore, including high 

frequent data can provide more accurate results, because it may help to reduce the chance that the 

analysis is influenced by other breach events.  

This work plants the seeds for future studies that aim to further analyse the influences of breach 

events on the relationship among Bitcoin cross-market prices. More investigation is needed to 

compare the impact of different types of cyberattacks on the cryptocurrencies network.  
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Appendix  

A. Supplement to Chapter 2 

 

Table 1 - 1:  summary of the relevant literature. 

Group Authors Summary of points of view 

Group 
A 

Moore and Christin 
(2013) 

Security breach is more likely to target well-known platforms. 

Möser et al., (2013) Bitcoin can be used for illegal activities such as money laundering. 

Vasek et al. (2014) 
 DDoS attack was more likely to target platform services, e-wallets 
and large mining pools. 

Huang et al., 2014) 
Mining botnets are other methods for cybercriminals that impact 
the Bitcoin mining activities.  

Pinzón and Rocha, 
(2016) 

The influence of double-spend attacks in cryptocurrencies market. 

Rosati et al. (2017)  
Cyberattacks could not be predicted, either when they happen or 
how many times they could occur. 

Conti et al. (2018) 
 Bitcoin platform, wallet, and mining activities can be influenced 
from several forms of cyber attacks. 

Feder et al. (2018a) 
Trading activities were affected on the day the denial-of-service 
occurred. 

Feder et al. (2018b) The price of the Bitcoin in Mt.Gox was subject to manipulation. 

Griffin and Shams 
(2018) 

Bitcoin and other cryptocurrencies prices had been manipulated, 
by using Tether as a tool to offer price support. 

 Shanaev et al. (2019) 
They concluded that there were ‘pump and dump’ schemes after 
each cyber attack. 

Corbet et al. (2019b)  
Reviewed the published literature based on the cryptocurrencies 
market and they identified 10 research gaps in the current 
literature. 

Chainalysis, 2020 Bitcoin cab be used for terrorism financing and darknet markets. 

Caporale et al. 
(2020a)  

They claimed that cyberattacks can affect cryptocurrencies 
platforms in all countries included in their study. 

Azqueta-Gavaldón 
(2020) 

There was a unidirectional causal between narratives related to 
cybercrimes and prices. 

Caporale et al. 
(2020b) 

They argued for the probability of cryptocurrencies being 
influenced negatively by cyberattacks. 

Caporale et al. (2021) 
They were able to show that cyberattacks increase the linkages 
among three major cryptocurrencies and they also addressed the 
leading role of Bitcoin. 

Group 
B 

Ober et al. (2013) 
Adopted network theory to examine the degree of anonymity in 
Bitcoin. 

Lischke and Fabian 
(2016) 

 The small-world phenomenon can be present in the Bitcoin 
network. 
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Zięba and 
Śledziewska (2018) 

Bitcoin plays crucial roles in the cryptocurrency market.  

Francés et al.,( 2018) 
Ethereum has a vital role and plays as a benchmark currency 
instead of Bitcoin. 

Stosic et al. (2018) 
The cryptocurrency market has a unique behaviour that can differ 
from other financial markets. 

Note: group A represents the literature that addresses the impact of security breaches that targeted 
Bitcoin markets. On the other hand, group B highlight the works that adopted network theory to 
analyse the Bitcoin market. 
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Table A 2: The countries included in the paper, respective currency symbols, and the Bitcoin 
platform. 

No. Country Currency Bitcoin Platform 
 

1 Australia AUD Btcmarkets Mt.Gox 
 

2 Brazil BRL Mercado Bitcoin 
  

3 Canada CAD Mt.Gox quadrigacx 
 

4 China CNY Btcchina 
  

5 Europe EUR  Kraken 
  

6 British GBP Coinfloor Mt.Gox 
 

7 Japan JPY Mt.Gox btcbox Bitflyer 

8 South Korea KRW Korbit 
  

9 Polish PLN bitbay 
  

10 Russia RUB BTCe CEX.IO 
 

11 Singapore SGD FYB-SG 
  

12  United States USD Bitstamp 
  

13 South Africa ZAR BitX 
  

14 Vietnam VND VBTC 
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Table A 3: Summary statistics, Bitcoin exchange rate returns 

Exchange 
Rate 

 Mean  
Maximum 

 
Minimum 

 Std. 
Dev. 

 
Skewness 

 
Kurtosis 

 Jarque-
Bera 

 
Prob 

CAD 0.0011 0.0946 -0.1228 0.0150 -0.57 13.8 6538.8 0.0 

USD 0.0011 0.0914 -0.1142 0.0149 -0.41 11.3 3884.9 0.0 

GBP 0.0006 0.2716 -0.2071 0.0205 -0.66 47.5 110847.0 0.0 

JPY 0.0006 0.2749 -0.1985 0.0204 -0.57 48.6 116388.2 0.0 

AUD 0.0011 0.0993 -0.1357 0.0155 -0.53 14.0 6860.5 0.0 

EUR 0.0011 0.0908 -0.1122 0.0144 -0.37 12.0 4598.1 0.0 

PLN 0.0011 0.0976 -0.1082 0.0137 -0.25 13.1 5768.2 0.0 

KRW 0.0011 0.1286 -0.1368 0.0164 -0.11 16.8 10624.0 0.0 

RUB 0.0013 0.1905 -0.2026 0.0202 0.29 27.1 32467.8 0.0 

SGD 0.0010 0.1457 -0.1712 0.0298 -0.05 7.7 1253.3 0.0 

CNY 0.0011 0.1456 -0.1246 0.0167 -0.04 19.0 14406.7 0.0 

BRL 0.0012 0.1066 -0.1119 0.0141 -0.05 17.0 11028.8 0.0 

VND 0.0013 0.2459 -0.2117 0.0249 0.12 17.7 12041.6 0.0 

ZAR 0.0012 0.1657 -0.1671 0.0231 0.55 14.6 7589.6 0.0 

 

Figure A 2: The three major areas of study considered in this paper.  
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Figure A 3: The Bitcoin cross-market prices pre- and post-cyber-attacks on Mt.Gox platform 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 
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Table A 4: The key factor of the topological features to cross-market Bitcoin prices network pre- and 
post- cyberattacks on Mt.Gox platform 2014. 

  Pre the cybercrime Post the cybercrime 

Threshold  Total 0.6 0.7 Total 0.6 0.7 

Edges 78 78 78 68 57 49 

Average Degree 11.1 11.1 11.1 9.7 8.1 7 

Avg. Weighted Degree 9.9 9.9 9.9 7.5 6.7 5.9 

Graph Density 0.85 0.85 0.85 0.75 0.63 0.54 

Note: The table represents the summary of basic topological features pre- and post-cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

Table A 5: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post- cyberattacks on Mt.Gox platform 2014 for θ>0.7. 
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Table A 6: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Mt.Gox platform 2014 for θ>0.6. 
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Figure A 4: The Bitcoin cross-market price network pre- and post-cybercrime on Bitstamp platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 

Pre-cyberattack Post-cyberattack  

Total 

Threshold 0.6 

Threshold 0.7 



144 | P a g e  
 

Table A 7: Key factor of topological features to cross-market Bitcoin prices network pre- and post- 
cyberattacks on Bitstamp platform 2015. 

  Pre the cybercrime Post the cybercrime 

threshold  Total 0.6 0.7 Total 0.6 0.7 

edges 78 70 58 78 78 74 

average degree 11.1 10 8.3 11.2 11.2 10.6 

Avg. weighted degree 8.6 8 6.9 9.8 9.8 9.5 

Graph Density 0.86 0.77 0.64 0.86 0.86 0.81 

Note: The table represents the summary of basic topological features pre- and post-cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

 

Table A 8: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Bitstamp platform 2015 for θ>0.6. 
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Table A 9: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Bitstamp platform 2015 for θ>0.7. 
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 Figure A 5: The Bitcoin cross-market price network pre- and post-cybercrime on the Cryptsy 
platform. 

 

 

 

 

 

 

 

 

 

 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 
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Table A 10: The key factor of topological features to cross-market Bitcoin prices network pre- and 
post-cyberattacks on Cryptsy platforms 2016. 

  Pre the cybercrime Post the cybercrime 

threshold  Total 0.6 0.7 Total 0.6 0.7 

edges 78 74 65 82 75 67 

average degree 11.1 10.5 9.3 11.7 10.7 9.5 

Avg. weighted degree 8.6 8.2 7.5 8.6 8.3 7.8 

Graph Density 0.86 0.81 0.71 0.9 0.82 0.74 

Note: The table represents the summary of basic topological features pre- and post-cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

Table A 11: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Cryptsy platforms 2016 for θ>0.6. 
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Table A 12: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Cryptsy platforms 2016 for θ>0.7. 
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Figure A 6: The Bitcoin cross-market price network pre- and post-cybercrime on Bitfinex platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 
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Table A 13: The key factor of topological features to cross-market Bitcoin prices network pre- and 
post-cyberattacks on Bitfinex platform 2016. 

  Pre the cybercrime Post the cybercrime 

threshold  Total 0.6 0.7 Total 0.6 0.7 

edges 91 62 51 76 49 30 

average degree 13 8.85 7.28 11.69 7.53 4.6 

Avg. weighted degree 9.2 7.28 6.28 7.33 5.71 3.8 

Graph Density 1 0.68 0.56 0.97 0.62 0.38 

Note: The table represents the summary of basic topological features pre- and post- cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

Table A 14:  Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Bitfinex platform 2016 for θ>0.6. 
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Table A 15: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Bitfinex platform 2016 for θ>0.7. 
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Figure A 7: The Bitcoin cross-market price network pre- and post-cybercrime on Yapizon platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 
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Table A 16: Key factor of topological features to cross-market Bitcoin prices network pre- and post-
cyberattacks on Yapizon platform 2017. 

  Pre the cybercrime Post the cybercrime 

threshold  Total 0.6 0.7 Total 0.6 0.7 

edges 81 66 48 85 78 76 

average degree 11.5 9.42 6.85 12.1 11.1 10.9 

Avg. weighted degree 8.28 7.21 5.54 9.2 9.2 9 

Graph Density 0.89 0.72 0.52 0.93 0.86 0.84 

Note: The table represents the summary of basic topological features pre- and post-cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

Table A 17: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post- cyberattacks on Yapizon platform 2017 for θ>0.6. 
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Table A 18: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Yapizon platform 2017 for θ>0.7. 
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Figure A 8: The Bitcoin cross-market price network pre- and post-cybercrime on Zaif platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the thickness of edges’ lines reflects the strength of correlation between Bitcoin exchange 

rates. 
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Table A 19: Key factor of topological features to cross-market Bitcoin prices network pre- and post-
cyberattacks on Zaif platform 2018. 

  Pre the cybercrime Post the cybercrime 

threshold  Total 0.6 0.7 Total 0.6 0.7 

edges 78 76 61 78 78 71 

average degree 12 11.6 9.4 12 12 10.9 

Avg. weighted degree 10.41 10.2 8.4 10.8 10.8 9.9 

Graph Density 1 0.97 0.78 1 1 0.91 

Note: The table represents the summary of basic topological features pre- and post-cyberattacks for 

the total significant correlation in the network and different threshold levels (θ>0.6 and θ>0.7). 

 

Table A 20: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Zaif platform 2018 for θ>0.6. 
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EUR EUR PLN EUR EUR JPY JPY JPY CAD CAD 

 

Table A 21: Summary of centrality measurement results of cross-market Bitcoin prices network pre- 
and post-cyberattacks on Zaif platform 2018 for θ>0.7. 
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USD USD USD USD USD KRW KRW KRW PLN USD 
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PLN PLN PLN PLN PLN JPY JPY JPY ZAR KRW 

EUR EUR EUR EUR EUR EUR EUR USD BRL EUR 
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Figure A 9: The Probability distribution of Bitcoin cross market price correlation matrices during the 
period of cybercrime on Mt.Gox platform. 
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Figure A 10: The Probability distribution of Bitcoin cross market price based on randomized 

correlation matrices during the period of cybercrime on Mt.Gox platform.
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B. Supplement to Chapter 3 

 

Table 1 - 2:  summary of the relevant literature. 

Group Authors Summary of points of view 

Group A 

Martin and Christin ( 
2016) 

The immoral uses of cryptocurrencies have led to an increase in 
the number of related ethical problems  

Pinzón and Rocha, 
(2016) 

the influence of double-spend attacks  in cryptocurrencies market 

Corbet et al. (2019a) 
the correlations between cryptocurrencies increase after 
cyberattack 

 Shanaev et al. (2019) 
They concluded that there were ‘pump and dump’ schemes after 
each cyber attack 

Corbet et al. (2019b)  
reviewed the published literature based on the cryptocurrencies 
market and they identified 10 research gaps in the current 
literature 

Chainalysis, 2020 terrorism financing and darknet markets 

Caporale et al. (2020a)  
They claimed that cyberattacks can affect cryptocurrencies 
platforms in all countries included in their study. 

Azqueta-Gavaldón 
(2020) 

there was a unidirectional causal between narratives related to 
cybercrimes and prices 

Caporale et al. (2020b) 
They argued for the probability of cryptocurrencies being 
influenced negatively by cyberattacks  

Group B 

 

 

 

 

 Koutmos (2018) 
that cryptocurrencies had become more interconnected, and  the 
risk of contagion become significantly possible 

Ji et al.,( 2019b) 
addressed the weak linkage between energy commodities and the 
top five cryptocurrencies included in the study 

Gillaizeau et al. 
(2019b) 

Tracked the effects of volatility spillover among the top five cross-
market Bitcoin prices.  

 Ji et al. (2019) 
they  constructed a network to show the information spillover 
between various commodities and five major cryptocurrencies 

Katsiampa et al. 
(2019) 

They found that Bitcoin transfers its shock effects to  
cryptocurrencies markets. 

Dimpfl and Peter 
(2019) 

investigated the differences between using linear methods and 
nonlinear approaches to detect information transfer 

Borri and Shakhnov 
(2020) 

Pointed out that if the country adjusts the regulations related to 
the investment in the cryptocurrencies market, that may influence 
on domestic and international cryptocurrency markets. 

 Huynh et al. (2020)  
Employed Transfer Entropy to examine the spillover between gold 
and 14 different types of cryptocurrencies. 

Gkillas et al. (2020)  
identified the spillover effect after using high-frequency data 
between crude oil, gold, and Bitcoin 

Qureshi et al. (2020)  
asserted that the dependency between cryptocurrencies has 
increased 

Caporale et al. (2021) 
they were able to show that cyberattacks increase the linkages 
among three major cryptocurrencies and  they also addressed the 
leading role of Bitcoin  
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Note: group A represents the literature that addresses the impact of security breaches that targeted 
Bitcoin markets. On the other hand, group B highlight the works that examined the spillover and 
contagion in Bitcoin Market. 

 

 

Table B 1: The countries included in the paper, respective currency symbols, and the Bitcoin 
platform. 

No. Country Currency Bitcoin Platform 

1 Australia AUD Btcmarkets 

2 Brazil BRL Mercado Bitcoin 

3 Canada CAD Quadrigacx Karken 

4 China CNY Btcchina 

5 Europe EUR  Kraken 

6 British GBP Coinfloor 

7 Japan JPY Bitflyer Zaif 

8 South Korea KRW Korbit 

9 Polish PLN Bitbay 

10  United States USD Bitstamp 

  
 

 

Table B 2: Summary statistics, cross-market Bitcoin returns for the complete study sample. 

  Mean Median Max Min Std. Dev. Skewness Kurtosis Jarque-Bera ADF 

AUD 0.000274 0.000303 0.0558 -0.0631 0.0075 -0.6642 13.58 16570.59 -34.0942 

BRL 0.000282 0.000204 0.0673 -0.0557 0.0068 0.1608 17.83 32092.18 -31.3324 

CAD 0.000293 0.000235 0.065 -0.0721 0.0074 -0.4403 12.69 13812.07 -51.1966 

CNY 0.000291 0.000256 0.0468 -0.1049 0.0072 -1.6916 26.25 80498.89 -37.2327 

GBP 0.000292 0.000416 0.0506 -0.0687 0.0071 -0.7912 14.76 20524 -34.9662 

EUR 0.000292 0.000357 0.0606 -0.0547 0.0067 -0.5847 13.64 16707.41 -35.0402 

JPY 0.000284 0.000343 0.0525 -0.0939 0.0072 -1.143 21.13 48658.7 -33.8853 

KRW 0.000284 0.000251 0.0431 -0.0662 0.0071 -0.767 17.04 29083.41 -30.5328 

PLN 0.000286 0.000238 0.0638 -0.1222 0.0066 -1.9412 47.91 296289.7 -27.3008 

USD 0.000281 0.000376 0.0488 -0.0543 0.0069 -0.7686 12.61 13804.23 -34.9112 

Note: all the values of the Jarque-Bera test and the Augmented Dickey Fuller test are significant at 

the 1% level. 
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Table B 3: The key factor of topological features based on ETE to cross-market Bitcoin prices network 
pre- and post-cyberattacks on Bitstamp platform 2015. 

  Pre the cybercrime Post the cybercrime 

Edge 38 58 

Avg. Degree 3.8 5.8 

Node Strength Degree 0.097 0.16 

Graph Density 0.422 0.644 

 
 

Table B 4: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Bitstamp platform 2015. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

BRL EUR BRL EUR BRL USD AUD USD 

PLN BRL GBP BRL JPY EUR BRL GBP 

GBP PLN PLN KRW AUD BRL JPY EUR 

JPY CNY CAD PLN PLN CAD PLN CAD 

AUD KRW AUD CNY CNY CNY KRW CNY 

 

Figure B 1: The Bitcoin cross-market prices pre and post cyber-attacks on Bitstamp platform based 
on the Effective Transfer Entropy. 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

Pre cyber-attacks Post cyber-attack  
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Table B 5: The key factor of topological features based on ETE to cross-market Bitcoin prices network 
pre- and post-cyberattacks on Cryptsy platform 2016. 

  Pre the cybercrime Post the cybercrime 

Edge 39 41 

Avg. Degree 3.9 4.1 

Node Strength Degree 0.11 0.092 

Graph Density 0.433 0.456 

 

Table B 6: Node Strengths based on ETE to cross-market Bitcoin prices network pre- and post- 
cyberattacks on Cryptsy platform 2016. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

BRL EUR BRL GBP AUD USD AUD USD 

AUD GBP AUD EUR EUR KRW EUR KRW 

PLN BRL PLN KRW GBP JPY GBP CAD 

KRW KRW USD CNY KRW CAD BRL JPY 

CAD CNY CAD BRL JPY CNY JPY CNY 

 

Figure B 2: The Bitcoin cross-market prices pre and post cyber-attacks on Cryptsy platform based on 
the Effective Transfer Entropy 

 

Note: the thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates.  

Pre cyber-attacks Post cyber-attack  
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Table B 7: The key factor of topological features based on ETE to cross-market Bitcoin prices network 
pre- and post- cyberattacks on Bitfinex platform 2016. 

  Pre the cybercrime Post the cybercrime 

Edge 31 38 

Avg. Degree 3.1 3.8 

Node Strength Degree 0.108 0.082 

Graph Density 0.344 0.422 

 

Table B 8: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Bitfinex platform 2016. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

GBP CNY GBP CNY GBP JPY BRL  JPY 

BRL PLN BRL EUR AUD KRW AUD EUR 

PLN EUR PLN KRW PLN BRL PLN KRW 

AUD KRW AUD PLN KRW EUR GBP USD 

USD AUD USD AUD BRL AUD KRW AUD 

 

Figure B 3: The Bitcoin cross-market prices pre and post cyber-attacks on Bitfinex platform based on 
the Effective Transfer Entropy 

 

Note: the thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

Pre cyber-attack 
Post cyber-attack  
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Table B 9: The key factor of topological features based on ETE to cross-market Bitcoin prices network 
pre- and post- cyberattacks on Yapizon platform 2017. 

  Pre the cybercrime Post the cybercrime 

Edge 42 50 

Avg. Degree 4.2 5 

Node Strength Degree 0.15 0.143 

Graph Density 0.467 0.556 

 

Table B 10: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Yapizon platform 2017. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

PLN USD BRL USD PLN KRW PLN JPY 

BRL GBP JPY GBP BRL BRL EUR KRW 

JPY AUD PLN EUR EUR JPY GBP CNY 

GBP EUR AUD AUD KRW CNY BRL BRL 

AUD PLN GBP PLN JPY GBP KRW AUD 

 

Figure B 4: The Bitcoin cross-market prices pre and post cyber-attacks on Yapizon platform based on 
the Effective Transfer Entropy 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

 

Pre cyber-attacks Post cyber-attack  



160 | P a g e  
 

Table B 11: The key factor of topological features based on ETE to cross-market Bitcoin prices 
network pre- and post-cyberattacks on Zaif platform 2018. 

  Pre the cybercrime Post the cybercrime 

Edge 34 36 

Avg. Degree 3.78 4 

Node Strength Degree 0.087 0.085 

Graph Density 0.47 0.5 

 

Table B 12: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Zaif platform 2018. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

CAD KRW CAD USD BRL BRL BRL JPY 

PLN GBP PLN GBP CAD JPY CAD GBP 

BRL CAD BRL KRW GBP GBP KRW AUD 

KRW EUR JPY EUR AUD AUD GBP KRW 

JPY USD KRW CAD KRW KRW EUR PLN 

 

Figure B 5: The Bitcoin cross-market prices pre- cyber-attacks on Zaif platform based on the Effective 
Transfer Entropy. 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

Pre cyber-attacks Post cyber-attack  
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Table B 13: The key factor of topological features based on ETE to cross-market Bitcoin prices 
network pre- and post-cyberattacks on LocalBitcoins platform 2019. 

  Pre the cybercrime Post the cybercrime 

Edge 24 28 

Avg. Degree 2.78 3.1 

Node Strength Degree 0.07 0.067 

Graph Density 0.33 0.39 

 

Table B 14: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on LocalBitcoins platform 2019. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

PLN BRL BRL GBP BRL KRW GBP KRW 

BRL GBP PLN BRL GBP EUR BRL EUR 

AUD JPY KRW USD CAD USD CAD AUD 

JPY USD AUD JPY JPY AUD JPY USD 

KRW EUR JPY EUR USD CAD PLN CAD 

 

Figure B 6: The Bitcoin cross-market prices pre- and post-cyberattacks on the LocalBitcoins platform 
based on the Effective Transfer Entropy. 

 

Note: the thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

Pre cyber-attacks Post cyber-attacks  
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Table B 15: The key factor of topological features based on ETE to cross-market Bitcoin prices 
network pre- and post- cyberattacks on Binance platform 2019. 

  Pre the cybercrime Post the cybercrime 

Edge 18 21 

Avg. Degree 2 2.3 

Node Strength Degree 0.047 0.046 

Graph Density 0.25 0.292 

 

Table B 16: Node strengths based on ETE to cross-market Bitcoin prices network pre- and post- 
cyberattacks on Binance platform 2019. 

Pre the cybercrime Post the cybercrime 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

GBP KRW GBP AUD KRW USD KRW USD 

CAD AUD CAD KRW GBP CAD GBP CAD 

JPY GBP KRW EUR JPY KRW JPY JPY 

KRW CAD JPY CAD AUD JPY AUD KRW 

BRL USD BRL USD PLN BRL PLN BRL 

 

Figure B 7: The Bitcoin cross-market prices pre and post cyber-attacks on Binance platform based on 
the Effective Transfer Entropy 

 

Note: the thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. 

Pre cyber-attacks Post cyber-attack  
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Figure B 8: Out-Node strengths of ETE between Bitcoin cross-market prices in time. 
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Figure B 9: IN-Node strengths of ETE between Bitcoin cross-market prices in time. 

 

 

 

 

 

 



165 | P a g e  
 

Table B 17: The key factor of topological features based on ETE to cross-market Bitcoin prices in 
time. 

 Period 1 2 3 4 5 6 

B
it

st
am

p
 Edge 38 25 25 43 10 26 

avg. degree 3.8 2.5 2.5 4.3 1 2.6 

strong degree 0.22 0.11 0.126 0.239 0.049 0.119 

density 0.422 0.278 0.278 0.478 0.11 0.289 

    

C
ry

p
ts

y 

Edge 60 11 28 49 13 33 

avg. degree 6 1.1 2.8 4.9 1.3 3.3 

strong degree 0.39 0.04 0.175 0.31 0.07 0.2 

density 0.667 0.122 0.311 0.544 0.144 0.366 

    

B
it

fi
n

e
x 

Edge 45 22 32 39 10 15 

avg. degree 4.5 2.2 3.2 3.9 1 1.5 

strong degree 0.239 0.127 0.179 0.273 0.048 0.063 

density 0.5 0.244 0.356 0.433 0.11 0.16 

    

Y
ap

iz
o

n
 

Edge 1 23 49 53 24 24 

avg. degree 0.1 2.3 4.9 5.3 2.4 2.4 

strong degree 0.003 0.121 0.3 0.368 0.136 0.118 

density 0.01 0.256 0.544 0.589 0.267 0.26 

    

Za
if

 

Edge 30 9 22 35 9 2 

avg. degree 3.3 1 2.44 3.889 1 0.22 

strong degree 0.198 0.064 0.127 0.218 0.06 0.025 

density 0.417 0.125 0.306 0.486 0.125 0.028 

    

Lo
ca

lB
it

co
in

s Edge 16 1 9 20 5 11 

avg. degree 1.78 0.011 0.1 2.22 0.056 0.122 

strong degree 0.10 0.002 0.05 0.130 0.015 0.045 

density 0.22 0.014 0.125 0.278 0.069 0.153 

    

B
in

an
ce

 Edge 2 25 17 14 0 14 

avg. degree 0.22 2.7 1.88 1.56 0 1.55 

strong degree 0.007 0.161 0.1 0.061 0 0.086 

density 0.028 0.347 0.236 0.194 0 0.194 
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Table B 18: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Bitstamp platform 2015. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0.2507278 0.090395 0.105223 0.68087016 0.12412 0 

BRL 0.13473555 0.327751 0.519391 0.43934144 0 0.04454 

CAD 0.23231475 0.090395 0.136851 0.14814717 0 0.100747 

CNY 0 0.138772 0.104145 0.0513175 0.030349 0.088514 

EUR 0.0967152 0.052805 0 0.04798345 0.053434 0.146964 

GBP 0.35191532 0.119134 0.185437 0.10927432 0 0.158851 

JPY 0.31623216 0.044339 0 0.3068814 0.14324 0.046001 

KRW 0 0.182308 0.126916 0.15670631 0 0.284067 

PLN 0.53801661 0 0.037808 0.30846202 0.138321 0.046001 

USD 0.2882115 0.061309 0.039801 0.13998901 0 0.269473 

 

Out-Node strengths 1 2 3 4 5 6 

AUD 0.16089524 0.029437 0.14439 0.24994095 0 0.089109 

BRL 0.51343601 0.037788 0.084123 0.10752925 0.070702 0.033472 

CAD 0.03418602 0.050127 0.100295 0.33363046 0.083783 0.038873 

CNY 0.34959446 0.094549 0.124395 0.37532345 0 0.036318 

EUR 0.38843597 0.210309 0.234997 0.03678035 0.137284 0.349279 

GBP 0.04151616 0.050127 0.105565 0.26739927 0 0.270164 

JPY 0.04816747 0.031846 0.064561 0.17593779 0 0 

KRW 0.25191029 0.319143 0.059755 0.1958096 0 0.181943 

PLN 0.22534029 0.250272 0.101 0.20701557 0 0.033472 

USD 0.19538698 0.033611 0.236489 0.43960608 0.197695 0.152528 
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Table B 19: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Cryptsy platform 2016. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0.45587131 0.075317 0.481792 0.889042 0 0.506392 

BRL 0.74712584 0.23687 0.035929 0.130576 0.032201 0 

CAD 0.3379542 0 0 0.255142 0.131186 0.101071 

CNY 0.59643609 0.027717 0 0.232534 0.041096 0.259902 

EUR 0.09855868 0.038587 0 0.088013 0.188243 0.154864 

GBP 0.6759419 0 0.189758 0.406928 0 0 

JPY 0.13753883 0 0.116606 0.412848 0.055604 0.214247 

KRW 0.26988731 0.030731 0.348539 0.234699 0.112049 0.332065 

PLN 0.48814711 0 0.431556 0.37445 0 0.150058 

USD 0.09855868 0.037354 0.141183 0.053802 0.101484 0.246878 

 

Out-Node strengths 1 2 3 4 5 6 

AUD 0.19460081 0 0.039228 0.076976 0 0.217577 

BRL 0.29830418 0 0 0.156506 0 0 

CAD 0.48349159 0 0.297817 0.257417 0.032333 0.039549 

CNY 0.32055642 0.033095 0.41982 0.257367 0.032678 0.348941 

EUR 0.55800796 0 0.343244 0.432158 0.099183 0.110053 

GBP 0.64111528 0.167051 0.062143 0.419308 0 0.501556 

JPY 0.39991127 0 0.140593 0.157242 0.099399 0.082534 

KRW 0.0893419 0.141167 0.080618 0.381946 0.262388 0.148197 

PLN 0.36268258 0.034328 0.089694 0.4394 0.04974 0.16885 

USD 0.55800796 0.070935 0.272204 0.499712 0.086142 0.34822 
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Table B 20: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Bitfinex platform 2016. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0.335132 0.070003 0.177661 0.486016437 0.080836 0.098241 

BRL 0.414525 0.207995 0.261693 0.434544418 0 0.076483 

CAD 0.068397 0 0.071961 0 0 0 

CNY 0.098861 0.132047 0.264994 0.128024906 0 0 

EUR 0.091909 0.077084 0.202819 0.094176915 0.022351 0.102822 

GBP 0.671172 0.099142 0.100587 0.503876209 0 0.124847 

JPY 0.471739 0.132047 0.10975 0.184952412 0.043377 0 

KRW 0.1404 0.165515 0.115064 0.07906409 0.031331 0.1958 

PLN 0.925681 0.355463 0.481704 0.579103611 0.299866 0 

USD 0.072234 0.032791 0 0.235347245 0 0.0311 

 

Out-Node strengths 1 2 3 4 5 6 

AUD 0.288678 0.093343 0.081555 0.379717243 0 0.050468 

BRL 0.152315 0 0.20602 0.044512983 0 0 

CAD 0.296541 0.496543 0.028782 0.121677849 0.022351 0 

CNY 0.427426 0.063031 0.191392 0.300339144 0 0.028888 

EUR 0.543123 0.03354 0.34242 0.495147231 0.092989 0.096584 

GBP 0.238476 0.417375 0.079165 0.223923586 0.072981 0.071484 

JPY 0.121214 0.063031 0.04555 0.47611182 0.098171 0.086436 

KRW 0.263362 0 0.519198 0.052300435 0.049539 0.171613 

PLN 0.144167 0.050924 0.072155 0.128414385 0.031331 0.02796 

USD 0.814748 0.0543 0.219996 0.502961566 0.1104 0.095861 
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Table B 21: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Yapizon platform 2017. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0 0.148191 0.152156 0.333113 0.156289 0 

BRL 0.032647 0.153651 0.613795 0.263665 0.345711 0.068327 

CAD 0 0.034888 0.211103 0.132751 0 0.244915 

CNY 0 0.111803 0.176527 0.460545 0.04756 0.145174 

EUR 0 0 0.142991 0.420207 0.151158 0.042773 

GBP 0 0.111037 0.528441 0.430199 0.068634 0.054187 

JPY 0 0.345966 0.541107 0.360073 0.186013 0.101016 

KRW 0 0.199506 0.247659 0.248483 0.167288 0.089308 

PLN 0 0.107755 0.15783 0.566091 0.185349 0.34019 

USD 0 0 0.251357 0.461849 0.056504 0.091031 

 

Out-Node strengths 1 2 3 4 5 6 

AUD 0 0.144152 0.518485 0.628832 0.117018 0.061207 

BRL 0 0.049859 0.138336 0.499563 0.235558 0.090106 

CAD 0 0 0.094803 0 0.467255 0.299023 

CNY 0 0.292207 0.266339 0.30148 0.136315 0.078027 

EUR 0 0.226724 0.558256 0.081841 0 0 

GBP 0 0 0.306737 0.278114 0.114641 0.097796 

JPY 0 0.039789 0.31321 0.766043 0.041828 0.129901 

KRW 0 0.114853 0.329163 0.653064 0.208599 0.1757 

PLN 0.032647 0.115999 0.164219 0.378903 0.043293 0.198314 

USD 0 0.229216 0.333418 0.089135 0 0.046845 
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Table B 22: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Zaif platform 2018. 

IN-Node 
strengths 

1 2 3 4 5 6 

AUD 0.1085 0.0931 0.0000 0.2633 0.0000 0.0000 

BRL 0.2513 0.0548 0.0439 0.0000 0.0000 0.0000 

CAD 0.3690 0.0480 0.4220 0.4229 0.2580 0.0000 

EUR 0.0000 0.0424 0.0376 0.2966 0.0000 0.0879 

GBP 0.0451 0.0291 0.0607 0.1224 0.1141 0.1349 

JPY 0.5000 0.1043 0.1935 0.1228 0.1098 0.0000 

KRW 0.2772 0.0000 0.0867 0.2827 0.0000 0.0000 

PLN 0.2345 0.1654 0.2411 0.2706 0.0610 0.0000 

USD 0.0000 0.0384 0.0618 0.1779 0.0000 0.0000 

 

Out-Node 
strengths 

1 2 3 4 5 6 

AUD 0.2525 0.0000 0.3896 0.1327 0.0000 0.0000 

BRL 0.1193 0.0000 0.1446 0.2561 0.0856 0.0000 

CAD 0.1170 0.0000 0.0292 0.2063 0.0000 0.0000 

EUR 0.3010 0.0000 0.1018 0.1492 0.0905 0.0351 

GBP 0.4903 0.0000 0.0499 0.0912 0.0311 0.0000 

JPY 0.0000 0.0000 0.0583 0.4497 0.1306 0.1639 

KRW 0.1139 0.5391 0.2254 0.3669 0.0536 0.0000 

PLN 0.0451 0.0000 0.0000 0.1285 0.0700 0.0238 

USD 0.3464 0.0363 0.1484 0.1786 0.0815 0.0000 
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Table B 23: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on LocalBitcoins platform 2019. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0.0493 0.0000 0.0000 0.1437 0.0000 0.0268 

BRL 0.0000 0.0000 0.0000 0.1624 0.0000 0.2210 

CAD 0.0367 0.0000 0.0000 0.1867 0.0000 0.0000 

EUR 0.0664 0.0000 0.0000 0.0599 0.0256 0.0000 

GBP 0.2759 0.0000 0.1252 0.1735 0.0346 0.0591 

JPY 0.0000 0.0000 0.0500 0.2352 0.0244 0.1014 

KRW 0.1130 0.0000 0.0833 0.0000 0.0314 0.0000 

PLN 0.2741 0.0229 0.2127 0.1292 0.0236 0.0000 

USD 0.1121 0.0000 0.0000 0.0816 0.0000 0.0000 

 

Out-Node strengths 1 2 3 4 5 6 

AUD 0.0899 0.0000 0.0000 0.2925 0.0244 0.1011 

BRL 0.3367 0.0000 0.2483 0.1093 0.0896 0.0000 

CAD 0.0810 0.0000 0.1205 0.0951 0.0000 0.0268 

EUR 0.0000 0.0229 0.0634 0.1572 0.0000 0.0689 

GBP 0.1870 0.0000 0.0000 0.1322 0.0000 0.0000 

JPY 0.0523 0.0000 0.0000 0.1677 0.0256 0.0640 

KRW 0.0671 0.0000 0.0000 0.0932 0.0000 0.0000 

PLN 0.0716 0.0000 0.0000 0.0000 0.0000 0.0456 

USD 0.0421 0.0000 0.0390 0.1251 0.0000 0.1018 
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Table B 24: IN-and OUT Node strengths of the ETE to cross-market Bitcoin prices in time during the 
cyberattack on Binance platform 2019. 

IN-Node strengths 1 2 3 4 5 6 

AUD 0.0355 0.1185 0.0243 0.1036 0.0000 0.0354 

BRL 0.0305 0.2814 0.2454 0.0000 0.0000 0.0000 

CAD 0.0000 0.1355 0.0339 0.0726 0.0000 0.0000 

EUR 0.0000 0.0642 0.0445 0.0797 0.0000 0.0000 

GBP 0.0000 0.2521 0.5226 0.0000 0.0000 0.0000 

JPY 0.0000 0.1589 0.0000 0.0663 0.0000 0.0000 

KRW 0.0000 0.2534 0.0289 0.1067 0.0000 0.4939 

PLN 0.0000 0.0723 0.0000 0.0713 0.0000 0.2456 

USD 0.0000 0.1135 0.0000 0.0528 0.0000 0.0000 

 
 

Out-Node strengths 1 2 3 4 5 6 

AUD 0.0000 0.3650 0.2589 0.0707 0.0000 0.0766 

BRL 0.0000 0.3830 0.0000 0.0000 0.0000 0.0541 

CAD 0.0660 0.1198 0.0587 0.0267 0.0000 0.1034 

EUR 0.0000 0.0000 0.1148 0.1218 0.0000 0.1400 

GBP 0.0000 0.0947 0.0243 0.0000 0.0000 0.0701 

JPY 0.0000 0.1195 0.1162 0.0000 0.0000 0.1405 

KRW 0.0000 0.2079 0.0771 0.1394 0.0000 0.0000 

PLN 0.0000 0.0681 0.1169 0.1518 0.0000 0.0498 

USD 0.0000 0.0919 0.1326 0.0426 0.0000 0.1405 
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Figure B 10: Rolling window estimation of IN-Node strengths between Bitcoin cross-market prices. 
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Figure B 11: Rolling window estimation of Out-Node strengths between Bitcoin cross-market prices. 
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 Figure B 12: Effective Transfer Entropy matrix (ETE) in case of 𝑘 = 𝓁 = 1 
 

 
 
 
Figure B 13: Effective Transfer Entropy matrix (ETE) in case of 𝑘 = 𝓁 = 2 
  



176 | P a g e  
 

Figure B 14: Transfer Entropy (TE) matrix of cross market Bitcoin price. 
 

 
 
 
 
Figure B 15: Effective Transfer Entropy (ETE) matrix of cross market Bitcoin price. 
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Table B 25: IN- Closeness Node of the ETE to cross-market Bitcoin prices in time.  

 
    Pre the cybercrime Post the cybercrime 

B
it

st
am

p
 avg.  IN-Closeness 0.37 0.74 

avg. steps to contagion 3.34 6.67 

Steps to contagion 33.39 66.67 

  

C
ry

p
ts

y 

avg.  IN-Closeness 0.58 0.44 

avg. steps to contagion 5.25 3.99 

Steps to contagion 52.49 39.89 

  

B
it

fi
n

e
x avg.  IN-Closeness 0.45 0.36 

avg. steps to contagion 4.05 3.20 

Steps to contagion 40.52 31.99 

  

Y
ap

iz
o

n
 avg.  IN-Closeness 0.42 0.71 

avg. steps to contagion 3.76 6.36 

Steps to contagion 37.57 63.58 

  

Za
if

 

avg.  IN-Closeness 0.63 0.70 

avg. steps to contagion 5.04 5.57 

Steps to contagion 45.39 50.10 

  

Lo
ca

lB
it

co
i

n
s 

avg.  IN-Closeness 0.67 0.33 

avg. steps to contagion 5.37 2.67 

Steps to contagion 48.33 24.04 

  

B
in

an
ce

 avg.  IN-Closeness 0.61 0.20 

avg. steps to contagion 4.86 1.64 

Steps to contagion 43.70 14.72 
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Table B 26: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Bitstamp platform 2015. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.1 0.692 0.563 0.9 

BRL 0.45 0.474 0.818 0.9 

CAD 0.375 0.409 0.75 0.75 

CNY 0.429 0.375 0.75 0.818 

EUR 0.5 0.346 0.9 0.529 

GBP 0.375 0.429 0.692 0.563 

JPY 0.36 0.429 0.692 0.9 

KRW 0.692 0.1 0.643 0.818 

PLN 0.429 0.45 0.6 0.9 

USD 0.375 0.375 1 0.5 

 
 
 
 
Table B 27: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Cryptsy platform 2016. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.1 0.818 0.29 0.9 

BRL 0.643 0.5 0.333 0.6 

CAD 0.563 0.391 0.391 0.529 

CNY 0.6 0.3 0.409 0.409 

EUR 1 0.31 0.36 0.818 

GBP 0.9 0.346 0.375 0.75 

JPY 0.474 0.391 0.409 0.6 

KRW 0.643 0.409 0.474 0.6 

PLN 0.5 0.409 0.391 0.5 

USD 0.409 0.391 1 0.1 
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Table B 28: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Bitfinex platform 2016. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.375 0.692 0.409 0.321 

BRL 0.391 1 0.45 0.3 

CAD 0.429 0.5 0.111 0.1 

CNY 0.818 0.1 0.375 0.273 

EUR 0.429 0.6 0.429 0.3 

GBP 0.391 0.9 0.321 0.333 

JPY 0.391 0.5 0.5 0.265 

KRW 0.474 0.643 0.45 0.31 

PLN 0.429 0.818 0.1 0.75 

USD 0.375 0.75 0.409 0.273 

 

 

Table B 29: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Yapizon platform 2017. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.45 0.643 0.643 0.529 

BRL 0.36 1 0.818 0.818 

CAD 0.346 0.45 0.643 0.643 

CNY 0.529 0.1 0.75 0.6 

EUR 0.429 0.409 0.5 0.75 

GBP 0.45 0.692 0.692 0.692 

JPY 0.36 0.818 0.818 0.75 

KRW 0.391 0.563 1 0.75 

PLN 0.409 1 0.6 1 

USD 0.45 0.6 0.6 0.529 
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Table B 30: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Zaif platform 2018. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.667 0.615 0.727 0.667 

BRL 0.421 0.727 1 0.2 

CAD 0.667 1 0.533 0.8 

EUR 0.727 0.571 0.571 0.615 

GBP 0.8 0.533 0.727 0.727 

JPY 0.444 0.571 0.889 0.533 

KRW 0.8 0.533 0.667 0.667 

PLN 0.421 0.8 0.615 0.615 

USD 0.727 0.364 0.533 0.571 

 

Table B 31: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on LocalBitcoins platform 2019. 
 

  Pre the cybercrime Post the cybercrime 

 IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

AUD 0.381 0.727 0.308 0.14 

BRL 1 0.889 0.111 0.889 

CAD 0.571 0.5 0.235 0.308 

EUR 0.8 0.533 0.727 0.125 

GBP 0.889 0.533 0.222 0.333 

JPY 0.667 0.615 0.125 0.421 

KRW 0.533 0.571 0.8 0.125 

PLN 0.533 0.889 0.235 0.276 

USD 0.667 0.571 0.242 0.286 
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Table B 32: in-and out-closeness based on ETE to cross-market Bitcoin prices network pre- and post-
cyberattacks on Binance platform 2019. 
 

  pre post 

Pre the cybercrime   Post the cybercrime   

AUD  IN-Closeness  Out-Closeness  IN-Closeness  Out-Closeness 

BRL 0.727 0.471 0.16 0.276 

CAD 0.471 0.571 0.186 0.125 

EUR 0.615 0.571 0.25 0.111 

GBP 0.667 0.444 0.182 0.125 

JPY 0.667 0.727 0.111 0.727 

KRW 0.348 0.727 0.163 0.296 

PLN 0.8 0.727 0.163 0.333 

USD 0.5 0.533 0.125 0.143 
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C. Supplement to Chapter 4 

  

 

Figure C. 2: Phishing attacks on Bittrex users in August 2017 

 

Note: image soure (hackread.com, 2017) 

Figure C. 1: DoS and DDoS attacks. 



183 | P a g e  
 

Figure C. 3:  Fake Bittrex cryptocurrency exchange site defacing 

 

Note: Image source (hackread.com, 2017) 

Figure C. 4 : The Bitcoin cross-market prices pre- and post-cyberattacks on Bitfinex 2-2017 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

 

Pre cyber-attack Post cyber-attack  
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Figure C. 5 : The Bitcoin cross-market prices pre and post cyber-attacks on Bitfinex 6-2017 platform. 

 

  

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

 

Figure C. 6 The Bitcoin cross-market prices pre- and post-cyberattacks on Bitfinex 12-2017 platform. 

 

  

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre cyber-attack Post cyber-attack  

Pre-cyberattack Post-cyberattack  
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Figure C. 7 The Bitcoin cross-market prices pre- and post-cyberattacks on Bitfinex 5-2018 platform. 

 

  

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

 

Figure C. 8 The Bitcoin cross-market prices pre- and post-cyberattacks on Bitfinex 2-2020  
platform. 

 

  

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre-cyberattack Post-cyberattack  

Pre cyber-attack Post-cyberattack  
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Figure C. 9 The Bitcoin cross-market prices pre- and post- cyberattacks on Bithumb 6-2017 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Figure C. 10 The Bitcoin cross-market prices pre- and post- cyberattacks on Coinmama 2-2019 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre-cyberattack Post-cyberattack  

Pre cyber-attack Post cyber-attack  
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Figure C. 11 The Bitcoin cross-market prices pre- and post- cyberattacks on Trident 3-2020 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Figure C. 12 The Bitcoin cross-market prices pre- and post-cyberattacks on Keepkay 5-2020 platform. 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre-cyberattack Post-cyberattack  

Pre-cyberattack Post-cyberattack  
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Figure C. 13 The Bitcoin cross-market prices pre- and post- cyberattacks on Ledger 7-2020 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Figure C. 14 The Bitcoin cross-market prices pre- and post-cyber-attacks on Yapizon 4-2017 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre-cyberattack Post-cyberattack  

Pre-cyberattack Post-cyberattack  
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Figure C. 15 The Bitcoin cross-market prices pre- and post-cyberattacks on Zaif 9-2018 platform. 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

 

Figure C. 16 The Bitcoin cross-market prices pre- and post-cyberattacks on Binance 5-2019 platform. 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre cyber-attack Post cyber-attack  

Pre cyber-attack Post cyber-attack  
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Figure C. 17 The Bitcoin cross-market prices pre- and post-cyberattacks on Cashaa 7-2020 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Figure C. 18 The Bitcoin cross-market prices pre- and post-cyberattacks on KuCoin 9-2020 platform. 

 

 

 

 

 

 

Note: The thickness of edges' lines reflects the strength of the information spillover between Bitcoin 

exchange rates. The size of the node refers to the Out-Node Strength (NSout) where the higher the 

value of NSout, means more transmitting risk in the network. 

Pre cyber-attack Post cyber-attack  

Pre-cyberattack Post-cyberattack  
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Figure C. 19: IN and Out Degree histogram pre- and post cyberattacks on Bitfinex 5-2018 platform. 

 

 

 

 

 

 

 

  

Figure C. 20: IN and Out Degree histogram pre- and post cyberattacks on Bitfinex 2-2020 platform. 
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Figure C. 21: IN and Out Degree histogram pre- and post cyberattacks on KuCoin 9-2020 platform. 

 

 

Figure C. 22: IN and Out Degree histogram pre- and post cyberattacks on Cashaa 7-2020 platform. 

 



193 | P a g e  
 

Figure C. 23: IN and Out Degree histogram pre- and post cyberattacks on Ledger 7-2020 platform. 

 

Figure C. 24: IN and Out Degree histogram pre- and post cyberattacks on Keepkay 5-2020 platform. 
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Table 1 - 3 Summary of the relevant literature that collaborate to examine the main classifications of 
security breach that targeted the Bitcoin market. 

Group Types of security breaches Authors 

Theft 

dropping transactions  Sigurdsson et al., (2018) 

51% attacks  Shanaev et al., (2019) 

double-spending attacks Hassan et al., (2020) 

malleability attacks  Pinzón and Rocha, (2016) 

DNS hijacking  Dai et al., (2017) 

account hijacking  Mirian et al.,( 2019) 

SIM swapping  Sigurdsson et al., (2018) 

price manipulation Gandal et al.,(2018) 

mining botnets Huang et al., (2014) 

prices manipulated Griffin and Shams (2018) 

Confidentiality 

Fake app Xia et al., (2020) 

Site defacing Weimann (2016) 

phishing scams  Chen et al., (2020)  

Availability 

 DDoS Vasek et al. (2014) 

 DDoS Johnson et al., (2014) 

 DDoS Feder et al. (2017) 

 DDoS Abhishta et al. (2019) 

 DDoS Feder et al. (2018a) 

Note: Categorize the literature into three different classes, each category represent the works that 
examined the impact of cyber attacks on Bitcoin markets 
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Table C. 1 The list of security breaches that led to leach in customer’s personal data. 

No. Date UTC Time Number Of Users  Databases 

1 30/6/2017 7:37   318,000 Bithumb 

2 15/2/2019 11:00  450,000 Coinmama 

3 6/3/2020 0:01 266,000   Trident Crypto Fund  

4 24/5/2020 8:39 80000  Trezor, Ledger, and Keepkay  

5 29/7/2020 0:01 1,000,000  Ledger  

Note: The time of each incident was considered from the web page of the database that announced 
the time of the attack. The time of each event was measured depending on Coordinated Universal 
Time (UTC) Timestamp. 

 

Table C. 2 The list of security breaches that led to unavailability of the targeted platform. 

No. Date UTC Time Platform Damage 

1 21/02/2017 9:40 PM Bitfinex Degraded Performance 

2 15/06/2017 7:32 AM Bitfinex Degraded Performance 

3 12/12/2017 2:44 PM Bitfinex Temporary Unavailability 

4 06/05/2018 2:51 PM Bitfinex Temporary Unavailability 

5 27/02/2020 9:21 AM Bitfinex Temporary Unavailability 

Note: The time of each incident was considered from the web page of the platform that announced 
the time of the attack. The time of each event was measured depending on Coordinated Universal 
Time (UTC) Timestamp. 

 

Table C. 3 The list of security breaches that led to economic lost in the targeted platform. 

No. Date UTC Time Bitcoin missed Amount  Platform Headquarter 

1 22/04/2017 02:00  4000 $5,000,000 Yapizon South Korean 

2 20/09/2018 02:15  5,966 $38,000,000 Zaif Japan 

3 7/5/2019 17:15  7000 $41,000,000 Binance Malta 

4 11/7/2020 17:54  336 $3,100,000  Cashaa  UK 

5 26/9/2020 11:05  1008 $11,000,000  KuCoin  Singapore 

Note: The time of each incident was considered from the web page of the platform that announced 
the time of the attack. The time of each event was measured depending on the announcement time 
of security breach at Coordinated Universal Time (UTC) Timestamp. Headquarters of platform 
considered at the time of the security breach. In the case of KuCoin the cyberattack cost the 
platform around $150,000,000. Thus, we only include the amount of Bitcoin missed. 
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Table C. 4 The countries included in the paper, respective currency symbols, and the Bitcoin 
platform. 

No. Country Currency Bitcoin Platform Market Share 

1 Australia AUD Btcmarkets  86% 

2 Canada CAD Quadrigacx  66% 

3 Europe EUR Kraken 48% 

4 British GBP Coinfloor 
 

33.2% 

5 Japan JPY Bitflyer             96.8%  

6 South Korea KRW Korbit 76.3% 

7 Polish PLN bitbay 74.4% 

8 United States USD Bitstamp 20% 

Note: The data for BTC/CAD after 1/1/2019 were obtained from Kraken, as the Quadrigacx platform 

shut down. 

Table C. 5 Summary statistics, Bitcoin exchange rate returns 

 
USD PLN KRW JPY GBP EUR CAD AUD 

MEAN 0.0253 0.0243 0.0246 0.0243 0.0254 0.0238 0.0251 0.0248 

MEDIAN 0.0285 0.0209 0.0250 0.0262 0.0348 0.0286 0.0264 0.0286 

MAXIMUM 0.050 0.061 0.199 0.061 0.057 0.061 0.822 0.060 

MINIMUM -0.065 -0.073 -0.219 -0.094 -0.070 -0.065 -0.851 -0.074 

STD. DEV. 0.008 0.007 0.008 0.008 0.008 0.008 0.018 0.008 

SKEWNESS -0.456 -0.434 -1.191 -0.629 -0.479 -0.376 -1.848 -0.438 

KURTOSIS 10.199 13.861 147.186 14.656 12.082 11.162 176.858 12.703 

JARQUE-BERA 12821 28908 50640 33465 20309 16359 758000 23113 

ADF -38.984 -38.232 -33.992 -38.101 -39.127 -39.134 -54.671 -38.358 

Note: All the values of Jarque-Bera test and the Augmented Dickey Fuller test are significant at the 
1% level. 
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Table C. 6 Key factor of topological features to cross-market Bitcoin prices network pre- and post- 
availability cyberattacks. 

Platform Period Edge 
Avg. 

Degree 
Node Strength 

Degree 
Graph 

Density 

Bitfinex 2-2017 
pre 47 5.87 0.11 0.839 

post 47 5.87 0.11 0.839 

Bitfinex 6-2017 
pre 34 4.25 0.057 0.607 

post 42 5.25 0.058 0.75 

Bitfinex 12-2017 
pre 46 5.75 0.067 0.821 

post 47 5.87 0.084 0.839 

Bitfinex 5-2018 
pre 30 3.75 0.048 0.536 

post 33 4.13 0.057 0.59 

Bitfinex 2-2020 
pre 31 3.875 0.052 0.554 

post 56 7 0.197 1 

 

 

 

 

Table C. 7 Key factor of topological features to cross-market Bitcoin prices network pre- and post- 
confidentiality cyberattacks. 

Platform Period Edge 
Avg. 

Degree 
Node Strength 

Degree 
Graph 

Density 

Bithumb 6-2017 
pre 44 5.5 0.072 0.786 

post 38 4.75 0.05 0.679 

Coinmama 2-2019 
pre 30 3.75 0.164 0.536 

post 25 3.12 0.091 0.446 

Trident 3-2020 
pre 34 4.25 0.086 0.607 

post 29 3.625 0.059 0.518 

Keepkay 5-2020 
pre 39 4.8 0.071 0.696 

post 35 4.375 0.054 0.625 

Ledger 7-2020 
pre 46 5.75 0.093 0.821 

post 31 3.875 0.051 0.55 
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Table C. 8 Key factor of topological features to cross-market Bitcoin prices network pre- and post- 
theft cyberattacks. 

Platform Period Edge 
Avg. 

Degree 
Node Strength 

Degree 
Graph Density 

Yapizon 4-2017 
pre 15 1.875 0.015 0.268 

post 38 4.75 0.055 0.679 

Zaif 9-2018 
pre 34 4.25 0.058 0.607 

post 37 4.625 0.059 0.661 

Binance 5-2019 
pre 26 3.25 0.068 0.464 

post 36 4.5 0.076 0.643 

Cashaa 7-2020 
pre 35 4.375 0.114 0.625 

post 43 5.375 0.116 0.768 

KuCoin 9-2020 
pre 30 3.75 0.043 0.536 

post 44 5.5 0.089 0.786 

 

Table C. 9 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bitfinex 2-2017. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

JPY JPY USD EUR CAD JPY USD EUR 

CAD USD EUR GBP JPY KRW EUR GBP 

AUD KRW KRW KRW AUD USD KRW KRW 

EUR GBP JPY USD EUR GBP JPY USD 

PLN EUR PLN JPY KRW EUR PLN JPY 

 

Table C. 10 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bitfinex 6-2017. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

GBP USD USD GBP GBP KRW PLN USD 

KRW GBP EUR USD PLN PLN GBP EUR 

JPY JPY KRW EUR AUD EUR CAD GBP 

PLN EUR PLN KRW CAD USD KRW KRW 

EUR KRW JPY JPY EUR GBP AUD AUD 
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Table C. 11 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bitfinex 12-2017. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

CAD GBP EUR KRW GBP GBP PLN USD 

USD JPY PLN USD AUD USD GBP GBP 

EUR AUD USD GBP PLN JPY AUD JPY 

GBP KRW CAD JPY CAD KRW EUR EUR 

JPY USD JPY AUD USD EUR CAD KRW 

 

Table C. 12 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bitfinex 5-2018. 

Pre the Cybercrime  Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

 IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

PLN JPY PLN JPY  PLN AUD PLN EUR 

AUD USD AUD USD  AUD EUR AUD AUD 

GBP CAD GBP EUR  CAD KRW CAD JPY 

CAD EUR EUR KRW  KRW JPY KRW USD 

EUR KRW CAD PLN  GBP GBP GBP GBP 

 

Table C. 13 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bitfinex 2-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

AUD EUR PLN EUR CAD GBP CAD GBP 

PLN GBP AUD USD PLN PLN PLN PLN 

CAD JPY CAD JPY GBP USD GBP USD 

GBP USD GBP GBP KRW EUR KRW EUR 

KRW KRW KRW KRW EUR KRW EUR KRW 
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Table C. 14 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Bithumb 6-2017. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

GBP KRW PLN USD GBP EUR PLN USD 

AUD PLN GBP EUR PLN JPY EUR KRW 

PLN CAD CAD GBP EUR USD JPY EUR 

KRW EUR KRW KRW JPY KRW GBP JPY 

CAD USD AUD AUD AUD GBP AUD AUD 

 

Table C. 15 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Coinmama 2-2019. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

CAD AUD EUR USD AUD EUR EUR JPY 

EUR JPY PLN JPY CAD USD CAD USD 

PLN KRW KRW KRW EUR JPY PLN KRW 

AUD EUR CAD AUD KRW AUD AUD AUD 

USD USD AUD EUR PLN CAD KRW PLN 

 

Table C. 16 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Trident 3-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

CAD KRW CAD USD PLN PLN PLN JPY 

PLN USD PLN EUR GBP JPY GBP USD 

AUD EUR AUD JPY CAD CAD CAD PLN 

GBP GBP GBP GBP KRW USD KRW EUR 

JPY JPY JPY KRW USD EUR AUD CAD 
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Table C. 17 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Keepkay 5-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

AUD GBP PLN GBP CAD JPY PLN JPY 

CAD AUD CAD JPY GBP USD GBP USD 

GBP PLN GBP USD PLN KRW CAD KRW 

PLN KRW AUD KRW AUD CAD AUD EUR 

EUR JPY EUR AUD KRW EUR KRW GBP 

 

Table C. 18 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Ledger 7-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

GBP EUR PLN EUR PLN JPY PLN JPY 

PLN USD CAD USD CAD EUR CAD USD 

AUD CAD GBP JPY GBP USD AUD GBP 

CAD AUD AUD KRW KRW GBP GBP EUR 

KRW KRW KRW CAD AUD KRW KRW KRW 
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Table C. 19 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Yapizon 4-2017. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

KRW PLN KRW CAD EUR EUR KRW USD 

EUR USD GBP PLN KRW USD EUR EUR 

GBP CAD EUR USD CAD PLN USD KRW 

USD EUR PLN EUR PLN CAD JPY PLN 

PLN KRW USD AUD USD KRW GBP CAD 

 

Table C. 20 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Zaif 9-2018. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

CAD AUD USD USD AUD GBP PLN JPY 

KRW JPY EUR EUR EUR JPY AUD USD 

PLN EUR JPY JPY KRW USD KRW KRW 

AUD USD CAD AUD PLN EUR EUR GBP 

GBP PLN GBP GBP GBP KRW GBP EUR 

 

Table C. 21 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Binance 5-2019. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

PLN JPY PLN USD AUD GBP CAD EUR 

AUD KRW AUD JPY CAD EUR PLN USD 

CAD USD CAD EUR PLN KRW AUD JPY 

KRW EUR KRW KRW KRW PLN KRW KRW 

GBP AUD GBP AUD USD USD JPY AUD 
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Table C. 22 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on Cashaa 7-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

PLN GBP CAD GBP AUD GBP AUD GBP 

AUD USD PLN KRW CAD USD CAD USD 

CAD AUD EUR USD PLN CAD PLN JPY 

JPY KRW JPY EUR EUR JPY EUR KRW 

KRW EUR USD JPY JPY KRW KRW EUR 

 

Table C. 23 Top senders and receivers of ETE in the cross-market Bitcoin prices network, pre- 
and post-cyberattacks on KuCoin 9-2020. 

Pre the Cybercrime Post the Cybercrime 

In-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-
Node 
Stren
gth 

IN-Node 
Degree 

Out-Node 
Degree 

In-Node 
Strength 

Out-Node 
Strength 

AUD EUR AUD EUR AUD JPY PLN JPY 

GBP KRW PLN USD CAD EUR CAD EUR 

PLN JPY GBP KRW PLN KRW AUD KRW 

CAD USD CAD JPY GBP AUD GBP USD 

JPY GBP JPY GBP KRW GBP KRW AUD 
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Table C. 24  Bai & Perron test results. 

  Platform  Date of breach Break point  

1 Bithumb 30/6/2017 28/06/2018 

2 Coinmama 15/2/2019 16/02/2020 

3  Trident Crypto Fund  05/03/2020 06/03/2020 

4  Trezor, Ledger, and Keepkay  24/5/2020 22/05/2021 

5  Ledger  29/7/2020 30/07/2021 

6 Bitfinex 21/02/2017 23/02/2017 

7 Bitfinex 15/06/2017 15/06/2017 

8 Bitfinex 12/12/2017 13/12/2017 

9 Bitfinex 06/05/2018 08/05/2018 

10 Bitfinex 27/02/2020 26/02/2021 

11 Yapizon 22/04/2017 24/04/2017 

12 Zaif 20/09/2018 20/09/2019 

13 Binance 07/05/2019 08/05/2019 

14  Cashaa  11/07/2020 11/07/2020 

15  KuCoin  26/9/2020 28/09/2021 
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