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Abstract. This paper proposes a new novelty optimization method Variance Con-
trolled Stochastic Gradient (VCSG) to improve the performance of the stochastic
variance reduced gradient (SVRG) algorithm. To avoid over-reducing the vari-
ance of gradient by SVRG, a hyper-parameter λ is introduced in VCSG that
is able to control the reduced variance of SVRG. Theory shows that the opti-
mization method can converge by using an unbiased gradient estimator, but in
practice, biased gradient estimation can allow more efficient convergence to the
vicinity since an unbiased approach is computationally more expensive. λ also
has the effect of balancing the trade-off between unbiased and biased estima-
tions. Secondly, to minimize the number of full gradient calculations in SVRG,
a variance-bounded batch is introduced to reduce the number of gradient cal-
culations required in each iteration. For smooth non-convex functions, the pro-
posed algorithm converges to an approximate first-order stationary point (i.e.
E‖∇f(x)‖2 ≤ ε) within O(min{1/ε3/2, n1/4/ε}) number of stochastic gra-
dient evaluations, which improves the leading gradient complexity of stochastic
gradient-based method SCSG (O(min{1/ε5/3, n2/3/ε}) [20]. It is shown theo-
retically and experimentally that VCSG can be deployed to improve convergence.

Keywords: Non-convex Optimization · Deep learning · Computational Com-
plexity.

1 Introduction

We study smooth non-convex optimization problems which is shown in Eq.1,

min
x∈Rd

f(x), f(x) :=
1

n

n∑
i=1

fi(x), (1)

where neither f nor each component fi(x)(i ∈ [n]) are necessary convex; possibly non-
convex and Lipschitz (L−smooth) [33, 30]. We useFn to denote all fi(x) functions of
the form in Eq. 1, and optimize such functions using an Incremental First-Order (IFO)
oracle and a Stochastic First-Order (SFO) Oracle, which are defined in Definition 1
and 2 respectively.

Definition 1. [1] For f ∈ Fn, an IFO takes an index i ∈ [n] and a point x ∈ Rd, and
returns the pair (fi(x),∇fi(x)).
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Definition 2. [28] For a function F (x) = Eyf(x, y) where y ∼ P , a SFO returns the
stochastic gradient G(xk, yk) = ∇xf(xk, yk) where yk is a sample drawn i.i.d. from
P in the kth call.

Non-convex optimization is required for many statistical learning tasks ranging from
generalized linear models to deep neural networks [23, 20].

As finding the global minima is NP-hard problem, the standard target of non-convex
optimisation with provably guarantee is to estimate approximate local minima [2, 4].
After analysing this goal, there are rich literature translating this goal into what a
fast heuristic algorithms for finding global minimum. For example, many earlier works
have focused on the asymptotic performance of algorithms [15, 7, 34] and non-asymptotic
complexity bounds have emerged [20]. To our knowledge, the first non-asymptotic con-
vergence for stochastic gradient descent (SGD) was proposed by [16] with O(1/ε2).
Full batch gradient descent (GD) is known to ensure convergence with O(n/ε). Com-
pared with SGD, GD’s rate has better dependence on ε but worse dependence on n due
to the requirement of computing a full gradient. Variance reduced (VR) methods based
on SGD, e.g. Stochastic Variance Reduced Gradient (SVRG) [17], SAGA [13] have
been shown to achieve better dependence on n than GD on non-convex problems with
O(n+(n2/3/ε)) [29, 30]. However, compared with SGD, the rate of VR based methods
still have worse dependence on ε unless ε� n−2/3. Recently, [20] proposed a method
called SCSG combining the benefits of SGD and SVRG, which is the first algorithm that
achieves a better rate than SGD and is no worse than SVRG with O(1/ε5/3 ∧ n2/3/ε).
SNVRG proposed by [35] uses nested variance reduction to reduce the result of SCSG
toO(log(ε−1)(1/ε3/2)∧ log(n)(n1/2/ε)) that outperforms both SGD, GD and SVRG.
Further SPIDER [14] proposes their both lower and upper bound asO(1/ε3/2∧n1/2/ε).
Recently, [5] provide the lower bound of ε-based convergence rate as O(1/ε3/2) which
is same with the ε-related upper bound of SPIDER. As a result, the ε-related conver-
gence rate O(1/ε3/2) is likely to be the best currently. To the best of our knowledge,
SPIDER is a leading result of gradient complexity for smooth non-convex optimization
by using averaged L-Lipschitz gradients. Their work motivates the research question
about whether an algorithm based on SGD or VR-based methods can further reduce
the rate of SPIDER when it depends on ε in the regime of modest target accuracy or
depends on n in the regime of high target accuracy, respectively.

However, for SGD and VR-based stochastic algorithms, there still exists three chal-
lenges. Firstly, stochastic based optimization algorithm do not require a full gradient
computation. As a result, SCSG, SNVRG, SPIDER reduce full batch-size from O(n)
to its subsetO(B) where 1 ≤ B < n, which can significantly reduce the computational
cost. However, it is challenging to appropriately scale the subset of samples in each
stage of optimization to accelerate the convergence and achieve the same accuracy with
full samples. Secondly, the variance of SGD is reduced by VR methods since the gra-
dient of SGD is often too noisy to converge. However, VR schemes reduce the ability
to escape local minima in later iterations due to a diminishing variance [8]. The chal-
lenge of SGD and VR methods is, therefore, to control the variance of gradients. Lastly,
there exists a trade-off between biased/unbiased estimation in VR-based algorithms.
SVRG is an unbiased estimation that can guarantee to converge but is not efficient to
be used in real-world applications. Biased estimation can give a greater upper bound
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of the mean squared error (MSE) loss function [22], and many works have proposed
asymptotically biased optimization with biased gradient estimators to converge to the
vicinity of minima, which is an economical alternative to an unbiased version [10–12,
9]. These methods provide a good insight into the biased gradient search. However,
they hold under restrictive conditions, which are very hard to verify for complicated
stochastic gradient algorithms. Thus, the last challenge is how to balance the unbiased
and biased estimator in different stages of the non-convex optimization process.

To address these three challenges in order to accelerate the convergence of non-
convex optimization, we propose our method Variance Controlled Stochastic Gradi-
ent(VCSG) to control the reduced variance of gradients, scale the subset of full batch
samples and choose the biased or unbiased estimator in each iteration. Table 1 compares
the five methods’ theoretical convergence rates, which shows that VCSG has the fastest
convergence rate among the methods. Here, we did not compare our result to SNVRG
and SPIDER since both of their results are under averaged Lipschitz assumption, which
is not same with our problem domain. We then show empirically that VCSG has faster
rates of convergence than SGD, SVRG and SCSG.

Table 1. Comparison of results on SFO Definition 2 and IFO calls Definition 1 of gradient
methods for smooth non-convex problems. The best upper bound of SFO in VCSG is still the
lower bound that is proven by [5]. The upper bound of IFO in VCSG is better than other methods
that use both full or subset of batch samples.

Algorithms SFO/IFO calls on Non-convex Batch size B Learning rate η
GD [26] O(n/ε) n O(L−1)

SGD [16] O(1/ε2) n O(L−1)

SVRG [30, 3] O(n+ (n2/3/ε)) n O(L−1n−2/3)

SCSG [20] O(1/ε5/3 ∧ n2/3/ε) B(B < n) O(L−1(n−2/3 ∧ ε4/3))
VCSG O(1/ε3/2 ∧ n1/4/ε) B(B < n) O(L−1 ∧ L−1B−1/2)

We summarize and list our main contributions:

– We provide an new method VCSG, a well-balanced VR method for SGD to achieve
a competitive convergence rate. We provide a theoretical analysis of VCSG on
non-convex problems, which might be the first analysis about controlled variance
reduction that can achieve comparable or faster convergence than gradient-based
optimization.

– VCSG provides an appropriate sample size in each iteration by the controlled vari-
ance reduction, which can significantly save computational cost.

– VCSG balances the trade-off in biased and unbiased estimation, which provides a
fast convergence rate.

– We also evaluate VCSG on three different datasets with three deep learning models.
It is shown that our method in practice can achieve better performance than other
leading results.
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2 Preliminaries

We use ‖ · ‖ to denote the Euclidean norm for brevity throughout the paper. For our
analysis, the background that are required to introduce definitions for L-smooth and
ε-accuracy which now are defined in Definition 3 and Definition 4 respectively.

Definition 3. Assume the individual functions fi in Eq.1 are L-smooth if there is a
constant L such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀x, y ∈ Rd

for some L <∞ and for all i ∈ {1, ..., n}.

We analyze convergence rates for Eq.1 and apply ‖∇f‖2 ≤ ε convergence criterion
by [25], which the concept of ε-accurate is defined in Definition 4. Moreover, the min-
imum IFO/SFO in Definition 1 and 2 to reach an ε−accurate solution is denoted by
Ccomp(ε), and its complexity bound is denoted by ECcomp(ε).

Definition 4. A point x is called ε-accurate if ‖∇f(x)‖2 ≤ ε. An iterative stochastic
algorithm can achieve ε-accuracy within t iterations if E[‖∇f(xt)‖2] ≤ ε, where the
expectation is over the algorithm.

We follow part of the work in SCSG. Based on their algorithm settings, we recall
that a random variableN has a geometric distributionN ∼ Geom(γ) ifN is supported
on the non-negative integrate, which their elementary calculation has been shown as
EN∼Geom(γ) = γ/(1−γ). For brevity, we also write∇fI(x) = (1/|I|)

∑
i∈I ∇fi(x).

Note that calculating∇fI(x) incurs |I| units of computational cost. The minimum IFO
complexity to reach an ε-accurate solution is denoted by Ccomp(ε).

To formulate our complexity bound, we define:

f∗ = inf
x
f(x) and 4f = f(x̃0)− f∗ > 0, (2)

Further, an upper bound on the variance of the stochastic gradients can be defined as:

S∗ = sup
x

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2. (3)

3 Variance controlled SVRG with a combined unbiased/biased
estimation

To resolve the first challenge of SG-based optimization, we provide an adjustable sched-
ule of batch size B < n, which scales the sample size for optimization. For the sec-
ond challenge of controlling reduced variance, one method [8] balanced the gradient
of SVRG in terms of the stochastic element and its variance to allow the algorithm to
choose appropriate behaviors of gradient from stochastic, through reduced variance, to
batch gradient descent by introducing a hyper-parameter λ. Based on this method, we
focus on analysing the variance controller λ in our case. Towards the last challenge asso-
ciated with the trade-off between biased and unbiased estimators, we analyze the nature



VCSG for Faster Non-convex Optimization 5

of biased and unbiased estimators in different stages of the non-convex optimization
and propose a method that combines the benefits of both biased and unbiased estimator
to achieve a fast convergence rate. Firstly, we show a generic form of the batched SVRG
in Alg 1, which is proposed by [20]. We modified Alg 1 that scale the gradient by mul-
tiplying 0.5 to maintain same scale range with our algorithm in later section. Compared
with the SVRG algorithm, the batched SVRG algorithm has a mini-batch procedure in
the inner loop and outputs a random sample that instead of an average of the iterates.
As seen in the pseudo-code, the batched SVRG method consists of multiple epochs, the
batch-size Bj is randomly chosen from the whole samples n in j-th epoch and work
with mini-batch bj to generate the total number of updates for inner k-th epoch by a ge-
ometric distribution with mean equal to the batch size. Finally it outputs a random sam-
ple from {x̃j}Tj=1. This is a standard way also proposed by [24], which can save addi-
tional overhead by calculating the minimum value of output as argminj≤T ‖∇f(x̃j)‖.

Algorithm 1: Batching SVRG

input : Number of epochs T , initial iterate x̃0, step-size (ηj)
T
j=1, batch size

(Bj)
T
j=1, mini-batch sizes (bj)Tj=1.

1 for j = 1 to T do
2 Uniformly sample a batch Ij from total number of training samples n as

Ij ⊂ {1, ..., n} with |Ij | = Bj ;
3 gj ← ∇fIj (x̃j−1);
4 x

(j)
0 ← x̃j−1;

5 Generate Nj ∼ Geom(Bj/(Bj + bj));
6 for k = 1 to Nj do
7 Randomly select Ĩk−1 ⊂ {1, ..., n} with |Ĩk−1| = bj ;
8 v

(j)
k−1 ← 0.5 · (∇fĨk−1

(x
(j)
k−1)−∇fĨk−1

(x
(j)
0 ) + gj);

9 x
(j)
k ← x

(j)
k−1 − ηjv

(j)
k−1;

10 end
11 x̃j ← x

(j)
Nj ;

12 end
output: Sample x̃∗T from {x̃j}Tj=1 with P (x̃∗T = x̃j) ∝ ηjBj/bj .

For the two cases of unbiased and biased estimations for the batched SVRG, we
provide two upper bounds on their convergence for their gradients in the following two
sub-sections. Meanwhile, two corresponding lower bounds of batch size are provided
for each case when their dependency is sample size n. Unlike the specific parameter
settings in SCSG, we use more general schedules (including learning rate ηj and mini-
batch size bj), aiming to estimate the best schedules in each stage of optimization for
both unbiased and biased estimators, which avoids ad hoc choosing parameters. Proof
details are presented in the appendix.
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3.1 Weighted unbiased estimator analysis

In the first case, we introduce a hyper-parameter λ that is applied in a weighted unbiased
version of the batched SVRG and is shown in Alg 2. Since our method based on SVRG,
the λ should be within the range 0 < λ < 1 in unbiased and biased cases.

Algorithm 2: Batching SVRG with weighted unbiased estimator

1 Replace line number 8 in Alg. 1 with the following line:

v
(j)
k−1 ← (1− λ)∇fĨk−1

(x
(j)
k−1)− λ

(
∇fĨk−1

(x
(j)
0 )− gj

)
;

We now analyse the upper bound of expectation of gradients in a single epoch.
Under our settings, we can achieve the upper bound for one-epoch analysis which is
shown in Theorem 2.

Theorem 1. Let ηjL = γ(
bj
Bj

)α (0 ≤ α ≤ 1) and Bj ≥ bj ≥ Bβj (0 ≤ β ≤ 1) for all

j. Suppose 0 < γ ≤ 1

3
, then under Definition 3, the output x̃j of Alg 2 we have

E‖∇f(x̃j)‖2 ≤
2L

γθ
· ( bj
Bj

)1−αE (f(x̃j−1)− f(x̃j)) +
2λ4I(Bj < n)S∗

θB1−2α
j

,

where I(Bj < n) ≥ n−Bj
(n− 1)Bj

, S is defined in Eq.3, λ =
1

2
and θ = 2(1 − λ) −

(2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.29(1− λ)2.

When only assuming smoothness, Over all epochs T , the output x̃∗T that is randomly
selected from (x̃j)

T
j=1. Thus, Theorem1 can be telescoped for over all epochs in the

following theorem.

Theorem 2. Under all assumptions of Theorem 1,

E‖∇f(x̃j)‖2 ≤
(
2L

γ
)4f

θ
∑T
j=1 b

α−1
j B1−α

j

+
2λ4I(Bj < n)S∗

θ
∑T
j=1B

1−2α
j

,

where4f is defined in Eq.2.

3.2 Biased estimator analysis

In this sub-section we theoretically analyze the performance of the biased estimator,
which is shown in Alg 3.

Algorithm 3: Batching SVRG with biased estimator

1 Replace the line number 8 in Alg 1 with the following line:

v
(j)
k−1 ← (1− λ)

(
∇fĨk−1

(x
(j)
k−1)−∇fĨk−1

(x
(j)
0 )
)
+ λgj ;

Applying the same schedule of ηj and bj that are used in the unbiased case, we
can achieve the results on both one-epoch and all-epoch for this case, which are shown
in Theorem 3 and Theorem 4 respectively.
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Theorem 3. let ηjL = γ(
bj
Bj

)α (0 ≤ α ≤ 1). Suppose 0 < γ ≤ 1

3
and Bj ≥ bj ≥ Bβj

(0 ≤ β ≤ 1) for all j, then under Definition 3, the output x̃j of Alg 3 we have,

E‖∇f(x̃j)‖2 ≤
2L

γΘ
· ( bj
Bj

)1−αE (f(x̃j−1)− f(x̃j)) +
2(1− λ)2I(Bj < n)S∗

ΘB1−2α
j

,

where I(Bj < n) ≥ n−Bj
(n− 1)Bj

, S is defined in Eq.3, 0 < λ < 1 and Θ = 2(1− λ)−

(2γBαβ−αj + 2Bβ−1j − 4LB2α−2
j )(1− λ)2 − 1.16(1− λ)2.

Theorem 4. Under all assumptions of Theorem 3,

E‖∇f(x̃j)‖2 ≤
(
2L

γ
)4f

Θ
∑T
j=1 b

α−1
j B1−α

j

+
2(1− λ)2I(Bj < n)S∗

Θ
∑T
j=1B

1−2α
j

,

where I(Bj < n) ≥ n−Bj
(n− 1)Bj

, 0 < λ < 1 and Θ = 2(1 − λ) − (2γBαβ−αj +

2Bβ−1j − 4LB2α−2
j )(1− λ)2 − 1.16(1− λ)2.

3.3 Convergence analysis for smooth non-convex optimization

Starting to consider from a constant batch/mini-batch size 1 ≤ Bj ≡ B ≤ n for
some 1 < B ≤ n, bj = Bβj ≡ Bβ (0 ≤ β ≤ 1), we can achieve the computational
complexity of output from Theorem 2 and 4 that is given as

E‖∇f(x̃∗T )‖2 = O
(

L4f
TB1+αβ−α−β +

S∗

B1−2α

)
, (4)

which covers two extreme cases of complexity bounds since the batch-size Bj has two
different dependencies.

Dependence on ε. If bj = Bβ when β = 1 and 1 < Bj ≡ B < n, the second

term of Eq.4 can be made O(ε) by setting B1−2α
j = B = O

(
S∗

ε

)
, where incurs

α = 0.And T (ε) =
(
L4f
ε

)
resulting in the complexity bound is given as ECcomp(ε) =

O
(
L4fB
ε

)
= O

(
L4fS∗

ε2

)
, which obtains the same with the rate of SGD as shown in

Table 1.
Dependence on n. If bj = 1 when β = 0 and Bj = n, Eq.4 can be further alterna-

tive as E‖∇f(x̃∗T )‖2 = O
(
L4f
Tn1−α

+
S∗

n1−2α

)
. When α ≤ 1

2
, T (ε) can be made as

O
(
1 +

L4f
εn1/2

)
, which yields the complexity bound become as

ECcomp(ε) = O
(
n+

n
1
2 L4f
ε

)
. (5)
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This upper bound of rate can guarantee to be better than SCSG, as shown in Table 1.
However, both of the above settings are two sub-optimal cases since their extreme

setting either the parameter mini-batch size bj is too large or batch size Bj is too large.
We now discuss the batch-size schedules depending on the above two dependencies.

3.4 Scaling Batch samples

For the case of batch size Bj depending on ε, Bj = O
(
S∗

ε

)
, bj 6= 1, and learning

rate ηj = γ
L (

1
Bj

)α(1−β) where 0 ≤ α ≤ 1
2 . To determine the optimal value of bj in

this case, we compared to the extreme case when bj = 1 and Bj = n that the optimal
schedule of learning rate ηj = γ

L (
1
Bj

)
2
3 is provided by [30, 29, 3, 20]. Correspondingly

in our general form of learning rate, they specified α = 2
3 and β = 0. Thus, the learning

rate ηj has a range which is shown as γ
L ≥

γ
L (

1
Bj

)
2
3 (1−β) ≥ γ

L (
1
Bj

)
1
2 . As a result, we

can estimate the range of β as 0 ≤ β ≤ 1/4. Consequently, β = 1/4 and α = 0 are the
optimal values in this case.

After determined the three schedules including Bj , ηj and bj , we can estimate the

optimal value of λ∗. For the first case that Bj = O
(
S∗

ε

)
, bj = B

1
4
j , ηj = 1

3L , Eq.4 is
specified as

E‖∇f(x̃∗T )‖2 = O
(
L4f
T

( ε

S∗
) 3

4

+ ε

)
. (6)

Since in this case batch size depends on ε, we more focus on the second term in Eq. 6.
As a result, we optimize the second term of E‖∇f(x̃∗T )‖2 from both Theorem 2 and 4 in
order to achieve lowest upper bound. After comparison the upper bounds in both Theo-

rem. 2 and 4, we choose the optimal value of λ∗ =
1

2
with the unbiased estimation case,

which can provide the lowest upper bound of gradient resulting faster convergence.
For the case of batch size Bj depending on n, we now analyse the lower bound

of batch size Bj in both unbiased and biased estimations. When applying unbiased
estimator, for a single epoch, j, we define the weighted unbiased variance as ej =
λ
(
∇fIj (x̃j−1)−∇f(x̃j−1)

)
. Thus, the gradients in Alg 2 can be updated within the

j-th epoch as EĨkv
(j)
k = (1 − λ)∇f(x(j)k ) + ej , which reveals the key difference be-

tween the batched SVRG and the variance controlled batched SVRG on both unbiased/
biased estimators. Most of the novelty in our analysis lies in dealing with the extra term
ej . Since we achieve a lower bound of batch-size by bounding the term ej , we pro-

vide the bound of the term ej as EIj‖ej‖2 ≤ λ2
n−Bj
nBj

K2 ≤ λ2
n−Bj
nBj

n√
n−1S

∗ ≤

σρ2j , where the first inequation follows [18, 6] the variance of the norms of gradients
K2 ≥ 1

n−1
∑n
i=1[‖∇fi(x̃j−1)‖2 − ‖∇f(x̃j−1)‖2], the second inequation follows the

Samuelson inequality [27] that K2 ≤ n√
n−1S

∗ where S∗ is shown in Eq. 3, and in the
last inequation, there is an upper bound of variance where σ ≥ 0 is a constant for some
ρ < 1. Thus Bj in unbiased case can be bounded as,

Bj ≥
nS∗

S∗ + λ2n
1
2σρ2j

. (7)
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For batch size in biased case, we use the same approach adopted in the unbiased
version. For a single epoch, j, we define the biased variance as ej = λ∇fIj (x̃j−1) −
(1 − λ)∇f(x̃j−1). And we achieve the lower bound of batch-size, which is shown in
the following.

Bj ≥


nS∗

S∗ + (1− λ)2n 1
2σρ2j

, if 0 < λ <

√
2

2
.

nS∗

S∗ + (3λ2 − 2λ)2n
1
2σρ2j

, if
√
2

2
< λ < 1.

(8)

To estimate the optimal value of λ∗ in this case that batch size depending on n, we
specified lower bound of batch size Bj which has two versions of biased and unbiased

estimations, bj = 1 and ηj =
1

3L
(
1

Bj
)

1
2 when optimal value α =

1

2
. Thus Eq.4 can be

specified as

E‖∇f(x̃∗T )‖2 = O

L4f
TB

1
2
j

+ S∗
 . (9)

Due to this case that batch size depending on n, we more focus on the first term in
Eq. 9. Thus we optimise the first term in the upper bound of E‖∇f(x̃∗T )‖2 in both The-
orem 2 and 4. After comparison of upper bounds both in unbiased and biased cases, we
determine λ∗ = 5/8 with biased estimation that obtain the lowest upper bound.

Consequently, we can achieve the greater complexity bound of Eq.4 for both bi-
ased/unbiased estimations via replacing full sample size n by the batched sample size
Bj in Eq.5, which is shown in Eq.10.

ECcomp(ε) = O
(
Bj +B

1
2
j ·

L4f
ε

)
. (10)

3.5 Best of two worlds

We have seen in the previous section that the variance controlled SVRG combines the
benefits of both SVRG and SGD. We now show these benefits can be made more pro-
nounced by λ∗ with best combinations between Bj and bj in different stages of opti-
mization. We introduce our algorithm VCSG shown in Alg 4.

Following Alg 4, we can achieve a general result for VCSG in the following theo-
rem.

Theorem 5. Suppose γ ≤ 1

3
. Let Bj = min

{
S∗

ε ,
nS∗

S∗+0.14·n
1
2 σρ2j

}
, under Defini-

tion 3 and Theorem2 and 4, the output x̃∗T in Alg 4 satisfies one of two bounds.

1. If Bj =
S∗

ε
,bj = B

1
4
j , ηj =

γ

L
, λ∗ =

1

2
, θ ≈ 0.51 with an unbiased estimator,

E‖∇f(x̃∗T )‖2 ≤
4L
γ 4f∑T
j=1B

3
4
j

+
0.24(I(Bj < n)S∗

Bj
,

.
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Algorithm 4: (Mini-Batch)VCSG

input : Same input parameters with Alg 1, initial batch size B1 = n and b1 = n1/4.
1 for j = 1 to T do
2 Uniformly sample a batch Ij from total number of training samples n as

Ij ⊂ {1, ..., n} with |Ij | = Bj ;

3 Bj ←

{
12S∗j
ε
∧

nS∗j
S∗j + 0.14 · n 1

2 σρ2j

}
where σ ≥ 0, ρ < 1;

4 gj ← ∇fIj (x̃j−1);
5 x̃

(j)
0 ← x̃j−1;

6 GenerateNj ∼ Geom(Bj/(Bj + bj));
7 for k = 1toNj do
8 if Bj = S∗j /ε then

9 bj = B
1
4
j ; ηj =

1

3L
;

10 Randomly select Ik−1 ⊂ {1, ..., n} with |Ĩk−1| = bj ;

11 v
(j)
k−1 =

1

2
·
(
∇fĨk−1

(x
(j)
k−1)−∇fĨk−1

(x
(j)
0 ) + gj

)
;

12 else if Bj = B0 or Bj =
nS∗j

S∗j + 0.14 · n 1
2 σρ2j

then

13 bj = 1; ηj =
1

3L
(
1

Bj
)
1
2 ;

14 Randomly select Ik−1 ⊂ {1, ..., n} with |Ĩk−1| = bj ;

15 v
(j)
k−1 =

3

8
· (∇fĨk−1

(x
(j)
k−1)−∇fĨk−1

(x
(j)
0 )) +

5

8
· gj ;

16 x
(j)
k ← x

(j)
k−1 − ηjv

(j)
k−1;

17 S(j)
k ←‖ ∇fĨk−1

(x̃
(j)
0 )− gj ‖2;

18 end
19 x̃j ← x

(j)
Nj , S∗j ← S

(j)
Nj ;

20 end
output: Sample x̃∗T from (x̃j)

T
j=1 with P (x̃∗T = x̃j) ∝ ηjBj/bj

2. If Bj =
nS∗

S∗ + 0.14 · n 1
2σρ2j

, bj = 1, ηj =
γ

L
(
1

Bj
)

1
2 , λ∗ =

5

8
, Θ ≈ 0.59 with a

biased estimator,

E‖∇f(x̃∗T )‖2 <

3.4L

γ
4f∑T

j=1B
1
2
j

+ 0.48S∗.

Now we discuss how parameters, including λ, step-size, batch-size, and mini-batch
size, work together to control the variance of gradients from stochastic to batch and
balance the trade-off between bias/unbiased estimation in batched optimization. Firstly,
in very early iterations Bj might choose its first term due to the low variance. In this
condition, the small λ with relatively large learning rate may help gradients being more
stochastic to search more region of problem space, and also can help points escape from
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bad local minima. During increasing variance, the first term ofBj would be increased as
well, resulting Bj will choose its second term. In the second case, both relatively large
λ, small learning rate and the biased estimator work together that can reduce variance
to fast converge into a small region of space. In case of the variance that is reduced too
small in the second case, Bj will turn to be its first term. We regard this whole process
as Coarse-to-Fine dynamic searching methods.

To calculate the computational complexity of VCSG, we bring the schedule of batch
size Bj into Eq. 10, which is shown in Corollary 1.

Corollary 1. Under parameters setting in Theorem 5,Bj ≡ B = {S
∗

ε ∧
nS∗

S∗+0.14·n(1/2)σρ2j
}

then it holds that

Ecomp(ε) = O
(
B +

L4f
ε
·B 1

2

)
.

B = { 1ε ∧ n
1
2 } since assume that L4f ,S∗, σρ2j = O(1). Thus, the above bound can

be simplified to

Ecomp(ε) = O
(
(
1

ε
∧ n 1

2 ) +
1

ε
· (1
ε
∧ n 1

2 )
1
2

)
= O

(
1

ε
3
2

∧ n
1
4

ε

)
.

4 Application

To experimentally verify our theoretical results and insights, we evaluate VCSG com-
pared with SVRG, SGD, and SCSG on three common DL topologies, including LeNet
(LeNet-300-100 which has two fully connected layers as hidden layers with 300 and
100 neurons respectively, and LeNet-5 which has two convolutional layers and two fully
connected layers) and VGG-16 [32] using three datasets including MNIST, CIFAR-10
and tiny ImageNet. Tiny ImageNet contains 200 classes for training each with 500
images and the test set contains 10,000 images. Each image is re-sized to 64× 64 pix-
els [31].We initialize Bj = B0 = n, correspondingly bj = b0 = n

1
4 , η0 = 1/(3Ln

1
2 ),

and λ = 5
8 via using biased estimator in the first epoch. Meanwhile, we choose a scaled

SGD as our baseline by multiplying 0.5 with stochastic gradients, and applied decayed
learning rate ηj = η0/(j) on SGD. For SVRG, we set-up λ = 0.5 with fixed learning
rate ηj = 1/(3Ln

1
2 ) in Alg 1. The reason we choose SCSG is that our algorithm is

inspired from SCSG which is a leading batched SVRG.
Fig.1 compares the performance of four methods, including SGD, SVRG, SCSG,

and VCSG, via test log error, training log loss, and training time usage. It has two base-
lines in all sub-figures, including the performance of SVRG and SGD. The performance
of SCSG test error and training loss is smaller than SGD on MNIST and CIFAR-10 data
sets, consistent with the experimental results shown in [20]. However, in the ImageNet
data set, which is a relatively larger scale application than the previous two data sets,
the performance of SCSG becomes worse than SVRG and SGD, which showed weak
robustness in our experiments. By contrast, VCSG shown as the green colour in all three
datasets, has the lowest test error and training loss among all methods. In the ImageNet
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data set, both the test error of VCSG is initially higher than SVRG and SGD, but VCSG
can reduce the test error and loss dramatically after around 75 epochs. One possible ex-
planation is that the algorithm changes the batch size to the first term resulting in an
escape from a local minima by increasing the variance to find a better solution. The
right-hand column of Fig.1 presents the time usage, and it can be seen that SVRG and
SGD are similar, having higher training time than the other two methods in all three
data sets. In Fig.2, we use a more visualized format to show the time usage in Fig.1.
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Fig. 1. Comparison of rates of convergence in four approaches, including SGD, SVRG, SCSG,
and VCSG via test error, training loss and time consumption. Comparatively, we can see that
VCSG can converge fastest during all iterations on MINIST and CIFAR-10 data sets. Even though
VCSG on the ImageNet data set is slightly slower converging than the other three methods in the
beginning, it can significantly decrease after several epochs when the batch-size becomes stable.

We can see in three sub-figures VCSG can achieve the lowest test error over a shorter
time. To achieve the 0.025 top-1 test error in the MNIST data set, VCSG only takes 16
seconds around 2× faster than SCSG, 3× faster than SVRG, and 4× faster than SGD.
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In CIFAR-10 to achieve 0.3 top-1 test error, VCSG is around 6× faster than SVRG, 4×
faster than SCSG and 13× faster than SGD. In the ImageNet data set, to achieve 0.55
top-5 test error, VCSG can be faster than other methods by up to 5×.
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Fig. 2. Visualization of test error of four approaches, including SGD, SVRG and SCSG and
VCSG against time consumption.

5 Discussion

In this paper, we proposed a VR-based optimization V CSG for non-convex problems.
We theoretically determined that a hyper-parameter λ in each iteration can control the
reduced variance of SVRG and balance the trade-off between a biased and an unbiased
estimator. Meanwhile, an adjustable batch bounded by controlled reduced variance can
work with λ, step size, and mini-batch to choose an appropriate estimator to converge
faster to a stationary point on non-convex problems. Moreover, to verify our theoretical
results, our experiments use three datasets on three DL models to present the perfor-
mance of VCSG via test error/loss and elapsed time and compare these with other lead-
ing results. Both theoretical and experimental results show that VCSG can efficiently
accelerate convergence. We believe that our algorithm is worthy of further study for
non-convex optimization, particularly in deep neural networks training in large-scale
applications.

A Technique lemmas

The first two lemmas we will use in our theorems are from Lemma A.1 and Lemma A.2
in [20].

Lemma 1. Let x1, ..., xM ∈ Rd be an arbitrary population of N vectors with

M∑
j=1

xj = 0.



14 J. Bi et al.

Further let J be a uniform random subset of {1, ...M} with size m. Then

E‖ 1
m

∑
j∈J

xj‖2 =
M −m

(M − 1)m
· 1

M

M∑
j=1

‖xj‖2 ≤
I(m < M)

m
· 1

M

M∑
j=1

‖xj‖2.

The geometric random variable Nj has the key properties below.

Lemma 2. LetN ∼ Geom(γ) for someB > 0. Then for any sequenceD0, D1, ..., DN

with E|DN | <∞,

E(DN −DN+1) = (
1

γ
− 1)(D0 − EDN ).

B One-Epoch Analysis

B.1 Unbiased Estimator Version

Our algorithm is based on the SVRG method, thus the hyper-parameter λ should be
within the range as 0 < λ < 1 in both unbiased and biased cases. We provide all useful
lemmas we will applied in our proof of theorems at first, and provide a proof sketch for
guidance. We start by bounding the gradient EĨk ‖ v

(j)
k ‖2 in Lemma 3 and the variance

EIj ‖ ej ‖2 in Lemma 4.

Lemma 3. Under Definition 3,

EĨk ‖ v
(j)
k ‖

2≤ L2

4bj
‖ x(j)k − x

(j)
0 ‖ +2(1− λ)2 ‖ ∇f(x(j)k ) ‖2 +2λ2 ‖ ej ‖2 .

Proof. Using the fact that for a random variable Z E ‖ Z ‖2= ‖Z−EZ ‖2 + ‖ EZ ‖2,
we have

EĨk ‖ v
(j)
k ‖

2=EĨk ‖ v
(j)
k − EĨkv

(j)
k ‖

2 + ‖ EĨkv
(j)
k ‖

2

=EĨk ‖ (1− λ)∇fĨk(x
(j)
k )− λ∇fĨk(x

(j)
0 )− ((1− λ)∇f(x(j)k )− λ∇fx(j)0 ) ‖2

+ ‖ (1− λ)∇f(x(j)k ) + λej ‖2

≤EĨk ‖ (1− λ)∇fĨk(x
(j)
k )− λ∇fĨk(x

(j)
0 )− ((1− λ)∇f(x(j)k )− λ∇fx(j)0 ) ‖2

+ 2 ‖ (1− λ)∇f(x(j)k ) ‖2 +2 ‖ λej ‖2 .
(11)
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By Lemma 1,

EĨk ‖ (1− λ)∇fĨk(x
(j)
k )− λ∇fĨk(x

(j)
0 )− ((1− λ)∇f(x(j)k )− λ∇fx(j)0 ) ‖2

≤ 1

bj
· 1
n

n∑
i=1

‖ (1− λ)∇fi(x(j)k )− λ∇fi(x(j)0 )− ((1− λ)∇f(x(j)k )− λ∇f(x(j)0 )) ‖2

=
1

bj
· ( 1
n

n∑
i=1

‖ (1− λ)∇fi(x(j)k )− λ∇fi(x(j)0 ) ‖2 − ‖ ((1− λ)∇f(x(j)k )− λ∇f(x(j)0 )) ‖2)

≤ 1

bj
· 1
n

n∑
i=1

‖ (1− λ)∇fi(x(j)k )− λ∇fi(x(j)0 ) ‖2

≤ 1

bj
· 1

4n

n∑
i=1

‖ ∇fi(x(j)k )−∇fi(x(j)0 ) ‖2

≤ 1

bj
· L

2

4
‖ x(j)k − x

(j)
0 ‖2

(12)

where the last line can be achieved by Definition3 only if λ =
1

2
.

Thus the bound of the gradient can be alternatively written as,

EĨk ‖ v
(j)
k ‖

2≤ L2

4bj
‖ x(j)k − x

(j)
0 ‖2 +2(1− λ)2 ‖ ∇f(x(j)k ) ‖2 +2λ2 ‖ ej ‖2 .

(13)

Lemma 4.
EIj ‖ ej ‖2≤ λ2

I(Bj < n)

Bj
· S∗.

Proof. Based on Lemma 3 and the observation that x̃j−1 is independent of Ij , the
bound of variance ej can be expressed as

EIj ‖ ej ‖2 =
n−Bj

(n− 1)Bj
· λ

2

n

n∑
i=1

‖ ∇fi(x̃j−1)−∇f(x̃j−1) ‖2

≤ λ2 n−Bj
(n− 1)Bj

· S∗ ≤ λ2 I(Bj < n)

Bj
S∗

(14)

where the upper bound of the variance of the stochastic gradients S∗ = 1
n

∑n
i=1 ‖

∇fi(x̃j−1)−∇f(x̃j−1) ‖2.

Lemma 5. Suppose ηjL < 1, then under Definition 3,

(1− λ)ηj(1− (1− λ)Lηj)BjE ‖ ∇f(x̃j) ‖2 +ληjBjE < ej ,∇f(x̃j) >

≤ bjE(f(x̃j−1)− f(x̃j)) +
η2jBjL

3

2bj
E ‖ x̃j − x̃j−1 ‖2 +λ2Lη2jBjE ‖ ej ‖2 .

where E denotes the expectation with respect to all randomness.
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Proof. By Definition 3, we have

EĨk [f(x
(j)
k+1)] ≤ f(x

(j)
k )− ηj < EĨkvk,∇f(x

(j)
k ) > +

Lη2j
2

EĨk ‖ vk ‖
2

= f(x
(j)
k )− ηj < ((1− λ)∇f(x(j)k ) + λej),∇f(x)(j)k ) > +

Lη2j
2

EĨk ‖ vk ‖
2

≤ f(x(j)k )− ηj(1− λ) ‖ ∇f(x(j)k ) ‖2 −ηj < λej ,∇f(x(j)k ) > +
L3η2j
2bj

‖ (1− λ)x(j)k − λx
(j)
0 ‖2

+ Lη2j (1− λ)2 ‖ ∇f(x
(j)
k ) ‖2 +Lη2jλ

2 ‖ ej ‖2

= f(x
(j)
k )− (ηj(1− λ)− Lη2j (1− λ)2) ‖ ∇f(x

(j)
k ) ‖2 −ληj < ej ,∇f(x(j)k ) >

+
L3η2j
2bj

‖ (1− λ)x(j)k − λx
(j)
0 ‖2 +Lη2jλ

2 ‖ ej ‖2

≤ f(x(j)k )− (ηj(1− λ)− Lη2j (1− λ)2) ‖ ∇f(x
(j)
k ) ‖2 −ληj < ej ,∇f(x(j)k ) >

+
L3η2j
2bj

‖ x(j)k − x
(j)
0 ‖2 +Lη2jλ

2 ‖ ej ‖2

(15)
Let Ej denote the expectation Ĩ0, Ĩ1,..., given Ñj since Ñj is independent of them and
let k=Nj in Inq. 15. As Ĩk+1, Ĩk+2,... are independent of x(j)k and taking the expectation
with respect to Nj and using Fubini’s theorem, Inq. 15 implies that

ηj(1− λ)(1− (1− λ)Lηj)ENjEj [‖ ∇f(x
(j)
Nj ) ‖

2] + ληjENjEj < ej ,∇f(x(j)Nj ) >

≤ ENj (Ej [f(x
(j)
Nj )]− Ej [f(x(j)Nj+1

)]) +
L3η2j
2bj

ENjEjE[‖ (1− λ)x
(j)
Nj − λx

(j)
0 ‖2] + Lλ2η2j ‖ ej ‖2

=
bj
Bj

(f(x
(j)
0 )− EjENj [f

(j)
Nj ]) +

L3η2j
2bj

EjENj [‖ (1− λ)x
(j)
Nj − λx

(j)
0 ‖2] + Lλ2η2j ‖ ej ‖2

(16)
where the last equation in Inq. 16 follows from Lemma 2. The lemma substitutes x(j)Nj (x

j
0)

by x̃j(x̃j−1).

Lemma 6. Suppose η2jL
2Bj < b2j , then under Definition 3,

(bj −
η2jL

2Bj

4bj
)E[‖ x̃j − x̃j−1 ‖2] + 2ληjBjE < ej , (x̃j − x̃j−1) >

≤ −2ηj(1− λ)BjE < ∇f(x̃j), (x̃j − x̃j−1) > +2(1− λ)2η2jBjE[‖ ∇f(x̃j) ‖2]
+ 2λ2η2jBjE[‖ ej ‖2]
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Proof. Since x(j)k+1 = x
(j)
k − ηjv

(j)
k , we have

EĨk [‖ x
(j)
k+1 − x

(j)
0 ‖2]

=‖ x(j)k − x
(j)
0 ‖2 −2ηj < EĨkv

(j)
k , (x

(j)
k − x

(j)
0 ) > +η2jEĨk ‖ v

(j)
k ‖

2

=‖ x(j)k − x
(j)
0 ‖2 −2(1− λ)ηj < ∇f(x

(j)
k ), (x

(j)
k − x

(j)
0 ) > −2ληj < ej , (x

(j)
k − x

(j)
0 ) > +η2jEĨk ‖ v

(j)
k ‖

2

≤ (1 +
η2jL

2

4bj
) ‖ x(j)k − x

(j)
0 ‖2 −2ηj(1− λ) < ∇f(x

(j)
k ), x

(j)
k − x

(j)
0 >

− 2ληj < ej , (x
(j)
k − x

(j)
0 ) > +2(1− λ)2η2j ‖ ∇f(x

(j)
k ) ‖2 +2λ2η2j ‖ ej ‖2 .

(17)
where the last inequality follows from Lemma 3. Using the same notation Ej from Eq 7
we have

2ηj(1− λ)Ej < ∇f(x(j)k ), (x
(j)
k − x

(j)
0 ) > +2ληjEj < ej , (x

(j)
k − x

(j)
0 ) >

≤ (1 +
η2jL

2

4bj
)Ej ‖ x(j)k − x

(j)
0 ‖2 −Ej ‖ x

(j)
k+1 − x

(j)
0 ‖2 +2(1− λ)2η2j ‖ ∇f(x

(j)
k ) ‖2 +2λη2j ‖ ej ‖2

(18)
Let k = Nj , and using Fubini’s theorem, we have,

2(1− λ)ηjENjEj < ∇f(x
(j)
Nj

), (x
(j)
Nj
− x(j)0 ) > +2ληjENjEj < ej , (x

(j)
Nj
− x(j)0 ) >

≤ (1 +
ηjL

2

4bj
)ENjEj ‖ x

(j)
Nj
− x(j)0 ‖2 −ENjEj ‖ x

(j)
Nj+1 − x

(j)
0 ‖2

+ 2(1− λ)2η2jENj ‖ ∇f(x
(j)
Nj

) ‖2 +2λ2η2j ‖ ej ‖2

= (− bj
Bj

+
η2jL

2

4bj
)ENjEj ‖ x

(j)
Nj
− x(j)0 ‖2 +2(1− λ)2η2jENj ‖ ∇f(x

(j)
Nj

) ‖2 +2λ2η2j ‖ ej ‖2 .

(19)
The lemma is then proved by substituting x(j)Nj (x

(j)
0 ) by x̃j(x̃j−1).

Lemma 7.

bjE < ej , (x̃j − x̃j−1) >= −ηj(1− λ)BjE < ej ,∇f(x̃j) > −λ2ηjBjE ‖ ej ‖2

Proof. Let M (j)
k =< ej , (x

(j)
k − x

(j)
0 ) >, then we have

ENj < ej , (x̃j − x̃j−1) >= ENjM
(j)
Nj
. (20)

Since Nj is independent of (x(j)0 , ej), it has

E < ej , (x̃j − x̃j−1) >= EM (j)
Nj
. (21)

Also M (j)
0 = 0, then we have

EĨk(M
(j)
k+1 −M

(j)
k )

= EĨk < ej , (x
(j)
k+1 − x

(j)
k ) >

= −ηj < ej ,EĨk [v
(j)
k ] > .

(22)
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Using the same notation Ej in Lemma 5 and Lemma 6, we have

Ej(M (j)
k+1 −M

(j)
k ) = −ηj(1− λ) < ej ,Ej∇f(x(j)k ) > −λ2ηj ‖ ej ‖2 . (23)

Let k = Nj in Eq.23. Using Fubini’s theorem and Lemma 4, we have,

bj
Bj

ENjM
(j)
Nj

= −ηj(1− λ) < ej ,ENjEj∇f(x
(j)
k ) > −ηj ‖ ej ‖2 . (24)

The lemma is then proved by substituting x(j)Nj (x
(j)
0 ) by x̃j(x̃j−1).

Proof of Theorem 1

Let ηjL = γ(
bj
Bj

)α (0 ≤ α ≤ 1) and Bj ≥ bj ≥ Bβj (0 ≤ β ≤ 1) for all j. Suppose

0 < γ ≤ 1

3
, then under Definition 3, the output x̃j of Alg 2 we have

E‖∇f(x̃j)‖2 ≤
2L

γθ
· ( bj
Bj

)1−αE (f(x̃j−1)− f(x̃j)) +
2λ4I(Bj < n)S∗

θB1−2α
j

,

where I(Bj < n) ≥ n−Bj
(n− 1)Bj

, S is defined in Eq.3, λ =
1

2
and θ = 2(1 − λ) −

(2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.29(1− λ)2.

Proof Sketch: Combine two equations in Lemma 5 and Lemma 6, we can
achieve a upper bound of unbiased version gradient in single epoch. And further
use Lemma 4, the final result of Theorem 2 can be achieved.

Proof. Multiplying Lemma 3 by 2 and Lemma 6 by
bj
ηjBj

and summing them, then we

have,

2ηjBj(1− λ)(1− (1− λ)Lηj −
(1− λ)bj

Bj
)E ‖ ∇f(x̃j) ‖2 +

b3j − η2jL2bjBj − η3jL3B2
j

8bjηjBj
E ‖ x̃j − x̃j−1 ‖2

+ 2ληjBjE < ej ,∇f(x̃j) > +2λbjE < ej , (x̃j − x̃j−1) >

= 2ηjBj(1− λ)(1− (1− λ)Lηj −
(1− λ)bj

Bj
)E ‖ ∇f(x̃j) ‖2

+
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

8bjηjBj
E ‖ x̃j − x̃j−1 ‖2 −2

λ3

(1− λ)
ηjBjE ‖ ej ‖2 ( Lemma 7)

≤ −2(1− λ)bjE < ∇f(x̃j), (x̃j − x̃j−1) > +2bjE(f(x̃j−1)− f(x̃j)) + (2λ2Lη2jBj + 2λ2ηjbj)E ‖ ej ‖2
(25)
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Using the fact that 2 < q, p >≤ β ‖ q ‖2 +
1

β
‖ p ‖2 for any β > 0, −2(1− λ)bjE <

∇f(x̃j), (x̃j − x̃j−1) > in Inq. 25 can be bounded as

− 2(1− λ)bjE < ∇f(x̃j), (x̃j − x̃j−1) >

≤ (1− λ)( (1− λ)bjηjBj
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

b2jE ‖ ∇f(x̃j) ‖2

+
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

8(1− λ)bjηjBj
E ‖ x̃j − x̃j−1 ‖2)

(26)

Then Inq. 25 can be expressed as

ηjBj
bj

(2(1− λ)− 2(1− λ)2Lηj − 2(1− λ)2 bj
Bj
−

(1− λ)2b3j
b3j − 8(1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

)

E ‖ ∇f(x̃j) ‖2

≤ 2E(f(x̃j−1)− f(x̃j)) +
2ηjBjλ

2

bj
(

λ2

(1− λ)
+ ηjL+

bj
Bj

)E ‖ ej ‖2 .

(27)

Since ηjL = γ(
bj
Bj

)α, bj ≥ 1 and Bj ≥ bj ≥ Bβj where α > 0 and β ≥ 0 by Eq. 7,

and λ =
1

2
, γ =

1

3
, one part in left hand side of above inequality can be simplified and

positive as following:

b3j − 8(1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2
j

= b3j (1− 8(1− λ)2γ2
b2α−2j

B2α−1
j

− (1− λ)2γ3
b3α−3j

B3α−2
j

)

≥ b3j (1− 8(1− λ)2γ2B−1j − (1− λ)2γ3B−1j ) ≥ 0.77b3j

(28)

By Eq.28, the left side of Inq. 27 can be simplified since the factor of geometry distri-
bution γ ≥ 0 as

ηjBj
bj

(2(1− λ)− 2(1− λ)2Lηj − 2(1− λ)2 bj
Bj
−

(1− λ)2b3j
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

)

E ‖ ∇f(x̃j) ‖2

≥ γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γBαβ−αj + 2

bj
Bj

)(1− λ)2 − 1.29(1− λ)2
)
E||∇f(x̃j)||2

≥ γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γ + 2)B−1j (1− λ)2 − 1.29(1− λ)2

)
E||∇f(x̃j)||2

(29)



20 J. Bi et al.

Then Eq.27 can be simplified by Eq.29 as

E ‖ ∇f(x̃j) ‖2 ≤
2E[f(x̃j−1)− f(x̃j)] + 2

γ

L
Bαβ−α−β+1
j λ2(

λ2

(1− λ)
+Bαβ−αj γ +Bβ−αj L)E||ej ||2

γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.29(1− λ)2

)

≤

positive by Lemma 2︷ ︸︸ ︷
2E(f(x̃j−1 − f(x̃j))+

positive︷ ︸︸ ︷
2
γ

L
λ2Bαβ−α−β+1

j B2α
j E ‖ ej ‖2

γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.29(1− λ)2

) ,
(30)

Then, using Lemma 4, Inq. 30 can be rewritten as

E ‖ ∇f(x̃j) ‖2≤
2E(f(x̃j−1 − f(x̃j)) + 2

γ

L
λ4Bαβ+α−βj I(Bj < n)S∗

γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.29(1− λ)2

) .
(31)

Since the learning rate η ≤ 1

3L
was determined by [21, 19] that γ ≤ 1

3
which guar-

antees the convergence in non-convex case. Thus γ ≤ 1

3
as a upper bound is considered

in our biased and unbiased cases.

B.2 Biased Estimator Version

We still provide all useful lemmas we will applied in our proof of theorems at first, and
provide a proof sketch for guidance. For the biased estimation version, we still start
by bounding the gradient EĨk ‖ v

(j)
k ‖2 in Lemma 8 and the variance EIj ‖ ej ‖2

in Lemma 9.

Lemma 8. Under Definition 3,

EĨk ‖ v
(j)
k ‖

2 ≤ (1− λ)2L2

bj
‖ x(j)k − x

(j)
0 ‖ +2(1− λ)2 ‖ ∇f(x(j)k ) ‖2 +2 ‖ ej ‖2 .

Proof. Using the fact that for a random variableZ E ‖ Z ‖2= ‖Z−EZ ‖2 + ‖ EZ ‖2,
we have

EĨk ‖ v
(j)
k ‖

2= EĨk ‖ v
(j)
k − EĨkv

(j)
k ‖

2 + ‖ EĨkv
(j)
k ‖

2

= EĨk ‖ (1− λ)(∇fĨk(x
(j)
k )−∇fĨk(x

(j)
0 ))− (1− λ)(∇f(x(j)k )−∇fx(j)0 ) ‖2

+ ‖ (1− λ)∇f(x(j)k ) + ej ‖2

≤ (1− λ)2EĨk ‖ ∇fĨk(x
(j)
k )−∇fĨk(x

(j)
0 )− (∇f(x(j)k )−∇fx(j)0 ) ‖2

+ 2(1− λ)2 ‖ ∇f(x(j)k ) ‖2 +2 ‖ ej ‖2 .
(32)
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By Lemma 1, the first part of inequality in Eq.32 can be rewritten as,

(1− λ)2EĨk ‖ ∇fĨk(x
(j)
k )−∇fĨk(x

(j)
0 )− (∇f(x(j)k )−∇fx(j)0 ) ‖2

≤ (1− λ)2

bj
· 1
n

n∑
i=1

‖ ∇fi(x(j)k )−∇fi(x(j)0 )− (∇f(x(j)k )−∇f(x(j)0 )) ‖2

=
(1− λ)2

bj
· ( 1
n

n∑
i=1

‖ ∇fi(x(j)k )−∇fi(x(j)0 ) ‖2 − ‖ (∇f(x(j)k )−∇f(x(j)0 )) ‖2)

≤ (1− λ)2

bj
· 1
n

n∑
i=1

‖ ∇fi(x(j)k )−∇fi(x(j)0 ) ‖2

≤ (1− λ)2

bj
· L2 ‖ x(j)k − x

(j)
0 ‖2

(33)
where the last line is based on Definition 3, then the bound of the gradient can be written
as,

EĨk ‖ v
(j)
k ‖

2≤ (1− λ)2L2

bj
‖ x(j)k − x

(j)
0 ‖2 +2(1− λ)2 ‖ ∇f(x(j)k ) ‖2 +2 ‖ ej ‖2 .

(34)

Lemma 9.

EIj ‖ ej ‖2 ≤ (1− λ)2 I(Bj < n)

Bj
S∗ + (1− 2λ)2EIj [∇fi(x̃j−1)]2

= EIj ‖ ẽj ‖2 +(1− 2λ)2EIj [∇fi(x̃j−1)]2

where (1− λ)2 I(Bj < n)

Bj
S∗ = EIj ‖ ẽj ‖2 and 0 < λ < 1.
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Proof. Based on Lemma 1 and the observation that x̃j−1 is independent of

EIj ‖ ej ‖2 =
n−Bj

(n− 1)Bj
· 1
n

n∑
i=1

‖ (1− λ)∇fi(x̃j−1)− λ∇f(x̃j−1) ‖2

=
n−Bj

(n− 1)Bj
EIj ‖ (1− λ)∇fi(x̃j−1)− λEIj [∇fi(x̃j−1)] ‖2

=
n−Bj

(n− 1)Bj
EIj

[
(1− λ)2∇fi(x̃j−1)2 − (2λ− 3λ2)EIj [∇fi(x̃j−1)]2

]
=

n−Bj
(n− 1)Bj

(1− λ)2EIj [∇fi(x̃j−1)2 − EIj [∇fi(x̃j−1)]2
]︸ ︷︷ ︸

Unbiased

+(1− 2λ)2EIj [∇fi(x̃j−1)]2︸ ︷︷ ︸
Extra/term


=

n−Bj
(n− 1)Bj

·

(
(1− λ)2 1

n

n∑
i=1

‖ ∇fi(x̃j−1)−∇f(x̃j−1) ‖2 +(1− 2λ)2EIj [∇fi(x̃j−1)]2
)

≤ (1− λ)2 n−Bj
(n− 1)Bj

· S∗ + n−Bj
(n− 1)Bj

(1− 2λ)2EIj [∇fi(x̃j−1)]2

≤ (1− λ)2 I(Bj < n)

Bj
S∗ + (1− 2λ)2EIj [∇fi(x̃j−1)]2,

(35)
where the upper bound of the variance of the stochastic gradients S∗ = 1

n

∑n
i=1 ‖

∇fi(x̃j−1)−∇f(x̃j−1) ‖2.In above function, as∇f(x̃j−1) is the expectation value of
∇fi(x̃j−1), we use EIj [∇fi(x̃j−1)] to alternative ∇f(x̃j−1) for easily understanding
later proof. Meanwhile, We can achieve the third equation in above function since the
fact that E[(1−λ)Z−λE[Z]]2 = (1−λ)2E[Z2]−(2λ−3λ2)E[Z]2 = E[(1−λ)2Z2−
(2λ− 3λ2)E[Z]2].

Lemma 10. Suppose ηjL < 1, then under Definition 3,

(1− λ)(1− (1− λ)Lηj)ηjBjE ‖ ∇f(x̃j) ‖2 +ηjBjE < ej ,∇f(x̃j) >

≤ bjE(f(x̃j−1)− f(x̃j)) +
(1− λ)2η2jBjL3

2bj
E ‖ x̃j − x̃j−1 ‖2 +Lη2jBjE ‖ ej ‖2 .

where E denotes the expectation with respect to all randomness.
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Proof. By Definition 3, we have

EĨk [f(x
(j)
k+1)] ≤ f(x

(j)
k )− ηj < EĨkvk,∇f(x

(j)
k ) > +

Lη2j
2

EĨk ‖ vk ‖
2

= f(x
(j)
k )− ηj < ((1− λ)∇f(x(j)k ) + ej),∇f(x)(j)k ) > +

Lη2j
2

EĨk ‖ vk ‖
2

≤ f(x(j)k )− ηj(1− λ) ‖ ∇f(x(j)k ) ‖2 −ηj < ej ,∇f(x(j)k ) >

+
L3η2j (1− λ)2

2bj
‖ x(j)k − x

(j)
0 ‖2 +Lη2j (1− λ)2 ‖ ∇f(x

(j)
k ) ‖2 +Lη2j ‖ ej ‖2

= f(x
(j)
k )− (ηj(1− λ)− Lη2j (1− λ)2) ‖ ∇f(x

(j)
k ) ‖2

− ηj < ej ,∇f(x(j)k ) > +
L3η2j (1− λ)2

2bj
‖ x(j)k − x

(j)
0 ‖2 +Lη2j ‖ ej ‖2

(36)
Let Ej denote the expectation Ĩ0, Ĩ1,..., given Ñj since Ñj is independent of them and
let k=Nj in Inq 36. As Ĩk+1, Ĩk+2,... are independent of x(j)k and taking the expectation
with respect to Nj and using Fubini’s theorem, Inq. 36 implies that

ηj(1− λ)(1− (1− λ)Lηj)ENjEj [‖ ∇f(x
(j)
Nj ) ‖

2] + ηjENjEj < ej ,∇f(x(j)Nj ) >

≤ ENj (Ej [f(x
(j)
Nj )]− Ej [f(x(j)Nj+1

)]) +
L3η2j (1− λ)2

2bj
ENjEjE[‖ x

(j)
Nj − x

(j)
0 ‖2] + Lη2j ‖ ej ‖2

=
bj
Bj

(f(x
(j)
0 )− EjENj [f

(j)
Nj ]) +

L3η2j (1− λ)2

2bj
EjENj [‖ x

(j)
Nj − x

(j)
0 ‖2] + Lη2j ‖ ej ‖2

(37)
where the last equation in Inq. 37 follows from Lemma 2. The lemma substitutes x(j)Nj (x

j
0)

by x̃j(x̃j−1).

Lemma 11. Suppose η2jL
2Bj < b2j , then under Definition lsmooth1,

(bj −
(1− λ)2η2jL2Bj

bj
)E[‖ x̃j − x̃j−1 ‖2] + 2ηjBjE < ej , (x̃j − x̃j−1) >

≤ −2(1− λ)ηjBjE < ∇f(x̃j), (x̃j − x̃j−1) > +2(1− λ)2η2jBjE[‖ ∇f(x̃j) ‖2] + 2η2jBjE[‖ ej ‖2]

Proof. Since x(j)k+1 = x
(j)
k − ηjv

(j)
k , we have

EĨk [‖ x
(j)
k+1 − x

(j)
0 ‖2]

=‖ x(j)k − x
(j)
0 ‖2 −2ηj < EĨkv

(j)
k , (x

(j)
k − x

(j)
0 ) > +η2jEĨk ‖ v

(j)
k ‖

2

=‖ x(j)k − x
(j)
0 ‖2 −2ηj(1− λ) < ∇f(x

(j)
k ), (x

(j)
k − x

(j)
0 ) > −2ηj < ej , (x

(j)
k − x

(j)
0 ) > +η2jEĨk ‖ v

(j)
k ‖

2

≤ (1 +
(1− λ)2η2jL2

bj
) ‖ x(j)k − x

(j)
0 ‖2 −2ηj(1− λ) < ∇f(x

(j)
k ), x

(j)
k − x

(j)
0 > −2ηj < ej , (x

(j)
k − x

(j)
0 ) >

+ 2(1− λ)2η2j ‖ ∇f(x
(j)
k ) ‖2 +2η2j ‖ ej ‖2 .

(38)
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where the last inequality is based on Lemma 8. Using the same notation Ej in Eq. 7 we
have

2ηj(1− λ)Ej < ∇f(x(j)k ), (x
(j)
k − x

(j)
0 ) > +2ηjEj < ej , (x

(j)
k − x

(j)
0 ) >

≤ (1 +
(1− λ)2η2jL2

bj
)Ej ‖ x(j)k − x

(j)
0 ‖2 −Ej ‖ x

(j)
k+1 − x

(j)
0 ‖2 +2(1− λ)2η2j ‖ ∇f(x

(j)
k ) ‖2 +2η2j ‖ ej ‖2

(39)
Let k = Nj , and using Fubini’s theorem, we have,

2ηj(1− λ)ENjEj < ∇f(x
(j)
Nj

), (x
(j)
Nj
− x(j)0 ) > +2ηjENjEj < ej , (x

(j)
Nj
− x(j)0 ) >

≤ (1 +
(1− λ)2ηjL2

bj
)ENjEj ‖ x

(j)
Nj
− x(j)0 ‖2 −ENjEj ‖ x

(j)
Nj+1 − x

(j)
0 ‖2

+ 2(1− λ)2η2jENj ‖ ∇f(x
(j)
Nj

) ‖2 +2η2j ‖ ej ‖2

= (− bj
Bj

+
(1− λ)2η2jL2

bj
)ENjEj ‖ x

(j)
Nj
− x(j)0 ‖2 +2(1− λ)2η2jENj ‖ ∇f(x

(j)
Nj

) ‖2 +2η2j ‖ ej ‖2 .

(40)
The lemma is then proved by substituting x(j)Nj (x

(j)
0 ) by x̃j(x̃j−1).

Lemma 12.

bjE < ej , (x̃j − x̃j−1) >= −ηj(1− λ)BjE < ej ,∇f(x̃j) > −ηjBjE ‖ ej ‖2

Proof. Let M (j)
k =< ej , (x

(j)
k − x

(j)
0 ) >, then we have

ENj < ej , (x̃j − x̃j−1) >= ENjM
(j)
Nj
.

Since Nj is independent of (x(j)0 , ej), it has

E < ej , (x̃j − x̃j−1) >= EM (j)
Nj
. (41)

Also M (j)
0 = 0, then we have

EĨk(M
(j)
k+1 −M

(j)
k )

= EĨk < ej , (x
(j)
k+1 − x

(j)
k ) >= −ηj < ej ,EĨk [v

(j)
k ] >

= −ηj(1− λ) < ej ,∇f(x(j)k ) > −ηj ‖ ej ‖2 .

(42)

Using the same notation Ej in Eq. 7, we have

Ej(M (j)
k+1 −M

(j)
k ) = −ηj(1− λ) < ej ,Ej∇f(x(j)k ) > −ηj ‖ ej ‖2 . (43)

Let k = Nj in Eq.43. Using Fubini’s theorem and Lemma 2, we have,

bj
Bj

ENjM
(j)
Nj

= −ηj(1− λ) < ej ,ENjEj∇f(x
(j)
k ) > −ηj ‖ ej ‖2 . (44)

The lemma is then proved by substituting x(j)Nj (x
(j)
0 ) by x̃j(x̃j−1).
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Proof of Theorem 3

let ηjL = γ(
bj
Bj

)α (0 ≤ α ≤ 1). Suppose 0 < γ ≤ 1

3
and Bj ≥ bj ≥ Bβj (0 ≤ β ≤ 1)

for all j, then under Definition 3, the output x̃j of Alg 3 we have,

E‖∇f(x̃j)‖2 ≤
2L

γΘ
· ( bj
Bj

)1−αE (f(x̃j−1)− f(x̃j)) +
2(1− λ)2I(Bj < n)S∗

ΘB1−2α
j

,

where I(Bj < n) ≥ n−Bj
(n− 1)Bj

, S is defined in Eq.3, 0 < λ < 1 and Θ = 2(1− λ)−

(2γBαβ−αj + 2Bβ−1j − 4LB2α−2
j )(1− λ)2 − 1.16(1− λ)2.

Proof Sketch: Combine two equations in Lemma 10 and Lemma 11, we can
achieve a upper bound of biased version gradient in single epoch. And further
use Lemma 9, the final result of Theorem 4 can be achieved.

Proof. Multiplying Eq.10 by 2 and Eq.11 by
bj
ηjBj

and summing them, then we have,

2ηjBj(1− λ)(1− (1− λ)Lηj −
(1− λ)bj

Bj
)E ‖ ∇f(x̃j) ‖2

+
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

bjηjBj
E ‖ x̃j − x̃j−1 ‖2

+ 2ηjBjE < ej ,∇f(x̃j) > +2bjE < ej , (x̃j − x̃j−1) >

= 2ηjBj(1− λ)(1− (1− λ)Lηj −
(1− λ)bj

Bj
+

(2λ− 1)2

2ηjBj(1− λ)
)E ‖ ∇f(x̃j) ‖2

+
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

bjηjBj
E ‖ x̃j − x̃j−1 ‖2 −2ηjBjE ‖ ẽj ‖2 ( Lemma 12)

≤ −2(1− λ)bjE < ∇f(x̃j), (x̃j − x̃j−1) > +2bjE(f(x̃j−1)− f(x̃j)) + (2Lη2jBj + 2ηjbj)E ‖ ẽj ‖2
(45)

Using the fact that 2 < q, p >≤ β ‖ q ‖2 +
1

β
‖ p ‖2 for any β > 0, −2bjE <

∇f(x̃j), (x̃j − x̃j−1) > in Inq. 45 can be bounded as

− 2(1− λ)bjE < ∇f(x̃j), (x̃j − x̃j−1) >

≤ (1− λ)( (1− λ)bjηjBj
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

b2jE ‖ ∇f(x̃j) ‖2

+
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

(1− λ)bjηjBj
E ‖ x̃j − x̃j−1 ‖2)

(46)



26 J. Bi et al.

Then Inq. 45 can be rewritten as

ηjBj
bj

(2(1− λ)− 2(1− λ)2Lηj − 2(1− λ)2 bj
Bj

+
(2λ− 1)2

ηjBj

−
(1− λ)2b3j

b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2
j

)E ‖ ∇f(x̃j) ‖2

≤ 2E(f(x̃j−1)− f(x̃j)) +
2ηjBj
bj

(1 + ηjL+
bj
Bj

)E ‖ ẽj ‖2 .

(47)

Since ηjL = γ(
bj
Bj

)α, bj ≥ 1 and Bj ≥ bj ≥ Bβj where 0 < α ≤ 1, 0 ≤ β ≤ 1, we

have
b3j − (1− λ)2η2jL2bjBj − (1− λ)2η3jL3B2

j

= b3j (1− (1− λ)2γ2
b2α−2j

B2α−1
j

− (1− λ)2γ3
b3α−3j

B3α−2
j

)

= b3j (1− (1− λ)2γ2B−1j − (1− λ)2γ3B−1j ) ≥ 0.86b3j

(48)

By Eq. 48, the left side of Inq. 47 can be simplified as

ηjBj
bj

(2(1− λ)− 2(1− λ)2Lηj − 2(1− λ)2 bj
Bj

+
(2λ− 1)2

ηjBj
−

(1− λ)2b3j
b3j − η2jL2bjBj − η3jL3B2

j

)E ‖ ∇f(x̃j) ‖2

=
γ

L
B1−α+αβ−β
j

2(1− λ)− (2γBαβ−αj + 2Bβ−1j )(1− λ)2 + (2λ− 1)2

γ

L
B2α−2
j

− 1.16(1− λ)2
E ‖ ∇f(x̃j) ‖2

≥ γ

L
Bαβ−α−β+1
j

(
2(1− λ)− (2γB−1j + 2B−1j − 4)(1− λ)2 − 1.16(1− λ)2

)
E ‖ ∇f(x̃j) ‖2 .
(49)

Eq.49 is positive when 0 ≤ γ ≤ 2.42Bj−1 andBj ≥ 1. Moreover, [21, 19] determined

the learning rate η =
γ

L

bj
Bj
≤ 1

3L
that γ ≤ 1

3
which can guarantees the convergence

in non-convex case. In our case, γ should satisfy the range 0 ≤ γ ≤ 1

3
≤ 2.42Bj − 1,

thus γ ≤ 1

3
.

Then Eq.47 can be simplified by Eq.49 as

E ‖ ∇f(x̃j) ‖2≤
2E[f(x̃j−1)− f(x̃j)] + 2

γ

L
Bαβ−α−β+1
j (1 +Bαβ−αj γ +Bb−aj L)E ‖ ej ‖2

γ

L
B1−α+αβ−β
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j − 4LB2α−2

j )(1− λ)2 − 1.16(1− λ)2
)

≤

positive by Lemma 2︷ ︸︸ ︷
2E[f(x̃j−1)− f(x̃j)] +

positive︷ ︸︸ ︷
2
γ

L
Bαβ−α−β+1
j B2a

j E ‖ ej ‖2

γ

L
B1−α+αβ−β
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j − 4LB2α−2

j )(1− λ)2 − 1.16(1− λ)2
) .

(50)
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Then, using Lemma 9, Inq. 50 can be expressed as

E ‖ ∇f(x̃j) ‖2 ≤
2E[f(x̃j−1)− f(x̃j)] + 2(1− λ)2 γ

L
Bαβ+α−βj I(Bj < n)S∗

γ

L
B1−α+αβ−β
j

(
2(1− λ)− (2γBαβ−αj + 2Bβ−1j − 4LB2α−2

j )(1− λ)2 − 1.16(1− λ)2
)

=
( 2Lγ )(

bj
Bj

)1−αE(f(x̃j−1)− f(x̃j)) + 2(1− λ)2 I(Bj<n))
B1−2α
j

S∗

2(1− λ)− (2γBαβ−αj + 2Bβ−1j − 4LB2α−2
j )(1− λ)2 − 1.16(1− λ)2

(51)

Proof of Theorem 5

Suppose γ ≤ 1

3
. LetBj = min

{
S∗

ε ,
nS∗

S∗+0.14·n
1
2 σρ2j

}
, under Definition 3 and Theorem2

and 4, the output x̃∗T in Alg 4 satisfies one of two bounds.

1. If Bj =
S∗

ε
,bj = B

1
4
j , ηj =

γ

L
, λ∗ =

1

2
, θ ≈ 0.51 with an unbiased estimator,

E‖∇f(x̃∗T )‖2 ≤
4L
γ 4f∑T
j=1B

3
4
j

+
0.24(I(Bj < n)S∗

Bj
,

.

2. If Bj =
nS∗

S∗ + 0.14 · n 1
2σρ2j

, bj = 1, ηj =
γ

L
(
1

Bj
)

1
2 , λ∗ =

5

8
, Θ ≈ 0.59 with a

biased estimator,

E‖∇f(x̃∗T )‖2 <

3.4L

γ
4f∑T

j=1B
1
2
j

+ 0.48S∗.

Proof. Since x̃∗T is a random element from (x̃j)
T
j=1 with

P (x̃∗T = x̃j) ∝
ηjBj
bj
∝ (

Bj
bj

)α, (52)

Inq. 31 and 51 will be re-scaled as Inq. 53 and 54 respectively.

– For the unbiased estimator (Alg. 2), the upper bound is shown as,

E ‖ ∇f(x̃∗T ) ‖2≤
(
2L

γ
)4f

θ
∑T
j=1 b

α−1
j B1−α

j

+
2λ4I(Bj < n))S∗

θB1−2α
j

, (53)

where θ = 2(1− λ)− (2γBαβ−αj + 2Bβ−1j )(1− λ)2 − 1.16λ2.
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– For the biased estimator (Alg. 3), the upper bound is shown as,

E ‖ ∇f(x̃j) ‖2≤
(
2L

γ
)4f

Θ
∑T
j=1 b

α−1
j B1−α

j

+
(1− λ)2I(Bj < n))S∗

ΘB1−2α
j

, (54)

whereΘ = 2(1−λ)− (2γBαβ−αj +2Bβ−1j −4LB2α−2
j )(1−λ)2−1.16(1−λ)2.

After achieved the result in above, and specified parameters, we can obtain result of
Theorem 5.
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