
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal

non-commercial research or study, without prior permission or charge. This thesis and the

accompanying data cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,

e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

University of Southampton

Faculty of Social Sciences

School of Economic, Social & Political Sciences

Department of Economics

Deep learning in econometrics: theory and
applications

Tullio Mancini

A thesis for the degree of Doctor of Philosophy

May 2021

https://www.southampton.ac.uk/

University of Southampton

Abstract

Faculty of Social Sciences

School of Economic, Social & Political Sciences

Department of Economics

Doctor of Philosophy

Deep learning in econometrics: theory and applications

by Tullio Mancini

This thesis concentrates on implementing deep learning methodologies for econometrics. Among
the supervised machine learning toolbox, deep neural networks are the most ubiquitous ones.
By being the least restricted nonlinear functions that one could implement, deep learning
models allow learning complex signals from the in�nitely versatile big data. Recent evi-
dence from the literature shows how, notwithstanding the well-known issues around neural
networks speci�cation for causal problems, deep learning methods (among other machine
learning methodologies) can be regarded as a powerful nonparametric tool for addressing not
only prediction but also causal problems. Chapter 2 develops a new methodology for de-
tecting Granger causality in nonlinear multivariate time series using deep neural networks
coupled with Lasso methods. After de�ning the optimal neural network architecture by max-
imizing the transfer of information between input and output variables, the novel two-stage
procedure applies a sparse double group lasso penalty function to detect Granger causality.
The methodology is applied to the Tobalaba network of renewable energy companies showing
an increase in the connectivity among the network members after the introduction of the
blockchain platform. Chapter 3 proposes a constrained maximization for the identi�cation
of an optimal neural network architecture of a given size. The optimal architecture obtains
from maximizing the minimum number of linear regions approximated by a deep ReLu neu-
ral network. A Monte Carlo simulation illustrates the optimal architecture's outperformance
against cross-validated methods for linear and nonlinear prediction models. Chapter 4 pro-
poses a suitable method for constructing prediction intervals for the output of both deep and
shallow neural networks. The proposed methodology adapts the extremely randomized trees
method to construct ensembles of neural networks. The Monte Carlo simulation shows a
good performance of the novel methodology not only in terms of out-of-sample uncertainty
estimation but also in terms of out-of-sample accuracy. Finally, chapters 5 and 6 apply the
novel deep learning methodologies �proposed in the previous chapters� to environmental eco-
nomics. More speci�cally, chapter 5 uses ReLu deep neural networks to predict the CO2

emissions associated with Bitcoin mining showing that the fossil fuel emission associated with
Bitcoin mining, for the year 2018, is higher than the annual levels of fossil fuel emissions
of some U.S. states such as Maine, New Hampshire, and South Dakota. Lastly, chapter 6
uses both deep and shallow neural networks to construct environmental Engel curves for the
U.S. for the years 1984 and 2012. The empirical results show that richer households pollute
more, the pollution content of consumption increases at a lower rate than income, and that
the pollution content of consumption grows at a decreasing rate. Finally, Appendix A, B,
and C provide a brief theoretical introduction to feedforward, convolutional, and recurrent
neural networks to allow the reader to understand the similarities and the di�erences between
the di�erent deep learning methods; and three di�erent empirical applications (focused on
regression, image classi�cation, and text generation) are implemented to show the strength
and power of the di�erent classes of deep networks.

Contents

1 Introduction to the Thesis 1
1.1 Problem Statement . 2
1.2 Literature Review . 5

1.2.1 Granger causality . 5
1.2.2 Optimal Structure Identi�cation . 8
1.2.3 Uncertainty and Deep Learning . 11

1.3 Thesis Structure . 13
1.3.1 Chapter 2 . 13
1.3.2 Chapter 3 . 14
1.3.3 Chapter 4 . 16
1.3.4 Chapter 5 . 17
1.3.5 Chapter 6 . 19
1.3.6 Appendix . 20

2 Granger causality detection in high-dimensional systems using feedfor-
ward neural networks 21
2.1 Introduction . 22
2.2 Granger Causality . 27
2.3 Fully Connected Neural Network . 29
2.4 Estimation and model selection . 31

2.4.1 Stage 1: Choosing the optimal neural network 32
2.4.2 Stage 2: Model selection . 36
2.4.3 Interpretable neural networks . 40

2.5 Oracle Property . 42
2.6 Simulation Study . 44

2.6.1 Simulation design . 45
2.6.2 Empirical type I and type II error probabilities 48
2.6.3 Model Selection Consistency . 59

2.7 Empirical Analysis . 61
2.7.1 Data . 62
2.7.2 Empirical Results . 63

2.8 Conclusions . 70

3 Optimal deep neural networks by maximization of the approximation power 73
3.1 Introduction . 74
3.2 Universal approximation theorem . 78

3.2.1 De�nitions and Notations . 79
3.2.2 Universal Approximation Theorem . 81
3.2.3 Linear Regions Approximation . 84
3.2.4 Number of Linear Regions . 86

3.3 Optimal Structure . 88
3.3.1 Maximization Problem . 88

I

3.3.2 Numerical Optimization . 92
3.4 Monte Carlo Simulation . 96

3.4.1 Data Generating Process . 97
3.4.2 Accuracy Test . 98
3.4.3 Simulation Results . 99

3.5 Empirical Application . 102
3.6 The CART procedure and future implementations 104
3.7 Conclusions . 105

4 Prediction intervals for deep neural networks 107
4.1 Introduction . 108
4.2 Dropout in DNN models . 111

4.2.1 Random weight initialization . 114
4.3 Prediction intervals for DNN models . 114

4.3.1 Asymptotic prediction intervals (Delta Method) 115
4.3.2 Bootstrap predictive distribution . 117
4.3.3 Monte Carlo Dropout (Stochastic Forward Passes) 118

4.4 Extra-neural networks (Fixed Bernoulli Mask) 121
4.5 Monte Carlo simulation . 127

4.5.1 Data Generating Processes . 128
4.5.2 Simulation Results . 131

4.6 Empirical Analysis . 132
4.7 Conclusions . 134

5 Machine Learning the Carbon Footprint of Bitcoin Mining 137
5.1 Introduction . 138
5.2 CO2 Emissions Bitcoin Mining . 141

5.2.1 Power Bounds in Bitcoin Production 142
5.2.2 The Carbon Footprint of Power Bounds in Bitcoin Production 148

5.3 Machine Learning the Carbon Footprint of Bitcoin Mining 153
5.3.1 Top-down Approach . 153
5.3.2 Bottom-up Approach . 155
5.3.3 Input Data . 157
5.3.4 ReLu DNN-CO2 Estimation . 160

5.4 Conclusions . 165

6 Environmental Engel Curves: A Deep Learning Approach 167
6.1 Introduction . 168
6.2 DNN basics . 170

6.2.1 De�nitions and Notations . 171
6.3 Prediction Intervals for DNN models . 173

6.3.1 Monte Carlo Dropout . 174
6.3.2 Extra-neural network . 175

6.4 Empirical Results . 176
6.5 Conclusions . 185

7 Conclusions 187

8 Bibliography 191

A Feedforward Neural Networks 211
A.1 Introduction to feedforward neural networks 212

II

A.2 Optimal portfolio allocation . 214

B Convolutional Neural Networks 219
B.1 Introduction to convolutional neural networks 220
B.2 Glaucoma detection via fundus images . 224

C Recurrent Neural Networks 229
C.1 Introduction to recurrent neural networks . 230
C.2 Text generation . 233

III

List of Equations

2.1 Neural network's weights . 27
2.2 First Hidden Layer . 28
2.3 N Hidden Layer . 28
2.6 Decomposed Neural Network . 28
2.7 Null hypothesis neural Granger causality . 29
2.15 First hidden layer with noise jittering . 33
2.16 First order Taylor expansion output network 33
2.16 Decomposed loss function . 33
2.19 Node's prestige (First hidden layer) . 35
2.20 Node's prestige (nth hidden layer) . 35
2.23 Group lasso penalty (Granger causality) . 37
2.24 Group lasso penalty (lag selection) . 37
2.25 Sparse double group lasso penalty . 37
2.26 Penalized objective function . 37
2.27 Scardapane et al. (2017) lasso penalty . 41
2.32 Tank et al. (2018) objective function . 42
2.33 First order conditions minimization objective function 43
2.36 Short-range persistence linear data generating process 45
2.37 Short-range persistence nonlinear data generating process 45
2.38 Long-range persistence linear data generating process 45
2.40 Diebold-Mariano (1995) null hypothesis . 68

3.2 Recti�ed linear unit (ReLu) activation function 79
3.3 Deep neural network - Function composition 79
3.5 Shallow ReLu neural network . 80
3.14 Linear regions shallow ReLu network . 86
3.15 Linear regions deep ReLu network . 86
3.18 Constrained maximization of approximation power 88
3.18 Lagrangian objective function . 89
3.19 First order conditions . 89
3.24 Linear data generating process . 97
3.25 Nonlinear data generating process (1) . 97
3.26 Nonlinear data generating process (2) . 97
3.27 Nonlinear data generating process (3) . 97
3.28 Nonlinear data generating process (4) . 97
3.30 Hypotheses accuracy test . 98
3.31 Test statistic accuracy test . 99
3.32 Variance test statistic . 99
3.33 Asymptotic variance test statistic . 99

4.4 Gradient descent weights update rule . 114
4.5 Gradient descent loss update rule . 114
4.7 Prediction error decomposition . 115

V

4.8 Linearized neural network output around true model parameters 116
4.9 Estimator of asymptotic variance of network predictions 116
4.11 Jacobian matrix . 116
4.12 Prediction interval - Delta method . 116
4.13 Prediction interval - Naive bootstrap . 117
4.16 Prediction interval - Naive bootstrap (bias corrected) 118
4.19 MC dropout - Model prediction . 119
4.20 MC dropout - Predictive variance . 120
4.22 Prediction interval - MC dropout . 120
4.23 Extra-neural network - Model prediction . 122
4.26 MSE ensemble method . 122
4.27 Prediction interval - Extra-neural network . 123
4.31 Nonlinear data generating process - Deep ReLu neural network 130
4.32 Linear data generating process . 130

5.1 Marginal cost Bitcoin mining . 143
5.3 Break-even daily energy e�ciency Bitcoin mining 144
5.4 Upper limit daily electricity consumption . 144
5.5 Lower limit daily electricity consumption . 146
5.7 Lower and upper limits daily CO2 emission 148
5.8 Daily CO2 emissions (top-down approach) . 154
5.9 Daily CO2 emissions (top-down approach) with clean energy 155
5.10 Daily CO2 emissions (bottom-up approach) 155

A.1 Feedforward neural network - 1 . 212
A.2 Euclidean Loss . 213
A.3 Cross-Entropy Loss . 213
A.4 Penalized loss function . 214

B.1 Convolutional Operation . 221

C.1 Recurrent neural network hidden layer . 230
C.2 Recurrent Neural Network . 230
C.3 Hidden Layer - Deep Recurrent Neural Network 231
C.4 Intermediate states LSTM . 232
C.5 Hidden layer with LSTM cell . 233

List of Theorems and Properties

1 Universal Approximation Theorem by Cybenko 82
1 Increase in Depth . 87
2 Shallow versus Deep ReLu network . 88

List of Algorithms

1 Optimal neural network - pruning method . 36
2 Algorithm for the Detection of Granger Causality 39
3 Extra-neural networks . 124

VII

List of Tables

2.1 Simulation Study . 48
2.2 Oracle Properties . 60
2.3 Companies Analyzed . 62
2.4 Exploratory Data Analysis . 63
2.5 Centrality Measures . 65
2.6 Optimal Structure and Hyper-parameter . 67
2.7 One-sided Diebold-Mariano Test . 68

3.1 Maximum and Minimum Number of linear regions for ReLu DNN 94
3.2 Simulation Results . 100
3.3 Neural Networks' Structures . 101

4.1 Simulation Results . 132
4.2 Empirical results . 134

6.1 Exploratory Data Analysis . 178

IX

List of Figures

1.1 Deep Feedforward Neural Network . 3

2.1 Neural Granger causality . 29
2.2 Sparse connected neural network . 31
2.3 Linear and saturated regions for a generic tanh activation function θ 34
2.4 Data generating processes . 46
2.5 Simulated proportions for linear VAR(1); T = 500 with persistent exogenous . 50
2.6 Simulated proportions linear VAR(1); T = 500 with white noise exogenous . . 52
2.7 Simulated proportions linear VAR(1); T = 1000 with persistent exogenous . . 53
2.8 Simulated proportions nonlinear VAR(1); T = 500 with white noise exogenous 54
2.9 Simulated proportions nonlinear VAR(1); T = 1000 with white noise exogenous 55
2.10 Simulated proportions nonlinear VAR(1); T = 500 with persistent exogenous 56
2.11 Simulated proportions nonlinear VAR(1); T = 1000 with persistent exogenous 57
2.12 Simulated proportions linear VAR(10); T = 500 with white noise exogenous . 58
2.13 Simulated proportions linear VAR(10); T = 1000 with white noise exogenous 59
2.14 Granger causal network . 64

3.1 Lower bound maximal number of linear regions 76
3.2 Shallow ReLu neural network . 80
3.3 ReLu Deep Neural Network . 84
3.4 Lower bound maximal number of linear regions 91
3.5 Optimization Problem . 92
3.6 Number of linear Regions and Depth of Network 95
3.7 Fitted Value . 103

4.1 ReLu Deep Neural Network . 112
4.2 Bernoulli Variance . 123
4.3 Data Generating Process - Deep ReLu neural network 129

5.1 Network statistics blockchain Bitcoin . 144
5.2 Upper and lower bounds energy consumption Bitcoin 145
5.3 Location Bitcoin miners 31/01/2020 . 147
5.4 Yearly energy price (USD/kWh) . 148
5.5 Distribution Bitcoin miners in China . 149
5.6 Distribution Bitcoin miners in the U.S. 151
5.7 Daily CO2 Estimates . 152
5.8 Market share ASIC mining producers. 154
5.9 Observed CO2 Emission . 156
5.10 Google search �Bitcoin� . 159
5.11 Neural networks' training and validation losses 162
5.12 Economic lower and upper CO2 estimates and 0.95 prediction intervals 164

6.1 Environmental Engel curve - PM10 . 180
6.2 Environmental Engel curve - NO . 181

XI

6.3 Environmental Engel curve - VOC . 182
6.4 Environmental Engel curve - SO2 . 183
6.5 Environmental Engel curve - CO . 184

A.1 Deep Feedforward Neural Network . 213
A.2 Decomposed Time Series . 215
A.3 Cumulative Returns . 218

B.1 Convolution Operation . 222
B.2 Max pooling Operation . 223
B.3 Deep Convolutional Neural Network . 224
B.4 Fundus Image . 225
B.5 CNN Fundus Image Processing . 227

C.1 Recurrent Neural Network . 231
C.2 Deep Recurrent Neural Network . 232

Declaration of Authorship

I, Tullio Mancini, declare that this thesis entitled Deep learning in econometrics: theory and
applications and the work presented in the thesis are both my own and have been generated
by me as the result of my own original research

I con�rm that:

1. This work was done wholly or mainly while in candidature for a research degree at this
University;

2. Where any part of this thesis has previously been submitted for a degree or any other
quali�cation at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

(a) Calvo-Pardo, H.F., Mancini, T. and Olmo, J. (2020) �Neural Network Models for
Empirical Finance� Journal of Risk and Financial Management ; 13(11), p. 265.

(b) Calvo-Pardo, H., Mancini, T. and Olmo, J. (2021) �Granger causality detection in
high-dimensional systems using feedforward neural networks� International Journal
of Forecasting ; 37(2), p. 920-940.

Signed: Date:

List of Abbreviations

DF Dickey-Fuller

DGP Data generating process

DNN Deep neural network

ECC Environmental Engel curve

FAVAR Factor-augmented vector autoregressive

FNN Feedforward neural network

KPSS Kwiatkowski-Phillips-Schmidt-Shin

IAM Integrated assessment models

Lasso Least absolute shrinkage and selection operator

MAE Mean Absolute Error

MCS Monte Carlo Simulation

MSE Mean Squared Error

MSFE Mean Square Forecast Error

NRMSE Normalized Root Mean Squared Error

OOB Out-of-Bag

OLS Ordinary Least Square

ReLu Recti�ed Linear Unit

RMSE Root Mean Squared Error

SCC Social Cost of Carbon

Tanh Hyperbolic tangent activation function

PCA Principal component analysis

PoW Proof-of-Work

PoA Proof-of-Authority

PWL Piecewise linear

SLSQP Sequential least square programming

VAR Vector autoregressive

XV

Glossary

Activation Function: De�nes the output of the hidden nodes. The post-activation value
introduces the nonlinearity in the system.

Adversarial Example: Small variations in the neural network inputs that result in the
wrong output from the network.

Bias: Term used for the intercept terms in the a�ne transformations identifying neural
networks.

Deep Network: Neural network with more than one hidden layer.

Epoch: Number of passes performed by the machine learning algorithm through the entire
training set.

Feedforward neural network: The information �ows from the input layer, thorough the
hidden layers, and �nally to the output layer. There are no feedback connections that feed
the output of the model back to the input layer (Goodfellow et al., 2016).

Fully connected neural network: When all the weights are di�erent from 0; that is, there
are no initial sparse connections.

Hidden layers: Intermediate layers of a neural network, through learning algorithm they
perform the neural computation.

Input layer: First layer of a neural network, de�ned by passive nodes that pass the observed
data into the model.

Neural Network: Composition of functions; de�ned by Goodfellow et al. (2016) as �Directed
acyclic graph describing how the functions are composed together. Given three functions we
de�ne a neural network as f(x) = f (3)(f (2)(f (1)(x)))�.

Out-of-Bag error: Allows out-of-sample model evaluation using the observations not sam-
pled during bootstrapping.

Output layer: Final layer of a neural network, the choice of the activation function depends
on the output to be returned.

Random Forest: Ensemble learner that �ts decision trees on the bootstrapped dataset.

ReLu Function: Piecewise linear function that returns 0 if the input is negative, otherwise
the input itself if positive.

Shallow Network: Neural network with only one hidden layer.

Sigmoidal function: De�ned as a squashing function, is a mathematical function having a
�S�-shaped curve.

XVII

�To understand its [cerebral cortex] proper function we
need to know what it computes. Its output is some
function of its input. As yet we do not know, even for
the simplest structure, what that function is�

W. S, McCulloch, 1950

CHAPTER 1

Introduction to the Thesis

Chapter Abstract

The present chapter discusses the importance of deep learning methods in both economics

and econometrics, and it summarizes the contributions that the present thesis provides to

the modern econometric literature focusing on feedforward neural network methods for re-

gression. It analyzes the literature on VAR estimation and Granger causality detection in

high-dimensional nonlinear systems; the importance of identifying the optimal neural net-

work structure not only in terms of out-of-sample accuracy but also in terms of causal anal-

ysis; and the estimation of the uncertainty around deep learning predictions. Following, the

contributions and the methodologies of each chapter are summarized.

1

1.1 Problem Statement

Due to recent developments in digitalization, the world is awash with big and complicated

data, and researchers are trying to make sense out of it. The computer scientists, statistics,

and economics (more recently) communities use sophisticated tools from supervised machine

learning (SML) to learn from the in�nitely versatile big data. Among the SML toolbox, deep

learning methods are the most notorious ones. Deep learning models allow learning complex

signals by composing simple nonlinear functions into multiple hierarchical levels of representa-

tions of the raw data. Depending on the type and structure of the data analyzed, practitioners

and scholars recognize and implement three distinct classes of deep neural networks1: 1) deep

feedforward neural networks that have been extensively used for signal processing in intricate

structures in large datasets (e.g., Chakraborty et al., 1992; and Kaastra and Boyd, 1996), 2)

deep convolutional neural networks that have brought breakthroughs in image and video pro-

cessing (e.g., Lawrence et al., 1997; and Krizhevsky et al., 2017), and 3) deep recurrent neural

networks that provide state-of-the-art tools for the analysis of sequential time series, text, and

speech data (e.g., Mikolov et al. (2011); Connor et al., 1994; and Che et al., 2018). An intu-

itive de�nition of deep learning �based on the aforementioned idea of function composition�

will now be provided. It is well known that, given a set of N input-output pairs {yi,Xi}Ni=1,

the nonlinear relation between X and y can be de�ned by the following linear basis function

model:

f(X) = b + WᵀθWn,bn
n (X) (1.1)

with θ(X) an element-wise nonlinear function (e.g., logistic sigomid) on the linear a�ne

transformation of the form WᵀX + b, W some Q × D matrix, and b a vector with D

elements. By de�ning a hierarchical composition of n nonlinear basis functions on the input X

as Ξ = θWn,bn
n ◦· · ·◦θW1,b1

1 (X), it is possible to represent a deep neural network (feedforward

neural network) as:

f(X) = b + WᵀθWn,bn
n (Ξ) (1.2)

As an illustrative example, Figure 1.1 reports a representation of a sequential two hid-

den layers feedforward neural network with �ve and three hidden nodes (layer-wise widths)

respectively, for xi ∈ Rd.

A de�ning characteristic of deep feedforward neural networks is their ability to accom-

modate a large set of potential predictor variables and to approximate complex unknown

functional forms of the data. In particular, the universal approximation theorem �initially

proposed by Cybenko in 1989� states that a su�ciently large neural network will approximate

any underlying function with an approximately small error, making no longer necessary to

construct an ad hoc model for the speci�c nonlinearity to be learned. Starting from these

1 See Schmidhuber, 2015; and LeCun, et al., 2015 for overviews of the topic.

2

premises, it is possible to understand why the methodological literature in economics and

econometrics has started focusing on the topic, resulting in a rapid adoption of the method-

ology also in empirical work (Athey and Imbens, 2019). Among many, noteworthy examples

are Kaji et al. (2018) that use Generative Adversarial Networks (Goodfellow et al., 2014)

for structural estimation where the likelihood function is often intractable or does not have a

closed form solution; Farrell et al. (2019) who, by de�ning new rates of convergence for deep

feedforward neural networks, establish valid two-step inference; Hruschka (1993) that uses

arti�cial neural networks to model market response functions as opposed to classical econo-

metric models; and Gu et al. (2020) that �by performing a comparative analysis of di�erent

machine learning methods� show the superior performance of portfolio strategies based on

the forecasted conditional means of the asset returns obtained from deep feedforward neural

networks2.

Input

layer

Hidden

layer1

Hidden

layer2

Output

layer

...

Bias Bias Bias

y

x1

x2

x3

xd

Figure 1.1: Deep Feedforward neural network for regression. It comprises two hidden layers with a
number of hidden nodes (layer wise widths) equal to �ve and three respectively.

Notwithstanding the advancements made by the current literature in accommodating SML

methods to the economics and econometrics literature, numerous facets have not been ad-

dressed yet. Thus, the present thesis, focusing on feedforward neural networks, contributes to

the deep learning literature by proposing suitable methods for Granger causality detection,

structure identi�cation, and uncertainty estimation in high-dimensional nonlinear systems.

One of the main impediments for neural networks to be considered a standard tool for time

series analysis is the lack of interpretation. In fact, due to the tangled web of interacting

nodes between and across layers, it is di�cult to quantify exactly the e�ects of the inputs.

The second chapter adds interpretability to neural network structures into time series settings

2 For a detailed review of SML methods for economists, the interested reader is referred to Athey and Imbens
(2019); and Mullainathan and Spiess (2017).

3

by imposing a mapping between the �original� variables and the nodes in the �rst hidden layer;

consequentially, the magnitude of the weights associated with the nodes in the �rst layer de-

termines the presence of Granger causality between input and output variables. The novel

methodology proposes a sparse double group lasso penalty function that allows for the esti-

mation of the weights characterizing the transfer of information through the neural network

and model selection �Granger causality and lag selection.

In their seminal paper, Farrell et al. (2019) establish rates of convergence for deep feedfor-

ward neural networks, which is of great importance when focusing on causal inference. The

authors highlight that �just as for classic nonparametric modeling� it is the choice of the

tuning parameters of the neural network that determines the rates of convergence. For this

reason, as the current literature in deep learning has not yet shown that a neural network

structure (in terms of width and depth) can return an optimal approximation, they are only

able to prove a bound with a slower than optimal rate. The third chapter �by building on

the literature focusing on the approximation power of deep neural networks� contributes to

the advancements made by Farrell et al. (2019) by proposing a novel methodology for the

identi�cation of a neural network structure (width and depth) that maximizes the approxi-

mation power of a neural network with a given size. The optimal architecture obtains from

maximizing the lower bound on the maximal number of linear regions approximated by a deep

neural network with ReLu activation function. In other words �similarly to the recursive bi-

nary splitting algorithm in regression/classi�cation trees� the proposed optimization ensures

an optimal allocation of hidden nodes across hidden layer that maximizes the e�ciency in

which a neural network architecture divides the feature space in sub-regions.

By quoting Athey and Imbens (2019) �We view econometrics, as in essence, decision mak-

ing under uncertainty�, one can understand the importance of proposing a suitable method

for constructing prediction intervals for the output of neural networks. The fourth chapter

adds to the literature on deep learning by proposing a novel methodology for the construc-

tion of a �nite-sample approximation of the prediction intervals by adapting the extremely

randomized trees method, originally developed for random forests, to construct an ensemble

of neural networks. The extra-randomness introduced in the ensemble reduces the variance

of the predictions and yields gains in out-of-sample accuracy.

Earth's climate has been changing throughout history. All the large-scale species extinc-

tions observed in the past 500 million years have been caused by either excessive global cooling

or warming. If most of these observed climate changes are attributed to the change in the

amount of solar energy received by the Earth due to changes in the Earth's orbit, the cur-

rent climate warming (starting from 1900) is characterized by an unprecedented increasing

trend. Being the anthropogenic increase in greenhouse emissions the most likely cause of this

concerning trend, the Paris Accord Agreement at COP21 imposes to limit the temperature

increase to less than 2◦C. As a result, it has become socially imperative for policymakers to

pursue zero-net carbon emissions policies (as an example, China's plan for zero-net carbon

emissions by 2060). Kleinberg et al. (2015) show how machine learning methods can be

4

used to address the often-neglected (as highlighted by the authors, empirical policy research

focuses on causal inference) prediction policy problems (e.g., predicting unemployment spell

length) producing not only policy impact but also economic insights. Similarly, the present

thesis �focusing on environmental economics� argues that deep learning methods can enable

timeless public decision-making regarding pressing complex social issues. In particular, the

�fth chapter adds to the literature by proposing a deep learning method for the estimation

of the carbon footprint of Bitcoin mining. Mora et al. (2018) forecast that Bitcoin's cu-

mulative emission alone �due to the energy-intensive validation protocol� could violate the

Paris agreement by 2040. If one considers the growing interest of national governments in

cryptocurrencies (e.g., China) and the possibility of issuing �nancial instruments solely on

blockchain (e.g., Bank of Australia and World Bank bond-i), the correct prediction of CO2

emission with relative uncertainty measures becomes pivotal for e�cient policymaking. Fi-

nally, chapter 6 replicates the study by Levinson and O'Brien (2019) on Environmental Engel

curves (ECC) using deep learning methods. The study of the EECs allows understanding why

�notwithstanding the increase in the real value of the U.S. production� the pollution emitted

by American households has declined signi�cantly.

1.2 Literature Review

The present section reviews the main body of the literature related to the present thesis. First,

the importance of analyzing the dynamic relation of time series is discussed and framed within

a high-dimensional nonlinear setting; the contributions proposed by the current literature �

with relative limitations� are also reported. Second, the importance of structure identi�cation

is also reviewed. Following, the importance of uncertainty estimation in econometrics and in

deep learning settings is examined.

1.2.1 Granger causality

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a basic

notion for analyzing dynamic relationships between time series. In particular, Granger (1969)

states that time series xtj does not strictly Granger cause time series xti if g(xti|It−1) =

g(xti|It−1 − xt−1,j), with It−1 being the lagged information set available at time t. In other

words, the study of Granger causality is based on detecting whether considering past realiza-

tions of xtj helps in forecasting xti. A natural parametric setting to assess for the presence

of Granger causality in a multivariate setting is the family of Vector Autoregressive (VAR)

models introduced by Sims (1980). However, the usage of this parametric model relies on the

important assumption that there is no omitted variable bias. The violation of this assumption

led to empirical problems not only in terms of policy evaluation (the well-known problem of

the �prize puzzle� discussed in Christiano et al., 1999) but also in terms of accurate forecast-

ing (and thus correct Granger causality detection3). As explained in Sims (1998), the key to

addressing these empirical problems is to increase the information set included in the VAR

3 Based on the above de�nition, one could notice how the correct detection of Granger causality depends on
the correct speci�cation of the information set It−1 considered.

5

systems; as a consequence, Sims and coauthors started considering larger VARs, moving from

the six-and eight-variables VARs usually adopted to the thirteen and eighteen-variables VARs

in Leeper et al. (1996).

However, increasing the number of variables in VARs can lead to over-parametrization

in large dimensions; in fact, the number of VAR coe�cients increases as the square of the

number of variables in the multivariate time series. If one considers that �in reality� Fed-

eral Reserve (FED) economists analyze thousands of variables when preparing for meetings

of the Open Market Committee (Stock and Watson, 2005), the �naive� inclusion of a higher

number of variables in the VAR system becomes a non-feasible solution. Thus, the litera-

ture has proposed di�erent procedures to overcome the �pro�igate parametrization� that can

a�ect high-dimensional VARs, and they can broadly be classi�ed into two main groups: i)

dimensionality reduction and ii) sparsity induction via convex regularizers.

In the �rst group, the literature tries to solve the over-parametrization that may a�ect

VARs in high-dimensional settings by limiting the number of variables considered in the multi-

variate time series without reducing the information set available. In his Ph.D. thesis, Geweke

(1977) introduces the concept of dynamic factor analysis. The underlying theory in dynamic

factor models (DFM) is that it is possible to summarize the information set describing a large

number of time series using a small number of indices or factors (see, for example, Stock and

Watson, 2002). It follows that, if a small number of factors can e�ectively summarize the in-

formation contained in a large number of time series, it is possible to increase the information

set of a standard VAR �without increasing the number of degrees-of-freedom� by augmenting

the model with a set of estimated factors. One of the most notorious approaches is imple-

mented by Bernanke et al. (2005) that propose a factor-augmented VAR model (FAVAR)

where the factors are estimated using principal component analysis (PCA)4. By including the

principal components (PC), the FAVAR model is then able to capture macroeconomic aggre-

gated information while remaining tractable in terms of the number of parameters included

(examples of empirical applications are Jurado et al., 2015; Boivin et al., 2010; Bianchi et

al., 2009; and Forni and Gambetti, 2010). One of the main limitations of the aforementioned

factor-augmented VAR models is the assumption that the true data generating process deter-

mining the interactions between the variables is linear, or more generally known. To overcome

this limitation, Babikir and Mwambi (2016) propose to augment the factors to multivariate

feedforward neural networks that, being universal approximators, can model both linear and

nonlinear data generating processes. If both parametric and non-parametric FAVAR models

provide a suitable solution to improve the forecasting performance of VAR models in high-

dimensional systems, it is also true that they do not allow for the correct detection of Granger

causality in high-dimensional VARs. In particular, the main limitations (for the parametric

and non-parametric FAVARs) lie in the loss of interpretability due to the transformations

4 Forni et al. (2000) prove that dynamic (the estimated factors are modeled as following a linear dynamic
process such as VAR or AR) PCA provides a consistent estimation of the common factors as both the
dimension p and the time T increase. Forni et al. (2004) further show that estimation consistency holds
also if both p and T →∞, and n/T → 0.

6

involved in the factor computation that make impossible to track the Granger causal interac-

tions between the �original� multivariate time series, and in the absence of a suitable method

for the estimation of Granger causal interactions when the multivariate time series is modeled

using feedforward neural networks.

Recently, the statistical and machine learning literature has focused on imposing sparsity

in the estimated model coe�cients via convex loss functions such as the least absolute shrink-

age and selector operator (Lasso; Tibshirani, 1996). Following, Yuan and Lin (2006) propose

a more sophisticated version called Group Lasso, which imposes sparsity in the model param-

eters by jointly deleting groups of coe�cients. However, none of these approaches takes into

consideration the structure of the time dependence in multivariate time series. To overcome

this limitation and to accommodate penalty functions that allow not only variable but also

lag selection, Nicholson et al. (2014) propose a Hierarchical Group Lasso for the estimation

of VARs in high-dimensional systems (see also Song and Bickel, 2011; Callot and Kock, 2014;

and Skripnikov and Michailidis, 2019). Most importantly, Hecq et al. (2019) propose a �rst

step towards correct inferential procedures by extending the post-double selection approach of

Belloni et al. (2014) to Granger causality detection in linear sparse high-dimensional VARs.

However, the sparse high-dimensional VARs proposed by the literature still rely on the as-

sumption that the underlying data generating process of the multivariate time series is linear

or known. A powerful methodology for forecasting nonlinear multivariate time series is neural

networks (see, for example, Chakraborty et al., 1992; and Kaastra and Boyd, 1996). As pre-

viously mentioned, the main impediment for neural networks to be considered as a standard

tool for time series analysis is the lack of interpretation. However, recent work by Scarda-

pane et al. (2017) adds interpretability to neural network structures by imposing a mapping

between the set of regressors and the hidden nodes in the �rst hidden layer. The authors

state that for sequential feedforward neural networks pruning nodes in the �rst hidden layer

is equivalent to deleting variables from a regression model. Tank et al. (2018) are the �rst

authors to apply Scardapane et al. (2017)'s strategy to Granger causality detection in high-

dimensional nonlinear time series. In particular, these authors extend the Hierarchical Group

Lasso proposed by Nicholson et al. (2014) to the weights of neural networks. However, their

work does not analyze the impact of the architecture of the neural network (in terms of both

depth and width) on the correct detection of Granger causality.

Chapter 2 contributes to the literature on VARs estimation and Granger causality detec-

tion in high-dimensional nonlinear systems by proposing to model the multivariate time series

using element-wise feedforward neural networks with the novel sparse double group lasso that

allows not only for variable but also for lag selection. The proposed methodology is com-

pared with sparsity induction methods for detection of Granger causality in high-dimensional

settings (linear VAR by Nicholson et al., 2014; and neural network approach by Tank et al.,

2018). Our methodology di�erentiates from Tank et al. (2018) in two main aspects. First,

we propose an algorithm for the identi�cation of the optimal neural network structure (opti-

mality for Granger causality detection equals maximization of information transfer through

the neural network), and second, we propose a di�erent lasso penalty function. One of the

7

main contribution of the chapter is to highlight the pivotal role that the identi�cation of the

correct (maximizes the forecasting accuracy) neural network's structure plays in detecting

Granger causality. Therefore, the following subsection will focus on the relevant literature

analyzing the role that the neural network structure (in terms of width and depth) plays in

the approximation power of deep learning models.

1.2.2 Optimal Structure Identi�cation

The success of deep learning methods in high-dimensional linear and nonlinear problems

such as pattern recognition, biomedical diagnosis, and text processing (see also Schmidhuber,

2015; and LeCun et al., 2015 for review on the topic) relies on their ability to approximate the

unknown functional form y = f(X). The universal approximation theorem by Cybenko (1989)

states that a su�ciently large shallow (only one hidden layer) feedforward neural network

with sigmoidal activation functions can approximate any Borel measurable function with

approximately small error. Leshno et al. (1993) extend the results of Cybenko (1989) to deep

(more than one hidden layer) feedforward neural networks as long as the activation functions

are bounded and not polynomial. Following, Hornik (1991), in his seminal paper, extends the

results of Cybenko (1989) by proving that a su�ciently large neural network with any bounded

and nonconstant activation function is a universal approximator. Thus, focusing on shallow

neural networks, one could notice how the universal approximation theorem implies �tting

a neural network with a number of hidden nodes (width) greater than the number of input

nodes (dimensions of the training set), leading to the possible problem of over�tting. However,

Mei et al. (2018) complete the results by Hornik (1991) by proving that a shallow network

with a width much greater than the number of input nodes, and trained using stochastic

gradient descent, will converge to a solution close to the optimum; implying that even if

the number of nodes grows to in�nity, a shallow neural network will never over�t. Finally,

Lu et al. (2017) extend the universal approximation theorem by Cybenko (1989) to width-

bounded feedforward neural networks with recti�ed linear unit (ReLu) activation function and

a minimum depth equal to d+ 4 with d the input dimension. Thus, one could infer how the

approximation power of both deep and shallow networks depends not only on the activation

function used but also on the correct speci�cation of the dimension (su�ciently large given

the particular underlying data generating process analyzed) of the neural network.

The results reported in the above paragraph imply that both shallow and deep neural

networks �for a given activation function used and with a su�ciently large number of hid-

den nodes� are universal approximators. The implications of these results are noteworthy:

notwithstanding the underlying data generating process, a shallow or deep feedforward neural

network with a su�ciently large number of hidden nodes will be able to approximate, accu-

rately, the underlying function. Thus, it is no longer necessary to construct an ad hoc model

for the speci�c functional form to be learned.

As explained in chapter 3, the output of a ReLu neural network (with identity output

function) can be regarded as a weighted sum of indicator functions that take as input hierar-

8

chical nonlinear representations of the input space. A similar formulation is obtained when

considering random forests where the recursive binary partition algorithm �used to train the

individual trees� is designed to identify the optimal number of non-overlapping regions that

ensures optimality in predicting the target variable. When �tting random forests, the depth

of the individual trees de�nes the bias-variance trade-o�: an increase in depth leads to an

increase in the number of non-overlapping regions being identi�ed, leading to a higher approx-

imation power that �depending on the complexity of the underlying data generating process�

can be translated to either lower bias or higher variance.

The depth and the width of ReLu neural networks play a similar role to the depth of the

regression trees comprising random forests: they de�ne the number of linear (sub-regions)

approximating the target function. Therefore, depending on the underlying data generating

process analyzed, an increase in the number of linear regions being approximated by shallow

or deep ReLu neural networks can lead to a decrease in bias or increase in variance. However,

when analyzing neural networks, the weighted sum does not consider non-overlapping regions

where the predicted output is the mean response value, but it applies to interacting hyper-

planes that take as input values folded representations of the input space. This �nal aspect

has an important impact on the bias-variance trade-o�: Pascanu et al. (2013) explain how

the interactions among the di�erent hyperplanes (or sub-regions) ensure a good generalization

performance. Consequently, the risk of over�tting (high variance) increases at a slower rate

when increasing the depth/width of neural networks as opposed to increasing the depth of

regression trees.

In other words, the correct speci�cation of the width and the depth of the neural network,

together with other factors, ensures an e�cient balance between variance and bias. This �nal

aspect is analyzed in the research conducted by Kraus et al. (2020) where the authors show

how out-of-box architectures (i.e., sub-optimal identi�cation of the number of sub-regions

approximating the target function) leads to under�tting (high bias). Similarly, empirical

research (see, for example, Mesnil et al., 2011; Kim and Gofman, 2018; and Pasupa and

Sunhem, 2016) show how in some instances, shallow structures outperform deeper structures

(deep structures lead to high variance due to a number of sub-regions being higher than

the optimal one) while in others deeper structures return the best out-of-sample accuracy

(shallow neural networks are not able to approximate the underlying data generating process

correctly). It is standard in the machine learning literature on feedforward neural networks

to use k-folds cross-validation methods to choose the width and the depth of the network.

However, the performance of cross-validation methods depends on (I) the dimensions of the

hyperspace (in this speci�c case, possible neural network architectures) �if too few are tuned,

we may miss the global optimum or if too many we may over�t (Rao et al., 2008); (II) the

observations must be i.i.d. and the distribution of the target variable must be similar across

di�erent folds; and (III) the number of observations available.

To not rely on heuristic approaches for the identi�cation of the optimal neural network

structure, recent literature on deep learning has been focusing on understanding the role

9

that depth and width of a given architecture play in the approximation power of ReLu neu-

ral networks. Eckle and Schmidt-Hieber (2019) show how ReLu neural networks �being a

composition of piecewise linear (PWL) functions� are also PWL functions. This �nal aspect

implies that ReLu neural networks can be described by the number of linear regions that they

can approximate. This concept is further clari�ed in Farrell et al. (2019) when comparing

neural networks to more classic nonparametric techniques. In particular, one could notice

that smoothing splines are usually de�ned by the spline basis (smoothing parameter) and by

the number of knots (tuning parameters). In kernel regression, the shape of the kernel con-

stitutes the smoothing parameter, while the bandwidth de�nes the tuning parameter. When

analyzing support vector machines (SVMs), the shape of the kernel constitutes the smoothing

parameter, while the C-parameter the tuning parameter. Lastly, a similar comparison could

be extended to random forests where the dimension of the random subset of features, used

in the greedy algorithm, constitutes the smoothing parameter, while the depth and the num-

ber of trees the tuning parameter. Similarly, when focusing on neural networks, the type of

connections (graph structure) and the activation function de�ne the smoothing parameters,

while the width and depth of the neural network are the tuning parameters. Finally, Arora

et al. (2018) show how the number of hidden nodes used to train the network de�nes the

number of linear regions approximated by a ReLu feedforward neural network

It is from this �nal aspect that Montufar et al. (2014), Pascanu et al. (2013), and

Raghu et al. (2017) state that the number of linear regions approximated by a ReLu neural

network de�nes the model �exibility and thus, the complexity of the unknown function that

can be approximated. These authors, starting from the results of Zaslavky (1975) on the

number of linear regions de�ning an arrangement of hyperplanes, de�ne the number of linear

regions approximated by a shallow ReLu neural network (Pascanu et al., 2013), and the lower

(Montufar et al., 2014) and upper (Raghu et al., 2017) bounds on the maximal number of

linear regions represented by a deep ReLu neural network. Based on their results, the authors

show how an increase in depth in a deep ReLu network leads to a gain in accuracy always

greater than the one obtained from an increase in width; or similarly, that for a given number

of hidden nodes, deeper structures will always outperform shallower ones.

Yet, in some empirical applications, shallow networks are shown to outperform deep net-

works (see, for example, Pasupa and Sunhem, 2016; and Kim and Gofman, 2018). Starting

from the results of Pascanu et al. (2013) and Montufar et al. (2014), chapter 3 shows that

under certain conditions, a shallow network could provide a better approximation of the un-

known function f(X), and that the arrangement of hidden nodes across the layers of a neural

network in�uences the approximation power of the model. Based on these results and on the

relevant literature on linear regions approximation, one could conclude that it exists an op-

timal neural network architecture (in terms of depth and width) that maximizes the number

of linear regions approximated and thus, the approximation power of the model. Chapter 3

builds on top of this intuition by proposing a constrained maximization for the identi�cation

of the optimal neural network architecture.

10

Based on the previous sections, one could see that proposing a methodology for structure

identi�cation (that ensures optimal approximation) allows not only correct Granger causality

detection (chapter 2) and correct causal inference, but also maximization of the out-of-sample

accuracy of a neural network. However, as explained by Hüllermeier and Waegeman (2020)

and Pearce et al. (2018), out-of-sample pointwise accuracy is not enough; the predictions and

forecasts of neural network models need to be supported by measures of uncertainty. Thus,

the following subsection will focus on uncertainty estimation in deep learning.

1.2.3 Uncertainty and Deep Learning

As previously mentioned, pointwise accuracy is not enough. A trustworthy representation of

the uncertainty in deep learning methods can be considered pivotal when the neural networks

are applied to medicine (Yang et al., 2009; Lambrou et al., 2011), or to anomaly detection,

optimal resource allocation, and budget planning (Zhu and Laptev, 2017), or surgical robots,

self-driving cars and smart grids (Varsheny and Alemzadeth, 2017). Similarly, starting from

Athey and Imbens (2019), uncertainty estimation can be considered crucial in economics

and decision making. However, the literature focusing on estimating the uncertainty of deep

learning models around their predictions is still in its infancy.

When focusing on uncertainty estimation for deep learning models, the literature (see,

for example, Pearce et al., 2018; and Heskes, 1997) distinguish between three main sources of

uncertainty: model misspeci�cation or bias which captures how closely f̂(X) can approximate

the true f(X), assuming in�nite training data; data uncertainty or aleatoric uncertainty which

is the irreducible noise due to an inherently stochastic process in the training sample; and

parameter uncertainty or epistemic uncertainty which captures the uncertainty around the

estimates of the model parameters. Based on the previous subsection, one could understand

why, when focusing on deep learning models, the model misspeci�cation is usually ignored

by the literature; in fact, if the training data are assumed in�nite, a su�ciently large neural

network is a universal approximator that represents exactly f(X). The distinction between

epistemic and aleatoric uncertainty is extremely relevant for deep learning models. As an

example, the well-known problem of adversarial examples by Papernot et al. (2017) �deep

learning models are usually characterized by drastic changes in their performance when small

perturbations are engineered to the input data� implies high variability in the parameter

estimates.

A �rst step towards estimating the uncertainty around the predictions of deep learning

models is proposed by Hwang and Ding (1997) in their seminal paper. In particular, these

authors and the literature focusing on the delta method (see, among the others, Ungar et

al., 1996; and De vieaux et al., 1998) �starting from the literature on prediction intervals

for nonlinear regression (see Seber and Wild (1989) for a complete argumentation)� propose

asymptotically valid prediction intervals when the feedforward neural network is trained to

convergence. However, due to the increasing complexity of the data to be analyzed, and the

associated increase in the complexity of the models proposed by the literature in deep learn-

11

ing5, the delta method �rstly introduced by Hwang and Ding (1997) is not widely adopted

by the empirical literature. The main limitation lies in the correct computation of the Jaco-

bian matrix required to estimate the prediction interval. Tibshirani (1996) explains how the

probability of computation error increases with the number of parameters estimated in the

model. Additionally, De vieaux et al. (1998) also explain how the near singularities in the

model parameters due to over�tting or due to a small sample size make the computation of

the Jacobian matrix unfeasible.

For these reasons, recent literature has been proposing �nite-sample approximations of

the prediction intervals of deep neural networks. Heskes (1997) proposes to estimate the

epistemic uncertainty using bootstrap methods. In particular, multiple feedforward neural

networks, with di�erent parameters initialization, are trained on di�erent resampled versions

of the training data6. The second moment of the approximate predictive distribution allows

the computation of parameter uncertainty. The aleatoric or data noise uncertainty is then

estimated as the variance of the residuals in a hold-out set (if it is assumed homoscedasticity)

or using the Mean-Variance Estimation (MVE)7 proposed by (Nix and Weigend, 1994), if it

is assumed heteroscedasticity. By assuming independence among the two di�erent sources of

uncertainty (Pearce et al., 2018), the total variance to be used for the construction of the

prediction interval is then obtained as the sum of the epistemic and aleatoric uncertainties.

However, the bootstrap method has some inherent limitations: (I) it requires the assumption

that the observations are independent and identically distributed; (II) each neural network is

trained only on 63% of the train data (see Lee et al., 2015); and (III) it is computationally

intensive. Additionally, empirical research by Lee et al. (2015) and Lakshminarayanan et al.

(2017) show how data resampling deteriorates the out-of-sample estimation accuracy and the

uncertainty estimation of bootstrap-based methods.

Based on the aforementioned limitations, the literature focusing on uncertainty estimation

for deep learning methods has been widely adopting the Monte Carlo (MC) dropout proposed

by Gal and Ghahramani (2016a). The methodology, originally proposed for the approximation

of the posterior distribution for Bayesian neural networks (Denker and LeCun, 1991), involves

�tting a neural network with dropout (Srivastava et al., 2014) not only at training but also

during test phase. As a result, the stochastic forward passes at test time allow approximating

the predictive distribution of a neural network without �tting a di�erent model for each

forward pass (reducing the computation requirements) and without resampling the original

dataset. The epistemic uncertainty will be then de�ned by the second moment of the obtained

approximate predictive distribution. As for the bootstrap method, the aleatoric uncertainty

is then estimated as the variance of the residuals in a hold-out sample (Zhu and Laptev,

2017) or via the MVE (Serpell et al., 2019). One of the main limitations of the MC dropout

is that the model parameters are �xed across the random samples implying that the cross-

5 One could think of the AlexNet (Krizhevsky et al., 2017) that is de�ned by 60 million parameters and
650, 000 hidden neurons.

6 See Tibshirani (1996) for the bootstrap pairs and bootstrap residuals algorithms.
7 It involves �tting a neural network with two output nodes: one for the means and the other for the variance

of a normal distribution.

12

correlation between predictions is perfect; as a result, the MC dropout will not bene�t (as

in the bootstrap-based approaches) from the reduction in the variance subsequent to model

averaging. Additionally, being the epistemic uncertainty determined solely by the chosen

Bernoulli distribution, the correct uncertainty estimation depends signi�cantly upon the right

choice of p (as opposed to both bootstrap and delta methods). Chapter 4 proposes a novel

methodology for uncertainty estimation for deep learning models that extends the extra-tree

algorithm of Geurts et al. (2006) to feedforward neural networks.

1.3 Thesis Structure

The following section outlines the contributions of each chapter to the current literature by

summarizing not only the novel methodologies developed but also the empirical �ndings.

1.3.1 Chapter 2

This chapter proposes a novel methodology for the detection of Granger causality in mean

for vector autoregressive models in which the dynamic dependence structure is unknown and

can take very general forms accommodating high-dimensional (in terms of both number of

variables and lags) linear and nonlinear functional forms. The chapter builds on the recent

work of Scardapane et al. (2017) that adds interpretability to neural network models by

imposing a mapping between the variables of a multivariate system and the nodes in the �rst

hidden layer of a neural network. In particular, a given variable is considered not signi�cant if

the weights connecting the relative input node to the hidden nodes in the �rst hidden layer are

jointly equal to zero (the output of the neural network is invariant to the analyzed variable).

This chapter applies Scardapane et al. (2017)'s strategy and extends it to a multivariate

time series setting. In particular, we construct a neural network with the input nodes de�ned

by the lagged values of all the variables in the multivariate time series, and the output node

by the vector of the dependent variable. The magnitude of the weights connecting the input

layer to the �rst hidden layer determines the presence of Granger causality between input and

output variables and lag selection. More formally, a particular input variable will be Granger

causing an output variable if all the weights connecting the input nodes corresponding to all

the considered lags of the given input node to the �rst hidden layer are jointly di�erent from

zero. Similarly, a given lag will be relevant if all the weights connecting the corresponding

input node to the �rst hidden layer are jointly di�erent from zero. Additionally, the chapter

also shows that the optimal choice of the number of nodes in the �rst hidden layer reduces

type I and type II errors when detecting Granger causality in neural networks.

Thus, the chapter proposes a two-stage procedure for the detection of Granger causality in

neural networks. The �rst stage extends Montgomery and Eledath (1995)'s algorithm to deep

neural networks and de�nes the optimal neural network architecture (number of nodes per

hidden layer) by maximizing the mutual information transfer/minimizing the information loss

through the network. Once the optimal number of nodes in the intermediate hidden layers is

13

obtained, a novel sparse double group lasso (proposed by Simon et al., 2013) penalty function

is applied to estimate the weights in the feedforward neural network. The �rst group of the

penalty function considers the weights associated with all possible lags of a given regressor

and allows Granger causality detection. The second group considers all the weights associated

with a given lag of a speci�c regressor and allows detecting the optimal number of lags of a

given input variable.

The chapter also discusses results on parameter identi�cation and model selection con-

sistency as the sample size increases. The derived conditions for model selection consistency

coincide with those found in the literature when the number of lags and variables is �xed

(Fan and Li, 2001), and extend the literature by proving model selection consistency when

the number of lags is allowed to increase with the sample size.

A comprehensive Monte Carlo simulation analyzes the impact that the correct structure

identi�cation plays in detecting Granger causality in terms of type I and type II errors. Ad-

ditionally, it compares the performance of the proposed sparse double group lasso against a

hierarchical group lasso (Nicholson et al., 2014) penalty function. Finally, it analyzes model

selection consistency for increasing sample sizes. The simulation results show the good per-

formance of the proposed methodology for the detection of Granger causality in terms of

probability of type I and type II errors for both short and long-range (10 lags) dependence

and for both linear and nonlinear data generating process.

Lastly, building on the recent literature on social and �nancial networks that identi�es

the presence of connections in a network via the presence of Granger causality (Billio et al.,

2012; and Hecq et al., 2019), the chapter applies the novel methodology for the detection of

Granger causal relationships between the �nancial returns of the energy companies trading

in the Tobalaba network. The Tobalaba network is a test-net provided by the Energy Web

Foundation (2018) that allows the stipulation of smart contracts between energy companies

via a blockchain platform. Starting from the research of the World Bank Group (2018),

according to which smart contracts increase the number of bilateral transactions and diversify

the market structure, the empirical application analyzes the impact that the Tobalaba network

had on the topology of the network comprised by the member of the blockchain platform.

To do so, two Granger causal networks (before and after the introduction of Tobalaba) are

constructed applying the novel two-stage algorithm. The empirical results, validated via

a Diebold-Mariano (1995) test, show an increase in the number of interactions among the

network members after the introduction of Tobalaba.

1.3.2 Chapter 3

The results from chapter 2 show the importance that structure identi�cation plays on the cor-

rect detection of Granger causality. To identify a neural network architecture that maximizes

the forecasting accuracy (and consequentially optimal for Granger causality detection), the

previous chapter extends the algorithm of Montgomery and Eledath (1995) to deep feedfor-

14

ward neural network structure. However, the algorithm presents some limitations: it does not

allow for depth selection, and it considers sigmoidal activation functions (which are shown to

underperform when applied to extremely deep neural network architectures). For this reason,

the present chapter focuses on proposing an alternative procedure for optimal architecture

identi�cation that allows not only width but also depth selection, and that applies to neural

networks �tted using ReLu activation functions (considered the standard in the literature on

deep learning, see Goodfellow et al., 2016).

In particular, this chapter proposes a constrained maximization for identifying a neural

network structure that maximizes the approximation accuracy of a given neural network for

a given number of nodes. The optimal neural network architecture obtains from maximizing

the minimum number of linear regions approximated by a ReLu neural network with ReLu

activation function, for a given number of nodes. Thus, based on recent work by Pascanu

et al. (2013) and Montufar et al. (2014), the obtained neural network architecture will

maximize �for a given number of nodes� the minimum expressive power of a deep neural

network. The proposed maximization optimally allocates the hidden nodes across hidden

layers (and thus, it selects the optimal width and depth of the network) to maximize the

�exibility of the neural network in approximating the unknown data generating process, and

thus the estimation accuracy. More speci�cally, the optimal neural network architecture is

obtained by maximizing the lower bound on the maximal number of linear regions (Montufar

et al., 2014) approximated by a ReLu DNN. The constraints applied to the maximization

ensure a layer-wise width greater than the input dimension (due to the binomial coe�cient

in the analyzed lower bound) and a maximum number of hidden nodes. The latter constraint

(maximum number of hidden nodes) directly depends on the data generating process analyzed:

more complicated functional forms will naturally summon bigger structures.

The proposed maximization is solved in two stages: a �rst step that, given a number

of hidden nodes and maximal depth (number of hidden layers), identi�es the optimal layer-

wise widths (number of hidden nodes per hidden layers); a second stage that, given the

optimal layer-wise widths for di�erent depths, identi�es the optimal depth of the network with

associated optimal widths. The optimal number of hidden nodes depends on the particular

data generating process considered; therefore, cross-validation methods should be adopted to

determine the optimal number of parameters to be adopted for given optimal architectures.

By optimizing the width and the depth prior to training architectures of a given size, the

proposed maximization substantially saves on computing time involved in the �ne-tuning the

optimal neural network, while ensuring an improvement in the predictive ability of the neural

network.

Based on the theoretical results of Montufar et al. (2014) and Pascanu et al. (2013), the

present chapter also proposes a set of properties that ensures the potential outperformance

of a shallow network over a deep neural network (with the same number of hidden nodes),

contributing on the literature focusing on the gains (in terms of out-of-sample estimation)

when the depth of a neural network is increased as opposed to its width.

15

The chapter also reports a Monte Carlo exercise to analyze the predictive ability of the

proposed methodology. In particular, by considering both linear and nonlinear data generating

processes, the out-of-sample performance of a neural network with an architecture de�ned via

the novel maximization is compared against an OLS estimator (which by de�nition is the best

benchmark when a linear data generating process is considered) and against a neural network

with the same depth, and the width of which is computed using k-folds cross-validation with

randomized grid-search. To ensure the robustness of the simulation exercise, the optimization

is conducted over di�erent maximum numbers of hidden nodes allowed in the ReLu DNN.

The chapter also proposes the derivation of a test statistic for the pair-wise comparison of

the di�erent approaches implemented. The simulation results show that a neural network

whose architecture is identi�ed with the proposed maximization (optimal neural network) is

comparable in terms of predictive accuracy to a BLUE estimator when the underline data

generating process is linear. Additionally, the optimal neural network is shown to outperform

a neural network with a structure obtained via 3-folds cross-validation with a randomized grid-

search. Additionally, by considering neural networks with di�erent sizes (di�erent numbers

of hidden nodes), the Monte Carlo simulation results also show the existence of an optimal

number of hidden nodes for a given data generating process.

Finally, the novel maximization is also evaluated empirically by focusing on the Boston

Housing dataset originally studied by Harrison and Rubinfeld (1978). Being this dataset

widely adopted by the literature focusing on deep learning methods, it allows comparing the

performance of the novel methodology with state-of-the-art machine learning methods (see

for example, Al Bataineh and Kaur, 2018; Papadopoulos and Haralambous, 2011; Granitto et

al., 2001; Nado et al., 2018; Bakker and Heskes, 2003; and Zhou et al., 2001). The empirical

results show that optimally selecting the neural network structure ensures an improvement in

prediction accuracy (MSE) in between 28.55% and 47.32%.

1.3.3 Chapter 4

Chapter 3 proposes a constrained maximization that provides not only an alternative to the

algorithm for architecture selection analyzed in chapter 2, but it also ensures maximization of

the estimation accuracy. However, as previously stated, estimation accuracy is not enough;

it is also necessary to provide suitable methods for the estimation of the uncertainty around

the predictions of deep neural networks. For this reason, the present chapter proposes a novel

algorithm for uncertainty estimation in a deep learning framework.

To provide a suitable method for the construction of prediction intervals for the output of

neural networks, the chapter extends the extremely randomized trees method (Geurts et al.,

2006) originally developed for random forests to construct ensembles of neural networks by

means of a �xed Bernoulli mask applied prior to training. More speci�cally, T di�erent sub-

networks with randomized architectures (each individual network will be characterized by the

same depth but di�erent layer-wise widths) are independently trained on the same dataset. In

doing so, the proposed algorithm �by introducing an additional randomization scheme to the

16

predictions obtained by the individual learners of the ensemble� ensures independence between

the members of the ensemble while reducing the variance associated with the predictions.

Following the empirical �ndings of Lee et al. (2015) and Lakshminarayanan et al. (2017), the

proposed algorithm is expected to outperform bootstrap-based approaches not only in terms

of out-of-sample accuracy but also of uncertainty estimation by ensuring independence in the

ensemble of neural networks without performing data resampling.

An extensive Monte Carlo exercise is carried out to evaluate the out-of-sample perfor-

mance and the empirical coverage rates of the proposed extra-neural network algorithm, of

the naive bootstrap approach, and of the MC dropout proposed by Gal and Ghahramani

(2016a). The di�erent methodologies are analyzed for both deep and shallow networks, for

both linear and nonlinear data generating processes, by assuming either known or unknown

true neural network structure, for di�erent dropout rates, and di�erent signi�cance levels.

The simulation results show that the three methodologies analyzed return empirical cover-

age rates approximately equal to the theoretical ones for nominal values equal to 0.01 and

0.05; for prediction intervals constructed at 0.10 signi�cance level, the extra-neural network

is shown to outperform both MC dropout and bootstrap. Additionally, the simulation results

show how the extra-neural network algorithm returns correct prediction intervals for di�erent

dropout rates, as opposed to the MC dropout that returns correct coverage rates only for the

dropout rate that maximizes the out-of-sample accuracy.

Finally, to allow for comparability with state-of-the-art algorithms, the proposed method-

ology is also evaluated empirically using the experimental settings of Hernández-Lobato and

Adams (2015). The empirical results show how the novel algorithm, when applied to large

dimensional datasets, outperforms state-of-the-art methods such as the variational inference

method of Graves (2011) and the probabilistic backpropagation of Hernández-Lobato and

Adams (2015) in terms of out-of-sample accuracy.

1.3.4 Chapter 5

Chapter 5 conducts an empirical investigation of the CO2 emissions associated with Bitcoin

mining using deep learning methods and adopting the theoretical results from chapter 3 for

optimal architecture identi�cation and from chapter 4 for uncertainty estimation. The cur-

rent literature focusing on the estimation of the Carbon footprint of Bitcoin mining, such as

the Cambridge Bitcoin Electricity Consumption Index (CBECI) and Stoll et al. (2019), esti-

mates the greenhouse emission starting from the seminal paper by Hayes (2017). In particular,

assuming that the Bitcoin production resembles a competitive market, where risk-neutral ra-

tional miners will produce until their marginal costs equal the value of their expected marginal

product, it is possible to derive the upper bound on the energy consumption associated with

Bitcoin mining. Similarly, by assuming that only the most e�cient miners (in terms of the

number of Bitcoins mined per electricity consumed) operate in the market, it is possible to

compute the lower bound on the energy consumption.

17

Following, the standard procedure in the literature consists of multiplicating the aggregate

level of energy consumption by the weighted average of CO2 emission factors of the countries

considered to obtain the upper and lower bounds on the overall carbon footprint of Bitcoin

mining (top-down approach). This approach has two inherently problems: (I) it does not

follow the 2006 IPCC Guidelines for National Green House Gas Inventories reported in the

second Volume, according to which the source of consumption must be multiplied by the

corresponding emission factor when computing the emission of greenhouse gas from stationary

sources. Since Bitcoin mining spans many di�erent countries, the contribution of the miners

located in each country to the overall network hashrate is needed to construct a country-

speci�c upper and lower limits of electricity consumption that can be aggregated to a world

total, (II) the uncertainty associated with the CO2 emission from Bitcoin mining captured by

the di�erence between Hayes (2017)'s lower and upper bound is extremely large.

The present chapter uses deep learning methods to address both problems. First, it

de�nes the target of the deep neural network by developing a new bottom-up approach that,

by exploiting the exact geographic location of Bitcoin miners and the relative market shares

of the ASIC miners producers, is able to construct an aggregate level of CO2 emission starting

from country-speci�c information (in doing so, it is also possible to determine the share of

clean energy �with an emission factor equal to zero� employed in Bitcoin mining). Second,

it measures the uncertainty around the point predictions of the neural networks using the

MC dropout proposed by Gal and Ghahramani (2016a), which ultimately narrows down the

di�erence between upper and lower bounds of the Bitcoin mining carbon footprint.

Starting from Hayes (2017)'s insights, it is believed that the mining of Bitcoins (and thus

associated electricity consumption and CO2 emissions) is mainly driven by the current market

price of the cryptocurrency. Therefore, starting from Kristoufek (2015), Liu and Tsivinsky

(2018), McNally et al. (2018) and Jang and Lee (2017), the factors considered as input

data range from (a) predictors of the Bitcoin price (with the exception of network-speci�c

information), (b) factors driving investors' attention to the cryptocurrency (e.g., Bitcoin as a

store of value as opposed to gold), (c) exchange rates with other currencies (is the increase in

Bitcoin price due to an increase in its intrinsic value or due to a devaluation of the dollar?), (d)

supply factors for the production of the ASIC mining chips, (d) macroeconomic indicators,

(e) and the market attention (number of Google searches for the word �Bitcoin�). Factors

associated with the blockchain network (network hashrate, and di�culty) are excluded for

two main reasons: (i) the network hashrate is used to compute the target variable and as such

cannot be used among the input variables (ii) the network di�culty is highly correlated with

the network hashrate and as such, its inclusion could lead to the same problem.

Based on the out-of-sample accuracy, the �tted neural network (with architecture selected

via the maximization proposed in chapter 3) is shown to outperform the two adopted bench-

marks: random forest (Breiman, 2001) and a deep neural network with the same depth but

cross-validated widths. When aggregating the daily predictions, the yearly CO2 estimates

[and associated 0.95 prediction intervals] are 2.77 [1.98, 3.56] MtCO2 for the year 2017, 16.08

18

[14.19, 17.97] MtCO2 for 2018, and 14.99 [13.25, 16.73] MtCO2 for 2019. To provide an order

of magnitude, the estimated levels of CO2 show how the Carbon footprint of Bitcoin mining

is higher than the annual level of fossil fuel emissions of some U.S. states such as Maine, New

Hampshire, Rhode Island, or South Dakota and of some smaller countries such as Bolivia,

Sudan, or Lebanon (Global Carbon Atlas).

1.3.5 Chapter 6

Chapter 6 conducts an empirical investigation focused on the functional form existing between

household speci�c information and pollution content of consumption in the U.S. for the year

1984 and 2012 �via the environmental Engel curves proposed by Levinson and O'Brien (2019)�

considering �ve major pollutants: carbon monoxide (CO), sulfur dioxide (SO2), volatile or-

ganic compounds (VOC), nitrogen oxides (NO), and particulates smaller than 10 microns

(PM10).

The environmental Engel curves (ECCs) were �rst proposed as a structural approach to

estimate the relationship between household income and pollution, holding price constant.

Levinson and O'Brien (2019) construct ECCs separately for the indirect emissions of U.S.

households �over the period 1984 and 2012� for the aforementioned pollutants. In particular,

the authors estimate two versions of the ECCs: one based solely on income information, and

another one that considers eighteen household-speci�c information. These authors �nd that

the ECCs shift down and become more concave over time, implying that the mix of goods

consumed by households is less polluting and that the pollution content of consumption

increases with income at a decreasing rate. Secondly, the ECCs are upward sloping, showing

that richer households pollute more. Lastly, the ECCs are characterized by income elasticities

smaller than one implying that richer households consume a mix of goods whose consumption

content is smaller for lower income households.

However, as mentioned in Levinson and O'Brien (2019), one of the main impediments

associated with the correct construction and the study of the ECCs is the absence of a

theoretical framework that identi�es the income-pollution relationship. To overcome this

limitation, the authors suggest that the ECCs should be estimated with as few restrictions as

possible. As a result, after estimating the ECCs using standard OLS regression, they propose

to model the income-pollution relationship using nonparametric Kernel regression models.

Yet, Kernel models constitute a valuable solution when the ECCs are constructed considering

only household income, due to their non-feasibility in higher dimensions (see also the curse of

dimensionality by Sims, 1980).

The aim of the present chapter is to study the robustness of the results of Levinson and

O'Brien (2019) to the choice of the functional form of the ECCs. Previously mentioned

advances in the machine learning literature have shown that both (su�ciently large) deep

and shallow neural networks �by being universal approximators� are able to accurately ap-

proximate the underlying function notwithstanding the type of nonlinearity to be learned.

19

Therefore, by being no longer necessary to construct an ad hoc model for the speci�c nonlin-

earity to be modeled, both shallow and deep neural networks can be considered as the least

restricted nonlinear functions to be implemented.

In addition to predict nonparametrically the pollution content of household consump-

tion, we apply the MC dropout of Gal and Ghahramani (2016a) and the extra-neural net-

work approach implemented in chapter 4 to construct intervals around the model predictions.

The �tted shallow and deep neural networks exhibit low mean square prediction errors, and

most importantly, the constructed prediction intervals are characterized by accurate coverage

probabilities. The estimated intervals show that the ECCs are upward sloping, have income

elasticities lower than one, and are concave for all the analyzed pollutants.

1.3.6 Appendix

As mentioned in subsection 1.1, practitioners and scholars �when focusing on deep learning

methods� distinguish between feedforward neural networks, convolutional neural networks,

and recurrent neural networks. Both recurrent and convolutional neural networks can be

considered special cases of the more general speci�cation of feedforward neural networks.

For completeness, and in order to allow the reader to understand the similarities and the

di�erences between the di�erent deep learning methods adopted by empirical researchers,

Appendix A, B, and C provide a brief theoretical introduction to feedforward, convolutional,

and recurrent neural networks focusing on their structure, characteristics, functions, advan-

tages, and disadvantages. Additionally, three distinct empirical applications �concentrated in

showing the strength, power, and versatility of each class of deep network� are also reported.

In Appendix A, a deep feedforward neural network is trained in order to construct investment

portfolios based on the forecasted conditional mean and volatility of the stock returns; in Ap-

pendix B, a deep convolutional neural network is implemented for glaucoma detection from

fundus images, and the learning process is evaluated with the support of an expert's opinion;

in Appendix C, a deep recurrent neural network is trained on �An inquiry into the Nature

and Causes of the Wealth of Nations� by Adam Smith (1776) and used for text generation.

20

CHAPTER 2

Granger causality detection in

high-dimensional systems using feedforward

neural networks

Chapter Abstract

This chapter proposes a novel methodology to detect Granger causality in mean in vector

autoregressive settings using feedforward neural networks. The approach accommodates un-

known dependence structures between the elements of high-dimensional multivariate time

series with weak and strong persistence. To do this, we propose a two-stage procedure. First,

we maximize the transfer of information between input and output variables in the network

to obtain an optimal number of nodes in the intermediate hidden layers. Second, we apply

a novel sparse double group lasso penalty function to identify the variables that have pre-

dictive ability and, hence, Granger cause the others. The penalty function inducing sparsity

is applied to the weights characterizing the nodes of the neural network. We show the cor-

rect identi�cation of these weights for increasing sample sizes. We apply this method to the

recently created Tobalaba network of renewable energy companies and show the increase in

connectivity between companies after the creation of the network using Granger causality

measures to map the connections.

21

2.1 Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a

basic notion for analyzing dynamic relationships between time series. In studying this type

of statistical causality, predictability is the central issue, which is of great importance to

economists, policymakers, and investors. A broad de�nition of Granger causality is based on

detecting whether a variable or group of variables helps to reduce the mean square forecast

error of a univariate or multivariate prediction, see Geweke (1982, 1984), Dufour and Taamouti

(2010), and more recently, Song and Taamouti (2018) in a high-dimensional setting.

A natural parametric setting to assess for the presence of predictive ability in a multivari-

ate setting is the family of Vector Autoregressive (VAR) models introduced by Sims (1980)

in a seminal paper. The choice of this parametric approach has two inherent problems. The

occurrence of overparametrization in large dimensions and the incorrect speci�cation of the

relationship between the variables in the linear VAR model if the true data generating process

determining the interactions between the variables is nonlinear or, more generally, unknown.

The di�erent procedures suggested by the literature to overcome the �pro�igate parametriza-

tion� that can a�ect high-dimensional VARs are classi�ed as dimensionality reduction and

sparsity induction via convex regularizers. In the �rst group the literature tries to solve the

overparametrization that may a�ect VARs by reducing the dimensionality of vector time series

models such as canonical correlation analysis (Box and Tiao, 1977), factor models (Peña and

Box, 1987), Bayesian models (e.g., Banbura et al., 2010; Koop, 2013), principal component

analysis (Stock and Watson, 2002), and generalized dynamic factor models (Forni et al., 2000),

among many other statistical techniques. The main limitation of these approaches lies on the

loss of interpretability due to the transformations involved under most of the methods that

make impossible to track the Granger causal interactions between the �original� multivariate

time series (Géron, 2017).

Recently, the statistical and machine learning literature have instead focused on imposing

sparsity in the estimated model coe�cients through the use of convex loss functions such as

the least absolute shrinkage and selector operator (or Lasso hereafter; Tibshirani, 1996). The

primitive version of this approach reduces the dimension of the problem by deleting individ-

ual regressors. More sophisticated versions such as the Group Lasso penalty (Yuan and Lin,

2006) reduce the dimension of the problem by jointly deleting groups of variables. None of

these approaches takes, however, explicit consideration of the structure of the dependence in

multivariate time series processes. In particular, these methods do not consider the pivotal

role that the correct speci�cation of the order of the VARs plays in detecting Granger causal

interactions. To overcome this limitation and accommodate penalty functions that explicitly

consider the appropriate number of lags in the system Nicholson et al. (2014) suggest a Hier-

archical Group Lasso approach that allows not only for automatic variable selection but also

for automatic lag selection. Another noteworthy example of Granger causality discovery in

high-dimensional linear VARs is the paper by Skripnikov and Michailidis (2019) where the

authors propose a generalized sparse fused lasso optimization criterion for jointly estimating

22

multivariate VARs. The novel lasso-based optimization procedure developed by these authors

allows not only to introduce sparsity but also to encourage similarities between transition

matrices - ultimately allowing for both joint estimation and Granger causality detection in

multiple VARs. The current literature has proposed robust procedures for the estimation of

Granger causality in high-dimensional linear VARs by sparsity induction via convex regular-

izers; however, the identi�cation of correct inferential procedures based on Granger causality

testing remains not fully untangled8. A �rst step towards correct inferential procedures is

proposed by Hecq et al. (2019) that extend the post-double selection approach of Belloni et

al. (2014) to Granger causality testing in linear sparse high-dimensional VARs9. This proce-

dure allows retaining the correct size after the variable selection of the lasso and is shown to

perform well for di�erent data generating processes.

The presence of nonlinearities in the dynamic relationship between the variables is an-

other problem not properly studied yet in the analysis of Granger causality. Taamouti et al.

(2014) propose nonparametric estimation and inference for conditional density based Granger

causality measures that quantify linear and nonlinear Granger causalities. These authors

transform the Granger causality measures in terms of copula densities. More recently, Song

and Taamouti (2018) propose model-free measures for Granger causality in mean between

random variables. Unlike the existing measures, these methods are able to detect and quan-

tify nonlinear causal e�ects. The new measures are based on nonparametric regressions and

are consistently estimated by replacing the unknown mean square forecast errors by their

nonparametric kernel estimates.

In his seminal paper, Granger (1969) states that if it exists lagged causality from time

series xjt to time series xit, including the lagged values of time series xjt will ensure a higher

accuracy when forecasting time series xit
10. A powerful methodology for prediction in re-

gression models and, more speci�cally, forecasting multivariate time series is neural networks.

Empirical researches show that Arti�cial Neural Networks are characterized by high accuracy

when used to forecast nonlinear multivariate time series (Chakraborty et al., 1992; Kaastra

and Boyd, 1996)11. More generally, deep learning methods based on training large neural net-

works have proved very successful in many high-dimensional problems such as pattern recog-

nition, biomedical diagnosis, and others, see Schmidhuber (2015) and LeCun et al. (2015)

for overviews of the topic. Athey and Imbens (2019) provide a recent literature review of

applications and contributions, to and from economics and econometrics.

The main impediment for neural network models to be considered as a standard tool for

8 Wilms et al. (2016) propose a bootstrap based Granger causality test which, however, ignores the uncer-
tainty regarding the selection step and thus, does not account for post-selection issues.

9 Another important example that can be found in the literature is the research conducted by Song and
Taamouti (2018). The authors propose correct inferential procedures for Granger causality testing in high
dimensional systems modeled by factor models as opposed to high dimensional VARs.

10 As speci�ed in Diebold (1997) Granger causality can be regarded as �predictive causality� which is an
abbreviation for �xjt contains useful information for predicting xit�; which is di�erent from the more known
form of causality.

11 Universal Approximation Theorem by Cybenko (1989) analyzed by Hornik (1991).

23

time series analysis is the lack of interpretation. This is due to the fact that the e�ects of inputs

are di�cult to quantify exactly due to the tangled web of interacting nodes between and across

hidden layers. There is, however, some recent progress in this area. In particular, Scardapane

et al. (2017) propose a methodology that adds interpretability to neural network structures

by imposing a mapping between the �original� variables and the nodes of the �rst hidden

layer of the neural network. An �original� variable in a model is considered as irrelevant if the

corresponding nodes carrying information from the variable to the neural network are pruned.

Pruning nodes in the �rst layer of the neural network is equivalent to deleting variables from

a regression model. Tank et al. (2018) are the �rst authors to apply this strategy to the

speci�c time series problem of detecting Granger causality. These authors use a hierarchical

group lasso penalty function (see Yuan and Lin, 2006) to the weights of the neural network;

but their work remains silent on the impact of the architecture of the network on Granger

causality discovery.

The aim of the current chapter is to propose a methodology based on neural networks to

detect Granger causality in mean for vectors of variables in which the dynamic dependence

structure is unknown and can take very general forms accommodating, in turn, linear and

nonlinear VAR models with a potentially high-dimensional number of variables and lags. In

contrast to most of the literature on neural networks, we add interpretability to the neural

network by applying Scardapane et al. (2017)'s strategy to a time series setting. More specif-

ically, we construct a neural network with input layer given by the vector of regressors and

output layer given by the vector of dependent variables. The magnitude of the weights asso-

ciated with the nodes in the �rst layer determines the presence of Granger causality between

input and output variables. More formally, the interpretability of the network is given by the

existence of a mapping between the regressors and the nodes in the �rst hidden layer. A par-

ticular input variable will be relevant for predicting an output variable if there are connections

from the corresponding input node to any node in the �rst hidden layer. Granger causality of

a variable involves checking the connections between all possible lags and all possible nodes

in the �rst hidden layer, such that a variable will not Granger cause another variable if there

are no connections leaving from any of the input variables to any of the nodes in the �rst hid-

den layer. In contrast, the number of nodes in the intermediate hidden layers is not directly

related to the de�nition and interpretation of Granger causality. The relevant intermediate

nodes are obtained from optimizing the �ow of information from the input variables to the

output variables in the neural network - maximizing the mutual information transfer/mini-

mizing the information loss. More formally, we show that the optimal choice of the number

of nodes in the intermediate hidden layers improves model selection - reduces type I and II

errors in the Granger causality detection methods.

Our method allows for a large number of variables and lags. In this setting, the number

of input nodes can be very large rendering standard estimation and model selection methods

unfeasible. We propose instead a novel sparse double group lasso penalty function that allows

for the estimation of the weights characterizing the transfer of information through the neural

network and model selection - Granger causality and lag selection. Our double group lasso

24

penalty function considers all possible lags of a speci�c regressor and all possible nodes of the

�rst hidden layer connecting to such regressor as a �rst group. The second group considers

separately all possible nodes of the �rst hidden layer connecting to a speci�c lag of a speci�c

regressor. This is the proposed approach to detect the optimal number of lags of a given input

variable in�uencing each output variable.

Our sparse double group lasso penalty function extends the penalty functions proposed in

Simon et al. (2013) for multivariate regression models and Scardapane et al. (2017) for neural

networks. Both hierarchical and sparse group lasso procedures for detecting Granger causality

allow specifying a di�erent number of lags across variables in the vector. However, in contrast

to the hierarchical group lasso, our novel objective function imposes a lower penalty function

on the parameters of the model at the same time as guaranteeing model selection consistency.

By doing so, we make sure we exclude those variables without the ability to predict the

response variables, without excluding important interactions between the variables once a

group is not deleted; that is, once a variable is shown to Granger cause another variable.

To the best of our knowledge, this - together with Tank et al. (2018) - is the �rst study that

considers Granger causality in a very general setting - unknown dependence structure between

the variables - using neural networks. Our method di�erentiates from Tank et al. (2018) study

in two main aspects. First, we propose an optimal network structure, obtained from applying

Montgomery and Eledath (1995)'s algorithm, and second, we consider a di�erent lasso penalty

function that operates di�erently from the hierarchical group lasso. That is, we only use in

each hidden layer those nodes that carry information from the input layer to the output layer

removing unnecessary nodes. The optimality of the neural network has a direct e�ect on

the properties of our Granger causality procedure. In particular, we reduce the type I error,

interpreted in this context as spurious Granger causality. An excessive number of nodes can

lead to lasso type penalty functions that identify spuriously non-existing interactions among

the input nodes.

The chapter also discusses results on parameter identi�cation and model selection consis-

tency as the sample size increases. We derive the conditions that determine the inclusion or

not of a parameter or group of parameters in the model. Our conditions for model selection

coincide with those found in the literature for model selection consistency when the number

of variables and the number of lags are �xed; in particular, we obtain λ = o(1/T) with T the

sample size, see Fan and Li (2001). Nevertheless, our procedure also achieves model selection

consistency when the number of lags k increases with the sample size. In order to guarantee

this, we impose λ = o
(

1√
kTT

)
, with kT the number of lags of the input variables.

A comprehensive Monte-Carlo simulation exercise �that shows the performance of our

methodology to detect Granger causality� is also conducted. First, we assess the type I

and type II errors of our detection procedure in �nite samples and compare it against a

method that does not optimize the structure of the neural network. Second, we compare the

performance of our proposed sparse double group lasso against the hierarchical group lasso.

25

Both sets of results provide clear evidence of the outstanding performance of our methodology

for detecting Granger causality in terms of probability of type I and type II errors. This result

holds for short and long range dependence and for linear and nonlinear VAR speci�cations.

We also show the consistency of our approach for model selection for increasing sample sizes.

The suggested methodology is then applied to detect the interconnections between energy

companies trading in the recently created Tobalaba network. The Tobalaba network is a test-

net provided by the energy Web foundation (2018) that connects renewable energy companies

via a blockchain platform. More speci�cally, we exploit recent work on social and �nancial

networks that identi�es the presence of connections in a network through the presence of

Granger causality between their nodes, see Billio et al (2012) and Hecq et al. (2019). In

our setting, we propose our two-stage neural network approach for detecting Granger causal

relationships between the �nancial returns of the energy companies trading in the Tobalaba

network.

The World Bank Group (2018) argues that the decentralization, disintermediation, in-

crease in information symmetry, and cost reduction via smart contracts will allow smaller

participants entering the market, increasing the number of bilateral transactions and ulti-

mately diversifying the market structure. The objective of our application is to corroborate

the World Bank Group's hypotheses by gauging the interconnectivity between energy �rms

before and after the introduction of Tobalaba. To do this, we construct two Granger causal

networks (before and after the introduction of Tobalaba) applying to each vertex the proposed

algorithm. The empirical study reveals an increase in the number of connections among the

members of the Tobalaba network after the introduction of the blockchain platform. We ex-

plore the implications of our methodology for forecasting purposes. To do this, we implement

Diebold-Mariano (1995) predictive ability test and �nd overwhelming empirical evidence sup-

porting the outperformance in predictive ability of our approach compared to VAR models of

di�erent dimensions.

The rest of the chapter is organized as follows: Section 2.2 presents the structure of the

neural network and formulates the Granger causality detection procedure in this setting. Sec-

tion 2.3 discusses estimation and model selection using a two-stage procedure, based on a

novel sparse double group lasso penalty function. Section 2.4 discusses parameter identi�-

cation and model selection consistency when the number of lags is �xed and also when it

increases with the sample size. Section 2.6 presents a Monte-Carlo simulation exercise that

provides empirical evidence in �nite samples of the performance of our method to detect

Granger causality and model selection consistency for increasing sample sizes. In Section 2.7,

we apply our novel procedure for detecting Granger causality to the �nancial returns of the

set of renewable energy �rms trading in the recently created Tobalaba network. Section 2.8

concludes.

26

2.2 Granger causality in neural networks

Let {xt ∈ Rp}Tt=1 denote a p-dimensional vector time series of length T , with p the number of

variables de�ning the multivariate time series. Our goal is to study Granger causality in mean.

For this, the relevant loss function is the mean square forecast error. The vector of random

variables xt evolves according to the following dynamics, that are de�ned componentwise.

Thus, for each xit:

xit = gi(xt−1, . . . ,xt−k) + εit, for i = 1, . . . , p, (2.1)

where gi(·) is a function that captures the dependence structure between the dependent vari-

able xit and the lags of the vector xt. The quantity εit is a martingale di�erence sequence

satisfying that E[εit | =t−1] = 0, with =t−1 denoting the sigma-algebra containing all the

information available to the individual at time t. We further assume that the sigma-algebra

=t−1 can be approximated by the �nite set Xt−1, with Xt−1 = [xt−1...xt−k] a matrix of

dimension (p × k) containing the relevant information set. Then, =t−1 ≡ Xt−1 such that

E[xit | =t−1] = gi(Xt−1). In addition, it is also implicit that k = ki as we investigate the

possibility to use di�erent lags for di�erent components.

There are di�erent approaches to model the function gi(Xt−1) for i = 1, . . . , p. This

chapter builds on the recent literature introducing techniques for adding interpretability to

neural networks and proposes a feedforward neural network to model each function gi(·)
separately. Each feedforward neural network has N hidden layers, and the vector hn denotes

the values of the hidden layers obtained from zn hidden nodes in the nth hidden layer. We use

gi(Xt−1;iW, z) to denote the function gi(Xt−1). By doing so, we incorporate as additional

arguments of the function the matrix iW = [iW1; . . . ;i WN] that contains all the weights

with the information carried through the nodes in the hidden layers for predicting the output

variable xit, and the vector z = (z1, . . . , zN)> that contains the number of nodes in each

hidden layer.

In this framework, we propose i = 1, . . . , p di�erent neural networks to measure the

relationship between each variable xit and the matrix of input variables Xt−1. Furthermore,

each submatrix iW1 contains the weights associated with the nodes in the �rst hidden layer.

These weights connect the vector of input variables to the �rst hidden layer with z1 nodes. To

�x ideas, let us focus on the output variable xit. In this case, the matrix of weights relevant

for gauging Granger causality and characterizing the �rst hidden layer is

iW1

(z1×kp)
=




iw
1(1)
11 ... iw

1(k)
11

iw
1(1)
1p ... iw

1(k)
1p

...
iw

1(1)
z11 ... iw

1(k)
z11

iw
1(1)
z1p ... iw

1(k)
z1p




For the intermediate hidden layers the matrices iWn, with n = 2, . . . , N , are constructed

similarly; however, in this case the connections are between a layer of zn−1 nodes and a layer

of zn nodes such that the dimensions of the matrix iWn need to be adapted. In what follows,

27

we drop the superscript i and denote the matrix with the weights of the neural network as

W = [W1; . . . ; WN].

The information in a neural network �ows across layers by means of activation functions

θ. Let x̃t−1 be a vector of dimension kp × 1 that stacks all the elements of the matrix Xt−1

from the input variables. For a given bias parameter b1 ∈ Rz1 and activation vector-valued

function θ(·) : Rz1 → Rz1 , the values at the �rst hidden layer h1 ∈ Rz1 are

h1 = θ
(
W1x̃t−1 + b1

)

= θ




...
∑p

j=1

∑k
l=1w

1(l)
zj xj,t−l + b1z

...


 (2.2)

The values of the activation functions at the intermediate hidden layers, hn ∈ Rzn , are given
by

hn = θ (Wnhn−1 + bn) , n = 2 . . . N, (2.3)

where bn ∈ Rzn ,hn−1 ∈ Rzn−1 and hence Wn ∈ Rzn × Rzn−1 is the matrix of weights in

hidden layer n with zn rows and zn−1 columns. Since the vector-valued activation function

θ(·) proceeds element-wise, we denote by θz(·) : R → R with z = 1, . . . , zn, each component

of it corresponding to each node in hidden layer n. Therefore, the one-period ahead forecast

of the time series xit is

gi(Xt−1; W, z) = ω>OhN + bO, (2.4)

where bO is a constant; ωO ∈ RzN is the vector of weights connecting the last hidden layer N

to the output node, and hN ∈ RzN is the vector of values at the last hidden layer, which can

be expressed in terms of the input data as

hN = θ
(
WN ...θ

(
W1x̃t−1 + b1

)
...+ bN

)
(2.5)

where WN ∈ RzN × RzN−1 and θ(·) : RzN → RzN . Hence,

gi(Xt−1; W, z) = ω>Oθ


WN ...θ




...
∑p

j=1

∑k
l=1w

1(l)
zj xj,t−l + b1z

...


 ...+ bN


+ bO. (2.6)

Equation (2.6) expresses the function gi(·) in terms of a vector-valued activation function

θ(·) applied to a linear combination of the input nodes. This equation adds interpretability

to the neural network through the connections between the input variables and the nodes in

the �rst hidden layer. A variable xjt does not Granger-cause the variable xit if all the weights

connecting all the lags of xjt in the model and all the nodes in the �rst hidden layer are zero.

28

Input
layer

Hidden
layer

Output
layer

...

Bias

Bias

x1,t−1

x1,t−2

x2,t−1

x2,t−2

xp,t−k

xit

Figure 2.1: Neural Granger causality

Section 2.3 provides a formal parametric de�nition of Granger causality in a fully connected

neural network framework. The null hypothesis of no Granger causality of xjt to xit is

H0 : w
1(1)
1j = . . . = w

1(k)
1j = . . . w

1(1)
z1j

= . . . = w
1(k)
z1j

= 0, (2.7)

and the alternative is

HA : some w
1(l)
nj 6= 0, for n = 1, . . . , z1 and l = 1, . . . , k. (2.8)

Figure 2.1 provides a visual representation of the intuition behind the test for Granger

causality based on feedforward neural networks for a multivariate time series with one hidden

layer. If the Group Lasso penalty penalizes to zero the weights highlighted in red, the variable

x1t does not Granger cause series xit. Thus, Granger causality is inferred from the sparsity

introduced in the �rst layer by the Group lasso penalty.

2.3 Fully Connected Neural Network

In extreme cases, it is possible that rejecting the null hypothesis (2.7) in a sparse connected

deep feedforward neural network does not imply causality in the sense of Granger. To rule

out this possibility, the null hypothesis (2.7) is assessed in fully connected neural networks.

The following extreme case is reported as an explanatory example of the failure of our null

hypothesis to capture Granger causal relationships between a set of variables. Given three

random variables de�ned as Yt ∈ R, Xt ∈ Rnx , and Zt ∈ Rnz , we de�ne St−1 as the informa-

29

tion set containing Yt−1, · · · ,Yt−k, Xt−1, · · · ,Xt−k, and Zt−1, · · · ,Zt−k, and the restricted

information set =−X,t−1 as the one consisting of Yt−1, · · · ,Yt−k, and Zt−1, · · · ,Zt−k. Xt

does not Granger cause Yt is and only if

E{[Yt − E(Yt|=t−1)]2} < E{[Yt − E(Yt|=−X,t−1)]2} (2.9)

For simplicity, we will consider a neural network with a single hidden layer de�ned as:

yt = ω>O
[
θ
(
W1

xx̃t−1 + W1
z z̃t−1 + b1

)]
+ bO (2.10)

where x̃t−1 is a vector of dimension knx × 1, z̃t−1 of dimension knz × 1, W1
x ∈ Rz1 × Rknx ,

W1
z ∈ Rz1 × Rknz , and ωO ∈ Rz1 .
Assuming that the network is modeled with the sparse representation (reported also in

Figure 2.2) where the input x̃t−1 is loaded only to h1, W1
x is imposed equal to zero for all the

hidden nodes hi for i = 2, · · · , z1. Based on Equation 2.10, it is possible to distinguish the

output of h1 to yt, from all the other hidden nodes in the �rst hidden layer as:

yt = ω>O,1
[
θ
(
W1

xx̃t−1 + W1
z z̃t−1 + b1

)]
+ω>O,2:z1

[
θ
(
W1

xx̃t−1 + W1
z z̃t−1 + b1

)]
+bO (2.11)

where ωO,1 ∈ R, and ωO,2:z1 ∈ R(z1−1). As the aforementioned sparse representation imposes

W1
x 6= 0 only for h1, it is possible to express Equation (2.11) as:

yt = ω>O,1
[
θ
(
W1

xx̃t−1 + W1
z z̃t−1 + b1

)]
+ ω>O,2:z1

[
θ
(
W1

z z̃t−1 + b1

)]
+ bO (2.12)

Being this the case, if ωO,1 = 0, Xt does not Granger cause Yt even if W1
x 6= 0. Therefore,

one may presume that rejecting the null hypothesis (2.7) does not imply causality.

However, it is important to specify that this extreme case scenario can occur only in the

case of sparse connected neural network, and that it is extremely unlikely that ωO,1 = 0

without imposing a lasso regularization on Wn for n > 1. This is still true even when

the vanishing gradient problem a�ecting deep learning is not properly accounted for, as the

weight initialization is di�erent from zero. To avoid this possibility, we embed our testing

methodology in fully connected feedforward neural networks.

30

Input

layer

Hidden

layer

Output

layer

...

Bias

Bias

x1,t−1

x1,t−2

z1,t−1

z1,t−2

yt−k

yt

Figure 2.2: Sparse connected neural network, in blue the missing connections are reported

As the depth of the network increases, the conditions that have to occur in a sparse

connected neural network, become even more unlikely. To conclude, even if in extreme and rare

conditions, the authors acknowledge this eventuality, and for this reason only fully connected

neural networks will be considered.

2.4 Estimation and model selection

We propose a methodology to detect Granger causality using a neural network for each element

of the vector xt. An important aspect �that is analyzed more in details in subsection 2.4.2�

is that the correct identi�cation of the neural network structure plays a crucial role in the

correct identi�cation of Granger causal interactions. Intuitively, when performing group lasso

in neural networks, the groups' dimensions are de�ned within the model by the analyst.

By increasing (or decreasing) the number of hidden nodes in the �rst hidden layer, it is

possible to increase (or decrease) the groups' dimension without changing the interpretation

assigned to a particular group. Specifying a sub-optimal neural network structure could lead

to either spurious Granger causality or missed Granger causality detection. For this reason,

our procedure is done in two stages. For a given sample, we obtain �rst the optimal number

of nodes in the feedforward neural network by minimizing the information loss across layers.

We focus on the �rst hidden layer z1 given that in the second stage, we plug-in the optimal

quantity z1 in a lasso type function penalizing the weights of the neural network. Minimization

of the corresponding regularization problem has two objectives. First, it uncovers the input

variables that are relevant for forecasting the output variables (Granger causality) and, second,

it allows us to establish the optimal number of lags a�ecting the mean square forecast error.

31

Our approach di�erentiates from the recent literature on interpretable neural networks, see

Hastie et al. (2005), Scardapane et al. (2017) or Tank et al. (2018), in two main aspects. First,

in our case, concretely, as per Algorithm 1, we choose the optimal number of nodes in all hidden

layers that minimize the information loss through the neural network deep architecture. This

has been done in the literature by maximizing the mutual information transfer between input

and output nodes, see (Schreiber, 2000) or, similarly, by minimizing the loss of information

through the neural network, see de Veciana and Zakhor (1992), Montgomery and Eledath

(1995), Reed et al. (1995), or more recently, Urban (2017). In order to fully exploit these

theories and construct an optimal architecture for the neural network that minimizes the

information loss we need to introduce uncertainty into the neural network. This is done by

injecting noise into the model. In this case, the optimal neural network is constructed through

noise jittering.

Second, we propose a regularization function that extends the mean square error loss

function for �tting a neural network by penalizing the weights associated with the nodes in the

�rst hidden layer. In contrast to the literature, we propose a double group lasso regularization

that penalizes Granger causal relations separately across groups and lag selection within

groups.

2.4.1 Stage 1: Choosing the optimal neural network

In the �rst stage, we optimize the neural network by choosing the number of nodes per hidden

layer that maximizes the transfer of information/minimize the information loss. To do this,

we follow the above literature and inject noise into the neural network. In what follows, we

adapt these methods to our setting. Our base loss function is the sample mean square error,

that is de�ned as
1

T
‖xit − gi(Xt−1; W, z)‖22 . (2.13)

In order to be able to apply the di�erent information criteria above, we introduce noise

into the system by constructing noisy replicas of our sample, as in de Veciana and Zakhor

(1992), Montgomery and Eledath (1995), Reed et al. (1995) or Urban (2017). This approach

can be interpreted as a procedure to regularize the neural network applied to a population

and not only to a given sample. Let x∗jt = xjt + vjt, with vjt an i.i.d. realization of a N(0, σ2
v)

random variable, and let X∗t−1 be the corresponding matrix. The objective function (2.13)

applied to these iid random copies of the original observations becomes

1

T

T∑

t=1

(
xit − gi(X∗t−1; W, z)

)2
. (2.14)

In what follows, we decompose the mean square error (2.14) into two components: a �rst

component given by the mean square error of the original data and a second component given

by introducing noise into the model. To do this, we consider �rst the case of a single hidden

32

layer W = W1. Let the objective function be gi
(
X∗t−1; W, z

)
= ω>Oh∗1 + bO with

h∗1 = θ




...
∑p

j=1

∑k
l=1w

1(l)
zj xj,t−l + b1z +

∑p
j=1

∑k
l=1w

1(l)
zj vj,t−l

...


 . (2.15)

For simplicity, we work with the activation function element-wise, such that

gi
(
X∗t−1; W, z

)
=

z1∑
z=1

ωOzθz

(∑p
j=1

∑k
l=1w

1(l)
zj xj,t−l + b1z +

∑p
j=1

∑k
l=1w

1(l)
zj vj,t−l

)
+ bO. Ap-

plying a Taylor expansion of �rst order to each activation function θz(·) around the determin-

istic component
∑p

j=1

∑k
l=1w

1(l)
zj xj,t−l + b1z, we obtain

θz




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z +

p∑

j=1

k∑

l=1

w
1(l)
zj vj,t−l


 ≈ θz




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z


 (2.16)

+θ̇z




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z




p∑

j=1

k∑

l=1

w
1(l)
zj vj,t−l,

with θ̇z(·) the �rst derivative of θz(·). Note that for standard activation functions proposed

in the related literature, the second derivative of θ(·) is close to zero along the support of the
function, therefore, a �rst order expansion is su�cient to approximate very accurately the

activation function. Then, the objective function becomes

gi
(
X∗t−1; W, z

)
≈ ω>Oh1 + bO +

Z1∑

z=1

ωOz θ̇z




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z




p∑

j=1

k∑

l=1

w
1(l)
zj vj,t−l,

and the loss function (2.14) can be decomposed as

1

T

T∑

t=1

(
xit − gi(X∗t−1; W, z)

)2

+
1

T

T∑

t=1




z1∑

z=1

ωOz θ̇z




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z




p∑

j=1

k∑

l=1

w
1(l)
zj vj,t−l




2

− 2

T

T∑

t=1

(xit − gi(Xt−1; W, z)

z1∑

z=1

ωOz θ̇z




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z




p∑

j=1

k∑

l=1

w
1(l)
zj vj,t−l.

Note that the elements inside the outer sum over t are independent but not identically

distributed. The randomness is introduced through vt in all cases so the mean is zero but the

variance varies for each observation depending on the value of θ̇(·) and the weights ωO. In this
case, we can apply the law of large numbers for independent but not identically distributed

33

random variables, and write the preceding function as the sum of the population mean square

error and an additional regularization component. More speci�cally, as T →∞, the previous

expression converges in probability to the following population quantity:

E
[
(xit − gi(Xt−1; W, z))2

]
+σ2

v

z1∑

z=1

ωOz θ̇
2
z




p∑

j=1

k∑

l=1

w
1(l)
zj xj,t−l + b1z




p∑

j=1

k∑

l=1

(
w

1(l)
zj

)2
(2.17)

The variance of the innovation term, σ2
v , can be interpreted as the tuning parameter of a

regularization component given by the �rst derivative of the activation function and the

magnitude of the weights.

The objective of this procedure is to minimize the noise transmitted through the neural

network. This can be done in two ways: (i) minimizing the nodes operating in the linear

region of the activation function and (ii) minimizing the weight values in the network. If a

node is operating in the saturation region then its output will not be a�ected as much by

the noise. Figure 2.3 illustrates the di�erent regions. It is also clear that large weights, W,

will also amplify the noise of the output. Also, as noted by Montgomery and Eledath (1995),

small weight values in the �rst hidden layer tend to keep nodes in the linear region so we may

only want to minimize the outgoing weights from each node. Furthermore, the choice of the

activation function is another factor to consider. The choice of the tanh function, de�ned as:

θ(x) =
e2x − 1

e2x + 1
(2.18)

guarantees that a node operating in the middle of the linear region has an average activation

close to zero. In this case, removing a hidden node does not a�ect the training as much as

under other activation functions.

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.5

1.0

Linear Region
Saturated Region

Saturated Region

x

y

Generic tanh Activation Function (θ)

Figure 2.3: Linear and saturated regions for a generic tanh activation function θ

We use these arguments and focus on the signi�cance of each node in each hidden layer

rather than on minimizing formally expression (2.17). In the second stage of our procedure,

34

we will formally minimize the mean square error under Lasso regularization when a VAR

structure is considered. In this stage, we assess, indirectly, the contribution of each node to

the noise in the neural network by applying a version of the pruning algorithm called Dynamic

Node Removal developed in Montgomery and Eledah (1995). This method removes hidden

units as training progresses. The idea is to keep those nodes that contribute to transmitting

information and delete those that transmit noise. The algorithm penalizes the nodes operating

in the linear region (low con�dence) of θz(·), while accounting for the magnitude of the

outgoing weights of the hidden nodes. In our setting, at each Epoch (de�ned as the pass that

the machine learning algorithm has completed), the objective function is

S1z =
σ2
v

pkT

T∑

t=1


κtanh2


b1z +

p∑

j=1

k∑

l=1

w
1(l)
zj xjt−l


+ µ

z2∑

z̃=1

(
w2
z,z̃

)2


 , (2.19)

with w2
z,z̃ denoting a vector of weights of dimension (1×z2) connecting nodes z = 1, . . . , z1 in

hidden layer 1 to nodes z̃ = 1, . . . , z2 in hidden layer 2; κ and µ are tuning parameters. The

objective function is standardized by dividing by the number of observations and the number

of nodes in the input layer.

This function measures the quality of the nodes in the neural network with regards to

information transfer. Thus, if the magnitude of this function is lower than a given threshold

χ, then the hidden node is pruned. The choice of the tanh activation function over other

activation functions such as the ReLu, Exponential ReLu, or sigmoidal ensures satisfying the

principle of minimum information loss. As we are considering a supervised neural network,

the minimization of the entropy must ensure the minimization of the output error. Penalizing

nodes that operate in the linear region of θ(·) (element-wise) is equivalent to penalizing nodes

the output of which is approximately zero and, thus, nodes that have little impact on the

�nal output of the feedforward neural network. However, as highlighted by Goodfellow et al.

(2016) and by Géron (2017), sigmoidal activation functions saturate for high or low values of

hn, incurring in the possible problem of exploding gradient and limiting the training of the

neural network (Glorot and Bengio, 2010)12.

Unfortunately, for neural networks comprised of more than one hidden layer, minimizing

the mutual information transfer by minimizing the mean square error of the noisy version of

the data is even more challenging. In this case, we extend the Dynamic Node Removal of

Montgomery and Eledah (1995) to higher layers:

Snz =
σ2
v

zn−1

(
κtanh2 (bnz + Wn

zhn−1) + µ

zn+1∑

z̃=1

(wn+1
z,z̃)2

)
(2.20)

with wn+1
z,z̃ a row vector of dimension (1 × zn+1) of matrix Wn+1 connecting the node

12 For saturated values of θ at 0 or 1 the derivative is extremely close to 0, leaving no gradient to propagate
through the neural network (Géron, 2017).

35

z = 1, . . . , zn in hidden layer n to node z̃ = 1...zn+1 in hidden layer n + 1.13 The algorithm

that we propose for pruning the neural network is detailed in Algorithm 1.

Having de�ned the �rst step, it is now possible to discuss how the variance-bias trade-

o� is taken into consideration. In particular, one must consider that the objective function

being minimized in the �rst step is the mean squared error (the nodes' quality is measured

at each epoch while training the neural network), ensuring an increase in the goodness of

�t (decreasing the bias), and that the regularization imposed by noise jittering ensures good

generalization performance by controlling the variance (avoids over�tting by training the

network on a population rather than on a speci�c sample).

2.4.2 Stage 2: Model selection

In this section, we adapt the sparse group lasso proposed by Simon et al. (2013) to neural

networks. Our penalty function extends Simon et al. (2013) by considering a double group

lasso penalty function. In our case the groups are de�ned not only by the nodes in the �rst

hidden layer but also by the number of lags of each input variable.

Algorithm 1 Optimal neural network - pruning method

INPUT: Vector of all input variables, Gaussian noise v ∼ N(0, σ2
v)

OUTPUT: Pruned Feed Forward Neural Network that maximizes the mutual information

transfer.

1: procedure N hidden layer exercise

2:

3: Set χ = 0.001 (see Montgomery and Eledath, 1995)

4: For each epoch E, calculate the signi�cance of the function hn,z as:

S1z =
σ2
v

pT

T∑

t=1


κtanh2


b1z +

p∑

j=1

k∑

l=1

w
1(l)
zj xjt−l


+ µ

z2∑

z̃=1

(
w2
z,z̃

)2


 , (2.21)

if the feedforward neural network contains one hidden layer, and

Snz =
σ2
v

zn−1

(
κtanh2 (bnz + Wn

zhn−1) + µ

zn+1∑

z̃=1

(wn+1
z,z̃)2

)
, (2.22)

for multilayer neural networks.

5: If Snz ≤ χ for n = 1, . . . , N , remove hnz

6: χ = χ ∗ 0.0001

7: Repeat 4− 6 until E = Maximum Epochs

13 We should note that the time index is implicit in the objective function Snz. All observations {xt}Tt=1 are
used to compute the objective function.

36

Sparse double group lasso penalty

The regularization component of our objective function is divided into two components. The

�rst component is comprised by groups of size kz1, with k the number of lags14 and z1 the

number of nodes in the �rst hidden layer. This component is speci�c to the Granger causality

detection problem. This function penalizes as a group those weights that are associated with

a speci�c input variable and all its lags. To do this, we use the Frobenius norm that extends

the L2 norm to matrices. The penalty function for a speci�c input variable takes a value of

zero if the Frobenius norm is zero:

p∑

j=1

∥∥W1
j

∥∥
F

=

p∑

j=1

[
z1∑

z=1

k∑

l=1

(
w

1(l)
zj

)2
]1/2

. (2.23)

The second component is comprised by groups of size z1. This component is used for detect-

ing the optimal number of lags. This function penalizes as a group those weights that are

associated with a speci�c lag l of a given input variable. To do this, we use the L2 norm

penalizing jointly all the nodes in the �rst hidden layer corresponding to that lag:

p∑

j=1

k∑

l=1

∥∥∥W1(l)
j

∥∥∥
2

=

p∑

j=1

k∑

l=1

[
z1∑

z=1

(
w

1(l)
zj

)2
]1/2

(2.24)

It is possible to illustrate the groupings determined by the �rst (in blue) and second component

(in black) :

iw
1(1)
11 ... iw

1(k)
11

iw
1(1)
12 ... iw

1(k)
12

iw
1(1)
1p ... iw

1(k)
1p

...

iw
1(1)
z11 ... iw

1(k)
z11

iw
1(1)
z12 ... iw

1(k)
z12

iw
1(1)
z1p ... iw

1(k)
z1p







In this setting, for a given output variable xit, we propose the following regularization

function:

P (W1, z1;λ, α) = λ(1− α)
√
kz1

p∑

j=1

∥∥W1
j

∥∥
F

+ λα
√
z1

p∑

j=1

k∑

l=1

∥∥∥w1(l)
j

∥∥∥
2

(2.25)

with z1 being the optimal number of nodes,
√
kz1 and

√
z1 being the square of the group

dimensions of the matrix used for the detection of Granger causality, and the vector used

for lag detection. Based on the above penalty function, we propose the following objective

function:

min
W

{
1

2T
‖Yi − gi(Xt−1; W, z)‖22 + P (W1, z1;λ, α)

}
(2.26)

14 We allow for di�erent number of lags across input variables xjt.

37

where Yi ≡ [xi,1...xi,T]. Expression (2.26) has a 'sparse double group lasso' penalty because it

contains features of both sparse lasso and group lasso penalty functions. The above discussion

clearly shows that both penalty terms di�erently penalize di�erent groups of variables. The

second component introduces sparsity in the �rst component by adding shrinkage in each

of the vectors comprising the matrices
∥∥∥W1

j

∥∥∥
F
before checking if all the parameters in the

matrices are zero.

The level of sparsity induced by the group lasso depends on the level of λ; the higher the

λ, the lower the number of groups selected. The parameter α ∈ [0, 1] is a tuning parameter

that, similarly to λ, de�nes the level of sparsity induced into the system. When α = 0, the

sparse double group lasso reduces to the group lasso. It is also possible to notice the relation

that subsists between the adapted sparse group lasso and the hierarchical group lasso when

the number of lags is one and there is no lag selection. In particular, imposing α = 0 suggests

that no lag selection should be performed and thus that k = 1, implying equivalence between

the objective function (2.26) and the hierarchical group lasso proposed by Nicholson et al.

(2014) and Tank et al. (2018), as conveyed by the function (2.32) below.

In our context, it is important to note that the dimension of the groups, when the group

lasso is applied in a feedforward neural network, is a quantity that is determined within the

model. More speci�cally, the number of groups in the �rst hidden layer is established in

stage 1 through the mutual information optimization procedure. The quantity z1 is obtained

from this stage. Given the soft thresholding of the group lasso, a higher number of nodes

will lead to a lower level of sparsity for a �xed level of λ. In this setting it is important

to choose a suitable number of groups in the �rst hidden layer. Otherwise, a suboptimal

choice z1 di�erent from z1 introduces two e�ects. First, if z1 > z1, there are more nodes

than needed and some of them do not carry information between the input variables and the

output variables. In this case, the Granger causality procedures based on neural networks,

see Tank et al. (2018), will lead to spurious Granger causality as a result of the activation of

more nodes than necessary, increasing the type I error. A second e�ect is due to introducing

additional terms in the regularization component of the objective function P (W1, z1;λ, α)

given by the di�erence between z1 and z1. This e�ect can increase the severity of the penalty

and lead to delete weights that are indeed relevant in forecasting the output variable xi,t. In

this case, the suboptimal choice of the number of nodes in the �rst hidden layer can lead to

an increase in type II error; spuriously rejecting that a given variable Granger-cause another

one, when in fact it does. These e�ects will be analyzed in a simulation study.

Before introducing the algorithm for the detection of Granger causality we discuss the role

of deeper layers on the correct detection of Granger causality. As the group lasso depends

on the size of z1 and not on the width of deeper architectures, it is expected that the layer

wise widths of zN - for N > 1 - will not impact on the correct detection of Granger causality.

Intuitively, when �tting a deep neural network, an increase in the number of hidden nodes in

the �rst hidden layer leads to an increase in the assumed interactions among the di�erent input

nodes (and thus in the group sizes); conversely, an increase in depth leads to an improvement

38

in the �t of the network by increasing the number of nonlinearities captured by the network,

without a�ecting the assumed interactions among input nodes. Therefore, the weights in the

�rst layer take care of the potential relationships (Granger Causal interactions) between the

variables in the system and the weights in higher layers introduce further �exibility into the

model and improve the goodness of �t.

Algorithm 2 Algorithm for the Detection of Granger Causality

INPUT: Dependent and Independent variables.

OUTPUT: Predicted dependent variable, and Granger causal relations.

1: procedure Based on Algorithm 1

2:

3: Initialize an over-speci�ed Deep Neural Network.

4: De�nition of the Optimal ν2.

5: Divide the dataset in training and test set.

6: Given the structure of the network, cross-validate the optimal ν2.

7: De�nition Optimal Structure of the Network

8: χ = 0.001.

9: Set E = Maximum Epochs.

10: while (Epoch < E) do

11: Generate v ∼ N(0, σ2
v)

12: Calculate node signi�cance applying Equation 2.22.

13: Remove insigni�cant nodes.

14: Update χ.

15: Algorithm 1 will return the pruned Neural Network

16: Granger Causality x

17: De�ne the number of hidden nodes and layers from previous steps.

18: Fit the feedforward neural network with objective function 2.26.

Another approach to understanding the impact that deeper hidden layers have on the es-

timation of Granger causality starts from the research of Lee et al. (2015). In their work, the

authors propose to model multivariate or univariate time series by estimating a linear speci-

�cation which is then augmented by a neural network to capture any remaining nonlinearity.

Therefore, the novel methodology starts by modeling the time series with a linear model to

which �depending on the data� nonlinear elements are incrementally added. Similarly, when

analyzing the methodology proposed in the present chapter, the relevant layer for the de-

tection of Granger causality is the �rst hidden layer to which it is possible to incrementally

add hidden layers that �depending on the underlying data generating process� increase the

out-of-sample estimation accuracy of the neural network.

39

Algorithm for the Detection of Granger Causality

In what follows, we present the algorithm that implements the methodology above for the

detection of Granger causality when a feedforward neural network is �tted.

By applying Algorithm 2, this chapter extends the current literature about Granger causal-

ity discovery via neural networks by de�ning a new objective function that allows not only

the discovery of the Granger causal interactions but also of the optimal lag length. The com-

bination of these two aspects should ensure low type I and type II errors when testing for

Granger causality15.

The following subsection reviews two alternative penalty functions recently proposed in

the neural network literature introducing lasso penalty functions for model selection.

2.4.3 Interpretable neural networks

Advances in neural networks allow us to propose a feedforward neural network for the detection

of Granger causality in large systems. The main di�erence with previous models based on

neural networks is the possibility of interpreting the intermediate steps in the making of the

model predictions. To do this in a Granger causality setting, we interpret the connections

between the nodes in the �rst hidden layer and the input variables. The interpretability of

the neural network is made formal by adapting lasso type regularization functions to a neural

network setting. Rather than penalizing the parameters of standard regression models, we

propose a model that penalizes the weights in the nodes of the �rst hidden layer of the neural

network. The absence of Granger causality is interpreted as a lack of connections between a

given input variable and the set of nodes in the �rst hidden layer.

Interpretable neural networks are brie�y discussed in Hastie et al. (2005), in more detail in

Scardapane et al. (2017) and adapted to the detection of Granger causality using a hierarchical

lasso penalty function in Tank et al. (2018). To provide a suitable background to our proposed

regularization function above, we discuss in this section the regulation functions proposed in

these pioneering studies adapted to our VAR setting. In this way, we can compare our novel

objective function to the related literature.

15 Another important factor that could impact on the interpretation of Granger causality from a neural network
relies on the correct combination of activation function and weight initialization. The exploding gradient
problem can reduce the e�cacy of the group lasso detection of Granger causality by limiting the training
of W1. Similarly, if the recti�ed linear unit activation function is used, the �dying ReLu� problem could
lead to spurious node selection. The impact of the correct engineering of the feedforward neural network in
terms of the combination of activation function and weight initialization is beyond the scope of this chapter.

40

Scardapane et al. (2017): These authors propose the following penalty function:

P (λ,W) = λ

p∑

i=1

√
kz1

p∑

j=1

∥∥W1
j

∥∥
F

+ λ

p∑

i=1

N∑

n=2

zn−1∑

z=1

√
zn ‖Wn

z ‖2 +

+λ
N∑

n=1

√
zn ‖bn‖2 + λ ‖W‖1 (2.27)

This penalty term weights 'equally' each component of the penalty by λ > 0.16 The �rst

component:
p∑

j=1

∥∥W1
j

∥∥
F

=

p∑

j=1

[
z1∑

z=1

k∑

l=1

(
w

1(l)
zj

)2
]1/2

(2.28)

is identical to the �rst component of the penalty function (2.26), penalizing the coe�cients of

the input layer (n = 1) across lags and nodes for each time series j. In our framework, there

are two 'groups' of size kz1 and z1, respectively.

The second and third components penalize the 'adaptable features' of the neural network,

{Wn,bn}Nn=1 . The second function penalizes the vector of all outgoing connections from each

node zn−1 in each hidden layer n 6= 1 such that

N∑

n=2

zn−1∑

z=1

√
zn ‖Wn

z ‖2 =
N∑

n=2

zn−1∑

z=1

√
zn

(
zn∑

z̃=1

(wn
z̃z)

2

)1/2

(2.29)

for each time series i. Intuitively, this corresponds to column-wise penalization of column

vectors of matrix Wn, n 6= 1. The third term penalizes the biases {bn}N+1
n=1 , where N +1 ≡ O

(output node), of the neural network across layers n:

N∑

n=1

√
zn ‖bn‖2 =

N∑

n=1

√
zn

(
zn∑

z=1

b2zn

)1/2

(2.30)

Finally, the fourth term penalizes the absolute value of the coe�cients of the matrix

W = [...
[
iW1 . . .i WN

]
...] for all time series i, i.e:

‖W‖1 =

p∑

i=1

N∑

n=1

zn−1∑

z=1

p∑

j=1

k∑

l=1

∣∣∣iwn(l)
zj

∣∣∣ (2.31)

Importantly, it is this last constraint that does not allow Scardapane et al.'s (2017) opti-

mization problem to 'decouple' across the rows of the output variable xt, and be solved 'in

parallel'. That is, we propose a di�erent neural network for each of the p output variables in

the system. For given network architectures, Farrell et al. (2018) obtain conditions for valid

inference over (W,b) in non-regularized feedforward neural networks.

16 Scardapane et al. (2017) argue that after experimenting with simulation results, weighting the components
di�erently does not make a di�erence.

41

Hierarchical group lasso in neural networks: Tank et al. (2018) also base their de�nition

of Granger causality on the invariance of the neural network to xjt. In particular, these authors

adapt a hierarchical group lasso objective function previously proposed for high-dimensional

linear VAR models by Nicholson et al. (2014). Tank et al. (2018) propose a hierarchical

group lasso function that allows for Granger causality detection and also for automatic lag

selection. The objective function is

min
W

1

2T
||Yi − gi(Xt−1; W)||22 + λ

p∑

j=1

k∑

l=1

||w1(l:k)
j ||F , (2.32)

where w
1(l:k)
j = [w

1(l)
ij ...w

1(k)
ij]. This is a hierarchical group penalty in the sense that if

w
1(l:k)
ij = 0 then for all l′ > l,w

1(l′:k)
ij = 0. We use gi(Xt−1; W) in (2.32) to di�erentiate

from our multilayer perceptron function gi(Xt−1; W, z) that chooses the number of nodes zn

strategically. In the hierarchical group lasso setting, the quantity z is a vector of nuisance

parameters that is taken as given in the optimization problem.

Therefore, the methodology proposed by Tank et al. (2018) di�ers from the methodology

introduced in this chapter not only in terms of the regularization considered, but also in terms

of the identi�cation of the parameters a�ecting Granger causality via a feedforward neural

network. In particular, as discussed previously, the underestimation or overestimation of the

number of hidden nodes in the �rst hidden layer, due to the exogenous dimension of h1, can

lead to an increase in either aggregate type I or type II errors. Also, expression (2.26) allows

performing a lag selection strategy similar to Tank et al. (2018) but with a lower level of

penalty given by not using the hierarchical structure. For each group, the optimal lag will be

identi�ed by the highest nonzero lag length l
′
. Lag lengths higher than l

′
will have the L2

norms equal to zero and can be considered jointly non-signi�cant.

2.5 Parameter identi�cation and model selection

The aim of this section is to assess the correct identi�cation of the parameters characterizing

the objective function (2.26) under the null hypothesis of no Granger causality. To do this, we

explore the conditions obtained from our objective function that leads us to delete irrelevant

weights (nodes and input variables). We consider these conditions and, in particular, the role

of λ and α in introducing sparsity into the regularization problem.

There are kz1p parameters in the objective function (2.26) indexed by w
1(l)
zj , with z =

1, . . . , z1, j = 1, . . . , p and l = 1, . . . , k. These parameters constitute a group, denoted by the

matrix W1
j , of size kz1. The objective function is convex implying that the solution Ŵ1

j to

the minimization problem is characterized by the �rst order conditions of the problem. These

conditions are given by:

42

1

T

∂gi(Xt−1; W, z)

∂W1
j

(Yi − gi(Xt−1; W, z)) = λ(1− α)
√
z1ku1 + λα

√
z1u2, (2.33)

where ∂gi(Xt−1;W,z)
∂W1

j
is the �rst derivative of the function gi(Xt−1; W, z) with respect to the

parameters in matrix W1
j ; u1 =

Ŵ1
j

‖Ŵ1
j‖F

if Ŵ1
j 6= 0, and u1 is a matrix inside a unit ball such

that ‖u1‖F ≤ 1, if Ŵ1
j = 0. The de�nition of u2 is similar but replacing the matrix W1

j by

the vector w
1(l)
j and the Frobenius norm by the L2 norm.

The null hypothesis H0 of no Granger causality of xjt to xit corresponds to W1
j = 0. The

corresponding estimate from the objective function (2.26) must be zero in order for the lasso

penalty to delete the parameter. The �rst order conditions with Ŵ1
j = 0 must satisfy the

condition

1

T

∥∥∥∥∥
∂gi(Xt−1; W, z)

∂W1
j

(Yi − gi(Xt−1; W, z))

∥∥∥∥∥
F

≤ λ(1− α)
√
z1k + λα

√
z1. (2.34)

This inequality shows the contribution of λ and α to the condition that keeps a group inactive,

that is, the condition that allows us to assume W1
j = 0, and hence, not rejecting the null

hypothesis that the variable xjt does not Granger cause xit.

For problems in which the number of lags k is �xed, it is su�cient to impose λ = o(1/T)

in order for this condition to be satis�ed for increasing sample sizes, see Fan and Li (2001).

In this scenario, our model selection strategy is consistent; that is, it deletes those weights

that do not in�uence the output variables. For high-dimensional problems in which the

number of lags also grows to in�nity with the sample size, k = kT , we must impose a tighter

convergence of the tuning parameter λ. In our problem it is su�cient to have λ = o
(

1√
kTT

)
,

with kT /T → 0. Alternatively, we can assume that α also converges to zero such that for

high-dimensional problems, we have λ = o(1/T) and 1−α = o(1/
√
T). These two conditions

are su�cient to guarantee the correct selection of the parameters as T →∞. In practice, for

a given sample size, these parameters are optimized by cross-validation.

The �rst order conditions of the objective function (2.26) can also give some insight into

the sparsity of the vector w
1(l)
j within the matrix W1

j when some of the elements of the matrix

are nonzero. In this case, the group corresponding to the input variable xjt is not rejected

and the question of interest is to select those lags in�uencing the forecast of xit and, by doing

so, the optimal number of lags that should be included in the model. In this case, sparsity

is given by subsets of parameters in the matrix W1
j that are actually zero. The aim of our

objective function is to be able to delete these parameters.

43

More formally, if W1
j 6= 0, the corresponding �rst order conditions of the objective function

(2.26) if xj,t−l does not in�uence xit must satisfy, for ŵ
1(l)
j = 0, the following condition:

∥∥∥∥∥
∂gi(Xt−1; W, z)

∂w
1(l)
j

(Yi − gi(Xt−1; W, z))

∥∥∥∥∥
2

≤ Tλα
√
z1. (2.35)

In this case it is su�cient to assume λ = o(1/T) and α constant for the model to delete those

parameters that are zero within a larger group and achieve model selection consistency.

In this setting, there is another source of sparsity within groups. Thus, we can consider

parameters that are zero within the group of parameters that determine the relevance of a

lag. More speci�cally, we can have w
1(l)
j 6= 0 but some parameters of this vector being equal

to zero. To address this case, a possibility is to extend the objective function (2.26) to include

a further penalty function
∥∥W1

∥∥
1
inducing sparsity at the individual level. Although this

additional penalty would allow us to correctly detect those weights that are zero if the vector

w
1(l)
j is at least partially nonzero, this would increase the computational complexity of the

method. More importantly, the marginal bene�t of including those terms would be negligible

from the point of view of model selection since the parameters that would be rightly identi�ed

as zero would correspond to connections between input nodes and speci�c nodes in the �rst

hidden layer. The interpretation of these connections is not important once we accept that

for some nodes in the �rst hidden layer the weights are di�erent from zero, w
1(l)
j 6= 0, and,

therefore, carry information relevant for Granger causality and lag selection. For this reason,

we do not pursue the identi�cation of these parameters further.

Finally, we should mention that in contrast to lasso penalty functions expanding least

squares procedures and well-behaved likelihood functions, see Yuan and Lin (2006), Zhou and

Zhu (2010), Simon et al. (2013), Nicholson et al. (2014), among other leading examples,

the objective function (2.26) is highly nonlinear due to the presence of nonlinear activation

functions θ in each hidden layer that characterizes the function gi(Xt−1; W, z). This implies

that it is not possible to derive in closed form the estimates of the weights di�erent from zero

characterizing the objective function (2.26).

2.6 Simulation Study

This section is divided into three blocks. First, we assess the probability of type I and type

II errors of our procedure for detecting Granger causality in �nite samples and compare it

against a detection method that does not optimize the structure of the neural network. More

speci�cally, we aim to report the fraction of times the null hypothesis of no Granger causality

is rejected when there is no Granger causality in the data generating process (type I error).

For the power analysis, we aim to report the fraction of times the null hypothesis is rejected

when there is indeed Granger causality in the data generating process (1 - prob. type II

44

error)17. To assess the impact of the structure of the network on the type I and type II error

probabilities, we impose α = 0 in our objective function (2.26). By doing so, we restrict to a

single group lasso penalty function that only focuses on detecting Granger causality without

considering the optimal number of lags. Second, we relax the assumption of α = 0, and we

compare the performance of the newly proposed two step procedure with sparse group lasso

against the hierarchical group lasso that does not optimize the structure of neural network

(Tank et al., 2018). Last but not least, we assess the consistency of our approach for model

selection when the sample size increases.

In this simulation experiment we focus on testing hypothesis (2.7), that is, Granger causal-

ity of variable xjt on variable xit. Our method develops a feedforward neural network for each

output variable separately. For simplicity, we consider one output variable, x1t, that is as-

sumed to be endogenous and the remaining variables x2t, . . . , xpt are exogenous variables

exhibiting di�erent levels of persistence. The hypothesis of Granger causality (2.7) on x1t is

tested for each of the p variables in the system. By doing so, we are able to control for the

structure of the neural network and simplify the simulation design.

2.6.1 Simulation design

The simulation experiment is conducted for three di�erent data generating processes: a linear

process exhibiting short-range persistence, a nonlinear VAR model exhibiting short-range

persistence and a linear process exhibiting long-range persistence. The three models are

x1t = a(10) + a(11)xt−1 + ε1t; (2.36)

x1t = a(10) + a(11)xt−1 ∗ τt−1 + ε1t; (2.37)

and

x1t = a(10) + a(11)xt−1 + ...a(1k)xt−k + ε1t. (2.38)

17 The main di�erence with standard size and power exercises is that our method does not rely on a critical
value provided by an asymptotic or simulated distribution but by a sparsity induction method. Hence, in
contrast to standard testing methods, the simulated probability of type I error of our method may be close
to zero.

45

0 200 400 600 800 1000

−
15

−
10

−
5

0
5

10
15

Linear Process − VAR(1)

Observations

E
nd

og
en

ou
s

V
ar

ia
bl

e

0 200 400 600 800 1000

−
20

−
10

0
10

20

Non−Linear Process − VAR(1)

Observations

E
nd

og
en

ou
s

V
ar

ia
bl

e

0 200 400 600 800 1000

−
50

0
50

10
0

Linear Process − VAR(10)

Observations

E
nd

og
en

ou
s

V
ar

ia
bl

e

Figure 2.4: Dynamics of x1t for one random sample of each of the three data generating processes
considered. Top row for model (2.36), middle row for model (2.37) and bottom row for model (2.38).

The remaining variables xit for i = 2, . . . , p are exogenous and exhibit autoregressive

dynamics modeled as:

xit = a(i0) + a(i1)xi,t−1 + εit. (2.39)

with the error terms εit being cross-sectionally, serially uncorrelated, and distributed as

N(0, 1).

The vector xt−1 is of dimension p = 39; each a(1,l) is a 1 × p vector for l = 1, . . . , k that

captures the dependence structure in the linear model. The model that re�ects short-range

46

dependence corresponds to k = 1 and long-range dependence corresponds to k = 10. For

simplicity, in the latter case, we consider a(1,1) = · · · = a(1,10). Our proposed approach allows

us to simultaneously assess the type I and type II error probabilities of the Granger causality

detection method. The �rst element of a(1,1), denoted as a
(1,1)
1 , captures the persistence of

x1t over time; the elements a
(1,1)
j for j = 2, . . . , 20 are associated with the variables that

exhibit Granger causality on x1t. The coe�cients are de�ned as follows; a
(1,1)
1 = 0.80 and

a
(1,1)
j = {0.70,−0.30,−0.50, 0.87, 0.97,−0.65, 0.40, 0.23,−0.85, 0.76,−0.12, 0.54,

0.69,−0.79, 0.90,−0.90, 0.63, 0.88, 0.50} for j = 2, . . . , 20. These coe�cients are obtained

randomly from a uniform U(−1, 1) distribution and guarantee the stationarity of the output

variable x1t. The remaining 19 parameters corresponding to a
(1,1)
j for j = 21, . . . , 39 are zero

and are associated with the variables that do not Granger cause x1t. In this way, our testing

procedure for the hypothesis test (2.7) assesses the type II error of the test when it is applied

to each of the �rst 19 variables, plus x1,t−1, and assesses the type I error of the test when it

is applied to the remaining 19 input variables.

We consider four di�erent scenarios for modeling the dynamics of the exogenous variables.

These scenarios are given by i) no persistence (white noise for all input variables), ii) autore-

gressive persistence for j = 2, . . . , 20 (Granger causal variables) and no persistence for j =

21, . . . , 39 (no Granger causal variables), iii) no persistence for j = 2, . . . , 20 and autoregres-

sive persistence for j = 21, . . . , 39, and iv) autoregressive persistence for both sets of variables

indexed by j = 2, . . . , 20 and j = 21, . . . , 39. In what follows, we report the results for scenar-

ios ii) and iv); the other two scenarios are very similar and are available from the authors upon

request. The autoregressive parameters of the input variables {xjt}p=20
j=2 exhibiting Granger

causality are randomly drawn from a Uniform distribution U ∼ (0, 1) such that for each vari-

able xjt we have a
(j,1) = {0.63, 0.67, 0.65, 0.60, 0.71, 0.54, 0.63, 0.61, 0.85, 0.69, 0.68, 0.88, 0.78,

0.59, 0.58, 0.89, 0.71, 0.66, 0.69}. Case ii) above assumes that the last 19 variables are random

noise processes generated from a N(0, 1) random variable. Case iv) considers, instead, the

same autoregressive dynamics for the last 19 variables as for the �rst 19 variables. By doing

so, this case allows us to compare the type I and type II error probabilities of the detection

procedures for a given persistence parameter, and repeat this exercise for 19 di�erent input

variables.

For the nonlinear case, we consider the VAR(1) model (2.38). The dependence structure

in this scenario is completed by including the interaction between the lags of xt and a random

variable τt. We assume this variable to be i.i.d., following a normal distribution N(0.5, 1),

and independent of the error term in Equation 2.37. As in the linear case, we will entertain

separately the case of white noise input variables (scenario ii) above) and autoregressive input

variables (scenario iv) above). By doing so, we can assess the ability of our testing procedure

to detect Granger causality under nonlinearity and di�erent dynamics in the data.

The choice of parameters above ensures the stationarity of the variable x1t across data

generating processes. Figure 2.4 reports an example of the di�erent simulated processes.

47

2.6.2 Empirical type I and type II error probabilities

We study �rst the impact of the correct speci�cation of the structure of the neural network on

the probability of the type I error and the corresponding power analysis (1-prob. type II error)

of the testing procedures, by focusing on linear and nonlinear processes with short persistence

(k = 1). From the data generating process described by Equation (2.36) and (2.37), it is

possible to see that no interaction subsists between the xit for i = 2, . . . , p. From Equation

(2.2), one could notice that this particular data generating process is correctly represented

by the input of the vector-valued activation function θ(·) when W1 is a vector of dimension

(1× p) and thus, when z1 = 1.

Once the structure of the neural network is identi�ed, to study the impact of the correct

speci�cation of the structure of the network on Granger causality discovery, it is necessary

to isolate the group discovery from lag discovery. Knowledge of the data generating process

allows us using the correct regularization function (2.26) that only penalizes for Granger

causality and not for the number of lags. This is possible in (2.26) by considering α = 0.

In this case, our proposed objective function is a single group lasso penalty function. This

restriction allows isolating the impact of the structure of the network on the performance of

the group lasso applied on the weights that connect the input layer to the �rst hidden layer.

In order to study the impact of the structure of the neural network, the di�erent structures

reported in Table 2.1 will be analyzed.

Table 2.1: p denotes the dimension of the vector xt; No GC denotes the number of variables that do
not Granger cause x1t. z1 and z2 denote the starting values of the number of nodes in the two hidden
layers.

Linear

Xt = A0 +A1Xt−1 + εt

VAR(1) VAR(10)

p 20 p 20 p 20

No GC 19 No GC 19 No GC 19

z1 and z2 [1,1] z1 and z2 [2,1] z1 and z2 [5,10]

p 20 p 20

No GC 19 No GC 19

z1 and z2 [1,2] z1 and z2 [5,10]

Non Linear

Xt = A0 +A1Xt−1 ∗ τt−1 + εt

VAR(1) VAR(10)

p 20 p 20 p 20

No GC 19 No GC 19 No GC 19

z1 and z2 [1,1] z1 and z2 [2,1] z1 and z2 [5,10]

p 20 p 20

No GC 19 No GC 19

z1 and z2 [1,2] z1 and z2 [5,10]

The parameters in Table 2.1 determine the data generating processes but also the architecture

48

of the neural network. We �x the number of intermediate hidden layers equal to two18 and

give di�erent starting values z1 and z2 to the number of nodes in each hidden layer. In order

to assess the performance of our methodology for detecting Granger causal interactions, we

propose a Monte Carlo simulation exercise to compute the empirical probability of the type

I error and the corresponding power analysis for di�erent sample sizes (T = 500, 1000). We

should note that considering small samples such as T = 100 is not feasible in our simulation

exercise due to the large number of regressors entertained in the data generating processes

and the choice of a lasso penalty function. To obtain the �nite-sample probability of the type

I error and the corresponding empirical power of our testing procedure, we simulate B = 100

iterations of the above data generating processes with the parameters introduced in Table

2.1. For each iteration, we compute a neural network and decide whether there is Granger

causality from the variables xjt for j = 1, . . . , p on the output random variable x1t. This

simulation procedure is repeated B times to obtain the fraction of times the null hypothesis

H0 in (2.7) is rejected. We construct the variable Djb that takes a value of zero if the variable

xjt does not Granger cause the random variable x1t, and one otherwise. The variable D̄j is

the fraction of time out of B simulations that the null hypothesis is rejected.

Table 2.1 shows that our data generating processes are characterized by 20 variables

exhibiting Granger causality, with the �rst one being an autoregressive component, and the

remaining 19 variables being exogenous. By doing so, our experiment studies simultaneously

19 exercises, given by 19 variables with di�erent persistence parameters, for assessing the

probability of type I error and 19 exercises for assessing the empirical power (1- probability of

type II error). There is an additional exercise that tests the ability of our testing framework

for capturing serial dependence of the output variable. The choice of di�erent values for the

quantities a(1,j) and a(j,1), for di�erent values of j, allow us to gauge the ability of the test

to detect Granger causality depending on the magnitude of the relationship between xjt and

x1t, and the time series persistence of each xjt, respectively. We choose this scenario to assess

the performance of the model in large systems given by many variables and many lags. A

suitable testing procedure should have values of D̄j close to one if the variable xjt Granger

causes the variable x1t - one minus the probability of type II error - and a value close to zero

if the variable xjt does not Granger cause x1t - probability of type I error.

Linear VAR(1) model:

The following bar chart reports the fraction of rejections out of B times of the null hypothesis

(2.7) for each of the input variables in the system. The data generating process in this case

is model (2.36) with a set of exogenous regressors that are persistent (case iv) above).

18 Unreported simulations show that the results are very similar for di�erent numbers of hidden layers. In
this chapter, we do not explore further the possibility of considering more than two hidden layers in the
construction of the feedforward neural network.

49

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g h

Figure 2.5: Simulated rejection probabilities for the linear VAR(1) when the sample size is T = 500
and the input variables exhibit autoregressive persistence. Sub�gures a and e consider the structure
(z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1); and
sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage procedure
and bottom �gures to the corresponding non-optimized procedure.

Top row �gures correspond to the optimized two-stage procedure and bottom �gures to the

corresponding non-optimized procedure. Both procedures start with the same initial structure

for the feedforward neural network. Sub�gures a and e consider the structure z1 = 1; z2 = 1;

sub�gures b and f consider the structure z1 = 1 and z2 = 2; sub�gures c and g correspond

to z1 = 2 and z2 = 1; and sub�gures d and h correspond to z1 = 5 and z2 = 10.

The x-axis in Figure 2.5 indexes the input variables between 1 and 39, with the �rst 20

variables exhibiting Granger causality on x1t and the last 19 variables being those variables

that do not a�ect x1t. The bar chart for each value in the x-axis denotes a rejection probability

that denotes the power of the detection procedure (1-probability type II error) for the �rst

20 variables and estimates of the probability of type I error for the remaining 19 variables.

Interestingly, both optimized and non-optimized network structures initialized with the pairs

(1, 1) and (1, 2) for the number of nodes in the hidden layers provide a perfect cut-o� point

between input variables. This means that the probability of the type I and type II errors is

zero or close to zero. This result shows an outstanding performance of the test in classifying

Granger causality since not only the ability to reject the null hypothesis when the alternative

holds is high but also the test hardly exhibits type I error. Variation in the probability of type

I and type II errors across variables is due to the e�ect of the magnitude of the parameters

a(1l) de�ning the dependence structure. The lowest proportion is associated with j = 12 that

corresponds to an input variable with coe�cient closer to 0. This result is shared by both

50

types of feedforward network structures and does not depend on whether the �rst hidden layer

is optimized or not. In this case, the robustness of the result is because the initial value of

the number of hidden nodes is the optimal one.

This result changes abruptly when the initializing parameters are not optimal. This case

is shown in sub�gures (c) and (g) for z1 = 2 and z2 = 1, and (d) and (h) for z1 = 5 and

z2 = 10. In this scenario, there are important di�erences between the optimized two-stage

testing procedure (in the top row) and the non-optimized testing procedure (bottom row).

The e�ect of the �rst-stage in the optimized testing procedure is clear. More speci�cally,

the implementation of the algorithm in Montgomery and Eledath (1995) allows us to reduce

the number of relevant nodes in the �rst hidden layer. In this case the testing procedure

has considerable probability of type I and type II errors, although di�erent from zero for

some variables, it is still close to zero in many cases. The success of the testing procedure in

identifying no Granger causality depends on the persistence of the autoregressive parameters

for the exogenous variables and also the success of the algorithm to reduce the number of

super�uous nodes. Thus the optimized method works better when the initial number of

nodes is closer to the optimal coe�cient than when it is far (see sub�gure (d)). We include

this case as an illustration of cases where the number of initial nodes in the �rst hidden layer is

far from the target. We also note the complete failure of the non-optimized testing procedure

in the latter case (sub�gure (h)) when the number of initial nodes is not optimized.

Figure 2.6 repeats the same exercise for the case when the set of input variables not

Granger causing x1t are white noises (case ii) above). The sample size is T = 500 as before.

The results are very similar across di�erent choices of the number of nodes in the hidden

layers and con�rm the strong performance of our two-stage testing procedure and the poor

performance of the non-optimized method that chooses an arbitrary number of nodes in

the �rst layer when the initial number is not optimal, that is, it is di�erent from one. The

comparison of Figures 2.5 and 2.6 shows no e�ect of the persistence of the exogenous variables

on the Granger causality tests.

51

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Groups

a b c d

e f g h

Figure 2.6: Simulated rejection probabilities for the linear VAR(1) when the sample size is T = 500
and the last 19 input variables are a white noise. Sub�gures a and e consider the structure (z1 = 1;
z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1); and sub�gures d and
h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage procedure and bottom
�gures to the corresponding non-optimized procedure.

Figure 2.7 shows the same qualitative results for the case of persistence in the regressors

when the sample size increases to T = 100019. In this case, the probability of type II error of

the test is closer to zero for most input variables and the probability of type I error of the test

is smaller than for T = 500. It is interesting to note that the probability of type I error of

the test depends more on the distance of the initial number of nodes in the �rst hidden layer

from the optimal number than in the number of observations used for training the network.

Nevertheless, we observe a considerable improvement in case (d) for T = 1000 compared to

case (d) for T = 500.

19 Unreported results available from the authors upon request illustrate the case for white noise input variables
and T = 1000. The results are qualitatively very similar to the rejection probabilities in Figure 2.7.

52

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g h

Figure 2.7: Simulated rejection probabilities for the Linear VAR(1) when the sample size is T = 1000
and the input variables exhibit autoregressive persistence. Sub�gures a and e consider the structure
(z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1); and
sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage procedure
and bottom �gures to the corresponding non-optimized procedure.

Non-Linear VAR(1) model:

This block analyzes the type I error probability and the corresponding power analysis of

the Granger causality tests when the data generating process is (2.37). Figure 2.8 studies the

nonlinear VAR(1) model when τt is a random error with no persistence following a N(0.5, 1)

distribution, and the variables without Granger Causality are assumed to be white noise (case

ii) above). The �gure shows similar patterns to the previous exercises. The testing procedure

is able to identify Granger causality when there exists. Both optimized and non-optimized

feedforward neural networks work very well when the initial value of the number of nodes in

the �rst hidden layer is close to the optimal one. The optimized method also performs very

well in case (c), reporting values of the probability of type I error close to zero. In case (d),

the performance of the test is not as reliable as in the �rst cases; however, it still represents a

massive improvement compared to the non-optimized testing procedure. We should note that

the initial number of nodes in the latter example is far from the target. This phenomenon

seems to have an important e�ect on the size of the testing procedures.

53

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g h

Figure 2.8: Simulated rejection probabilities for the nonlinear VAR(1) when the sample size is
T = 500 and the last 19 input variables are a white noise. Sub�gures a and e consider the structure
(z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1); and
sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage procedure
and bottom �gures to the corresponding non-optimized procedure.

Figure 2.9 reports the probability of type I error and the corresponding power analysis for

the nonlinear VAR(1) exercise for T = 1000. In this case there is an improvement (decrease) in

both probabilities of type I and type II errors, however, as mentioned above, the improvement

depends more on the correct choice of nodes in the �rst hidden layer than in the amount of

available information o�ered by an increasing sample size.

In both exercises, we should stress that the data generating process is very nonlinear and

the dependence between variables leading to Granger causality is masked to a large extent by

the interaction with the random variable τt. Standard testing procedures based on Wald type

tests or likelihood ratio tests would fail completely in this setting unless the data generating

process is known to the econometrician. In contrast, our approach is very general and does

not rely on the speci�c parametric form of the VAR model.

54

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g
h

Groups Groups Groups Groups

Groups Groups Groups Groups

Figure 2.9: Simulated rejection probabilities for the Non-Linear VAR(1) when the sample size is T
= 1000 and the last 19 input variables are a white noise. Sub�gures a and e consider the structure
(z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1); and
sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage procedure
and bottom �gures to the corresponding non-optimized procedure.

The next exercise studies the performance of the probability of type I and type II errors

when the variables that do not Granger cause x1t exhibit persistence (case iv) above). Figure

2.10 shows similar patterns to previous exercises. The testing procedure is able to identify

Granger causality when there exists; however, the probability of type I error of the test is

considerably larger than in the linear case and the nonlinear case with white noise variables.

There are also important di�erences between the optimized and non-optimized methods when

the initial number of hidden nodes is di�erent from one, see sub�gures (c) and (g), and (d)

and (h). In particular, the non-optimized method reports values of probability of type I error

close to one across input variables invalidating any conclusion obtained from the test.

55

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g h

Figure 2.10: Simulated rejection probabilities for the Non-Linear VAR(1) when the sample size is
T = 500 and the input variables exhibit autoregressive persistence. Sub�gures a and e consider the
structure (z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1);
and sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage
procedure and bottom �gures to the corresponding non-optimized procedure.

Figure 2.11 reports the nonlinear case (2.37) for T = 1000. In contrast to previous sce-

narios, we observe a signi�cant improvement of the test when the sample size increases. The

probability of type I error is considerably lower and guarantees that the empirical power

obtained under the alternative hypothesis is not spurious. Surprisingly, one minus the prob-

ability of type II error is not as high as before, and yields low values when the parameters

associated with the input variables exhibiting Granger causality are close to zero.

The empirical �ndings observed in the nonlinear case show an important e�ect of the

persistence of the exogenous variables on the probabilities of type I and type II errors. The

optimized two-stage testing procedure performs better under the absence of persistence in the

variables that do not Granger cause x1t.

We should also note the sensitivity of the type I and type II error probabilities to variations

in the expected value, µ, of the random variable τt. For µ ≥ 0.8 the probabilities of type I and

type II errors in the nonlinear case with persistence (worst case scenario) decrease signi�cantly,

performing as well as for the linear case. This behavior can be justi�ed by the level of noise

in the data generating process; an increase in the di�erence between the stochastic behaviors

of τt and of the regressors xjt will reduce the nuisance in the system, and it will ensure an

easier identi�cation of the separate e�ects of τt−1 and xt−1 on x1t.

56

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

e f g h

Figure 2.11: Simulated rejection probabilities for the Non-Linear VAR(1) when the sample size is
T = 1000 and the input variables exhibit autoregressive persistence. Sub�gures a and e consider the
structure (z1 = 1; z2 = 1); sub�gures b and f (z1 = 1; z2 = 2); sub�gures c and g (z1 = 2; z2 = 1);
and sub�gures d and h (z1 = 5; z2 = 10). Top row �gures correspond to the optimized two-stage
procedure and bottom �gures to the corresponding non-optimized procedure.

Linear VAR(10) model:

Once the impact of the correct structure of the neural network on Granger causality

discovery is analyzed, we relax the assumption of α = 0 and extend the previous simulation

scheme by considering an endogenous variable x1t driven by ten lags.

The following exercise extends the previous simulation scheme by considering an endoge-

nous variable x1t driven by ten lags. In particular, we generate process (2.38) and impose the

same parameter structure a(1,1) = · · · = a(1,10) across lags. This simulation exercise is richer

than for the VAR(1) case as it allows us exploring the performance of the Granger causality

tests when there is more than one lag Granger causing the output variable x1t. In this setting,

we consider two competing models: our two-stage testing procedure proposed in expression

(2.26) that is based on a double group lasso penalty function and the hierarchical group lasso

penalty function discussed above. In contrast to previous cases, the success of feedforward

neural network procedures is measured by their performance in terms of the probabilities of

type I and type II errors and also on their ability to detect the correct number of lags, given

by k = 10 in this simulation exercise.

The results of the simulations for cases ii) and iv) above are reported in Figure 2.12 for

T = 500 and Figure 2.13 for T = 1000, respectively. In particular, the last 19 variables in

57

sub�gures a-b are exogenous variables following independent white noise processes such that

the reported proportions correspond to the probability of type I error when the input variables

follow independent white noise processes. In contrast, the last 19 variables in sub�gures c-d

are exogenous variables that exhibit stationary autoregressive persistence. In these cases, the

reported proportions correspond to the probability of type I error under di�erent degrees of

persistence of the exogenous variables. In both sets of experiments, the �rst 19 variables for

assessing the power of the detection procedure are stationary variables with di�erent degrees

of persistence. More speci�cally, sub�gure a and a.1 consider the case of the double group

lasso penalty function and white noise exogenous variables. Sub�gures b and b.1 consider the

hierarchical group lasso penalty function with white noise exogenous variables. Sub�gures c

and c.1 present the double group lasso when the exogenous variables are persistent. Sub�gures

d and d.1 consider the hierarchical group lasso under persistence of the exogenous variables.

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

a.1 b.1 c.1 d.1

Figure 2.12: Simulated rejection probabilities for the linear VAR(10) for a sample size of T = 500
when the last 19 input variables are a white noise. For each process and each penalty, the proportions
of the group identi�cation (top row), and correct lag detection (bottom row) are reported. Sub�gure a
and a.1 consider the case of double group lasso and white noise exogenous variables; sub�gures b and
b.1 hierarchical group lasso and white noise exogenous variables; Sub�gures c and c.1 double group
lasso and persistent exogenous variables; Sub�gures d and d.1 hierarchical group lasso and persistent
exogenous variables.

The top row in Figure 2.12 reports the rejection probabilities for the null hypothesis (2.7).

The bottom row reports the fraction of times the correct number of lags (k = 10) is estimated

for each input variable. For each process and penalty function, the proportions of the group

identi�cation (top row), and correct lag detection (bottom row) are reported.

58

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 4 7 11 15 19 23 27 31 35 39

Groups

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a b c d

a.1 b.1 c.1 d.1

Figure 2.13: Simulated rejection probabilities for the Linear VAR(10) when a sample size of T = 1000
and the last 19 input variables are a white noise. For each process and each penalty, the proportions
of the group identi�cation (top row), and correct lag detection (bottom row) are reported. Sub�gure a
and a.1 consider the case of double group lasso and white noise exogenous variables; sub�gures b and
b.1 hierarchical group lasso and white noise exogenous variables; Sub�gures c and c.1 double group
lasso and persistent exogenous variables; Sub�gures d and d.1 hierarchical group lasso and persistent
exogenous variables.

The results from both experiments show overwhelming evidence on the outperformance of

the double group lasso regularization function for both scenarios (white noise and persistent

regressors) in terms of type I and type II error probabilities. It is worth noting the good

performance of the double group lasso procedure with regards to the probability of type I

error of the test in sub�gure c. The type I error probability takes on low values even under

the presence of persistence in the non Granger causal regressors.

The results in the bottom row also suggest a very good performance of the double group

lasso function compared to the hierarchical lasso. The accuracy of the method decreases for

those input variables that are characterized by a small persistence parameter. The hierarchical

lasso penalty function underestimates the correct number of lags across the set of input

variables, in contrast, the double group lasso penalty function provides robust results for the

correct number of lags in most cases.

2.6.3 Model Selection Consistency

The simulation study also veri�es that the the oracle property of consistent variable selec-

tion is satis�ed (Fan and Li, 2001). Let M̂T be the set of parameter estimates that satisfy

59

Ŵ(δ) = 0, and M0 the set of corresponding model parameters that are actually equal to

zero. More formally, Leeb and Pötscher (2005) assert that a procedure δ is consistent if i)

limT→∞ P (M̂T = M0) = 1, and ii) limT→∞ P (M̂T 6= M0) = 0, with P (·) denoting the proba-
bility function. Section 4 studies these properties theoretically from the �rst order conditions

of the objective function (2.26). In particular, we show that the tuning parameter λ needs

to satisfy the condition λ = o(1/T) in order to guarantee model selection consistency if the

number of lags k is �xed. Alternatively, if the number of lags is allowed to increase with

the sample size, then, the condition λ = o
(

1√
kTT

)
is su�cient to guarantee model selection

consistency.

Table 2.2: The Table reports the correct and incorrect number of null coe�cients. We apply this
procedure to the linear and nonlinear VAR(1) processes and case iv are considered. On the right of
the Table, the �gures corresponding to the oracle estimator are reported.

Linear

T = 500 T = 1000 T = 2000 T = 3000

Oracle
[1,1]

Correct 18.94 18.98 19 19 19

Non Correct 5.88 4.46 3.02 3.00 0

[2,1]

Correct 17.42 17.55 18.00 18.68 19

Non Correct 5.86 4.63 4.26 3.56 0

NonLinear

T = 500 T = 1000 T = 2000 T = 3000

Oracle
[1,1]

Correct 14.04 16.88 17.74 18.31 19

Non Correct 8.35 9.96 9.91 9.02 0

[2,1]

Correct 13.8 16.53 17.62 18.17 19

Non Correct 10 9.62 9.80 9.60 0

To add further empirical evidence to the above �ndings on the consistency of the objective

function (2.26) for the detection of Granger causal relationships and the number of relevant

lags, we carry out a second simulation experiment. Following Fan and Li (2001) and Leeb and

Pötscher (2005), a Monte Carlo simulation is adopted to assess empirically model selection

consistency. Our simulation experiment considers a system of p variables in the data generat-

ing processes; hence, an oracle procedure will correctly identify, as the sample size increases,

the number of variables that satisfy the null hypothesis and the number of variables that are

signi�cant, that is, Granger cause the output variable. Hence, if our Granger causality test

satis�es the oracle property, it will correctly identify, as the sample size increases, 19 null

coe�cients for those variables that are not signi�cant and zero null coe�cients for those vari-

ables that are signi�cant. For the purpose of the simulation, we consider 100 simulated linear

and nonlinear VAR(1) processes with autoregressive persistence in all of the input variables -

60

case iv) above - and di�erent sample sizes T = 500, 1000, 2000, 3000. The oracle property of

consistent variable selection is tested for two settings: when the number of nodes in the �rst

hidden layer corresponds to the optimal value - z1 = 1 - and when z2 = 2. In the latter case,

the two-stage method for Granger causality detection improves the properties of the test with

respect to the naive approach, that is shown to perform very poorly in the above exercises.

For each sample size considered, the average number of correctly and incorrectly identi�ed

zero coe�cients is reported, see also Fan and Li (2006) for a similar procedure, in Table 2.2.

The results show that for the linear VAR(1) and z1 = 1 the correct number of zeros reaches

its maximum - 19 - for T = 2000, and the incorrect number of zeros decreases as the sample

size increases to a minimum of 3 for T = 3000. Also, when the initial number of nodes in the

�rst hidden layer is z1 = 2, the correct number of zeros increases as the sample size increases

to a maximum that reaches 19 for T = 3000, and the incorrect number of zeros decreases to

a minimum near 4. These results show that the oracle property of consistency holds for our

group lasso regularization function when the correct number of nodes is speci�ed and, also,

for our two-stage approach that optimizes the architecture of the neural network.

To assess this property in more challenging settings, we repeat the experiment for the

nonlinear VAR(1) process. In this case, the number of correctly classi�ed variables increases to

a maximum of approximately 18 when T = 3000, and the incorrect number of zero coe�cients

decreases to a minimum of around 9 when T = 3000. As the incorrect number of zero

coe�cients decreases to zero at a slower rate, one could conclude that the penalty is over-

conservative. Overall, these results are also supportive of the good performance of the two-

stage Granger causality tests proposed in this study. Nevertheless, these simulations provide

some evidence of the challenges involved in determining the variables with predictive ability

under very general nonlinear settings characterized by unknown forms of Granger causality.

2.7 Empirical Analysis: Tobalaba Network

The Energy Web Foundation provides the Energy sector a blockchain-based test network with

Proof-of-Authority20 consensus mechanism: the Tobalaba test network (Energy Web Foun-

dation, 2018). The World Bank Group (2018) highlights the bene�t of a distributed ledger

technology over the traditional centralized ledgers: it allows decentralization and disinterme-

diation, it guarantees information symmetry due to the veri�able audit of transactions of both

physical and digital assets, and it ensures cost reduction and associated increase in the speed

for the stipulation of contracts via the smart contracts. J.P. Morgan (2018) argues that the

automation and the disintermediation arising from the application of blockchain technologies

will automate functions necessary to participate in the market, expanding the access also to

smaller participants. The Energy Web Foundation (2018) states that smart contracts, by

automating bilateral transactions, will allow for a greater diversity of market structure. The

resulting information symmetry will allow tracing in the carbon and renewable energy market,

20 Transactions are validated through validators, reducing the energy impact.

61

credit ownership with lower costs and higher accuracy (Energy Web foundation, 2018).

Using these arguments, one should expect an increase in the stipulation of contracts, and

thus in the interactions among the members of the Tobalaba network. The increase of the

connections (unilateral or bilateral) is justi�ed by a higher transparency of credit and asset

ownership, by the automation of the execution of smart contracts (not feasible for centralized

ledgers), and by the reduction of transaction costs due to disintermediation. The aim of this

section is to explore this empirically. To do this, we use recent work on social and �nancial

networks, see Billio et al. (2012) and Hecq et al. (2019), that establish connections in a

network through the presence of Granger causality between the variables characterizing the

nodes. These authors explore Granger causality between pairs of variables. In this application,

we broaden the analysis of Granger causality de�ning a network, and consider equation (2.4),

reproduced here again:

xit = gi(Xt−1; W, z) + εit, for i = 1, . . . , p,

where gi(Xt−1; W, z) captures the multivariate dynamic structure between the percentage

cumulative log-returns over a 30-minute-time window for the �rms below. We model the mul-

tivariate dependence component-wise using a neural network for each company i = 1, . . . , p.

2.7.1 Data

Table 2.3: Names, market, and a short description of the core activities of the companies considered
in this study.

Company Name Market Core Tick

Acciona Spain Renewable energy ANA

Aes Corp USA Electricity sell, mines coal, alternative source of energy AES

Centrica London Home and business energy solution CAN

Duke Energy USA Manage portfolio of natural gas supply and delivery DUK

Engie Brasil Energia Brazil Exploration, production and trading of electricity and natural gas EGIE3

Equinor Asa Oslo Develops oil, gas, wind and solar energy projects EQNR

Exelon Corp USA Distributes energy to Illinois and Pennsylvania EXC

Fluvius Luxembourg Renewable energy distribution Network FLUVIU

General Electric USA Diversi�ed technology GE

Iberdrola Spain Generates, distributes, trade electricity IBE

Innogy Germany Manages plans to generate power from renewable energy IGY

Itron USA Collecting, communicating analyzing electric data ITRI

PG&E Corp USA Holding company that provides natural gas and electricity PCG

Royal Dutch Shell London Explores, produces, re�nes petroleum RDSA

Siemens Germany Engineering and manufacturing company SIE

Total Sa Euronext Paris Explores for producers, re�nes, transports, and market oil and natural gas FP

Wipro India E-commerce, data warehousing, system administration WPRO

Intraday prices in 30-minute intervals for the companies reported in Table 2.3 over the period

09/05/2016 to 10/05/2019 are collected from Bloomberg. Of the 70 companies belonging

to the Tobalaba Network, only those reported in Table 2.3 are considered21. We exclude

21 The rest of the companies are excluded for two main reasons: they are either not public, or due to the high
number of missing at random observations.

62

companies listed in di�erent time zones and nonlisted companies. Our dataset is divided in

two periods - before the introduction of Tobalaba (09/05/2016 - 29/03/2018) - and after the

creation of Tobalaba (26/10/2018 - 10/05/2019). A time interval between the two subsets is

left in order to allow the creation of the connections between the members of the Energy Web

blockchain.

The missing values in the dataset are completed using the MissForest algorithm (Stekhoven,

2013). The maximum number of trees to be grown in each forest is set equal to 500, the max-

imum number of nodes for each tree is equal to 100, and the maximum number of iterations

is 50. The MissForest algorithm does not make any assumption about the distribution of

the variables as it involves estimating the missing values by �tting a random forest trained

on the observed values. The Out-Of-Bag (OOB) estimates of the imputation error in terms

of Normalized Root Mean Squared Error (NRMSE) for the two subsamples is 0.01438 and

0.012984, respectively. The returns are then computed from the intra-day prices.

Table 2.4 reports the exploratory data analysis conducted for both subsamples for each

individual series considered. There is a general increase in the mean and standard deviation

of the returns for each company. In all cases, the Dickey-Fuller test rejects at 0.05 signi�cance

level the null hypothesis of unit root, and we fail to reject at 0.05 signi�cance level the

null hypothesis of stationarity of the KPSS test, showing that for both subsamples all series

considered are stationary.

Table 2.4: Exploratory data analysis for the series considered. Due to the number of observations, the
Kolmogorov-Sminrov test for normality is adopted in the �rst sub-sample. Moreover, the test statistics
and associated p-values of the Dickey-Fuller and the KPSS tests for stationarity are reported.

(09/05/2016 - 29/03/2018)

ANA AES CAN DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PGC RDSNA SIE FP WPRO

Mean -0.0015 -0.0005 -0.0045 -0.0005 0.0000 0.0032 0.0013 0.0003 -0.0092 -0.0003 -0.0007 0.0054 0.0063 0.0017 0.0013 0.0009 0.0007

Std. Deviation 0.3127 0.7086 0.4612 0.5685 0.7603 0.4184 0.6126 0.0667 1.0939 0.2951 0.5256 1.6895 1.5639 0.3069 0.3286 0.3069 1.1897

Min -8.3657 -8.5695 -17.1965 -6.6416 -9.6321 -3.6688 -5.2387 -0.6217 -13.8826 -12.8402 -7.6234 -34.4226 -32.8006 -8.5474 -8.7049 -9.5013 -11.4161

Max 3.7182 10.7099 14.3815 6.5628 10.5759 4.2803 5.4795 0.6585 21.9190 3.3580 7.5691 34.7628 33.9859 5.2412 6.7774 4.9290 10.5179

Skweness -1.7878 -0.1906 -5.8680 -0.2275 0.0911 0.0493 -0.3339 0.3446 0.6017 -9.3001 -0.0698 0.8649 0.7876 -1.5988 -1.8681 -2.7896 -0.3433

Kurtosis 72.9088 35.5819 423.4997 28.9009 36.5251 15.1058 17.3413 36.5411 66.8865 419.7467 53.2526 101.3114 122.7723 93.5393 129.5589 119.0220 19.4230

Kolm. t. stat. 0.2872 0.2576 0.2696 0.2835 0.2342 0.2718 0.2648 0.4399 0.2652 0.3070 0.2935 0.2257 0.2221 0.3017 0.3033 0.2940 0.2167

Kolm. p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

DF t. stat. -47.2078 -50.6489 -46.6261 -50.4284 -50.6923 -57.6236 -52.4630 -54.1766 -48.6654 -50.2723 -51.1224 -47.7949 -48.3805 -48.1052 -49.8299 -49.9683 -50.6796

DF p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KPSS stat 0.1414 0.0155 0.1606 0.0630 0.0626 0.0605 0.0343 0.0539 0.3718 0.1060 0.0176 0.0387 0.0589 0.0456 0.3180 0.0333 0.0472

KPSS p-value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0893 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

(26/10/2018 - 10/05/2019)

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PCG RDSA SIE FP WPRO

Mean 0.0079 0.0016 -0.0145 -0.0006 0.0060 -0.0022 0.0022 0.0003 0.0104 0.0053 -0.0007 0.0055 -0.0111 0.0027 0.0028 -0.0013 -0.0031

Std. Deviation 2.1697 1.5338 2.4323 0.8389 2.8989 1.3800 0.8406 0.0656 3.8024 1.3659 0.5781 2.2506 11.7503 1.2577 1.3416 1.1393 2.0681

Min -27.0106 -17.2372 -24.6358 -6.1559 -24.1935 -12.3153 -8.8194 -0.4471 -41.8479 -11.1166 -5.4102 -21.9921 -116.7995 -9.2351 -11.5270 -9.5761 -23.3458

Max 26.1996 18.7566 24.8999 6.9390 22.7915 12.3872 8.6189 0.3615 40.9288 11.0580 5.2053 22.4000 85.3738 9.6994 11.5836 9.9737 25.3803

Skweness -0.2296 0.7305 -0.0618 -0.3039 -0.1741 0.2325 0.5157 -0.2896 0.0196 0.0515 -0.2343 -0.2159 -1.1079 0.1642 0.0447 0.2635 -1.1434

Kurtosis 47.4203 52.9197 34.5855 21.1393 30.9132 37.4122 31.7782 15.4785 33.8791 29.2221 27.9577 26.2839 24.8550 16.2953 25.5945 22.2098 49.7950

Shapiro t. stat. 0.3710 0.4670 0.3945 0.5968 0.4429 0.4528 0.5746 0.6277 0.5099 0.4557 0.5111 0.5600 0.4822 0.5319 0.4741 0.5222 0.4525

Shapiro p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

DF t. stat. -24.4804 -24.8217 -22.9151 -24.9950 -23.7368 -22.8723 -24.7452 -18.4441 -24.4323 -23.9530 -23.4678 -23.4181 -24.3258 -23.0250 -22.8387 -22.7410 -23.9251

DF p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KPSS t. stat. 0.0192 0.0497 0.0646 0.0171 0.0145 0.0176 0.0192 0.0640 0.0141 0.0208 0.0191 0.0356 0.0162 0.0101 0.0316 0.0275 0.0343

KPSS p-value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

2.7.2 Empirical Results

Figure 2.14 shows the network topologies induced by �tting model (2.4) to detect Granger

causality between the p = 17 �rms considered in our sample before and after the introduction

63

of Tobalaba. The method to detect Granger causality is based on using an optimized neural

network and the objective function (2.26). Thus, the network is constructed by �tting 17

feedforward neural networks with a double group lasso penalty function to the weights that

connect input nodes to the nodes in the �rst hidden layer. Each component-wise feedforward

neural network has company xit in the output layer and the lagged values of companies xjt

with j 6= i in the input layer. The edges for each vertex are identi�ed by the Granger causal

interactions de�ned by the sparsity induced in the objective function (2.26).

To train the component-wise feedforward neural networks, we apply the Adam optimizer

with constant learning rate. Di�erent learning rates (0.0001, 0.001, 0.01, and 0.1) are tuned

and the optimal learning rate for both before and after the introduction of Tobalaba is 0.1.

The initial number of hidden nodes is set equal to z1 = 30 and z2 = 35. Following Montgomery

and Eledath (1995), the tuning parameters of the algorithm are κ = 1, µ = 0.2, χ = 0.000001

and the number of epochs is 7000. The same parameters are adopted for both subsamples.

The optimal combination of α and λ is obtained by cross-validation. The domain of the two

hyper-parameters was discussed earlier. As in the simulation exercise, we consider 75% of

the dataset to train the network and 25% of the sample to obtain the out-of-sample RMSE

associated with each combination.

Tobalaba Network (09/05/2016 - 29/03/2018)

Number of vertices: 17
Number of edges: 63

Tobalaba Network (26/10/2018 - 10/05/2019)

Number of vertices: 17
Number of edges: 165

RMSE on Test Dataset

1) ANA: 0.102 10) IBE: 0.072
2) AES: 0.479 11) IGY: 0.056
3) CAN: 0.277 12) ITRI: 1.294
4) DUK: 0.236 13) PGC: 0.921
5) EGIE3: 0.298 14) RDSNA: 0.057
6) EQNR: 0.124 15) SIE: 0.099
7) EXC: 0.256 16) FP: 0.058
8) FLUVIU: 0.002 17) WPRO: 0.544
9) GE: 1.705

RMSE on Test Dataset

1) ANA: 14.168 10) IBE: 2.121
2) AES: 1.573 11) IGY: 0.515
3) CAN: 14.203 12) ITRI: 4.993
4) DUK: 0.150 13) PGC: 14.688
5) EGIE3: 3.032 14) RDSNA: 1.556
6) EQNR: 0.456 15) SIE: 4.290
7) EXC: 0.662 16) FP: 0.626
8) FLUVIU: 0.007 17) WPRO: 2.239
9) GE: 3.204

ANA

AES

CNA

DUK

EGIE3

EQNR

EXC

FLUVIU

GE

IBE

IGY

ITRI

PCG
RDSA

SIE

FP

WPRO

ANA

AES

CAN

DUK

EGIE3

EQNR

EXC

FLUVIU

GE

IBE

IGY

ITRI

PGC
RDSNA

SIE

FP

WPRO

Figure 2.14: Granger causal networks before and after the introduction of Tobalaba. The out-of-
sample RMSE is reported for each company.

Figure 2.14 shows an increase in the number of edges in the network after the introduction

of Tobalaba (from 63 to 165) and, in particular, there is an increase in bi-directional edges.

This �nding clearly reveals the increase in connections after the introduction of the platform

and can be justi�ed by the introduction of the distributed ledgers and smart contracts that

64

allow stipulating signi�cantly more contracts due to the reduction of transaction costs, increase

in information, and absence of intermediaries.

Centrality Measures

In this section, we study di�erent centrality measures to interpret the results with respect

to the importance of the �rms in the Tobalaba platform. Table 2.5 reports for each network

di�erent measures of the degree centrality, the betweenness centrality, the eigen centrality, the

page rank, the in-degree and out-degree centrality reported below. The di�erent measures

reported in Table 2.5 are used to identify the central nodes in the two uncovered networks; the

di�erent centrality measures allow overcoming the absence of a general de�nition of centrality

(Rodrigues, 2019).

Table 2.5: Centrality Measures: Degree centrality, betweenness centrality, eigen centrality, and page
rank before and after the introduction of the Tobalaba network.

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PCG RDSA SIE FP WPRO

(09/05/2016 - 29/03/2018)

Degree 4 13 3 5 5 18 6 4 7 3 4 19 6 5 17 4 3

In-Degree 4 3 3 5 5 2 6 3 4 3 4 4 6 3 2 3 3

Out-Degree 0 10 0 0 0 16 0 1 3 0 0 15 0 2 15 1 0

Betweennes 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 19.3333 0.0000 0.0000 0.6667 0.0000 0.0000

Eigen 0.3533 0.7329 0.2802 0.3878 0.4069 0.9191 0.4199 0.3221 0.5372 0.2802 0.3533 1.0000 0.4366 0.3451 0.8904 0.2971 0.2802

Page Rank 0.0515 0.0475 0.0475 0.0724 0.0661 0.0451 0.1127 0.0475 0.0515 0.0475 0.0515 0.0626 0.1069 0.0490 0.0450 0.0480 0.0475

(26/10/2018 - 10/05/2019)

Degree 23 20 22 27 20 12 8 9 11 25 25 25 24 18 25 11 25

In-Degree 7 10 10 11 10 10 8 9 11 9 9 9 11 11 10 11 9

Out-Degree 16 10 12 16 10 2 0 0 0 16 16 16 13 7 15 0 16

Betweennes 0.7100 1.1445 3.0056 5.2286 1.0215 0.3270 0.0000 0.0000 0.0000 2.1262 2.4052 3.5334 17.3520 0.9917 4.5448 0.0000 2.6096

Eigen 0.8644 0.8216 0.8305 1.0000 0.7846 0.4841 0.3453 0.3879 0.4423 0.9353 0.9337 0.9306 0.9055 0.7214 0.9254 0.4586 0.9301

Page Rank 0.0448 0.0561 0.0593 0.0648 0.0561 0.0554 0.0459 0.0513 0.0829 0.0533 0.0533 0.0563 0.0830 0.0609 0.0606 0.0635 0.0526

Looking at degree centrality, de�ned as the number of connections relative to each node,

we observe an increase in the number of links for each vertex after the introduction of To-

balaba. Before the introduction of Tobalaba, the companies AES, EQNR, ITRI, and SIE

were the central nodes, while after the introduction of Tobalaba the number of central nodes

increases drastically to 1022. However, as pointed out by Rodrigues (2019), degree centrality

should be considered as a local centrality measure that does not take into account the density

of the links among di�erent nodes. In Table 2.5 we also report the in-degree and out-degree

centrality statistics relevant in directed networks. The in-degree centrality de�nes how promi-

nent a node is and the out-degree centrality measures the centrality of a node in the network.

The reported out-degree centrality measures con�rm the conclusions drawn from the other

centrality measures analyzed: the introduction of the new blockchain platform increases the

number of central nodes from 4 to 12. More interestingly, the directed measures of degree cen-

trality provide useful insights regarding the interactions among the members of the network.

After the introduction of Tobalaba all nodes become more receptive given by an increase in

the in-degree centrality for all the analyzed companies. However, the out-degree centrality

for EXC, FLUV IU , GE, and FP is still zero, in contrast to all the other members of the

network that increase the out-degree statistic after the introduction of Tobalaba. Looking

at the core activities of the members of the network, we note that EXC and FLUV IU are

22 Degree centrality higher than 20.

65

retail distributors of energy and as such, are expected to receive a high number of incoming

transactions from companies that are either producers of energy or of the infrastructures used

for distribution.

The betweenness centrality (unweighted) quanti�es the importance of a node in connect-

ing to other vertexes (Bloch et al., 2017). Table 2.5 also shows that the degree of centrality,

with the exception of EXC, FLUVIU, GE, and FP, changes after the introduction of Tobal-

aba. Before the introduction of Tobalaba, the betweenness centrality identi�es ITRI as the

primary central node, implying that a removal of ITRI from the network would have implied

a disruption of the overall network activity. Conversely, after the introduction of Tobalaba

the primary central node is PCG. It is also interesting to see how, after the introduction of

Tobalaba, the number of nodes that in�uence the �ow of information circulating through the

network increases. The betweenness centrality for the majority of the vertexes in the network

is zero before the introduction of Tobalaba and increases, in most cases, after the introduction

of the blockchain platform.

Eigenvector centrality (Bonacich, 1987) takes into account not only the connections of the

particular node but also how many links the connected neighbors have. In other words, it

measures the �prestige� (Bloch et al., 2017) of a node. Before the introduction of Tobalaba,

the eigenvector centrality con�rms the conclusions drawn from the betweenness centrality.

After the introduction of Tobalaba, DUK is identi�ed as the primary central node. Also in

this case, it is possible to note how the degree of centrality increases for all the members of

the network, with the companies ANA, AES, CNA, IBE, IGY, ITRI, PCG, SIE, and WPRO

characterised by an eigenvalue of centrality close to unity.

Last but not least, the page rank is also analyzed. The page rank is a variant of the

eigenvector centrality that takes into account also the directions of the di�erent links. Before

the introduction of Tobalaba, the page rank identi�es PCG and EXC as central nodes; after

the introduction of Tobalaba, the degree of centrality of the di�erent nodes becomes more

uniform, reducing the spread in page rank across the di�erent members.

To summarize, the di�erent centrality measures con�rm an increase in the degree of cen-

trality associated with each vertex of the Granger causal network after the introduction of

Tobalaba. The increase in the number of central nodes can be associated with an increase in

the number of bilateral transactions due to the newly adopted blockchain technology, thereby

reducing the overall network reliance on a single central vertex, increasing its activity, robust-

ness and reliability23.

23 It is worth noting that the increase in the number of central nodes, and thus in the number of critical
companies and connections, may have a signi�cant impact on the study of cascading failures based on
the dependency risk methodology of Kotzanikolaou et al. (2013). The study of cascade failure and risk
transmission will be object of future research.

66

Structure of neural network

Table 2.6 reports the optimal α, λ, and structure of the component-wise feedforward neural

networks �tted to construct the networks reported in Figure 2.14. These results highlight the

sensitivity of the structure of the neural network to the amount of information transmitted

through it, and hence, the importance of constructing an optimal neural network prior to

uncovering the presence of predictive ability between the variables. Before the introduction of

Tobalaba the optimal number of nodes in the �rst and second hidden layers is sensibly lower

than the number of hidden nodes after the introduction of Tobalaba. After the introduction of

Tobalaba, the larger number of hidden nodes captures the higher number of interactions that

arise between �rms due to the increase in the number of bilateral (decentralized) transactions,

that increases the interdependencies between operating �rms, which naturally lead to a 'more

dense' network architecture to capture them. The optimal construction of the neural network

obtained from applying the algorithm of Montgomery and Eledath (1995) guarantees that the

network does not propagate noise through the neural network and only meaningful information

for the analysis of Granger causality and the predictive ability of the variables.

Table 2.6: Optimal λ and α returned from cross-validation for each of the �tted Feedforward Neural
Networks. The structure of the Network selected by the Algorithm of Montgomery and Eledath (1995)
is also reported.

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PCG RDSA SIE FP WPRO

(09/05/2016 - 29/03/2018)

z1 3 6 2 1 1 11 3 2 7 2 3 20 3 3 1 5 11

z2 2 3 1 1 1 4 1 2 1 1 2 4 2 1 1 1 3

α 0.1 0.3 0.2 0.2 0.3 0.4 0.1 0.3 0.3 0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.3

λ 0.3 0.2 0.7 1 0.8 0.3 0.4 0.5 0.3 0.9 0.5 0.4 0.9 0.5 0.2 0.7 0.6

(26/10/2018 - 10/05/2019)

z1 28 28 17 24 24 19 15 2 29 19 2 27 30 20 17 21 18

z2 7 8 3 7 6 4 4 2 11 5 1 7 11 5 4 5 4

α 0.2 0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.3 0.1 0.2 0.1 0.1 0.3 0.3

λ 0.4 0.9 0.4 0.3 0.5 0.6 0.9 0.5 1 0.1 0.1 0.1 0.1 0.4 0.2 1 0.3

To add robustness to the results of this exercise, we also consider a reduced dataset. In

particular, both subsamples are reduced to the �rst 25% of the observations. In these cases, the

number of edges observed before the introduction of Tobalaba is 63 and after the introduction

of Tobalaba is 143. These results corroborate previous �ndings: there is no change in the

number of connections and interactions between the �rms before the introduction of Tobalaba;

conversely, after the introduction of Tobalaba, when the �rst 25% of the dataset is used, we

observe a reduction in the number of edges compared to Figure 2.14, showing that the number

of interactions between the �rms has increased over time.

Forecast Accuracy

The original de�nition of lagged causality (Granger, 1969), xj,t−l ⇒ xit, involves an increase

in forecast accuracy of time series xit given the lagged values of the time series xjt. The

edges of the Granger causal network reported above are identi�ed by the Granger causal

interactions discovered by the objective function (2.26). Once the parameters are estimated

and the weights penalized, it is possible to forecast out of sample. Consequentially, the

67

Granger causal network that we have uncovered in this empirical exercise can be justi�ed as a

framework for improving the forecasts of a multivariate time series of log returns of 17 �rms.

We formalize this claim by comparing the component-wise forecast accuracy of the feed-

forward neural network against several benchmark models. To obtain the one-step ahead

forecasts, a rolling window approach is implemented. We compare the predictive ability of

the constructed Tobalaba network against the di�erent benchmark models by applying a one-

sided Diebold-Mariano test (1995). The hypothesis of predictive ability can be written in

terms of the mean square forecast error (MSFE) between both predictive models. For each i,

we have

H0 : MSFEinn ≥MSFEiV AR, (2.40)

and the alternative is

HA : MSFEinn < MSFEiV AR, (2.41)

with MSFEinn denoting the mean square forecast error for the prediction obtained from

neural networks and MSFEiV AR the corresponding quantity obtained from the alternative

models. Table 2.7 reports the test-statistics and the p-value of the one-sided Diebold-Mariano

test (1995) for di�erent benchmark models.

Table 2.7: Test statistics and p-values for the one sided Diebold-Mariano (1995) test.

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PCG RDSA SIE FP WPRO

(09/05/2016 - 29/03/2018)

VAR(10) - AIC

DM t-stat 0.7109 3.5557 -0.3475 4.1242 3.4742 2.7946 1.8170 1.7894 3.3899 -0.1324 5.9087 4.2003 3.7315 0.6025 1.1613 0.5325 2.8867

P-value 0.2398 0.0003 0.6354 <.0001 0.0005 0.0034 0.0367 0.0390 0.0006 0.5526 <.0001 <.0001 0.0002 0.2744 0.1248 0.2980 0.0025

VAR(10) - SC/BIC

DM t-stat 0.8314 1.4418 -0.3375 5.0691 3.2742 1.8498 3.7063 -0.0756 1.2011 -0.2029 5.1596 4.0094 4.4937 0.6554 0.5775 0.97435 2.4512

P-value 0.2043 0.0770 0.6316 <.0001 0.0009 0.0343 0.0002 0.5301 0.1169 0.5801 <.0001 <.0001 <.0001 0.2572 0.2827 0.1666 0.0008

VAR(10) - H. Lasso

DM t-stat 0.5715 2.8837 3.2669 4.6904 5.5815 1.8014 4.3471 -1.3607 1.8002 -0.4502 5.9700 5.7816 2.2178 -0.3449 1.0025 -0.7035 6.7251

P-value 0.2848 0.0026 0.0008 <.0001 <.0001 0.038 <.0001 0.9110 0.0381 0.6730 <.0001 <.0001 0.0149 0.6344 0.1598 0.7580 <.0001

ARIMA

DM t-stat 0.2950 1.6813 -0.1464 4.0966 1.3429 0.6443 4.2751 -1.1433 3.3477 3.1960 1.9294 2.4249 1.5788 1.7826 1.9389 1.5764 4.4666

P-value 0.3844 0.04862 0.558 <.0001 0.0918 0.2608 <.0001 0.8761 0.0006 0.0011 0.0289 0.0009 0.0598 0.0395 0.0283 0.0598 <.0001

(26/10/2018 - 10/05/2019)

VAR(10) - AIC

DM t-stat 4.4708 5.4614 4.4851 5.3019 7.1449 5.2264 5.3268 3.7235 6.3085 4.6958 4.6995 4.0900 5.8294 6.0783 3.7364 5.5485 5.7272

P-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002 <.0001 <.0001

VAR(10) - SC/BIC

DM t-stat 5.5601 3.5373 4.1454 3.5823 4.2906 2.3727 4.8180 3.5271 5.7450 4.8650 3.6427 4.6288 4.4794 4.9785 3.3436 4.1410 5.3268

P-value <.0001 0.0004 <.0001 0.0003 <.0001 0.0102 <.0001 0.0004 <.0001 <.0001 0.0003 <.0001 <.0001 <.0001 0.0007 <.0001 <.0001

VAR(10) - H. Lasso

DM t-stat 4.1515 -1.3573 2.6058 0.0533 3.8638 2.5957 1.6365 -0.36215 -0.29011 3.9205 -1.5090 7.9074 2.1622 1.7082 3.9536 -0.5101 3.7499

P-value <.0001 0.9105 0.0056 0.4788 0.0001 0.0057 0.0531 0.6408 0.6137 0.0001 0.9321 <.0001 0.01703 0.0460 <.0001 0.6942 0.0002

ARIMA

DM t-stat -0.6447 1.3833 1.2962 3.2208 2.3887 1.6395 3.3682 0.87364 4.8382 -0.4006 2.6907 2.2173 0.7802 1.8874 0.9494 0.3256 3.4211

P-value 0.7394 0.0855 0.0996 0.0009 0.0098 0.0523 0.0006 0.1927 <.0001 0.6550 0.0044 0.0149 0.2190 0.0316 0.1729 0.3728 0.0005

In the absence of a relevant model for an unknown data generating process, the linear

VAR(K) is chosen as the �rst benchmark as it can be considered the best linear approximation

of a process that may be nonlinear. Moreover, Plagborg-Møller and Wolf (2019) show how,

for a large number of lags, a VAR(K) is as robust to nonlinearities as the linear projection.

68

The maximum lag-length allowed in the VAR(K) is 10; the optimal lag is selected using the

AIC scores. The top panel in Table 2.7 corresponds to the period before the introduction of

the Tobalaba network and the bottom panel corresponds to the period afterward. For the

�rst period, we fail to reject the null hypothesis of equal forecast ability in six cases, at a 0.05

signi�cance level. However, after the introduction of Tobalaba, the null hypothesis is rejected

in all cases. The higher forecast accuracy of the feedforward neural network for each vertex is

a result of including nonlinear interactions between the variables and also a potentially larger

persistence compared to the VAR(10) model.

As a robustness exercise, we also propose three di�erent benchmark models that compete

against our neural network speci�cation. First, we select the optimal lag of our VAR(K)

model using the BIC score instead of the AIC score24. In addition to the model obtained

from the BIC score, we also consider two alternative benchmarks given by a linear VAR(K)

model estimated using component-wise hierarchical group lasso, as in Nicholson et al. (2014).

This benchmark de�nes the best linear VAR alternative that can be considered in such high-

dimensional multivariate time series. This model is, therefore, a suitable alternative strategy

in large dimensions for our feedforward neural network. Finally, we also consider an ARIMA(p,

d, q) process; this model does not accommodate any feedback e�ect from other input variables

and, hence, fails to incorporate Granger causal interactions. The predictive ability of these

models is compared, as before, using Diebold-Mariano (1995) tests in Table 2.7. The choice

of these benchmarks allows us to understand di�erent aspects regarding the performance of

the proposed methodology in uncovering Granger causal relations.

The results show that the forecasts of the VAR(K) model obtained using the BIC score

have similar predictive ability to the VAR(K) model using the AIC score. Both models fare

poorly with respect to the feedforward neural network in terms of predictive ability. The

second benchmark is given by a high-dimensional VAR - optimized over one-step ahead fore-

casts - with the component-wise hierarchical group lasso proposed by Nicholson et al. (2014).

Being both procedures - Nicholson et al. (2014)'s VAR benchmark and our methodology -

able to accommodate high-dimensional systems, the results in Table 2.7 report statistically

signi�cant di�erences in one-step ahead forecasts between the two models. These results pro-

vide evidence that the neural network is able to outperform state-of-the-art high-dimensional

linear VARs with induced sparsity via convex regularizers. The main reason for this is the

ability of feedforward neural network models to capture the nonlinearities in the underlying

data generating process. Finally, an ARIMA(p, d, q) is used to further validate the Granger

causal network discovered with our novel methodology against a time series linear model ex-

hibiting no Granger causality. The results reported in the bottom panels of Table 2.7 provide

further empirical support to the feedforward neural network model.

24 Lütkepohl (1985) shows - in his simulation study with VAR models - that the BIC outperforms other model
selection criteria by choosing the correct autoregressive order and by returning the smallest mean squared
forecast error from one-step ahead forecasts

69

2.8 Conclusions

This chapter has proposed a new methodology for the detection of Granger causality in a vec-

tor autoregressive setting using feedforward neural networks. To do this, we have constructed

an optimal neural network that maximizes the mutual information transfer between input

and output nodes. In a second stage, we propose a novel objective function that introduces

sparsity in high-dimensional systems and controls for the number of connections between the

input variables and the nodes in the �rst hidden layer. The newly proposed objective function

detects the Granger causal interactions between the variables and also the optimal lag length

associated with each input variable, allowing di�erent lag orders for each endogenous time

series.

The simulation study shows in �nite samples the importance of using an optimal network

structure to reduce type I and type II errors. In particular, we show that the number of nodes

in the �rst hidden layer has a signi�cant impact on the correct detection of Granger causal

interactions. Our simulations also show the consistency of the algorithm used to detect the

optimal number of nodes in each hidden layer as the sample size increases. We compare the

performance of our approach against a hierarchical group lasso penalty function. The results

show clear evidence of the outperformance of our method to detect Granger causality.

The empirical application shows that after the introduction of the Tobalaba network there

is an increase in the number of edges among the 17 companies studied. Moreover, the cen-

trality measures obtained show an increase in the number of central nodes in the network

after the introduction of the new platform. Our results demonstrate how the introduction

of the blockchain platform has changed the structure of the connections between the �rms

trading in the platform due to the introduction of smart contracts and disintermediation.

The application of the Diebold-Mariano test (1995) shows that the Granger causal network

constructed using the algorithm proposed in this chapter outperforms, in terms of forecast

accuracy, several linear VAR(K) models in low and high dimensions, and provide empirical

evidence on the importance of our nonlinear method for forecasting.

Being the chapter focused on Granger causality and thus forecasting, estimation and

inference within regularized neural networks was not analyzed. The recent contribution by

Hecq et al. (2019) develops an LM test for Granger causality in high-dimensional VAR models

based on penalized least squares estimations. To obtain a test retaining the appropriate size

after the variable selection done by the lasso, these authors propose a post-double selection

procedure to partial out e�ects of nuisance variables and establish its uniform asymptotic

validity. Although the method performs very well in high-dimensional settings, it is devised

for linear parametric settings. In contrast, the method presented in this chapter based on

detecting Granger causality through sparsity induction presents a nice alternative that works

in more general settings. Future research will extend the current work to the derivation

of nonasymptotic bounds for regularized and non-regularized neural networks (Farrell et al.,

2018), as well as the limiting distributions for the two-step estimator proposed in this chapter.

70

Another potential extension of the current research is to couple our methodology to de-

tect Granger causality with the graphic theory introduced by Eichler (2007) and Eichler and

Didelez (2012). The main advantages of the analysis of Granger causality in graph theory are

the possibility of visualizing the complex dependence structures that may underline multivari-

ate time series, and a de�nition of Granger causality that can be applied to multivariate time

series with nonlinear dependencies. Therefore, by analyzing the matrix of the weights and

error terms of a VAR de�ned by our feedforward neural networks approach, it may be possible

to de�ne the directed and undirected edges in a mixed path diagram in high-dimensional and

potentially nonlinear time series.

71

CHAPTER 3

Optimal deep neural networks by

maximization of the approximation power

Chapter Abstract

This chapter proposes an optimal architecture for deep neural networks of given size. The

optimal architecture obtains from maximizing the minimum number of linear regions ap-

proximated by a deep neural network with a ReLu activation function. The accuracy of the

approximation function relies on the neural network structure, characterized by the number,

dependence and hierarchy between the nodes within and across layers. For a given number of

nodes, we show how the accuracy of the approximation improves as we optimally choose the

width and depth of the network. More complex datasets naturally summon bigger-sized archi-

tectures that perform better applying our optimization procedure. A Monte Carlo simulation

exercise illustrates the outperformance of the optimized architecture against cross-validation

methods and gridsearch for linear and nonlinear prediction models. The application of this

methodology to the Boston Housing dataset con�rms empirically the outperformance of our

method against state-of the-art machine learning models.

73

3.1 Introduction

Neural networks and, more speci�cally, deep learning models are extremely popular in high-

dimensional problems such as pattern recognition, biomedical diagnosis, and others (see

Schmidhuber, 2015; and LeCun, et al. 2015 for overviews of the topic). The success of

these techniques rests in their ability to approximate complex unknown functional forms for

the relationship between the outcome variable and the predictors. The Universal Approx-

imation Theorem (Cybenko, 1989) states that a shallow feedforward neural network with

enough hidden units and sigmoidal activation function can approximate any Borel measur-

able function with an arbitrarily small error. The implications of this result are noteworthy:

notwithstanding the type of nonlinearity that characterizes the data generating process, a

su�ciently large shallow feedforward neural network will be able to approximate, accurately,

the underlying function (Goodfellow et al., 2016). In this setting, it is no longer necessary to

construct an ad hoc model for the speci�c nonlinearity to be learned.

Universal approximation theorems have been proved for both shallow (one hidden layer)

and deep (more than one hidden layer) learning networks. Although the accuracy of the

approximation is not well understood yet, it is widely accepted in the literature that deeper

models can reduce the number of computational units (hidden units) required to approximate

the target function by a factor that is exponential in the depth of the feedforward neural

network (Montufar et al., 2014). Similarly, based on the literature of piecewise functions

and function oscillation, Tewlgarsky (2016) shows that - conversely to shallow networks - the

function composition characterizing deeper architectures returns highly oscillatory functions

and thus, it is better suited to �t an unknown target function compared to shallow structures

of similar size. Deeper architectures, by capturing and learning the repeated regularities

or hierarchical structures in the data, allow learning the underlying function with a lower

level of model complexity (Aggarwal, 2018). Poggio et al. (2017) state that since shallow

networks can be considered a special case of deep networks, any continuous function that can

be represented by a shallow network (universal approximator) can also be represented by a

deep network arbitrarily well. Hanin and Sellke (2017) show that deep feedforward neural

networks with a ReLu activation function (ReLu DNN) and bounded width are universal

approximators.

Based on the Universal Approximation Theorem, it is possible to state that the approxima-

tion power of neural networks depends on the number of hidden units and on their allocation

across layers, or network's depth (Montufar et al., 2014; Pascanu et al., 2013; Tewlgarsky,

2016; Raghu et al, 2017). The correct speci�cation of the width and depth of the network,

together with other factors, ensures an e�cient balance between the variance and the bias

of the model and thus, it ensures that the model will not over- or under-�t the underlying

function. It is standard in the literature on DNN to use k-fold cross-validation methods to

determine the width and depth of the network. In this scenario both variables are treated

as model hyperparameters that are optimized while training. However, the performance of

cross-validation approaches depends on (i) the number of variants of the learning models - if

74

too few models are tuned we may miss the global optimum or if too many we may over-�t

(Rao et al., 2008); (ii) the optimum division of the folds - observations must be i.i.d. and

the distribution of the target variable must be similar across di�erent folds; and (iii) the

number of observations available - too few and it is not possible to correctly implement k-fold

cross-validation (among the possible solutions it is important to mention the Out-of-Bag pro-

cedure that allows out-of-sample model evaluation using the observations not sampled during

bootstrapping).

In this chapter, we show that it is possible to optimize the network architecture based

on recent theoretical contributions that characterize the minimum expressive power of DNN

with ReLu activation functions. Pascanu et al. (2013) and Montufar et al. (2014) provide

a characterization of the lower bound for the number of a�ne regions approximated by a

ReLu DNN25. The number of linear regions of the functions that can be approximated is

a measure of the �exibility of the network architecture under consideration. For network

architectures of a given size, we show that it is possible to optimize their width and depth

by allocating the hidden units in such a way that the minimum number of linear regions

approximated is maximized, e�ectively forcing the network architecture to be maximally

�exible when approximating the unknown target function. Maximum �exibility is achieved

when, for a given number of hidden nodes, the recursive folding of the input space is optimized,

ensuring maximum e�ciency in approximating the underlying data generating process. In

doing so, we reduce the set of hyperparameters to be determined by cross-validation to the

learning rate, number of epochs and drop-out rates. By optimizing width and depth prior

to training architectures of a given size, our proposed method substantially saves upon the

necessary time and computing power involved in �ne tuning while training. More importantly,

we reduce the approximation error and improve, in turn, the predictive ability of the DNN.

Naturally, bigger and more complex datasets call for bigger sized network architectures in

terms of hidden units.

The predictive ability of our approach is superior to state-of-the-art methods widely used

in the DNN literature such as cross-validation and randomized gridsearch. To show this, we

carry out a Monte Carlo exercise that evaluates the out-of-sample performance of deep neural

networks equipped with our optimal architecture against di�erent benchmarks, depending on

the data generating process considered. The main competitors that we consider for nonlinear

data generating processes are k-fold cross-validation and randomized gridsearch. The sim-

ulation section also considers a linear data generating process that helps us understand the

limits of our optimization procedure. We do this by comparing the predictions of our optimal

DNN against the predictions of ordinary least square (OLS) methods, that are known to be

best linear unbiased estimators. Interestingly, the out-of-sample mean square prediction error

and mean absolute prediction error obtained from our ReLu DNN remain competitive and

are comparable to those obtained from OLS methods in this setting.

25 The upper bound, or maximal number of linear regions of a function approximated by a network architecture
with recti�ed linear units of size N, is equal to 2N (Proposition 4 in Montufar et al., 2014). Therefore, it
is common to shallow and deep architectures of equal size N .

75

The methodology is also illustrated empirically with a simple example widely used in

the machine learning literature. We apply our optimal architecture to a ReLu DNN with

the aim of predicting median house prices from the Boston Housing Dataset. The dataset

originally adopted by Harrison and Rubinfeld (1978) for modeling willingness to pay for clean

air in the Boston area is extensively used by the machine learning literature to validate new

learning techniques; such as Al Bataineh and Kaur (2018), Papadopoulos and Haralambous

(2011), Granitto et al. (2001), Nado et al. (2018), Bakker and Heskes (2003), Myshkov

and Julier (2016), and Zhou et al. (2001). The optimal structure selected by our novel

methodology is a DNN with three layers and nodes equal to [52, 39, 39]. Our results provide

an improvement in prediction accuracy (MSE) in between 28.55% and 47.32% in comparison

to those studies and highlight the performance gains of our optimal DNN for prediction relative

to the aforementioned works.

The accuracy of the approximation function depends on the number of nodes in the neural

network. Our method is �exible on the number of nodes and allows to experiment with dif-

ferent choices depending on the complexity of the problem and dimension of the dataset. Our

optimization method suggests that the predictive accuracy achieved by the optimal architec-

ture of the DNN improves further as we consider larger datasets which naturally call for more

nodes in the neural network. Therefore, and although we have not explored it in detail here,

it is presumed that savings in computational time will increase more than proportionately

with bigger and more complex datasets requesting bigger sized architectures.

Our contribution is related to recent and in�uential literature discussing the suitability of

di�erent neural network architectures. In particular, Montufar et al. (2014) explain how each

hidden layer of a deep ReLu neural network can be associated to a folding operator. Figure

3.1 reports an example of a recursive folding operation performed by the hidden layers of a

neural network (Montufar et al., 2014).

Folding 1 Folding 2

Figure 3.1: The Figure reports an example of recursive folding as in Montufar et al. (2014)

If each hidden layer folds the output of the previous hidden layer, the output layer of

a ReLu neural network folds �starting from the �rst hidden layer� the input layer (space)

recursively. Thus, the recursive partitioning implies that functions computed in the �nal

76

folded space will be e�ectively applied to all the collapsed subsets identi�ed by the collections

of foldings (see also Figure 3.1).

From the above argumentation, one could conclude that the composition of the folding

operations �computed by each hidden layer in a feedforward neural network� ensures approx-

imating a number of linear regions which is exponential in the depth of the network. More

formally, theorem 4 in Montufar et al. (2014) shows how an increase in depth ensures an

exponential increase in the number of linear regions being approximated while an increase in

width a polynomial increase. Therefore, Montufar et al. (2014) suggest that an increase in

the depth of a ReLu neural network leads to a gain in accuracy higher than the one resulting

from an increase in width. Theoretical studies such as Montufar et al. (2014), Pascanu et

al. (2013) and Goodfellow et al. (2016) claim that ReLu deep neural networks (DNN) should

perform better than shallow networks. Alternatively, as suggested in Goodfellow et al. (2016),

one could choose to implement a deep or shallow neural network for statistical reasons (e.g.,

tree-based architectures allow modeling nonlinearities through multiplicative relationships be-

tween features and thus have been e�ectively adopted in clinical and economic applications

where the analyst is interested in the heterogeneity around some treatment e�ect). In other

words, the choice of the speci�c machine learning algorithm (i.e., tree structures, shallow or

deep networks, SVM, recurrent or feedforward networks) depends on a set of prior beliefs

that the analyst has regarding the type of nonlinearity to be learned. Given De�nition 3.2.1,

one could infer that choosing a deep structure implies assuming that the underlying data

generating process can be represented by a composition of simpler functions. Speci�cally,

as expressed in Goodfellow et al. (2016), the unknown underlying data generating process

can be approximated by discovering a subset of underlying components which can be in turn

described by a di�erent subset of simpler factors of variations. However, even if the choice of

the deep neural network structure is dictated by the prior belief regarding the underlying data

generating process, it is crucial to identify an optimal node allocation strategy that allows

maximizing the e�ciency in which a given architecture is able to capture all the regular or

repeating patterns in the underlying data generating process.

A recent review article by Kraus et al. (2020) compares the performance of deep learning

models to conventional models from machine learning (i.e., lasso, random forests, and SVMs)

and shows the improvements over the latter models in both prediction and operational per-

formance. These authors note that default, out-of-the-box architectures (i.e., not optimally

selected/tuned) are characterized by high bias and propose a deep-embedded neural network

architecture that speci�cally addresses the need of e�ectively handling categorical variables

and their concatenated embedding. Although we pursue a similar objective, our strategy for

optimizing the neural network is di�erent. The aim of our study is to implement a data-free

optimization procedure that delivers an optimal width and depth of a given size network ar-

chitecture before training it with data. More speci�cally, the number of hidden nodes (size) of

the neural network is dictated by the complexity of the underlying data generating process to

be approximated, and the optimization proposed in the present chapter allows maximizing the

e�ciency in which a neural network architecture (of a given size) can partition (recursively)

77

the input space and thus, the e�ciency in which a neural network approximates the linear

regions characterizing the underlying data generating process.

Another branch of the literature on deep neural networks focuses on extending the Uni-

versal Approximation Theorem to the unbounded and non-continuously di�erentiable ReLu

activation function (see Guilhoto, 2018). Modern neural networks use the ReLu activation

function due to the ease in training shallow and deep networks, as opposed to sigmoidal acti-

vation functions that make the training arduous (Géron, 2017). However, it has been shown

that shallow networks, despite being universal approximators, may fail to learn and general-

ize the data generating process correctly due to the unfeasibly large number of hidden nodes

required to approximate the underlying function (Goodfellow et al., 2016; Barron, 1993).

The rest of the chapter is organized as follows: Section 3.2 reports the de�nitions and

notations used in the chapter, the Universal Approximation Theorem, and function approx-

imation by step functions. Section 3.3 discusses the novel methodology used for structure

identi�cation by reporting the numerical results of the analyzed maximization. Section 3.4

presents a Monte Carlo simulation exercise that provides empirical evidence in �nite samples

of the performance of our method in improving the out-of-sample goodness of �t of deep

neural networks for di�erent data generating processes and input dimensions. In Section 3.5

the novel methodology is applied to the Boston Housing dataset. Section 3.7 concludes.

3.2 Universal approximation theorem

Subsection 3.2.1 introduces relevant de�nitions and notations. Subsection 3.2.2 analyzes and

explains the Universal Approximation Theorem and the relation that subsists between piece-

wise linear functions (PWL) and ReLu DNN. Subsection 3.2.3 formalizes the relation between

function approximation and neural network structure. Subsection 3.2.4 reports the main the-

ory analyzing the number of linear regions approximated by both shallow and deep neural

networks.

Let yi for i = 1, . . . , n denote the outcome variable of interest and xi = (x1i, . . . , xdi) a set

of input variables used to predict the outcome. A general predictive model is expressed as

yi = f(xi, εi), (3.1)

where f(·, ·) is a real-valued function used to predict the outcome variable and εi denotes

the set of unobserved variables. The contribution of the di�erent variables is assumed to be

additive such that we obtain

yi = f(xi) + εi, (3.2)

with εi interpreted as an error term. The choice of the functional form f(xi) depends on

the loss function L(yi, f(xi)) penalizing the di�erence between the outcome variable and

the prediction. For example, it is well known that if the loss function is quadratic then

78

the best predictive model is f(xi) = E[yi | xi]. Similarly, if the loss function is the check

function used in quantile regression then the optimal prediction is given by the conditional

quantile f(xi) = Qτ [yi | xi], with τ ∈ (0, 1). Other prominent examples in the machine

learning literature include classi�ers such as logistic regression, linear discriminant analysis,

kernel methods as support vector machines, tree-based methods such as decision trees and

their generalization to random forests, and nonparametric regression in the spirit of nearest

neighbors and local kernel smoothing.

The question of interest is to approximate the unknown function f(x). Under the as-

sumption that the function f(x) is linear on the observable input variables, OLS estima-

tion provides unbiased, consistent and e�cient estimators of the coe�cients associated to x.

Nonlinear speci�cations of f(x), the presence of unobserved heterogeneity, high-dimensional

problems and complex datasets, require of alternative methods to approximate the function

f(x). Recent advances in machine learning have shown that neural network methods provide

accurate predictions that do not require of speci�c knowledge of the data generating process

and, hence, are not a�ected by model misspeci�cation and related econometric issues. Neural

networks approximate the function of interest by combining and composing di�erent types of

activation functions over one or more layers of nodes.

3.2.1 De�nitions and Notations

We will consider throughout the family of Recti�ed Linear Unit (ReLu) activation functions.

These functions have proved recently more suitable to deep learning problems than sigmoidal

activation functions (Jarrett et al., 2009; Nair and Hinton, 2010; Goodfellow et al., 2016; and

Géron, 2017). A ReLu activation function is de�ned as follows. Let θ(x) : Rd → Rd, with

θ(x) = (max{0, x1},max{0, x2}, · · · ,max{0, xd}),

where d is the dimension of the input variables. One prominent advantage of ReLu func-

tions is the projection property given by θ ◦ θ = θ, where ◦ denotes function composition

(Schmidt-Hieber, 2017).

The corresponding DNN for ReLu activation functions is de�ned as follows.

De�nition 3.2.1. (ReLu DNN)

For any two natural numbers d, n2 ∈ N, which are called input and output dimension re-

spectively, a Rd → Rn2 ReLu DNN is given by specifying a natural number N ∈ N, a
sequence of N natural numbers Z1, Z2, · · · , ZN and a set of N + 1 a�ne transformation

T1 : Rd → RZ1 , Ti : RZi−1 → RZi for i = 2, · · · , N and TN+1 : RZN → Rn2 . Such a ReLu

DNN is called a (N + 1)-layer ReLu DNN, and is said to have N hidden layers. The function

G : Rd → Rn2 represented by this ReLu DNN is:

G = TN+1 ◦ θ ◦ TN ◦ · · · ◦ T2 ◦ θ ◦ T1. (3.3)

79

The depth of a ReLu DNN is de�ned as N + 1. The width of the nth hidden layer is Zn,

and the width of a ReLu DNN is max{Z1, · · · , ZN}. The size of the ReLu DNN is Z =

Z1 + Z2 + · · · + ZN . The number of active weights (di�erent from zero) in the nth hidden

layer of a fully connected ReLu DNN is wn = Zn × Zn−1. The number of active weights in a

fully connected ReLu DNN is then w1 + w2 + · · ·+ wN . Moreover, we have that:

Tn = W(n)x + b(n), (3.4)

where - for N = 1 - W(n) ∈ RZ1×d, x ∈ Rd×1 is the input layer, and b(n) ∈ RZ1 . For

N 6= 1, W(n) ∈ RZn×Zn−1 , x is the value from the previous hidden layer hn−1 ∈ RZn−1 , and

b(n) ∈ RZn .

Input

layer
h1

Output

layer

...

Bias Bias

diag







I(W(1)
1 x+ b

(1)
1)

...

I(W(1)
Z1

x+ b
(1)
Z1

)





 (W(1)x+ b(1)) ω>

Oh1 + bO

y

x1

x2

x3

xd

1

Figure 3.2: Shallow ReLu neural network

The ReLu activation function can be also formulated as θ(s) = I(s > 0) ·s, where I(s > 0)

is an indicator function that takes a value of 1 if the argument is true and zero, otherwise.

Using this characterization of the activation function, see Pascanu et al. (2013), we can de�ne

a single hidden layer ReLu neural network G : Rd → R as

G(x) = ω>Odiag







I(W(1)
1 x + b

(1)
1)

...

I(W(1)
Z1

x + b
(1)
Z1

)





 (W(1)x + b(1)) + bO, (3.5)

where W
(1)
j identi�es row j for j = 1, · · · , Z1 of the matrix W(1) ∈ RZ1×d, x ∈ Rd×1 is the

80

input layer, b
(1)
j ∈ R is the element j for j = 1, · · · , Z1 of the random vector b(1) ∈ RZ1 ,

ωO ∈ RZ1 , and bO ∈ R.

De�nition 3.2.2. (Piecewise linear functions (Arora et al., 2016))

We say a function G : Rd → R is continuous piecewise linear (PWL) if there exists a �nite set

of closed sets whose union is Rd, and G is a�ne linear over each set (note that the de�nition

automatically implies the continuity of the function). The number of pieces of G is the number

of maximal connected subsets of Rd over which G is a�ne linear.

Note that the notion of number of pieces where G is a�ne linear and number of linear regions

are used as synonyms in the rest of the chapter.

Based on Equation 3.5, it is possible to clarify the choice of the ReLu activation function.

In particular, one could notice how ReLu activation functions have two operation nodes: they

can be either constant and equal to zero or positive and equal to the linear a�ne transfor-

mation to which they are applied. Therefore, for each ReLu activation function, there is a

hyperplane that de�nes the boundary between these two regions, and each hidden layer can be

seen as an arrangement of hyperplanes. It follows that a shallow ReLu neural network can be

regarded as an arrangement of hyperplanes and a deep Relu neural network as a composition

of arrangements of hyperplanes. This result has two important implications that are analyzed

more in details in the following sections: I) shallow and deep ReLu neural networks are piece-

wise linear functions and as such are universal approximators, II) by extending the results of

Zaslavky (1975), it is possible to quantify the number of linear regions being approximated by

a ReLu neural network and thus, to assess the e�ciency of the recursive partition of the input

space. As other widely adopted activation functions such as i) Sigmoid θ(x) = (1 + e−x)−1,

ii) Softplus, θ(x) = log(1 + ex), or iii) Tangent, θ(x) = (e2x−1)/(e2x+ 1) cannot be identi�ed

by a hyperplane, the methodology proposed in the present chapter is restricted only to ReLu

activation functions.

As a �nal remark, it is important to stress that if the ReLu activation functions are

more suitable for training deep neural networks, they are still subject to the dying ReLu

problem. That is, due to a large learning rate, the output of the ReLu activation function

remains e�ectively zero (i.e., the gradient of the ReLu function is equal to zero when the input

is negative leading to no update from the backpropagation algorithm). If this eventuality is

observed, a possible solution is to adopt the leaky ReLu activation function θ(x) = max{αx, x}
(for α = 0, the leaky ReLu is the ReLu activation function). In this case, it is preferable to

apply a small leak (α ≈ 0.01) rather than a huge leak (α ≈ 2) in order to preserve the

theoretical results from Montufar et al. (2014).

3.2.2 Universal Approximation Theorem

In this section we review the literature that shows under di�erent activation functions the

existence of a universal approximation function in neural network settings.

Cybenko (1989) de�nes a shallow network with activation function θ:

81

G(x) =

Z1∑

j=1

ωOj θ(W
(1)
j x + b

(1)
j). (3.6)

This author proves that this function approximates arbitrarily well the unknown function

f(x) over the n-dimensional unit cube26. In the remainder of the chapter, f(x) identi�es

the unknown underlying function to be approximated, and G(x) the shallow or deep neural

network function used to approximate f(x). This is formalized in the following lemma that

is stated without proof. Interested readers are referred to Cybenko (1989).

Theorem 1 (Universal Approximation Theorem by Cybenko).

Let θ be any continuous discriminatory function and C(In) be the space of continuous functions

on In, with In an n-dimensional unit cube. Then, the �nite sum of the form (3.6) is dense in

C(In). In other words, given any f(x) ∈ C(In) and for any ε > 0, there is a sum of the above

form, for which

sup
x∈In
|f(x)−G(x)| < ε. (3.7)

The Universal Approximation Theorem formulated by Cybenko (1989) applies to all

bounded Borel measurable sigmoid functions. Leshno et al. (1993) extend the above theorem

to deep feedforward neural networks proving that a multilayer neural network can approximate

any continuous function as long as the activation functions are bounded and not polynomial.

Hornik (1991) broadens the literature related to the Universal Approximation Theorem prov-

ing that multilayer perceptrons can approximate arbitrarily well any function, provided that

a su�ciently large enough number of hidden nodes is used. The results obtained by Hornik

(1991) improve over the previous literature by proving that the capability of approximating

arbitrarily well any given function depends mainly the number of hidden nodes, and not on the

particular activation function used. Therefore, failing to converge to an optimal solution can

be attributed to inadequate training or a low number of hidden nodes, imposing a �sometimes

unfeasible� number of hidden nodes to be used when a shallow architecture is selected.

Complementary to the �ndings of Hornik (1991), a recent branch of the literature based on

mean-�eld approximation (Sirignano and Spiliopoulos, 2018; Mei et al., 2018; and Tewlgarsky,

2016) that analyzes neural networks trained with Stochastic Gradient Descent (SGD) prove

that the distribution of the network parameters converges to the solution of a given partial

di�erential equation. In particular, Mei et al. (2018) complete the results of Hornik (1991)

by proving that for shallow networks with Z � d and trained with SGD, an arbitrary choice

of Z ensures convergence to a solution close to the optimum. These results imply, also, that

shallow networks with Z � d do not over�t even if the number of nodes grows to in�nity.

Lastly, Lu et al. (2017) complement the results provided by Hornik (1991) by extending the

26 The representation in 3.6 is equivalent to Equation 3.5 where the output of the shallow ReLu neural network
is expressed using matrix multiplication, and the ReLu activation function θ as an indicator function.
When reporting the Universal approximation theorem the authors express Equation 3.5 as in (3.6) to allow
comparability with Cybenko (1988).

82

Universal Approximation Theorem to width-bounded ReLu DNN, with a minimum depth

equal to d + 4, where d is the number of input variables and, hence, of nodes in the input

layer. Based on Lu et al. (2017), it is possible to conclude that both shallow and deep neural

networks - notwithstanding the activation function used - are universal approximators.

It is possible to extend the proof of the Universal Approximation Theorem to ReLu neural

network by proving that ReLu activation functions - for a given structure - are bounded. In

particular, Guilhoto (2018) constructs the following bounded continuous activation function

θ∗(x) by subtracting two ReLu activation functions:

θ∗(x) =





0 if x < 0

x if x ∈ [0, 1]

1 if x > 1

(3.8)

Any function of the form θ∗(wx+ b) can be de�ned as:

θ∗(wx+ b) = ReLu(wx+ b)−ReLu(wx+ b− 1). (3.9)

Another branch of the literature extends the Universal Approximation Theorem to ReLu

DNN using approximation results for PWL functions. More formally,

Lemma 1 (Proposition 4.2 from Goodfellow et al. (2013b)).

Let C be a compact domain C ⊂ Rn, G : C → R be a continuous function, and ε > 0 be

any positive real number. Then, there exists a continuous piece-wise linear (PWL) function

G, such that

sup
x∈C
|f(x)−G(x)| < ε. (3.10)

This result shows that PWL functions are universal approximators. Arora et al. (2016) prove

that every Rd → R PWL function can be represented by a ReLu DNN (see their Theorem

2.1), by showing the equivalence between the lattice representation of PWL functions and

ReLu DNNs. The results of Arora et al. (2016) coupled with Lemma 1 demonstrate that

ReLu DNNs are, indeed, universal approximators27.

Thus, regardless the data generating process considered, both architectures of the neural

network are able to approximate the function f(x) arbitrarily well. Empirically though,

there are di�erences in the quality of the approximations between deep and shallow network

structures (Larochelle et al., 2007; Novak et al., 2018). One of the main advancements on the

topic is provided by Pascanu et al. (2013) and Montufar et al. (2014) with the comparison

27 Additionally, Hanin and Sellke (2017) - based on Theorem 2.1 in Wang (2004) - prove that a ReLu DNN
with a given structure is equivalent to the di�erence between two max functions, and thus is a universal
approximator.

83

between deep and shallow networks in terms of linear regions approximated. More speci�cally,

by showing that a ReLu deep neural network is within the class of PWL functions, we are able

to state that the approximation power of the neural network is determined by the number of

linear regions that the function embedded in the network structure can approximate.

3.2.3 Linear Regions Approximation

x h1 h2 · · · hN O

x1

x2

x3

θ(W
(1)
1 x)

θ(W
(1)
2 x)

...

θ(W
(1)
Z1

h1)

θ(W
(2)
1 h1)

θ(W
(2)
2 h1)

...

θ(W
(2)
Z2

h1)

...

...

...

...

θ(W
(N)
1 hN−1)

θ(W
(N)
2 hN−1)

...

θ(W
(N)
ZN

hN−1)

wTOhN

θ(x) = max{0, x}

Figure 3.3: ReLu Deep Neural Network with bias terms 0.

As mentioned earlier, see also Eckle and Schmidt-Hieber (2019), the output of a ReLu deep

neural network is always a PWL function of the input. To show this, we note that a ReLu

deep neural network is the composition of continuous PWL functions, see expression (3.3),

and thus, is another PWL function. Based on the results of Arora et al. (2016), it is also

possible to conclude that the number of linear regions describing a ReLu neural network

depends directly on the number of hidden nodes Z used to train the network.

Being PWL functions, ReLu deep neural networks can similarly be described by the num-

ber of linear regions that they can approximate. This concept is clari�ed by Farrell et al.

(2019) when comparing neural networks to more classic nonparametric techniques. These

authors also draw a parallelism between di�erent nonparametric techniques to approximate

unknown continuous functions and DNN structures, noting that smoothing splines are usually

de�ned by the spline basis (smoothing parameter) and the number of knots (tuning parame-

ters). In kernel regression, the shape of the kernel constitutes the smoothing parameter while

84

the bandwidth de�nes the tuning parameter. Similarly, in neural networks the type of connec-

tions (graph structure) and activation function identify the smoothing parameters, while the

width and depth of the neural network are the tuning parameters of the sized-Z architecture

under consideration.

Figure 3.3 shows that the output of a ReLu deep neural network is a weighted sum of

piecewise linear functions, with the number of pieces in Rhn−1 equal to ZN . One could also

notice - as mentioned also in Montufar et al. (2014) - that the computation performed by

hN on the post activations of hN−1 is e�ectively carried out on the post activation regions

of hN−2, and on the regions of the preceding hidden layers until the input layer is reached.

Therefore, it is possible to express the output of the ReLu neural network as a weighted sum

of piecewise linear functions on the input space x.

Having de�ned the relation that subsists between PWL and deep neural networks, we can

apply the function approximation in Aumann (1963). This author approximates any bounded

real function f(x) as a linear combination of characteristic functions χS on a set S, de�ned as

χS(x) =





1 if x ∈ S

0 if x /∈ S,
(3.11)

such that, given the subsets S1, · · · , Sp of S:

f(x) ∼
p∑

i=1

aiχSi(x). (3.12)

More formally, Aumann (1963) shows that the approximation (3.12) minimizes the sup norm:

sup
x∈S
|f(x)−

p∑

i=1

aiχSi(x)|, (3.13)

by a proper choice of ai. Expression (3.12) can be seen as the sum of p di�erent ReLu activation

functions χSi , i = 1, . . . , p. The weights W(n) of the neural network for n = 1, · · · , N
correspond to the slopes of the linear regions and ωOi to the coe�cients ai in expression

(3.12).

Montufar et al. (2014), Pascanu et al. (2013), and Raghu et al. (2017) state that the num-

ber of linear regions approximated by a ReLu network de�nes the complexity of the unknown

target function that can be approximated by the neural network, identifying the model's �ex-

ibility. Pascanu et al. (2013) state that - in practice - the linear regions approximated by the

neural network are correlated (see also Figure 3.3). This is an important characteristic that

ensures good generalization performance of the neural network, and not a mere over�tting

problem arising from an increasing number of linear regions. Tewlgarsky (2016) after iden-

tifying the complexity of a given function with the number of oscillations, proves that - due

to the function composition de�ned in De�nition 3.2.1 - deeper architectures will capture a

85

higher number of oscillations in the function being approximated than shallow networks28.

Based on the argument that low-oscillation functions cannot approximate arbitrarily well

high-oscillation functions, Tewlgarsky (2016) proves that increasing the architecture's depth

increases the architecture's �exibility.

3.2.4 Number of Linear Regions

De�nition 3.2.1 shows that each hidden unit has two operational nodes, one takes a value

of zero and the other takes a positive value. The boundary between these two operational

regions is given by the hyperplane Hj consisting of all the inputs x ∈ Rd with W
(n)
j x + b

(n)
j .

Therefore, the number of linear regions represented by a shallow ReLu neural network of size

Z1 is de�ned by the number of regions de�ned by the set of hyperplanes {Hj}j∈[Z1]. Zaslavsky

(1975) proves that an arrangement of n hyperplanes can divide an Rd dimensional space in a

number of regions equal to
∑d

s=0

(
n
s

)
.

Being each hidden node in a shallow network a hyperplane, we can consider the hidden

layer in shallow ReLu networks as an arrangement of hyperplanes, and thus by extending the

result of Zaslavsky (1975) it is possible to obtain the number of linear regions approximated

by a shallow ReLu Network (Pascanu et al., 2013) as

d∑

s=0

(
Z1

s

)
. (3.14)

Montufar et al. (2014) extend the result of Pascanu et al. (2013) and obtain the following

lower bound to the maximal number of linear regions represented by a ReLu DNN (with N

layers) of size Z =
∑N

j=1 Zj :



N−1∏

j=1

⌊
Zj
d

⌋d



d∑

s=0

(
ZN
s

)
(3.15)

where b·c de�nes the ��oor operator� which is the function that returns the greatest integer less
than or equal to its real input argument. Based on the de�nition of ReLu DNN (De�nition

3.2.1), Montufar et al. (2014) state that each hidden layer in a deep feedforward neural

network folds the space of the previous hidden layer, with the recursive folding of the input

space being determined by W and b. This space folding implies that the �nal function

computed by the last hidden layer (arrangement of ZN hyperplanes) is applied to all the

subsets identi�ed by the succession of foldings performed by the deep structure (see also

Figure 3.3). The authors, for each hidden layer, divide the set of ReLu activation functions

in d non-overlapping subsets of cardinality bZj/dc.

Corollary 6 of Montufar et al. (2014) compares the expressive power of single layer ReLu

NNs with ReLu DNNs of same size Z and conclude that if d = O(1), the number of linear

28 Lemma D.1 and D.2 in Arora et al. (2016) provide a similar result.

86

regions approximated by the latter DNN behaves as Ω
(
N−Ndd−(N−1)dZNd

)
29. In contrast,

the number of linear regions approximated by its shallow NN counterpart behaves as O
(
Zd
)
.

Therefore, the number of regions grows exponentially in depth (N) and polynomially in width

(ZN) in ReLu DNNs, which is much faster than the polynomial growth of shallow ReLu NNs

of same size Z. Thus, an increase in depth of a neural network should always lead to an

exponential increase in the number of linear regions approximated by a ReLu DNN, which

according to the above universal approximation theorems, results in a better �t of the DNN

architecture to the input data. For completeness, we also note that an upper bound for the

maximal number of linear regions of a function approximated by a network architecture with

recti�ed linear units of size Z is of order O
([

Z
N

]Zd)
, as recently shown by Raghu et al. (2017,

Theorem 1).

The above results also suggest that a deep neural network is able to represent the same

number of linear regions of a shallow network with a lower number of trainable parameters

(hidden units). However, empirical studies show that this is not always the case; in some em-

pirical applications shallow networks outperform deep networks (Pasupa and Sunhem, 2016;

Kim and Gofman, 2018). This is illustrated numerically in the following examples. Let

us consider a ReLu DNN given by d = 4 and Z = 30. The number of linear regions ap-

proximated by a shallow network is
∑4

s=0

(
30
s

)
= 31931. In contrast, if we consider a ReLu

DNN with N = 2, we can either have
⌊

7
4

⌋4∑4
s=0

(
23
s

)
= 10903 for Z1 = 7 and Z2 = 23 or⌊

8
4

⌋4∑4
s=0

(
22
s

)
= 145744, for Z1 = 8 and Z2 = 22. Similarly, if we increase the depth of the

ReLu DNNs to N = 3, we can either have
(⌊

8
4

⌋4 ⌊8
4

⌋4
)∑4

s=0

(
14
s

)
= 376576 for Z1 = 8, Z2 = 8

and Z3 = 14 or
(⌊

7
4

⌋4 ⌊7
4

⌋4
)∑4

s=0

(
16
s

)
= 2517, for Z1 = 7, Z2 = 7 and Z3 = 16. Finally, if

we increase the depth to N = 4, we can either have
(⌊

8
4

⌋4 ⌊8
4

⌋4 ⌊8
4

⌋4
)∑4

s=0

(
6
s

)
= 233472 for

Z1 = 8, Z2 = 8, Z3 = 8 and Z4 = 6 or
(⌊

7
4

⌋4 ⌊7
4

⌋4 ⌊7
4

⌋4
)∑4

s=0

(
9
s

)
= 256, for Z1 = 7, Z2 = 7,

Z3 = 7 and Z4 = 9. These examples show that under certain conditions a shallow network

could provide a better approximation of the unknown function f(x). We can formalize the

results in these examples as follows.

Property 1 (Increase in Depth).

Let Z = z denote the total number of hidden nodes in the ReLu DNN. Condition (Z1/d) < 2

implies that ⌊
Z1

d

⌋d d∑

s=0

(
z − Z1

s

)
<

d∑

s=0

(
z

s

)
. (3.16)

Then, the number of linear regions approximated by the ReLu DNN is smaller than the number

of linear regions approximated by the shallow network counterpart.

This property can be extended to consider the condition (Zj/d) < 2 for all j = 1, · · · , N − 1.

More formally,

29 Two real-valued functions f(h) and g(h) satisfy that f(h) = Ω(g(h)) if there is a positive constant c such
that f(h) ≥ cg(h), for all h su�ciently large.

87

Property 2 (Shallow versus Deep ReLu network).

Given a ReLu DNN comprised by Z = z hidden nodes, depth N and such that (Zj/d) < 2 for

j = 1, · · · , N − 1, it holds that



N−1∏

j=1

⌊
Zj
d

⌋d



d∑

s=0

(
z −

∑N−1
j=1 Zj
s

)
<

d∑

s=0

(
z

s

)
. (3.17)

Under the conditions of Property 2 we cannot guarantee that the architecture of the DNN

improves over the architecture of the corresponding shallow network.

In the following section we derive an optimal architecture of the DNN based on expression

(3.15). This optimal architecture is obtained before bringing the model to the data. In a

second stage, we show how the optimal DNN outperforms cross-validation methods under

mean square error (MSE) evaluation criteria implemented to simulated data (Section 3.4)

and a real data example in Section 3.5.

3.3 Optimal Deep Neural Network Structure

This section presents the objective function that characterizes an optimal DNN architecture

and discusses analytical and numerical methods for solving the optimization exercise under

complex architectures of the network.

3.3.1 Maximization of the Number of Linear Regions

Our strategy for the identi�cation of the optimal structure of a neural network is to maximize

the lower bound of the maximal number of linear regions approximated by the ReLu DNN.

The maximization of this quantity implies an optimal number of terms to approximate the

unknown function f(x) . Under some constraints, the solution to (3.18) also yields a greater

number of linear regions than the shallow network counterpart structure.

The objective function is (3.15) and the optimization problem is to choose the optimal

number of hidden layers N and nodes per layer (Z1, . . . , ZN), for a given size z. More formally,

max
N,{Zl}Nl=1



N−1∏

j=1

⌊
Zj
d

⌋d



d∑

s=0

(
ZN
s

)

s.t. Z1 + Z2 + · · ·+ ZN = z

Zj ≥ d for j = 1, 2, · · · , N

(3.18)

The number of nodes cannot be smaller than d since the di�erence enters the denominator

of the binomial coe�cient in equation (3.15). Note that this is a standard assumption in the

literature (Montufar et al., 2014; Pascanu et al., 2013; Mei et al., 2018; and Hornik, 1991),

88

and that - as stated by Aggarwal (2018) - the �probabilistic regularization� characterizing the

stochastic gradient descent learning algorithm ensures a proper training of the hidden layers.

The optimization procedure is complex and, in most cases, di�cult to obtain analytically.

The above objective function can be expressed as

max
(N,{Zl}N−1

l=1 ,{µl}Nl=1)
LB(N, {Zl}N−1

l=1 ; d) +
∑N−1

l=1
µl(d− Zl) + µN (−N)

where {µl}Nl=1 ∈ RN denotes the collection of N Lagrange multipliers associated with the

N − 1 constraints, Zl ≥ d, l = 1, . . . , N − 1, and with the constraint N > 0, because we have

incorporated the equality constraint Z =
∑N

l=1 Zl into the lower bound objective function,

LB(N, {Zl}N−1
l=1 ; d) ≡

(∏N−1
l=1

⌊
Zl
d

⌋d)∑d
r=0

(
Z−∑N−1

l=1 Zl
r

)
. This is a combinatorial optimiza-

tion problem because the decision variables {N,Z1, . . . , ZN−1} are integer values. Judd (1990)
shows that optimizing a NN is an NP-hard problem, meaning that a polynomial time algo-

rithm that solves it is not known but could be found30.

One could instead try to approximate the combinatorial optimization problem by its con-

tinuous counterpart, and obtain the FOCs:

∂Zl′LB(N∗, {Z∗l }
N∗−1
l=1 ; d)− µl′ = 0, for l′ = 1, . . . , N − 1,

∂NLLB(N∗, {Z∗l }
N∗−1
l=1 ; d)− µN = 0,

µl′(d− Z∗l′) = 0, for l′ = 1, . . . , N − 1

−µNN∗ = 0.

(3.19)

The FOCs of this problem represent a system of 2N equations in 2N unknowns,

(N∗, {Z∗l }
N∗−1
l=1 , {µ∗l }N

∗
l=1) ∈ R2N . Note, however, that the number of equations and the number

of unknowns is part of the solution of the problem, N∗, which is 'problematic'. Typically,

this problem can be solved in two stages: a �rst step that - given Z = z and N - identi�es

the optimal layerwise widths of the network (Z∗1 , . . . , Z
∗
N); and a second step that given the

optimal widths for di�erent depths, identi�es the optimal depth of the network N∗ such that

the optimal network architecture is given by the vector (Z∗1 , . . . , Z
∗
N∗). In this case the above

Lagrangian function simpli�es but it is still a complex exercise.

We illustrate the latter optimization procedure with a simple exercise with d = 2 and

Z1 + Z2 = Z, so that N = 2 > 0 and the corresponding constraint is omitted for simplicity

(µ3 = 0). If Z1 is an even number the optimization problem in the �rst step is

L(Z1, Z2;µ) =

(
Z1

2

)2 [
1 + Z2 +

Z2(Z2 − 1)

2

]
− µ[Z1 + Z2 − Z].

30 Algorithms that require an 'intractable' exponential amount of time to �nd a solution are called NP.

89

The �rst order conditions of this problem with respect to Z1, Z2 are

∂L

∂Z1
=
Z1

2

2∑

s=0

(
Z2

s

)
− µ = 0

∂L

∂Z2
=

(
Z1

2

)2(1

2
+ Z2

)
− µ = 0

∂L

∂µ
= −Z1 − Z2 + Z = 0.

Solving the above system, we obtain that:

Z1

2

[
1 + Z2 +

Z2(Z2 − 1)

2

]
=

(
Z1

2

)2(1

2
+ Z2

)

Z1 + Z2 = Z

from which: (
1 +

Z2

2
+
Z2

2

2

)
=

(
Z − Z2

2

)(
1

2
+ Z2

)
. (3.20)

Similarly, if Z1 is an odd number the optimization problem is

L(Z1, Z2;µ) =

(
Z1 − 1

2

)2 [
1 + Z2 +

Z2(Z2 − 1)

2

]
− µ[Z1 + Z2 − Z].

The FOCs of this problem with respect to Z1, Z2 are

∂L

∂Z1
=
Z1 − 1

2

2∑

s=0

(
Z2

s

)
− µ = 0

∂L

∂Z2
=

(
Z1 − 1

2

)2(1

2
+ Z2

)
− µ = 0

∂L

∂µ
= −Z1 − Z2 + Z = 0,

and solving the above system, we obtain that:

Z1 − 1

2

[
1 + Z2 +

Z2(Z2 − 1)

2

]
=

(
Z1 − 1

2

)2(1

2
+ Z2

)

Z1 + Z2 = Z

from which: (
1 +

Z2

2
+
Z2

2

2

)
=

(
Z − Z2 − 1

2

)(
1

2
+ Z2

)
. (3.21)

To obtain a numerical solution, let z take a speci�c value for the number of total nodes Z, e.g.

z = 60. Then, the �rst order conditions (3.20) and (3.21) accept the following two solutions:




Z∗2 = (117 +

√
14585)/8 = 29.72 ≈ 30

Z∗2 = (117−
√

14585)/8 = −0.47 ≈ 0
(3.22)

90

In this case the only feasible solution is Z∗2 = 30 that entails Z∗1 = 30. The computation of

the Hessian matrix

HB =




0 g1 g2

g1 L11 L12

g2 L21 L22,


 (3.23)

shows that the solution Z∗1 = Z∗2 = 30 yields a maximum. Note that gi indicates the deriva-

tives of the constrains with respect to the choice variables (Zi), and Lij captures the second

and cross-partial derivatives of the Lagrange function. Therefore, for a depth of 2 and z = 60,

the optimal architecture of the ReLu neural network is given by two layers of equal length. To

complete the solution, in the second step, we would need to repeat the maximization exercise

for N = 3 and beyond up to N ≤ d zde. The optimal architecture of the ReLu neural network

is de�ned by the quantities (N∗, Z∗1 , . . . , Z
∗
N∗).

Function 15 for d = 2

0 10 20 30 40 50 60

Z1

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0

4
1e

+0
5

0 10 20 30 40 50 60

Z1

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0

4
1e

+0
5

Function 15 without floor operator for d = 2

Figure 3.4: The Figure reports the lower bound to the maximal number of linear regions for the
ReLu DNN considered in the above maximization problem.

The left panel of Figure 3.4 plots the function
⌊
Z1
2

⌋2
[
1 + z−Z1

2 + (z−Z1)2

2

]
assuming that

Z1 is a real number de�ned on the set Z1 ∈ [2, z − 2], for z = 60. The plot shows the saw

type function implied by the �oor operator. Despite this, the existence of a global maximum

is clear and is found at Z∗1 = 30 as shown in our analytical derivation. For completeness, we

also plot in the right panel the smooth version of function (3.15) that does not consider the

�oor operator.

The above example con�rms the presence of an interior solution to the optimization prob-

lem (3.18) for low-dimensional DNNs. In practice, the di�culty of the optimization for real-

istic values of the number of nodes and layers implies that the solution to (3.18) is achieved

through numerical methods.

91

3.3.2 Numerical Optimization

The multivariate optimization imposes domains on the optimal variables: each hidden layer

must be de�ned by a number of hidden nodes which is at least equal to the input dimension,

and the maximum number of hidden nodes allowed per hidden layer must guarantee that the

remaining hidden layers have a number of hidden units at least equal to the input dimension.

10
20

30
40

50
60

20

40

60

80

100

−200000

0

200000

400000

600000

800000

1000000

x

y

z

−2e+05

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

100
200

300

400 2

4

6

8

10

−200000

0

200000

400000

600000

800000

1000000

x

y

z

−2e+05

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

10
20

30
40

50

20

40

60

80

100

−1e+07

0e+00

1e+07

2e+07

3e+07

4e+07

x

y

z
−1e+07

0e+00

1e+07

2e+07

3e+07

4e+07

100

200

300

400
2

4

6

8

10

−1e+07

0e+00

1e+07

2e+07

3e+07

4e+07

x

y

z

−1e+07

0e+00

1e+07

2e+07

3e+07

4e+07

a.1 b.1

b.2a.2

Figure 3.5: The Figure reports the number of linear regions as a function of the depth and the
di�erent combinations obtainable with the given number of hidden nodes. Sub-Figures a.1 and b.1
report the plane project of the number of linear regions as a function of the possible structures
associated to d = 2 and d = 3 and three hidden layers. Sub-Figures a.2 and b.2 report the number of
linear regions as a function of the depth of the neural network and the possible structures for a given
number of hidden nodes.

Under these optimization constraints, a simple procedure to obtain the solution to (3.18)

for a given number of nodes z is to evaluate the objective function for all possible combinations

of integer numbers that satisfy the constraints Z1 + Z2 + · · · + ZN = Z and Zj ≥ d for

j = 1, . . . , N . This is the low-dimensional version of the nonlinear integer programming

method discussed above. This procedure yields exact solutions to the optimization problem

(3.18) for low values of N and Z. However, the problem becomes computationally intractable

as N and, in particular, Z increase. In this scenario quasi newton algorithms designed to

solve constrained optimization problems are more suitable. In particular, the L-BFGS-B

algorithm, which is the limited-memory quasi newton algorithm designed to solve constrained

optimization problems, is used to return the parameters that optimize the objective function

(3.18). The obtained solutions are also compared against the SLSQP - Sequential Least

Squares Programming algorithm - optimizer implemented on Pytorch. Both algorithms - in

contrast to others, such as the Stochastic Gradient Descent - allow for the �oor operator

92

to be taken care of. The comparison between the L-BFGS-B and the SLSQP algorithm is

conducted solely with the intention to control for the correct convergence of the former, as

they both provide satisfactory solutions.

The numerical optimization exercise is illustrated for a total number of hidden nodes equal

to Z = 60, and di�erent number of input variables with d = 2, 3, 4, 5, 6. We report the optimal

widths for di�erent depths; the optimized structure will be identi�ed by the combination of

depth and width that maximizes the minimum number of linear regions approximated by the

ReLu DNN.

Figure 3.5 investigates this eventuality. In particular, Figures a.1 and b.1 provide a three-

dimensional representation of a two dimensional problem, that is of the optimization of the

layer wise width of the network, for a given depth and number of hidden nodes. The plots

are obtained by �tting a generalized additive model between the number of linear regions

associated to each structure combination obtainable when d = 2, 3 and N = 3, and the

possible combinations. The �tted curve is then replicated along the x-axis in order to generate

a plane for a better visualization of the convex problem solved by the optimization. The

di�erent �gures con�rm that the maximization problem has an interior solution and, thus,

an optimal combination of widths that, for a given depth, maximizes the number of linear

regions approximated by the neural network. In contrast, Figures a.2 and b.2, project the

complete optimization problem. The optimization problem is considered not only in terms of

the optimal width of the network, but also in terms of optimal depth. The y-axis represents

the number of possible combinations associated to each hidden layer, while the x-axis identi�es

the di�erent depths of the neural network considered, and the z-axis represents the number of

linear regions associated to each combination for a given neural network depth.31. Figure 3.5

shows that the analyzed optimization problem (expression (3.18)) is convex if it is considered

either for a given depth, or if it is considered in terms of optimal width and depth. Therefore,

there exists a maximum for the lower bound of the maximal number of linear regions in terms

of both width and depth and, importantly, the strategy of decomposing the optimization

problem (3.18) in the two step procedure previously suggested is able to capture the global

optimum.

Table 3.1 reports the results from the optimization exercise (3.18) for di�erent input

dimensions. For completeness, we report the maximization exercise from the �rst stage that

allows us to obtain an optimal width for given depths, and then identifying the optimal

combination of width and depth that maximizes the number of linear regions approximated

by a neural network.

We also consider the minimization of (3.15). It is important to specify that the purpose of

the numerical minimization is merely explanatory, and reported to provide a more complete

31 Once the plane is obtained, to smooth the 3D surface, a generalized additive model is �tted. It is important
to highlight that this procedure is reported only for completeness on the methodology used to construct
Figure 3.5 and as such, does not change the outcome of the optimization problem

93

understanding of the duality between deep and shallow networks. As mentioned above, if

the minimum number of linear regions approximated by a ReLu DNN is always higher than

the number of linear regions approximated by the shallow network, it would be possible to

conclude that - regardless the structure adopted - a deep network always outperforms the

shallow network counterpart. Table 3.1 reports the results from the numerical minimization

of the number of linear regions approximated by a ReLu DNN. The results reported in Table

3.1 show that the minimum number of linear regions approximated by a deep neural network

(for di�erent depths) is always lower than the number of regions approximated by the shallow

counterpart (with the same number of hidden nodes). This exercise shows that not every

DNN outperforms a shallow network and motivates the need of an optimization procedure

to maximize the lower bound (3.15). Summing up, to be certain that the DNN provides a

better approximation than the shallow network one needs to maximize the lower bound in

expression (3.18) and show that the solution is larger than the number of linear regions of the

shallow network counterpart.

Table 3.1: Maximum and Minimum number of linear regions for ReLu DNN. In red are highlighted
the cases where a shallow network outperforms a deep one. In blue are highlighted the cases in which
an increase in depth leads to a decrease in the number of linear regions approximated by the ReLu
DNN. Optimal Structure 1 is obtained by maximizing the objective function, Optimal Structure 2 by
minimizing it.

Shallow Network

2 Hidden Layers 3 Hidden Layers 4 Hidden Layers 5 Hidden Layers 6 Hidden Layers 7 Hidden Layers N. Regions

Input Dimension: 2

Optimal Structure 1 (30, 30) (20, 20, 20) (16, 16, 14, 14) (12, 12, 12, 12, 12) (10, 10, 10, 10, 10, 10) (10, 10, 8, 8, 8, 8, 8)

Optimal Structure 2 (3, 57) (3, 3, 54) (3, 3, 3, 51) (3, 3, 3, 3, 48) (3, 3, 3, 3, 3, 45) (3, 3, 3, 3, 3, 3, 42) 1831

Minimum Regions 1654 1486 1327 1177 1036 904

Maximum Regions 104850 2110000 21274624 132689664 546875000 1515520000

Input Dimension: 3

Optimal Structure 1 (30, 30) (21, 21, 18) (15, 15, 15, 15) (12, 12, 12, 12, 12) (12, 12, 9, 9, 9, 9) (9, 9, 9, 9, 9, 9, 6)

Optimal Structure 2 (5, 55) (5, 5, 50) (5, 5, 5, 45) (5, 5, 5, 5, 40) (5, 5, 5, 5, 5, 35) (5, 5, 5, 5, 5, 5, 30) 36051

Minimum Regions 27776 20876 15226 10701 7176 4526

Maximum Regions 4526000 116237212 1125000000 5016387584 10480803840 16271660538

Input Dimension: 4

Optimal Structure 1 (28, 32) (20, 20, 20) (16, 12, 16, 16) (12, 12, 12, 12, 12) (12, 12, 12, 8, 8, 8) (12, 8, 8, 8 , 8, 8, 8)

Optimal Structure 2 (7, 53) (7, 7, 46) (7, 7, 7, 39) (7, 7, 7, 7, 32) (7, 7, 7, 7, 25) (7, 7, 7, 7, 7,7, 18) 523686

Minimum Regions 317683 179447 92171 41449 15276 4048

Maximum Regions 99519049 2420312500 13361283072 34179096474 22175970048 13844348928

Input Dimension: 5

Optimal Structure 1 (30, 30) (20, 20, 20) (15, 15, 15, 15) (15, 10, 10, 10, 15) (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 5, 5)

Optimal Structure 2 (9, 51) (9, 9, 42) (9, 9, 9, 33) (9, 9, 9, 9, 24) (9, 9, 9, 9 ,9, 15) (9, 9, 9, 9, 9, 9, 6) 5985198

Minimum Regions 2621112 974982 284274 55455 4944 63

Maximum Regions 1356422112 22754099200 70940996208 39367213056 21407727616 1073741824

Input Dimension: 6

Optimal Structure 1 (30, 30) (18, 18, 24) (18, 12, 12, 18) (12, 12, 12, 12, 12) (12, 12, 12, 12, 6, 6) (12, 12, 12, 6, 6, 6, 6)

Optimal Structure 2 (11, 49) (11, 11, 38) (11, 11, 11, 27) (11, 11, 11, 11, 16) (11, 11, 11, 11, 10, 6) (11, 11, 11, 9, 6, 6, 6) 56049058

Minimum Regions 16122226 3345616 397594 14893 64 64

Maximum Regions 12003312500 101000893491 93102981120 42110812160 1073741824 16777216

Table 3.1 also shows that when the structure that minimizes the number of linear regions

is considered, an increase in depth leads to a decrease in the number of linear regions approx-

imated. Figure 3.6 shows that the number of linear regions decreases linearly when x ∈ R2.

As the dimension of the input layer increases - or the ratio between input dimension and

number of hidden nodes per layer decreases - the observed decrease in the number of linear

regions approximated by the ReLu DNN becomes gradually exponential.

94

2 3 4 5 6 7

0.
0e

+
00

1.
0e

+
09

Linear Regions as Depth Increases − 2 (Maximum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns
2 3 4 5 6 7

10
00

14
00

Linear Regions as Depth Increases − 2 (Minimum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0.
0e

+
00

1.
0e

+
10

Linear Regions as Depth Increases − 3 (Maximum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

50
00

15
00

0
25

00
0

Linear Regions as Depth Increases − 3 (Minimum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0.
0e

+
00

2.
0e

+
10

Linear Regions as Depth Increases − 4 (Maximum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0
10

00
00

25
00

00

Linear Regions as Depth Increases − 4 (Minimum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0e
+

00
3e

+
10

6e
+

10

Linear Regions as Depth Increases − 5 (Maximum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0
10

00
00

0
25

00
00

0

Linear Regions as Depth Increases − 5 (Minimum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0e
+

00
4e

+
10

8e
+

10

Linear Regions as Depth Increases − 6 (Maximum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

2 3 4 5 6 7

0.
0e

+
00

1.
0e

+
07

Linear Regions as Depth Increases − 6 (Minimum)

Number of Hidden Layers

N
um

be
r

of
 L

in
ea

r
R

eg
io

ns

Figure 3.6: The Figure reports the relation between the number of linear regions and the depth of
the neural network for di�erent input dimensions. The color red indicated an approximated number
of linear regions lower than the shallow counterpart.

This behavior can be justi�ed by the fact that a higher input dimension will require a

higher number of maximum nodes for the minimum representation. The increase of hidden

nodes per layer will lead to a decrease in the number of linear regions which is exponential

in the ratio between input dimension and width of the hidden layers. To summarize, the

minimization exercise shows that a ReLu DNN with sub-optimal structure underperforms

a shallow network with the same number of hidden nodes for low input dimension. This

95

result provides an explanation of the reasons behind the controversial empirical evidence

regarding performance of deep and shallow architectures, and it further justi�es the proposed

methodology: the maximization algorithm ensures not only to obtain - for a given number of

hidden nodes - the optimal width and depth of a neural network, but also to obtain a neural

network structure that outperforms the shallow counterpart, ensuring better generalization

(Bengio, 2009; Ciresan et al., 2012; and Goodfellow et al., 2013a) and lower computational

power needed.

For input dimensions equal to 2 and 3, an increase in the depth of the ReLu DNN (see

Figure 3.6) results in an exponential increase in the number of linear regions approximated.

However, when x ∈ R4,R5,R6, an increase in depth leads to an exponential increase in the

number of linear regions up to a certain cuto� point; after that, the increase in depth leads to

a decrease in the number of linear regions (Property 2 is violated). The cut-o� points identify

the depth for which Property 2 is violated. When the minimum ratio is bZj/dc = 2, deeper

structures underperform shallower ones. Ultimately, the observed decrease in the number of

linear regions leads - in the case of x ∈ R6 and N = 7 - to the underperformance of the ReLu

DNN when compared to the shallow counterpart. To summarize, recalling the fact that in

the analyzed case an increase in depth implies a reduction in width, one could conclude that,

when Property 2 is satis�ed, depth is always better than width.

Table 3.1 shows the existence - for di�erent input dimensions - of an optimal architecture

in terms of both depth and width of the network. The optimization exercises for di�erent

number of layers show that increasing the depth, for a given number of hidden nodes, not

always leads to an increase in the number of a�ne regions approximated by the neural network.

This aspect ensures the existence of an optimal neural network depth, with a given optimal

layer width. The maximum depth considered in this numerical exercise allows identifying the

optimal depth - with corresponding optimal layer widths - for x ∈ R4,R5,R6.

The next step involves comparing the out-of-sample performance of our proposed opti-

mal architecture against a benchmark neural network obtained from a k-fold cross-validation

procedure.

3.4 Monte Carlo Simulation

This section assesses statistically di�erences in out-of-sample performance between compet-

ing neural network architectures. In order to do so, di�erent data generating processes are

simulated, and the relevant test statistic for the comparison of the out-of-sample performance

is constructed.

The present algorithm optimizes the width and depth of a neural network of a given size

Z = z. To ensure the robustness of our results, we repeat the optimization over di�erent

candidates z = 40, 60, 90. We also vary the input dimensions and consider �ve di�erent

DGPs, one linear and four nonlinear. When the linear DGP is considered, the out-of-sample

96

performance of the optimal structure is compared against a linear model (OLS). The rationale

for this exercise is to assess the predictive power of deep neural networks in an unfavorable

context in which OLS methods are proved to be optimal. When nonlinear generating processes

are considered, the out-of-sample performance of the structure selected with the above optimal

methodology is compared with the out-of-sample performance of a structure selected with k-

fold cross-validation32.

3.4.1 Data Generating Process

We consider the following linear and nonlinear DGPs:

Linear Process - Model 1:

y = a+ ax + ε, (3.24)

with di�erent input dimensions: x ∈ R4, x ∈ R5, and x ∈ R6 ∼ N(µ, 1). The parameters

chosen for the vector of coe�cients a are generated from a U(−10, 10) and then rounded to the

closest digit33. Similarly, the parameter for the vector of means µ are generated from U(−5, 5)

and then rounded to the closest digit. When x ∈ R4, a = [−8, 2, 2, 2]> and µ = [−4, 1, 1, 1];

When x ∈ R5, a = [−8, 2, 2, 2, 7]> and µ = [−4, 1, 1, 1, 5], when x ∈ R6, a = [−8, 2, 2, 2, 7, 3]>

and µ = [−4, 1, 1, 1, 5, 1]. The error term is ε ∼ N(0, 1) that is uncorrelated to the input

variables.

In the nonlinear case we consider four di�erent DGPs.

Model 2:

y = a1x1 + (5e−6)(1− ea2x2+a3x3) + a4x
2
4 + ε. (3.25)

Model 3:

y = a1x
2
1 + (1e−6)

a2x2

a3x3
+ (1e−6)(a4x4)(a5x5) + ε. (3.26)

Model 4:

y = a1x
2
1 + (1e−6)

a2x2

a3x3
+ a3

4x4 + (1e−6)(a5x5)(a6x6) + ε. (3.27)

Model 5:

y = a+ ax ∗ τ + ε, (3.28)

where

τ = 4x1 − 0.5x2.

The nonlinear DGPs expressed by expressions (3.25), (3.26), and (3.27) incorporate the non-

linearity of the process predominantly in terms of extreme variations. Models 2 to 4 are

32 The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion of this work.

33 Before the generation of the simulated parameter the seed was set to 1234.

97

multiplied by scaling factors of the order (1e-6) to reduce the contribution of the input vari-

ables; therefore, by re-scaling the marginal e�ects, the process y is comprised only by those

observations that are �extreme� whereas those marginal e�ects of lower magnitude are re-

scaled such that y is approximately zero in those cases. Model 5 is the nonlinear counterpart

of Model 1, that considers interactions between the di�erent input variables.

3.4.2 Accuracy Test

The main objective of this subsection is to compare the out-of-sample performance of the pro-

posed novel methodology against a structure selected via k fold-cross validation. By perform-

ing k-fold cross-validation, the structure that returns the lowest out-of-sample mean square

error (MSE) will be selected. The procedure is as follows. We simulate 1500 observations

from the di�erent DGPs; 1200 observations are used for training the model and 300 obser-

vations are used as validation set for the �nal comparison. A 3-folds cross-validation, over

a randomized grid search34, is performed over the 1200 observations to select the structure

that returns the lowest out-of-sample MSE. Thus, being both neural networks �tted using the

same number of training observations and on the same dataset, the comparison carried out

for the nonlinear DGP processes analyses two comparable neural networks.

Table 3.1 shows that, for a given input dimension, it is possible to identify the optimal

structure in terms of width and depth of the network. In particular, we identify the optimal

structure when x ∈ R4,R5,R6. Prior to performing k-fold cross-validation, we consider two

neural networks with the same depth, obtained from the results in Table 3.1, such that the

comparison is done in terms of optimal number of nodes per layer (optimal width) for a

given depth of the network. As a result, for a given input dimension and for a given optimal

depth, the two structures - one obtained from the maximization proposed in the chapter, and

the other obtained from k-fold cross-validation - will be compared in terms of MSE on the

validation set (300 observations)35.

The objective of the current simulation settings is to compare two di�erent models using

a pre-speci�ed loss function, and see if the di�erences are statistically signi�cant. In our case,

we want to test if the novel methodology returns an accuracy (B) higher than the one returned

by a model selected via k-fold cross-validation (A). The hypothesis can be written as:

H0 : E[LA(ŷ, y)− LB(ŷ, y)] ≤ 0 (3.29)

H1 : E[LA(ŷ, y)− LB(ŷ, y)] > 0, (3.30)

with L(ŷ, y) denoting the loss function associated with each of our two models, A and

B. For the case of the MSE, we have L(ŷ, y) = (ŷ − y)2, and A and B denote two di�erent

34 A grid search with all the possible combinations of the structure would be infeasible.
35 Empirical Evidence shows that hyper-parameters selected via cross-validation not always return a good

out-of-sample accuracy with unseen data (Kohn et al., 1991; Rao et al., 2008).

98

models36 for predicting the response variable y. Under the alternative hypothesis, Model B

exhibits a lower MSE than Model A. The empirical counterpart of the above expectation is

MSEm ≡ Ê[L(ŷm, ym)] = 1
F

∑F
i=1(ŷmf − ymf)2, with m = A,B and F the out-of-sample

evaluation period. A feasible test statistic is of the form

TF =
√
F

MSEA −MSEB√
V̂ (MSEA −MSEB)

. (3.31)

Under the null hypothesis, this statistic converges to a standard normal distribution such that

rejection of the null hypothesis can be assessed from a one-sided test with critical value z1−α,

with α the signi�cance level of the test. Furthermore, if the observations yf , f = 1, . . . , F are

i.i.d., the relevant variance of the statistic is

V (MSEA −MSEB) = (
√
F)2 1

F

[
V (e2

Af) + V (e2
Bf)− 2Cov(e2

Af , e
2
Bf)
]
, (3.32)

with eAf and eBf the residuals of each model, constructed as emf = yf − ŷmf , with

m = A,B. Then, a suitable estimator of the asymptotic variance is

V̂ (MSEA−MSEB) =
1

F

F∑

f=1

(e2
Af − e2

A)2 +
1

F

F∑

f=1

(e2
Bf − e2

B)2− 2
1

F

F∑

f=1

(e2
Af − e2

A)(e2
Bf − e2

B),

(3.33)

with e2
m = 1

F

∑F
f=1 e

2
mf , with m = A,B. If there is serial dependence then the variance of

the test statistic is more complex and we need to incorporate the presence of serial correlation.

Robust estimators are HAC estimators developed by Newey-West (1987). Note that the

di�erence between the in-sample and out-of-sample exercise is how we construct the residuals

ef .

3.4.3 Simulation Results

Table 3.2 reports the results from the Monte Carlo simulation. When the linear data gener-

ating process is considered, the out-of-sample accuracy of the neural network with structure

obtained via the proposed maximization (to which we will refer as optimal ReLu DNN) is

compared against a linear regression and thus, a model that correctly identi�es the DGP. In

this case when considering the null hypothesis (3.29), the out-of-sample MSE of the linear

model will estimate the loss function LB; failing to reject the null hypothesis indicates that

there is no statistically signi�cant di�erence between the out-of-sample MSE of the optimal

ReLu DNN and the corresponding MSE of the linear model (which by de�nition is BLUE).

Hence, both models are indistinguishable in terms of predictive accuracy in mean. From Table

3.2, one could notice that the null hypothesis is rejected at 0.1 signi�cance level for x ∈ R4

36 k-fold cross-validation and optimization methodology.

99

and z = 90 (possibly, due to the over-complicated architecture of the neural network) and for

x ∈ R5 and z = 40. In all other cases, the di�erence in accuracy is not signi�cant.

Table 3.2: The Table reports, for each input dimension and each data generating process considered,
the out-of-sample MSE of the models considered, the test statistic and p value for the di�erence in
accuracy. *** indicates 0.01 signi�cance level, ** 0.05, and * indicated 0.1 signi�cance level.

Linear NNoptim NNcv Test Stat P-value

Linear Process - Model 1

x ∈ R4

z = 40 1.0207 1.0240 - 0.0896 0.4644

z = 60 1.0207 1.0816 - 1.2180 0.1116

z = 90 1.0207 1.0818 - 1.5138* 0.0650

x ∈ R5

z = 40 1.0600 1.1517 - 1.4927* 0.0677

z = 60 1.0600 1.0911 - 1.0955 0.1366

z = 90 1.0600 1.0852 - 0.7071 0.2397

x ∈ R6

z = 40 1.0739 1.0426 - -1.2314 0.8909

z = 60 1.0739 1.0890 - 0.3827 0.3510

z = 90 1.0739 1.0744 - 0.0103 0.4959

Nonlinear Process - Model 2

x ∈ R4

z = 40 90.3837 1.1749 1.2883 1.4923* 0.0678

z = 60 90.3837 1.1502 1.2981 1.4918* 0.0679

z = 90 90.3837 1.1337 1.2685 1.4154* 0.0785

Nonlinear Process - Model 3

x ∈ R5

z = 40 5513.2835 1.5221 1.7633 1.3613* 0.0867

z = 60 5513.2835 1.4396 1.7002 1.9154** 0.0277

z = 90 5513.2835 1.2374 1.5599 2.0329** 0.0210

Nonlinear Process - Model 4

x ∈ R6

z = 40 4101.4600 1.7025 2.0295 1.7821** 0.0374

z = 60 4101.4600 1.6699 2.3017 0.8602 0.1948

z = 90 4101.4600 1.5777 1.9049 1.3362* 0.0907

Nonlinear Process - Model 5

x ∈ R4

z = 40 9517.0577 5.5102 6.3055 1.9203** 0.0274

z = 60 9517.0577 4.2384 9.3619 1.5554* 0.0599

z = 90 9517.0577 2.6755 9.1836 1.3791* 0.0839

x ∈ R5

z = 40 24985.8370 10.0566 15.2530 1.5874* 0.0562

z = 60 24985.8370 5.9994 9.2081 1.0345 0.1504

z = 90 24985.8370 7.2509 13.8439 1.6874** 0.0457

x ∈ R6

z = 40 54202.9318 53.0290 89.1285 1.1435 0.1264

z = 60 54202.9318 7.9023 13.5481 2.5353*** 0.0056

z = 90 54202.9318 14.3952 55.7897 3.9699*** <0.0001

Table 3.3 reports the structures returned from the proposed methodology and from the

100

3-fold cross-validation. The out-of-sample MSE of the linear model is still reported for com-

pleteness, but as the comparison with the performance of neural networks is no longer mean-

ingful, the test of the null hypothesis (3.29) will not be extended also to the linear model.

When the null hypothesis (3.29) is tested, the out-of-sample MSE of the optimal model will be

LB; thus, rejecting the null hypothesis (3.29) will provide evidence of the outperformance of

the optimal neural network over a cross-validated one. With the exception of three cases, the

null hypothesis is rejected in all cases at 0.1 signi�cance level. When x ∈ R6 and z = 40 both

models are not able to approximate adequately the fourth nonlinear data generating process;

conversely, when z = 60, 90 the out-of-sample error of the two models decreases drastically

and the null hypothesis is rejected at 0.01 signi�cance level, suggesting the outperformance

of our DNN architecture.

Overall, these results suggest that the optimal neural network architecture proposed in

this chapter is comparable in terms of predictive accuracy to BLUE estimators in the most

unfavorable case given by a linear DGP. When nonlinear DGPs are considered, the null

hypothesis (3.29) is used to compare the out-of-sample performance of the optimal neural

network against a cross-validated structure.

Table 3.3: The Table reports, for each input dimension and each data generating process considered,
the neural network structures selected using the proposed methodology and the 3-folds cross-validation
with a randomized grid search approach.

Optimized Neural Network Cross Validated - Nonlinear 1 Cross Validated - Nonlinear 2

z = 40

x ∈ R4 [12, 12, 8, 8] [24, 5, 4, 7] [22, 4, 4, 10]

x ∈ R5 [15, 10, 15] [24, 8 , 8] [27, 7, 6]

x ∈ R6 [22, 18] [16, 10, 14] [24, 9, 7]

z = 60

x ∈ R4 [12, 12, 12, 12, 12] [32, 5, 4, 4, 15] [43, 4, 5, 4, 4]

x ∈ R5 [15, 15, 15, 15] [22, 7, 5, 26] [35, 5, 5, 15]

x ∈ R6 [18, 18, 24] [40, 6, 14] [46, 7, 7]

z = 90

x ∈ R4 [18, 12, 12, 12, 12, 12, 12] [50, 15, 9, 4, 4, 4, 4] [62, 6, 6, 4, 4, 4, 4]

x ∈ R5 [15, 15, 15, 15, 15, 15] [56, 10, 9, 5, 5, 5] [60, 9, 6, 5, 5, 5]

x ∈ R6 [18, 18, 18, 18, 18] [38, 7, 6, 6, 33] [43, 6, 6, 6, 29]

To summarize, the results reported in Table 3.2 show that a neural network with the struc-

ture selected via the proposed maximization outperforms a neural network whose structure

is obtained via a 3-fold cross-validation with a randomized grid search. This result is true

for all the di�erent input dimensions and DGPs considered. Similarly, it is shown that the

optimal neural network has an out-of-sample performance statistically equivalent to the MSE

of a linear model, when the true data generating process is linear. These results are robust to

the di�erent number of hidden nodes considered, showing that the outperformance does not

depend on the speci�c number of hidden nodes chosen.

101

The MSEs reported in Table 3.2 show also another important result: the existence of an

optimal number of hidden nodes. Testing the null hypothesis (3.29) across di�erent values of z

ensures the robustness of the results to di�erent choices of the initial number of hidden nodes.

Our �ndings show that - given a speci�c DGP - there exists an optimal number of hidden

nodes that minimizes the MSE. For example, when a linear DGP is considered z = 40 returns

the lowest MSE, while when the nonlinear DGPs are considered, the MSE is minimized for

z = 60 or z = 90 (when the true DGP is linear, a high number of hidden nodes may result in

overparametrization).

3.5 Empirical Application

The above DNN prediction techniques are applied to real data on house prices. For com-

parability purposes, we choose a popular dataset widely used in the literature on linear and

nonlinear prediction, see for example Al Batanieh and Kaur (2018). The Boston Housing

dataset initially studied in Harrison and Rubinfeld (1978) consists of 506 datapoints split be-

tween 404 training and 102 test observations. This dataset is concerned with housing values

in the suburbs of Boston. The dependent variable is median values of Boston house prices in

thousands of dollars, that is explained by thirteen independent variables, which for simplicity

reasons are not reported, and described in details by Harrison and Rubinfeld (1978).

In order to guarantee a proper training of the ReLu DNN, a feature-wise normalization

consisting on transforming the observations into zero-mean and unit standard deviation ran-

dom variables is performed. The mean and the standard deviation used for the feature-wise

normalization are computed considering only the train dataset.

The �rst step of the neural network prediction exercise is to set the optimal neural network

architecture. Di�erent optimization algorithms, weights initializers, learning rates, number of

epochs, drop-out rates, and total number of hidden nodes are considered. In particular, the

learning rates 0.0001, 0.001, 0.01, and 0.1 for the Adam optimizer (β1 = 0.9, β2 = 0.999), for

the Stochastic Gradient descent (SGD) with Nesterov momentum of 0.9, and the RMSProp

optimizer with ρ = 0.9 are tuned. When the Adam optimizer is considered, we use the He

normal initializer that draws samples from a truncated normal distribution with µ = 0 and

σ =
√

2/Indim, where �Indim� is the number of input units in the weight tensor; conversely,

when the SGD is tuned, a truncated normal distribution with µ = [0.5, 0.1] and σ = [0.02, 0.01]

is considered. The number of epochs analyzed are: 500, 1000, 2000 and 5000. Hinton et

al. (2012) show that dropout can be used to e�ectively reduce the generalization error of

large neural networks �tted on a limited amount of data. Therefore, given the low number

of observations in the training set, in order to improve the out-of-sample performance, the

dropout training is adopted. Following Srivastava et al. (2014) and given the relatively low

dimension of the �tted feedforward neural network, di�erent dropout rates p = 0.1, 0.2, 0.3

are tuned for all hidden layers, and p = 0.1 for the input layer.

The proposed optimization procedure lets the total number of hidden nodes as a free

102

parameter. In this application, we consider Z = z = 50, 100, 130, 150, and 200. The number

of input variables is d = 13, and we allow for a maximum depth of 10. The results of our

optimization exercise in (3.18) are as follows. For z = 50, the optimal structure of the DNN

is [37, 13]; for z = 100 is [48, 26, 26]; for z = 130 is [52, 39, 39]; for z = 150 is [33, 39, 39, 39]

and, �nally, for z = 200 is [44, 39, 39, 39, 39]. To check the convergence of the optimization

algorithm - for each z - the maximization is conducted using z + /− 1.

Each combination is evaluated using 4-folds cross-validation on the training set, and �nally

evaluated on the validation set. Thus, the predictive performance of our method is measured

by averaging the four MAEs and MSEs obtained from the training samples under the 4-folds

cross-validation, and the validation MSE and MAE obtained from �tting the tuned model

on the validation set. It is important to remember that our proposed DNN architecture

focuses on optimizing the structure of the network but is silent about the speci�c choice of

the aforementioned hyperparameters. Therefore, the 4-folds cross-validation is used to choose

the optimal combination of learning rate, optimizer, weight initializer, number of epoch, and

dropout rate. The optimal combination of nodes and hyperparameters is evaluated on the

validation set37.

0 20 40 60 80 100

Observation

10
20

30
40

50

M
ea

n
Va

lu
e

in
 1

00
0$

Boston Housing Dataset

Figure 3.7: The Figure reports the observed average prices (in black) against the �tted values (in
red) for the validation set.

Based on the out-of-sample accuracy, the best combination is de�ned by the RMSProp

optimizer with learning rate 0.001, 2000 epochs, z = 130, a dropout rate of 0.1 across all

hidden layers, and no dropout in the input layer. The cross-validated MSE and MAE are

7.67 and 2.02 respectively, and the validation MSE and MAE are 8.76 and 2.17. Figure 3.7

reports the �tted values out-of-sample of the trained ReLu DNN against the observed values.

37 This cross-validation exercise to optimize the tuning parameters is di�erent from the 4-folds cross-validation
method used in the Monte Carlo section as benchmark model to obtain the out-of-sample MSE.

103

An out-of-sample MAE of 2.17 implies that the model will predict house prices with an error

- on average - of 2,170$.

The empirical results show that the proposed methodology can be used to improve the

predictive performance of neural networks. For example, Al Bataineh and Kaur (2018) -

considering three algorithms for neural network training - �nd a test MSE of 13.96 for the

Levenberg-Marquardt, of 12.77 for the Bayesian Regularization, and of 16.63 for the Scaled

Conjugate Gradient; Granitto et al. (2001) after proposing an algorithm for the construction

of ensemble neural networks, that ensures a good balance between diversity and accuracy,

�nd a test MSE of 14.46± 6.89; Myshkov and Julier (2016) explore the posterior distribution

obtained from Bayesian inference methods for neural networks and �nd a test RMSE for the

Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011) of 3.99 (MSE of 15.92);

Papadopoulos and Haralambous (2011) propose a new methodology to extend regression

neural networks by producing not only point predictions but also prediction intervals, and

the test RMSE associated with the point prediction is 4.06 (MSE of 16.48); �nally, Bakker

and Heskes (2003) propose an algorithm for neural network ensemble (GASEN) that uses

genetic algorithm to select an optimal subset of neural network for the construction of the

ensemble learner, with MSE of 12.26. The di�erences between the MSE obtained using the

novel methodology and the ones observed in the literature are statistically signi�cant.

By taking the relative di�erences with the lowest and highest MSEs reported by the

aforementioned literature, our optimised NN architecture represents an improvement over the

average prediction in extant studies between 28.55% and 47.32%.

3.6 The CART procedure and future implementations

As previously mentioned in chapter 1, a useful approach to frame the objective of identifying

the optimal neural network structure is to compare the proposed methodology with model

selection in tree-based architectures. The recursive binary partition algorithm used to train

the tree is designed to identify the optimal number of non-overlapping regions that ensures

optimality in predicting the target variable. An increase in the depth of the tree leads to an

increase in the number of non-overlapping regions being identi�ed, leading to higher approxi-

mation power that �depending on the underlying data generating process� can be translated

in either lower bias or higher variance.

Therefore, based on the previous sections, one could understand how the depth and the

width of the neural networks play a similar role to the depth of regression/classi�cation

trees when recursively folding the input space. Depending on the function to be learned, an

increase in the number of linear regions being approximated leads to higher approximation

power, leading to either a reduction in bias or an increase in variance. Nonetheless, based on

the results and the discussion in Pascanu et al. (2013), the risk of over�tting (high variance)

increases at a slower rate when increasing the depth/width of neural networks as opposed to

increasing the depth of regression trees.

104

The comparison with tree-based structures allows not only framing the identi�cation prob-

lem in neural networks in a clearer way, but it also suggests future steps that can be undertaken

in order to identify an optimal neural network structure. In particular, following the existing

literature (e.g., Bertsimas and Dunn, 2017), it is possible to de�ne the objective of the CART

procedure as a formal optimization problem:

min L(T) + α|T|

s.t. N(`) ≥ Nmin ∀ ` ∈ leaves(T)
(3.34)

with L(T) being the in-sample loss of the tree T, |T| is the number of branch nodes in tree

T, α is the complexity parameter (to be tuned) that balances additional complexity of the

tree T against the increase in predictive accuracy, and N(`) is the number of training points

contained in each leaf node `. Solving Equation (3.34) allows to frame the so-called optimal

tree problem.

Based on the present chapter and the proposed optimization, it would be possible to frame

the optimal neural network problem in a similar way:

min L(G) + α|G|

s.t. Zj ≥ d for j = 1, 2, · · · , N
(3.35)

with L(G) being the in-sample loss of the neural network G, |G| is the maximized lower bound

to the number of linear regions being approximated by the neural network (which ensures an

e�cient allocation of hidden nodes across hidden layers), and α is the complexity parameter

which, also based on the simulation results, should be de�ned as a function of the dimensions

(number of hidden nodes) of the neural network such that α = g(·, z).

Starting from these premises, future research will focus on the implementation of Equa-

tion (3.35) for the identi�cation of an optimal neural network structure which relies �most

importantly� on the correct identi�cation of α = g(·, z).

3.7 Conclusions

It is standard practice in the machine learning community of researchers and practitioners

to engage into time and computational power consuming ��ne tuning� of the neural network

architecture while training. The width and depth of the architecture is a subset of the hy-

perparameters to be �ne tuned. This chapter proposes an optimization method to obtain

suitable values of these quantities. We do this by maximizing the lower bound on the max-

imum number of linear regions that a deep neural network can approximate characterized

by Montufar et al (2014), granting maximum �exibility of deep architectures of given size.

The optimization is done numerically using state-of-the-art methods such as L-BFGS-B and

SLSQP algorithms.

105

The performance of the proposed optimal architecture for deep neural networks is assessed

in an exhaustive Monte-Carlo exercise and also empirically. This novel procedure is shown to

outperform k-fold cross-validation procedures for prediction in nolinear models. In linear set-

tings, in which standard OLS methods are optimal, our approach is competitive and provides

comparable mean square error values. We illustrate the ability of our optimal deep neural

network architecture to predict median house prices from the Boston Housing dataset. This

dataset is extensively used by the machine learning literature to validate new learning tech-

niques. Our neural network architecture reduces the out-of-sample mean square prediction

error between 28.55% and 47.32% compared to recent studies �tting neural networks to the

Boston Housing dataset. By optimizing width and depth prior to training for a given choice

of nodes, our proposed method substantially saves upon the necessary time and computing

power involved in �ne tuning while training. Although we have not explored it in detail in

the chapter, we expect that those savings will increase more than proportionately with bigger

and more complex datasets that call upon bigger sized architectures.

106

CHAPTER 4

Prediction intervals for deep neural networks

Chapter Abstract

The aim of this chapter is to propose a suitable method for constructing prediction intervals

for the output of neural network models. To do this, we adapt the extremely randomized trees

method originally developed for random forests to construct ensembles of neural networks.

The extra-randomness introduced in the ensemble reduces the variance of the predictions and

yields gains in out-of-sample accuracy. An extensive Monte Carlo simulation exercise shows

the good performance of this novel method for constructing prediction intervals in terms of

coverage probability and mean square prediction error. This approach is superior to state-of-

the-art methods extant in the literature such as the widely used MC dropout and bootstrap

procedures. The out-of-sample accuracy of the novel algorithm is further evaluated using

experimental settings already adopted in the literature.

107

4.1 Introduction

Neural networks are widely used in prediction tasks due to their unrivaled performance and

�exibility in modeling complex unknown functions of the data. Although these methods

provide accurate predictions, the development of tools to estimate the uncertainty around

their predictions is still in its infancy. As explained in Hüllermeier and Waegeman (2020)

and Pearce et al. (2018), out-of-sample pointwise accuracy is not enough38. The predictions

of deep neural network (DNN) models need to be supported by measures of uncertainty in

order to provide satisfactory answers for prediction in high-dimensional regression models,

pattern recognition, biomedical diagnosis, and others (see Schmidhuber (2015) and LeCun

et al. (2015) for overviews of the topic). Due to the centrality of the topic, a plethora of

literature in machine learning has focused on the construction of algorithms to measure the

uncertainty around the predictions of neural network methods.

A pioneering contribution is provided by Hwang and Ding (1997) that construct asymp-

totically valid prediction intervals for neural networks. Yet, being their research focused only

on single layer feedforward neural networks with sigmoidal activation function, it does not

�nd applicability in some widely adopted neural network structures (for example, convolu-

tional neural networks, recurrent neural networks, and deep feedforward neural networks with

the ReLu activation function). This early work on prediction intervals on neural networks

does not incorporate recent advances in machine learning prediction. Therefore, it is of much

interest to extend such procedures to construct prediction intervals by incorporating recent

state-of-the-art methods that improve the generalization power in neural network models. One

of the main regularization methods to improve the predictions is dropout. This technique�

proposed by Srivastava et al. (2014)�ensures better generalization for neural networks by

forcing the hidden nodes not to co-adapt with the neighboring nodes.

Levasseur et al. (2017) notice that one of the main obstacles for assessing uncertainty

around the outputs of neural network models is the fact that the weights characterizing the

predictions are usually �xed, implying that the output is deterministic. In contrast, Bayesian

neural networks (Denker and LeCun, 1991)�instead of de�ning deterministic weights�allow

the networks' weights to be de�ned by a given probability distribution and can capture the

posterior distribution of the output, providing a probabilistic measure of uncertainty around

the model predictions. Being the approximation of the posterior distribution a di�cult task,

the literature focusing on deep Bayesian neural networks has proposed di�erent alternatives

for the estimation of such distribution. These alternatives center around the Bayesian in-

terpretation of dropout methods to estimate the uncertainty in the model predictions. A

noteworthy example is Gal and Ghahramani (2016a); these authors develop a Monte Carlo

dropout to model both parameter and data uncertainty by �tting a deep neural network with

dropout implemented not only at training but also during test phase. During test time, each

38 A trustworthy representation of uncertainty can be considered pivotal when machine learning techniques
are applied to medicine (Yang et al., 2009; Lambrou et al., 2011), or to anomaly detection, optimal re-
source allocation and budget planning (Zhu and Laptev, 2017), or cyber-physical systems (Varshney and
Alemzadeh, 2017) de�ned as surgical robots, self-driving cars and the smart grid.

108

forward pass is multiplied by a random variable to generate a random sample of the approxi-

mated posterior distribution. Levasseur et al. (2017) analyze the coverage probability of the

procedure proposed by Gal and Ghahramani (2016a) and conclude that the construction of

prediction intervals with correct empirical coverage probabilities is highly dependent on the

adequate tuning of the dropout rate.

Applying dropout during the test phase can also be regarded as an approach to estimate

the uncertainty around the predicted outputs from deep neural networks that works outside

the Bayesian framework (for example, Cortes-Ciriano and Bender, 2019). However, any suit-

able method that aims at constructing valid prediction intervals based on the Monte Carlo

dropout must also incorporate the uncertainty due to noise in the data. It is based on this

�nal aspect that Kendall and Gal (2017), Serpell et al. (2019), and Zhu and Laptev (2017)

propose novel methodologies for the correct estimation of the prediction uncertainty for both

shallow and deep networks. To do so, Kendall and Gal (2017) propose a new loss function

that allows estimating the aleatoric uncertainty from the input data; Serpell et al. (2019)

couple the stochastic forward passes of the Monte Carlo dropout with the Mean Variance

Estimation39; and Zhu and Laptev (2017) propose to estimate the data uncertainty with a

consistent estimator in a hold out set.

Another branch of the literature has been focusing on adopting bootstrap based approaches

for the estimation of the prediction intervals of neural networks (see for example, Carney

et al., 1999; and Errouissi et al., 2015). Bootstrap procedures have become increasingly

popular, despite their computational requirements, as they provide a reliable solution to

obtain the predictive distribution of the output variable in both shallow and deep neural

networks. Recent advances in the neural network literature (Pearce et al., 2018; Lee et al.,

2015; and Lakshminarayanan et al., 2017) have also shown how parameter resampling without

data resampling can improve over standard bootstrap approaches not only in terms of out-of-

sample accuracy but also in terms of prediction uncertainty estimation.

Our contribution focuses on the latter form of resampling. In particular, this chapter

focuses on estimating the uncertainty around the predictions of neural network models. Our

novel approach extends the Extra-trees algorithm (Geurts et al., 2006) to ensembles of deep

neural networks using a �xed Bernoulli mask. In other words, T di�erent sub-networks with

randomized architectures (each network will have di�erent layer-speci�c widths) are indepen-

dently trained on the same dataset. Thus, the �xed Bernoulli mask introduces an additional

randomization scheme to the prediction obtained from the ensemble of neural networks that

ensures independence between the components of the ensemble reducing, in turn, the variance

associated to the prediction and yielding accurate prediction intervals. Additionally, based on

the �ndings of Lee et al. (2015) and Lakshminarayanan et al. (2017), the novel procedure is

expected to outperform bootstrap based approaches in terms not only of estimation accuracy

but also of uncertainty estimation. When comparing classical bootstrap approaches to the

39 The Mean Variance Estimation method - introduced by Nix and Weigend (1994) - involves �tting a neural
network with two output nodes capturing the mean and the variance, respectively, of a Normal distribution.

109

extra-neural network we notice that: (i) both methods guarantee conditional randomness of

the predicted outputs, the extra-neural network method does it through the Bernoulli ran-

dom variables with probability p and random weight initialization, whereas the bootstrap

does it through the nonparametric data resampling and random weight initialization; (ii) by

performing data resampling, the naive (nonparametric) bootstrap approach requires the as-

sumption that observations are independent and identically distributed (i.i.d.); importantly,

each single model is trained with only 63% unique observations of the original sample due to

resampling with replacement; (iii) by randomizing the neural network structures, the extra-

neural network approach increases the diversity (see Zhou (2012) for an analysis of diversity

and ensemble methods) among the individual learners; and (iv) the extra-neural network will

bene�t from the generalization gains associated with dropout (one can think of the dropout

approach of Srivastava et al. (2014) as an ensemble of sub-networks trained for one gradient

step).

To summarize, the Monte Carlo dropout approximates the predictive distribution by �t-

ting a deep or shallow network with dropout both at train and test time. Conversely, both

extra-neural network and bootstrap based approaches approximate the target predictive dis-

tribution via ensemble methods; if the independence among predictions in the latter procedure

is guaranteed by both data resampling and random weights' initialization, the extra-neural

network algorithm ensures independence among the predictions of the ensemble of neural

networks by random weights' initialization and by randomizing the neural network structure.

To analyze the out-of-sample performance and the empirical coverages of the proposed

methodologies, we carry out an extensive Monte Carlo exercise that evaluates the Monte

Carlo dropout, the bootstrap approach, and extra-neural network for both deep and shallow

neural networks given di�erent dropout rates and data generating processes. The simulation

results show that all three procedures return prediction intervals approximately equal to the

theoretical ones for nominal values equal to 0.01 and 0.05; for prediction intervals constructed

at 0.10 signi�cance level, the extra-neural network is shown to outperform both Monte Carlo

dropout and bootstrap. Additionally, the simulation �ndings show that the extra-neural net-

work approach returns prediction intervals with correct empirical coverage rates for di�erent

dropout rates (within a reasonable range) as opposed to the Monte Carlo dropout that returns

correct prediction intervals for speci�c values of the dropout rate. The �ndings not only show

the robustness of the extra-neural network to the choice of the dropout rate, but they also

complete the results of Levasseur et al. (2017) by showing that the Monte Carlo dropout re-

turns correct prediction intervals when the dropout rate that yields the highest out-of-sample

accuracy is adopted.

Finally, the novel methodology is also evaluated on real world datasets. In order to allow

for comparability with other approaches found in the literature, the experimental settings of

Hernández-Lobato and Adams (2015) are adopted. The empirical results show that extra-

neural network methods outperform other state-of-the-art approaches used in the literature.

These results complete the conclusions drawn from the Monte Carlo simulation by showing

110

the generalization of the extra-neural network methodology when applied to large dimensional

datasets.

The rest of the chapter is organized as follows: Section 4.2 provides the de�nition of a DNN

used for regression purposes, the concept of dropout originally introduced by Srivastava et

al. (2014), and a brief note discussing random weight initialization and uncertainty for extra-

neural networks. . Section 4.3 reviews extant methodologies to construct prediction intervals

that can be applied to DNNs. Section 4.4 introduces a novel methodology to construct

prediction intervals based on an adaptation of Extra-trees for random forests. Section 4.5

presents the simulation setup including linear and nonlinear models along with the choice of

parameters and hyperparameters for the implementation of neural network methods. Section

4.6 discusses the results of the empirical study. Section 4.7 concludes.

4.2 Dropout in DNN models

We follow the original setup of Hwang and Ding (1997) and propose the following speci�cation

for predicting the output variable yi, for i = 1, . . . , n:

yi = f(xi) + εi, (4.1)

with f(xi) a real-valued function used to predict the outcome variable using a set of covariates

xi. The choice of the functional form f(xi) depends on the loss function penalizing the

di�erence between the outcome variable and the prediction. For example, it is well known

that if the loss function is quadratic then the best predictive model is f(xi) = E[yi | xi].

The error term ε de�nes the noise in the output variable that cannot be explained by the

covariates x and satis�es the conditional independence assumption E[εi | xi] = 0.

In this chapter we consider f(xi) to be modeled by a ReLu deep neural network. For any

two natural numbers d, n1 ∈ N, which are called input and output dimension respectively,

a Rd → Rn1 ReLu DNN is given by specifying a natural number N ∈ N, a sequence of

N natural numbers Z1, Z2, · · · , ZN , and a set of N + 1 a�ne transformations T1 : Rd →
RZ1 ,Ti : RZi−1 → RZi , for i = 2, · · · , N , and TN+1 : RZN → Rn1 . Such a ReLu DNN

is called a (N + 1)-layer ReLu DNN, and is said to have N hidden layers. The function

f : Rd → Rn1 is the output of this ReLu DNN that is constructed as

f(xi;ω) = TN+1 ◦ θ ◦TN ◦ · · · ◦T2 ◦ θ ◦T1, (4.2)

with Tn = Wnhn−1 + bn, where, for N = 1, Wn ∈ RZ1×d; h0 ≡ x, with x ∈ Rd×1 the input

layer, and bn ∈ RZ1 is an intercept or bias vector. For N 6= 1, Wn ∈ RZn×Zn−1 is a matrix

with the deterministic weights determining the transmission of information across layers;

hn−1 ∈ RZn−1 is a vector de�ned as hn−1 = θ(Tn−1), and bn ∈ RZn . The function θ is a

ReLu activation function de�ned as θ(Tn−1) = max{0,Tn−1} and ω = {W n,bn}Nn=1 collects

the set of estimable features of the model. The depth of a ReLu DNN is de�ned as N+1. The

111

width of the nth hidden layer is Zn, and the width of a ReLu DNN is max{Z1, · · · , ZN}. The
size of the ReLu DNN is Ztot = Z1 +Z2 + · · ·+ZN . The number of active weights (di�erent

from zero), in a fully connected ReLu DNN, of the nth hidden layer is wn = (Zn×Zn−1)+Zn.

The number of active weights in a fully connected ReLu DNN is w1 + w2 + · · ·+ wN . Under

these premises, universal approximation theorems developed for ReLu DNN models (Lu et

al., 2017) guarantee that f(xi;ω) approximates the true function f(xi) in (4.1) arbitrarily

well. See also Cybenko (1989), Leshno et al. (1993), Hornik (1991), Lu et al. (2017), and

Mei et al. (2018) for universal approximation theorems in similar contexts.

In practice, there is an approximation error due to replacing f(xi) by f(xi;ω) in model

(4.1), where f(xi;ω) denotes a feasible version of the DNN model that can be estimated from

the data.40 The model that we consider in practice is

yi = f(xi;ω) + ui, (4.3)

where ui = εi + f(xi) − f(xi;ω). In the related literature the e�ect of the approximation

error is usually neglected, see Pearce et al. (2018) and Heskes (1997). The di�erent sources

of error in model (4.1) are explained in Section 4.3. Before doing that, we review the concept

of dropout in DNN models.

x h1 h2 · · · hN O

x1

x2

x3

...
...

...

...

...

...

...

Figure 4.1: Forward pass in the backpropagation algorithm in a neural network with bias terms 0
and trained with dropout. The subset of neurons (and thus of network weights) set equal to zero is

represented with dotted lines.

Training with dropout (dropout training) implies that for each iteration of the learning

algorithm di�erent random sub-networks (or thinned networks) will be trained.41 Let hzn

40 The feasibility of the model entails that it is de�ned by a truncation of the true ReLu DNN model that
approximates arbitrarily well the unknown function f(xi).

41 Warde-Farley et al. (2014) explain how each sub-network is usually trained for only one gradient step.

112

denote the elements of the vector hn for a given node z = 1, . . . , Zn and layer n = 1, . . . , N .

Srivastava et al. (2014) develop a dropout methodology that is applied to each function hzn

to obtain a transformed variable hzn. This variable is obtained by pre-multiplying hzn by

a random variable rzn with distribution function F (rzn), such that hzn = rzn · hzn, for all
(z, n), prior to being fed forward to the activation function of the next layer, hzn+1, for all

z = 1...Zn+1. For any layer n, rn is then a vector of independent random variables, rn =

[r1n, ..., rZnn] ∈ RZn . In this chapter we consider only the Bernoulli probability distribution

F (rzn), where each rzn has probability p of being 1 (and q = 1 − p of being 0). The vector

rn is then sampled and multiplied element-wise with the outputs of that layer, hzn, to create

the thinned outputs, hzn, which are then used as input to the next layer, hzn+1. When this

process is applied at each layer n = 1...N , this amounts to sampling a sub-network from a

larger network at each forward pass (or gradient step). At test time, the weights are scaled

down as W
n

= pWn, n = 1...N , returning a deterministic output 42 . We then identify

r? = [r1, ..., rN] as the collection of independent random variables applied to a feedforward

neural network of depth N + 1.

Figure 4.1 shows how the dropout mask works. At each training step, a random subset of

neurons (identi�ed with the dotted lines in Figure 4.1) will randomly not be considered when

training the network and thus will be �dropped out� (Géron, 2019). In other words, dropout

training generates �at each training step� a unique random neural network. In particular, as

previously mentioned, dropout prevents a phenomenon called feature co-adaptation which will

now be further discussed following Aggrawal (2018). Aggrawal (2018) explains how the hidden

layers in neural networks should be able to capture important features/characteristics of the

observed data without having dependencies on irrelevant features. To better understand

this statement, one could consider a situation where only 50% of the weights are updated

during the backpropagation algorithm, while the other 50% remain constant to their random

initialization values. In these circumstances, Aggrawal (2018) argues that neural networks

will still provide reasonably good results �in-sample� by adapting the trained weights to

the weights that have remained to a random state and thus that transmit only noise. This

circumstance (which could happen in deep neural networks where the updates of the weights

do not happen at the same rate across hidden layers) would lead to sub-optimal results leading

to poor out-of-sample performance (e.g., learning dependencies that do not exist). Dropout

prevents this phenomenon by forcing the neural network to make predictions (and thus to

update while training) using only a subset of weights (focusing on the previously example,

dropout would ensure that the 50% of the weights being trained are not updated considering

the half remaining to a random state).

42 In practice, an inverted dropout methodology is applied when implementing this methodology in Keras for
RStudio. In this case, instead of scaling-down the weights at test time, the weights are scaled-up during
train time as W

n
= (1/p)Wn, n = 1...N . At test time, a single deterministic forward pass on the unscaled

weights Wn is performed.

113

4.2.1 Random weight initialization

Shallow and deep neural network are usually trained via the gradient descent (GD) algorithm

that�being an iterative algorithm�requires an initial value for the parameter to be estimated.

Goodfellow et al. (2016) explain how training algorithms and thier convergence depend heavily

on the choice of the initialization: di�erent initial points can determine if the algorithm

converges or not, if it converges to a global or local minimum, or the speed of convergence.

Consequentially, it follows that di�erent weight initialization will lead to di�erent parameter

(ω) estimates. More formally, consider Gaussian initialization and de�ne {W1
0, . . . ,W

N
0 } as

the weights generated at the beginning of the GD algorithm; by considering e = 1, · · · , E
epochs, it is possible to de�ne the GD update rule as:

Wn
e = Wn

e−1 − η∇WnL(Wn
e−1), n = 1, · · · , N (4.4)

with η being the learning rate and ∇WnL(Wn
e−1) being the partial gradient of the training

loss L(Wn
e−1) with repsect to Wn de�ned as:

L(Wn
e−1) =

1

M

M∑

i=1

L(f(xi; ω̂); yi), n = 1, · · · , N (4.5)

From Equation (4.4) and (4.5), one could notice how the estimated {Wn
E}Nn=1 depends on

{Wn
0}Nn=1, η, and the optimization algorithm implemented. Therefore, random weight initial-

ization is assumed to capture parameter uncertainty. The present analysis does not consider

recent advances analyzing the relation between neural networks' dimensions (Ztot) and weight

initialization that ensures the presevation of the initialization properties during training. As

an example, Zou et al. (2018) provide the condition under which Gaussian random initial-

ization and (stochastic) GD produce a set of iterated estimated weights that centers around

{Wn
0}Nn=1 with a perturbation small enough to guarantee the global convergence of the algo-

rithm, ultimately impacting on the approximation of the epistemic uncertainty via random

weight initialization.

4.3 Prediction intervals for DNN models

The prediction intervals for the output of a ReLu DNN are derived from its predictive distri-

bution. This distribution can be approximated asymptotically using a Normal distribution;

by resampling methods using bootstrap procedures; and by simulation methods using Monte

Carlo dropout. In this section we review the prediction intervals obtained from these proce-

dures. Section 4.4 complements these methods by introducing a novel approach to construct

prediction intervals based on Extra-neural networks 43.

43 The Monte Carlo dropout, the percentile bootstrap and the extra-neural network approaches obtain their
predictions via model averaging; therefore, to ease comparison across the di�erent algorithms, we will
use�in the following Sections�T to indicate the number of stochastic forward passes in the Monte Carlo
dropout, and the number of independently trained neural networks in both bootstrap and extra-neural

114

4.3.1 Asymptotic prediction intervals (Delta Method)

In practice, we estimate Model (4.3) using a training sample to obtain parameter estimates

ω̂, such that the relevant empirical model is

yi = f(xi; ω̂) + ei, (4.6)

with f(xi; ω̂) a function that is estimated from the data and ω̂ the parameter estimates of

the matrices of weights Wn and bias parameters bn de�ning the DNN; ei is the residual of

the model. Using Expressions (4.1) to (4.6), the error term in (4.1) can be decomposed as

εi = f(xi; ω̂)− f(xi;ω)︸ ︷︷ ︸
estimation error

+ f(xi;ω)− f(xi)︸ ︷︷ ︸
bias e�ect

+ ei︸︷︷︸
aleatoric error

(4.7)

such that the conditional variance of the output variable given the set of covariates x, denoted

as σ2
ε , satis�es that σ

2
ε = σ2

ω̂(xi) + σ2
e , with σ

2
ω̂(xi) the epistemic uncertainty due to the esti-

mation of the model parameters and hyperparameters (estimation e�ect) and σ2
e the variance

due to the aleatoric error. The bias term does not have an e�ect on the variance of the pre-

dictor but introduces an error in the model forecast. More formally, E[f(xi;ω)] = f(xi) +µi,

with µi a constant that captures the approximation error (bias) due to using a truncation

of the asymptotic true ReLu DNN model. In this chapter we concentrate on estimating the

uncertainty around the predictions, given by σ2
ε , however, when possible, we will also discuss

the bias e�ect due to the approximation of the ReLu DNN model.

The distinction between epistemic and aleatoric uncertainty is extremely relevant when

DNNs are considered44. It has been shown that deep models, notwithstanding the high

con�dence in their predictions, fail on speci�c instances due to parameter uncertainty (see

Hüllermeier and Waegeman, 2020). Additionally, deep learning models are subject to dras-

tic changes in their performance when minor changes to the dataset are engineered (well

known problem of adversarial examples in Papernot et al., 2017) implying variability in the

parameter estimates. For this reason, the literature focusing on deep learning and uncertainty

quanti�cation propose algorithms that allow capturing all sources of uncertainty (see Zhu and

Laptev, 2017; Hüllermeier and Waegeman, 2020; Senge et al., 2014; Kull and Flach, 2014;

and Varshney and Alemzadeh, 2017).

In a neural network setting we estimate the predictive variance σ2
ε using the test sample,

of size n, such that σ̂2
ε = σ̂2

ω̂(xi) + σ̂2
e . Under the assumption of homoscedasticity of the error

network algorithms.
44 Even if other machine learning algorithms are characterized by high variance in their predictions (e.g.,

orthogonal splits characterizing decision and regression trees), the distinction between aleatoric and epis-
temic uncertainty has been analyzed, mainly, by the literature in deep learning. A �rst attempt for the
computation of aleatoric and epistemic uncertainty in decision trees and random forests is made by Shaker
and Hüllermeier (2020). As previously mentioned, decision trees partition the input space into several
non-overlapping regions, each of which is associated with a constant predictor. Shaker and Hüllermeier
(2020) �by extending the results from Bayesian neural networks� provide an estimation for both epistemic
and aleatoric uncertainty associated to each region.

115

term over the test sample, we can estimate consistently the aleatoric uncertainty such that

σ̂2
e = 1

n

∑n
i=1(yi−f(xi; ω̂))2. However, estimating the variance due to parameter estimation is

cumbersome unless the speci�c form of the function f(xi;ω) is known to the modeler. Under

this stringent assumption, the only uncertainty in the proposed model speci�cation is in the

choice of the model parameters ω and hyperparameters. In this case the literature proposes

the delta method to approximate the estimated function f(xi; ω̂) under a �rst order Taylor

expansion around the true parameter vector ω. More speci�cally, given a data point xi, and

assuming that the number of observations M is su�ciently large to ensure that ω̂ is a local

approximation of the true parameter vector ω, Ungar et al. (1996) show that it is possible to

linearize the neural network around the data point as:

f(xi; ω̂) = f(xi;ω) + fᵀωi(ω̂ − ω) + oP (|ω̂ − ω|), (4.8)

with fᵀωi a vector with entries ∂f(xi;ω)/∂ωN , with N the number of parameter in ω, de�ned

as (see also De vieaux et al., 1998):

fᵀωi =

[
∂f(xi;ω)

∂ω1
,
∂f(xi;ω)

∂ω2
, · · · , ∂f(xi;ω)

∂ωN

]
= ∇ωf(xi;ω) (4.9)

Following Seber and Wild (1989), the literature focusing on the delta method (see Hwang

and Ding, 1997; Ungar et al., 1996; De vieaux et al., 1998) propose the following estimator of

the asymptotic variance of f(xi; ω̂) evaluated at the true parameter vector ω:

σ̂2
ω̂(xi) ≈ σ̂2

e [f
ᵀ
ωi(J

ᵀ
ωJω)−1fωi], (4.10)

with Jω the Jacobian matrix evaluated at ω. This is de�ned as

Jω =

[
∂f(xi;ω)

∂ω

]

ω

. (4.11)

Therefore, using the delta method, the corresponding asymptotic predictive variance of yi is

estimated as σ̂2
ε = σ̂2

e(1 + S(ω̂)), with S(ω̂) = fᵀω̂i(J
ᵀ
ω̂Jω̂)−1fω̂i and under the central limit

theorem, we obtain the following asymptotic prediction interval for yi:

f(xi; ω̂)± z1−α/2σ̂e
√

1 + S(ω̂), (4.12)

with z1−α/2 the relevant critical value from the standard Normal distribution at an α signi�-

cance level.

Hwang and Ding (1997) showed that, regardless the not identi�ability of the weights in a

neural network, the prediction interval in (4.12) is asymptotically valid when the feedforward

neural network is trained to convergence. Despite providing asymptotically valid prediction

intervals, the delta method is not widely adopted by the literature focusing on uncertainty

116

quanti�cation and deep learning due to problems associated with the computation of the

Jacobian matrix. In particular, due to the high number of parameters in ω, the complex

calculation of J is prone to error (Tibshirani, 1996); additionally, the near singularities in the

model due to over�tting (Tibshirani, 1996) or due to the small sample size (De vieaux et al.,

1998) make the computation of the gradient J unreliable or unfeasible.

Thus, the literature has been focusing on bootstrapping techniques for the construction

of prediction intervals for neural networks. In fact, as also highlighted by Tibshirani (1996),

bootstrapping prediction intervals provide a feasible alternative that does not su�er from the

matrix inversion problem and does not depend on the existence of derivatives.

4.3.2 Bootstrap predictive distribution

An alternative approach to asymptotic prediction intervals is to construct a �nite-sample ap-

proximation of the prediction interval. Bootstrap procedures provide a reliable solution to

obtain predictive intervals of the output variable. We proceed to explain how bootstrap works

in a DNN context. The literature has developed many di�erent forms of bootstrapping meth-

ods. One of its simplest and most popular forms is the percentile or naive bootstrap proposed

by Efron (1979). Under this method observations are drawn from an independent and iden-

tically distributed sample with replacement and each observation has the same probability of

being extracted.

Let {xi}Mi=1 be a sample of M observations of the set of covariates, with xi ∈ Rd and

M the length of the train sample. Let {yi}Mi=1 ∈ R be the output variable, and de�ne xx
i =

(xi, yi) ∈ Rd+1. Applying the naive bootstrap proposed by Efron (1979) to this multivariate

dataset, we generate the bootstrapped dataset xx,? = {xx,?
i }Mi=1 = {x?i , y?i }Mi=1 by sampling

with replacement from the original dataset xx (with x indicating the paired sample); in this

case, x? represents a bootstrapped replica of the dataset x. By repeating this procedure T

times, it is possible to obtain T bootstrapped samples de�ned as {xx,?(t)}Tt=1. Each bootstrap

sample is �tted to a single neural network to obtain an empirical distribution of bootstrap

predictions f(x?(t); ω̂?(t)), with ω̂?(t) = {W1,?(t), ...,WN,?(t), b
?(t)
1 , . . . , b

?(t)
N }, for t = 1, . . . , T .

In this context, a suitable bootstrap prediction interval for yi at an α signi�cance level is[
q̂α/2, q̂1−α/2

]
, with q̂α the empirical α−quantile obtained from the bootstrap distribution of

f(xi; ω̂
?(t)), for t = 1, . . . , T .

Alternatively, under the assumption that the error ε is normally distributed, we can re�ne

the empirical predictive interval by using the critical value from the Normal distribution. A

suitable prediction interval for xi from the test sample, with i = 1, . . . , n, is

f(xi; ω̂)± z1−α/2σ̂
?
ε , (4.13)

with f(xi; ω̂) the pointwise prediction of model (4.6) and σ̂?2ε = σ̂?2ω̂ (xi) + σ̂2
e . Under ho-

moscedasticity of the error term εi, the aleatoric uncertainty σ2
e is estimated from the test

117

sample as σ̂2
e = 1

n

∑n
i=1 (yi − f(xi; ω̂))2, with ω̂ the set of parameter estimates obtained

from the original sample {xx
i}Mi=1. The epistemic uncertainty is estimated from the bootstrap

samples as σ̂?2ω̂ (xi) = 1
T

∑T
t=1[f(xi; ω̂

?(t))− f̄(xi)]
2, with

f̄(xi) =
1

T

T∑

t=1

f(xi; ω̂
∗(t)). (4.14)

Unlike for the delta method, the use of bootstrap methods allows us to ameliorate the

e�ect of the bias in the prediction of the ReLu DNN model. The bias in model (4.6) is de�ned

as E[f(xi;ω)] − f(xi). Therefore, a suitable estimator of this quantity is f̄(xi) − f(xi; ω̂),

with f̄(xi) de�ned in (4.14), such that the above prediction interval can be re�ned as

f(xi; ω̂)− (f̄(xi)− f(xi; ω̂))︸ ︷︷ ︸
bias correction

±z1−α/2σ̂
?
ε = (2f(xi; ω̂)− f̄(xi))± z1−α/2σ̂

?
ε . (4.15)

This bootstrap prediction interval can be further re�ned by exploiting the average prediction

in (4.14). In this case the variance of the predictor is σ?2ω̂ (xi) = 1
T σ̂

?2
ω̂ (xi) and the relevant

prediction interval is 45

f̄(xi)± z1−α/2σ̂
?
ε , (4.16)

with σ̂?2ε = σ?2ω̂ (xi) + σ2
e, where σ

2
e = 1

n

∑n
i=1

(
yi − f̄(xi)

)2
. This expression assumes that the

covariance between the predictions from the di�erent bootstrap samples is zero. Interestingly,

in this case the bias correction is not necessary unless T is small. This is so because the bias

term for the average predictor is negligible and given by 1
T µi.

As highlighted by Dipu Kabir et al. (2018), the variation in the outputs of the di�er-

ent networks will be driven by the di�erent random initialization of the weights (parameter

uncertainty) and the di�erent bootstrap samples (data uncertainty). Being the bootstrap

procedure able to capture both the aleatoric and epistemic uncertainties, it provides more ac-

curate prediction intervals than other methods (delta method) as also shown in an extensive

simulation study in Tibshirani (1996).

4.3.3 Monte Carlo Dropout (Stochastic Forward Passes)

This subsection introduces an alternative to bootstrap methods to construct prediction inter-

vals in a ReLU DNN setting. In this case we introduce randomness into the DNN prediction

by applying Monte Carlo dropout. A natural interpretation of this methodology follows from

the seminal contribution of Gal and Ghahramani (2016a). These authors develop a new the-

oretical framework casting dropout training in DNNs as approximate Bayesian inference in

deep Gaussian processes. As a byproduct of this theory, Gal and Ghahramani (2016a) provide

45 In particular, the following prediction interval obtains by substituting f(xi; ω̂) in Equation (4.15) with the
average prediction f̄(xi).

118

the tools to model prediction uncertainty with dropout in DNNs. In this Section, we adopt

this methodology to settings outside Bayesian neural networks and derive prediction intervals

for the output yi for DNNs in Bayesian and outside Bayesian DNN models.

A growing branch of the literature has been focusing on the Bayesian interpretation of

dropout46(see among others Gal and Ghahramani, 2016a and 2016b; Kingma et al., 2015).

Maeda (2014) explains how dropout training can be considered an approximate learning

method of the model parameters that optimizes a weighted sum of the likelihoods of all pos-

sible models. Starting from this interpretation, one could consider dropout as a tool for the

estimation of the posterior of a Bayesian neural network. More speci�cally, let p(ŷ |x,X,Y)

denote the distribution of the predictive output ŷ conditional on the set of observations

X = {x1, . . . ,xn} and Y = {y1, . . . , yn}. In other words, we denote by ŷ the observed out-

put corresponding to the input of the neural network x, and by X, Y the input and output

datasets. The predictive probability distribution of the DNN model is

p(ŷ |x,X,Y) =

∫

Ω
p(ŷ |x,ω)p(ω | X,Y)dω, (4.17)

with p(ŷ |x,ω) the likelihood function of the observations, and ω ∈ Ω where Ω denotes the

parameter space. The posterior probability distribution p(ω | X,Y) is intractable. Gal and

Ghahramani (2016a) propose DNN dropout to approximate this distribution. More formally,

under model dropout, we consider a distribution function q(ω) that follows a Bernoulli distri-

bution, Ber(p), as explained in Section 4.2. The above predictive distribution in this Bayesian

neural network setting can be approximated by

p(ŷ |x,X,Y) =

∫

Ω
p(ŷ |x,ω)q(ω)dω. (4.18)

In practice this predictive distribution can be approximated using Monte Carlo methods.

Thus, by sampling T sets of vectors from the Bernoulli distribution {r?(t)}Tt=1, one can approx-

imate the above predictive distribution from the random sample ŷ(xi; ω̂
(t)), for i = 1, . . . , n,

where ω̂(t) = {Ŵ1(t), . . . ,ŴN(t), b̂
(t)
1 , . . . , b̂

(t)
N } denotes the sequence of weights associated to

the di�erent nodes and layers of the neural network and the associated bias parameters for

a given pass t for t = 1, . . . , T . Using this Monte Carlo (MC) dropout technique, Gal and

Ghahramani (2016a) propose the �rst moment from the MC predicted outputs as the model

prediction:

f̄MC(xi) =
1

T

T∑

t=1

ŷ(xi; ω̂
(t)), for i = 1, . . . , n. (4.19)

These authors show that, in practice, this is equivalent to performing T stochastic forward

passes through the network and averaging the results. This result has been presented in the

literature before as model averaging. Srivastava et al. (2014) have reasoned empirically that

46 Hinton et al. (2012) in their seminal paper associate dropout training to a form of Bayesian learning.

119

MC dropout can be approximated by averaging the weights of the network (multiplying each

weight Wn by p at test time, and referred to as standard dropout).

Importantly, the model parameters ω are �xed across random samples implying that

the cross-correlation between the predictions ŷ(xi; ω̂
(t)) and ŷ(xi; ω̂

(t′)) for t, t′ = 1, . . . , T is

perfect. Then, the predictive variance is de�ned as

σ2
MC = σ2

e +
1

T 2

T∑

t=1

T∑

t′=1

E
[(
ŷ(xi; ω̂

(t))− E[ŷ(xi; ω̂
(t))]

)(
ŷ(xi; ω̂

(t′))− E[ŷ(xi; ω̂
(t′))]

)]
,

(4.20)

The �rst component on the right hand side Expression of (4.20) captures the aleatoric uncer-

tainty whereas the second term captures the epistemic uncertainty associated to parameter

estimation. The second term includes the estimation of the variance and covariance terms

between the di�erent random samples obtained from using dropout. Thus, under the assump-

tion that the approximation error is negligible, the above predictive variance can be estimated

as

σ̂2
MC = σ̂2

e +
1

T

T∑

t=1

(
ŷ(xi; ω̂

(t))− f̄MC(xi)
)2
, (4.21)

with σ̂2
e = 1

n

∑n
i=1

(
yi − f̄MC(xi)

)2
a consistent estimator of σ2

e under homoscedasticity of the

error term, see also Gal and Ghahramani (2016a) and Kendall and Gal (2017). A suitable

prediction interval for yi under the assumption that p(ŷ |x,ω) is normally distributed is

f̄MC(xi)± z1−α/2σ̂MC . (4.22)

Recent literature focusing on the approximation of the predictive distribution of DNNs has

proposed several algorithms �based on the MC dropout of Gal and Ghahramani (2016a)� for

the estimation of the prediction uncertainty in deep learning. As an example, Serpell et al.

(2019) augment the MC dropout by implementing the MVE discussed above and stochastic

forward passes. If the MVE approach allows modeling the data uncertainty, accommodating

a varying e, the Monte Carlo dropout captures the uncertainty in the model parameters.

The two procedures together ensure the correct estimation of σ2
MC ; Zhu and Laptev (2017)

improve over the original Monte Carlo dropout by estimating the noise level using the residual

sum of squares evaluated on a hold-out set47 �Equation 4.21.

Finally, the present chapter highlights three important aspects related to the MC dropout

originally proposed by Gal and Ghahramani (2016a). First, it is possible to extend the original

approach to the approximation of the predictive distribution of deep neural networks outside

a Bayesian framework (see Cortes-Ciriano and Bender, 2019). As one could notice, using

dropout also at test phase allows randomizing the output of the DNN at each forward pass

47 The authors precise that the approach of Gal and Ghahramani (2016a) relies on the implausible assumption
of knowing the correct noise level a priori.

120

and thus, by performing T stochastic forward passes, it is possible to obtain the sample

{ŷ(xi; ω̂
(t))}Tt=1. Second, if the MC dropout is implemented outside a Bayesian framework,

it is pivotal to tune the dropout rate on a test sample and not on a train sample; in fact, as

suggested by Lakshminarayanan et al. (2017), tuning the dropout rate on the training data

implies interpreting dropout as a tool for Bayesian inference (any Bayesian posterior should

be approximated starting only from the training data). Last but not least, the estimation

of the σ2
MC depends on the choice of p. As the epistemic uncertainty in the MC dropout is

determined solely by the choice of p, if p is set equal to 1 the epistemic uncertainty measured

by 1
T

∑T
t=1

(
ŷ(xi; ω̂

(t))− f̄MC(xi)
)2

will be zero. Thus, the empirical coverage rate of the MC

dropout will depend signi�cantly upon the right choice of p (as opposed to the other analyzed

methods). This �nal insight, which is also reported in Levasseur et al. (2017), has important

implications in terms of the trade-o� between out-of-sample accuracy and construction of

prediction intervals. In fact, if the optimal dropout rate 1− p is e�ectively zero (no dropout

should be implemented), the MC dropout approach would return narrow prediction intervals.

In this circumstance, it will be necessary to reduce the out-of-sample prediction accuracy �by

increasing the dropout rate� in order to return correct prediction intervals.

4.4 Extra-neural networks (Fixed Bernoulli Mask)

In this section we introduce a novel methodology to construct prediction intervals that is

based upon the work of Srivastava et al. (2014). In this case, the original concept of ensemble

of sub-networks�from which the dropout training is built upon�is adopted. The Bernoulli

mask r? introduces an additional randomization scheme to the predictions obtained from the

ensemble of neural networks that ensures independence and the consequential validity of the

prediction interval (4.27) presented below.

For notation purposes, we will identify the �xed Bernoulli mask as r̄? as opposed to r?

used in dropout training. In other words, T sets of vectors {r̄?(t)}Tt=1 are sampled from the

Bernoulli distribution prior to training (instead of test time with Monte Carlo dropout) that

are kept constant during both train and test phases. This approach reduces to train and

independently �t T random sub-networks on the same dataset. In this setting, generating the

predictive distribution is similar, in spirit, to an ensemble approach that trains di�erent sub-

neural networks on the same dataset. The proposed algorithm�being based on the extremely

randomized trees proposed by Geurts et al. (2006)�is called extra-neural networks.

Before analyzing the prediction intervals for the extra-neural network, it is necessary to

analyze the relation between the correlation among the di�erent models that constitute an

ensemble and the error of the latter (see also Brown et al., 2005; and Zhou, 2012) that

de�nes the aleatoric uncertainty. In particular, consider T �tted sub-networks de�ned as

ft(xi; ω̂
(t)) with t = 1, · · · , T . We use ft to note that each prediction belongs to a potentially

di�erent model; ω̂(t) denotes the parameter estimates obtained from �tting each sub-network

independently. The prediction of the extra-neural network model is

121

f̄EN (xi) =
1

T

T∑

t=1

ft(xi; ω̂
(t)), for i = 1, . . . , n. (4.23)

Given the ensemble predictor expressed above, it is possible to compute the mean square

prediction error (MSPE) of the prediction conditional on the regressor vector xi. Then,

MSPE(f̄EN (xi)) ≡ E[(f̄EN (xi)− yi)2] = Bias2(f̄EN (xi)) + V (f̄EN (xi)). (4.24)

We compute the conditional bias and variance of f̄EN (xi) as

Bias(f̄EN (xi)) ≡ E[f̄EN (xi)− yi] =
1

T

T∑

t=1

E[ft(xi; ω̂
(t))]− f(xi), (4.25)

and

V (f̄EN (xi)) ≡ E
(
f̄EN (xi)− E[f̄EN (xi)]

)2
= E

[
f̄2
EN (xi)

]
− E2[f̄EN (xi)],

such that

V (f̄EN (xi)) =
1

T 2

T∑

t=1

T∑

t′=1

(
E[ft(xi; ω̂

(t))ft′(xi; ω̂
(t′))]− E[ft(xi; ω̂

(t))]E[ft′(xi; ω̂
(t′))]

)
.

Furthermore, assuming that the �rst two statistical moments of all the individual predictors

indexed by t = 1, . . . , T are equal, with E
[
ft(xi; ω̂

(t))
]

= f(xi) + µi, where µi is the bias

term, V
[
ft(xi; ω̂

(t))
]

= σ2
ω̂(xi), and Cov

[
ft(xi; ω̂

(t))ft′(xi; ω̂
(t′))
]

= ci, we obtain

MSPE(f̄EN (xi)) = µ2
i +

1

T
σ2
ω̂(xi) +

T − 1

T
ci. (4.26)

This expression extends Zhou (2012) by showing that the MSPE of the ensembler (4.23)

depends on the variance of the individual ensemblers, their covariance and the approximation

bias. The smaller the covariance, the smaller the generalization error of the ensemble. In

contrast, if the di�erent predictors are perfectly correlated (as for the MC dropout) we know

that ci = σ2
ω̂(xi) and thus MSPE(f̄EN (xi)) = σ2

ω̂(xi)�e�ectively reducing to zero the e�ect

of ensembling. Similarly, the MSPE is minimized when the errors are perfectly uncorrelated

and thus when ci = 0.

This result has important implications when analyzing the epistemic uncertainty of an

extra-neural network. If it is assumed that the correlation among the predictions from the

sub-networks is equal to zero48, then as T → ∞, the MSPE(f̄EN (xi)) converges to zero,

assuming that the approximation bias is negligible. Therefore, a suitable prediction interval

is

f̄EN (xi)± z1−α/2

(
σ̂2
ω̂(xi)

T
+ σ̂2

e

)1/2

, (4.27)

48 Monte Carlo simulation results show an average correlation of 0.0498; the results are available upon request.

122

with σ̂2
ω̂(xi) = 1

T

∑T
t=1(ft(xi; ω̂

(t))− f̄EN (xi))
2 and σ̂2

e = 1
n

∑n
i=1

(
yi − f̄EN (xi)

)2
, where n is

the length of the test sample.49

As explained in Zhou (2012), the covariance term in Equation (4.26) captures the diver-

sity existing among the T di�erent sub-networks identifying the extra-neural network. The

aim of the extra-neural network approach proposed in this chapter is to construct individual

predictors that are mutually independent such that the prediction interval (4.27) is valid. The

diversity in the model predictions depends on the variance of the Bernoulli masks generated

by the random sample {r̄?(t)}Tt=1. It is well known that the variance of a Bernoulli distribution

is de�ned as ς2 = p(1− p); therefore, it can be easily shown that the solution to ∂ς2/∂p = 0

is p = 1/2 and that ∂2ς2/∂p2 = −2 showing that ς2 is maximized in p = q = 0.5. Consequen-

tially, one could conclude that the covariance in equation 4.24 is minimized for p = 0.5 and

maximized for p = 0 and p = 1, see also Figure 4.2:

0.0 0.2 0.4 0.6 0.8 1.0

p

Variance Bernoulli Distribution

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 4.2: Bernoulli Variance. The variance (ς2) is maximized for p = 0.5 and minimized (= 0) for
p = 0 and 1.

However, a complete analysis of the covariance of an ensemble of neural networks must

consider the relation existing between the number of hidden nodes and the particular data

generating process analyzed. Based on the literature on approximation theory and DNNs, the

number of hidden nodes de�nes the approximation power (or �exibility) of the neural net-

works (for a summary on the topic see chapter 3 above). Farrell et al. (2019), by comparing

DNN structures to di�erent nonparametric techniques for approximating unknown continu-

ous functions, also make explicit the dependence between the number of hidden nodes in the

DNN (Ztot) and the approximation power. If the size of the networks is such that the ambi-

guity�measure of disagreement among the di�erent networks on a speci�c input, see Krogh

49 Note that for obtaining a consistent estimator of σ̂2
e we have imposed homoscedasticity of the error terms

εi over the test sample.

123

and Vedelsby (1995) for a detailed analysis�is too low, the assumption of c = 0 becomes

unrealistic.

Based on the above paragraph, one could conclude that the analysis of the covariance in

an extra-neural network must consider not only p that determines the variance of {r̄?(t)}Tt=1

but also the particular data generating process under study, as Zdropout is also determined

by p. As the two e�ects must be considered together when choosing the probability p, one

must consider that p converging to 0.5 from above or from below may have a similar impact

in terms of decrease in c but and opposite e�ect on the dimension of Zdropout. As p converges

to 0.5 from below, the dimensions of the sub-networks will increase (higher probability for

each neuron to be 1 and thus to be retained in the sub-network). Conversely, p converging to

0.5 from above will ensure a reduction of the number of hidden nodes in the T sub-networks

(higher probability of being �dropped out� - q = 1− p).

Algorithm 3 Extra-neural networks

INPUT: Training Data {xxi ≡ (xi, yi)}Mi=1

OUTPUT: Prediction Interval f̂(x;ω).

1: procedure T learners

2:

3: while (t < T) do

4: Generate a Bernoulli mask r̄? prior to training.

5: Apply Bernoulli mask r̄? to the original neural network.

6: Train random thinned network on xx with random initialization of {Wn
0}Nn=1

7: Store ft(xi; ω̂
(t)).

8: Compute the ensemble estimate:

f̄EN (xi) =
1

T

T∑

t=1

ft(xi; ω̂
(t)) (4.28)

9: Compute the epistemic and aleatoric variance:




σ̂2
ω̂(xi) = 1

T

∑T
t=1[ft(xi; ω̂

(t))− f̄EN (xi)]
2

σ̂2
e = 1

n

∑n
i=1

(
yi − f̄EN (xi)

)2 (4.29)

10: De�ne Prediction Interval:

f̄EN (xi)± z1−α/2σ̂ε, (4.30)

with σ̂ε =
(
σ̂2
ω̂

(xi)

T + σ̂2
e

)1/2
.

return Prediction interval (4.30)

124

Algorithm 3 reports the procedure to be used for implementing the extra-neural network.

In order to generate {ft(x; ω̂(t))}Tt=1, we sample T vectors {r̄?(t)}Tt=1 prior to training. Each

�xed Bernoulli mask is applied independently to the original network returning T independent

sub-networks of size Z
(t)
dropout ≤ Ztot. Each sub-network is then trained independently on xx,

and T deterministic forward passes are performed at test phase. Thus, even if the novel

algorithm is based upon the original idea of dropout proposed by Srivastava et al. (2014)

and introduces randomness by means of a random sample {r̄?(t)}Tt=1, it is closer to classical

ensemble methods than to training with dropout. This has important implications while

training. In this case, performing weight scaling at test phase (or train phase if the algorithm

is implemented in Keras) is not required as the Bernoulli mask is applied before training.

Training T independent sub-networks identi�ed by {r̄?(t)}Tt=1 makes no longer necessary to

ensure that the expected total input to the units of a DNN at test time is approximately the

same as the expected value at training (see Goodfellow et al., 2016).

The procedure reported in Algorithm 3 shows that an extra-neural network is an ensemble

of T neural networks with randomized weights and structures and no data resampling. Based

on the results reported by Pearce et al. (2018), Lee et al. (2015) and Lakshminarayanan et

al. (2017) regarding deep ensembles 50 it is expected that the extra-neural network algorithm

will improve over a bootstrapping ensemble approach. More precisely, Lee et al. (2015) show

how parameter resampling without bootstrap resampling�equivalent to training T di�erent

f(xi; ω̂
(t)) on xx�outperforms a bootstrap approach (analyzed in Subsection 4.3.2) in terms

of predictive accuracy; Lakshminarayanan et al. (2017) complement the results of Lee et al.

(2015) by showing that data resampling in deep ensembles deteriorates not only the prediction

accuracy but also the de�nition of the predictive uncertainty of the ensemble itself. Although

these authors do not provide robust justi�cation for these results, recent research from El

Karoui and Purdom (2018) �focused on the construction of con�dence intervals for linear

regression via bootstrapping procedures in mid and high-dimensional settings� provides a

useful insight. In particular, as the number of observation grows to in�nity, the probability

of sampling a unique observation tends to a Poisson distribution with λ = 1, and thus to

0.63. The reduction of unique observations has a negative impact not only on the prediction

accuracy of the neural network (by being data hungry), but also on the construction of

con�dence intervals (which can also be translated to the construction of prediction intervals).

When d/M → 0.63 and pairs bootstrapping is implemented, the bootstrap design matrix

will be singular even if the original design matrix was of full rank equal to d. El Karoui

and Purdom (2018) explain how this leads to the complete unreliability of bootstrapping

(pairs) methods for the computation of the variance of con�dence intervals in mid-dimensional

settings. In their simulation exercise, the authors show how even for a value of d/M ≈ 0.2,

pairs bootstrapping returns over-speci�ed (higher width) con�dence intervals. Therefore, even

if applied to linear regressions, the results of El Karoui and Purdom (2018), provide the basis

for a deeper understanding of the results found in Lakshminarayanan et al. (2017) and Lee

et al. (2015).

50 Deep ensembles and ensembles of DNNs are considered synonym for the rest of the chapter.

125

Therefore, the extra-neural networks by randomizing not only the weights of the T sub-

networks but also their structure, and by �tting the networks on the entire training set {xi}Mi=1,

are expected to outperform the bootstrap approach in terms of both out-of-sample prediction

accuracy (Lee et al., 2015) and uncertainty quanti�cation (Lakshminarayanan et al., 2017)
51.

To summarize, the MC dropout trains a single neural network with dropout training (the

Bernoulli masks are sampled prior to each gradient step, and thus are variable throughout the

training of the single neural network) on the original dataset. The extra-neural network is an

ensemble algorithm that trains T di�erent random sub-networks on the same dataset. The

random sub-networks are identi�ed via Bernoulli masks that are sampled prior to training

(thus, for each sub-network, the set of random Bernoulli masks is kept �xed throughout the

training). The bootstrap approach trains the same neural network structure (i.e., MC dropout

with p = 1 �no dropout) on resampled versions of the dataset.

The main drawback of the extra-neural network algorithm is associated to the computing

power required. In particular, if the computational requirements of the proposed methodology

are equivalent to existing bootstrapping procedures (with and without data resampling), they

are signi�cantly greater than the ones of the MC dropout methodology. However, due to

the parameter sharing in the MC dropout, the extra-neural networks will ensure a lower

MSPE (see Equation 4.26). Additionally, it is expected an improvement also in terms of

hyperspace: the novel methodology allows reaching a good estimation performance without

the pivotal �ne-tuning that is required by the other procedures. As in the case of bootstrap

based procedures, the independence among the di�erent learners in the extra-neural networks

allows parallel computing ensuring savings in computational time. Last but not least, the

extra-neural network improves over a bootstrap based approach in terms of applicability: if

the bootstrap approach relies on the assumption of i.i.d observations, the extra-neural network

does not.

Lastly, a comparison with random forests is also discussed to further clarify the novel

methodology. Random forests (Breiman, 2001) are characterized by high generalization per-

formance by reducing the correlation among the di�erent trees via two di�erent sources of ran-

domness: a) resampling with replacement, and b) subsampling the set of features adopted in

the recursive binary splitting algorithm. Conversely, the extremely randomized trees (Geurts

et al., 2006) no longer perform resampling with replacement and introduce an extra source

of randomness by randomizing the threshold adopted while performing the binary splitting

for a given subsample of features. One could notice how the randomness introduced in the

ensemble of trees increases as the dimension of the subsample of features decreases.

51 By considering deep ensembles the equivalent of a random forest (Breiman, 2001) where the single learners
are neural networks and where the parameter uncertainty is captured not by the random subset selection
of features at each node (trees) but by random weight initialization, the extra randomization introduced
by extra-neural networks is comparable to the extremely randomized trees in Geurts et al. (2006). In this
case, randomizing also the structure is equivalent to randomizing the cut-point at each node in a tree.

126

We will now extend the above discussion to ensembles of neural networks. In particular,

when the bootstrapping approach is performed, there are two di�erent sources of random-

ness: a) resampling with replacement, and b) random weight initialization. Conversely, the

extremely randomized networks do not perform resampling with replacement and introduce an

extra source of randomness by randomizing the structure (in terms of dimension and in terms

of allocation of nodes across layers) of the di�erent learners. If, for example, the distribution

adopted for random weight initialization is N(0, σ), one could notice how the randomness in-

troduced in the ensemble of neural networks increases as σ increases. To generalize, the choice

of the distribution for the initialization of the weights is a driving factor of the randomness

among learners. Therefore, random weight initialization in ensembles of neural networks plays

a role similar to feature subsampling in ensembles of trees.

Alternatively, one could introduce feature subsampling also in ensembles of neural net-

works. In the case of extra-neural networks, this could be achieved by allowing for a �xed

dropout mask not only in the hidden layers but also in the input layer. However, this �nal

approach may have a negative impact on the imputation of the aleatoric uncertainty and thus

on the correct construction of prediction intervals. In fact, Pearce et al. (2018) explain how

the aleatoric uncertainty is driven by the underlying randomness of the data generating pro-

cess and also by the presence of missing variables. A possible solution would be coupling the

dropout in the input layer with the extraction of feature importance from a random forest:

given the feature importance based on the �tting of a random forest, instead of imposing to

each input node the same probability 1− p of being dropped out, it would be possible to con-

struct weighted probabilities for the input nodes ensuring that the less important features will

have a higher probability of being dropped out, while the most important ones to be retained

in the network (an example of the application of the feature importance from a random forest

for the implementation of dropout can be found in Santra et al., 2020).

All the results analyzed in Section 4.3 and 4.4 will be formally evaluated in an extensive

simulation study focused on assessing if the reported procedures return correct prediction

intervals (empirical coverage close to the nominal one) for di�erent signi�cance levels and

data generating processes. Finally, the empirical experimental setting of Hernández-Lobato

and Adams (2015) is implemented to compare the performance (in terms of RMSPE) of the

di�erent algorithms.

4.5 Monte Carlo simulation

The Monte Carlo simulation will analyze the empirical coverage rates of the prediction inter-

vals obtained from Expression (4.16) (bootstrap approach), Expression (4.22) (MC dropout)

and Expression (4.27) (extra-neural network). For each prediction interval, the empirical cov-

erage rates (ᾱ) for three di�erent signi�cance levels (0.01, 0.05, and 0.10) are computed. This

allows evaluating the correctness of the constructed prediction intervals for di�erent signi�-

cance levels. All three procedures are analyzed for increasing T = [30, 50, 70], and for a sample

size M + n = 1200 + 300. When the small-dimensional linear process is considered�in order

127

to evaluate the impact that di�erent ps may have on the correct de�nition of the prediction

intervals 52 �we will consider p = [0.995, 0.990, 0.950, 0.900, 0.800]. Subsection 4.5.1 reports

the setting for the simulation of the small dimensional linear and nonlinear data generating

processes; Subsection 4.5.2 summarizes the results.

4.5.1 Data Generating Processes

When the nonlinear data generating process (DGP) is considered, the dataset x ∈ R5 is

de�ned by x1 ∼ N(−4, 1), x2 ∼ N(2, 1), x3 ∼ N(2, 1), x4 ∼ N(2, 1), and x5 ∼ N(4, 1), the

means of which are randomly sampled with replacement from a domain de�ned in [−5, 5].

In order to introduce correlation among the variables, the Choleski decomposition is applied.

The desired correlation matrix is de�ned as:

C =




1 0.5 0.6 0.7 0.5

0.5 1 0.7 0.8 0.5

0.6 0.7 1 0.7 0.5

0.7 0.8 0.7 1 0.8

0.9 0.5 0.6 0.8 1




(4.31)

Before imposing the correlation structure in C, it is necessary to make sure that the sim-

ulated variables are independent. To do so, the current correlation matrix Σ is calculated;

following, the inverse of the Cholesky factorization (A−1) of Σ is computed. By matrix mul-

tiplying A−1 and x, we will ensure that the obtained dataset will be de�ned by independent

Normally distributed variables. Finally, the Cholesky factorization (A) of C is calculated and

multiplied by the simulated dataset, ensuring that Z = xA ≈ N(0,C).

The nonlinear DGP is de�ned by a ReLu DNN with two hidden layers of width 3 and 2

respectively, and bias equal to 1 across all hidden layers 53 :

52 The choice of the dropout rate q = 1 − p is dictated by a really small network size and also a fairly small
simulated dataset.

53 A similar DGP is also simulated in Tibshirani (1996) with x ∈ R4, and a shallow network with sigmoid
activation functions and two hidden nodes; the Gaussian error ε follows the same distribution.

128

b2 b3
b1T1

T2

T3

 ∑

ε

Signal Noisy signal

-3

+4

-3
-2

+5

-4
+1

+2

+2

+5 +2

-2

-3

-5

+3

-1

-2

+3

+3
+5

+5

+1

+2

+1 +1 +1

0 500 1000 1500

0
50

10
0

15
0

20
0

25
0

Observation

Dependent Variable

Figure 4.3: Data Generating Process. Top panel presents the underlying signal with randomly
sampled coe�cients and the bottom panel presents the noisy y

which is also de�ned as

T1 = θ(1− 3x1 − 2x2 + 1x3 + 5x4 − 3x5)︸ ︷︷ ︸
h11

+ θ(1 + 4x1 + 5x2 + 2x3 + 2x4 − 5x5)︸ ︷︷ ︸
h21

+ θ(1− 3x1 − 4x2 + 2x3 − 2x4 + 3x5)︸ ︷︷ ︸
h31

T2 = θ(1− 1h11 + 3h21 + 5h31)︸ ︷︷ ︸
h12

+ θ(1− 2h11 + 3h21 + 5h31)︸ ︷︷ ︸
h22

y = 1 + h12 + 2h22 + ε

129

with ε ∼ N(0, 0.7), θ(x) = max{0,x}, and the coe�cients (network weights) randomly sam-

pled with replacement from [−5, 5]. The standard deviation of the error term is set equal to

0.7 in order to reduce the nuisance in the system by di�erentiating the stochastic behavior of

the regressors x and of the error term.

Following, a linear DGP that allows for interactions among the variables is also simulated.

Also in this case x ∈ R5, with x1 ∼ N(−4, 1), x2 ∼ N(1, 1), x3 ∼ N(1, 1), x4 ∼ N(1, 1), and

x5 ∼ N(5, 1). The cross-correlation matrix is de�ned in 4.31. The analyzed DGP is 54

y = −8x1 + 2x2 + 2x3 + 2x4 + 7x5 + 3x1x2 − x3x5 + 2x1x4 + ε (4.32)

The parameters chosen for the vector of coe�cients are generated from a U [−10, 10] and then

rounded to the closest digit; the error term is ε ∼ N(0, 1) and it is uncorrelated with the input

variables.

For both linear and nonlinear DGPs, a total of 1500 observations are generated, 1200

observations are used for the training set and 300 for the test set. The datasets are normalized

so that x has zero mean and unit variance.

When �tting the neural networks, no optimal tuning of the neural network hyper-parameters

and structure is conducted55. The reasons for imposing the network hyper-parameters as op-

posed to �ne-tuning them are: (I) it is ensured that the simulation results obtained are not

dependent on �ne-tuning; (II) it allows conducting a comparison of the empirical coverage

rates across the three di�erent methodologies analyzed, and (III) it allows analyzing the im-

pact that di�erent ps may have on the empirical coverage probabilities.

When the nonlinear DGP is simulated, it is assumed that the neural network structure

is known (Z1 = 3 and Z2 = 2). Conversely, when the linear DGP is analyzed�as the true

network structure is unknown, and due to the simplicity of the DGP�a shallow network with

5 hidden nodes is considered. When a nonlinear DGP is analyzed a p = 0.995 is applied

(the true network structure is known and thus a low dropout rate is required); conversely,

when a linear DGP is �tted, by imposing p = [0.995, 0.990, 0.950, 0.900, 0.800], it is possible to

analyze the impact that di�erent ps may have on the empirical coverage rates of the obtained

prediction intervals. A sensible choice of the network parameters for the linear process is to

use the Adam optimizer with learning rate 0.1 and 10 epochs; for the nonlinear process the

Adam optimizer with learning rate 0.01 and 80 epochs.

54 The interaction terms are introduced in order to have an unknown network structure. In fact, if no
interactions are assumed, the true network structure is a shallow network with one hidden node.

55 For the correct choice of the network hyper-parameters, the analyst should ensure that the test set used for
parameter tuning and for the aleatoric uncertainty computation is distinct�that is, a hold-out set should
also be generated�otherwise, the consequential under-estimation of the aleatoric uncertainty could lead to
narrower prediction intervals.

130

4.5.2 Simulation Results

Table 4.1 reports the out-of-sample performance and the empirical coverages of the three

procedures analyzed. When the nonlinear DGP is considered, one could notice that the three

methodologies return�for the three di�erent signi�cance levels�prediction intervals with

empirical coverage probabilities approximately equal to the theoretical ones. Focusing on the

linear DGP, one could notice that the bootstrap approach returns prediction intervals with

empirical coverages approximately equal to the signi�cance level at which they are constructed;

when the extra-neural network is considered, all prediction intervals, for the di�erent ps

considered, have an empirical coverage probability approximately equal to the nominal one;

conversely, the MC dropout returns correct prediction intervals only for given values of p.

As explained in the previous sections, the epistemic uncertainty in the MC dropout is

captured exclusively by dropout at test time (and thus by the dropout rate q = 1 − p).

Conversely, when the extra-neural network is analyzed, the epistemic uncertainty depends

not only on the dropout rate considered, but also on the random weight initialization used for

�tting the T sub-networks. As a result, the correct construction of the prediction intervals

using the MC dropout approach requires to identify the optimal dropout rate as opposed to

the extra-neural network algorithm proposed in the present chapter.

The present research extends the results of Levasseur et al. (2017). Similarly, these authors

state that the construction of prediction intervals with empirical coverage rates approximately

equal to the theoretical ones�using the MC dropout approach�depends on the correct choice

of the dropout rate. Consequentially, these authors suggest that the dropout rate should be

tuned to return the correct prediction intervals. The theoretical analysis in Section 4.3 coupled

with the results in Table 4.1 clearly show that the prediction intervals computed from the

MC dropout rely signi�cantly on the correct choice of the dropout rate. These results also

suggest that choosing the dropout rate that maximizes the out-of-sample accuracy guarantees

prediction intervals with the correct ᾱ (the out-of-sample error is minimized for the p that

returns correct prediction intervals).

Although the results in Table 4.1 show that all three procedures return prediction intervals

with empirical coverage probabilities close to the theoretical ones for both linear and nonlinear

DGPs, the performance of the extra-neural network approach is clearly superior in terms of

coverage probabilities and also MAPE and MSPE errors. This is particularly the case for

α = 0.10. This outperformance is especially remarkable for the linear process for which we

do not impose or know a priori the true structure of the network. Finally, focusing on the

out-of-sample performance, one could notice that: (i) the out-of-sample errors decrease as T

increases, and (ii) for given dropout rates, the ensemble of neural networks outperforms the

bootstrap approach.

131

Table 4.1: The table reports the out-of-sample mean average prediction error (MAPE) and mean
squared prediction error (MSPE) for the analyzed procedures. EN1 refers to the extra-neural network
�tted for a nonlinear DGP, EN2 for a linear DGP. MC1 refers to the MC dropout for a nonlinear DGP,
MC2 for a linear DGP. Finally, BOOT1 reports the results for the bootstrap approach a nonlinear
DGP, BOOT2 for a linear process.

Nonlinear Linear

EN1 MC1 BOOT1 EN2 MC2 BOOT2

p 0.995 0.995 - 0.995 0.990 0.950 0.900 0.800 0.995 0.990 0.950 0.900 0.800 -

T = 30

MAPE 1.4979 3.5218 1.8476 1.0322 1.0493 1.1113 1.1196 1.2383 1.2993 1.3152 1.5834 1.6290 2.0478 1.0451

MSPE 3.8232 19.8904 5.4190 1.7208 1.7544 2.0327 2.0315 2.6099 2.9998 2.9527 4.1508 4.0322 7.0050 1.7037

Cov99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.01

Cov95 0.05 0.04 0.04 0.03 0.03 0.05 0.04 0.06 0.04 0.04 0.01 0.01 0.00 0.03

Cov90 0.07 0.08 0.06 0.09 0.09 0.08 0.10 0.08 0.07 0.07 0.02 0.02 0.00 0.09

T = 50

MAPE 1.5068 3.5404 1.4480 1.0419 1.0808 1.0668 1.0940 1.2034 1.3044 1.3124 1.5337 1.5842 2.0583 1.0671

MSPE 3.6592 20.0717 3.4133 1.7332 1.8930 1.7991 1.9732 2.4329 3.0670 2.8893 3.8274 3.9688 6.7150 1.8043

Cov99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01

Cov95 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.01 0.01 0.00 0.04

Cov90 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10 0.08 0.08 0.01 0.02 0.00 0.08

T = 70

MAPE 1.4756 3.5200 1.6426 1.0423 1.0467 1.1051 1.1611 1.1980 1.3026 1.3042 1.5277 1.5603 2.0060 1.0522

MSPE 3.5096 20.1656 4.3616 1.7131 1.7315 1.9444 2.2202 2.4559 3.0330 2.9104 3.8339 3.8921 6.6385 1.7290

Cov99 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01

Cov95 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 0.01 0.00 0.04

Cov90 0.09 0.08 0.08 0.10 0.10 0.09 0.09 0.10 0.07 0.08 0.01 0.02 0.00 0.08

To summarize, the simulation results show that the proposed extra-neural network method-

ology not only returns correct prediction intervals but it also improves the forecast accuracy

for both deep and shallow ensembles. Based on Equation 4.26, one could also notice that the

coverage probability of a prediction interval improves not only by correctly estimating the

variance but also by providing more accurate pointwise predictions of the true observations.

Therefore, the following Section, by using the experimental settings of Hernández-Lobato and

Adams (2015), evaluates the out-of-sample accuracy in terms of root mean square prediction

error (RMSPE) of the novel approach for real world datasets.

4.6 Empirical Analysis

Hernández-Lobato and Adams (2015) after proposing a novel scalable method for learning

Bayesian neural networks�called probabilistic backpropagation (PBP)�evaluate the perfor-

mance of their novel methodology on real world datasets. The experimental settings used in

their evaluation are widely adopted by the literature focusing on deep learning (see for exam-

ple Gal and Ghahramani 2016a; and Lakshminarayanan et al., 2017) when evaluating novel

algorithms. Therefore, using their experimental setup ensures comparability of the results

with the variational inference method by Graves (2011), the probabilistic backpropagation of

Hernández-Lobato and Adams (2015), the MC dropout in Gal and Ghahramani (2016a), and

the deep ensemble approach developed by Lakshminarayanan et al. (2017).

132

The original experiment of Hernández-Lobato and Adams (2015) evaluates the models

not only in terms of RMSPE but also in terms of predictive log-likelihood (the latter being

extremely relevant in Bayesian learning). Being the present chapter focused on evaluating the

accuracy of di�erent procedures in constructing prediction intervals for regression tasks, only

the former performance metrics will be considered. In fact, if the simulation (reported in the

previous Section) analyzes the correctness of the prediction intervals obtained from state-of-

the-art methodologies designed not only for conditional mean but also variance estimation for

both shallow and deep networks, it does not assess the performance of the extra-neural network

approach for large datasets. Therefore, the present empirical application (focused on shallow

structures in order to allow for cross-comparability) complements the results reported in

Table 4.1 by analyzing the RMSPE of the extra-neural network in large dimensional settings.

The obtained RMSPEs (see also Equation 4.26), by capturing both bias and variance of

the predictions, provide an additional indication regarding the accurateness of the prediction

intervals obtained from the extra-neural network algorithm.

The experimental setup is as follows: 10 datasets are analyzed. Each dataset is split into

random training (0.90 of the observations) and test (0.10 of the observations) sets 20 times

and the average test set performance (RMSPE) and relative standard error are reported. As

an exception, the protein and Year Prediction MSD datasets are split only 5 and 1 times into

train and test sets. The datasets are normalized to guarantee that the regressors have zero

mean and unit standard deviation. The same network architecture is considered: 1-hidden

layer ReLu neural network with Z1 = 50 for the small datasets and Z1 = 100 for the larger

protein and Year Prediction MSD datasets. Each neural network is trained for 40 epochs.

Following Gal and Ghahramani (2016a), we use a dropout rate of 0.05, Adam optimizer and

a batch size of 32. We decide to use the same dropout rate as in Gal and Ghahramani

(2016a) for comparability reasons. We refer to Gal and Ghahramani (2016a), Hernández-

Lobato and Adams (2015), and Lakshminarayanan et al. (2017) for additional details on the

implementation of their algorithms. Lakshminarayanan et al. (2017) use 5 networks in their

ensemble, and Gal and Ghahramani (2016a) perform 10000 stochastic forward passes56. In

order to allow for a fair comparison between the deep ensemble of Lakshminarayanan et al.

(2017) and the novel algorithm proposed in the present chapter, we will �t, at �rst, an extra-

neural network with 5 sub-networks; following, in order to compare the predictive performance

of Algorithm 3 with the MC dropout of Gal and Ghahramani (2016a), an extra-neural network

with 70 sub-networks will also be considered.

Table 4.2 reports the average RMSPE and relative standard errors57; in bold are reported

the lowest average RMSPEs. The authors�as opposed to what could be inferred from the

related literature�indicate that it is not possible to ascertain the outperformance of one

procedure over the competitors by relying solely on the average (over the resampled train

and test sets) RMSPE; it is necessary to consider also the reported standard errors. Thus,

56 This is not directly reported by the authors and it is inferred from the code reported in their Github page
(Gal and Ghahramani, 2016c).

57 For the last dataset, it is not possible to compute the SE as only 1 split is performed.

133

the extra-network (T = 70) is shown to outperform the competing algorithms in four cases

(excluding the Year Protection MSD dataset 58); both MC dropout and deep ensemble models

are shown to outperform the other procedures in one case. When comparing the deep ensemble

of Lakshminarayanan et al. (2017) and the extra-neural network (T = 5), the extra-neural

network is shown to outperform �ve times, the deep ensemble three times59.

Table 4.2: The table reports the average test RMSPE and relative standard error (SE) for the varia-
tional inference method (VI) of Graves (2011); the probabilistic backpropagation (PBP) of Hernández-
Lobato and Adams (2015); the MC dropout of Gal and Ghahramani (2016a); and the deep ensemble
proposed by Lakshminarayanan et al. (2017). Extra-net1 uses T = 70, while Extra-net2 uses T = 5.
The number of observations used for the split is reported as M + n, and the dimension of the input
as d. In bold the lowest average RMSPE is highlighted.

Dataset (M+n) d VI PBP MC-Dropout Deep Ens. Extra-net1 Extra-net2

Boston Housing 506 13 4.32±0.29 3.01±0.18 2.97±0.19 3.28±1.00 2.80±0.15 3.22±0.21
Concrete Strength 1030 8 7.19±0.12 5.67±0.09 5.23±0.12 6.03±0.58 5.26±0.15 5.09±0.10
Energy E�ciency 768 8 2.65±0.08 1.80±0.05 1.66±0.04 2.09±0.29 0.59±0.01 0.72±0.02
Kin8nm 8192 8 0.10±0.00 0.10+0.00 0.10±0.00 0.09±0.00 0.08±0.00 0.08±0.00
Naval Propulsion 11934 16 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.03±0.00
Power Plant 9568 4 4.33±0.04 4.12±0.03 4.02±0.04 4.11±0.17 4.12±0.05 4.24±0.04
Protein Structure 45730 9 4.84±0.03 4.73±0.01 4.36±0.01 4.71±0.06 4.32±0.01 4.36±0.02
Wine Quality Red 1599 11 0.65±0.01 0.64±0.01 0.62±0.01 0.64±0.04 0.63±0.01 0.64±0.01
Yacht Hydrodynamics 308 6 6.89±0.67 1.02±0.05 1.11±0.09 1.58±0.48 0.72±0.06 0.97±0.06
Year Protection MSD 515345 90 9.03±NA 8.88±NA 8.85±NA 8.89±NA 8.84±NA 8.97±NA

4.7 Conclusions

The de�nition of a robust methodology for the correct construction of prediction intervals

for both deep and shallow neural networks is currently an open question that an increasing

community of researchers and practitioners is focusing on. This chapter proposes a novel

approach based on an ensemble of neural networks and compares its performance against

state-of-the-art competitors found in the literature such as bootstrap methods and Monte

Carlo dropout.

Our novel algorithm builds upon the work of Geurts et al. (2006) by extending the ex-

tremely randomized trees approach to ensembles of neural networks. The introduction of a

Bernoulli mask allows for an additional randomization scheme in the prediction of the individ-

ual learners that ensures not only the correct construction of the prediction intervals, but also

training the neural networks on the entire training set, better generalization performance due

to randomized architecture structures, and accuracy gains due to an increase in the diversity

among the members of the ensemble. The randomization across individual learners guaran-

tees mutual independence across individual prediction models reducing the variance of the

ensemble predictor by 1/T , with T the number of models comprising the ensemble prediction.

The performance of the proposed algorithms is assessed in a comprehensive Monte Carlo

58 If the predictions are rounded to the closest digit, or the �oor operator is used, the obtained RMSE is 8.85.
59 The deep ensemble proposed by Lakshminarayanan et al. (2017) is a novel algorithm that it is shown to

consistently outperform classic bootstrap based approaches.

134

exercise. The simulation results show that the MC dropout, bootstrap approach, and extra-

neural network returns prediction intervals with empirical coverage rates close to the signi�-

cance level at which the intervals are constructed. Nevertheless, the extra-neural network is

shown to outperform the competing models in most cases but more signi�cantly for ᾱ = 0.10.

The simulation results also show the robustness of the extra-neural network approach to the

choice of the dropout rate, as opposed to the MC dropout approach. In fact, in order to

return correct prediction intervals with the latter algorithm, it is necessary to �ne-tune the

dropout rate that minimizes the out-of-sample error.

Additionally, the experimental settings of Hernández-Lobato and Adams (2015) are used

to further evaluate the proposed approach on real world datasets. The results suggest that

the extra-neural network approach outperforms state-of-the-art deep learning algorithms in

terms of out-of-sample RMSPE.

135

CHAPTER 5

Machine Learning the Carbon Footprint of

Bitcoin Mining

Chapter Abstract

Building on an economic model of rational Bitcoin mining, we measure the carbon footprint

of Bitcoin mining power consumption using feedforward neural networks. We �nd associated

carbon footprints of 2.77, 16.08, and 14.99 MtCO2 for 2017, 2018, and 2019 based on a novel

bottom-up approach, which conform with recent estimates, lie within the economic model

bounds while delivering much narrower prediction intervals, and yet raise alarming concerns,

given recent evidence (e.g., from climate-weather integrated models). We demonstrate how

machine learning methods can contribute to non-for-pro�t pressing societal issues, like global

warming, where data complexity and availability can be overcome.

137

5.1 Introduction

Does Bitcoin mining contribute to climate change? Participation in the Bitcoin blockchain

validation process60 requires specialized hardware and vast amounts of electricity, translating

into a signi�cant carbon footprint. Mora et al. (2018) estimate that the 2017 carbon footprint

of Bitcoin reached 69 million metric tons of CO2-equivalent (MtCO2e), forecasting a violation

of the Paris COP21 UNFCCC Agreement61 by 2040 due to Bitcoin's cumulative emissions

alone. At the heart of the controversy sparked, with various contributions revising downward

Mora et al.'s (2018) projections (e.g., Houy, 2019; Masanet et al., 2019 or Stoll et al., 2019),

is the di�culty in measuring the power consumption of the Bitcoin mining network and

the associated carbon emissions (De Vries, 2018, 2019, 2020). Bitcoin miners are globally

geo-located, facing very di�erent energy costs, and employ hardware with unknown energy

intensities. To overcome the signi�cant constraints in estimating the carbon emissions of daily

power consumption associated with Bitcoin's blockchain, here we use machine learning (ML)

methods, demonstrating their usefulness for pressing societal issues, like climate change.

A subset of ML methods, feedforward neural networks, are becoming increasingly popular

due to their unrivaled performance in prediction tasks (LeCun et al., 2015). Feedforward

neural networks, also called multilayer perceptrons (MLPs), have been developed since the

mid-twentieth century, relying on joint advances from computer science, applied mathematics

and information and probability theory. Their recent success stems from their theoretical

ability to approximate unknown data generating processes (Universal Approximation Theorem

and its variants), while handling large and complex datasets. They approximate or learn some

unknown function of the data (or inputs) that generates an output, like the CO2 emissions

of Bitcoin network energy consumption, assuming that information 'feeds forward' from the

input, through the unknown function, to the output.62 They are called neural networks

(NN) because they are composed of many functions connected in a chain, where each link is

called a layer, each of which consists of an array of nodes (or units). By adding layers and

nodes within each layer, feedforward NNs (or deep neural networks, DNN) can approximate

functions of increasing complexity. CO2 emissions are complex to forecast, but having a

reliable general-purpose method to do so in a timely manner can inform progress towards

keeping global temperatures from rising above 2◦C, in addition to net-zero carbon emissions.

Our main contribution is to provide a robust measure of the carbon footprint associated

60 The revolutionary element of Bitcoin is the underlying 'blockchain' technology. Instead of a trusted third
party, incentivized network participants validate transactions and ensure the integrity of the network via
the decentralized administration of a data protocol (also called 'proof-of-work'). The distributed ledger
protocol created has since then been called the '�rst blockchain'.

61 The Paris Agreement is an agreement within the United Nations Framework Convention on Climate Change
(UNFCCC), dealing with greenhouse gas (GHG) emissions mitigation, adaptation, and �nance, signed in
2016. It sets out a global framework to avoid dangerous climate change by limiting global warming to well
below 2◦C and pursuing e�orts to limit it to 1.5◦C. It also aims to strengthen countries' ability to deal
with the impacts of climate change and support them in their e�orts. The Paris Agreement is the �rst-
ever universal, legally binding global climate change agreement, adopted at the Paris climate conference
(COP21) in December 2015.

62 This is in contrast to recurrent neural networks, where information is allowed to feed-back from the output
to the model itself.

138

with producing increasingly popular cryptocurrencies, like Bitcoin (BTC), as well as of the

uncertainty associated with that measure, conveying the likelihood of potentially alarming

scenarios.

The carbon footprint of daily Bitcoin network electricity consumption obtains from mul-

tiplying the carbon intensity of the geo-located operating Bitcoin miners times their daily

power consumption, which is then added across regions/countries (our novel bottom-up ap-

proach). To gauge the sensitivity of our bottom-up greenhouse gas emissions to uncertainty

in carbon intensities, we report the emissions that obtain from adopting instead a top-down

approach, the current standard in the literature. To estimate a realistic level of daily elec-

tricity consumption to produce Bitcoins, we �rst calculate a lower and an upper limit based

on Hayes' (2017) economic model of rational Bitcoin mining decisions. The lower limit cor-

responds to the lowest marginal cost for mining Bitcoins, as de�ned by a scenario in which

all miners use the most e�cient available hardware. The upper limit obtains when the least

e�cient technology for mining Bitcoins is employed instead. Based on IPO �lings of major

hardware manufacturers, insights on mining facility operations, and mining pool composi-

tions, our DNN adopts as target output the carbon footprint of the market share weighted

average of the daily energy e�ciency deployed by operating miners, identi�ed by their IP

addresses. Our estimated level of electricity consumption is thus a conservative one, closely

tracking Hayes'(2017) lower limit. As inputs, our DNN admits a comprehensive range of

factors previously found to drive Bitcoin prices in di�erent currencies, like (i) fundamental

factors advocated by monetary economics (e.g., its usage in trade, money supply, or price

level); (ii) factors driving investors' interest in/attention to the crypto-currency (e.g., spec-

ulation or Bitcoin's role as safe haven); (iii) exchange rate hedging motives (see Kristoufek,

2015; Liu and Tsivinsky, 2018; McNally et al., 2018, or Jang and Lee, 2017), together with

(iv) novel supply-side factors for both Bitcoin and ASIC mining chips producers, related to

for-pro�t mining decisions, but excluding those employed in the construction of the upper and

lower limits. Aggregated at the yearly frequency, we �nd Bitcoin mining energy consumption,

ranging between 5.2 and 56.8 TWh in 2017, between 25.1 and 93.3 TWh in 2018, and between

27.1 and 91.1 TWh in 2019 according to Hayes' (2017) upper and lower bounds. Obtaining

mean point estimates of daily power consumption within those economically meaningful limits

provides substantial gains in accuracy relative to recent contributions in the literature, while

externally validating our ML approach.63

Crucially, our novel approach also enables the construction of prediction intervals (PIs)

around the estimated carbon footprint of Bitcoin mining, substantially narrowing down the

associated uncertainty �currently measured by the di�erence between the carbon footprint of

63 For daily estimates of the electricity consumption by the Bitcoin network, the University of Cam-
bridge recently added a new source, the Cambridge Bitcoin Electricity Consumption Index (CBECI,
https://www.cbeci.org), which is an alternative to the already existing Bitcoin Energy Consumption In-
dex (BECI). De Vries (2020) reports that 'As per September 30, 2019, these two [respectively] estimated
the network was consuming 73.1 to 78.3 terawatt-hours (TWh) of electrical energy annually. For a single
Bitcoin transaction this translates to an electrical energy footprint roughly equal to the electrical energy
consumption of a British household in two months.'

139

Hayes' (2017) upper and lower bounds, capturing the di�erence between the expected marginal

revenue and the marginal cost of Bitcoin network operating miners. When aggregated at a

yearly frequency, the corresponding CO2 estimates [and associated 0.95 PIs] are, for the year

2017, 2.77 [1.98, 3.56] MtCO2e; for 2018, 16.08 [14.19, 17.97] MtCO2e; and for 2019, 14.99

[13.25, 16.73] MtCO2e. To provide an order of magnitude, the Bitcoin mining estimated fossil

fuels emissions for the year 2018 are higher than the annual levels of fossil fuel emissions of (i)

the US states of Maine (15.6 MtCO2e), New Hampshire (13.6 MtCO2e), Rhode Island (10.1

MtCO2e) or South Dakota (14.6 MtCO2e), or of (ii) those of smaller countries, like Bolivia,

Sudan or Lebanon, (Global Carbon Atlas).64

Relative to the aforementioned literature, the reported point estimates (and PIs) also

represent a downward revision of the results reported by Mora et al. (2018), and are broadly in

line with �gures from Foteinis (2018), reporting global emissions for Bitcoin and Ethereum for

2017 of 43.9 MtCO2 or from Stoll et al. (2019), reporting annual carbon emissions for Bitcoin

mining in 2018 in the range 22.0 to 22.9 MtCO2. Our estimates further revise downward the

2017 estimates provided by Houy (2019) or Dittmar and Praktiknjo (2019), reporting 15.5

MtCO2e for 2017, or those from Masanet et al. (2019), who report for 2017 an estimate

of 15.7 MtCO2e. What makes them nevertheless worrying is recent evidence, e.g. from

integrated weather-climate models (CMIP6), feeding into the Sixth Assessment Report of

the Intergovernmental Panel on Climate Change (IPCC) 2021, reported in Williams et al.

(2020). According to them, global temperatures may rise as much as 5◦C, prompting the

recent global call to urgent policy measures by IMF's Chief Economist Gita Gopinath in

Davos (Switzerland, 2020).

The topic is controversial, considering the growing interest of national governments on

cryptocurrencies (e.g., China) and the possibility of issuing �nancial instruments solely on

blockchain technologies (e.g., Bank of Australia and World Bank bond-i), while respecting

the Paris Agreement. Before incentivizing the wide-scale adoption of blockchain technologies,

the SCC associated with proof-of-work protocols, and their e�ect on rising global temper-

atures, need to be ascertained through better carbon intensity measurements. Besides the

gains in accuracy, here we argue that ML methods present additional signi�cant advantages

for enabling timeless public decision making regarding pressing complex social issues, just as

they do in private sector for-pro�t decisions, e.g. business analytics, new technology design,

improvement or product adaptation and/or marketing. Being able to process bigger and in-

creasingly complex data in raw form, ML techniques return tailored solutions in an automated

manner. The signi�cant 'entry cost' in terms of conceptual di�culty and computational time

has signi�cantly decreased over the last ten years, thanks to advancements in computational

capacity, user-friendly software and increasing resources devoted to training and technology

adoption, rendering their use commonplace.

64 A measure of the magnitude of the economic problem can be obtained from adopting the social cost of

carbon (SCC) estimate of 62 USD per metric ton of CO2 equivalent (Interagency Working Group, IWG,
2016) in 2007 USD: yearly, the Bitcoin mining SCC reliably lies between [122, 760, 000; 220, 720, 000] USD
for 2017; in [923, 800, 000; 1, 114, 140, 000] USD for 2018; and in [821, 500, 000; 1, 037, 260, 000] USD for 2019.

140

The rest of the chapter is organized as follows: Section 5.2 reports the novel methodology

used in this chapter based on a bottom-up approach and the implementation of ML methods

for measuring CO2 emissions, brie�y discussing the data used. Section 5.3 demonstrates the

usefulness for predicting the carbon footprint associated with Bitcoin mining of our deep

learning approach ('optimized ReLu DNN'), delivering substantially narrower bounds that

increase the reliability of the provided estimates. We also show that our approach outperforms

when benchmarked against state-of-the-art ML methods. Section 5.4 concludes.

5.2 CO2 Emissions from Bitcoin Mining

There are three primary ways one can obtain BTCs, the most popular and widely accepted

of the so-called cryptocurrencies: buy them outright, accept them in exchange, or produce

them by 'mining'. Mining for Bitcoins requires computer hardware and software speci�cally

designed to solve the cryptographic algorithm underlying the Bitcoin protocol. Such com-

putational e�ort mainly consumes electricity.65 Since at any point in time di�erent miners

operate hardware and software with varying levels of energy e�ciency, measuring the overall

network power consumption involved in Bitcoin production remains a challenge to date.66 To

overcome it, we propose a novel ML approach.

To estimate a realistic level of daily electricity consumption to produce Bitcoins based on

a feedforward neural network, we �rst calculate a lower and an upper limit �based on Hayes

(2017)� within which our mean predicted electricity consumption must 'travel' between the

01/01/2017 and the 01/01/ 2020, the considered period. The lower limit corresponds to the

lowest marginal cost for mining Bitcoins, and is de�ned by a scenario in which all miners use

the most e�cient available hardware. The upper limit obtains when instead the least e�cient

technology for mining Bitcoins is employed, i.e. the break-even point of mining revenues

and electricity costs. Obtaining mean point estimates of daily power consumption within

those economically meaningful limits provides substantial gains in accuracy relative to recent

contributions in the literature, while externally validating our ML approach.

Our feedforward deep neural network (DNN) is a supervised ML algorithm that adopts

as target output the carbon emissions associated with the market share weighted average67

of the daily energy e�ciency deployed by operating miners68. Our daily level of electricity

65 Each unit of mining e�ort has a �xed sunk cost involved in the purchase, transportation and installation
of the mining hardware. De Vries (2018) reports di�erent prices of available models of mining hardware,
such as the Antminer S9. Mining e�ort also has a variable cost which is the direct expense of electricity
consumption. See Hayes (2017) for further details.

66 As an example, De Vries (2018) notes that 'A hashrate of 14 terahashes per second (TH/s) can either come
from a single Antminer S9 running on just 1,372 W, or more than half a million PlayStation-3 devices
running on 40 MW (as a single PlayStation-3 device has a hashrate of 21 megahashesper second and a
power use of 60 W).'

67 The market shares are computed in terms of either computational power or revenues, and are available from
IPO �lings disclosed in 2018 by Bitmain, and in 2019 by Canaan, retrieved from Bloomberg terminals.

68 We obtain the computational power (usually provided in terahashes per second, TH/s) and the electricity
consumed (in Watts per second, W/s) by ASIC chips used for Bitcoin mining from AsicIndex. Only mining
chips that perform the SHA-256 algorithm are considered.

141

consumption is a conservative one in that it follows the approach of the lower limit, and is

based on the anticipated energy e�ciency of the network, on hardware sales and on auxiliary

losses69. As inputs, our DNN admits a comprehensive range of factors previously found to

drive Bitcoin prices in di�erent currencies, like (i) standard fundamental factors advocated by

monetary economics and the quantity theory of money (e.g., its usage in trade, money supply

or price level); (ii) factors driving investors' interest in/attention to the cryptocurrency, like

speculation or the role of Bitcoin as a safe haven; (iii) exchange rate hedging motives, like

the tight connection between the USD and the CNY markets (see Kristoufek, 2015; Liu and

Tsivinsky, 2018; McNally et al., 2018, or Jang and Lee, 2017)70, together with (iv) novel

supply-side factors for both Bitcoin and ASIC mining chips producers, related to for-pro�t

mining decisions, but excluding those employed in the construction of the upper and lower

limits.71 The carbon intensity associated with Bitcoin mining obtains then from multiplying

the estimated electricity consumption by the average emission factor of power generation.

More speci�cally, the present chapter improves over the current literature focusing on CO2

emission and Bitcoin mining as it proposes not only the standard top-down approach to de�ne

the target carbon footprint of the Bitcoin network, but also a bottom-up approach that uses

the market information disclosed in the IPO �lings of Bitmain, Canaan, and Ebang that

allows us to determine the country-speci�c CO2 emissions from which the aggregate level is

computed. Crucially, our novel approach also enables the construction of prediction intervals

around the estimated carbon footprint of Bitcoin mining, substantially narrowing down the

associated uncertainty, as currently measured in the literature by the di�erence between the

carbon footprint of the upper and lower bounds. The latter broadly represent, respectively,

the expected marginal revenue and marginal cost of Bitcoin network operating miners (Hayes,

2017; Stoll et al., 2019).

5.2.1 Power Bounds in Bitcoin Production

Hayes (2017) argues that Bitcoin production resembles a competitive market, where risk-

neutral rational miners will produce until their marginal costs equal the value of their expected

marginal products. To produce Bitcoins, a miner directs computational e�ort at solving a

di�cult cryptologic 'puzzle' in competition with other miners in the network, to con�rm and

validate transactions. And computational e�ort mainly consumes electrical power, measured

in Watts, W.72 The marginal cost (MC) of producing Bitcoins per day (in USD/day) depends

on the cost of electricity (price pe in USD per kWh, or 10−3 × pe in USD per Wh) and the

energy e�ciency of mining (denoted by e and measured in W per unit of 'mining e�ort', or

69 These are energy losses associated with cooling and investment in new IT equipment. They are computed
on the basis of the methodology employed to construct the Cambridge Bitcoin Electricity Consumption
Index (CBECI) with data reported by Stoll et al. (2019).

70 These are collected at/or converted into daily frequencies from Bloomberg, from the Federal Reserve Bank
of St. Luis, from Blockchain.com, from asic-dex.com, and from the IPO �lings of Canaan and Bitmain.

71 The Bitcoin exchange rates with other cryptocurrencies such as Ethereum, Ripple, and Litecoin are not
studied as these 'altcoins' were issued from 2018 onward.

72 Recall that one Watt equals one Joule per second, i.e., 1 W=1 J/s.

142

'hashing power' ρ)73:

MC
[USD/day per ρ=1,000GH/s]

= (10−3 × pe · 24 · e) ·
(

1000GH

1000

)
(5.1)

In return for their work of validating the blockchain, miners are rewarded with a block of

'coins', or 'block reward' (measured in BTC per block, β)74. Per day, miners can then expect

to earn an amount of Bitcoins (BTC/day), or expected marginal product (EMP), the value of

which depends on the market price of bitcoin (pb in USD per BTC), the block reward β, the

transaction fees f , the hashing power ρ employed by a miner (normalized at ρ =1,000 GH/s

=1 TH/s, for conformity with the MC units), and the 'di�culty' of mining (denoted by δ)

which captures how much aggregate e�ort other operating miners are putting75:

pb︸︷︷︸
[USD/BTC]

· EMP︸ ︷︷ ︸
[BTC/day per ρ=1TH/s]

︸ ︷︷ ︸
Value of Expected MP

= pb ·




(
1

δ · 232

)

[Reward probability]

(β + f) · ρ · (24 · 3, 600)︸ ︷︷ ︸
[Daily reward per unit of e�ort ρ]


 (5.2)

where s = 3, 600 is the number of seconds in one hour, h = 24 is the number of hours in

a day, and 2−32 is the normalized probability of a single hash solving a block, given that the

mining algorithm is the SHA-256 algorithm.

Given the market price of Bitcoin pb, a rational miner would produce Bitcoins until when

MC = pb·EMP if mining for Bitcoins is competitive. Since the actual energy e�ciency e of the

Bitcoin network miners is unknown, the theoretical relationship pb = MC/EMP can be used

to obtain the break-even level of energy e�ciency e below which the marginal cost of mining

is above the market value of the marginal product, e ≤ e =⇒ MC(e) ≥MC(e) = pb · EMP,

73 Mining e�ort or 'hashing power' or 'hashrate' is measured in gigahashes per second (GH/s), and refers to
the computational e�ort applied by miners to obtain bitcoins over a given time interval, typically one day.
The hashrate, or number of hashes per second can be thought of as somewhat analogous to the cycles per
second (hertz) of computer processors: the higher the hashrate, the more likely it is to successfully mine
bitcoins per day. See Hayes (2017).

74 When analyzing the reward obtained from mining, it is important to consider the phenomenon of halven-
ing (Bitcoin halving) where the reward from mining Bitcoins is halved. Halvening occurs every 210, 000
blocks (every four years). Within our sample, the last halvening happened in 09/07/2016 with the mining
revenue halved from 2, 396, 656 USD to 1, 208, 034 USD. The halvening is an important event not only for
determining the Bitcoin price (reduction of Bitcoin supply, with unchanged demand) and the break-even
energy e�ciency level of mining production, but also because it produces a jump or discontinuity in the
historical observations at hand. The time interval considered 2017 - 2019 ensures that there are no observed
halvenings. Starting from 09/07/2016, the block reward is 12.5 Bitcoin per block.

75 The 'di�culty' of mining refers to the di�culty level of the algorithm when mining is undertaken. It
speci�es how hard in terms of computational e�ort is to �nd a bitcoin during a given time interval, and
is therefore measured in gigahashes per 'block' of bitcoins, GH/block. The bitcoin network automatically
adjusts the di�culty variable so that one block of bitcoins is found, on average, every ten minutes. As more
aggregate computational e�ort is added to mining bitcoins, the time between blocks will tend to decrease
below ten minutes, and the network will automatically adjust the di�culty upwards to maintain the ten
minutes interval. And conversely, is less aggregate computational e�ort is added, adjusting the di�culty
downwards.

143

driving rational miners out of business. Hence:

e
[J/GH per ρ=1,000GH/s]

= pb ·
(

(β + f) · ρ
δ · 232

)
(24 · 3, 600)

[
(10−3 × pe · 24)

]−1
(5.3)

denotes the break-even daily energy e�ciency production of Bitcoins, which characterizes

the upper limit of daily electricity consumption E of the Bitcoin network when multiplied

by the overall network hash rate H (measured in hashes per second, H/s, corresponding to

10−12 per 1TH/s) and the power usage e�ectiveness (PUE) of mining hardware, capturing

the auxiliary energy e�ciency losses due, for example, to cooling systems:

E
[W per day, per TH/s]

= e ·H × 10−12 × PUE (5.4)

Instead of an average PUE of 1.05 as in Stoll et al. (2019), we consider a value of 1.10 ≡
PUE, e.g. just as the Cambridge Bitcoin Electricity Consumption Index does when computing

the upper limit.

2017 2018 2019 2020

50
00

10
00

0
15

00
0

20
00

0 Market Price (USD)

2017 2018 2019 2020

Hash Rate (THs)

0e
+0

0
2e

+0
7

4e
+0

7
6e

+0
7

8e
+0

7
1e

+0
8

0
50

10
0

15
0

20
0

25
0

0 5000 10000 15000 20000

0
50

10
0

15
0

20
0

25
0

30
0

0.e+00 4e+07 8e+07 1.2e+08

2017 2018 2019 2020

BTC from Mining

0.
00

02
0.

00
04

0.
00

06
0.

00
08

0.
00

10
0.

00
12

0
50

10
0

15
0

20
0

25
0

0.000 0.0004 0.0008 0.0012 2017 2018 2019 2020

Difficulty

0e
+0

0
2e

+1
2

4e
+1

2
6e

+1
2

8e
+1

2
1e

+1
3

1.
2e

+1
3

1.
4e

+1
3

0
50

10
0

15
0

20
0

25
0

0e+00 4e+12 8e+12 1.2e+13

Figure 5.1: The Figure reports the di�culty in terms of hashing power employed by the network
miners, the hash rate in terms of estimated number of tera hashes per second the Bitcoin network is
performing, the average USD market price across major bitcoin exchanges, and the mining reward in
terms of Bitcoin

Daily data for the Bitcoin network di�culty δ and network hash rate H are retrieved

144

using the publicly available API from blockchain.com,76 and reported together with their

distributions, in Figure 5.1, as well as for the daily Bitcoin price pb and the daily value in

USD of the number of Bitcoins obtained by the overall network from mining (BTC/USD),

as de�ned in equation (5.2).77 Notice that although the network hash rate and the network

di�culty are strongly positively correlated, they nevertheless correspond to two di�erent

variables relevant to Bitcoin mining.

01
/0

1/
20

17

01
/0

2/
20

17

01
/0

3/
20

17

01
/0

4/
20

17

01
/0

5/
20

17

01
/0

6/
20

17

01
/0

7/
20

17

01
/0

8/
20

17

01
/0

9/
20

17

01
/1

0/
20

17

01
/1

1/
20

17

01
/1

2/
20

17

01
/0

1/
20

18

01
/0

2/
20

18

01
/0

3/
20

18

01
/0

4/
20

18

01
/0

5/
20

18

01
/0

6/
20

18

01
/0

7/
20

18

01
/0

8/
20

18

01
/0

9/
20

18

01
/1

0/
20

18

01
/1

1/
20

18

01
/1

2/
20

18

01
/0

1/
20

19

01
/0

2/
20

19

01
/0

3/
20

19

01
/0

4/
20

19

01
/0

5/
20

19

01
/0

6/
20

19

01
/0

7/
20

19

01
/0

8/
20

19

01
/0

9/
20

19

01
/1

0/
20

19

01
/1

1/
20

19

01
/1

2/
20

19

2017 2018 2019 2020
Year

0
10

00
0

20
00

0
30

00
0

40
00

0

M
W

Upper Bound Power Consumption

2017 2018 2019 2020

Lower Bound Power Consumption

10
00

20
00

30
00

40
00

50
00

M
W

mean = 1883

2017 2018 2019 2020
Year

Year

Bitcoin mined per day

10
00

15
00

20
00

25
00

Bi
tc

oi
n

colour

ASICMiner

BitFily

BitFury

BitMain

Canaan

Ebang

GMOMiner

Holic

Innosilicon

MicroBT

Pantech

Energy Efficiency ASIC chips
0.

1
0.

2
0.

3
0.

4

Figure 5.2: The Figure reports the number of Bitcoins mined per day, the upper and lower bounds
of the energy consumption associated with Bitcoin mining, and the energy e�ciency in terms of J/Gh
of the ASIC mining chips that use the SHA-256 Algorithm

Similarly, it is possible to de�ne the lower limit of daily electricity consumption E of the

76 Since for the time interval 18/07/2018 - 03/08/2018 those network statistics are missing, they are imputed
using the MissForest algorithm (Stekhoven, 2013), with a maximum number of trees to be grown in each
forest equal to 500, a maximum number of nodes per tree equal to 100, and a maximum number of iterations
of 50. The MissForest algorithm is agnostic about the distribution of the variables, estimating the missing
values by �tting a random forest trained on the observed values. The Out-Of-Bag (OOB) estimates of the
imputation error in terms of Normalized Root Mean Squared Error (NRMSE) is 0.04831 and convergence
is achieved.

77 For example by the end of 2019, the lower left panel of Figure 5.1 reports the USD value of the number
of bitcoins one can expect per day (in BTC/USD) to be approximately 0.0003. We can obtain the actual
number from equation (5.2), when employing ρ =1,000 GH/s of mining e�ort with a di�culty δ = 4× 1012

(lower right panel of Figure 5.1) at a price pb = 4, 890 (upper left panel of Figure 5.1): 4890 · (12.5·1000
232·4×1012

) ·
24 · 3600 = 0.0003074 BTC/USD per day.

145

Bitcoin network, assuming that all miners operate instead with the most energy e�cient e

hardware with no auxiliary energy e�ciency losses, PUE = 1:

E
[W per day, per TH/s]

= e ·H × 10−12 × 24× PUE (5.5)

To date, the most energy e�cient dedicated computer hardware embeds application spe-

ci�c integrated circuit (ASIC) chips. Monthly data about the mining chips' daily e�ciency,

measured (in J/GH) as the ratio between the energy used by the ASIC chip (in Joules, J)

and the number of iterations performed by the SHA-256 algorithm (in gigahashes per sec-

ond, GH/s), for di�erent mining rigs is displayed in Figure 5.2 lower right panel, between

01/01/2017 and 01/01/2020.78 e then corresponds to the lowest monthly energy e�ciency

of ASIC chips, which as time passes tends to decrease �except for a few outliers� due to an

increase in the network hash rate and thus in the di�culty in producing new Bitcoins.

Figure 5.2 reports the number of Bitcoins mined per day by the network (i.e. the average

EMP in equation (5.2), excluding the Bitcoin price pb)
79, and the associated upper E and

lower E limits of daily electricity consumption obtained from equations (5.4) and (5.5) after

multiplying them by 10−6 (to convert them into mega Watts, MW), respectively. Although

the upper limit of daily power consumption is more volatile as it follows the market price of

Bitcoin, the lower limit is more stable, being de�ned by hardware e�ciency and network hash

rate. The di�erence between the upper and lower limits provides a sense of the uncertainty

associated with the actual daily hardware e�ciency in electricity consumption deployed by the

Bitcoin production network of miners. The annual electricity consumption corresponding to

the lower and upper bounds E and E is obtained by summing the daily electricity consumption

over the year of interest: for 2017, it ranges between 5.2 and 56.8 TWh, for 2018 between

25.1 and 93.3 TWh, and for 2019, between 27.1 and 91.1 TWh.

Notice from Figure 5.2 the decreasing gap between E and E, converging to a point of

almost equality in 2019: miners with less e�cient ASIC chips were then mining at a loss as

a result of the signi�cant decrease in Bitcoin prices that can be observed in the upper left

panel of Figure 5.1. One would expect the same narrowing in the di�erence between the two

daily limits as we get closer to 05/2020 (outside of our data window), when the halvening

of the 'block reward' happened. By then, miners will have had to run twice the number of

computations to mine the same amount of Bitcoins, doubling their electricity usage. This

will reduce the break-even level of energy e�ciency e, reducing E, until when new and more

e�cient ASIC chips are introduced.

In contrast to Stoll et al. (2019), we compute electricity prices, pe, as a weighted average of

the annual electricity prices in the countries were Bitcoin miners are located, using as weights

78 The data can be retrieved online from https://asic-dex.com.
79 Notice that the reported average number of Bitcoins mined per day over the period is similar to the one

that obtains instead from the supply side: dividing equation (5.1) by the Bitcoin price pb, we get
MC
pb
'

1,800 BTC/day.

146

1 162

Mining Locations

Figure 5.3: Location Bitcoin Miners 31/01/2020

the share of miners located in each country. We exploit the Internet of Things (IoT)-search

engine Shodan to locate the geographic area of the Bitcoin miners IP addresses over the period

examined80.

Figure 5.3 reports the countries with the highest number of miners: Venezuela (91), China

(162), Russia (158), Iran (122), USA (75). Venezuela, Iran, Russia and (some regions of)

China are the countries with the lowest electricity prices in the World (in USD per kWh). We

collect historical data on electricity prices for the USA, China, and Russia from Bloomberg

Terminal up to 2018, and the electricity prices for 2019 from GlobalPetrolPrices.com. Fig-

ure 5.4 reports the evolution of the yearly electricity prices for di�erent usages (residential,

industrial and other) in China, the United States, and Russia81.

For Venezuela and Iran, it was not possible to collect historical prices: since electricity

prices (approximated to two digits) are generally constant over a three-year horizon, we apply

the 2019 electricity price over the three-year time window examined. The household elec-

tricity price in Iran is 0.008 USD/kWh; for Venezuela, the Business electricity price is 0.128

USD/kWh (1.283 VEF/kWh). Figure 5.4 reports the employed electricity price pe, computed

as a weighted average of the electricity prices in the United States, China, Russia, Venezuela,

80 Being antminer the primary tool for Bitcoin mining, by mapping the instances Digest real=�antMiner

Con�guration� we were able to map the IP addresses of the Bitcoin miners.
81 When available and clearly indicated, we only consider the residential electricity price. When unavailable,

or unclear (e.g., China), we compute the average of the electricity prices corresponding to the di�erent
levels of usage.

147

31
/1

2/
20

08

31
/1

2/
20

09

31
/1

2/
20

10

31
/1

2/
20

11

31
/1

2/
20

12

31
/1

2/
20

13

31
/1

2/
20

14

31
/1

2/
20

15

31
/1

2/
20

16

31
/1

2/
20

17

31
/1

2/
20

18

31
/1

2/
20

19

colour

h0h150kWh

h151h300kWH

h301h500kWh

Industrial

Power Price − China (USD/kWh)

0.
01

5
0.

02
0

0.
02

5

31
/1

2/
20

12

31
/1

2/
20

13

31
/1

2/
20

14

31
/1

2/
20

15

31
/1

2/
20

16

31
/1

2/
20

17

31
/1

2/
20

18

31
/1

2/
20

19

31
/1

2/
20

20

colour

Wholesale

Power Price − Russia (USD/kWh)

0.
10

0
0.

12
5

0.
15

0

0.
09

0.
10

0.
11

0.
12

0.
13

31
/1

2/
20

07

31
/1

2/
20

08

31
/1

2/
20

09

31
/1

2/
20

10

31
/1

2/
20

11

31
/1

2/
20

12

31
/1

2/
20

13

31
/1

2/
20

14

31
/1

2/
20

15

31
/1

2/
20

16

31
/1

2/
20

17

31
/1

2/
20

18

31
/1

2/
20

19

colour

Industry

Residential

Electricity Price − United States (USD/kWh)

Average Electricity Price

0.
06

25
0.

06
30

0.
06

35
0.

06
40

0.
06

45
0.

06
50

2017 2018 2019 2020

Figure 5.4: The Figure reports the energy prices (USD/kWh) for the countries United States, China,
and Russia, and the weighted average of the energy prices (USD/kWh) across the countries United
States, China, Russia, Venezuela, and Iran.

and Iran, where the weights are determined by the proportion of Antminer IP addresses of

Bitcoin miners located in those countries.82

5.2.2 The Carbon Footprint of Power Bounds in Bitcoin Production

We compute the CO2 upper (CO2) and lower (CO2) limits of the Bitcoin network daily

emissions (measured in ktCO2e), associated with the daily electricity consumption upper and

lower limits, E and E, from equations (5.4) and (5.5) respectively, as follows:

CO2 = E × 10−3 · I × 10−6 + COrw2 (5.6)

CO2 = E × 10−3 · I × 10−6 + COrw2 (5.7)

where I is the average emission factor, or carbon intensity, of power generation (measured

in kgCO2 per kWh)83, which obtains from weighting the C country-speci�c emission factors,

Ic, by the computing power share, sc, of Bitcoin miners' IP addresses located in each country

82 39% of the IP addresses operating in the Bitcoin network are attributed to the remaining 44 countries.
83 Notice that the expressions in (5.6) and (5.7) are in ktCO2 units per day, while E and E are in Watts per

day (per unit of mining e�ort, 1GH/s) and I is in kgCO2 per kWh. To conform, we need to multiply E
and E by 10−3 (KWh per Watts) per day, and I by 24 (hours per day), resulting in a product that will
then be in units of kgCO2 per day. Multiplying then by 10−6 we obtain ktCO2 per day. After simplifying,
expressions (5.6) and (5.7) obtain as reported.

148

c, I =
∑C

c=1 scIc. COrw2 captures the approximate emissions associated with the annual

Bitcoin network overall disposal of hardware employed in mining Bitcoins.

Xinjiang

Tibet

Qinghai

Sichuan

Yunnan

Gansu
Inner Mongolia

Heilongjiang

Jilin

Guangxi Guangdong

Hainan

Taiwan

Guizhou

Hunan
Jiangxi

Fujian

Zhejiang

Hubei

Ningxia

Shaanxi Henan

Shanxi

Anhui
Jiangsu

Shanghai

Shandong

Hebei

Liaoning
Beijing

Tianjin City

Chongqing

0

5

10

15

20

25

% Hashrate

% Hashrate by region in China (01/09/2019 − 31/12/2019)

Figure 5.5: Distribution of Bitcoin miners within the Chinese borders: %.Hashrate by province in
China.

Following De Vries (2019), a daily value of COrw2 = 0.0087 ktCO2 obtains84. In the

reminder of the chapter, we refer to equations (5.6) and (5.7) as implementing a top-down

approach, the current standard in the literature. According to the methodology reported

in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, when

computing the emission of greenhouse gas from stationary sources (Electricity and Power

consumption), the source consumption must be multiplied by the corresponding emission

factor (IPCC, 2006). Since Bitcoin network mining spans many di�erent countries, the con-

tribution of the miners located in each country to the overall network hash rate is needed to

84 As of October 2018, 3.91M antminer S9 machines were needed to produce the overall Bitcoin network total
of 54.7 exahashes per second (at its peak), with each antminer producing an output of 14TH/s. Since
each antminer S9 machine weights 4.2Kg and lasts of average for 1.5 years, after which it needs to be
replaced/disposed of, a total of 16,442 metric tons of weight of mining displays will be disposed of every
1.5 years, or 10,948 metric tons per year. To convert these into CO2 emissions, the Climate Institute
reports that for every ton of cathode-ray tube (CRT) display products manufactured, 2.9 metric tons of
carbon were released. When properly recycled, only 10 percent of greenhouse gas emissions are released.
Therefore, a total of 10,948 metric tons of Bitcoin e-waste times 2.9 metric tons of CO2 per ton of weight,
yields 31,749.2 metric tons of greenhouse gas emissions per year, which when properly recycled, results in
only 10%, or 3,174.9 metric tons of CO2 released per year. Dividing by 365 days, we obtain a daily �gure
of COrw

2 = 0.0087 ktCO2 per day, per TH/s.

149

construct country-speci�c upper and lower limits of electricity consumption that can then be

aggregated into a world total, i.e. a bottom-up approach. But because miners are particularly

secretive about their locations, a country-speci�c break-even upper bound has been di�cult to

obtain. For comparison with results reported in the literature, emission levels corresponding

to Hayes' (2017) upper and lower bounds computed from a top-down approach are reported

(in black) in Figure 5.7.

Because one of the biggest sources of uncertainty in computing Bitcoin network mining

CO2 emissions is the translation of the overall network energy consumption into carbon emis-

sions, we exploit the information provided by the Cambridge Bitcoin Electricity Consumption

Index (CBECI) and the IoT-search engine Shodan.io to obtain 'clean energy' country-speci�c

emission factors, Iec .
85 Exploiting data on the distribution of the overall network hashrate

within countries86, we were able to identify (to some extent) the heterogeneous sources of elec-

tricity employed to mine Bitcoins when and where regional emission factors are available87.

Figures 5.5 and 5.6 report the distribution of Bitcoin miners within China by province, and

within the US, by state, respectively.

Focusing on China, the Economist Intelligence Group (2018) notes that as of 2016, provinces

in the eastern and northern parts of China essentially employ coal-based energy sources, due to

the absence of precipitation (making hydro-power unpro�table) and the di�culty of installing

wind-power generation in these mountainous regions. Shanghai and Tianjin provinces pro-

duced almost 100% of their electricity from non-renewable thermal power, while Inner Mongo-

lia and Xinjiang almost 90%. At the other extreme, Yunnan and Sichuan provinces produced

83% and 87% of their electricity from hydro-power sources, respectively, having a surplus of

hydro-power during the wet season; Tibet generated 97% of its electricity from clean energy

sources and Quinghai province is the biggest producer of solar energy.88

85 The US Energy Information Administration (EIA) considers biomass, hydro, solar and wind based electricity
sources to be carbon neutral, i.e. associated with a zero carbon intensity.

86 Mapping the instances Digetreal="antMiner Con�guration" in the IoT-search engine Shodan, we obtained
the Bitcoin network hashrate distribution for China and the US as of 20/08/2020, reported in Figures 5.5
and 5.6.

87 For example, they are not available for Russia, Venezuela or Iran, for which we assume that a homogeneous
source of electricity is available, and well captured by their reported country-speci�c emission factors,
Iec = Ic = {IRU , IV E , IIR}.

88 Although Bendiksen and Gibbons (2019) observe that Chinese miners relocate during the rain season (May
to September) to hydro-power surplus provinces such as Sichuan, Yunnan, and Guizhou, from low-cost coal
based energy provinces such as Xinjiang and Inner Mongolia, we ignore such seasonal relocations for two
reasons. Firstly, it is not yet fully understood how relocation costs in�uence miners' seasonal migration.
Secondly, reliable measures of such relocation costs are needed to compute Hayes' (2017) economic upper
bound.

150

California

Arizona

Nevada

Texas

New Mexico Oklahoma

Kansas
Utah

Colorado

Oregon

Idaho

Washington

Arkansas

Missouri

Tennessee

Wyoming

Montana
North Dakota

South Dakota

Nebraska

Minnesota

Iowa

Georgia

North Carolina

Virginia

Alabama

Louisiana

Kentucky

New York

Pennsylvania

Ohio

Wisconsin

Mississippi

Alaska

Illinois

Florida

South
Carolina

Michigan

Indiana

Maine
West Virginia

Vermont

New Hampshire

Maryland Washington, D.C.

Massachusetts

Rhode Island

Delaware

New Jersey

Connecticut

Hawaii
0.0

2.5

5.0

7.5

% miners

Figure 5.6: Distribution of Bitcoin miners within the US borders: % Hashrate by U.S. states.

Turning now to the U.S., Figure 5.6 reports Tenneesse, with 0.18, California, with 0.14,

Oregon, with 0.18, and Washington state, with 0.12, as those states with the highest con-

centration of the overall US mining activity. Coupled with the report by Willms (2019) in

Bitcoin Magazine, the exact location of mining centers can be identi�ed to better understand

the source of electricity used for mining, e.g. focusing on Washington state, the Shodan

IoT-search engine locates Bitcoin miners in the cities of East Wentchee and Everett, where

Willms (2019) reports that Salcido Enterprise has three mining centers that use inexpensive

hydroelectric power from dams in the Columbia River. Similarly, Willms (2019) reports that

Bitmain invested 20 million USD for the construction of �ve mining buildings equipped with

1620 antMiners. Focusing on California, we locate Bitcoin miners close to the city of Los

Angeles and thus close to the California's Mojave District where Willms (2019) reports that

Plouton Mining is investing in mining using solar power. Focusing on Oregon, we locate a

high concentration of Bitcoin miners in proximity to Portland, close to the Columbia River.

We assume that also in this state most of the mining activity is hydro-power based. Finally, a

high concentration of Bitcoin miners in the cities of Knoxville and Chattanooga, where there

are the biggest dams in the state of Tennessee, the Norris and Chickamauga dams, leads our

presumption that also in the state of Tennessee bitcoin miners use clean energy sources.

With the collected data, we can examine the robustness of Hayes' (2017) greenhouse

emission upper and lower bounds to Bitcoin miners usage of 'clean energy' sources, by com-

puting them under the two scenarios.89 In the �rst case we do not account for 'clean en-

89 We follow Stoll et al. (2019), adding the US to China for the within-country analysis of energy sources.
But we impose a stronger assumption than they do because when a state/province has access to renewable

151

Daily CO2 Emission (Energy Consumption and E−waste)

2017 2018 2019 2020
Year

0
10

0
20

0
30

0
40

0
50

0
60

0

kt
C

O
2

Figure 5.7: The Figure reports the lower and upper bound for the daily CO2 estimates. In green
the daily estimate when Ie is considered, in black when I applies.

ergy' mining, obtaining a weighted average carbon intensity of I = 0.6183, from country-

level electricity emission factors of 0.97463 for China, 0.63111 for Iran, 0.5132 for Russia,

0.5471 for the United States, and of 0.2081 for Venezuela (Brander et al., 2011). In the

second case, we employ a more conservative conversion factor, Ie =
∑C

c=1 sc[
∑Dc

d=1 sdId],

which obtains from decomposing the C country-speci�c emission factors, Ic =
∑Dc

d=1 sdId,

by region d where Bitcoin miners' IP addresses are located within each country c. We

separate regions within each country c into two groups: one of {Dc − d′} regions where

100% clean surplus electricity is available, with a carbon intensity of Id = 0; and a com-

plementary one of {d′} regions where electricity generation is assumed to be equal to coun-

try c emission factor, Id = Ic. Using the weights provided by CBECI we obtain IeChina =

{[100−(8.34+26.5+2.53+0.4)]/100}×0.97463+[(8.34+26.5+2.53+0.4)/100]×0 = 0.60651

as the 'clean energy' carbon intensity for China, computed as a weighted mean of the Chinese

emission factor of IChina = 0.97463 for the polluting provinces {d′}, and the carbon intensity of
Id = 0 for the non-polluting provinces d ∈ {DChina−d′} ={Yunnan, Sichuan, Gansu, Qinghai}

with weights of 0.0834, 0.265, 0.0253 and 0.004, respectively. Similarly, exploiting the infor-

mation provided by Willms (2019), the 'clean energy' carbon intensity for the US obtains from

IeUS = {[100−(18+14+18+12)]/100}×0.5471+[(18+14+18+12)/100]×0 = 0.20790, where

the non-polluting US states d ∈ {DUS − d′} ={Tenneesse, California, Oregon, Washington}

with weights of 0.18, 0.14, 0.18 and 0.12, respectively. Combining both, we obtain a new over-

all average carbon intensity of Ie =
∑C

c=1 sc[
∑Dc

d=1 sdId] =
∑C

c=1 sc[
∑Dc−d′

d=1 sd0+
∑d′

d=1 sdId] =∑C
c=1 sc[

∑d′

d=1 sdId] = 0.4784.

Figure 5.7 displays the evolution of the upper and lower limits of the Bitcoin network daily

energy sources, we assume that the Bitcoin mining activity will only use renewable energy sources with a
corresponding emission factor of zero.

152

carbon footprint (measured in ktCO2) under both scenarios, I (in black) and Ie (in green),

over the 2017-2019 period. Based on Equation 5.3, one could notice how the large �uctuation

in the interval �observed in 2018 and 2019� is due to the dependence of the upper bound

on the Bitcoin price (from Figure 5.1, it is possible to see how around the same period it is

observed a spike in Bitcoin prices).

The annual Bitcoin network carbon footprint lower CO2 and upper CO2 limits obtain

from adding the corresponding daily CO2 emissions over the year, for each year considered,

reported in million tons of CO2, MtCO2. Under scenario I (in black), annual Bitcoin mining

emissions lie between 3.2 and 35.1 MtCO2 for 2017, between 15.5 and 57.7 MtCO2 for 2018,

and between 16.7 and 56.3 MtCO2 for 2019. Instead, under a 'clean energy' scenario Ie (in

green), estimated annual emission bounds are: 2.5 and 27.2 MtCO2 for 2017; between 12 and

44.6 MtCO2 for 2018; and between 12.9 and 43.6 MtCO2 for 2019.

5.3 Machine Learning the Carbon Footprint of Bitcoin Mining

The most salient fact about Figure 5.7, displaying the upper and lower limits for the carbon

footprint associated with Bitcoin network mining, is the uncertainty surrounding the actual

CO2 emissions generated by Bitcoin production. This uncertainty stems from the di�culty

in (i) determining the carbon intensity of the source of energy employed, as well as in (ii)

estimating the actual power consumption involved in Bitcoin mining. In this section we exploit

supervised machine learning (ML) methods to narrow down that uncertainty and provide a

more accurate quantitative point prediction.

To understand the contribution of each di�culty, and for comparison with recent results in

the literature, we adopt a realistic target level of electricity consumption and energy e�ciency

when mining Bitcoins, presenting results based on a 'top-down approach' to compute the

associated (i) reported and (ii) 'clean energy' carbon intensities (e.g., Stoll et al., 2019), to

then present our (iii) results based on a (partial) 'bottom-up' novel approach. Deploying a

deep neural network with recti�ed linear unit activation functions (ReLu DNN) based on a

comprehensive set of inputs, enables the construction of prediction intervals around point

estimates of greenhouse Bitcoin mining emissions which convey substantially narrower data-

based uncertainty levels relative to the di�erence between Hayes' (2017) upper and lower

bounds.

5.3.1 Top-down Approach

Following Stoll et al. (2019), our ReLu DNN adopts as target output y, a 'realistic' level of

CO2 emissions, COr2, from the Bitcoin network daily electricity consumption Er associated

with a 'realistic' energy e�ciency use of hardware, er. As such, it will closely 'track' the lower

emission limit, CO2, in (5.7):

COr2
[ktCO2 per day, per TH/s]

= Er · I + COrw2 = PUE · er ·H · I × 10−9 + COrw2 (5.8)

153

Ot
he

rs

10.7

74.5

14.8

12.0
12.0

76.0

5.00
7.90

21.9

65.2

Weights Year 2017 Weights Year 2018 Weights Year 2019

20 40 60 20 40 60 60504010 20 30

Bi
tm

ain
Ca

na
an

 &

Eb
an

g

Eb
an

g

Bi
tm

ain

Bi
tm

ain

Ca
na

an
 &

Eb

an
g

Ca
na

an

Ot
he

rs

Ot
he

rs

Figure 5.8: The Figure reports the weights assigned from 2017 until 2020 to the weighted mean of
the energy e�ciency of the di�erent ASIC mining hardware.

where PUE =
∑

j={S,M,L} sj · PUEj is the power usage of electricity, with sj being the

share of facility of type j, which can be small S, medium M or large L, and PUEj is the

corresponding power usage e�ectiveness of type j facility, with PUES = 1.00, PUEM = 1.10,

and PUEL = 1.05. Throughout, and for comparison with CBECI, we will assume a value of

PUE = 1.05, but we do examine the robustness of our main results to alternative values. The

'realistic' energy e�ciency er =
∑M

m=1 s
ASIC
m · erm obtains as a weighted mean of the average

energy e�ciency of all the reported ASIC mining chips at a given date, erm, as displayed

in Figure 5.2.90 The weights associated with each ASIC mining chip producer, sASICm , are

identi�ed by the market share in terms of either computing power or revenue, and are obtained

from the IPO �lings disclosed in 2018 by Bitmain, and in 2019 by Canaan. For 2017, Frost &

Sullivan report that Bitmain accounted for 74.5% of the revenue of the global ASIC mining

hardware, Company E for 6.2%, and Company F for 4.5% (E and F's companies names were

undisclosed). Based on these estimates, Figure 5.8 reports the actual weights, sASICm , between

2017 and 2020, assuming that they are constant during a given calendar year.91

An even more conservative realistic target obtains when instead of I, a 'clean energy'

weighted carbon intensity Ie is considered in (5.8):

COer2
[ktCO2 per day, per TH/s]

= Er · Ie + COrw2 = 1.05 · er ·H · Ie × 10−9 + COrw2 (5.9)

90 Considering M rational miners operating in the network, it is assumed that when a new mining chip is
available, miner m will invest in updating the hardware. Therefore, the computational power of a particular
mining chip at a given date is considered indicative of the energy e�ciency of the ASIC producer m, until
the release of a new chip.

91 As of November 2018, Stoll et al. (2019) report that Bitmain accounts for 76% of the network computing
power, and Canaan and Ebang account for 12%. Finally, looking at the IPO �lings disclosed in November
2019 by Canaan, Frost & Sullivan report that as of July 2019, Bitmain accounts for 65.2% of the computing
power of the market, Canaan for 21.9%, and Ebang 7.9%.

154

5.3.2 Bottom-up Approach

Our novel approach adopts as realistic target output y, a (partial) bottom-up (BU) approach

to CO2 emissions:

COBU2
[ktCO2 per day, per TH/s]

= 1.05 ·
∑M

m=1
erm ·

∑C

c=1
sASICmc · Iec ·Hc × 10−9 + COrw2 (5.10)

where Hc is the daily Bitcoin network hash rate decomposed by country/regions, Iec is

the 'clean energy' carbon intensity of region/country c, and sASICmc are the weights associated

with each ASIC mining chip producer m in region/country c identi�ed by the market share in

terms of either computing power or revenue. They are obtained from the IPO �lings disclosed

in 2017 and 2018 by Bitmain, and in 2019 by Canaan, and from authors' imputation. Based

on the incomplete information collected from the 2019 IPO �lings, it is possible to obtain the

geographical distribution by region c = {America(US), Asia (excl. China), Europe, China} of
the computing power shares of the main Bitcoin network mining operators m = {BITMAIN,

EBANG, CANAAN, Other}, imputing the missing shares as if uniformly distributed across

the remaining regions (marked with an '*'):

c\m BITMAIN EBANG CANAAN Other % By region c

America (US) 12 2.4 0.3∗ 1.25∗ 15.9

Asia (excl.China) 14.7 6.5∗ 0.3∗ 1.25∗ 22.7

Europe 7 6.5∗ 0 1.25∗ 14.8

China 31.5 6.5∗ 7.3 1.25∗ 46.6

2019 % By operator m 65.2 21.9 7.9 5 100

c\m BITMAIN EBANG CANAAN Other % By region c

America (US) 14 1.2 0.5∗ 0∗ 15.7

Asia (excl.China) 17 3.6∗ 0.5∗ 0∗ 21.1

Europe 8.1 3.6∗ 0 0∗ 11.7

China 36.9 3.6∗ 11 0∗ 51.5

2018 % By operator m 76 12 12 0 100

155

c\m BITMAIN E F Other % By region c

America (US) 13.8 1.55∗ 1.125∗ 3.7∗ 20.2

Asia (excl.China) 16.7 1.55∗ 1.125∗ 3.7∗ 23

Europe 8 1.55∗ 1.125∗ 3.7∗ 14.4

China 36 1.55∗ 1.125∗ 3.7∗ 42.4

2017 % By operator m 74.5 6.2 4.5 14.8∗ 100

Because our countries/regions are aggregated into c = {America, Asia (excl. China),

Europe, China}, the country/region speci�c factor Iec ·Hc = Iec · scH, where sc is the share of

the Bitcoin overall network hashrate H that is employed in region/country c, can be further

decomposed within each country/region c. For example, considering c = A(merica), since

most Bitcoin miners are concentrated in the US and Venezuela, IeA · sAH =
∑

r∈A I
e
r · srH =

IeUS · sUSH + IeV · sVH +
∑

r∈A\{US,V } I
e
r · srH. And similarly for the other regions/countries

c. When considering 'clean energy' carbon intensities Iec , since we only have data for the US

and China, Iec = Ic when c = {Asia (excl. China), Europe}, while IeA · sAH = IeUS · sUSH +

IV · sVH +
∑

r∈A\{US,V } Ir · srH, because we do not have information on 'clean energy'

power sources for other countries in the America region other than the US, i.e. Ier = Ir,

r ∈ A\{US, V }.

2017 2018 2019 2020
Year

0
50

10
0

15
0

kt
C

O
2

Daily CO2 Emission − Energy use and E−waste

Figure 5.9: The Figure reports the realistic daily CO2 emission in ktCO2. The black and green
lines report the realistic CO2 emission obtained from a top-down approach that consider either I or
Ie; the blue line obtains from the bottom-up approach.

For comparison, Figure 5.9 displays the daily evolution of the three di�erent 'realistic'

levels of CO2 emissions, COr2 in black, COer2 in green, and COBU2 in blue, from Bitcoin

miners operating in the network over the period. The three of them are adopted separately as

target outputs y to be learned by our supervised ML ReLu DNN on the basis of the collected

156

input data X.

Because Bitcoin is a cryptocurrency based on a fundamentally new technology not fully

understood �'blockchain'� while performing similar functions as other, more traditional assets,

one key advantage of our ML-based approach is that it can handle big and complex input data

in raw form, X = {...xp...}. Our ReLu DNN will admit a very comprehensive set of p = 1...P

factors, excluding those necessary to compute the carbon footprint lower CO2 and upper CO2

limits derived in the previous section. The rationale behind this exclusion is to test whether

our ML-based CO2 emission mean predictions lie within the bounds that obtain from basic

economic principles, externally validating our ML approach. In addition, we construct (95%)

prediction intervals around our ML-CO2 point estimates that are substantially narrower than

the economics-based bounds, contributing methodologically to the ML and climate change

literatures.

5.3.3 Input Data

The factors considered as input data range from (i) standard fundamental factors advocated

by monetary economics and the quantity theory of money, like predictors of the Bitcoin price

level; (ii) factors driving investors' interest in/attention to the cryptocurrency, like speculation

or the role of Bitcoin as a safe haven; (iii) exchange rates with other currencies, to capture

investors' hedging motives, e.g., the tight connection between the USD and the CNY markets;

or (iv) supply-side factors for the costs incurred by Bitcoin and ASIC mining chips producers,

related to rational for-pro�t mining decisions. Factors associated with the Blockchain network

operation, like the network hash rate, di�culty or block reward, are excluded as they enter

the de�nition of either the Bitcoin carbon footprint upper and lower bounds, or of our ReLu

DNN target output. The resulting novel input dataset for the period 01/01/2017 - 31/12/2019

covers a comprehensive set of factors as reported in Kristoufek (2015), Liu and Tsivinsky

(2018), McNally et al. (2018) and Jang and Lee (2017), adding some novel ones. Data are

collected at di�erent frequencies, and converted into daily ones using either simple imputations

or Random Forest algorithms.

Because Bitcoin prices determine the upper limit of CO2 emissions generated by the break-

even electricity consumption of rational Bitcoin network miners, we start with the predictors

of Bitcoin prices identi�ed in the literature:

1. Commodity prices of Gold, platinum and crude oil are included because of the common

traits shared with cryptocurrencies such as limited supply and high price volatility, but

also because it is believed that Bitcoin could serve as an alternative to these commodities

either as a store of value or as a hedging instrument (Dyhrberg, 2016). The daily future

price of crude oil, and the spot prices of platinum (USD/ounce) and gold (USD/ounce)

are obtained from Bloomberg;

2. Macroeconomic factors in di�erent markets, such as consumption, production, and per-

sonal income growth (in USD), measure the extent to which Bitcoin is perceived as a

157

traditional �nancial asset, like the stock market. The CAIPMOM , UKIPIMOM ,

IPCHNG, JNIPMOM , and SIIPMOM indices, measuring the volume of output in

the industries of mining and quarrying, manufacturing and public utilities (electricity,

gas, and water supply) for the USA, the UK, China, Japan and Singapore, as well as

the indices PITL and PITLCHNG, measuring the income received by households in-

cluding wages and salaries, investment income, rental income, and transfer payments in

the USA and China, are included. Finally, the PCEMOM index quantifying the price

changes for goods and services purchased by consumers in the USA is also considered;

3. Relative asset market performance measures capture the extent to which Bitcoin is

similarly exposed to factors driving the returns of traditional assets. Based on Figure

5.3, we include the major stock market indices of the countries most relevant for Bitcoin

mining: the USA, China, Venezuela, and Europe. For this reason, the indices S&P 500,

Dow Jones, Nasdaq, Euro Stoxx 50, Shanghai Stock Exchange (SSE), Nikkei 225, FTSE

100, Caracas Stock Exchange (IBVC), and SHASHR will be considered as predictors;

4. Investor attention, measured by �Bitcoin� word Google searches. Liu and Tsyvinki

(2018), Garcia et al. (2014) or Bouoiyour and Selmi (2017) empirically show that

only cryptocurrency market speci�c factors �momentum and the proxies for investor

attention� consistently explain the variations of cryptocurrency returns, suggesting that

investors do not perceive them as traditional assets. Figure 5.10 reports the geographic

location of daily data returned from Google Trends search queries for the word �Bitcoin�,

which quanti�es the interest in the form of an index between 0 and 100. A value of 100

corresponds to peak popularity, and of 0 to insu�cient data for Google to quantify any

interest in the term �Bitcoin�. With the exception of Nigeria, the country that receives

the highest interest index, one could notice the similarity with Figure 5.3, where the

geographical location of Bitcoin miners' IP addresses from the IoT search engine Shodan

can be visualized, suggesting that a high value of the interest index is associated with

Bitcoin mining activities.

5. Exchange Rates are included because of the popular belief that Bitcoin, if su�ciently

adopted, may replace existing �at currencies as a medium of exchange. Exposure of

the cryptocurrency returns to major currencies is captured by the inclusion of the spot

exchange rates between the USD and units of foreign currency, for the Australian Dollar,

the Euro, the British Pound, the Canadian Dollar, the Singapore Dollar, the Swiss Franc,

the Japanese Yen, the Chinese Yuan Renminbi (CNH), and the Chinese Yuan (CNY),

all collected from Bloomberg. Being the Bitcoin price denominated in USD, Ciaian et al.

(2016) notice that an appreciation of the USD against the above currencies could result

in an appreciation against the Bitcoin and thereby, a�ect mining decisions through the

reduction in the price of the cryptocurrency.92

6. The FED �nancial stress index (FSI) is a popular measure of �nancial uncertainty. Its

92 We exclude the exchange rates of Bitcoin against other cryptocurrencies, like Ethereum or Ripple, because
they are less popular, were introduced later and there is little evidence of signi�cant arbitrage activity with
respect to Bitcoin.

158

11 100

Google Search 'Bitcoin'

Figure 5.10: The Figure reports the Google search �Bitcoin� using 100 as reference for the maximum
interest.

inclusion is intended to capture the possibility that Bitcoin is perceived as a safe haven,

following Kristoufek (2015). The weekly series is provided by the Federal Reserve Bank

of St. Luis (2016), and it is built from 18 di�erent series of data at a weekly frequency:

seven interest rate series, six yield spreads and �ve other indicators, each of which

capturing a di�erent aspect of '�nancial stress'. The FSI is centered around 0 ('normal

�nancial stress'), with negative values indicating unusual calmness and positive ones

'abnormally high' levels of �nancial uncertainty.

Finally, supply factors that proxy for the costs of Bitcoin mining and ASIC mining chips

producers are also included:

7. ASIC mining chips producers o�er mining hardwares (e.g. Antminers) the pro�tability

of which is directly related to the marginal costs that can be expected from Bitcoin

mining. Being electricity the most important input in mining for Bitcoins, we follow

Liu and Tsyvinski (2018) and include the weighted average of the daily stock returns of

25 electricity companies in the USA and of 65 electricity companies in China, and the

daily stock returns of Sinopec (SNP).93

8. To proxy for the cost of inputs relevant for manufacturing Antminers, we include the

aluminum ($/25 Mt) and copper ($/25 Mt) prices �from Bloomberg� and predictors of

93 The Sinopec has 4.02% missing at random values at a daily frequency, which are inputted using the Miss-
Forest algorithm (Stekhoven, 2013). The maximum number of trees to be grown in each forest is set equal to
500, the maximum number of nodes for each tree is equal to 500, and the maximum number of iterations is
20. The Out-Of-Bag (OOB) estimates of the imputation error in terms of Normalized Root Mean Squared
Error (NRMSE) is: 2.160× 10−9.

159

the supply of coltan by its largest producers: the CDMNCLT index measuring the value

(USD) of the mining and oil production in the Democratic Republic of Congo; and the

RWEXCLVA and RWEXCLVO indices measuring the value and the volume (USD) of

trade of coltan from Rwanda.94

After computing the log returns for the exchange rates, market indices, commodities

prices, Sinopec prices and weighted averages of the electricity prices in the USA and China,

a 'feature-wise normalization' or standardization �i.e features are centered around zero with

unit standard deviation� is performed considering only the training dataset.95

5.3.4 ReLu DNN-CO2 Estimation

We predict the carbon footprint associated with Bitcoin network mining by a ReLu feedfor-

ward deep NN, proceeding in two steps. First, we obtain the optimal structure of the ReLu

DNN by applying the optimization proposed in chapter 2 for a given architecture size Ztot

and set of hyperparameters. Second, we optimize/�ne-tune the DNN hyperparameters. Due

to computational limitations96, we allow for a maximum depth of N = 15. Because ML

methods automate model selection and estimation, we �rst need to validate our method (op-

timal ReLu DNN) and show that it predicts greenhouse gas emissions better than competing

methods 'out-of-sample'. We then present the results of the estimation and their reliability

for the validated method.

Validation Methods

To validate the results obtained, we benchmark the (most correct) novel bottom-up target

COBU2 results, from (5.10), against a DNN cross-validated architecture (cv)97, and against a

Random Forest (rf)98, both state-of-the-art in the deep learning literature. The test data con-

sists of daily observations for (each of three) target output(s) and the P = 42 input variables

between 01/11/2019 and 31/12/2019. A ReLu DNN is �tted for each of the three di�erent

targets, corresponding to equations (5.8), (5.9) and (5.10). Due to the high dimensionality of

the combinatorial problem, it is not feasible in (cv) to cross-validate all combinations and a

4-fold cross-validation over a randomized gridsearch is implemented instead. For each case, we

report the out-of-sample mean-absolute error (MAE), mean-squared error (MSE) and square

94 Copper is largely used for the production of electrical wires due to its high conductivity, heat resistance, and
low cost. Aluminum wires are used for power transmission and distributions (generally not used in house-
holds). Coltan is employed in the production of tantalum capacitors, which are essential to manufacture
mining hardware and computers.

95 Being the levels and variances of the 42 input daily series considered signi�cantly di�erent, 'feature-wise
normalization' is done to guarantee a proper training of the ReLu DNN.

96 The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion of this work.

97 We perform cross-validation only on the optimal node allocation, for given DNN depth and size. Cross-
validating both depth and hidden unit allocation across layers in network architectures of di�erent sizes, is
extremely computational and time consuming, and is therefore left for future work.

98 The interested reader is referred to Breiman (2001).

160

root of the MSE (RMSE):

Method Target Output MAE MSE RMSE

Optimal ReLu DNN COr2 8.29 123.97 11.13

Optimal ReLu DNN COre2 6.17 58.76 7.67

Optimal ReLu DNN COBU2 4.50 33.59 5.80

Cross-validated ReLu DNN COBU2 5.35 48.48 6.96

Random Forest COBU2 7.17 82.62 9.09

Di�erent architecture sizes Z, optimization algorithms (Adam, RMSProp), weight initial-

ization values (s, s1, s2), learning rates ε, dropout rates q, and training epochs are considered

during training.99 The default 'minibatch' size of B = 32 is adopted and not tuned. The

Random Forest hyperspace in (rf) is de�ned by the following parameters: (a) the number of

variables to be randomly sampled at each sample split is de�ned in the interval [20, 40], by

intervals of 2; (b) the minimum size of the terminal nodes in [2, 20], by intervals of 2; and (c)

the number of trees to grow in the interval [50, 500], by intervals of 50.

When the target is COr2 as de�ned by equation (5.8), the cross-validated NN architecture

size that minimizes the out-of-sample MSE is found to be Z = 1674, with an optimal depth of

L = 15 and optimal allocation of hidden units [162, 126, 126, 126, 126, 126, 126, 126, 126, 126,

126, 126, 126].100 The out-of-sample performance of the optimal ReLu DNN, as measured by

the MAE, MSE, and RMSE, are 8.29, 123.97 and 11.13, respectively. The same optimal hyper-

parameters are selected when considering instead COre2 , de�ned by equation (5.9), returning

out-of-sample MAE, MSE, and RMSE of 6.17, 58.76 and 7.67, respectively. Finally, when the

bottom-up target is adopted, COBU2 as per equation (5.10), the out-of-sample MAE, MSE, and

RMSE are 4.50, 33.59 and 5.80.101 When benchmarked against (cv), the equally-sized 4-fold

cross-validated network architecture of [151, 125, 158, 91, 106, 74, 198, 131, 86, 71, 162, 132, 189]

performs worse out-of-sample. The values for the MAE, MSE, and RMSE are 5.35, 48.48 and

6.96. Figure 5.11 reports the in- and out-of-sample MAEs of the four ReLu DNNs �tted.

99 In particular, the di�erent architecture sizes considered are Z = {200, 500, 800, 1674, 1800},.the learning
rates ε = {0.0001, 0.001, 0.005, 0.003, 0.002, 0.01} for the Adam optimizer (ρ1 = 0.9, ρ2 = 0.999), for the
Stochastic Gradient descent (SGD) with Nesterov momentum of α = 0.9, and for the RMSProp optimizer
with ρ = 0.9 are tuned. When the Adam optimizer is considered the He normal initializer that draws samples
from a truncated normal distribution with µ = 0 and σ =

√
2/Indim where �Indim� is the number of input

units in the weight tensor (Keras documentation, 2020); when instead the SGD is tuned, a truncated normal
distribution with µ = [0.5, 0.1] and σ = [0.02, 0.01] is considered. The maximum number of training epochs
analyzed are: 500, 1000, 2000, 5000 and 8000, and early stopping is applied. Di�erent q = {0.05, 0.1, 0.2, 0.3}
are tuned for all hidden layers

100The cross-validated hyperparameters are: RMSProp optimiser with ρ = 0.9; learning rate, ε = 0.005,
dropout rate, p = 0.1 for all hidden layers, and number of epochs, 5000.

101The optimal hyperparameters are: RMSProp optimizer with ρ = 0.9; learning rate, ε = 0.003, dropout
rate, p = 0.1 for all hidden layers, and number of epochs, 5000.

161

0
20

40

10
20

30

0
10

20
30

40
50

Bottom-up Approach - Optimal Structure Top-down Appraoch - No green energy

Top-down Approach - Green energy

0 1000 2000 3000 4000 5000
Epoch

0 1000 2000 3000 4000 5000
Epoch

0 1000 2000 3000 4000 5000
Epoch

0
10

20
30

40

0 1000 2000 3000 4000 5000
Epoch

Bottom-up Approach - Cross-validated Structure

Figure 5.11: The Figure reports the training (in red) and validation (in blue) Loss, MAE, and MSE
for the �tted optimal neural network with realistic targets (in panel): COBU

2 (top-left), COre
2 (top-

right) and COr
2 (down-left), while the down-right panel reports instead a cross-validated architecture

for target COBU
2 .

Finally, benchmarking against (rf), a Random Forest with node size of {6, 50} trees, and

26 variables randomly sampled at each split, has associated out-of-sample MAE, MSE, and

RMSE of 7.17, 82.62 and 9.09, respectively. A pairwise model comparison test statistic of

the di�erence in out-of-sample MSE proposed in chapter 3, delivers a value of 3.77 (with

associated p-value < 0.0001) for our optimal ReLu DNN against the (rf) random forest, and

of 1.93 (with associated p-value of 0.0269) against the (cv) equally-sized cross-validated ReLu

DNN, with levels of statistical con�dence above �ve percent.

Therefore, our optimal ReLu DNNmethod better measures the carbon footprint associated

with Bitcoin mining, relative to a Random Forest (rf) and a cross-validated ReLu DNN

architecture (cv), both state-of-the-art ML methods. To further contribute to the literature

on the carbon content of economic activity, we now report the levels and statistical reliability

of the ML-measured CO2 emissions associated with Bitcoin network mining.

CO2-Emission Levels and Prediction Intervals

We obtain the following point estimates and associated 0.95 prediction intervals [PIs] for the

yearly Bitcoin mining CO2 emissions:

162

Optimal ReLu DNN Target/Year 2017 2018 2019

COBU2 (MtCO2e)
[.95 PI]

2.77
[1.98,3.56]

16.08
[14.19,17.97]

14.99
[13.25,16.73]

COre2 (MtCO2e)
[.95 PI]

2.98
[0.42,6.70]

18.11
[16.34,19.88]

17.45
[15.76,19.14]

COr2 (MtCO2e)
[.95 PI]

3.72
[2.90,4.54]

23.98
[22.46,25.51]

20.06
[18.53,21.59]

The PIs are obtained from implementing the MC-dropout approach described above (Gal

and Ghahramani, 2016a). Notice that irrespective of the approach adopted (bottom-up 'BU',

or top-down), mean Bitcoin mining carbon emissions tend to increase over time. Comparing

the three di�erent targets adopted, the (partial) bottom-up approach delivers the most con-

servative greenhouse gas emissions.102 Di�erences in the estimated yearly carbon footprints

reported convey: (i) carbon intensity uncertainty (keeping the approach constant, e.g. the

di�erence between COre2 and COr2 is solely due to adopting a 'clean' energy source carbon

intensity, since both are top-down approaches) as well as (ii) uncertainty due to the change

in approach, from adopting a novel bottom-up approach (COBU2 , relative to a top-down one

that also assumes a 'clean' energy source carbon intensity , COre2).

Figure 5.12 reports the estimated CO2 emission values from our bottom-up target (upper

panel), and associated 95 percent PIs (lower panel), for the overall period, contrasting them

with Hayes' (2017) economic upper and lower bounds at a daily frequency.103

Three main aspects stand out: �rst, the ML-measured daily CO2 emissions always remain

within Hayes' (2017) rational Bitcoin mining upper and lower bounds, despite of not using

that information directly as inputs, X. Second, the 95 percent PIs displayed in the lower

panel of Figure 5.12, provide a quantitative measure of the uncertainty associated with the

ML-based Bitcoin mining carbon footprint, which is substantially narrower than the one

captured by the di�erence between Hayes' (2017) upper and lower bounds, displayed in the

upper panel. That di�erence,which corresponds to the expected daily operating margin of

rational Bitcoin miners' decisions, is the current measure of uncertainty in the literature.

Third, the estimates (and PIs) are in line with recent literature downward revisions of the

original estimate of 69 MtCO2e provided by Mora et al. (2018) for 2017, e.g. 15.5 MtCO2e

by Houy (2019), excluding unpro�table mining rigs; or 15.7 MtCO2e by Masanet et al.(2019);

as well as with those for 2018, e.g. 43.9 MtCO2e (for Bitcoin and Ethereum) estimated by

Foteinis (2018), or the lower and upper bounds of 22.0 (device IP method) to 22.9 (pool IP

102In a sense they are too conservative, because for 2017, all three targets return lower statistical lower bounds
than Hayes' (2017) economic lower bound, suggesting that Bitcoin miners were deploying even more e�cient
ASIC chips than assumed, consuming even less energy overall. But all three point estimates remain above
Hayes' (2017) economic lower bound.

103To get a sense from the Global Carbon Atlas, the maximum level of CO2 that can be produced by Bitcoin
mining (according to Hayes' 2017 upper bound) is higher than the emissions as of 2018 of (i) countries such
as Norway (44 MtCO2), Sweden (41 MtCO2), Finland (47 MtCO2) or New Zealand (35 MtCO2); (ii) US
states like Connecticut, Maryland, Nebraska, New Mexico or Oregon, or than (iii) those of all Earth's 91
subaerial volcanoes (i.e. not under water), with average yearly emissions of 38.7± 2.9 MtCO2 between 2005
and 2015 (Aiuppa et al., 2019).

163

method) MtCO2e estimated by Stoll et al. (2019) for Bitcoin mining activity. To provide an

order of magnitude, the estimates for the years 2018 and 2019 are comparable to the CO2

yearly emissions of countries such as Bolivia, the Dominican Republic, or Croatia.

2017 2018 2019 2020

2017 2018 2019 2020

0
10

0
20

0
30

0
40

0

Kt
C

O
2

0
50

10
0

15
0

Kt
C

O
2

Daily CO2 Emission (Energy Consumption and E−waste)

Year

Figure 5.12: The top panel reports the economic upper and lower bounds for daily CO2 emissions
(in black), and within them, the (partial) bottom-up ReLu DNN-based daily CO2 emissions point
estimates, COBU

2 , in red. The bottom panel reports the 95% prediction intervals (in black).

Recalling that the greenhouse emissions estimates reported here are the result of adopting

a conservative target, one could conclude that the economic social cost associated with the

proof-of-work algorithm is signi�cant. This is an important aspect that must be considered

by policy makers or �nancial institutions that are adopting blockchain technologies for na-

tional cryptocurrency production (e.g. China), or for the emission of �nancial instruments

(e.g. bond-i), because of the Paris agreement that requires to all parties to put forward policy

measures intended to keep the rise in temperature well below +2◦C (e.g. zero net carbon

emissions). Mora et al.'s (2018) projections, notwithstanding the aforementioned downward

revisions, were based on the Paris agreement climate sensitivity of +1.5◦C. But the latest

evidence from a global e�ort comprising dozens of climate-change models (in an ensemble

called the Coupled Model Intercomparison Project, CMIP6)104, feeding into the Sixth Assess-

ment Report of the Intergovernmental Panel on Climate Change (IPCC) due next year, now

indicates climate sensitivities exceeding 5◦C.105 If one considers the exponential trend char-

104See go.nature.com/3garyzc.
105For example, Williams et al. (2020) have just con�rmed on the basis of the CMIP6 Met O�ce Uni�ed

weather-climate model, the crucial role that cloud microphysics play in the upwards revision of the climate
sensitivity �gures: rising temperatures a�ect the size and relative concentration of water and ice droplets

164

acterizing the network hashrate (see for example Cocco and Marchesi, 2016), the empirical

results presented in the present chapter suggest an alarming upward projection of the Bitcoin

mining greenhouse gas emissions.

5.4 Conclusions

There is a growing concern about climate change. Recent evidence (e.g., from integrated

weather-climate models) magni�es the contribution of greenhouse emissions, making a com-

pelling urgent call to cut on those. By focusing on the CO2 emissions associated with Bitcoin

mining, here we show that its measurement is controversial and subject to signi�cant uncer-

tainty. The main reason being the complexity of the underlying object of study: how much

electricity is actually consumed, and what are the actual carbon intensities of the energy

sourced by a globally Geo-located network mining for Bitcoins. In a novel application of

deep learning to this pressing societal issue, we were able to provide a quantitative measure

of Bitcoin mining daily electricity consumption and associated CO2 emissions, as well as of

their (statistical) reliability, improving on the current methods employed in the literature.

Although our estimates are in line with recent downward revisions of those provided by Mora

et al. (2018), our novel (partial) bottom-up approach takes into account not only the location

of miners within China (e.g. CBECI) but also within the US, to better capture the carbon

intensity of the actual sources of energy employed. In addition, we incorporated miners'

income fees, hardware e-waste (De Vries, 2019) and power usage e�ectiveness (Stoll et al.,

2019), as well as allowed for di�erent electricity prices across miners' countries, demonstrating

that ML methods provide substantially narrower bounds than those currently employed in

the literature, based on Hayes' (2017). Yet, our conclusions point towards a signi�cant and

substantial contribution towards rising world temperatures in view of the recent evidence of

climate sensitivities exceeding 5◦C (relative to the Paris agreement target level of +1.5◦C).

We demonstrate how ML methods can be successfully exploited to contribute to the on-

going debate. Starting from a model of rational Bitcoin mining by Hayes (2017), and based

on a comprehensive set of factors reported in Kristoufek (2015), Liu and Tsivinsky (2018),

McNally et al. (2018) or Jang and Lee (2017), and some novel ones, we were able to measure

the carbon footprint associated with Bitcoin mining from �tting an optimized deep neural

network architecture that improves upon state-of-the-art DNN methods. ML methods help in

establishing how the carbon footprint of the proof-of-work algorithm is higher than those of

(i) US states of Maine, New Hampshire, Rhode Island or South Dakota, of (ii) economies of

the size of Bolivia, the Dominican Republic, or Croatia, or of (iii) more than half the cumula-

tive CO2 �ux from the Earth's 91 most actively degassing subaerial volcanoes (Aiuppa et al.,

2019). Next to discussions about incorporating a mining tax into electricity prices, policy de-

cision makers could also consider alternative ones like e�ective carbon pricing, in their e�orts

to curtail greenhouse emissions associated with cryptocurrencies mining and smart contracts

in a cloud ('cloud-feedback problem'), leading to more supercooled water droplets and less ice droplets. If
con�rmed, clouds contribute less than previously thought (e.g. CMIP5) to temperature 'cooling'. Cloud
adjustment to climate change means that we need to redouble our e�orts to cut emissions.

165

implemented with blockchain. Finally, ML methods could be fruitfully exploited to solve the

'measurement' problem that plagues for-pro�t �nancial e�orts to decarbonize the economy.

166

CHAPTER 6

Environmental Engel Curves: A Deep Learning

Approach

Chapter Abstract

Environmental Engel curves describe how households' income relates to the pollution asso-

ciated with the services and goods consumed. This chapter estimates Environmental Engel

curves using deep learning techniques and the novel dataset constructed in Levinson and

O'Brien (2019). This approach is model-free and, in contrast to non-parametric kernel regres-

sion methods, can accommodate a large number of covariates. Additionally, we apply recent

methods to measure uncertainty around predictions of deep learning models such as Monte

Carlo dropout and extra-neural networks. We construct prediction intervals for �ve di�erent

pollutants that allow us to con�rm statistically that Environmental Engel curves are upward

sloping, have income elasticities of less than one, and are concave.

167

6.1 Introduction

Concerns about climate change and the e�ect of human intervention on global warming have

prompted interest in the relationship between household consumption and pollution in recent

years. Much of the early work on environmental economics was aimed to study suitable policies

to tax pollution. For example, work by Metcalf (1999) combines the Consumer Expenditure

Survey (CEX) with pollution data to study the incidence of a proposed pollution tax. In a

related study, Hassett et al. (2009) combine CEX data from several years with pollution data

from di�erent industries to show that a carbon tax would be increasingly regressive. Grainger

and Kolstad (2010) and Burtraw et al. (2009) use CEX data to show that a carbon tax would

be regressive if not o�set by lumpsum transfers or reductions in other regressive taxes. More

recently, Levinson and O'Brien (2019) explore the concept of Environmental Engel Curves

(EEC) and propose a structural approach to estimate the relationship between household

income and pollution, holding prices constant. This idea extends the concept of Engel curves,

see Engel (1895), which study the relationship between households' consumption of particular

goods (or services) and households' income, holding prices constant.

EECs are related to Environmental Kuznets curves, that measure the relationship between

pollutants and national income, see Grossman and Krueger (1995). However, EECs are

structural, representing income expansion paths holding prices constant. Movements along

EECs represent changes in preferences as income grows, holding prices, technologies and

regulations �xed. Shifts in EECs represent changes in all of those other characteristics over

time. Copeland and Taylor (2005) state that the relationship between economic growth

and pollution can be described by three separate components: a) technique (capturing the

technologies used for the production and manufacture of goods and services), b) composition

(representing the basket of goods produces by the economy), c) and scale (quanti�es the

relation between economic activity and pollution � an increase in economic growth leads to a

proportional increase in pollution).

Levinson and O'Brien (2019) compare pollution, income, and consumption across U.S.

households with annual data over the period 1984 to 2012. These authors construct EECs

separately for indirect emissions from each of the �ve major air pollutants: particulates smaller

than 10 microns (PM10), volatile organic compounds (VOCs), nitrogen oxides (NO), sulfur

dioxide (SO2), and carbon monoxide (CO), and estimate two versions of each EEC: one based

solely on income and one that controls for 18 household characteristics correlated with income,

such as education and age. To calculate the pollution emitted by producing the goods and

services associated with household expenditures, these authors pair the CEX with emissions

intensities calculated from the National Emissions Inventory (NEI).106 Levinson and O'Brien

(2019) �nd that EECs display three key characteristics. First, EECs are upward sloping,

meaning that richer households are responsible for more overall pollution. Second, EECs

have income elasticities smaller than one, indicating that although pollution increases with

106These authors calculate the per dollar emissions intensity of each industry by aggregating industry-level
emissions in the 2002 NEI and dividing by the total sales from the 2002 economic and agricultural censuses.

168

income, higher income households' consumption pollution content is smaller than for lower

income households. And third, EECs shift down and become more concave over time, meaning

that for any level of real household income, households in more recent years consume a less

polluting mix of goods, the pollution content of which increases with income at a decreasing

rate.

One of the main di�culties associated with the correct study of EECs is the absence of

a theoretical framework that describes such relationship. As a consequence, EECs should

be constructed with as few restrictions as possible. For this reason, Levinson and O'Brien

(2019) use linear and nonlinear speci�cations (e.g., cubic polynomials and logarithms) be-

tween households' pollution and household-speci�c information �nding similar results across

speci�cations. These authors also consider nonparametric estimates of EECs in their analysis;

however, these nonparametric speci�cations are only considered for the simplest case given

by the relationship between household pollution and income. It is well known that nonpara-

metric regression models are not able to accommodate the presence of many covariates, by

construction, due to the well-known curse of dimensionality, see Stone (1980).

The aim of the current chapter is to analyze if the results in Levinson and O'Brien (2019)

are robust to the choice of the functional form describing the ECCs. To do this, we apply deep

learning methods to model the relationship between the pollution content in consumption and

household income. This approach based on deep neural networks (DNN) allows us to predict

nonparametrically the pollution content of household consumption as a function of household

income and a large set of covariates. In addition, we apply recent methods developed in the

machine learning literature such as Monte Carlo dropout, proposed by Gal and Ghahramani

(2016a), and extra-neural networks in chapter 4 to construct intervals about the model pre-

dictions. These methods are shown to outperform parametric methods such as Hwang and

Ding (1997) and nonparametric bootstrap methods, see Tibshirani (1996), in deep learning

environments. By doing so, we are able to attach statistical measures of uncertainty to the

pointwise predictions of the model and, hence, add statistical rigor to the empirical �ndings

of Levinson and O'Brien (2019) on the relationship between pollution and income. We con-

struct intervals for the predictions of household pollution along the EEC curve for the reduced

model that only considers household income and also the extended model that incorporates

eighteen covariates capturing households' characteristics. As in Levinson and O'Brien (2019),

we consider �ve di�erent pollutants that capture di�erent dimensions of environmental pollu-

tion. The deep neural network models that we �t exhibit low mean square prediction errors

and, very importantly, accurate coverage probabilities for the associated prediction intervals.

These intervals con�rm the empirical �ndings in Levinson and O'Brien (2019) for the �ve

pollutants and the years 1984 and 2012: EECs are upward sloping, have income elasticities

of less than one, and are concave. However, in contrast to Levinson and O'Brien (2019), the

concave relationship between household income and household pollution is observed not only

for the simple model but also for the neural network that considers household characteristics.

In other words, Levinson and O'Brien (2019) reveal a concave relationship between household

income and pollution only for the model that consider income and income squared (as it is

169

imposed by the quadratic nature of the regression model). Conversely, the present chapter,

without imposing any structure on the relationship between variables, uncovers concave ECCs

when also household speci�c information are included. Therefore, the present chapter adds to

the research of Levinson and O'Brien (2019) by modeling a decreasing relationship between

household income and pollution for top earners (i.e., the pollution content of consumption

for households in the top of the income distribution is lower than for the individuals in lower

deciles).

Neural networks and, more speci�cally, deep learning models are widely adopted in high-

dimensional and nonlinear problems such as pattern recognition, biomedical diagnosis, and

others (see Schmidhuber, 2015; LeCun et al., 2015 for review of the topic). The success of

deep learning methods relies on their ability to approximate complex and unknown functional

forms for the relation between a given outcome variable and a set of predictors. The Universal

approximation theorem by Cybenko (1989) states that a shallow feedforward neural network

(only one hidden layer) with a sigmoidal activation function can approximate any Borel mea-

surable function with arbitrarily small error. Hornik (1991) extends Cybenko's (1989) results

by proving that the ability to approximate arbitrarily well any given function depends on

the number of hidden nodes and not on the particular activation function used. Lu et al.

(2017) extend the Universal approximation theorem of Cybenko (1989) to width-bounded

deep feedforward neural networks with recti�ed linear unit (ReLu) activation functions. The

implications of these results are noteworthy: notwithstanding the unknown functional form of

the underlying data generating process, a su�ciently large shallow or deep ReLu feedforward

neural network will be able to approximate, accurately, the underlying function (Goodfellow

et al., 2016). Therefore, it is no longer necessary to construct an ad hoc model for the speci�c

nonlinearity to be learned, making both shallow and deep neural networks the least restricted

nonlinear function class to be considered.

The rest of the chapter is organized as follows: Section 6.2 reports the de�nitions and

notations used in the chapter. Section 3 analyzes the sources of uncertainty that must be

modeled when constructing prediction intervals and reviews two novel deep learning method-

ologies adopted for the prediction of household pollution and the construction of prediction

intervals. Section 6.4 reports and discusses the empirical results. Section 6.5 concludes.

6.2 DNN basics

The present section provides the notation and de�nitions used in the remainder of the chapter.

It will �rst de�ne Recti�ed Linear Unit (ReLu) activation functions and deep (sequential)

feedforward neural networks with emphasis on univariate regression tasks and the de�nition

of dropout.

170

6.2.1 De�nition and Notations

Let yi for i = 1, · · · , n denote the output (target) variable and xi = (x1i, · · · , xdi) a set of

input variables (covariates) used to predict yi. A general predictive model can be expressed

as:

yi = f(xi) + εi (6.1)

with f(xi) a real-valued function used to predict the outcome variable; εi is the error term that

satis�es E[εi|xi] = 0. The choice of the function f(xi) depends on the loss function L[yi, f(xi)].

For example, the best predictive model for a quadratic loss function is f(xi) = E[yi|xi].
In standard regression settings, the question of interest is to approximate the unknown

function f(xi). It is well known that if the function f(xi) is linear on xi, under standard

regularity conditions, ordinary least square (OLS) regression methods provide unbiased, con-

sistent, and e�cient estimators of the model coe�cients. However, many empirical problems

are characterized by nonlinear relationships between the variables of interest. A large number

of covariates in many regression settings also compromises the good theoretical properties

of OLS methods. In this particular case, Levinson and O'Brien (2019) explain how there

is no theory that de�nes the form of the income-pollution relationship and thus, the con-

struction and analysis of the EECs should be conducted with as few restrictions as possible.

Nonparametric kernel regression models are a possible solution for the simpli�ed model that

only considers the relationship between household income and pollution, but it is not a fea-

sible option when we also consider the presence of additional covariates capturing household

characteristics.

Recent advances in machine learning have shown that neural network methods provide

accurate predictions without requiring speci�c knowledge of the underlying data generating

process and thus, they are not a�ected by model misspeci�cation and associated econometric

issues. The universal approximation theorem (Cybenko, 1989) and recent contributions (e.g.,

Lu et al., 2017) show that a su�ciently large neural network is able to accurately approximate

the underlying function notwithstanding the type of nonlinearity to be learned. In this setting,

shallow and deep neural networks provide a powerful tool for the construction of EECs and

thus, the present chapter considers f(xi) to be in the class of fully connected feedforward

neural networks (or multi-layer perceptrons, MLP) with ReLu activation functions107.

A ReLu activation function can be de�ned as follows. Let θ(x) : Rd → Rd, with

θ(x) = (max{0, x1},max{0, x2}, · · · ,max{0, xd}) (6.2)

where d denotes the number of covariates (input dimension). Alternatively, the ReLu activa-

tion function can be expressed as θ(x) = I(x > 0) · x, with I(x > 0) the indicator function.

Having de�ned the ReLu activation function, it is now possible to provide a de�nition of a

107Other prominent examples in the machine learning literature include support vector machines (SVMs),
boosting algorithms (e.g., Adaboost), decision trees (and their generalization to random forests and ex-
tremely randomized trees), and nonparametric regressions in the spirit of nearest neighbors and local kernel
smoothing.

171

ReLu deep neural network (DNN). For any two natural numbers d, n1 ∈ N, which are called

input and output dimension respectively, a Rd → Rn1 ReLu DNN is given by specifying

a natural number N ∈ N, a sequence of N natural numbers Z1, Z2, · · · , ZN , and a set of

N + 1 a�ne transformations T1 : Rd → RZ1 ,Ti : RZi−1 → RZi , for i = 2, · · · , N , and

TN+1 : RZN → Rn1 . Such a ReLu DNN is called a (N + 1)-layer ReLu DNN, and is said to

have N hidden layers. The function f : Rd → Rn1 is the output of this ReLu DNN that is

constructed as

f(xi;ω) = TN+1 ◦ θ ◦TN ◦ · · · ◦T2 ◦ θ ◦T1, (6.3)

with Tn = Wnhn−1 + bn, where - for N = 1 - Wn ∈ RZ1×d; h0 ≡ x, with x ∈ Rd×1 the

input layer, and bn ∈ RZ1 is an intercept or bias vector. For N 6= 1, Wn ∈ RZn×Zn−1 is

a matrix with the deterministic weights determining the transmission of information across

layers; hn−1 ∈ RZn−1 is a vector de�ned as hn−1 = θ(Tn−1), and bn ∈ RZn . The function

θ is a ReLu activation function de�ned as θ(Tn−1) = max{0,Tn−1} and ω = {W n,bn}Nn=1

collects the set of estimable features of the model. The depth of a ReLu DNN is de�ned

as N + 1. The width of the nth hidden layer is Zn, and the width of a ReLu DNN is

max{Z1, · · · , ZN}. The size of the ReLu DNN is Ztot = Z1 +Z2 + · · ·+ZN , that corresponds

to the total number of nodes in the neural network architecture. The number of active weights

(di�erent from zero) in the nth hidden layer is wn = (Zn×Zn−1) +Zn. The number of active

weights in a fully connected ReLu DNN is w1 + w2 + · · · + wN . The same de�nition applies

to shallow/single-layered networks by imposing N = n = 1.

Universal approximation theorems developed for ReLu DNN models (Lu et al., 2017)

guarantee then that f(xi;ω) approximates the true unknown function f(xi) in (6.1) arbitrarily

well. In practice, there is an approximation error due to replacing f(xi) by f(xi;ω) in model

(6.1), where f(xi;ω) denotes a feasible version of the DNN model that can be estimated from

the data.108 The model that we consider in practice is

yi = f(xi;ω) + ui, (6.4)

where ui = εi + f(xi)− f(xi;ω), and f(xi)− f(xi;ω) re�ects the approximation error of the

model.

The construction of prediction intervals around the pointwise predictions of DNN models

has most recently been object of important research in machine learning applications. The

possibility of constructing prediction intervals allows us to measure the uncertainty around the

model predictions. The concept of Monte Carlo dropout is central to this novel literature on

prediction intervals for neural network models, see Srivastava et al. (2014). Before discussing

the construction of prediction intervals, we elaborate on the concept of dropout in DNN

models.

Training with dropout (dropout training) implies that for each iteration of the learning

algorithm di�erent random sub-networks (or thinned networks) are trained. Let hzn denote

108The feasibility of the model entails that it is de�ned by a truncation of the true ReLu DNN model that
approximates arbitrarily well the unknown function f(xi).

172

the elements of the vector hn for a given node z = 1, . . . , Zn in layer n = 1, . . . , N . Srivastava

et al. (2014) develop a dropout methodology that is applied to each function hzn to obtain

a transformed variable hzn. This variable is obtained by pre-multiplying hzn by a random

variable rzn with distribution function F (rzn), such that hzn = rzn ·hzn, for all (z, n), prior to

being fed forward to the activation function in the next layer, hzn+1, for all z = 1...Zn+1. For

any layer n, rn = [r1n, . . . , rZnn] ∈ RZn denotes a vector of independent random variables. In

this chapter we consider only the Bernoulli probability distribution F (rzn), where each rzn

has probability p of being 1 (and q = 1 − p of being 0). The vector rn is then sampled and

multiplied element-wise with the outputs of that layer, hzn, to create the thinned outputs,

hzn, which are then used as input to the next layer, hzn+1. When this process is applied

at each layer n = 1, . . . , N , this amounts to sampling a sub-network from a larger network

at each forward pass (or gradient step). At test time, the weights are scaled down as W
n

= pWn, n = 1, . . . , N , returning a deterministic output. We then identify r? = [r1, ..., rN]

as the collection of independent random variables applied to a feedforward neural network of

depth N + 1.

6.3 Prediction Intervals for DNN models

Prediction intervals for both shallow and deep neural networks are estimated from the predic-

tive distribution of the model output. The seminal contribution by Hwang and Ding (1997)

is the �rst study to propose an asymptotic prediction interval in shallow neural networks.

Despite the theoretical appeal of this approach its implementation in large dimensions �and

under the absence of a parametric setting� has important limitations associated with the

correct computation of the Jacobian matrix of the model speci�cation, see, for example, Tib-

shirani (1996) and Devieaux et al. (1998).

Recent work on neural network models introduces uncertainty through bootstrap resam-

pling techniques and Monte Carlo simulation methods enabling the construction of prediction

intervals for the outputs of DNN models. When focusing on the �rst sub-group, pairs and

residual bootstrapping can be regarded as the methodologies most adopted by practitioners

(see Dipu Kabir et al., 2018; Tibshirani, 1996; and Heskes, 1997 for reviews on the topic).

Despite its importance in recent empirical work, the relevant literature identi�es several lim-

itations associated with bootstrapping methods: (i) Lee et al. (2015) show how resampling

with replacement reduces the number of unique observations used to train the model by 37%;

(ii) Lee et al. (2015) and Lanshminarayanan et al. (2017) show, empirically, how data resam-

pling in ensembles of neural networks deteriorates not only the prediction accuracy but also

the de�nition of the predictive uncertainty of the ensemble itself; (iii) El Karoui and Purdom

(2018) show that both pairs and residual bootstrapping su�er from several problems when ap-

plied in high-dimensional linear regression problems. In particular, the residual bootstrapping

tends to give under-conservative estimates of the uncertainty, while the pairs bootstrapping

provides over-conservative estimates.

Gal and Ghahramani (2016a) propose an alternative approach for the approximation of

173

the predictive distribution of neural networks called MC dropout. This methodology was orig-

inally developed for Bayesian neural networks (Denker and LeCun, 1991) and subsequently

extended beyond the Bayesian framework by Cortes-Cirano and Bender (2019), among other

authors. Similarly, in chapter 4, we propose a novel methodology for constructing predic-

tion intervals for deep neural networks designed to overcome the aforementioned bootstrap

limitations. Both methodologies are analyzed more formally in the following subsections.

6.3.1 Monte Carlo Dropout

The MC dropout approach introduces randomness into the DNN prediction by implement-

ing dropout not only during training but also during testing. Gal and Ghahramani (2016a)

propose a new theoretical framework which uses dropout in DNNs as approximate Bayesian

inference for deep Gaussian processes. In this subsection we adopt this methodology outside

Bayesian neural networks and illustrate how to construct prediction intervals for the output

yi. The literature focusing on Bayesian deep neural networks concentrates on correctly ap-

proximating the posterior probability distribution of the output of the DNNs, which is often

intractable. In particular, let p(ŷ |x,X,Y) denote the distribution of the predictive output ŷ

conditional on the set of observations X = {x1, . . . ,xn} and Y = {y1, . . . , yn}. The predictive
probability distribution of the DNN model is

p(ŷ |x,X,Y) =

∫

Ω
p(ŷ |x,ω)p(ω | X,Y)dω, (6.5)

with p(ŷ |x,ω) the likelihood function of the observations, and ω ∈ Ω where Ω denotes the

parameter space.

Gal and Ghahramani (2016a) propose MC dropout to approximate the posterior probabil-

ity distribution p(ω | X,Y), which is intractable, by a distribution function q(ω) that follows

a Bernoulli distribution, Ber(p). The above predictive distribution can be approximated by

p(ŷ |x,X,Y) =

∫

Ω
p(ŷ |x,ω)q(ω)dω. (6.6)

The predictive distribution (6.6) can be approximated using Monte Carlo methods. Thus,

by sampling T sets of vectors from the Bernoulli distribution {r?(t)}Tt=1, one can approximate

the above predictive distribution from the random sample ŷ(xi; ω̂
(t)), for i = 1, . . . , n, where

ω̂(t) = {Ŵ1(t), . . . ,ŴN(t), b̂
(t)
1 , . . . , b̂

(t)
N } denotes the sequence of weights associated to the

di�erent nodes and layers of the neural network and the associated bias parameters. Using

this MC dropout technique, Gal and Ghahramani (2016a) propose the �rst moment from the

MC predicted outputs as the model prediction:

f̄MC(xi) =
1

T

T∑

t=1

ŷ(xi; ω̂
(t)), for i = 1, . . . , n. (6.7)

These authors show that, in practice, this is equivalent to performing T stochastic forward

174

passes through the network and averaging the results. The predictive variance is then:

σ̂2
MC = σ̂2

e +
1

T

T∑

t=1

(
ŷ(xi; ω̂

(t))− f̄MC(xi)
)2
, (6.8)

with σ̂2
e = 1

n

∑n
i=1

(
yi − f̄MC(xi)

)2
a consistent estimator of σ2

e under homoscedasticity of

the error term, see also Kendall and Gal (2017). The �rst component on the right hand side

of expression (6.8) captures the aleatoric uncertainty (noise due to the error term) whereas

the second term captures the epistemic uncertainty associated to parameter estimation. A

suitable prediction interval for yi under the assumption that p(ŷ |x,ω) is normally distributed

is

f̄MC(xi)± z1−α/2σ̂MC . (6.9)

6.3.2 Extra-neural network

This novel methodology extends the extremely randomized trees proposed by Geurts et al.

(2006) to ensembles of neural networks. In this case, the original concept of an ensemble of

sub-networks � from which the dropout training is built upon � is adopted. In the remainder of

the subsection, r̄? is used to identify a �xed Bernoulli mask, as opposed to r? used in dropout

training. When the extra-neural network methodology is applied, T sets of vectors {r̄?(t)}Tt=1

are sampled from the Bernoulli distribution prior to training and kept constant throughout the

�tting and prediction phases. Extra-neural network thus e�ectively trains and independently

�ts T random sub-networks on the same dataset. Therefore, the predictive distribution is

approximated using an ensemble approach comprised of di�erent sub-networks �tted on the

same dataset. The �xed Bernoulli mask (and thus, the consequential randomization of the

structure of the di�erent T sub-networks) introduces an additional randomization scheme to

the ensemble's predictions that reduces the statistical dependence between the T predictions.

In particular, consider T �tted sub-networks de�ned as ft(xi; ω̂
(t)) with t = 1, · · · , T . We

use ft to note that each prediction belongs to a potentially di�erent model; ω̂(t) denotes the

sets of trainable parameters associated to each ft. The ensemble's prediction is de�ned as:

f̄EN (xi) =
1

T

T∑

t=1

ft(xi; ω̂
(t)), for i = 1, . . . , n. (6.10)

Given the ensemble predictor expressed above, and assuming that the approximation bias is

negligible, a suitable prediction interval is

f̄EN (xi)± z1−α/2

(
σ̂2
ω̂(xi)

T
+ σ̂2

e

)1/2

, (6.11)

with σ̂2
ω̂(xi) = 1

T

∑T
t=1(ft(xi; ω̂

(t)) − f̄EN (xi))
2 and σ̂2

e = 1
n

∑n
i=1

(
yi − f̄EN (xi)

)2
, where n

is the length of the test sample.

In this chapter, we apply the MC dropout and the extra-neural network approaches to

estimate the uncertainty about the pointwise predictions of a model that assesses the relation-

175

ship between household income and pollution using the rich dataset in Levinson and O'Brien

(2019) for studying EECs for the U.S. for each year between 1984 and 2012.

6.4 Empirical Results

Levinson and O'Brien (2019) �nd that EECs display three key characteristics: increasing and

concave relationship between the pollution content of household consumption and income,

and an income elasticity smaller than one. These features of the relationship between the

variables can be quanti�ed and assessed through the construction of prediction intervals for

a given coverage probability. Thus the hypothesis that the relationship is increasing could be

tested by assessing if the �rst derivative of the predicted function modelling the relationship

between pollution and household income is strictly positive. Similarly, the concavity of the

relationship could be tested by assessing if the second derivative of the predicted functional

form is negative. Once the concavity of the function is not rejected, the third hypothesis

given by an income elasticity smaller than one can be tested by assessing if the slope of the

functional form relating household pollution and income is less than one uniformly over the

relevant domain.109

Following Levinson and O'Brien (2019), we consider �ve di�erent pollutants: particulates

smaller than 10 microns (PM10), volatile organic compounds (VOCs), nitrogen oxides (NO),

sulfur dioxide (SO2), and carbon monoxide (CO). Due to space constraints, we only report the

results for the years 1984 and 2012 but results for the years 1985 to 2011 are available from

the authors upon request. We implement the two novel methodologies reviewed above for the

construction of prediction intervals in a DNN framework. The optimal architecture and set of

hyper-parameters used to identify the ReLu DNN for the MC dropout is tuned, and the same

optimal combination is applied for the implementation of the extra-neural networks algorithm.

Levinson and O'Brien (2019) construct two types of EECs: one using only income as a

covariate and, alternatively, a multivariate model in which the set of covariates is expanded

to incorporate other households' speci�c information. In the latter case, Levinson and O'Brien

(2019) consider d = 18 regressors to predict pollution.110 Due to di�erences in dimensionality

across problems (using income only or adding household covariates), in the �rst case, a set of

candidate shallow networks with Ztot = [5, 10, 20] is considered, where Ztot denotes the total

number of nodes in the neural network. In the second case, we consider a DNN with optimal

architecture obtained from the novel procedure in chapter 3.111

The hyper-space de�ned by the di�erent optimization algorithms, weights initializers,

learning rates, number of epochs, and drop-out rates are de�ned with no distinction between

shallow and deep networks. In particular, the learning rates 0.001, 0.003, 0.005, and 0.01 for

109The reader should note that this de�nition of elasticity is di�erent from the general de�nition of the elasticity

of Y with respect to X that is given by EY
X =

% change in Y

% change in X
, which reduces to EY

X =
dY

dX

X

Y
for in�nitesimal

changes and di�erentiable variables.
110See Table 2 in Levinson and O'Brien (2019) for a detailed description of the variables.
111The neural network size depends on the complexity of the functional form to be approximated. Therefore,

DNNs with di�erent number of total nodes Ztot = [76, 90, 150, 200, 250, 392, 446, 500] are tuned.

176

the Adam optimizer (β1 = 0.9; β2 = 0.999), and for the RMSProp optimizer with ρ = 0.9

are tuned. When the Adam and RMSProp optimizer are analyzed, the He normal initializer

and the Xavier uniform (default in Keras) initializer are implemented. The former draws

samples from a truncated normal distribution with µ = 0 and σ =
√

2/Indim where �Indim�

is the number of input units in the weight tensor; the latter draws samples from a uniform

distribution within [−bound,+bound], where bound =
√

(6/(Indim + Outdim)). Addition-

ally, the stochastic gradient descent optimization algorithm with learning rate 0.0001 is also

considered. The number of epochs (with early-stopping) analyzed are: 100 (for the shallow

network), and 600 (for the deep neural networks). We also consider the following dropout

rates (q): 0.01, 0.05, and 0.1.

177

Table 6.1: The table reports the optimal neural networks' parameters with relative out-of-sample
accuracy measures de�ned by MSE, MAE, and Cov95 (empirical coverage probabilities at 0.95).

PM10

Optimizer Learning Rate Epochs Initializer Structure q T MAE MSE Cov95

Year 1984(d = 18)

MC Dropout Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 2.8594 18.3263 0.05

Extra-network Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 2.9897 19.6456 0.04

Year 1984(d = 2)

MC Dropout Adam 0.003 100 He Normal [5] 0.05 70 3.6276 27.3797 0.04

Extra-network Adam 0.003 100 He Normal [5] 0.05 70 3.6723 27.5817 0.04

Year 2012(d = 18)

MC Dropout Adam 0.003 600 He Normal [54, 36] 0.05 70 2.5912 13.2871 0.04

Extra-network Adam 0.003 600 He Normal [54, 36] 0.05 70 2.6437 13.8489 0.04

Year 2012(d = 2)

MC Dropout Adam 0.003 100 He Normal [5] 0.05 70 2.9997 16.6166 0.04

Extra-network Adam 0.003 100 He Normal [5] 0.05 70 3.0418 17.1902 0.04

CO

Year 1984(d = 18)

MC Dropout Adam 0.005 600 He Normal [40, 36] 0.05 70 12.4441 388.4378 0.05

Extra-network Adam 0.005 600 He Normal [40, 36] 0.05 70 12.3746 411.5797 0.05

Year 1984(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 14.4730 479.8068 0.06

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 14.4079 494.3869 0.06

Year 2012(d = 18)

MC Dropout Adam 0.005 600 He Normal [78, 36, 36] 0.05 70 9.0952 236.0679 0.04

Extra-network Adam 0.005 600 He Normal [78, 36, 36] 0.05 70 9.2170 234.8622 0.03

Year 2012(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 9.8253 260.4555 0.04

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 9.5545 281.7539 0.04

SO2

Year 1984(d = 18)

MC Dropout Adam 0.005 600 He Normal [54, 36] 0.01 70 30.6778 1844.7867 0.04

Extra-network Adam 0.005 600 He Normal [54, 36] 0.01 70 32.0010 2042.0742 0.05

Year 1984(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 37.2184 2810.3498 0.04

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 38.1013 2901.2416 0.05

Year 2012(d = 18)

MC Dropout Adam 0.005 600 He Normal [40, 36] 0.05 70 32.3183 1931.8550 0.04

Extra-network Adam 0.005 600 He Normal [40, 36] 0.05 70 32.5744 1945.6825 0.05

Year 2012(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 35.7883 2291.4632 0.03

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 35.8810 2318.8336 0.03

178

Optimizer Learning Rate Epochs Initializer Structure q T MAE MSE Cov95

NO

Year 1984(d = 18)

MC Dropout Adam 0.005 600 He Normal [54, 36] 0.05 70 18.8255 643.9020 0.05

Extra-network Adam 0.005 600 He Normal [54, 36] 0.05 70 19.2223 707.9086 0.06

Year 1984(d = 2)

MC Dropout Adam 0.003 100 He Normal [5] 0.01 70 23.0578 985.8477 0.04

Extra-network Adam 0.003 100 He Normal [5] 0.01 70 23.1836 1029.5816 0.05

Year 2012(d = 18)

MC Dropout Adam 0.005 600 He Normal [54, 36] 0.1 70 17.5517 541.5600 0.03

Extra-network Adam 0.005 600 He Normal [54, 36] 0.1 70 17.7210 581.2127 0.04

Year 2012(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 19.7508 695.7539 0.04

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 19.9146 699.3635 0.04

VOC

Year 1984(d = 18)

MC Dropout Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 5.4403 76.1747 0.04

Extra-network Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 5.2475 76.1247 0.05

Year 1984(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 6.5387 96.0701 0.05

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 6.4422 97.8181 0.05

Year 2012(d = 18)

MC Dropout Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 3.5214 33.7558 0.05

Extra-network Adam 0.003 600 He Normal [78, 36, 36] 0.05 70 3.7183 33.5824 0.04

Year 2012(d = 2)

MC Dropout Adam 0.005 100 He Normal [5] 0.05 70 4.0099 40.1979 0.04

Extra-network Adam 0.005 100 He Normal [5] 0.05 70 4.0851 41.0851 0.04

By looking at Table 2 in Levinson and O'Brien (2019), one could notice that when the

EECs are constructed considering control variables for age, household size, marital status and

indicators for race, education and regional location both numerical and categorical variables

are included. Thus, in order to guarantee a proper training of the ReLu DNN, a feature-wise

normalization for the numerical variables, consisting on transforming the observations into

zero-mean and unit standard deviation random variables, is performed. When looking at

the categorical variables, Levinson and O'Brien (2019) de�ne a separate indicator for each

category; being this approach equivalent to the one-hot-encoding procedure (see James et al.,

2013), we have applied the same transformation in treating the categorical variables for the

correct �tting of the DNN. Finally, 85% of the data are used for training the network and

the remaining 15% as test set. We focus on the years 1984 and 2012 to assess the evolution

of the EECs over time. The optimal combination of structure and hyper-parameters of both

deep and shallow networks used for the year 1984 and 2012 are reported in Table 6.1 with the

relative out-of-sample accuracy measures de�ned by MAE, MSE, and empirical coverages.

The out-of-sample empirical coverage is approximately equal or equal to the nominal level

at which the prediction intervals are constructed, implying the suitability of the intervals

out-of-sample. The reported results in Table 1 thus convey that the data-based uncovered re-

lationship between the pollution content of U.S. household consumption and income obtained

by deep learning is statistically robust. We now turn to examine whether the increasing and

179

concave relationship uncovered by Levinson and O'Brien (2019) also obtains when estimated

non-parametrically.

Extra-net (HH income) - 2012

0 5 10 15 20

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

Extra-net (HH income and covariates) - 2012

0 5 10 15 20

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income) - 2012

0 5 10 15 20

0
10

20
30

40
50

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income and covariates) - 2012

0 5 10 15 20

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

Average After−tax Income (10.000 2002 $) Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $) Average After−tax Income (10.000 2002 $)

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

Extra-net (HH income) - 1984

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

Extra-net (HH income and covariates) - 1984

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

MC Dropout (HH income) - 1984

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income and covariates) - 1984

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0
10

20
30

40

Av
er

ag
e

PM
10

 p
er

 H
ou

se
ho

ld

Figure 6.1: Point estimates and 0.95 prediction intervals of PM10.

180

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

Extra-net (HH income) - 1984

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

Extra-net (HH income and covariates) - 1984

MC Dropout (HH income) - 1984

0 2 4 6 8 10 12 14

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

0 2 4 6 8 10 12 14
0

10
0

20
0

30
0

Av
er

ag
e

N
O

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income and covariates) - 1984

Extra-net (HH income) - 2012

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld 40

0

0 5 10 15 20 0 5 10 15 20

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

Extra-net (HH income and covariates) - 2012

MC Dropout (HH income) - 2012

0 5 10 15 20

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

0 5 10 15 20

0
10

0
20

0
30

0
Av

er
ag

e
N

O
 p

er
 H

ou
se

ho
ld

MC Dropout (HH income and covariates) - 2012

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Figure 6.2: Point estimates and 0.95 prediction intervals of NO.

181

−4
0−

20
0

20
40

60
80

10
0

Av
er

ag
e

VO
C

 p
er

 H
ou

se
ho

ld

0 2 4 6 8 10 12 14

Extra-net (HH income) - 1984

0 2 4 6 8 10 12 14−2
0

0
20

40
60

80
10

0

Extra-net (HH income and covariates) - 1984

MC Dropout (HH income) - 1984

0 2 4 6 8 10 12 14

Av
er

ag
e

VO
C

 p
er

 H
ou

se
ho

ld

−2
0

0
20

40
60

80
10

0
Av

er
ag

e
VO

C
 p

er
 H

ou
se

ho
ld

0 2 4 6 8 10 12 14

−2
0

0
20

40
60

80
10

0
Av

er
ag

e
VO

C
 p

er
 H

ou
se

ho
ld

MC Dropout (HH income and covariates) - 1984

Extra-net (HH income) - 2012

−4
0−

20
0

20
40

60
80

10
0

Av
er

ag
e

VO
C

 p
er

 H
ou

se
ho

ld

0 5 10 15 20 0 5 10 15 20−2
0

0
20

40
60

80
10

0
Av

er
ag

e
VO

C
 p

er
 H

ou
se

ho
ld

Extra-net (HH income and covariates) - 2012

0 5 10 15 20

MC Dropout (HH income) - 2012

−2
0

0
20

40
60

80
10

0
Av

er
ag

e
VO

C
 p

er
 H

ou
se

ho
ld

0 5 10 15 20

−2
0

0
20

40
60

80
10

0
Av

er
ag

e
VO

C
 p

er
 H

ou
se

ho
ld

MC Dropout (HH income and covariates) - 2012

Average After−tax Income (10.000 2002 $) Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $) Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Average After−tax Income (10.000 2002 $)Average After−tax Income (10.000 2002 $)

Figure 6.3: Point estimates and 0.95 prediction intervals of VOC.

182

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

Extra-net (HH income) - 1984

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

Extra-net (HH income and covariates) - 1984

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

MC Dropout (HH income) - 1984

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

MC Dropout (HH income and covariates) - 1984

Extra-net (HH income) - 2012

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

Extra-net (HH income and covariates) - 2012

MC Dropout (HH income) - 2012

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

MC Dropout (HH income and covariates) - 2012

Av
er

ag
e

SO
2

pe
r H

ou
se

ho
ld

0
10

0
20

0
30

0
40

0

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

Figure 6.4: Point estimates and 0.95 prediction intervals of SO2.

183

Extra-net (HH income) - 1984

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

Extra-net (HH income and covariates) - 1984

MC Dropout (HH income) - 1984

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0 2 4 6 8 10 12 14
Average After−tax Income (10.000 2002 $)

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income and covariates) - 1984

Extra-net (HH income) - 2012

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

Extra-net (HH income and covariates) - 2012

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income and covariates) - 2012

0 5 10 15 20
Average After−tax Income (10.000 2002 $)

0
50

10
0

15
0

Av
er

ag
e

C
O

 p
er

 H
ou

se
ho

ld

MC Dropout (HH income) - 2012

Figure 6.5: Point estimates and 0.95 prediction intervals of CO.

Figures 6.1-6.5 report the EECs constructed with both MC dropout and extra-neural

networks with d = 2 or 18 for the �ve major air pollutants.

184

The panels in each �gure are constructed as follows: the observed income is divided

into 100 groups of the same size. We compute the mean of the predicted pollution and the

upper and lower bounds of the prediction intervals for each group and pollutant. The mean

values are then plotted. Our estimates of the EECs constructed with both MC dropout and

extra-neural network provide further empirical support to the results reported in Figure 3

of Levinson and O'Brien (2019) for the PM10. In particular, the shape of the predicted

curves and the associated intervals suggest an increasing and concave relationship between

the variables under study. This relationship is uniform across values of household income.

More formally, the upper bound of the 95% prediction interval can be used as cut-o� point

to determine whether the slope of the curve is greater than one or its second derivative is

negative. The analysis of the prediction intervals obtained from the extra-neural network

approach shows that the income elasticity is smaller than one across all values of household

income. This is particularly the case for the year 2012 and holds across the �ve pollutants.

Although the prediction intervals obtained by MC dropout are not as conclusive as those from

the extra-neural nets methodology, overall, there is clear empirical evidence in support of a

concave relationship between the pollution content in consumption and household income for

the di�erent pollutants considered.

These results show that � without imposing any functional form between pollution and

household income � richer households pollute more, the pollution content of consumption

increases at a lower rate than income, and that the pollution content of consumption grows at

a decreasing rate. Interestingly, the inclusion of household characteristics in the DNN model

also reveals a decreasing pattern in the relationship between household after-tax income and

pollution for high income individuals for 2012. In Levinson and O'Brien (2019) this �nding

is only hinted for 2012 using the simple model with income and income squared but not

in the model with multiple covariates. In their case the quadratic nature of the regression

model determines to a large extent the overall shape of the relationship between income

and pollution; however, in our setting, the model does not impose any structure on the

relationship between the variables, letting the data speak. These �ndings suggest a decrease

in the relationship between household income and pollution for top earners with respect

to households in moderate to high percentiles of the distribution of income. This �nding

is robust across the �ve pollutants being particularly relevant for some pollutants such as

nitrogen oxides (NO) and carbon monoxide (CO).

6.5 Conclusions

Empirical researchers have shown that, despite the economic growth that has characterized

the U.S. in the past 30 years, there has been a reduction in the overall pollution. Levinson

and O'Brien (2015, 2019) �by estimating EECs� are able to analyze this relationship. In

particular, they show how the overall pollution in the U.S. has not increased proportionally

with economic growth due to changes in the composition of U.S. households' consumption

baskets towards less pollutant goods and services.

185

The present chapter further validates the aforementioned empirical �ndings by adopting

deep learning techniques to estimate the EECs and associated prediction intervals. The

di�erent EECs are constructed using the MC dropout proposed by Gal and Ghahramani

(2016a) and the extra-neural network algorithm implemented in chapter 4. When only income-

related information is considered, a shallow neural network with 5 hidden nodes is �tted;

conversely, when the wider household-speci�c information set is taken into account, a deep

neural network with optimal architecture selected via the maximization derived in chapter

3 is considered instead. By considering both shallow and deep ReLu neural networks, the

present chapter con�rms the empirical �ndings of Levinson and O'Brien (2019): an increasing

and concave relationship between after-tax household income and pollution, an elasticity lower

than one, and a downward shift in the relationship when comparing 1984 and 2012. In contrast

to these authors' �ndings, the inclusion of household characteristics in our DNN model reveals

that the pollution content of consumption for households in the top of the income distribution

is lower than for individuals in lower deciles of the 2012 income distribution. This �nding is

robust across the analysis of the �ve pollutants and particularly relevant for nitrogen oxides

(NO) and carbon monoxide (CO).

186

CHAPTER 7

Conclusions

Chapter Abstract

This chapter summarizes the main �ndings �outlined in the present thesis� focused on Granger

causality detection, optimal structure identi�cation, and uncertainty estimation. Finally, it

also provides an outlook on possible improvements of the proposed methodologies and on

the possibility of extending the theoretical contributions to both convolutional and recurrent

neural networks.

187

The present thesis, focusing on deep feedforward neural networks, contributes to the liter-

ature on deep learning and econometrics by proposing suitable methods for Granger causal-

ity detection, neural network structure identi�cation, and uncertainty estimation in high-

dimensional nonlinear systems. Following, the novel methodologies are e�ectively employed to

study pressing environmental economics problems: the quanti�cation of the carbon footprint

associated with Bitcoin mining (or more generally, with proof-of-work validation protocols),

and the analysis of the functional relationship between household income and pollution.

Chapter 2 de�nes a new methodology for Granger causality detection using feedforward

neural networks. The proposed approach involves a two-step algorithm: at �rst, the optimal

neural network structure, that maximizes the mutual information transfer between input and

output nodes, is de�ned. Following, using the obtained optimal architecture, a novel objective

function �that introduces sparsity in the weights connecting the input layer to the �rst hidden

layer� is proposed to detect Granger causality between input and output variables and for

the identi�cation of the optimal lag length. The simulation study shows the importance of

using the correct neural network structure for the reduction of type I and type II errors.

Additionally, the simulation suggests model selection consistency for increasing sample size.

The empirical application reveals that the introduction of the new blockchain platform leads to

a change in the topology of the network of the analyzed energy companies. The application of

the Diebold-Mariano test (1995) shows that the Granger causal network constructed with the

proposed algorithm outperforms several linear VAR(K)s in terms of out-of-sample forecasting

accuracy.

Chapter 3 develops an optimization method to obtain the optimal width and depth of

a ReLu neural network of a given size. The proposed constrained optimization maximizes

the lower bound on the maximum number of linear regions (Montufar et al., 2014) that a

deep ReLu neural network can approximate. The maximization is done numerically using

state-of-the-art methods such as L-BFGS-B and SLSQP algorithms. The simulation study

shows how the novel procedure outperforms a k-folds cross-validation approach when the

underlying data generating process is nonlinear. When the underlying data generating process

is linear, a neural network with architecture obtained with the proposed optimization provides

comparable mean squared error values to the ones obtained from an OLS estimator. Finally,

the optimal neural network architecture is compared against state-of-the-art models using

the Boston Housing dataset. Using the constrained optimization for the identi�cation of the

optimal neural network structure ensures a reduction of the out-of-sample prediction error

between 28.55% and 47.32% when compared to competing machine learning algorithms.

Chapter 4 develops a suitable method for the construction of the prediction intervals for

both shallow and deep neural networks. The novel methodology builds upon the work of

Geurts et al. (2006) by extending the extremely randomized trees approach to ensembles of

neural networks. The novel approach �by means of a �xed Bernoulli mask applied prior to

training� ensures not only the correct construction of the prediction intervals but also better

(compared to the naive bootstrap approach) out-of-sample accuracy by training the network

188

on the whole training set. The simulation results show that the MC dropout, naive bootstrap,

and extra-neural network return prediction intervals with empirical coverages approximately

equal to the nominal levels at which they are constructed. Additionally, the simulation results

show the robustness of the extra-neural network to the choice of the dropout rate, as opposed

to the MC dropout. Finally, the experimental settings of Hernández-Lobato and Adams (2015)

are used to validate further the out-of-sample accuracy of the novel approach on real-world

datasets. The empirical results suggest that the novel methodology outperforms competing

deep learning algorithms in terms of out-of-sample RMSE.

Chapter 5 studies the carbon footprint associated with Bitcoin mining using deep learning

methods. In particular, the obtained estimates show how the CO2 emission of the proof-of-

work algorithm is higher than those of (i) some U.S. states (e.g., Maine, New Hampshire,

or Rhode Island), or of (ii) economies of the size of Bolivia, the Dominican Republic, or

Croatia. Chapter 6 adopts both shallow and deep neural networks to estimate the ECCs

and associated prediction intervals. The ECCs are constructed using not only the extra-

neural network approach proposed in chapter 4 but also the MC dropout proposed by Gal

and Ghahramani (2016a). The obtained ECCs show an increasing and concave relationship

between after-tax household income and pollution, and a downward shift of the relationship

when comparing 1984 to 2012. Thus, these results suggest that richer households pollute

more, the pollution content of consumption increases at a lower rate than income, and that

the pollution content of consumption decreases over time.

Future research will focus on the possibility of adopting the theoretical insights from

chapter 3 to overcome some of the limitations in the methodology proposed in chapter 2.

In particular, the novel methodology for Granger causality detection may be subject to a

double estimation problem (two-step algorithm), it uses the tangent activation function (which

can create problems in training extremely deep neural networks), and does not allow for

depth selection (only width). A possible solution would be replacing the Montgomery and

Eledath (1995) pruning algorithm with the constrained optimization proposed in chapter 3,

and developing an iterative procedure that returns, simultaneously, the optimal neural network

structure and Grager causal relations. It is important to notice that a necessary step for the

implementation of the aforementioned enhancement is to change the width constraint in the

optimization in chapter 3 to a depth one. Additionally, the MC dropout proposed by Gal and

Ghahramani (2016a) may also be implemented to investigate the marginal e�ects in neural

network settings.

Additionally, it is important to notice that persistence is extremely relevant in high di-

mensional environments and that it tends to lead to spurious outcomes (in other words, one

may detect predictability when there is none). For this reason, future work will analyze �

via Monte Carlo simulations� how the persistence of the data a�ects not only the predictive

power of neural networks methods but also the probability of correcting detecting no Granger

causality when there is none with the novel methodology proposed in chapter 2. This future

analysis would provide also a robustness exercise to the empirical �ndings in chapter 5 as the

189

CO2 emission data are known to be highly persistent.

Finally, one could notice that the present thesis focuses exclusively on feedforward neural

networks. However, knowing that both recurrent and convolutional neural networks can be

considered special cases of the more general speci�cation of the feedforward neural network,

it is possible �under appropriate adjustments� to extend the novel methodologies proposed

in chapter 2, 3, and 4 to other neural network speci�cations. In fact, the theoretical results

of chapter 2 can be extended to recurrent neural networks (mainly used for forecasting pur-

poses); a similar procedure to the one proposed in chapter 3 could be extended to recurrent

and convolutional neural networks (for the latter, Xiong et al. (2020) propose an upper bound

for the number of linear regions approximated by a shallow convolutional neural network), and

the extra-neural network algorithm can be applied to both recurrent and convolutional neural

networks. However, it is important to make an important remark. The novel methodology

for the detection of Granger causality is based on the possibility to untangle the intricate

connections that de�ne a feedforward neural network structure. Due to the presence of back-

ward connections and of the LSTM cells in deep recurrent neural networks, it is signi�cantly

more arduous (potentially not feasible) to achieve a similar theoretical insight when focusing

on recurrent neural networks.

190

BIBLIOGRAPHY

191

[1] C.C. Aggarwal. Neural networks and deep learning. Springer, 2018.

[2] A. Aiuppa, T.P. Fischer, T. Plank, and P. Bani. �CO2 �ux emissions from the Earth's

most actively degassing volcanoes, 2005�2015�. In: Scienti�c reports 9.1 (2019), pp. 1�

7.

[3] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. �Understanding deep neural networks

with recti�ed linear units�. In: arXiv preprint arXiv:1611.01491 (2016).

[4] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. �Stronger generalization bounds for

deep nets via a compression approach�. In: arXiv preprint arXiv:1802.05296 (2018).

[5] S. Athey and G.W. Imbens. �Machine learning methods that economists should know

about�. In: Annual Review of Economics 11 (2019), pp. 685�725.

[6] Global Carbon Atlas.Global Carbon Atlas. 2020. url: http://www.globalcarbonatlas.

org/en/CO2-emissions (visited on 02/01/2020).

[7] G. Aumann. �Approximation by step functions�. In: Proceedings of the American Math-

ematical Society 14.3 (1963), pp. 477�482.

[8] A. Babikir and H. Mwambi. �Evaluating the combined forecasts of the dynamic factor

model and the arti�cial neural network model using linear and nonlinear combining

methods�. In: Empirical Economics 51.4 (2016), pp. 1541�1556.

[9] B. Bakker and T. Heskes. �Clustering ensembles of neural network models�. In: Neural

networks 16.2 (2003), pp. 261�269.

[10] M. Ba«bura, D. Giannone, and L. Reichlin. �Large Bayesian vector auto regressions�.

In: Journal of applied Econometrics 25.1 (2010), pp. 71�92.

[11] World Bank. �Distributed Ledger Technology (DLT) and Blockchain�. In: FinTech Note

1 (2018), pp. 1�60.

[12] A.R. Barron. �Universal approximation bounds for superpositions of a sigmoidal func-

tion�. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930�945.

[13] A. Al Bataineh and D. Kaur. �A Comparative Study of Di�erent Curve Fitting Algo-

rithms in Arti�cial Neural Network using Housing Dataset�. In: NAECON 2018-IEEE

National Aerospace and Electronics Conference. 2018, pp. 174�178.

[14] A.J. Bell and T.J. Sejnowski. �An information-maximization approach to blind sepa-

ration and blind deconvolution�. In: Neural computation 7.6 (1995), pp. 1129�1159.

[15] A. Belloni, V. Chernozhukov, and C. Hansen. �Inference on treatment e�ects after

selection among high-dimensional controls�. In: The Review of Economic Studies 81.2

(2014), pp. 608�650.

[16] C. Bendiksen and S. Gibbons. �The Bitcoin mining network: Trends, Average Creation

Costs, Electricity Consumption & Sources�. In: CoinShare (2019).

[17] Y. Bengio. �Learning deep architectures for AI�. In: Foundations and trends in Machine

Learning 2.1 (2009), pp. 1�127.

192

http://www.globalcarbonatlas.org/en/CO2-emissions
http://www.globalcarbonatlas.org/en/CO2-emissions

[18] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. �Greedy layer-wise training of

deep networks�. In: Advances in neural information processing systems. 2007, pp. 153�

160.

[19] Y. Benjamini and Y. Hochberg. �Controlling the false discovery rate: a practical and

powerful approach to multiple testing�. In: Journal of the Royal statistical society:

series B (Methodological) 57.1 (1995), pp. 289�300.

[20] B.S. Bernanke, J. Boivin, and P. Eliasz. �Measuring the e�ects of monetary policy: a

factor-augmented vector autoregressive (FAVAR) approach�. In: The Quarterly journal

of economics 120.1 (2005), pp. 387�422.

[21] D. Bertsimas and J. Dunn. �Optimal classi�cation trees�. In: Machine Learning 106.7

(2017), pp. 1039�1082.

[22] F. Bianchi, H. Mumtaz, and P. Surico. �The great moderation of the term structure of

UK interest rates�. In: Journal of Monetary Economics 56.6 (2009), pp. 856�871.

[23] M. Billio, M. Getmansky, A.W. Lo, and L. Pelizzon. �Econometric measures of connect-

edness and systemic risk in the �nance and insurance sectors�. In: Journal of �nancial

economics 104.3 (2012), pp. 535�459.

[24] Bitmain. Application Proof of Bitmain. 2018. url: https : / / templatelab . com /

bitmain-ipo-prospectus/ (visited on 02/01/2020).

[25] F. Bloch, M.O. Jackson, and P. Tebaldi. Centrality measures in networks. 2017. url:

AvailableatSSRN2749124 (visited on 06/01/2019).

[26] J. Boivin, M.T. Kiley, and F.S. Mishkin. �How has the monetary transmission mecha-

nism evolved over time?� In: Handbook of monetary economics. Elsevier. 2010, pp. 369�

422.

[27] P. Bonancich. �Power and centrality: A family of measures�. In: American journal of

sociology 92.5 (1987), pp. 1170�1182.

[28] J. Bouoiyour and R. Selmi. �The Bitcoin price formation: Beyond the fundamental

sources�. In: arXiv preprint arXiv:1707.01284 (2017).

[29] G.E. Box and G.C. Tiao. �A canonical analysis of multiple time series�. In: Biometrika

64.2 (1977), pp. 355�365.

[30] M. Brander, A. Sood, C. Wylie, A. Haughton, and J. Lovell. �Technical Paper| Electricity-

speci�c emission factors for grid electricity�. In: Ecometrica, Emissionfactors.com.

(2011).

[31] L. Breiman. �Random Forest�. In: Machine Learning 45.1 (2001), pp. 5�32.

[32] D. Brezak, T. Bacek, D. Majetic, J. Kasac, and B. Novakovic. �A comparison of feed-

forward and recurrent neural networks in time series forecasting�. In: 2012 IEEE

Conference on Computational Intelligence for Financial Engineering & Economics

(CIFEr). IEEE. 2012, pp. 1�6.

[33] H. Brezis. Functional analysis, Sobolev spaces and partial di�erential equations. Springer

Science & Business Media, 2010.

193

https://templatelab.com/bitmain-ipo-prospectus/
https://templatelab.com/bitmain-ipo-prospectus/
Available at SSRN 2749124

[34] G. Brown, J.L. Wyatt, and P. Ti�no. �Managing diversity in regression ensembles�. In:

Journal of machine learning research 6 (2005), pp. 1621�1650.

[35] D. Burtraw, R. Sweeney, and M. Walls. �The incidence of US climate policy: alterna-

tive uses of revenues from a cap-and-trade auction�. In: National Tax Journal (2009),

pp. 497�518.

[36] L.A. Callot and A.B. Kock. �Oracle e�cient estimation and forecasting with the adap-

tive lasso and the adaptive group lasso in vector autoregressions�. In: Essays in Non-

linear Time Series Econometrics (2014), pp. 238�268.

[37] Cambridge. Cambridge Bitcoin Electricity Consumption Index. 2020. url: https://

www.cbeci.org/ (visited on 07/01/2020).

[38] Canaan. Form F-1 Registration Statement. 2019. url: https : / / www . sec . gov /

Archives/edgar/data/1780652/000119312519276263/d773846df1.htm\#rom773846_

14 (visited on 02/01/2020).

[39] J.G. Carney, P. Cunningham, and U. Bhagwan. �Con�dence and prediction intervals

for neural network ensembles�. In: IJCNN'99 International Joint Conference on Neural

Networks. Proceedings. 1999, pp. 1215�1218.

[40] K. Chakraborty, K. Mehrotra, C.K. Mohan, and S. Ranka. �Forecasting the behavior

of multivariate time series using neural networks�. In: Neural networks 5.6 (1992),

pp. 961�970.

[41] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. �Recurrent neural networks

for multivariate time series with missing values�. In: Scienti�c reports 8.1 (2018), pp. 1�

12.

[42] X. Chen and H. White. �Improved rates and asymptotic normality for nonparametric

neural network estimators�. In: IEEE Transactions on Information Theory 45.2 (1999),

pp. 682�691.

[43] A. Chinco, A.D. Clark-Joseph, and M. Ye. �Sparse signals in the cross-section of re-

turns�. In: The Journal of Finance 74.1 (2019), pp. 449�492.

[44] L.J. Christiano, M. Eichenbaum, and C.L. Evans. �Monetary policy shocks: What have

we learned and to what end?� In: Handbook of macroeconomics 1 (1999), pp. 65�148.

[45] P. Ciaian, M. Rajcaniova, and D.A. Kancs. �The economics of BitCoin price formation�.

In: Applied Economics 48.19 (2016), pp. 1799�1851.

[46] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. �Multi-column deep neural net-

work for tra�c sign classi�cation�. In: Neural networks 32 (2012), pp. 333�338.

[47] L. Cocco and M. Marchesi. �Modeling and Simulation of the Economics of Mining in

the Bitcoin Market�. In: PloS one 11.10 (2016), e.0164603.

[48] J.T. Connor, R.D. Martin, and L.E. Atlas. �Recurrent neural networks and robust time

series prediction�. In: IEEE transactions on neural networks 5.2 (1994), pp. 240�254.

[49] B. Copeland and M.S. Taylor. Trade and the Environment: Theory and Evidence.

Princeton (NJ): Princeton University Press, 2005.

194

https://www.cbeci.org/
https://www.cbeci.org/
https://www.sec.gov/Archives/edgar/data/1780652/000119312519276263/d773846df1.htm\#rom773846_14
https://www.sec.gov/Archives/edgar/data/1780652/000119312519276263/d773846df1.htm\#rom773846_14
https://www.sec.gov/Archives/edgar/data/1780652/000119312519276263/d773846df1.htm\#rom773846_14

[50] I. Cortes-Ciriano and A. Bender. �Reliable prediction errors for deep neural networks

using test-time dropout�. In: Journal of Chemical Information and Modeling 59.7

(2019), pp. 3330�3339.

[51] T.M. Cover and J.A. Thomas. Elements of information theory. John Wiley & Sons,

2012.

[52] K. Cuthbertson and D. Nitzsche. Financial engineering: derivatives and risk manage-

ment. Chichester, UK: John Wiley & Sons, 2014.

[53] G. Cybenko. �Approximation by superpositions of a sigmoidal function�. In: Mathe-

matics of control, signals and systems 2.4 (1989), pp. 303�314.

[54] R.D. De-vieaux, J. Schumi, J. Schweinsberg, and L.H. Ungar. �Prediction intervals for

neural networks via nonlinear regression�. In: Technometrics 40.4 (1998), pp. 273�282.

[55] M. Denil, B. Shakibi, L. Dinh, M.A. Ranzato, and N. De Freitas. �Predicting param-

eters in deep learning�. In: Advances in neural information processing systems. 2013,

pp. 2148�2156.

[56] J.S. Denker and Y. LeCun. �Transforming neural-net output levels to probability dis-

tributions�. In: Advances in neural information processing systems. 1991, pp. 853�859.

[57] G. DeVeciana and A. Zakhor. �Neural net based continuous phase modulation re-

ceivers�. In: IEEE transactions on communications 40.8 (1992), pp. 1396�1408.

[58] A. DeVries. �Bitcoin's energy consumption is underestimated: A market dynamics ap-

proach�. In: Energy Research & Social Science 70 (2020), p. 101721.

[59] A. DeVries. �Bitcoin's growing energy problem�. In: Joule 2.5 (2018), pp. 801�805.

[60] A. DeVries. �Renewable Energy Will Not Solve Bitcoin's Sustainability Problem�. In:

Joule 3.4 (2019), pp. 893�898.

[61] F.X. Diebold. Elements of forecasting. South-Western College Pub, 1998.

[62] F.X. Diebold and R.S. Mariano. �Comparing Predictive Accuracy�. In: Journal of Busi-

ness & Economic Statistics 13 (1995), pp. 253�263.

[63] H.D. Dipu-Kabir, A. Khosravi, M.A. Hosen, and S. Nahavandi. �Neural network-based

uncertainty quanti�cation: A survey of methodologies and applications�. In: IEEE ac-

cess 6 (2018), pp. 36218�36234.

[64] L. Dittmar and A. Praktiknjo. �Could Bitcoin emissions push global warming above

2◦C?� In: Nature Climate Change 9.9 (2019), pp. 656�657.

[65] J.M. Dufour and A. Taamouti. �Short and long run causality measures: Theory and

inference�. In: Journal of Econometrics 145.1 (2010), pp. 42�58.

[66] A.H. Dyhrberg. �Hedging capabilities of bitcoin. Is it the virtual gold?� In: Finance

Research Letters 16 (2016), pp. 139�144.

[67] Ebang. Form F-1 Registration Statement. 2020. url: https://www.sec.gov/Archives/

edgar/data/1799290/000121390020010071/ea121021-f1_ebanginter.htm\#a_013

(visited on 02/01/2020).

195

https://www.sec.gov/Archives/edgar/data/1799290/000121390020010071/ea121021-f1_ebanginter.htm\#a_013
https://www.sec.gov/Archives/edgar/data/1799290/000121390020010071/ea121021-f1_ebanginter.htm\#a_013

[68] K. Eckle and J. Schmidt-Hieber. �A comparison of deep networks with ReLU activation

function and linear spline-type methods�. In: Neural Networks 110 (2019), pp. 232�242.

[69] B. Efron. �Bootstrap methods: another look at the jackknife�. In: Annals of Statistics

7.1 (1979), pp. 1�26.

[70] S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. 2006 IPCC guidelines

for national greenhouse gas inventories (Vol. 2). Hayama, Japan: Institute for Global

Environmental Strategies, 2006.

[71] M. Eichler. �Granger causality and path diagrams for multivariate time series�. In:

Journal of Econometrics 137.2 (2007), pp. 334�353.

[72] M. Eichler and V. Didelez. �Causal reasoning in graphical time series models�. In: arXiv

preprint arXiv:1206.5246 (2012).

[73] S. El-Hihi and Y. Bengio. �Hierarchical recurrent neural networks for long-term de-

pendencies�. In: Nips (Vol. 409). 1995.

[74] E. Engel. �Das Lebenskosten belgischer Arbeiterfamilien fruher und jetzt�. In: Bulletin

de Institut International de Statistique 9 (1895), pp. 1�124.

[75] R. Errouissi, J. Cardenas-Barrera, J. Meng, E. Castillo-Guerra, X. Gong, and L. Chang.

�Bootstrap prediction interval estimation for wind speed forecasting�. In: 2015 IEEE

Energy Conversion Congress and Exposition (ECCE). 2015, pp. 1919�1924.

[76] J. Fan and R. Li. �Variable selection via nonconcave penalized likelihood and its oracle

properties�. In: Journal of the American statistical Association 96.456 (2001), pp. 1348�

1360.

[77] M.H. Farrell, T. Liang, and S. Misra. �Deep neural networks for estimation and infer-

ence�. In: arXiv preprint arXiv:1809.09953 (2019).

[78] M.H. Farrell, T. Liang, and S. Misra. �Deep neural networks for estimation and in-

ference: Application to causal e�ects and other semiparametric estimands�. In: arXiv

preprint arXiv:1809.09953 (2018).

[79] M. Forni and L. Gambetti. �The dynamic e�ects of monetary policy: A structural

factor model approach�. In: Journal of Monetary Economics 57.2 (2010), pp. 203�216.

[80] M. Forni, M. Hallin, M. Lippi, and L. Reichlin. �The generalized dynamic factor model

consistency and rates�. In: Journal of Econometrics 119.2 (2004), pp. 231�255.

[81] M. Forni, M. Hallin, M. Lippi, and L. Reichlin. �The generalized dynamic-factor model:

Identi�cation and estimation�. In: Review of Economics and statistics 82.4 (2000),

pp. 540�554.

[82] S. Foteinis. �Bitcoin's alarming carbon footprint�. In: Nature 554.7691 (2018), pp. 169�

169.

[83] Energy Web Foundation. The Energy Web Chain: Accelerating the Energy Transition

with an Open-Source, Decentralized Blockchain Platform. 2018. url: http://www.

energyweb.org/papers/the-energy-web-chain (visited on 02/01/2019).

196

http://www.energyweb.org/papers/the-energy-web-chain
http://www.energyweb.org/papers/the-energy-web-chain

[84] J.H. Friedman. �An overview of predictive learning and function approximation�. In:

From statistics to neural networks. 1994, pp. 1�61.

[85] Glaucoma Research Fundation. Five Common Glaucoma Tests. 2020. url: https:

//www.glaucoma.org/glaucoma/diagnostic-tests.php (visited on 10/01/2020).

[86] Y. Gal and Z. Ghahramani. �Bayesian convolutional neural networks with Bernoulli

approximate variational inference�. In: arXiv preprint arXiv:1506.02158 (2016b).

[87] Y. Gal and Z. Ghahramani. �Dropout as a bayesian approximation: Representing model

uncertainty in deep learning�. In: International conference on machine learning. 2016a,

pp. 1050�1059.

[88] Y. Gal and Z. Ghahramani. �Dropout as a bayesian approximation: Representing model

uncertainty in deep learning�. In:Github repository: https://github.com/yaringal/DropoutUncertaintyExps

Accessed [Online]: 02/10/2020 (2016c).

[89] D. Garcia, C.J. Tessone, P. Mavrodiev, and N. Perony. �The digital traces of bubbles:

feedback cycles between socio-economic signals in the Bitcoin economy�. In: Journal

of the Royal Society Interface 11.99 (2014), p. 20140623.

[90] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Con-

cepts, tools, and techniques to build intelligent systems. O'Reilly Media, 2017.

[91] P. Geurts, D. Ernst, and L. Wehenkel. �Extremely randomized trees�. In: Machine

learning 63.1 (2006), pp. 3�42.

[92] J. Geweke. �Inference and causality in economic time series models�. In: Handbook of

econometrics 2 (1984), pp. 1101�1144.

[93] J. Geweke. �Measurement of linear dependence and feedback between multiple time

series�. In: Journal of the American statistical association 77.378 (1982), pp. 304�313.

[94] J. Geweke. �The dynamic factor analysis of economic time series�. In: Latent variables

in socio-economic models. 1977.

[95] O.W. Gilley and R.K. Pace. �On the Harrison and Rubinfeld data�. In: Journal of

Environmental and Economic Managemen 31 (1996), pp. 403�405.

[96] X. Glorot and Y. Bengio. �Understanding the di�culty of training deep feedforward

neural networks�. In: Proceedings of the thirteen international conference on arti�cial

intelligence and statistics. 2010, pp. 249�256.

[97] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Cambridge: MIT press,

2016.

[98] I.J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. �Multi-digit number

recognition from street view imagery using deep convolutional neural networks�. In:

arXiv preprint arXiv:1312.6082 (2013a).

[99] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. �Generative adversarial nets�. In: Advances in neural infor-

mation processing systems. 2014, pp. 2672�2680.

197

https://www.glaucoma.org/glaucoma/diagnostic-tests.php
https://www.glaucoma.org/glaucoma/diagnostic-tests.php

[100] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. �Maxout

networks�. In: arXiv preprint arXiv:1302.4389 (2013b).

[101] C.A. Grainger and C.D. Kolstad. �Who Pays a Price on Carbon?� In: Environmental

and Resource Economics 46 (2010), pp. 359�376.

[102] C.W. Granger. �Investigating causal relations by econometric models and cross-spectral

methods�. In: Econometrica: Journal of the Econometric Society 37.3 (1969), pp. 424�

438.

[103] P.M. Granitto, P.F. Verdes, H.D. Navone, and H.A. Ceccatto. �A late-stopping method

for optimal aggregation of neural networks�. In: International journal of neural systems

11.3 (2001), pp. 305�310.

[104] A. Graves. �Practical variational inference for neural networks�. In: Advances in neural

information processing systems. 2011, pp. 2348�2356.

[105] G. Grossman and A. Krueger. �Economic Growth and the Environment�. In: Quarterly

Journal of Economics 110 (1995), pp. 353�377.

[106] S. Gu, B. Kelly, and D. Xiu. �Empirical asset pricing via machine learning�. In: The

Review of Financial Studies 33.5 (2020), pp. 2223�2273.

[107] L.F. Guilhoto. An Overview Of Arti�cial Neural Networks for Mathematicians. 2018.

url: http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf (visited

on 02/01/2019).

[108] Y. Hagiwara, J.E.W. Koh, J.H. Tan, S.V. Bhandary, A. Laude, E.J. Ciaccio, L. Tong,

and U.R. Acharya. �Computer-aided diagnosis of glaucoma using fundus images: A

review�. In: Computer methods and programs in biomedicine 165 (2018), pp. 1�12.

[109] B. Hanin and M. Sellke. �Approximating continuous functions by relu nets of minimal

width�. In: arXiv preprint arXiv:1710.11278 (2017).

[110] J.V. Hansen and R.D. Nelson. �Forecasting and recombining time-series components

by using neural networks�. In: Journal of the Operational Research Society 54 (2003),

pp. 307�317.

[111] M. Harding and J. Hersh. �Big Data in economics�. In: IZA World of Labor (2018).

[112] D. Harrison and D.L. Rubinfeld. �Hedonic housing prices and the demand forclean air�.

In: Journal of Environmental Economics and Management 5 (1978), pp. 81�102.

[113] K. Hassett, A. Mathur, and G. Metcalf. �The Incidence of a U.S. Carbon Tax: A

Lifetime and Regional Analysis�. In: Energy Journal 30 (2009), pp. 155�177.

[114] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Berlin,

Germany: Springer, 2005.

[115] A.S Hayes. �Cryptocurrency value formation: An empirical study leading to a cost

of production model for valuing bitcoin�. In: Telematics and Informatics 34.7 (2017),

pp. 1308�1321.

198

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf

[116] K. He, X. Zhang, S. Ren, and J. Sun. �Deep residual learning for image recognition�.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

IEEE. 2016, pp. 770�778.

[117] K. He, X. Zhang, S. Ren, and J. Sun. �Delving deep into recti�ers: Surpassing human-

level performance on imagenet classi�cation�. In: Proceedings of the IEEE international

conference on computer vision. 2015, pp. 1026�1034.

[118] A. Hecq, J.P Jacobs, and M.P. Stamatogiannis. �Testing for news and noise in non-

stationary time series subject to multiple historical revisions�. In: Journal of Macroe-

conomics 60 (2019), pp. 369�407.

[119] J.M. Hernández-Lobato and R. Adams. �Probabilistic backpropagation for scalable

learning of bayesian neural networks�. In: International Conference on Machine Learn-

ing. 2015, pp. 1861�1869.

[120] S. Herzog, C. Tetzla�, and F. Wörgötter. �Transfer entropy-based feedback improves

performance in arti�cial neural networks�. In: arXiv preprint arXiv:1706.04265 (2017).

[121] T. Heskes. �Practical con�dence and prediction intervals�. In: Advances in neural in-

formation processing systems. 1997, pp. 176�182.

[122] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. �Im-

proving neural networks by preventing co-adaptation of feature detectors�. In: arXiv

preprint arXiv:1207.0580 (2012).

[123] S.L. Ho, M. Xie, and T.N. Goh. �A comparative study of neural network and Box-

Jenkins ARIMA modeling in time series prediction�. In: Computers & Industrial En-

gineering 42.2�4 (2002), pp. 371�375.

[124] S. Hochreiter and J. Schmidhuber. �Long short-term memory�. In: Neural computation

9.8 (1997), pp. 1735�1780.

[125] C. Hope, J. Anderson, and P. Wenman. �Policy analysis of the greenhouse e�ect: an

application of the PAGE mode�. In: Energy Policy 21.3 (1993), pp. 327�338.

[126] K. Hornik. �Approximation capabilities of multilayer feedforward networks�. In: Neural

networks 4.2 (1991), pp. 251�257.

[127] N. Houy. �Rational mining limits Bitcoin emissions�. In: Nature Climate Change 9.9

(2019), pp. 655�655.

[128] H. Hruschka. �Determining market response functions by neural network modeling: a

comparison to econometric techniques�. In: European Journal of Operational Research

66.1 (1993), pp. 27�35.

[129] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun. �Deep learning for im-

age based cancer detection and diagnosis: a survey. Pattern Recognition�. In: Pattern

Recognition 83 (2018), pp. 134�149.

[130] D.H. Hubel. �Single unit activity in striate cortex of unrestrained cats�. In: The Journal

of physiology 147.2 (1959), p. 226.

199

[131] E. Hüllermeier and W. Waegeman. �Aleatoric and epistemic uncertainty in machine

learning: A tutorial introduction�. In: arXiv preprint arXiv:1910.09457 (2020).

[132] J.G. Hwang and A.A. Ding. �Prediction intervals for arti�cial neural networks�. In:

Journal of the American Statistical Association 92.438 (1997), pp. 748�757.

[133] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learn-

ing: with application in R. New York: Springer, 2013.

[134] H. Jang and J. Lee. �An empirical study on modeling and prediction of bitcoin prices

with bayesian neural networks based on blockchain information�. In: IEEE Access 6

(2017), pp. 5427�5437.

[135] K. Jarrett, K. Kavukcuoglu, M.A. Ranzato, and Y. LeCun. �What is the best multi-

stage architecture for object recognition?� In: 2009 IEEE 12th international conference

on computer vision. IEEE. 2009, pp. 2146�2153.

[136] J.S. Judd. 'Neural network design and the complexity of learning. MIT press, 1990.

[137] K. Jurado, S.C. Ludvigson, and S. Ng. �Measuring uncertainty�. In: American Eco-

nomic Review 105.3 (2015), pp. 1177�1216.

[138] I. Kaastra and M. Boyd. �Designing a neural network for forecasting �nancial and

economic time series�. In: Neurocomputing 10.3 (1996), pp. 215�236.

[139] T. Kaji, E. Manresa, and G. Pouliot. Deep Inference: Arti�cial Intelligence for Struc-

tural Estimation. 2018. url: https://events.barcelonagse.eu/live/files/2773-

elenamanresa66433pdf (visited on 02/01/2019).

[140] N. El Karoui and E. Purdom. �Can we trust the bootstrap in high-dimensions? the

case of linear models�. In: The Journal of Machine Learning Research 19.1 (2018),

pp. 170�235.

[141] A. Kendall and Y. Gal. �What uncertainties do we need in bayesian deep learning

for computer vision?� In: Advances in neural information processing systems. 2017,

pp. 5574�5584.

[142] D.E. Kim and M. Gofman. �Comparison of shallow and deep neural networks for net-

work intrusion detection�. In: 2018 IEEE 8th Annual Computing and Communication

Workshop and Conference (CCWC). IEEE. 2018, pp. 204�208.

[143] D.P. Kingma, T. Salimans, and M. Welling. �Variational dropout and the local repa-

rameterization trick�. In: Advances in neural information processing systems. 2015,

pp. 2575�2583.

[144] J. Kleinberg, J. Ludwig, S. Mullainathan, and Z. Obermeyer. �Prediction policy prob-

lems�. In: American Economic Review 105.5 (2015), pp. 491�495.

[145] R. Kohn, C.F. Ansley, and D. Tharm. �The performance of cross-validation and maxi-

mum likelihood estimators of spline smoothing parameters�. In: Journal of the american

statistical association 86.416 (1991), pp. 1042�1050.

[146] G.M. Koop. �Forecasting with medium and large Bayesian VARs�. In: Journal of Ap-

plied Econometrics 28.2 (2013), pp. 177�203.

200

https://events.barcelonagse.eu/live/files/2773-elenamanresa66433pdf
https://events.barcelonagse.eu/live/files/2773-elenamanresa66433pdf

[147] P. Kotzanikolaou, M. Theoharidou, and D. Gritzalis. �Assessing n-order dependencies

between critical infrastructures�. In: International Journal of Critical Infrastructures

2,9.1-2 (2013), pp. 93�110.

[148] A. Kraskov, H. Stögbauer, and P. Grassberger. �Estimating mutual information�. In:

Physical review E 69.6 (2004), pp. 1�16.

[149] M. Kraus, S. Feuerriegel, and A. Oztekin. �Deep learning in business analytics and

operations research: Models, applications and managerial implications�. In: European

Journal of Operational Research 281.3 (2020), pp. 628�641.

[150] L. Kristoufek. �What are the main drivers of the Bitcoin price? Evidence from wavelet

coherence analysis�. In: PloS one 10.4 (2015), pp. 1�15.

[151] A. Krizhevsky, I. Sutskever, and G.E. Hinton. �Imagenet classi�cation with deep con-

volutional neural networks�. In: Communications of the ACM 60.6 (2017), pp. 84�90.

[152] A. Krogh and J. Vedelsby. �Neural network ensembles, cross validation, and active

learning�. In: Advances in neural information processing systems. 1995, pp. 231�238.

[153] M. Kull and P. Flach. �Reliability maps: A tool to enhance probability estimates and

improve classi�cation accuracy�. In: Proc. ECML/PKDD, European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases.

2014, pp. 18�33.

[154] B. Lakshminarayanan, A. Pritzel, and C. Blundell. �Simple and scalable predictive

uncertainty estimation using deep ensembles�. In: Advances in neural information pro-

cessing systems. 2017, pp. 6402�6413.

[155] A. Lambrou, H. Papadopoulos, and A. Gammerman. �Reliable con�dence measures

for medical diagnosis with evolutionary algorithms�. In: IEEE Transactions on Infor-

mation Technology in Biomedicine 15.1 (2011), pp. 93�99.

[156] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. �An empirical evalu-

ation of deep architectures on problems with many factors of variation�. In: Proceedings

of the 24th international conference on Machine learning. 2007, pp. 473�480.

[157] S. Lawrence, C.L. Giles, and A.C. Tsoi. �Convolutional neural networks for face recogni-

tion�. In: Proceedings CVPR IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. IEEE. 1996, pp. 217�222.

[158] S. Lawrence, C.L. Giles, A.C. Tsoi, and A.D. Back. �Face recognition: A convolu-

tional neural-network approach�. In: IEEE transactions on neural networks 8.1 (1997),

pp. 98�113.

[159] Y. LeCun, Y. Bengio, and G. Hinton. �Deep learning�. In: nature 521.7553 (2015),

pp. 436�444.

[160] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. �Gradient-based learning applied to

document recognition�. In: Proceedings of the IEEE 86.11 (1998), pp. 2278�2324.

201

[161] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. �Why M heads

are better than one: Training a diverse ensemble of deep networks�. In: arXiv preprint

arXiv:1511.06314 (2015).

[162] T.H. Lee, H. White, and C.W. Granger. �Testing for neglected nonlinearity in time

series models: A comparison of neural network methods and alternative tests�. In:

Journal of Econometrics 56.3 (1993), pp. 269�290.

[163] H. Leeb and B.M. Pötscher. �Model selection and inference: Facts and �ction�. In:

Econometric Theory 21.1 (2005), pp. 21�59.

[164] E.M. Leeper, C.A. Sims, T. Zha, R.E. Hall, and B.S. Bernanke. �What does monetary

policy do?� In: Brookings papers on economic activity 2 (1996), pp. 1�78.

[165] M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken. �Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function�. In: Neural

networks 6.6 (1993), pp. 861�867.

[166] L.P. Levasseur, Y.D. Hezaveh, and R.H. Wechsler. �Uncertainties in parameters es-

timated with neural networks: Application to strong gravitational lensing�. In: The

Astrophysical Journal Letters 850.1 (2017), pp. 1�7.

[167] A. Levinson and J. O'Brien. �Environmental engel curves�. In: National Bureau of

Economic Research w20914 (2015).

[168] A. Levinson and J. O'Brien. �Environmental Engel curves: Indirect emissions of com-

mon air pollutants�. In: Review of Economics and Statistics 101.1 (2019), pp. 121�

133.

[169] E.P. Lim, H. Chen, and G. Chen. �Business intelligence and analytics: Research di-

rections�. In: ACM Transactions on Management Information Systems (TMIS) 3.4

(2013), pp. 1�10.

[170] P. Liu, X. Qiu, and X. Huang. �Recurrent neural network for text classi�cation with

multi-task learning�. In: arXiv preprint arXiv:1605.05101 (2017).

[171] Y. Liu and A. Tsyvinski. �Risks and returns of cryptocurrency�. In: National Bureau

of Economic Research w24877 (2018).

[172] A.C. Lozano, N. Abe, Y. Liu, and S. Rosset. �Grouped graphical Granger modeling

for gene expression regulatory networks discovery�. In: Bioinformatics 25.12 (2009),

pp. 110�118.

[173] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. �The expressive power of neural networks:

A view from the width�. In: Advances in neural information processing systems. 2017,

pp. 6231�6239.

[174] H. Lütkepohl. �Comparison of criteria for estimating the order of a vector autoregres-

sive process�. In: Journal of time series analysis 6.1 (1985), pp. 35�52.

[175] S.I. Maeda. �A Bayesian encourages dropout�. In: arXiv preprint arXiv:1412.7003

(2014).

[176] H. Markowitz. �Portfolio Selection�. In: The Journal of Finance 7 (1952), pp. 77�91.

202

[177] E. Masanet, A. Shehabi, N. Lei, H. Vranken, J. Koomey, and J. Malmodin. �Implausible

projections overestimate near-term Bitcoin CO2 emissions�. In: Nature Climate Change

9.9 (2019), pp. 653�654.

[178] W.S. McCulloch. �Why the mind is in the head�. In: Embodiments of mind (1965),

pp. 72�141.

[179] S. McNally, J. Roche, and S. Caton. �Predicting the price of bitcoin using machine

learning�. In: 2018 26th Euromicro International Conference on Parallel, Distributed

and Network-based Processing (PDP). IEEE. 2018, pp. 339�343.

[180] S. Mei, A. Montanari, and P.M. Nguyen. �A mean �eld view of the landscape of two-

layer neural networks�. In: Proceedings of the National Academy of Sciences 115.33

(2018), pp. 7665�7671.

[181] I. Méndez-Jiménez and M. Cárdenas-Montes. �Time series decomposition for improving

the forecasting performance of convolutional neural networks�. In: Conference of the

Spanish Association for Arti�cial Intelligence. Springer. 2018, pp. 87�97.

[182] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X.

Muller, G. Desjardins, D. Warde-Farley, and P. Vincent. �Unsupervised and transfer

learning challenge: a deep learning approach�. In: Proceedings of the 2011 International

Conference on Unsupervised and Transfer Learning workshop. 27. 2011, pp. 97�111.

[183] G. Metcalf. �A Distributional Analysis of Green Tax Reforms�. In: National Tax Jour-

nal 52 (1999), pp. 655�682.

[184] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur. �Extensions of

recurrent neural network language model�. In: 2011 IEEE international conference on

acoustics, speech and signal processing (ICASSP). IEEE. 2011, pp. 5528�5531.

[185] Asic Miner. Asic Miner Index. 2020. url: https : / / asic - dex . com/ (visited on

02/01/2020).

[186] M.C. Montgomery and J.K. Eledath. Maximum Information Transfer in Feedforward

Neural Networks. 1995. url: http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.27.330\&rep=rep1\&type=pdf (visited on 11/01/2018).

[187] G.F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. �On the number of linear regions

of deep neural networks�. In: Advances in neural information processing systems. 2014,

pp. 2924�2932.

[188] C. Mora, R.L. Rollins, K. Taladay, M.B. Kantar, M.K. Chock, M. Shimada, and E.C.

Franklin. �Bitcoin emissions alone could push global warming above 2 C�. In: Nature

Climate Change 8.11 (2018), pp. 931�933.

[189] J.P. Morgan. �Blockchain and the decentralization revolution�. In: J.P. Morgan white

paper (2018), pp. 1�21.

[190] M.J. Mortenson, N.F. Doherty, and S. Robinson. �Operational research from Taylorism

to Terabytes: A research agenda for the analytics age�. In: European Journal of Oper-

ational Research 241.3 (2015), pp. 583�595.

203

https://asic-dex.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330\&rep=rep1\&type=pdf

[191] S. Mullainathan and J. Spiess. �Machine learning: an applied econometric approach�.

In: Journal of Economic Perspectives 31.2 (2017), pp. 87�106.

[192] P. Myshkov and S. Julier. �Posterior distribution analysis for bayesian inference in

neural networks�. In: Workshop on Bayesian Deep Learning. 2016.

[193] Z. Nado, J. Snoek, R. Grosse, D. Duvenaud, B. Xu, and J. Martens. �Stochastic gradi-

ent langevin dynamics that exploit neural network structure�. In: International Con-

ference on Learning Representations 2018 (Workshop). 2018.

[194] V. Nair and G.E. Hinton. �Recti�ed linear units improve restricted boltzmann ma-

chines�. In: Icml. 2010.

[195] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. url: https://

bitcoin.org/bitcoin.pdf (visited on 11/01/2018).

[196] W.K. Newey and K.D. West. �A simple, positive semi-de�nite, heteroskedasticity and

autocorrelation consistent covariance matrix�. In: Econometrica 55 (1987), pp. 703�

708.

[197] W.B. Nicholson, I. Wilms, J. Bien, and D.S. Matteson. �High Dimensional Forecasting

via Interpretable Vector Autoregression�. In: arXiv preprint arXiv:1412.5250 (2014).

[198] D.A. Nix and A.S. Weigend. �Estimating the mean and variance of the target prob-

ability distribution�. In: Proceedings of 1994 ieee international conference on neural

networks (ICNN'94). 1994, pp. 55�60.

[199] R. Novak, Y. Bahri, D.A. Abola�a, J. Pennington, and J. Sohl-Dickstein. �Sensi-

tivity and generalization in neural networks: an empirical study�. In: arXiv preprint

arXiv:1802.08760 (2018).

[200] B. Oancea and S.C. Ciucu. �Time series forecasting using neural networks�. In: arXiv

preprint arXiv:1401.1333 (2014).

[201] D.R. Pant, P. Neupane, A. Poudel, A.K. Pokhrel, and B.K. Lama. �Recurrent neural

network based bitcoin price prediction by twitter sentiment analysis�. In: 2018 IEEE

3rd International Conference on Computing, Communication and Security (ICCCS).

IEEE. 2018, pp. 128�132.

[202] H. Papadopoulos and H. Haralambous. �Reliable prediction intervals with regression

neural networks�. In: Neural Networks 24.8 (2011), pp. 842�851.

[203] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z.B. Celik, and A. Swami. �Practical

black-box attacks against machine learning�. In: Proceedings of the 2017 ACM on Asia

conference on computer and communications security. 2017, pp. 506�519.

[204] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. �How to construct deep recurrent

neural networks�. In: arXiv preprint arXiv:1312.6026 (2014).

[205] R. Pascanu, G. Montufar, and Y. Bengio. �On the number of response regions of

deep feed forward networks with piece-wise linear activations�. In: arXiv preprint

arXiv:1312.6098 (2013).

204

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[206] K. Pasupa and W. Sunhem. �A comparison between shallow and deep architecture

classi�ers on small dataset�. In: 2016 8th International Conference on Information

Technology and Electrical Engineering (ICITEE). IEEE. 2016, pp. 1�6.

[207] R. Paul, S.H. Hawkins, L.O. Hall, D.B. Goldgof, and R.J. Gillies. �Combining deep

neural network and traditional image features to improve survival prediction accuracy

for lung cancer patients from diagnostic CT�. In: 2016 IEEE International Conference

on Systems, Man, and Cybernetics (SMC). IEEE. 2016, pp. 2570�2575.

[208] T. Pearce, A. Brintrup, M. Zaki, and A. Neely. �High-quality prediction intervals for

deep learning: A distribution-free, ensembled approach�. In: International Conference

on Machine Learning. 2018, pp. 4075�4084.

[209] D. Pena and G.E. Box. �Identifying a simplifying structure in time series�. In: Journal

of the American statistical Association 82.399 (1987), pp. 836�843.

[210] M. Plagborg-Møller and C.K. C.K. Wolf. �Local projections and VARs estimate the

same impulse responses�. In: Unpublished paper: Department of Economics, Princeton

University (2019).

[211] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. �Why and when can deep-

but not shallow-networks avoid the curse of dimensionality: a review�. In: International

Journal of Automation and Computing 14.5 (2017), pp. 503�519.

[212] Global Petrol Prices.Global Petrol Prices. 2020. url: https://www.globalpetrolprices.

com/ (visited on 02/01/2020).

[213] F. Qiang, H. Shang-Xu, and Z. Sheng-Ying. �Clustering-based selective neural network

ensemble�. In: Journal of Zhejiang University-Science A 6.5 (2005), pp. 387�392.

[214] U. Raghavendra, H. Fujita, S.V. Bhandary, A. Gudigar, J.H. Tan, and U.R. Acharya.

�Deep convolution neural network for accurate diagnosis of glaucoma using digital

fundus images�. In: Information Sciences 441 (2018), pp. 41�49.

[215] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. �On the expressive

power of deep neural networks�. In: international conference on machine learning. 2017,

pp. 2847�2854.

[216] J.C. Ranyard, R. Fildes, and T.I. Hu. �Reassessing the scope of OR practice: The

in�uences of problem structuring methods and the analytics movement�. In: European

Journal of Operational Research 245.1 (2015), pp. 1�13.

[217] R.B. Rao, G. Fung, and R. Rosales. �On the dangers of cross-validation. An experi-

mental evaluation�. In: Proceedings of the 2008 SIAM international conference on data

mining. Society for Industrial and Applied Mathematics. 2008, pp. 588�596.

[218] R. Reed, R.J. Marks, and S. Oh. �Similarities of error regularization, sigmoid gain

scaling, target smoothing, and training with jitter�. In: IEEE Transactions on Neural

Networks 6.3 (1995), pp. 529�538.

[219] R. Reed, S. Oh, and R.J. Marks. �Regularization using jittered training data�. In: In

[Proceedings 1992] IJCNN International Joint Conference on Neural Networks. IEEE.

1992, pp. 147�152.

205

https://www.globalpetrolprices.com/
https://www.globalpetrolprices.com/

[220] F.A. Rodrigues. �Network centrality: an introduction�. In: arXiv preprint arXiv:1901.07901v1

(2019).

[221] B. Santra, A. Paul, and D.P. Mukherjee. �Deterministic dropout for deep neural net-

works using composite random forest�. In: Pattern Recognition Letters 131 (2020),

pp. 205�212.

[222] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini. �Group sparse regulariza-

tion for deep neural networks�. In: Neurocomputing 241 (2017), pp. 81�89.

[223] J. Schmidhuber. �Deep learning in neural networks: An overview�. In: Neural networks

61 (2015), pp. 85�117.

[224] J. Schmidt-Hieber. �Nonparametric regression using deep neural networks with ReLU

activation function�. In: arXiv preprint arXiv:1708.06633 (2017).

[225] T. Schreiber. �Measuring information transfer�. In: Physical review letters 85.2 (2000),

pp. 461�465.

[226] Medicine National Academies of Sciences Engineering. Valuing climate damages: up-

dating estimation of the social cost of carbon dioxide. National Academies Press, 2017.

[227] G.A.F. Seber and C.J. Wild. Nonlinear regression. New York: Wiley, 1989.

[228] R. Senge, S. Bösner, K. Dembczynski, J. Haasenritter, O. Hirsch, N. Donner-Banzhohh,

and E. Hüllermeier. �Reliable classi�cation that distinguish aleatoric and epsitemic

uncertainty�. In: Information Sciences 255 (2014), pp. 16�19.

[229] C. Serpell, I. Araya, C. Valle, and H. Allende. �Probabilistic Forecasting Using Monte

Carlo Dropout Neural Networks�. In: Iberoamerican Congress on Pattern Recognition.

2019, pp. 387�397.

[230] M.H. Shaker and E. Hüllermeier. �Aleatoric and epistemic uncertainty with random

forests�. In: International Symposium on Intelligent Data Analysis. Springer, Cham.

2020.

[231] S.S. Shapiro and M.B. Wilk. �An analysis of variance test for normality (complete

samples)�. In: Biometrika 52.3/4 (1965), pp. 591�611.

[232] L. Shen, L.R. Margolies, J.H. Rothstein, E. Fluder, R. McBride, and W. Sieh. �Deep

learning to improve breast cancer detection on screening mammography�. In: Scienti�c

reports 9.1 (2019), pp. 1�12.

[233] Shodan.io. IoT-search engine. 2020. url: https : / / www . shodan . io/ (visited on

02/01/2020).

[234] R. Shwartz-Ziv and N. Tishby. �Opening the black box of deep neural networks via

information�. In: arXiv preprint arXiv:1703.00810 (2017).

[235] C.P. Simon and L. Blume. Mathematics for economists. New York: Norton, 1994.

[236] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. �A sparse-group Lasso�. In:

Journal of Computational and Graphical Statistics 22.2 (2013), pp. 231�245.

206

https://www.shodan.io/

[237] C.A. Sims. �Comment on Glenn Rudebusch's" Do measures of monetary policy in a

VAR make sense?"�. In: International Economic Review 39.4 (1998), pp. 933�941.

[238] C.A. Sims. �Macroeconomics and reality�. In: Econometrica: journal of the Econometric

Society 48.1 (1980), pp. 1�48.

[239] J. Sirignano and K. Spiliopoulos. �DGM: A deep learning algorithm for solving partial

di�erential equations�. In: Journal of computational physics 375 (2018), pp. 1339�1364.

[240] A. Skripnikov and G. Michailidis. �Regularized joint estimation of related vector au-

toregressive models�. In: Computational statistics & data analysis 139 (2019), pp. 164�

177.

[241] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. 1776.

[242] S. Smyl. �A hybrid method of exponential smoothing and recurrent neural networks for

time series forecasting�. In: International Journal of Forecasting 36 (2020), pp. 75�85.

[243] S. Song and P.J. Bickel. �Large vector auto regressions�. In: arXiv preprint arXiv:1106.3915

(2011).

[244] X. Song and A. Taamouti. �Measuring nonlinear granger causality in mean�. In: Journal

of Business & Economic Statistics 36.2 (2018), pp. 321�333.

[245] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. �Dropout:

a simple way to prevent neural networks from over�tting�. In: The journal of machine

learning research 15.1 (2014), pp. 1929�1958.

[246] Federal Reserve Bank of St. Louis. St. Louis Fed Financial Stress Index [STLFSI].

2020. url: https://fred.stlouisfed.org/series/STLFSI (visited on 03/01/2020).

[247] D.J. Stekhoven. missForest: Nonparametric Missing Value Imputation using Random

Forest. 2013. url: Rpackageversion1.4.0.

[248] J.H. Stock and M.W. Watson. �Forecasting using principal components from a large

number of predictors�. In: Journal of the American Statistical Association 97.460

(2002), pp. 1167�1179.

[249] J.H. Stock and M.W. Watson. �Handbook of macroeconomics�. In: Elsevier, 2016.

Chap. Dynamic factor models, factor-augmented vector autoregressions, and structural

vector autoregressions in macroeconomics.

[250] J.H. Stock and M.W. Watson. �Implications of dynamic factor models for VAR anal-

ysis�. In: National Bureau of Economic Research (2005).

[251] C. Stoll, L. Klaaben, and U. Gallersdorfer. �The carbon footprint of bitcoin�. In: Joule

3.7 (2019), pp. 1647�1661.

[252] C.J. Stone. �Optimal rates of convergence for nonparametric estimators�. In: The an-

nals of Statistics (1980), pp. 1348�1360.

[253] J.D. Storey and R. Tibshirani. �Statistical signi�cance for genomewide studies�. In:

Proceedings of the National Academy of Sciences 100.6 (2003), pp. 9440�9445.

207

https://fred.stlouisfed.org/series/STLFSI
R package version 1.4.0

[254] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich. �Going deeper with convolutions�. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. IEEE. 2015, pp. 1�9.

[255] A. Taamouti, T. Bouezmarni, and A. El Ghouch. �Nonparametric estimation and infer-

ence for conditional density based Granger causality measures�. In: Journal of Econo-

metrics 180.2 (2014), pp. 251�264.

[256] D. Tang, B. Qin, and T. T. Liu. �Document modeling with gated recurrent neural net-

work for sentiment classi�cation�. In: Proceedings of the 2015 conference on empirical

methods in natural language processing. 2015, pp. 1422�1432.

[257] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox. �Neural Granger Causality for

Time Series�. In: arXiv preprint arXiv:1802.05842 (2018).

[258] M. Tewlgarsky. �Bene�ts of depth in neural networks�. In: arXiv preprint arXiv:1602.04485

(2016).

[259] R. Tibshirani. �A comparison of some error estimates for neural network models�. In:

Neural Computation 8.1 (1996), pp. 152�163.

[260] R. Tibshirani. �Regression shrinkage and selection via the lasso�. In: Journal of the

Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267�288.

[261] N. Tishby and N. Zaslavsky. �Deep learning and the information bottleneck principle�.

In: 2015 IEEE Information Theory Workshop (ITW). IEEE. 2015, pp. 1�5.

[262] L.H. Ungar, R.D. De-veaux, and E. Rosengarten. �Estimating prediction intervals for

arti�cial neural networks�. In: Proc. of the 9th Yale Workshop on Adaptive and Learning

Systems. 1996.

[263] S. Urban. Neural Network Architectures and Activation Functions: A Gaussian Process

Approach. Doctoral Dissertation, Technische Universität München, 2017.

[264] R. Vaillant, C. Monrocq, and Y. Le Cun. �Original approach for the localisation of

objects in images�. In: IEE Proceedings-Vision, Image and Signal Processing 141.4

(1994), pp. 245�250.

[265] K.R. Varshney and H. Alemzadeh. �On the safety of machine learning: Cyber-physical

systems, decision sciences, and data products�. In: Big data 5.3 (2017), pp. 246�255.

[266] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. �Phoneme recognition

using time-delay neural networks�. In: IEEE transactions on acoustics, speech, and

signal processing 37.3 (1994), pp. 328�339.

[267] H. Wang and C. Leng. �Uni�ed LASSO Estimation Via Least Square Approximation�.

In: Journal of American Statistical Association 102.479 (2007), pp. 1039�1048.

[268] P. Wang, X. Deng, H. Zhou, and S. Yu. �Estimates of the social cost of carbon: A review

based on meta-analysis�. In: Journal of cleaner production 209 (2019), pp. 1494�1507.

[269] S. Wang. �General constructive representations for continuous piecewise-linear func-

tions�. In: IEEE Transactions on Circuits and Systems I: Regular Papers 51.9 (2004),

pp. 1889�1896.

208

[270] D. Warde-Farley, I. Goodfellow, A. Courville, and Y. Bengio. �An empirical analysis

of dropout in piecewise linear networks�. In: arXiv preprint arXiv:1312.6197 (2014).

[271] M. Welling and Y.W. Teh. �Bayesian learning via stochastic gradient Langevin dynam-

ics�. In: Proceedings of the 28th international conference on machine learning. 2011,

pp. 681�688.

[272] N. Wiener. �Modern Mathematics for Engineers�. In: New York: McGraw-Hill, 1956.

Chap. The Theory of Prediction.

[273] T.N. Wiesel and K.T. Brown. �Analysis of receptive �elds in the cat's retina�. In:

Annals of the New York Academy of Sciences 74.2 (1959), p. 405.

[274] K.D. Williams, A.J. Hewitt, and A. Bodas-Salcedo. �Use of Short-Range Forecasts

to Evaluate Fast Physics Processes Relevant for Climate Sensitivity�. In: Journal of

Advances in Modeling Earth Systems 12.4 (2020), p.e2019MS001986.

[275] R.J. Williams and D. Zipser. �Gradient-based learning algorithms for recurrent net-

works and their computational complexity�. In: Backpropagation: Theory, architectures,

and applications 433 (1992), p. 17.

[276] J. Willms. �Bitcoin Mining In North America: A New Gold Rush In The New World�.

In: Bitcoin Magazine (2019).

[277] I. Wilms, S. Gelper, and C. Croux. �The predictive power of the business and bank

sentiment of �rms: A high-dimensional Granger Causality approach�. In: European

Journal of Operational Research 254.1 (2016), pp. 138�147.

[278] F.Z. Xing, E. Cambria, and R.E. Welsch. �Natural language based �nancial forecasting:

a survey�. In: Arti�cial Intelligence Review 50.1 (2018), pp. 49�73.

[279] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao. �On the Number of Lin-

ear Regions of Convolutional Neural Networks�. In: arXiv preprint arXiv:2006.00978

(2020).

[280] F. Yang, H.Z. Wang, H. Mi, and W.W. Cai. �Using random forest for reliable classi�-

cation and cost-sensitive learning for medical diagnosis�. In: BMC bioinformatics 10.S1

(2009), S22.

[281] W.H. Young. �On the Conditions for the Reversibility of the Order of Partial Di�er-

entiation�. In: Proceedings of the Royal Society of Edinburgh 29 (1909), pp. 136�164.

[282] M. Yuan and Y. Lin. �Model selection and estimation in regression with grouped vari-

ables�. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)

68.1 (2006), pp. 49�67.

[283] T. Zaslavsky. �Facing up to arrangements: face-count formulas for partitions of space

by hyperplanes�. In: Memoirs of American Mathematical Society 154 (1975), pp. 1�95.

[284] N. Zhou and J. Zhu. �Group variable selection via a hierarchical lasso and its oracle

property�. In: arXiv preprint arXiv:1006.2871 (2010).

[285] Z.H. Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

209

[286] Z.H. Zhou, J.X. Wu, Y. Jiang, and S.F. Chen. �Genetic algorithm based selective

neural network ensemble�. In: IJCAI-01: proceedings of the Seventeenth International

Joint Conference on Arti�cial Intelligence. 2001.

[287] L. Zhu and N. Laptev. �Deep and con�dent prediction for time series at uber�. In: 2017

IEEE International Conference on Data Mining Workshops (ICDMW). 2017, pp. 103�

110.

[288] D. Zou, Y. Cao, D. Zhou, and Q. Gu. �Stochastic Gradient Descent Optimizes Over-

parameterized Deep ReLU Networks�. In: arXiv preprint arXiv:1811.08888 (2018).

[289] H. Zou. �The adaptive lasso and its oracle properties�. In: Journal of the American

statistical association 101.476 (2006), pp. 1418�1429.

210

APPENDIX A

Feedforward Neural Networks

Chapter Abstract

The aim of this chapter is to provide a brief introduction to deep feedforward (sequential)

neural networks for both regression and classi�cation purposes. In particular, after providing

a brief de�nition, the di�erent activation functions, output functions, and widely adopted

penalty functions are discussed. Following, the MC dropout discussed in chapter 4 is applied

for optimal portfolio allocation.

211

A.1 Introduction to feedforward neural networks

A deep feedforward neural network (DNN) is composed by a collection of connected units

called neurons. Each neuron receives inputs from the preceding neurons, it computes the

weighted sum, and maps the weighted sum via an activation function to the neurons in the

next layers. This operation is repeated until the �nal layer, or output layer, is reached. Such a

neural network does not have feedback connections that pass information backwards and thus,

it is de�ned feedforward neural network due to the unidirectional weights. More formally, for

any two natural numbers d, n2 ∈ N, which are called input and output dimension respectively,

a natural numberN ∈ N called depth, and a width vector (Z1, · · · , ZN+1) ∈ NN+1, a Rd → Rn2

N + 1-layers DNN, f̂ : Rd → Rn2 , is given by

f(xi;ω) = θO(WN+1θ(· · · θ(W2θ(W1xi + b1) + b2) · · ·) + bN+1) (A.1)

where θ(x) is the chosen activation function that introduces the non-linearity into the system,

Wn ∈ RZn×Zn−1 for N 6= 1, and Wn ∈ RZ1×d for N = 1, bn ∈ RZn is an intercept or bias

vector, xi ∈ Rd×1, and ω = (Wn,bn). We distinguish between the activation function of

the intermediate layers θ, and the activation function of the output layer θO. The choice

of the former is usually a hyper-parameter to be tuned and typical choices are (i) Recti�ed

linear units (ReLu), θ(x) = max{0, x}; (ii) Softplus, θ(x) = log(1+ex); (iii) Hard-tanh, θ(x) =

max{−1,min{1, x}}; or (iv) Sigmoid, θ(x) = (1+e−x)−1. Conversely, the choice of the output

activation function θO is dictated by the problem at hand; regression problems will require

linear activation function, while classi�cation (binary or multilabel) will require either the

sigmoid or the softmax activation functions, with the latter de�ned as θ(x) = (exi/
∑K

j=1 e
xj)

and K the number of classes in the multi-classi�er. Figure A.1 reports a visualization of a

DNN.

Training a deep learning process usually involves a multi-step numerical optimization of a

given loss function L[·|·]. One of the most popular algorithm adopted is the gradient descent,

the intuition of which can be summarized as follows: given a generic function y = g(x), the

derivative of the function ġ(x) can provide information on how to scale a change in the input

in order to obtain an equivalent change in the output g(x+ η) ≈ g(x) + ηġ(x). For example,

being g(x − ηsign(ġ(x))) lower than g(x) for small enough η, it is possible to reduce g(x)

by small changes in x with the opposite sign of the derivative (see also Goodfellow et al.,

2016). By extending this argumentation to a DNN setting, the gradient descent algorithm

(and its variants) aims to minimize the generic loss function L[Y|X; W,b] by computing - for

each step E (also called epoch) - the derivative of the loss function with respect to W and b

(the procedure adopted for the computation is called backpropagation) and by updating the

network weights and biases in a direction that ensures a reduction of L[Y|X; W,b].

212

Input

layer

Hidden

layer1

Hidden

layern

Hidden

layerN

Output

layer

...

...

...
...

...

...
...

...

Bias Bias Bias

x1

x2

x3

xi

y

Figure A.1: Deep Feedforward neural network for regression with n2 = 1. For multi-dimensional
outputs, a number of output nodes equal to the output dimension must be used. Two output nodes
are required for binary classi�cation, K nodes for multi-label classi�cation.

The choice of the loss function is imposed by the output of the network. To train the

DNN for regression purposes, a common loss function is the Euclidean distance de�ned as:

1

2n2
||yi − f̂(X; W,b)i||22 (A.2)

Conversely, when the model is used for multi-label classi�cation, the cross-entropy loss

function is usually considered:

−
K∑

j=1

1j,ilog(pj,i) (A.3)

where 1j,i is a binary indicator that is equal to 1 is label j is correct for observation i, and

pj,i is the probability that observation i is of class j.

As previously stated, the main goal for DNNs is to minimize the loss functions A.2 or A.3

and obtain a model that performs well also on unseen data or test data. Thus, in order to

reduce the tendency of over�tting - low loss function in the training set but high loss function

in the test set - a regularization term is usually added to the loss function (see Scardapane et

al., 2017). A typical regularization scheme is of the form112:

112The same equation can be obtained for the loss function in A.3.

213

1

2n2
||yi − f̂(X; W,b)i||22 + λ$[ω] (A.4)

where λ is the regularization term that de�nes the level of smoothness introduced by the

penalty function $[ω]. Typical choices of the penalty functions are: (i) Ridge, (ii) Least

absolute shrinkage and selection operator (Lasso), and (iii) Elastic net.

A.2 Optimal portfolio allocation

In the same spirit of Chinco et al. (2019) and, more speci�cally, Gu et al. (2020), the present

subsection proposes an empirical application of deep learning methods that illustrates its rel-

evance in empirical �nance. Whereas these authors highlight the advantages of using regres-

sion trees and neural networks for asset pricing (measuring the risk premium on risky assets)

compared to linear regression and techniques based on dimension reduction, the proposed em-

pirical exercise performs a comparative study against conventional time series models widely

used for empirical �nance modeling. In particular, we present a forecasting exercise of the

conditional mean and volatility of asset returns of the S&P, the Dow Jones, and the Nasdaq

indices starting from 1972/07/30 until 2020/07/30. The objective is twofold. First, we aim

to assess the predictive performance of a modern deep neural network model and compare it

against a traditional time series model that carries out a transitory-permanent decomposition

of the asset price. The permanent component captures the trend of the log-price and the tran-

sitory component models the log-returns on the �nancial indices. The transitory component

also accommodates the presence of conditional heteroscedasticity by �tting a GARCH(1,1)

model. The statistical comparison in terms of predictive performance �mean squared pre-

diction error (MSPE)� is done by implementing a one-sided Diebold-Mariano (1995) test of

predictive accuracy. Second, as in Gu et al. (2020), economic signi�cance is added to the com-

parison. To do this, the out-of-sample Sharpe ratios of optimal portfolios constructed from a

combination of the three �nancial indices are compared. The optimal combination is obtained

using Markowitz's (1952) mean-variance and minimum-variance portfolios as the investor's

objective functions. In order to obtain the out-of-sample conditional mean and volatility fore-

casts, a �xed rolling window approach with 50 steps is applied. Thus, the period following

2016/06/30 (included) is used for out-of-sample evaluation.

First, asset prices are transformed into log returns, and apply standard stationarity tests

of the analyzed series. We conduct the Dickey-Fuller test allowing for a maximum of 10 lags.

The unit root null hypothesis is rejected at 0.01 signi�cance level in all cases; additionally, we

also perform the KPSS test and fail to reject the null hypothesis of stationarity in all cases

at 0.1 signi�cance level.

214

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

−0
.2

−0
.1

0.
0

0.
1

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

Monthly Return - S&P Random Component - S&P Trend Component - S&P

−0
.2

−0
.1

0.
0

0.
1

−0
.1
0

−0
.0
5

0.
00

0.
05

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

Monthly Return - Dow Jones

Monthly Return - Nasdaq

Random Component - Dow Jones Trend Component - Dow Jones

Random Component - Nasdaq Trend Component - Nasdaq

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

−0
.1
5
−0
.1
0−
0.
05

0.
00

0.
05

0.
10

Figure A.2: Decomposed Time Series

Following the recent literature on deep learning and time series forecasting focusing on

enhancing the forecasting accuracy of DNNs by using time series decomposition (see Smyl,

2020; Hansen and Nelson, 2003; Méndez-Jiménez and Cárdenas-Montes, 2018 among the

others), the present chapter couples the MC dropout approach of Gal and Ghahramani (2016a)

with time series decomposition. In this framework, we usually identify a trend component Tt,

a seasonal component Ψt, and a random component Ξt. Assuming additive decomposition,

the time series can be modeled as Xt = Ξt + Ψt + Tt. See Figure A.2 above113.

Based on the algorithm of Smyl (2020), the present sub-section �ts and forecasts the trend

component using an exponential smoothing model, and the random component using either a

DNN or a GARCH(1, 1) model 114. When a GARCH(1,1) is �tted, the �nal forecast will be the

sum of the individual forecasts Ξ̂t+1+T̂t+1. When the DNN model is considered, B stochastic

forward passes (see Gal and Ghahramani (2016a), and chapter 4 for a detailed analysis) are

performed to forecast the random component Ξ̂t+1; to each of these random stochastic forward

passes the forecasted trend T̂t+1 is added, and B point forecasts of {X̂b
t+1}Bb=1 are obtained.

The point forecast of the log prices is the mean X̄t+1 over the B forward passes.

For each time series analyzed, a neural network with three hidden layers of 50 nodes each,

trained with Adam optimizer with learning rate 0.001, an exponential decay rate for the 1st

113The seasonal component is not reported as the magnitude was approximately 0 with the highest value
observed 3e−04.

114As robustness exercise, we also consider a GARCH(1,1) �tted on the time series Xt.

215

moment estimates (β1) equal to 0.900, and an exponential decay rate for the 2st moment

estimates (β2) equal to 0.999 is �tted. We also consider a dropout rate of 0.1 across all layers,

and 300 epochs. The input layer comprises of the multivariate time series with relative lagged

values (up to k = 10). Additionally, in order to ensure proper training of the network, the

input data Ξt−k for k = 1, · · · , 10 is normalized to guarantee that the regressors have zero

mean and unit standard deviation.

As mentioned earlier, a �xed rolling window approach is implemented in order to obtain

50 one-step-ahead forecasts. We �rst evaluate the performance of the proposed approach

against a GARCH(1, 1) model in terms of MSPE using the one-sided Diebold-Mariano (DM)

test (1995), with hypothesis:

H0 : MSPEinn ≥MSPEi,jGARCH (A.5)

and the alternative is

H1 : MSPEinn < MSPEi,jGARCH (A.6)

with i = 1, 2, 3 indicating the three time series analyzed, and j = 1, 2 de�ning the two

alternative methodologies used to predict with a GARCH(1,1) model - a �rst methodology

that decomposes the analyzed time series and combines the point forecast from a GARCH(1,1)

with an exponential smoothing, and a second methodology that does not decompose the time

series and directly forecast with a GARCH(1,1).

The results of the predictive ability test are as follows. For the S&P index, the test statistic

of the DM1 is 2.3970 with a p-value of 0.0102 and the test statistic of DM2 is 2.5262 with

p-value of 0.0074. For the Dow Jones index, the test statistic of the DM1 is 2.4729 with a p-

value of 0.0084 and the test statistic of DM2 is 2.0435, with p-value of 0.0232. For the Nasdaq

index, the test statistic of the DM1 is 2.7578 with a p-value of 0.0041 and the test statistic

of DM2 is 3.9139 with p-value of 0.0001. The reported p-values show the out-performance of

the DNN approach against a GARCH(1,1) benchmark.

To further validate the out-of-sample performance of the proposed approach, the MC-

dropout is compared against a GARCH(1,1) benchmark in terms of portfolio returns for a

given optimal strategy. Considering a mean-variance portfolio, the weights are de�ned as:

min
γ

γᵀΣ̂γ − γᵀx̂

s.t. γᵀ1 = 1
(A.7)

with γ ∈ R3 the vector of the portfolio weights invested in the three indices considered,

Σ̂ ∈ R3×3 the estimated covariance matrix, x̂ ∈ R3 the vector of the expected returns, and

1 ∈ R3 a vector of ones. The covariance matrix is de�ned as:

Σ̂ = diag(σ̂)P̂diag(σ̂) (A.8)

with diag(σ̂) being the diagonal matrix with estimated standard deviations, and P̂ the correla-

216

tion matrix115. The present sub-section considers two portfolio strategies: the mean-variance

and the minimum-variance portfolios (the latter obtains by imposing x̂ = 0 in the constrained

minimization in (A.7)). Knowing that holding the portfolio γstrategyt for a time ∆t gives the

out-of-sample return for t + ∆t and by imposing ∆t = 1, the rolling window approach used

to evaluate the out-of-sample performance of a given strategy is as follows: at time t the

one-step-ahead conditional mean and volatility of the three stocks are forecasted using either

a GARCH(1, 1) or a DNN model. We construct the dynamic covariance matrix Σ̂t+1 from

estimates of the conditional variances and covariances over rolling windows.

Based on the forecasted X̂t+1 and Σ̂t+1, the constrained minimization in (A.7) is solved

and the weights γstrategyt computed. The return of the portfolio in t+ 1 will be the weighted

mean of the observed returns of the three stocks in t + 1, with weights γstrategyt : Υt+1 =

γstrategy ᵀ
t xt+1. By implementing a �xed rolling window forecasting exercise, the above pro-

cedure is repeated 50 times to obtain 50 out-of-sample Υt+1 from either the GARCH(1, 1) or

the DNN model. This allows us to estimate the out-of-sample Sharpe ratios as:

Sharpe ratioi =
Υ̂p −Υrf

σ̂p
(A.9)

with Υ̂p being the mean return of the portfolio, Υrf the risk-free rate (assumed equal to 0),

and σ̂p the portfolio standard deviation.

Figure A.3 reports the cumulative returns of the four di�erent strategies considered. One

could notice how a portfolio strategy (either mean-variance or minimum variance) based

on DNN forecasts outperforms a strategy based on GARCH(1,1) forecasts. In particular,

the annualized sharpe ratios of the mean-variance and minimum-variance portfolios obtained

from the forecasted return and volatility from a DNN are: 0.6777 and 0.7562 respectively;

the annualized sharpe ratios obtained from a GARCH(1,1) forecasts are 0.2686 for the mean-

variance and 0.3175 for the minimum-variance portfolio.

115The constrained minimization inA.7 allows for short selling but not for leverage e�ect.

217

2017 2018 2019 2020

Time

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

C
um

ul
at

iv
e

R
et

ur
ns

Cumulative Returns

Figure A.3: Out-of-sample cumulative returns of the four porto�io strategies analyzed: in black
the minim variance portfolio from the DNN, in green the minimum variance portfolio obtained from
GARCH forecasts, in blue the mean variance portfolio obtained from a DNN, in red the mean variance
constructed from GARCH forecasts.

The above results extend some of the empirical �ndings in Gu et al. (2020). These

authors, after a thorough review of the literature on machine learning, compare the forecasting

performance of ReLu DNNs against linear models and tree-based approaches also in terms

of out-of-sample portfolio returns. Gu et al. (2020), based on the out-of-sample forecasts of

the individual stock returns, construct a zero-net investment portfolio - that buys and sells

the highest and lowest expected returns stocks respectively - and a value weight portfolio.

By comparing the out-of-sample returns of the portfolio strategies exploiting the forecasts of

the competing models, they show that portfolio strategies based on NN forecasts dominate

those based on forecasts of both linear models and tree-based algorithms. If Gu et al. (2020)

show that ReLu DNNs can be used to de�ne portfolio strategies based only on the forecasted

conditional means of the asset returns, the proposed empirical investigation - by considering

the minimum-variance and mean-variance portfolios - improves upon their results, showing

that optimal portfolio allocation strategies can also be constructed on ReLu DNNs' forecasted

conditional volatilities, or on a combination of conditional mean and conditional volatilities

of stock returns.

218

APPENDIX B

Convolutional Neural Networks

Chapter Abstract

The aim of this chapter is to provide a brief introduction to convolutional neural networks by

describing the convolutional operations, typical structures, and by characterizing the di�erent

types of hidden layers that comprise the structure. Finally, an empirical investigation focused

on Glaucoma detection starting from fundus images is also implemented. In particular, by

reporting the hierarchical features learned by the hidden layers of the convolutional neural

network, the neural network learning process is compared with a specialist in the �eld.

219

B.1 Introduction to convolutional neural networks

In order to understand how a convolutional neural network works, it is useful to summarize the

pioneering work of Hubel (1958) and Wiesel and Brown (1959) focused on the functioning of

the cats' visual cortex. The authors showed how the visual cortex comprises di�erent neurons

and each of these neurons has a receptive �eld that reacts only to the sub-image located within

the receptive �eld itself. Thus, the visual �eld obtains from overlapping and combining all the

receptive �elds. Additionally, the authors also noticed a hierarchical structure in the receptive

�elds of the visual cortex, as some receptive �elds react to combination of lower level receptive

�elds (see also Géron, 2017). The convolutional neural network mimics the functioning of the

visual cortex.

The convolutional neural network (CNN) was �rst introduced by LeCun (1989) in its

seminal paper and used to recognize hand written digits. CNNs are a special case of the DNNs

discussed in the previous sub-section that use a mathematical operation called convolution in

at least one of their hidden layers (Goodfellow et al., 2016). Nowadays, CNNs have become

extremely popular in a high number of applications (LeCun et al., 1998; Waibel et al., 1994;

Vaillant et al., 1994; and Lawrence et al., 1997). In particular, they are widely adopted for

processing grid-like data, either in one dimension (time series or language processing) or in

two dimensions (image data where the image can be seen as a 2D grid of pixels).

A CNN is a deep neural network that usually comprises three type of layers: (a) con-

volutional, (b) pooling, and (c) ReLu. Having de�ned the ReLu activation function in the

previous sub-section, the following paragraphs will focus on de�ning the other two types of

layers and operation distinctive of CNNs' architectures116. In particular, convolutional and

pooling layers in CNNs are usually described by a 3-dimensional grid structure identi�ed by

the dimensions height, width, and depth. The term �depth� - in this case - must not be con-

fused with the depth of the network, as it refers to the number of channels - or features map

- in each layer. As an example, a given input image is transformed in the input layer as a 3

dimensional array with the �rst 2 dimensions capturing the spatial dimensions of the image

(the grid of pixels) and the third dimension capturing the color of the pixel (feature map).

Thus, the 3D structure of the input layer captures the spatial attributes of the image and

the independent attributes of each channel (i.e., colors); while for the hidden layers, the third

dimension captures the di�erent receptive �elds (types of shapes) extracted from sub-regions

of the image (the hierarchical structure of the CNN entails focusing on low-level features in

the �rst hidden layers, and in higher-level features in deeper layers). In the reminder of the

sub-section we will refer to the size of the nth layer as Ln ×Bn × dn, with Ln the height, Bn

the width, and dn the depth of the layer.

When the input layer is analyzed, the values are usually de�ned by the input data being

processed (pixels grid), and d1 = 1 if the image is black and white (for example the MNSIT

116The interested reader is referred to Aggarwal (2018) and Goodfellow et al. (2016) for a textbook argumen-
tation.

220

dataset) or d1 = 3 if it is a color image (RGB color channels). For n > 1, Ln ×Bn no longer

identi�es the grid of raw pixels of an image but a grid of values - feature map - that performs

the same function as the hidden layers previously discussed in DNNs. The parameters of a

CNN (neuron's weights) - de�ned �lters or kernels - are 3-dimensional shapes with a height

and width smaller that the layer to which they are applied (similar to receptive �elds) and a

depth equal to the given layer. The dimensions of the kernel in the nth layer are Fn×Fn×dn.

The convolution operation mimics the functioning of the visual cortex reported by Hubel

(1958) and Wiesel (1958). In particular, it places the kernels at each possible position of

the input or hidden layer (ensuring a full overlap) and it performs a dot product between

the Fn × Fn × dn parameters in the kernel and the matching grid from the nth layer. Thus,

the number of dot products de�nes the dimension of the gird of the following layer n + 1.

When performing the convolution operation at layer n, given a �lter dimension Fn × Fn,

Ln+1 = (Ln−Fn + 1) overlapping �lters can be aligned vertically, and Bn+1 = (Bn−Fn + 1)

horizontally (see also Aggarwal, 2018). Thus, the number of dot products will be Ln+1×Bn+1.

Finally, the depth of the following layer depends on the number of unique �lters used for

the convolution; the arrangement of the output of the dn+1 �lters in the third dimension

constitutes the aforementioned feature map.

It is a standard pattern in CNNs to increase the depth and to decrease the size (height and

width) of the feature map as n increase. This standard resembles the hierarchical function

of the visual cortex discussed previously: lower level feature map will focus on lower level

information (wider height and width), while deeper levels feature map will focus on higher

level information processed by the previous layers (shorter width and depth) and to process

lower level information is required an increasing capacity of the CNN and thus a higher number

of parameters.

It is now possible to describe the convolutional operation described above in a more formal

way. In particular, we de�ne the pth weight (kernel or �lter) in the nth hidden layer with a 3D

tensor de�ned as W(p,n) = [w
(p,n)
ijk] with i indicating the height, j the width, and k the depth

of the �lter (Fn × Fn × dn). The feature map identifying the nth hidden layer is also de�ned

by a 3D tensor Hn = [hnijk]. Having de�ned �lters and features maps, the convolutional

operation can be formalized as:

hn+1
ijp =

Fn∑

r=1

Fn∑

s=1

dn∑

k=1

wp,nrskh
n
i+(r−1),j+(s−1),k ∀ i ∈ {1, · · · , Ln − Fn + 1}

∀ j ∈ {1 · · ·Bn − Fn + 1}

∀ p ∈ {1 · · · dn+1}

(B.1)

As one could notice, Equation B.1 represents the dot product between the �lter (kernel) -

indexed by p - and the matching grid from the nth layer over all its spatial position (i, j). In

order to further understand how the convolutional operation in B.1 works, a two dimensional

221

representation of the operation is provided:

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0







∗
1 0 1

0 1 0

1 0 1





 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0







Hn = [hnijk] W(p,n) = [w
(p,n)
ijk] Hn+1 = [hn+1

ijk]

Figure B.1: Convolution operation with nth layer of dimension 7×7×1, �lter of dimension 3×3×1,
and nth + 1 layer of dimensions 5× 5× 1.

Figure B.1 reports the convolution operation where Ln = 7, Bn = 7, dn = 1, and Fn = 3.

The dimensions of the nth + 1 layer are de�ned as Ln+1 = (7 − 3 + 1) = 5, and Bn+1 =

(7 − 3 + 1) = 5, and dn+1 = 1. The Figure reports also a visual representation of the dot

product between the �lter and one of the 25 matching grids in the nth layer. The reader can

notice that each entry in the nth + 1 layer is obtained by replicating the dot product for all

overlapping grids of dimensions 3× 3 over the nth hidden layer.

As one could notice the convolution operation described above reduces the size of the nth

layer when compared to the nth + 1 layer. Knowing that a reduction in size is equivalent to a

reduction in the information being processed by the layer (an example could be the pixels at

the border of the image for the input layer), and by assuming that this loss of information is

not always desirable, the operation known as zero padding is sometimes implemented. Zero

padding ensures that the nth + 1 layer will have the same dimensions as the nth layer by

adding (Fn − 1)/2 zeros around either the pixel grid (for the input layer) or the feature map

(for hidden layers). Alternatively, due to the dimensions of the problem analyzed, it may be

desirable to further reduce the dimensions of the nth hidden layer. This additional reduction

in the spacial footprint is often achieved by reducing the applicability of the kernels using

strides (Sn). In this case, the convolution is not applied to each overlapping spatial position

in the nth hidden layer, but at the locations Sn+1 along both width and height of the hidden

layer, resulting in the reduced dimensions of the nth + 1 layer equal to (Ln−Fn)/Sn + 1, and

(Bn − Fn)/Sn + 1117.

It is now necessary to analyze the pooling layers. Pooling layers work similarly to convolu-

tional layers: by de�ning the dimension of the pooling operation as Pn×Pn, the max pooling

takes the maximum value of the matching grid (Pn × Pn) in the nth hidden layer. Thus, if a

Sn = 1 is used, the size of the nth + 1 layer will be (Ln−Pn) + 1 and (Bn−Pn) + 1. In other

words, a max pooling layer does not have weights, it simply aggregates the inputs from the

preceding layer using the max operator. Additionally, the pooling operation is performed at

117Thus, it is possible to notice that the above discussion implicitly assumes a stride equal to 1.

222

the level of each feature map (Aggarwal, 2018) implying that the pooling layer - as opposed

to the convolutional one - does not change the number of feature maps dn+1. The main goal

of pooling layers is to shrink the image (without loss of information) in order to reduce the

computational load. It is based on this �nal aspect that it is possible to understand why, a

Sn = 1 is frequently used when performing max pooling.

6 3 4 4 5 0 3

4 7 4 0 4 0 4

7 0 2 3 4 5 2

3 7 5 0 3 0 7

5 8 1 2 5 4 2

8 0 1 0 6 0 0

6 4 1 3 0 4 5







=

7 7 5 5 5

7 7 5 5 7

8 8 5 5 7

8 8 6 6 7

8 8 6 6 6







Hn = [hnijk] Max pooling Hn+1 = [hn+1
ijk]

Figure B.2: Max pooling operation with nth layer of dimension 7 × 7 × 1, stride = 1, and nth + 1
layer of dimensions 5× 5× 1.

Finally, a fully connected hidden layer is added in order to connect each hidden state

across di�erent feature maps. In the majority of the cases, more than one fully connected

hidden layer is added in order to increase the representation power of the CNN. As in the

case of feedforward neural networks, the output layer is de�ned by the task analyzed. As an

example, if the CNN is used for image classi�cation, being the problem traceable to a binary

(distinguish between two sets of images � cat vs dog competition in Kaggle) or to a mutliclass

(MNSIT dataset) classi�cation problem, typical choices of activation functions for the output

layer are logistic or softmax activation functions.

Thus, based on the above de�nitions, it is also possible to understand how CNNs are

usually organized. In particular, typical CNNs' structures tend to reduce the gird size of the

feature maps and to increase the number of feature maps (dn) as the depth increases. This

common trait is achieved by reducing the dimension of the nth layer using a max pooling

operation, and by increasing the number of feature maps from layer nth to layer nth + 1 using

a convolutional operation with zero padding and with a dn+1 > dn (this structure ultimately

ensures also no loss of information). A graphical representation of the described structure of

CNNs is reported in Figure B.2. The concatenation of max pooling and convolutional layers

will depend on the particular problem at hand (famous structures are the LeNet-5 by LeCun

et al., 1998; the AlexNet by Krizhevsky et al., 2017; the GoogleNet by Szegedy et al., 2015;

and the ResNet by He et al., 2016).

223

Max-poolingConvolution Flatten Connected Softmax

Figure B.3: Deep convolutional neural network for image processing. With four convolutional, and
three max-pooling layers. Following the �attening layer, a fully connected hidden layer with a given
activation function, and an output layer with softmax activation function.

B.2 Glaucoma detection via fundus images

In order to investigate the power of CNN for image classi�cation, the present sub-section �ts a

deep CNNs for the detection of glaucoma starting from fundus images (see also Raghavendra

et al., 2018). Glaucoma refers to the progressive visual loss caused by a raised intravascular

pressure that irreversibly damages the optic nerve. Based on the data from the World Health

Organization (WHO), glaucoma is recognized as the second (after cataracts) leading cause

of blindness world wide. In particular, Raghavendra et al. (2018) provide an insightful

background necessary to understand the disease: The neuro retinal rim is de�ned as the

annular region between optic disc and cup boundary where the retinal nerve �bers are usually

found. The intraocular pressure (IOP) quanti�es the �uid pressure in the inner portion of

the eye. An increase in the levels of IOP will will damage the optic nerve by blocking the

out�ow of aqueous humor. The consequential corrosion of the optic nerve �bers leads to the

thickening of the retinal nerve �ber layer (RNFL) causing the progression of glaucoma.

It is well known that the diagnosis of glaucoma is not always easy. For this reason,

glaucoma specialists usually conduct numerous di�erent tests in order to correctly diagnose

or treat the speci�c condition. To be accurate, �ve factors are usually checked on an annual

basis: the inner eye pressure via Tonometry, the shape and color of the optic nerve via

Ophtalmoscopy, the complete �eld vision via Perimetry, the angle in the eye where the iris

meets the cornea via Gonioscopy, and the thickness of the cornea via Pachimetry118.

Figure B.4 below reports two examples of fundus images: sub-�gure (a) provides the image

118See Glaucoma Research foundation (2020) for a detailed description of the di�erent tests.

224

of a normal eye, sub-�gure (b) the sub-image of an eye a�ected by glaucoma:

a) Fundus Image - Normal Eye b) Fundus Image - Eye a�ected by Glaucoma

Figure B.4: The Figure reports two examples of fundus images: sub-�gure (a) report the fundus
image of a normal eye; sub-�gure (b) the funuds image of an eye a�ected by Glaucoma.

Since the early 1980s, computer-aided diagnosis (CAD) systems have been widely adopted

by the medical community in order to assist doctors in diagnosis a given disease. Focusing

on glaucoma detection �in addition to the aforementioned clinical tests� the CAD systems

widely adopted are the confocal scanning laser ophtalmoscopy (CSLO), the optical coherence

tomography (OCT), and the scanning laser polarimetry (see Hagiwara et al. (2018) for a

detailed summary on the topic). Recent advances in deep learning have been increasing the

medical community's interest in applying CNNs as an alternative CAD system to further assist

doctors; as an example, Shen et al. (2019) develop a deep CNN for breast cancer detection

via mammography; Paul et al. (2016) propose a CNN feature extractor to train classi�ers

to detect cancer from lung computerized tomography (CT) images; and Ragavendra et al.

(2018) propose a CNN to detect glaucoma from fundus images.

If the existing literature shows how CNNs can be e�ectively used as an aid for disease

diagnosis due to the high out-of-sample accuracy with associated low false positives and

negatives, little empirical investigation �to be the best of our knowledge� has been conducted

on analyzing the learning process of CNNs for glaucoma detection. In particular, it is of great

interest to understand what are the low and high level features in fundus images used by CNNs

in order to produce an outcome. Do CNNs focus on the same features as a doctor specialized in

glaucoma treatment and detection? Does the hierarchical structure of the trained CNN mirror

the diagnostic mechanism followed by doctors? It is believed that answering to these questions

would further improve over the current literature by helping specialists in understanding why

a given CNN outcome is returned. To do this, a CNN is trained using available fundus

images; following, using the fundus image of an eye a�ected by glaucoma, a forward pass on

the trained CNN is performed and the feature maps of each convolutional layer are stored.

The reported feature maps enable understanding the distinctive characteristics analyzed by

225

the trained CNN and the learning process is assessed using the aid of an expert opinion119.

The dataset consists of 520 fundus images (386 of normal eyes and 134 of eyes a�ected by

glaucoma) in the train data, and 130 images in the test set (96 images of a normal eye and 34

images of eyes a�ected by glaucoma). The input images are transformed into 3-dimensional

tensors of shape 150× 150× 3 �the RGB channel must considered as they are colored images.

The structure of the �tted CNN will now be reported. A convolutional layer of dimensions

142 × 142 with depth 32 and kernel size 9 × 9, a max-pooling layer with pool size 2 × 2, a

convolutional layer120 with depth of 64 and kernel size of 7×7, a max-pooling layer with pool

size 2 × 2, a convolutional layer with depth of 128 and kernel size of 5 × 5, a max-pooling

layer with pool size 2× 2, a convolutional layer with depth of 128 and kernel size of 3× 3, a

max-pooling layer with pool size 2 × 2, a ReLu fully connected layer with 512 hidden nodes

and a sigmoid output layer are �tted. One could notice that as the depth of the network

increases the depth of the feature maps increases (from 32 to 128), the size of the feature map

decreases (from 142× 142 to 6× 6), and the kernel size decrease (from 9× 9 to 3× 3).

The loss function is the binary cross entropy, with learning rate 0.0001, and RMSProp

optimizer. The pixel values (between 0 and 255) are rescaled into the [0, 1] interval required

to properly train the neural network. A �t generator is �tted starting from the train data,

and for each epoch (maximum number of epoch is 3) 100 samples are drawn from the �tting

process (given a batch size of 20 we would be over-sampling in order to generate more training

instances). The out-of-sample accuracy is 0.7409.

Figure B.5 reports the feature maps of the CNN when the sub-�gure (b) in Figure B.4 is

considered. One could notice that as the depth increases the number of features (depth of the

layer) increases, and how the kernel dimension decreases (the �rst convolutional layer processes

lower level information while the deeper layers focus on higher level information) con�rming

the hierarchical processing of the information contained in the input �gure. Additionally, the

sparsity of the information increases as the depth of the CNN increases: in sub-�gure (d) one

could notice how some of the �lters are blank (reported in green) meaning that the pattern

encoded by the given �lter is not recognized in the analyzed fundus image.

The results reported in Figure B.5 were discussed with an expert in Glaucoma detection.

It is possible to notice how the DNN correctly focuses on the parapillary atrophy located in

the inferior disc region, on the optic disc haemorrhages located on the left of the inferior disc

region, and in (sub-�gure d) on the neuroretinal rim �position and shape of the optic cup.

However, the convolutational neural network commits a common mistake when analyzing

fundus images: it focuses on the choroidal veins outside the optic nerve, and on the fovea.

Therefore, future work will study the impact of reducing the fundus images to consider only

the area around the optic nerve on the classi�cation accuracy of CNNs when applied for

119It is important to stress that the focus of the present sub-section it is not to �nd the optimal CNN structure
for glaucoma detection but to open the black-box learning process to improve the understanding of CAD
results based on deep learning models.

120All convolutional layers preserve the grid dimension of the previous layer and no padding is applied.

226

glaucoma detection.

a)

b)

c)

d)

Figure B.5: The Figure reports the features learned by the CNN when classifying the fundus image
reported in sub-�gure (b) of Figure B.4. Sub-�gure (a) reports the �rst convolutional layer; sub-�gure
(b) the second; sub-�gure (c) the third and sub-�gure (d) the fourth convolutional layer.

227

APPENDIX C

Recurrent Neural Networks

Chapter Abstract

The aim of this chapter is to provide a brief introduction to recurrent neural networks by

describing the typical structures and the solutions proposed to the literature for the construc-

tion of deep architectures. Finally, an empirical application focused on text generation from

�An inquiry into the Nature and Causes of the Wealth of Nations� by Adam Smith (1776) is

proposed.

229

C.1 Introduction to recurrent neural networks

A recurrent neural network (RNN) is a neural network specialized in learning a sequence of

values x(1), · · · , x(t). RNNs are widely adopted for processing sequences of arbitrary length

such as time series data, sentences, documents, or audio samples. As an example, they are

employed in automatic translation, speech-to-text, sentiment analysis (Tang et al., 2015; Pant

et al., 2018; and Liu et al., 2017), and time -series forecasting (Oancea and Ciucu, 2014; Ho

et al., 2002; and Brezak et al., 2012); interestingly, the Google's Magenta project has also

developed a RNN that composes melodies.

A RNN is a special case of the feedforward neural network with a speci�c structure that

�based on the notion of time layering and parameter sharing across di�erent parts of the

model� can work on sequences of arbitrary length. Thus, a recurrent neural network is no

longer feedforward due to the presence of backward pointing connections. Goodfellow et al.

(2016) provide an intuitive example of the importance of parameter sharing and time layering

when processing sequences of data: if we consider the two sentences �I went to Nepal in 2009�

and �In 2009, I went to Nepal�, a deep neural network �when asked to extract the year in

which we went to Nepal� should be able to recognize the year as 2009 for both sentences.

The DNN analyzed in Appendix A would have a set of parameters that will process all the

grammar rules, learned during training, for each word in the sentence. Conversely, a RNN

would be sharing the same weights across di�erent time steps (in this case the time variable

refers to the positioning of the word within the sentence). The structure of the recurrent

neural network will now be analyzed in details.

Following Aggrawal (2018) and Goodfellow et al. (2016), the hidden state at time t will

be a function of both input vector and the hidden state at the previous time step t− 1:

ht = θ(ht−1,xit) (C.1)

In particular, given xit ∈ Rd×1, a set of weights for the input xit de�ned as Wx ∈ RZ1×d,

a separate set of weights for the output at the previous step Wh ∈ RZ1×Z1 , a set of output

weights Wy ∈ Rd×Z1 , a generic activation function θ(·), a bias b ∈ RZ1 and bO ∈ Rd the

output of an RNN can be de�ned as:

yt = θO(Wyθ(Wxxit + Whht−1 + b) + bO) (C.2)

Based on Equation C.1 and C.2, one could notice that yt is a function of xit and ht−1

which in turns is a function of xit−1 and ht−2 which, in turn, is a function of xit−3 and ht−3

and so on until t = 0. In the �rst time stamp (t = 0), ht−1 is usually assumed equal to 0

(Géron, 2017; and Aggrawal, 2018). Additionally, the two sets of equations formally de�ne

the concept of time layering and parameter sharing: although both input xit and the hidden

layer ht are a function of time �showing that they will vary as the time stamp changes� the

230

weight matrices and baiases remain �xed for all t (Aggrawal, 2018). Finally, θO is usually the

softmax activation functions returning a vector of probabilities. A typical representation of a

RNN is reported below (see also Goodfellow et al., 2016):

ht−7· · · ht−6 ht−5 ht−4 ht−3 ht−2 ht−1

yt−6 yt−5 yt−4 yt−3 yt−2 yt−1 yt

xit−6 xit−5 xit−4 xit−3 xit−2 xit−1 xit

Figure C.1: Recurrent neural network with no bias term

As highlighted by Goodfellow et al. (2016), if the above RNN is unfolded it would cor-

respond to a shallow neural network (that is, only one hidden layer). However, early work

on sequential data processing, such as Schmidhuber (1992), El Hihi and Bengio (1995), and

Goodfellow et al. (2016), extensively adopt deep RNNs121. Before adapting Equation C.1 to

a N +1 deep RNN, it is important to specify that the weights are shared across di�erent time

steps but they are not shared across hidden layers. Therefore, for n > 1 (as the �rst recurrent

operation is de�ned in Equation C.2), Equation C.1 is formulated as follows:

h
(n)
t = θ(Wnh

(n−1)
t + Wnh

(n)
t−1 + b) (C.3)

For ease in notation we de�ne Z1 = p as the dimensions of the hidden layers comprising

the deep RNN. Based on Equation C.3, Figure C.2 reports the representation of a N + 1

Deep RNN. As one could notice from Figure C.2, the characteristic time-layer structure of

deep RNNs make them extremely deep neural networks (Goodfellow et al., 2016: Aggrawal,

2018) making the training of the log-term dependencies (e.g., high number of lags in a time

series settings) extremely arduous. Goodfellow et al. (2016) explain how �even if the explod-

ing/vanishing gradient problem is properly taken care of (see Glorot and Bengio, 2010)� the

backpropagation algorithm (when training RNNs we usually refer to backpropagation thorough

time as in Williams and Zipser, 1992) used to train the deep RNN assigns smaller weights to

long-term dependencies when compared to short-term ones.

121See Pascanu et al. (2014) for the advantages of depth over width for deep RNNs.

231

h
(1)
t−7

· · · h
(1)
t−6 h

(1)
t−5 h

(1)
t−4 h

(1)
t−3 h

(1)
t−2 h

(1)
t−1

h
(2)
t−7 h

(2)
t−6 h

(2)
t−5 h

(2)
t−4 h

(2)
t−3 h

(2)
t−2 h

(2)
t−1

· · ·

· ·· · ·

h
(N)
t−7 h

(N)
t−6 h

(N)
t−5 h

(N)
t−4 h

(N)
t−3 h

(N)
t−2 h

(N)
t−1

· · ·

yt−6 yt−5 yt−4 yt−3 yt−2 yt−1 yt

xit−6 xit−5 xit−4 xit−3 xit−2 xit−1 xit

Figure C.2: Deep Recurrent neural network with no bias term

As a consequence, the deep RNN analyzed above can be considered e�ective in learning

only short sequences (Aggrawal, 2018). The most notorious solution was �rstly proposed by

Hochreiter and Schmidhuber (1997) with the long short-term memory (LSTM) model. The

underlying idea behind LSTM is the enforcing a constant error �ow via special units to which

we will refer as LSTM cells; each of these LSTM cells will be characterize by an internal

recurrence. In particular, the cells states are updated during the backpropagation algorithm

in order to guarantee greater information storage by decreasing the level of similarity (long-

term memory) across di�erent temporal layers. In particular, Aggrawal (2018) explains how

the hidden vectors h
(n)
t and the cell state vectors c̄nt are de�ned via a multi-step process

that �rst determines a 4p-dimensional intermediate vector comprising of input (̄i), forget (f̄),

output (ō), and c (c̄) gates (vectors of dimension p) which are then used to compute the

hidden cells. Following Aggrawal (2018) we de�ned the intermediate vector as:




ī

f̄

ō

c̄




=




sigm

sigm

sigm

tanh



◦ (Wnh

(n−1)
t + Wnh

(n)
t−1) (C.4)

based on the above intermediate states, the value of the hidden layer h
(n)
t can be de�ned as:

232

c̄
(n)
t = f̄ � c̄

(n)
t−1 + ī� c̄

h
(n)
t = ō� tanh(c̄

(n)
t)

(C.5)

with � capturing the Hadamard product (component-wise multiplication). The subsequent

analysis of Equations C.4 and C.5 will be conducted following Aggrawal (2018). The input

gate can be regarded as a boolean operator (although it is a continuous vector with values

between 0 and 1) that is used to decide whether to create a cell state; the forget gate is used to

decide whether to forget a cell state or not; and the output gate allows leakage from the hidden

state to the cell state. Therefore, the input and forget gates �by regulating the amount of

information that can be changed from the previous (time step) hidden node� control the �ow

of long-memory throughout the deep RNN. When focusing Equation C.5, we must distinguish

between the update to the cell state and the update to the hidden state. In the �rst case, the

relevant equation can be divided into two parts: I) the forget gate is used to decide which of

the p cell states from t− 1 are to be set equal to 0 (forgetting the past/long-memory), II) the

input gate decides whether to add or not the elements of c̄ (to what extent incorporate new

information into the past/long-memory). In the second case, the value of the hidden layer

is de�ned using leakages from the cell state (the output gate de�nes how much information

retain/leak from the cell state). As highlighted by Aggrawal (2018), it is not necessary to use

the tanh activation function; it is possible to use any other activation function described in

Appendix A.

C.2 Text generation

Having described the most important characteristics of both shallow and deep RNNs, the

present section investigates the power of RNNS in text generation. In particular, starting

from �An inquiry into the Nature and Causes of the Wealth of Nations� by Adam Smith

(1776), a RNN with one LSTM hidden layer (with 128 hidden nodes) and an output layer

with softmax activation function is trained and used to generate text (equivalent to forecasting

the most likely letters) starting from a �xed-length sentence. To show the gradual training of

the RNN, the forecasted texts obtained after 1 and 14 epochs �and a temperature of 0.5� are

reported.

When the generating seed is �ence a-day; tenpence, sometimes a shilling, about edinburgh�

the RNN �trained for 1 epoch� generates the following text:

�and of the the beew so state of the expented of the stature, but the was can for the have been

a contrary which the produce of a commence another a great price of the commerce of stock

of the secless the commodity of the labour in a grands of their price of corn a the seems be

diminually the this parts of the di�cently the and to the world of the great part of this

commerce their o�ect of can�

Conversely, when the generating seed is �hich they had made upon the prices either of

corn, or of oth� the RNN �trained for 14 epochs� generates the following text:

233

�er farmer to the competition degrees of scotland, the price of the workmen from which the

price of the di�erent price of the with their silver, which supply the pro�ts of the labourers

and other the salen, it is the price of silver and extended into the pro�ts of the trade of the

real price of the countries. the quantity of labour, and worth the rent of the rude produce of

the country with�

One could notice that, as the number of epochs increases, the number of misspelled words

reduces from seven to one, and the meaning of the forecasted sentence becomes clearer. It is

expected that by increasing the number of epochs and/or increasing the network complexity,

the performance of the trained RNN will also increase.

234

	TullioMancini_PhDThesis_final_30482569 1
	thesis_after_viva
	Introduction to the Thesis
	Problem Statement
	Literature Review
	Granger causality
	Optimal Structure Identification
	Uncertainty and Deep Learning

	Thesis Structure
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Appendix

	Granger causality detection in high-dimensional systems using feedforward neural networks
	Introduction
	Granger Causality
	Fully Connected Neural Network
	Estimation and model selection
	Stage 1: Choosing the optimal neural network
	Stage 2: Model selection
	Interpretable neural networks

	Oracle Property
	Simulation Study
	Simulation design
	Empirical type I and type II error probabilities
	Model Selection Consistency

	Empirical Analysis
	Data
	Empirical Results

	Conclusions

	Optimal deep neural networks by maximization of the approximation power
	Introduction
	Universal approximation theorem
	Definitions and Notations
	Universal Approximation Theorem
	Linear Regions Approximation
	Number of Linear Regions

	Optimal Structure
	Maximization Problem
	Numerical Optimization

	Monte Carlo Simulation
	Data Generating Process
	Accuracy Test
	Simulation Results

	Empirical Application
	The CART procedure and future implementations
	Conclusions

	Prediction intervals for deep neural networks
	Introduction
	Dropout in DNN models
	Random weight initialization

	Prediction intervals for DNN models
	Asymptotic prediction intervals (Delta Method)
	Bootstrap predictive distribution
	Monte Carlo Dropout (Stochastic Forward Passes)

	Extra-neural networks (Fixed Bernoulli Mask)
	Monte Carlo simulation
	Data Generating Processes
	Simulation Results

	Empirical Analysis
	Conclusions

	Machine Learning the Carbon Footprint of Bitcoin Mining
	Introduction
	CO2 Emissions Bitcoin Mining
	Power Bounds in Bitcoin Production
	The Carbon Footprint of Power Bounds in Bitcoin Production

	Machine Learning the Carbon Footprint of Bitcoin Mining
	Top-down Approach
	Bottom-up Approach
	Input Data
	ReLu DNN-CO2 Estimation

	Conclusions

	Environmental Engel Curves: A Deep Learning Approach
	Introduction
	DNN basics
	Definitions and Notations

	Prediction Intervals for DNN models
	Monte Carlo Dropout
	Extra-neural network

	Empirical Results
	Conclusions

	Conclusions
	Bibliography
	Feedforward Neural Networks
	Introduction to feedforward neural networks
	Optimal portfolio allocation

	Convolutional Neural Networks
	Introduction to convolutional neural networks
	Glaucoma detection via fundus images

	Recurrent Neural Networks
	Introduction to recurrent neural networks
	Text generation

