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ABSTRACT
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by Taha D. Güneş

Intelligent systems are having significant impact on our daily lives in many ways. These

systems can help guide human decisions, act on our behalf and cooperate within mixed-

initiative teams. This inter-dependency between humans and AI systems inherently

includes a level of risk about the outcomes of actions. To mitigate this risk, the con-

cepts of trust and reputation have received significant attention in multi-agent systems

(MASs). Numerous techniques have been proposed to answer the interrelated questions

of how to reliably assess the trustworthiness of autonomous systems, how to make ro-

bust decisions under uncertainty, and how to establish trust between agents and between

agents and humans. Computational models of trust typically focus on evaluating the

trustworthiness of others using direct observations and the opinions of others in order

to select partners for delegation or to form and maintain relationships. Significantly

less attention, however, has been given to understanding how these systems can reli-

ably operate under budgetary constraints, or their vulnerabilities to external attacks.

In this thesis, we propose and evaluate a suite of new decision-making strategies to

progressively select trustworthy partners under budgetary constraints. First, we show

how this decision-making problem maps to budget-limited multi-armed bandit problems.

We then present new decision-making models that incorporate both observations and

opinions from others. Finally, we show how these approaches can minimise costs associ-

ated with, and the risks involved in interaction with agents with varying and uncertain

reliability.

In order to better understand the performance and reliability of such algorithms, we

propose a novel, generic method to automate the process of identifying vulnerabilities

in Trust and Reputation systems. We do this by mapping the vulnerability analysis

problem to an optimisation problem, and show how efficient sampling methods can be

used to search the attack space. We devise an attack model and generate attacks that

involve the injection of false evidence to identify vulnerabilities in existing trust models.

In this way, we provide an objective means to assess how robust trust and reputation

algorithms are to different kinds of attacks and conduct comparative analyses.
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Chapter 1

Introduction

The use of automation in support of individual activities that are dependent on each

other, and team-based tasks have been a complex problem that is tackled in computing.

Solving issues around this automation can be considered under social computing prob-

lems. Solutions to such problems are inspired from the intersection of social concepts

that are from major fields such as psychology, sociology, philosophy and economics. This

can be seen as a result of increasing needs in challenging automatisation tasks which are

usually interconnected and interdependent. While social concepts take humans as their

central focus, the ramifications of these needs have led to the idea of creating virtual

societies to solve such challenging problems where in some instances the social concepts

may apply. Delegation of these problems to virtual agents (for instance, delegating a

purchase order of a cheap flight ticket to a software agent) requires communication and

interaction in many levels between various parties. These interactions can be complex

and can include several subtasks such as negotiation (software agent interacts with mul-

tiple vendors), auctioning (or software agent enters into auctions with other software

agents), acquisition of services (or software agents collects more information) and more.

Therefore, a decentralized approach was posited to tackle these inherent characteristics.

The decentralized approach is having multiple parties (i.e. agents) in virtual societies

which may depend on each other in a distributed manner. These virtual societies and

their participants have been studied as multi-agent systems (MASs) (Jennings, 1993).

The MAS abstraction offers a distributed representation of tasks which allows many

features include re-usability, parallelization and better problem solving by decoupling

various components. However, this way of reducing complexity has some drawbacks as

well, for instance, the need for communication within society. This is essential since

the agents need to coordinate with each other in order to accomplish tasks. Because

of the nature of these engagements, including the social concepts is a pragmatic choice

(Gasser, 1991). One such social concept is trust.

1



2 Chapter 1 Introduction

The notion of having trust within societies is posited to be an important concept to act

as a supportive layer (Lewis and Weigert, 1985; Bromley, 1996). This layer is studied

in varying human-centric fields: Psychology, sociology (for instance, the management

of trust relationships in network structures (Buskens, 1998)), philosophy (for instance,

reciprocity in trust and free-riding (Hume, 1978)) and economics (for instance, game

theoretical models that study the effect of reputation between two players (Celetani

et al., 1996)). The main premise of having a trust is that an unknown portion of members

can behave in an unexpected manner, meaning that they may have malicious intentions,

or they may be incompetent (i.e. unreliable) in varying levels. This is problematic in

many MAS applications, such as automated negotiations where agents interact with

each other to reach agreements and common understanding where agents are tasked to

aggregate information from multiple sources.

These ideas resulted in a subsystem within MASs where this concept can be modelled

and used, which is known as Trust and Reputation Systems (TRSs, also known as

trust models). These computational models are designed to support agents to make

predictions of others’ future performance before making a decision on whom to rely.

These types of support components of agents’ decision-making are also known to be

a soft security1 that can be seen as collective enforcement of specific norms by the

participants of a community. Such systems incentivise the behaviours that are generally

accepted and sanction those that are not (Josang and Haller, 2007). A variety of methods

have been preposed to implement TRSs, some of which we discuss in Sections 2 and 3,

and concrete examples of their use include electronic markets such as Amazon2, Ebay3,

Airbnb4, ride-sharing companies such as Uber5, Lyft6 and many more use TRSs including

autonomous vehicles (Schneider, 2017) to enhance their overall service quality, not only

for the consumers but also for service providers as well.

In this research, we focus on advancing general-purpose TRSs by addressing challenges

in the decision-making process of agents and vulnerabilities that may affect this process.

Our main concern is to look at particular environmental settings that decision-makers

may be in and devise techniques to enhance the robustness of TRSs. We put our focus

on trust approaches in MASs and treat trust-related transactions as abstract as possible,

thus allowing them to be applicable in a wide variety of MASs applications.

1In this context, hard security is mostly associated in the related work with infrastructure level
security that involves areas such as encryption, authorization, and authentication of MASs (Barber and
Kim, 2003; Bertocco and Ferrari, 2008).

2https://www.amazon.com
3https://www.ebay.com
4https://www.airbnb.com
5https://www.uber.com
6https://www.lyft.com

https://www.amazon.com
https://www.ebay.com
https://www.airbnb.com
https://www.uber.com
https://www.lyft.com


Chapter 1 Introduction 3

Figure 1.1: Conflicting challenges that agents face in Trust and Reputation Systems

1.1 Motivation

The underlying philosophy of utilizing trust is to drive increased service quality and to

increase agents’ confidence in the outcomes of future transactions. This is achieved by

encouraging agents to provide feedback on services and goods that are visible to others in

aggregate, with commentaries often associated with individual ratings. However, there

are inherent challenges in such systems where typical trust models implicitly rely on

simplifications. We elaborate on these challenges by a hypothetical example as follows.

Assume that an agent is regularly given a task, which is to purchase a common cloud

computing service for a specific usage. We call this as a consumer agent. The service

that this agent is interested in is provided by many vendors with varying prices. This

is a challenging problem, including cases where the agent has no prior knowledge about

how good the services are provided by different vendors (for instance, AWS7, Microsoft

Azure8 or Google Cloud9). Any commitment to a service can be costly. Not only the

monetary costs, but also possible opportunity costs due to time required for integration

and development to utilize their service can be present. The agent can query other

agents to get their opinion about the vendors (for instance, checking reviews in TrustPi-

lot10) before making any commitments. Collecting such information may be useful and

sometimes free, however, it can be costly in terms of time, and they may be tailored to be

manipulative as well. In addition, opinions from more reliable sources can be purchased,

which is, of course, has monetary costs. Alongside with this conflicting challenges as

7https://aws.amazon.com/
8https://azure.microsoft.com/en-gb/
9https://cloud.google.com/

10https://uk.trustpilot.com/categories/cloud_computing_service

https://aws.amazon.com/
https://azure.microsoft.com/en-gb/
https://cloud.google.com/
https://uk.trustpilot.com/categories/cloud_computing_service


4 Chapter 1 Introduction

shown in Figure 1.1 arises a fundamental question: how an agent with a limited budget

can make purchases of these services, meanwhile robust to manipulations.

This hypothetical scenario is not an isolated case. The problem of deciding whom to

trust exists in many domains. Managing risks in operational activities in supply chain

management can be given as an example where decision-makers need to achieve a level of

performance on several objectives, such as on-time delivery, order completeness, order

correctness and defect-free delivery (Gaudenzi and Borghesi, 2006). Any decrease of

the level of performance on these objectives requires strategic balancing with the given

the resources of the decision-maker for both short-term and long-term profitability of

organizations (Wu and Pagell, 2011).

In terms of manipulation, there are many similar situations in e-commerce where users

have a choice among a range of similar options, relative ratings can have a big impact

on decisions. This, of course, introduces a strong incentive for companies and individual

services/goods providers to game the system. For instance, many sellers in Amazon

struggle with increasing fake reviews (Clayton, 2020), which is an ongoing challenge in

many platforms. In response, platform owners introduce controls; for example, only to

permit reviews from confirmed customers. This has led to more sophisticated attacks,

such as those reported by the Wall Street Journal (Emont and Bürge, 2018), where

items are purchased and then returned to qualify to inject negative reviews. Users

may report such incidents, but the moderation process is manual, time-consuming, and

maybe equally used by dishonest sellers.

Such challenges also exist in multi-agent systems research. While many MAS challenges

tend to be specific to the domain of interest (Dorri et al., 2018), there are common

features in domains such as task allocation, learning, organization, coordination and

security where trust is applicable. We summarize the main challenges regarding the

usage of trust in MASs as follows:

• Variety of information: Ideally, a trust model should be able to recognize and use

various types of information sources strategically with respect to the present situ-

ation. Many types of information may be utilized in trust formation including an

agent’s observations of others, third party opinions, sociological information (Bur-

nett, 2011). The question of when and how each relevant information source can be

exactly utilized or fused together for assessments is vital in decision-making. There

are many intrinsic characteristics that need to be taken in to account. The first-

hand experience may be costly, but more reliable only if it is considerable (Sabater

and Sierra, 2005). In cases where this is not possible, other types of information

can be more effective (Sutcliffe and Wang, 2010), which include exploitation of

information through some centralized or decentralised MAS mechanisms (Seuken
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and Parkes, 2014), such as aggregated information (such as reputation) or pub-

lished features of agents (such as the owner of the agent or the capabilities of the

agent).

• Constraints: As articulated in our example scenario, information gathered through-

out the decision-making process is useful for trust formation. However, collecting

evidence may require investment of resources. Thus, rather than simply needing

to know which providers are more or less trustworthy, customer agents need to

make sequential and strategic decisions in selecting partners (Sen, 2013). The

decision-making must be general enough to satisfy various requirements, including

handling varying costs to acquiring different types of information. Furthermore,

decision-makers will not know how useful their investment was at the time of their

investment.

• Manipulation: Traditional multi-agent security mechanisms usually focus on pro-

tection from outsider attacks; i.e. protection from third-party entities, which origi-

nate out of the system (Josang and Haller, 2007). On the other hand, these systems

are known to be vulnerable to internal threats. These adversarial agents may use

the actions that MASs provide instead of malicious behaviour by the means of hard

security. This shows the need for trust management in MASs to aid traditional

security mechanisms.

Identification of agents in MASs (e.g. peer-to-peer networks) is one of the possible

mitigation strategies. Typically, for instance, when a malicious agent is detected in

the system, the agent can be removed and any further attempts to join the system

with the same identity can be disabled. However, one can generate several new

identities to enter the system again (Douceur, 2002) to damage service providers’

reputation by giving biased ratings. As a result, overall performance of the system

suffers an unfair advantage can be given to some specific service providers.

Agents that are trustworthy for a long time may start to behave maliciously (Sun

et al., 2006). Then how significant the previous evidence of an agents’ behaviour

with regards to its current behaviour? Which part of historical data must reflect

the trustworthiness of the entity? Lastly, how can the system demotivate this

unexpected behaviour? Rather than removing the agent completely from the sys-

tem, it might be feasible to exploit this inconsistent behaviour (i.e. delegating

tasks only if the malicious entity is predicted to behave as expected.)

1.2 Problem Statement

In this thesis, we focus on the problem of:
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How to make proactive decisions regarding who to interact with by the use of

generalized trust evaluations in environments where strategic attackers and

resource constraints exist?

Proactive decisions that we aim to make in our problem setting must consider future

events with the features observable in the present. This is parallel to making decision

step by step, since the decisions that are made earlier can influence the future decisions.

We will now give an overview of the contributions of this thesis towards our research

into this problem.

1.3 Contributions

Devising mechanisms to make strategic decisions is a challenging problem. Firstly, the

system can have multiple self-interested agents with unknown behaviours. Secondly,

each of them might have varying resource constraints. Finally, each system can provide

different types of evidence. We argue that dealing with these complexities requires a

strategic decision process that takes into account the constraints of decision-makers and

possible adversarial behaviours. Therefore, what vulnerabilities that adversaries may

use is also our another focus. For this, we now go through our contributions that are

done in pursuit of our research aim in the following section.

• A general decision model on trust and budgetary constraints (Chapter 4): We

introduce a selection of decision processes that are compatible the statistical trust

models in resource-constrained environments. These processes are designed to

make the discovery of truthful partners alongside continuing to engage with the

known partners while exploiting third-party information.

• A mechanism to search for strategic attacks (Chapter 5): Motivated by making

these decision processes resilient to possible attacks, we go beyond the known ways

to attack such trust mechanisms by introducing a novel mechanism for exploring

ways to sample attacks. The mechanism allows attackers to strategise such that

they can set objectives and introduce orchestrated attacks.

• Vulnerability analysis of trust models (Chapter 5): This mechanism’s realization is

used to explore vulnerabilities in a selection of trust models. This exploration was

not done in a principled manner before. We demonstrate that such orchestrated

attacks rely on several features of the environment, which we show by simulated

and real-world data sets.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• In Chapter 2, we provide a survey of related work in multi-agent systems with

a focus on trust and reputation. We discuss the problems of trust estimation,

decision-making with trust and compare existing approaches that attempt to ad-

dress these issues.

• In Chapter 3, we provide a background on the fundamental techniques that we

exploit in building our contributions.

• In Chapter 4, we present our decision-making processes and evaluate its perfor-

mance with varying information sources. We discuss the problems that can arise

environment-specific features differ, and how a decision-maker adapt to the pro-

cesses to support different environments.

• In Chapter 5, we present our attack search mechanism and our vulnerability anal-

ysis of a selection of trust models. We evaluate this model within our simulated

and real-world data sets.

• In Chapter 6, we provide some potential application domains in our approach

alongside with how they can be used or extended.

• In Chapter 7, we discuss our approach with future avenues of research.

1.5 Related Publications

The work presented in this thesis resulted in a number of peer-reviewed academic pub-

lications.

• Güneş T.D., Norman T.J., Tran-Thanh L. (2017) Budget Limited Trust-Aware

Decision Making. In: Sukthankar G., Rodriguez-Aguilar J. (eds) Autonomous

Agents and Multiagent Systems (AAMAS) 2017. Lecture Notes in Computer

Science, vol 10643. Springer, Cham.

Workshop/Conference paper presented in TRUST Workshop at the Autonomous

Agents and Multiagents Systems Conference. This paper was selected as one of

the most visionary workshop papers in AAMAS 2017 and published as a book

chapter following the conference. The publication refers to the initial work that

underpins our contributions in Chapter 4.
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• Güneş T.D., Tran-Thanh L., Norman T.J. (2018) Strategic Attacks on Trust Mod-

els via Bandit Optimization. In: International TRUST Workshop at AAMAS/IJ-

CAI/ECAI/ICML 2018, Stockholm, Sweden on July 14, 2018.

Workshop paper presented in TRUST Workshop 2018 at the joint conference that

held Autonomous Agents and Multiagents (AAMAS) 2018. The publication refers

to the initial work that underpins our contributions in Chapter 5.

• Güneş T.D., Tran-Thanh L., Norman T.J. (2019) Identifying vulnerabilities in

trust and reputation systems. In: International Joint Conference on Artificial

Intelligence (IJCAI) 2019. Macao, China on August 10-16, 2019.

Conference paper presented in the main track of International Joint Conference

on Artificial Intelligence (IJCAI) 2019. The publication refers to the initial work

that underpins our contributions in Chapter 5.
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Related Work

Trust and reputation concepts have been widely popular in multi-agent systems. Gener-

ally, the main areas of research have been looking into the questions of how to evaluate

others and how to use these evaluations to make decisions. There have been a variety of

applications in the forms of community building, human-agent and agent-agent trans-

actions, service provision. As a consequence, there have been various types of models

and system designs. In light of our research aims, we narrow our focus to key models

in this area to argue the shortcomings and challenges that the decision makers have.

Then, we discuss the state-of-the-art approaches towards our objectives to motivate the

contributions that we present in Chapter 4 and 5.

2.1 Trust

Statements, such as “I trust you.”, “This is an untrustworthy vendor.” or “This provider

has a good reputation.” are made in daily conversations frequently. The meaning of these

statements is known to be different in each domain and context. Generally, the common

motivator in these sentences is the aim of reducing the difference between expectations and

reality. This phenomenon is known as maintaining a psychological contract (Robinson,

1996) in human-human interactions. When we transition to multi-agent systems, the

earliest signs of this uncertainty minimization concept dates back to the dissertation of

Marsh (1994). Marsh characterises this phenomenon as:

“We arrive at the concept of trust as choosing to put ourselves in another’s

hands, in that the behaviour of the other determines what we get out of a

situation.”

Ramchurn et al. (2004a)’s definition covers both reciprocity and the game-theoretical

dimension of trust:

9
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“Trust is a belief an agent has that the other party will do what it says

it will (being honest and reliable) or reciprocate (being reciprocative for the

common good of both), given an opportunity to defect to get higher payoffs.”

It is important to mention that there is no consensus on a definition of trust. If we look

at the most recent extensive reviews, the definition is on the probabilistic side:

“An agent’s trust is a subjective belief that the selected party acts according

to the agent’s expectation during an interaction” (Yu et al., 2013a; Cho et al.,

2015)

This is generally the well accepted definition in the multi-agent systems research. Trust

that an agent has about another is thought to be a subjective belief (typically modelled

as a subjective probability), that each party relies on to evaluate others. On top of that,

we will elaborate in the following sections why we decided to see trust as in subjective

probabilities. Our reasoning comes primarily comes from the challenges in other types

of approaches (for instance, cognitive approaches) that have a different view on trust.

Before elaborating on how we might compute the trustworthiness of an agent, it is impor-

tant to discuss the types of inputs that are used in trust models. Different environments

engender a different sets of inputs. Specific models, therefore, tend to cover different

realizations given the environment concerned. This also serves to fill the conceptual gaps

in the definition that we provided.

2.2 Sources of Trust

Forming subjective trust beliefs (i.e. trust assessments) inherently requires some infor-

mation. Decentralised models typically utilise observations from direct interaction and

information from contacts that can act as witnesses. In contrast centralized systems

have access to all inputs. All systems need to take into account subjective biases in the

available information, address the cold-start problem, and consider complex attacks. To

address these challenges, the studies have explored additional information that might

be present in the environment. Here, we give an overview of the literature focussing

on the types of information considered in existing models. We adapt and combine the

taxonomy from extensive reviews (Ramchurn et al., 2004a; Sabater and Sierra, 2005; Yu

et al., 2013a; Granatyr et al., 2015; Ruan and Durresi, 2016).

2.2.1 Direct Interactions

Direct Interactions (DI) of an agent is defined as the collected historical evidence con-

cerning its transactions with other agents. This is also referred to as direct evidence. The
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collection of this evidence in multi-agent systems can be through service requests and

responses. In terms of what is a service request, we give concrete examples from four ma-

jor domains: in cloud computing, an agent’s action to acquire computational resources

from another agent, in online communities (i.e. social networks), a user’s transaction

with another user, in cybersecurity, an agent’s request to retrieve information from a

sensor agent, and in peer-to-peer networks, a peer’s action to request a file from another

peer (Dorri et al., 2018). The collected historical data is then used for estimating the

outcome of subsequent interactions. This is widely used as source of information that is

used by the models for especially as a means of first-hand evidence.

A short example of direct interactions can be given in the context of e-commerce. Assume

that a product is purchased by a buyer agent. After the product is received from the

seller, the buyer agent evaluates the transaction whether the buyer agent would purchase

another item again from the seller. We are not interested in the preferences of buyers

and how much the purchased item fulfils these preferences. Formally, this transaction

refers to Agent A interacting with Agent B. The outcome is the information that is

valuable for assessing Agent B for Agent A. Agent A commonly called as truster or

consumer (Sometimes we refer this role as the decision-maker agent). While Agent B is

called trustee or provider.

This kind of evidence is used by different trust models in different ways. Marsh (1994)

use a set of rules, such as reciprocation to update the trustworthiness of others. Griffiths

(2005) adopts a weighted product of beliefs in a multi-dimensional manner. For instance,

while one dimension would be trust on the availability of bandwidth, the other dimension

would be the trust on the service quality. Ghanea-Hercock (2007) uses incremental

updates to trust estimation based on whether a provider would defect or cooperate.

Temporal Information

The temporal information of interactions is complimentary to direct evidence. This is

known to be useful when agent behaviour is considered to be dynamic. A well known

malicious behaviour, oscillation attack, where providers alternate between desirable and

undesirable behaviour, is an example of where the models that don’t consider temporal

information fail. Especially, a sudden change of behaviour is a complex problem, where

popular models fail to handle.

The earliest and most popular of related work to deal with this complexity that was

proposed is to have a moving time window. This is called the forgetting factor. According

to this factor, the effect of previous interactions is discarded or reduced. The earlier work

does not cover how to determine this value (Jøsang and Ismail, 2002).
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2.2.2 Direct Observation

One of the drawbacks of relying on direct interactions completely in the models is cold-

starting. The trust models face the cold-starting problem when there is no historical

evidence available. This may be due to making a series of direct interactions is not

possible. Therefore, agents in such systems would end up assuming that trustworthiness

of all other agents as equal. In such situations, direct observations are proposed that can

be useful (Sabater and Sierra, 2005). The idea is to have a repository where the system

that agents are in trust system all direct observations are recorded. This repository can

be in the forms of a distributed ledger. This is analogue to each party having a copy of

the available data outputted by the system. Thus, this source be provided in centralized

and decentralized systems. HABIT model can be given as an example that uses this

information (Teacy et al., 2012).

The models that incorporate this type of information are few. The ones that they do

are using aggregated metrics from the system, such as the number of direct interactions

made, the roles of agents, and the number of unique interactions that were made (for in-

stance, the number of interactions with various parties, instead of a clique) (Carter and

Ghorbani, 2003; Klejnowski et al., 2010). One of the reason is this type of information

may be biased or altered. By this, the trust system may need an extra mechanism to

reduce the effect of manipulation (for instance by the use of cryptographic signatures).

The next information type handles this drawback taking into account third-party infor-

mation in a more decentralized manner.

2.2.3 Witness Information

Referrals, advises, reputation, word-of-mouth and indirect evidence (i.e. indirect knowl-

edge) are known to be witness information (WI) (Sabater and Sierra, 2005; Yu et al.,

2013a; Granatyr et al., 2015). Witness information refers to the third-party informa-

tion that the decision-makers collect from other members of the system. This type of

information is known to be useful when agents do not have any direct interactions or

direct observation knowledge. Going back to our previous example of two agents, Agent

A estimating the trustworthiness of Agent B, Agent A can get Agent C’s opinion about

Agent B without committing to a transaction. If we compare the previous information

source and witness information, the difference is that where the type and the source. In

witness information, the decision-makers query on the third party’s opinions. However,

in direct observations, the decision-makers query the system. Aggregate types of infor-

mation such as the number of interactions between a pair of agents or direct interactions

between parties can be collected by this source.
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Figure 2.1: Trust transitivity relationship between agents

Direct observations and witness information suffer from bad-mouthing. This is where

several malicious parties continuously report false information. This attack can be ex-

tended to a more complex form: malicious cliques. In these, malicious parties increase

their reputation by witness information continuously within themselves and reject inter-

acting others that are not from the clique. After the reputation-building phase, agents

that are outside from the clique may perceive them as trustworthy. Thus, using this

source requires defensive strategies this type of attacks. We will elaborate on these in

the next sections.

The consumer agents may ask the provider agent to show evidence about their trust-

worthiness. One of this evidence can be referrals. This is called certified reputation

(Huynh et al., 2006), which resembles the recommendation letters of people that are

for job applications. Before Agent A interacts with Agent B, Agent A queries agent B

and receives a set of reports about her. It can be seen as a short way to get witness

information about agent B. As a result, the traffic of querying witness information in

the network decreases in an ad-hoc MAS. In the cases where Agent B mimic another

agent’s identification, Hard security measures can be used while collecting witness in-

formation to make sure the identities of advisor agents are not copied (Botelho et al.,

2009). Implementing this mechanism empirically has been shown to have benefits in

addressing the cold-start problem (Huynh et al., 2004).

Beta Reputation System (Jøsang and Ismail, 2002), BLADE (Regan et al., 2006a) and

TRAVOS (Teacy et al., 2006) can be given as an example trust models that use this

information alongside direct interactions. The models use of witness information ranges

from weighting heuristics to probabilistic graphical models. Witness information is usu-

ally combined with other information types. There are a few models that only use

witness information (Granatyr et al., 2015).
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2.2.4 Sociological Information

The relationships between agents can be modelled as an undirected graph. These graphs

are often called a trust network. Edges of this graph denote trust relationships between

agents. Intuitively, witness information can be thought of as equal to sociological in-

formation in the following scenario. Assume two agents that are not connected (i.e.

never had a direct interaction before) in a network (for instance, two hops away) uses

intermediate (i.e. middle, advisor) agents to determine the trustworthiness of another.

This trust transitivity can be used in the computation of trustworthiness of others. How-

ever, the main difference in the related work of usage of sociological information is the

extraction features from the network (Sabater and Sierra, 2005).

The roles of agents, ontologies, stereotypes and reputations of nearby agents are exam-

ples of sociological information. Sometimes the combination of all is called the context

of the trust relationships. These features can be learned and exploited to be used as an

indicator of the trustworthiness of unknown agents. Burnett et al. (2010) shows that

each agent can have a stereotype. These stereotypes can be learned by the decision-

making agent with the use of decision-tree algorithms. The estimated stereotype is used

as the prior probability estimation in Bayesian trust models. This is shown to be useful

in ad-hoc agent groups (Burnett et al., 2013). Similarly, Liu and Datta (2012) shows

usage of contextual information in e-commerce setting. The features that were used in-

clude, for example, the average age of the profiles, average delivery time and the degree

of contact information profile.

Chhogyal et al. (2019) uses values that agents’ share when there is no other information

available. The values of agents are considered to be abstract that represent compatibility

of agents, the degree of conflict between agents. Compared to stereotypes, their model

makes trust assessment between two agents by computing the number of values that

agents share minus the number of their values that contradict each other. They explain

the use in the transitivity in trust sequences for tasks that require multiple agents

cooperation. The situations such as Agent A delegates a task to Agent B, and Agent B

delegates a dependent task to Agent C. At each link, they use their assessment method.

Thus, values of Agent A and Agent C are not compared. After the trust assessments,

each agent selects the most trustworthy agent for delegation.

2.3 Computational Models of Trust

In this section, we focus on numerical models of trust and reputation systems (TRSs)

instead of cognitive methods Falcone and Castelfranchi (2001); Pinyol et al. (2012);

Piunti et al. (2012). The cognitive methods are proposed to incorporate the use of

characteristics of agents to form the trust. They may, for example, verify the ability of
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an agent using beliefs about that agent. We exclude these models from our scope for

several reasons. First, these high-level models are justified theoretically and there is no

concrete instantiation that we are aware of. As Ramchurn et al. (2004a) pointed out

these models require learning aforementioned factors. However, the data that is related

to the behaviour of parties to form a set of beliefs in different dimensions (beliefs such

as competence, willingness, persistence, motivation) are not evident in the environment.

Therefore, we put our focus on computational models of trust.

One of the earliest statistical models of trust and reputation system that proposed is

Beta Reputation System (BRS) Jøsang and Ismail (2002). It is a simple model that uses

Beta probability density functions to represent posterior distributions of binary events.

This is a practical design choice, where Beta distributions are conjugate prior to the

binary events. The reputation of others are combined cumulatively by the use of the

parameters of the Beta distribution. To reduce the effect of the previous interactions,

their effect is reduced by a forgetting factor (aka. longevity factor, ageing factor). For

example, the decision maker agent stores all the outcomes of a series of interactions with

provider j as OTδ→j until time T . The pseudo-counts of the associated beta distribution

(r, s), where r is for positive and s is for negative transactions, are changed with a

forgetting factor λ by:

rTj =
t∑
i

[Oiδ→j = 1]λ(t−i) and sTj =
t∑
i

[Oiδ→j = 0]λ(t−i) (2.1)

The forgetting factor is bounded with in the range [0, 1]. [Oiδ→j = 1] is an Iverson

bracket (Iverson, 1962) that returns 1 if the condition inside is satisfied, otherwise 0.

Afterwards, the final reputation, τj , is given to a provider by:

E(τj |rTj , sTj ) = (rTj + 1)/(rTj + sTj + 2) (2.2)

This model has been extended with Dirichlet Reputation Systems (DRS) where Dirich-

let distributions Josang and Haller (2007) are used for generalizing the binomial Beta

functions, allowing any number of discrete rating levels. Similar to BRS, Dirichlet

distributions are also conjugate before multinomial distributions. The expectation of

posterior probability of behaviour of the parties is used as the final rating for decision

makers. To mitigate deceptive agents, Beta reputation system was extended to filter

agents who deviate from the majority by Whitby et al. (2004). This work includes a

majority filtering mechanism to Beta reputation system by proposing a quantile param-

eter to filter parties that deviate from the majority. At this point, information gathered

from direct observations and others were treated as same. They are added cumulatively

and providers that remain in the quantile are kept. Iteratively, this is done from ev-

ery decision maker perspective, until the set of filtered parties converges. They provide
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appropriate values for the quantile parameters that they found empirically given their

experimental settings.

Instead of these methods which incorporates Bayesian Learning, FIRE (Huynh et al.,

2004) model handles each of the information source individually and computes trustwor-

thiness of an agent by taking a weighed average amongst every information source. In

our terms, these are direct evidence, witness information and sociological information,

and include a weighting function, similar to the forgetting factor. They represent opin-

ions of agents (i.e. ratings) in the range of [−1, 1]. Regarding direct interactions, they

multiply two metrics: reliability measure, and rating deviation reliability. These are the

ratio of the number of opinions given before with respect to a given threshold and the

deviation of these opinions to the average respectively. The way in which they handle

direct evidence is adopted from the REGRET model (Sabater and Sierra, 2001). Briefly,

REGRET model uses a weighting averaging method and weights are determined by an

ontology. FIRE uses the witness information, which is collected cumulatively by after

discounting the historical opinions. The sociological information that the uses is roles

that agents may have. The idea stems from if two agents are from the same organization,

they can set a trustworthy prior for each other. These are defined as predefined rules

for each decision maker agent. All these components are weighted and averaged for the

final composite trust value, which is used in decision-making.

TRAVOS (Teacy et al., 2006) adopts the similar mechanisms as Whitby et al. (2004)’s

BRS model, but calculates weights of how similar is the decision’s makers direct evidence

with respect to information from others. This means that TRAVOS does not have to

rely on the majority of opinions as in BRS. This comparison is done by a heuristic which

compares these two distributions in terms of regions. The trust in these opinions from

others relies on the expectation of direct evidence and the witness information being

in the same region. The total density mass in this region then is used for the degree

of similarity. This approach has shown to be better in cases where there is more false

evidence, which makes the majority filtering not feasible.

POYRAZ (Şensoy et al., 2009) introduces the use of ontologies in the service selection

domain. In this setting, the deceptive agents are handled differently from TRAVOS.

Direct evidence and witness information are weighted according to the level of error

that decision-maker can tolerate similar to FIRE. The final trustworthiness of agents

is calculated as the weighted average of both of the derived score derived from each

information source. These are called public and private credit scores of agents. The

underlying derivation of these is based on BRS for both sources. The use of ontological

knowledge with this discounting mechanism, results in higher performance when com-

pared to TRAVOS and BRS, especially in the early stages of simulations. This is useful

for mitigating the cold-start problem.
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Regan et al. (2006b) avoids this heuristic by relying solely on principled theories in

BLADE. In this model, trust relationships are represented by Bayesian Networks. Com-

pared to TRAVOS, BLADE supports any number of discrete rating levels similar to

DRS. BLADE also removes the filtering mechanism and introduces an implicit dis-

counting mechanism by learning the correlation between direct observations and witness

information. It is empirically shown to be outperform TRAVOS when the ratio of de-

ceptive agents is higher. One of the largest limitations of this model is to compute the

estimations efficiently every input in the model must have all features available. We will

elaborate on this assumption in Chapter 5. The solution does not work in cases where

the decision-maker does not have all observations in the historical data (i.e. when it is

missing some parts of the data).

HABIT (Teacy et al., 2012) relaxes one of these assumptions of having only discrete

observations. Their hierarchical model can allow both discrete or continuous observa-

tions. To capture group behaviour in the system, their hierarchical Bayesian model

sets a hyper-parameter that denotes the behaviours in the system. In comparison to

BLADE model where, their model have Oi→j ∼ θi→j dependence (Each observation,

Oi→j , is distributed by θi→j). Each observation between i and j depends on the param-

eter θ. HABIT proposes the behaviours are distributed according to a hyper-parameter

φ: For all i and j pairs, this is θi→j ∼ φ. To draw inferences using this model, they

recommend using approximation methods, such as Markov Chain Monte Carlo (MCMC)

and variational methods. The closed-form computations are only provided for specific

cases, for instance, discrete observations with a Dirichlet Process (DP) prior. Their

results show through simulations that when there is a behaviour correlation between

agents, the model outperforms BLADE. The group behaviour that they take into ac-

count is simulated by the sampling of a Dirichlet distribution for θ where the sum of the

concentration parameters (α) is varied.

More recent models of trust revisit some previous ideas and/or included more complexity

to the models. PGTM (Fang et al., 2013) proposes a probabilistic graphical model

that was inspired by trust between humans while considering binary outcomes. The

social concepts such as competence, benevolence, integrity and subjectivity difference

are included in the model. While some of these factors are observable, and some are

included in the model as latent factors. These latent factors are learned by the closed-

form derivations. The inferences are made approximately by collapsed Gibbs sampling

(Liu, 1994). The model is designed for e-commerce trust transactions, where users rate

entities, and advisors provide opinions about those entities.

Jiang et al. (2013)’s MET model (known as multiagent evolutionary trust model) focuses

on creating a trust network which consists of a set of advisors for a decision-maker by

direct evidence and witness information. They define a fitness function, which is com-

puted by the average difference of direct evidence and witness information. Therefore,

smaller the value of fitness the higher the quality of the trust network (i.e. a set of trust
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values for each provider). In each generation, they first select three advisors (these are

selected uniformly if there is no prior information). Second, a crossover operation is

invoked stochastically. The operation computes a new trust network at each generation

by combining witness information from all advisors from the previous generation. Later,

a mutation operation is invoked which adds some perturbation (i.e. noise) to the gener-

ated trust network. Finally, the resulting trust network is kept only if its fitness value

is lower than the previous generation. This process is done until a specified limit. The

model assumes that the decision-maker agents have historical information both direct

and indirect. It is not clear in their work how to collect this information when there is

a cold-start in the system.

The models mentioned previously mostly evaluate the performance of their assessments

by the use of simulations. In these evaluations, the common metric is the mean abso-

lute error of the distance between the predicted behaviour and the assigned behaviour

Jøsang and Golbeck (2009) of providers. The challenge in comparing the performance

of models in practice starts from the fact that there is no true ground truth available.

As the ground truth is unknown, the use of real-data tend to use aggregated metrics.

The availability of the information that has true ground truth is rare. This requires

participants to provide some information about their trust relationship. However, this

is a challenging problem. For instance, Epinions dataset (Epinions.com) (Leskovec and

Krevl, 2014) used by PGTM is an example to this. In Epinions dataset, users rate other

user’ entities (articles). Also users can directly indicate if they trust another users.

These indications are used as a ground truth in their evaluation. Therefore, the perfor-

mance evaluation in trust models is mostly done via the use of simulations. This is by

generating various sets of different behaviour parameters and market settings. In fact,

this makes comparing different trust models challenging.

2.4 Decision Making with Trust

The computation of trust does not cover the problem of making progressive decisions

to who to interact with at a certain time. Specifically, computation of these subjective

beliefs does not necessarily allow when to explore others, and how much to invest in ex-

ploring. By exploring, we mean engaging in interactions with agents that are unknown to

the decision-maker agent. Although the popular method is to select the most trustworthy

agent amongst others (known as greedy), this approach does not take into account the

constraints that bound the decision-maker: risks, rewards, the amount of budget, and

the time. These approaches that adapt to varying environmental conditions are called

dynamic approaches. They are designed to manage this exploration-exploitation trade-

off. The decision-maker has to decide when to search for better alternative providers

versus when to continue engaging with known providers.
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Griffiths (2006) uses a threshold and grouping based decision-making model. Rather

than marking agents as trustworthy or not, the model refers to provider agents that they

can be in either untrust or undistrust (insufficient trust) category, which is determined by

thresholds. The model choses to explore others if there are not any trustworthy agent

that is determined. The exploration phase of this model is not explicitly mentioned,

but a number of the interactions at the beginning are allocated for a uniform random

exploration (each agent has an equal probability of being selected).

The extended FIRE model Huynh et al. (2006) proposes a two-step decision-making pro-

cess that incorporates a Boltzmann strategy (Kaelbling et al., 1996) for exploration and

exploitation. At first, the truster calculates the trustworthiness of trustees by witness

information which is provided by other parties. If no reputational information is avail-

able, the agents concerned are stored in a set called NoTrustValue and the remaining

trustees are placed in HasTrustValue set. After this initial step, the truster determines

which action to take by using a Boltzmann exploration strategy. The probability of

selecting an agent ai is determined by:

P (ai) =
e
ui
T∑n

j=1 e
uj
T

(2.3)

where ui denotes the expected utility and T is the temperature parameter. There are

two actions that a truster can take according to FIRE with Boltzmann exploration:

select a random trustee from NoTrustValue, or select the trustee with the highest trust

value from HasTrustValue. In the second phase, the temperature parameter, T , is set

to a high value. This makes the algorithm biased towards to exploration over exploita-

tion. Throughout this phase, the T parameter decreases over time according to a decay

parameter, and so the decision-maker shifts into exploitation in later interactions. How-

ever, the question of what is the decay rate for the temperature value and the optimum

value of T is not analysed in a rigorous manner.

Ahn et al. (2008) proposes a simple method, which takes inspirations from Reinforcement

Learning and proposes using an ε-greedy algorithm. Each time decision-maker agent uses

their multi-dimensional trust model to make trust assessments over all provider agents.

This list is kept sorted with only known agents. They probabilistically make between

two choices: using an agent from the list, or selecting an unknown agent randomly. The

probability of these actions are set 1−ε and ε respectively. Throughout the transactions,

ε is made to decay similar to FIRE model. This increases the probability of selecting

agents from the list in the later stages.

Fullam et al. (2005) propose a testbed and a competition for trust models and decision-

making processes to be evaluated under similar conditions. This was known in the trust

community under initiative Agent, Reputation and Trust (ART). ART has been discon-

tinued, however, two key approaches were designed for the competition. The testbed had



20 Chapter 2 Related Work

Trustor

Information 
Sources

Trust 
Model

Decision 
Process

assessments action
Environment

changes

Figure 2.2: Trust-aware decision making agent

two operation modes: competition and experimentation. These two approaches were de-

signed for the competition mode, where decision-maker agents compete with each other.

The competition mode is based on an imaginary domain, art appraisal domain. The

task of consumers is to make a profit from art pieces by betting on their price. However,

consumers do not have any knowledge about the price of an art piece. They request

opinions from appraisers (i.e. advisors, potential opinion provider). These requests have

a fixed cost, and the opinions can be deceptive. The final offer is calculated by the

simulation platform by the weighted average of the opinions received. These weights are

expected to be computed by consumer agents. Consumer agents have a bank account

(i.e. budget) on how much they can invest to witness information. Direct evidence is

encapsulated in the amount of profit the consumers make. Each art piece is sequentially

appraised. This is to allow consumers to update their trust on advisors after they start

appraising the next art piece.

The winner of ART competition in 2006 and 2007, Teacy et al. (2008) models the com-

petition’s domain as a multi-agent RL problem. VPI Chalkiadakis and Boutilier (2003)

algorithm is adapted to this setting. Their Bayesian approach aims to approximate an

optimal solution for the exploration-exploitation trade-off. The winner of the next com-

petition in 2008 was by the agent developed by Muñoz et al. (2009) instead of an RL

method, their approach introduces a simple dynamic approach that divides agents into

four groups based on the knowledge degree that a decision-maker has. This is based on

their multi-dimensional trust model. Similar to previous models, these only use direct

evidence and witness information. The value of this metric ranges from 0 to 1. Trustees

with degree 1 are denoted as perfectly known and therefore are exploited the most af-

ter the exploration phase. The model uses various levels of thresholds to decide these

categories and phases of exploration and exploitation. For instance, in case, not enough

trustees are perfectly known, additional rounds are allocated for exploration according

to a threshold. Both these last two approaches are specifically designed for the competi-

tion. The competition was used as a test-bed in their empirical evaluations. Therefore,

the results are affected by other agents’ strategies. This limits their generalizability.

The considerations over budgetary and usage of various trust models are not explored.

Hoogendoorn et al. (2010) propose an algorithm that looks into temporal information

of a provider. According to this, decision-maker computes two trust metrics along and

uses a forgetting factor: the long term LTi(t) and the short term STi(t) trust values.
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Intuitively the major difference between these types is the decay parameter γ. These

metrics are defined by the varying γ values: γ is set lower for LTi(t) and higher for

STi(t). By taking the average absolute difference between these values, the estimated

change C(t) is calculated in each time step. If C(t) = 0, this means that there is no

change in the behaviour of the agent. Thus, the truster acts as in greedily : picking the

most trustworthy party. Otherwise, a selection probability value RPi(t) is calculated

based on the witness information for each agent. A trustee is picked by a Monte Carlo

method based on RPi(t) values.

One of the most recent dynamic approaches proposed by Sen et al. (2015b) uses budget-

limited multi-armed bandit algorithms, BL-MAB, as a decision process. This is the only

paper that explicitly considers budgetary constraints of a truster in environments where

only direct interactions can be utilized. The authors improve Tran-Thanh (2012)’s work

by introducing new BL-MAB algorithms for trust. They apply these algorithms for

building trust in a trust-based supply chain environment. For each step in the supply

chain, the corresponding decision-maker uses these algorithms to build trust. The model

only considers direct evidence. These are used to compute the reward/cost ratio of each

provider. This is the main criterion to decide which provider is better to pick at a

particular time. In Chapter 4, we argue that witness model and any trust models with

certain properties can be included to extend the generalizability of this model.

The multi-armed bandit literature includes other approaches that focus on the shortcom-

ings of BL-MAB algorithms, which assume the cost of interacting is known beforehand.

However, in domains such as real-time bidding in ad exchange and particular service

provider problems, the cost of pulling an arm is discovered later. Closely related to

this limitation, Ding et al. (2013) propose Multi-Armed Bandit problems with Budget

constraint and Variable costs (MAB-BV). Here the cost of an arm is only known after

the arm is pulled. A further assumption underpinning the models described so far is

that interactions occur in a sequence, not in parallel. Xia et al. (2016) study an ex-

tension of MAB-BV that enables a player to pull an arm multiple times in each round.

Their multiple ratio confidence bound algorithm (MRCB) provides better empirical and

theoretical results than all other algorithms in the literature, including the algorithms

designed for MAB-BF and MAB-BV. This highlights the fact that single interaction

decisions enacted in a sequence are one (often unstated) assumption of existing models.

2.4.1 Learning from expert advice

The problem of learning from expert advice has been investigated in Online Learning.

The setting that was considered is: Assume that there is a set of experts (similar to

advisors in trust engagements) and several trials (i.e. occurrence of an event multiple

times). These experts are known to be capable of providing predictions regarding the

outcome of an event. The goal is to develop a learner (i.e. master, predictor), which
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combines these predictions to generate an accurate prediction on outcomes of subsequent

trials as close as possible to the best expert (i.e. oracle).

The halving algorithm is one of the simplest methods (Angluin, 1988). In this algorithm,

the learner keeps a set of experts. With equal weight, experts vote on the outcome of

the next event. Then, the set is updated after each trial. The experts that predicted

the outcome successfully are kept for the prediction of the next trial. This assumes that

there is at least a single expert (i.e. the best expert) that does not make any mistakes in

predictions. With this assumption and assuming that more than half of the experts are

accurate in their predictions, the maximum number of mistakes increases logarithmically

by the number of experts. If there are no best experts, a naive approach is to reset the

set (i.e. consider all agents again) when the set of experts is empty.

Limitations of the Halving algorithm are tackled with a weighted majority algorithm,

also called exponential weighting (Littlestone and Warmuth, 1994). This generalizes

the halving algorithm by initially setting weights of the votes to be 1
N , where N is the

number of experts. These weights are updated in each round and the set of experts is

kept unchanged. The prediction of a trial at the time t is then computed by:

pt =

∑N
i=1wi,t−1fi,t∑N
i=1wi,t−1

(2.4)

where fi,t is the expert i’s prediction and wi,t−1 is the weight assigned to the expert.

These weights are updated at each round by:

wi,t = wi,t · exp(η`(fi,t, yt)) (2.5)

where η > 0 is the learning parameter and `(fi,t, yt) is the preferred loss function.

The ITEA algorithm (Parhizkar et al., 2019) is a recent adaptation of the weighted

majority algorithm in a trust setting. Their algorithm assumes that the set of providers

and the set of advisors are disjoint (i.e. a provider agent can not have an advisory role at

the same time). Initially, the weights of advisors are set to 1
N . Next, the decision-maker

agent queries all the advisors to receive a single binary opinion about the trustworthiness

of each provider. Then, these are combined for each provider by Equation 2.4 (i.e. for

each provider there is a pt, called as pt(i, j), which denotes the prediction of consumer i

about provider j at the time t). The provider with the highest pt(i, j) is selected for direct

interaction. The outcome of the direct interaction then is used for updating the weights

similar to Equation 2.5. They show that this method outperforms the TRAVOS and

MET models, and has a smaller footprint in terms of computational time and memory.
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2.4.2 Parameter optimisation

The performance of decision processes that we described above depends on the properties

of the systems. For instance, the performance of multi-arm bandit algorithms vary

significantly in different populations, budgets and costs. There are various ways to

address this challenge; for example, a truster may select from a set of decision processes

or combine the outputs of multiple decision processes. The algorithm selection method

(Rice, 1976) can be employed where one from among a set of algorithms is selected on

the basis of certain criteria. One common approach is “winner-takes-all” [Lazzaro et al.

(1989)], in which the algorithm whose overall performance is the best on a given problem

distribution.

Alpaydin (1998) combines multiple learning algorithms in order to increase the perfor-

mance of the overall learning process. In automated negotiation, Ilany and Gal (2016)

developed a meta-agent, which aims to predict the performance of a set of negotiation

strategies based on distinctive features of domains. These features are, for instance,

the size of the outcome space, the competitiveness of the scenario, degree of conflicts

among preferences and so on, and accordingly adopt the strategy expected to perform

best for the given scenario. This was inspired by the “wisdom of the crowd” princi-

ple (Surowiecki, 2005) and the “algorithm portfolio” approach (Leyton-Brown et al.,

2003). Gunes et al. (2017) show that this approach can work well in automated nego-

tiation. Their approach outperformed state-of-the-art negotiation agents in the recent

international automated negotiating agents competition. The approach competed in

International Competition Automated Negotiating Agents Competition (ANAC) 2016

and got the first place amongst ten finalist agents1.

A model grounded on this approach can offer mechanisms in a trust-based decision-

making problem is an open question. For example, before a decision-maker starts inter-

acting with providers, an appropriate decision process can be selected, given the context:

number of potential trustees, number of interactions, and overall budget. Having a set of

approaches defined and mapped to domain characteristics beforehand is a major disad-

vantage for these method, however even if these approaches are known, their performance

in new systems requires an evaluation phase to rank which one performs better than

others. To this end, there are existing techniques that predict the performance of each

approach based on properties of systems.

2.5 Robustness and Security

Robustness of trust and reputation systems is an important issue that has not got much

attention in the trust community. As discussed trust models are getting complex, for

1(http://web.tuat.ac.jp/%7Ekatfuji/ANAC2016/)

http://web.tuat.ac.jp/%7Ekatfuji/ANAC2016/
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instance: Burnett et al. (2010) incorporates stereotypical information, Goel and Faltings

(2019) introduce mechanisms to encourage truthful interactions in crowdsourcing set-

tings and Meo et al. (2017) uses topological information available in the environment.

Yet, the work on investigating the robustness of the models are few. Jøsang (2012)

argues:

“Many studies on robustness in the research literature suffer from the authors

desire to put their own trust and reputation system designs in a positive

light, with the result that the robustness analyses often are too superficial

and fail to consider realistic attacks. Publications providing comprehensive

robustness analyses are rare.”

Thus, the overall focus has been on accurately assessing/calculating the trust, while

making weak assumptions about the cheating behaviours of the parties involved. Ad-

dressing this gap is pivotal for devising robust trust and reputation systems against

attacks. For this reason, this section reviews potential attacks and existing attempts to

investigate robustness in existing trust models and other related algorithms.

2.5.1 Trust and Reputation Systems

There are few reported studies that analyse robustness TRSs against realistic attacks.

In fact, Granatyr et al. (2015) investigated 230 papers related to trust and reputation

systems in multi-agent systems. A large proportion (68%) of these models do not assume

any form of attack. The ones that look into this problem tend to, first theoretically

identify the types of vulnerabilities of interest, then empirically assess the candidate

models to measure the robustness against attacks. We categorize these vulnerabilities

and their properties in Table 2.1.

The types of attacks that are considered in the literature consists of actions, or a com-

bination of those actions, that an attacker or a set of attackers can take in the system.

We investigated these identifications and derived their properties. Starting with simple

strategies to the complex ones, the attack strategies identified are:

• Self-promoting (Hoffman et al., 2009), (also known as unfair ratings (Jøsang, 2012)

and ballot-stuffing (Such, 2013), where an attacker by potentially creating multiple

identities falsely increases a target’s reputation. The target can be the attacker or

another agent.

• Slandering (Hoffman et al., 2009; Such, 2013), (also known as unfair ratings

(Whitby et al., 2004)) is where the attacker disseminates negative feedback to

potential competitors.
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Controlled
seller(s) advisor(s) Objective Properties

Attack I C I C
LT

profit
damage

TRS
ST

profit
SI time MI

Self-promoting • • • •

Slandering • • • • •

Whitewashing • • • • • •

Orchestrated • • • • • • • • • •

Oscilllation • • • •

Camouflage • • • •

Value-Imbalance • • • • •

Reputation Lag • • •

Initial Window • • •

Exit • •

Discrimination • • • • • •

Table 2.1: The properties of identified attacks for TRSs. Attackers use seller(s) or/and
advisor(s) either independently (I) and/or collaboratively (C). LT is long term, and ST

is short term. SI stands for switching identities, and MI for multiple identities.

• Whitewashing (Hoffman et al., 2009) (also known as re-entry (Kerr and Cohen,

2006, 2009) and new-comer (Wang et al., 2014)) is used by the attackers to leave

the system, once the reputation of the attacker is not high enough to further profit

from the malicious behaviour.

• Sybil attacks in peer to peer systems, where the attacker forges multiple identities

to gain the majority control over the system. Kerr and Cohen (2006) identified the

cold-start problem (also known as initial window (Kerr and Cohen, 2006, 2009))

where the attackers can make profits in the initial start of the system. Within no

information available to the consumers, attackers can misbehave to make a short

term profit.

• Exit attack is the steps that an attacker take to misbehave as long as the attacker

profit from the system. Then, they leave the system.

• Value-imbalance attack (Wang et al., 2014) is the process of increasing the repu-

tation of a provider with many low-cost interactions. In many trust models, the

cost of the interaction is not taken into account. This makes attackers to increase

their reputation, then make a large profit by having a high-cost interaction.

• Reputation lag (Sirur and Muller, 2019) exploits the assumption that TRSs assume

the interactions are instantaneous. The other one is attackers aim to increase the

reputation of their controlled providers by making many low-value non-deceitful

interactions. Once the good reputation is achieved, the attackers switch to making

high-value interactions with deceitful behaviour.

• Discrimination attack Jøsang (2012); Such (2013); Wang et al. (2014) can be

combined with the attacks mentioned above can by use of other parties. In this
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attack, the assumption that the reputation values are not relative to each party.

Therefore, attackers create their cliques with sellers and consumers, which they

only interact with the ones that they are in their clique. The increase in the

reputation within the clique can be used with others who are not inside the clique

later, to achieve higher gain in high value interactions.

• Camouflage attack (also known as dynamic unfair rating attack), Muller et al.

(2016) aims to use advisors to first build reputation by being truthful initially and

then acting maliciously to use the gained reputation.

• Oscillation attack from Srivatsa et al. (2005), in which attackers create two teams

in which they switch between malicious and non-malicious behaviour. They can

also incorporate the methods mentioned earlier to increase the reputation of the

attackers in non-malicious behaviour.

• Orchestrated attacks (also known as playbooks (Jøsang, 2012) and collusion attacks

(Such, 2013; Ruan and Durresi, 2016)) are the combinations of multiple attacks.

The designers of predominant TRS that we reviewed consider degrees of bias or noise

in their models. The studies done by others try to answer: How vulnerable the models

are under these identified attacks? Kerr and Cohen (2009) answers this question by

creating strategies of attackers by materializing the given attack strategy definitions. In

a simulated marketplace, the degree of vulnerability is measured by the amount of profit

the attackers can achieve. They consider a advertised-price marketplace. A fixed set of

products are sold by sellers. The prices of these items are sampled from the right portion

of a Gaussian distribution where the median is 0. (The prices of items can not be lower

than zero.) Each seller uniformly takes a set of products to sell. The sellers are selected

from three different groups of behaviours: honest sellers, random cheaters and cheaters.

Sellers from cheaters group select a strategy according to the experimental setting. The

strategies can be in the forms of proliferation attack (a malicious seller creates multiple

identities, thus inflating the number of products that are on sale), reputation lag attack,

re-entry attack and value-imbalance attack. Each round of the simulation represents

a day. After 14 days, consumers learn the outcome of a transaction. The amount of

profit gained by cheaters from each attack and a simultaneous version of the attacks

are measured and presented across five trust models. The authors point out that these

attacks have defeated numerous TRSs, which include TRAVOS and BRS.

There have been studies on the theoretical aspects of some attacks. Wang et al. (2015a),

for example, investigate slandering attacks from an information-theoretic perspective.

They use information leakage to measure the strengths of the attacks conducted. This is

a measure that they define to show how dependent a set of random variables are to each

other. Information leakage is set to zero if they are independent. Based on this metric,

they compute the strongest possible attacks that can be conducted by malicious advisors
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(Wang et al., 2015b). They argue that the worst-case attacks in terms of slandering

are a better measure than specific variations of the attacks. The continuation of their

investigation shows the theoretical findings on the effect of initial honest behaviour of

malicious advisors to gain the trust of consumers first (reputation lag attack) Wang

et al. (2016). In addition, authors assume that any trust model that is in question in

terms of its robustness treats the opinions from advisors under an information theoretical

framework in their investigation. We will elaborate on this in Chapter 5

Bidgoly and Ladani (2016) provides a more complex approach, where various attack

strategies are considered with a general planning mechanism (POMDP) that learns ef-

fective attack strategies through trial and error. The use of a partially observable MDP

is relevant in designing a single attacker attempting to exploit an unknown TRS, where

the ordering of the attacker’s actions influences the outcome. It is another step into dis-

covering the unknown space of orchestrated attacks. However, one of the practical issues

is the search space is substantial. The considered attackers are behaving independently,

whereas, in practice, it is known that the attackers incorporate other parties in their

attack strategies.

Sirur and Muller (2019) provides a theoretical analysis on the reputation lag attack.

Their analysis includes varying levels of capabilities of the attackers. These are ora-

cle attackers which know the past and future transactions of the system, eavesdropper

attackers which only know past transactions, and blind attackers which can see only

their transactions. Within these configurations, they theoretically show that injection

of a specified number of negative feedback to any TRS optimally is an NP-hard prob-

lem. Thus, their main finding is that an optimal strategy in the space of reputation lag

attacks is not computationally feasible.

Defensive strategies against such attacks are not common in the literature. The key

trust models that we presented earlier tend to not provide an explicit defensive strategy,

but rather show the empirical performance of their models with the assumption that

attackers exist. The ones that have a strict defensive strategy, tend to focus on putting

additional mechanisms in the dissemination instead of the formulation and the assess-

ment calculation of the model (Hoffman et al., 2009). Here, the dissemination refers to

the method of sharing reputational information amongst the agents. To give an example

regarding the fake identities in TRSs, such mechanisms are, for instance, making sure

the agents are unique by associating them with cryptological and/or network-related

properties (e.g. internet protocol or media access control addresses, public keys, and

network coordinates to detect clusters). For the generation of false information (by the

means of self-promoting, slandering and orchestrated attacks), the defensive strategies

were based on techniques such as discounting the bad behaviour (for instance, TRAVOS

(Teacy et al., 2006)), completely removing the outliers (for instance, BRS with filter-

ing (Whitby et al., 2004)), or transforming the behaviour (i.e. utilizing the malicious

behaviour to form the true distribution (Regan et al., 2006b)).
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2.5.2 Adversarial Behaviours in Learning

Adversarial behaviours in learning and classification tasks is similar to the verifying

robustness of models from TRSs. Although the application domain is different, there are

similarities in terms of treating the models as black-boxes, or usage of empirical methods

and benchmarks. Starting with real-world classifications, these tasks tend to require

a lot of data for training. The process of collecting training data may be expensive

and time-consuming. A common way to solve this problem is to acquire data sets

from different sources. This can be done as an offline process, for instance, multiple

workers in crowdsourcing platforms can provide a large number of training examples or

an online process where on-the-fly new instances can be accepted by the users of this

system. However, the disadvantage of having this procedure is that the algorithms are

open to being influenced by data poisoning (Barreno et al., 2006). Data poisoning is

a technique to strategically manipulate the training data set of a classifier to achieve

an adversarial objective (Barreno et al., 2010). These attacks can target the overall

performance (maximizing test error) of the system or focus on misclassification of a set

of inputs.

The majority of the literature looks into the problem of devising poisoning strategies to

systems for both cases that assume the training data set is completely trusted. Outside

of academia, in practice, there have been reports that observe that this is not a robust

design choice. For instance, Microsoft Tay, a chatbot that was designed to mimic young

Twitter users, was taken offline, due to the generation of offensive comments after being

poisoned by other Twitter users (Biggio and Roli, 2018). Another issue is that the

provenance information of each data instance, is not taken into account or assumed not

to exist. There are objective-oriented approaches: Biggio et al. (2012), for example,

looks directly to SVM classifiers and tries to find an attack that decreases the overall

accuracy of the classifier. There are also approaches that specifically focus on the effect

of noise such as Prasad et al. (2018) improves the robustness of classifiers under a large

number of outliers.

Gathering a relatively small trusted data set to improve the training of an untrusted data

set by taking into account different sources can show improvements in accuracy without

considering the features of the sources (Konstantinov and Lampert, 2019). Further the

features of the sources can be useful for further improving the predictions by aggregating

the instances from groups of other sources. This is explored by Baracaldo et al. (2017,

2018) where they provide filtering mechanisms with provenance information. In their

work, they propose two algorithms: removing parties that are not behaving similarly in

the trusted data set, and labelling parties that are suspicious by their contribution to

the overall accuracy when the trusted data set is not available. Existing work by Koh

and Liang (2017) approximates the loss function of classifiers to answer the question of

how important a single data point is to predictions. Treating the classifier as a black
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box, they demonstrate the means to understand the behaviours of complex prediction

mechanisms. As they also point out that there are open questions in looking at subsets

of the training set and understanding their effect when they are provided by multiple

sources.

2.5.3 Search for Complex Attacks in Information Security

Attacks in Information Security domain are primarily related to attempts to get unau-

thorized access to an asset. (The term, asset, is used for devices, data or some component

of the environment that is protected.) As we pointed out the possibility of sophisticated

attacks in TRSs, this is highly relevant in this domain as well. Generally, any asset

in the environment has a level of impact according to how critical it is to the system.

This criticality is the key motivator for defenders to introduce defensive components,

such as sensors, controls, specialized network devices (i.e. data diodes) to protect their

environment. A primitive attack can be an SQL Injection to a server, or a Distributed

Denial of Service (DDOS) attack. These are known to be detectable by sensors, such

as Intrusion Detection Systems (IDS) or anomaly detection sensors. To understand and

describe these primitive attacks, defenders created a shared repository which contains

public databases of vulnerabilities, weaknesses, and the classifications. These databases

are regularly updated according to discoveries found by specialists.

The complexity of attacks has been increasing in this domain (Navarro et al., 2018). The

recent attacks tend to consist of a combination of primitive attacks, known as multi-step

attacks. The complexity stems from a series of these attacks taking place in a target

environment. To detect a multi-step attack, Dain and Cunningham (2002) points out the

logical progression of these steps taken place can be an indicator. This led to methods

such as looking into the casual relationships between the attacks (Salah et al., 2013).

Although multi-step attacks are structurally similar to orchestrated attacks in TRSs,

the applicability of these methods is limited.

The types of attacks that are closely related to our research in this domain are under

“Employing Probabilistic Techniques”, which as categorized by the CAPEC taxonomy2.

These attacks utilize exploration of the security properties of the target assets, identi-

fying and exploiting the weaknesses that are found. For instance, Fuzzing can be given

as an example. In this attack pattern, the system is treated as a black-box and the set

of inputs are searched to identify the possible insecure states of the target. While many

of the search mechanisms are brute-force, there are more complex search methods that

resulted in some success. For example, Godefroid et al. (2008) show this method with a

tuned search algorithm was able to find vulnerabilities that were skipped by other types

of tools.

2MITRE Corporation maintains Common Attack Pattern Enumeration and Classification (CAPEC)
dataset: https://capec.mitre.org/data/definitions/223.html

https://capec.mitre.org/data/definitions/223.html
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2.6 Summary

In this chapter, we have presented an overview of the relevant literature about our re-

search goal by looking at essential components of a trust-aware agent. We first discussed

the information sources that trust models use. Second, we discussed a selection of trust

models, their limitations and assumptions. Then, we reviewed the decision processes

from trust literature that utilize these assessments in their decision-making. Finally,

we provided the related work on adversarial behaviours and robustness studies about

TRSs and other related fields. In the following chapter, we introduce the background

and followed by our first contribution, budget-limited decision-making agent that utilize

direct interaction and witness information sources.



Chapter 3

Background

In this chapter, we will describe a set of techniques that we exploit that underpins the

contributions of subsequent chapters. We give an overview of subjective logic, which we

use in Chapter 4 as a trust model that is an interchangeable component of our decision-

making framework in Section 3.1. Then, we discuss our use of reinforcement learning in

both of our contributions (Chapter 4 and Chapter 5) in Section 3.2.

3.1 Subjective Logic

Throughout Chapter 4, we use Subjective Logic (SL) (Jøsang, 2016), which extends

probabilistic logic with uncertainties about probabilities. The main motivation in SL is

to capture the idea that probabilities can have uncertainties. This is to enable decision-

makers to capture confidence in probabilities. In this way, SL based agents are informed

to make decisions to collect more evidence if there is low confidence on the probability

that is assigned to an event of interest.

We explain this with coin flipping example. Assume that there is a biased two-sided coin

where the probabilities are unknown and two decision-makers with the same probabilistic

framework make a different number of trials. The first one makes 3 trials and found a

probability value to be 0.33 for heads. The second one achieves the same probability

with 20 trials. However, the assigned probability does not represent any confidence level

in the present information that decision-maker has. When confidences are compared,

second decision-maker’s opinion about the probability is higher than the first one. Sub-

jective Logic enables these assessments to be represented when they are reported and

to be fused. For instance, combining both probability calculations with first and second

decision-maker would yield higher confidence than the second decision-maker’s opinion.

31
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3.1.1 Dempster-Shafer Theory

SL is based on Dempster-Shafer theory (DST) (Shafer, 1976) (also known as belief model

and certainty factor model (Gordon and Shortliffe, 1984)). In comparison to classical

Bayesian probabilities, the belief model uses a set of exclusive possible states, rather than

single events. This is to be more expressive and enables the modelling of beliefs about

propositions such as “I don’t know”, which is not possible with classical probabilities.

We provide a formal explanation of relevant parts from DST with an example to give a

context for SL.

Example 1

Assume that a consumer would like to make an assessment of a cloud service provider

in terms of availability. A proposition can be “The provider has high availability.” or

“The provider has low availability.”. By these propositions, we can define two states

of this problem setting: low and high availability. Let X represent all possible states,

X = {low, high}, are called frame of discernment in DST. All possible subset of X,

is denoted as 2X , are {∅, {low}, {high}, {low, high}}. Each element in the power set is

considered as a separate representation of a possible hypothesis. Single element subsets

represent “The provider has high/low availability.”. The empty set represents “The

provider has neither high nor low availability.”. Finally, two elements represent “The

provider has either (high or low) availability.”

DST assigns a belief mass to each element of the power set such by a function m :

2X → [0, 1]. The masses of all the members of the power set is required to add up to 1,∑
A∈2X m(A) = 1. Continuing with our example, if we set m(∅) = 0.7, we can express

the degree of uncertainty of the consumer over the availability of the provider where the

sum of belief mass on other states will be m({low, high})+m({high})+m({low}) = 0.3.

3.1.2 Binomial Opinion Representation

SL adopts the belief masses from DST to represent opinions. They are used for ex-

pressing beliefs from different ownerships. For instance, an agent’s opinion about the

provider’s availability. Binomial opinions in SL are denoted under a domain, X = {x, x̄}
where state space has x and its complement, x̄. The opinions are represented with a

quadruplet, ωx:

ωx = (bx, dx,ux, ax)

where bx + dx + ux = 1
(3.1)
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where the parameters in an opinion represent the masses for belief (bx), disbelief (dx),

uncertainty (ux) and base rate (ax). They are in the range of [0, 1]. Belief mass denotes

the amount of support against the proposition that x is being true. While disbelief is

the opposite of belief (x being false), uncertainty mass represents the notion of lack

of support (i.e. insufficiency) and the base rate represents the prior probability of x

without any evidence.

SL defines a projected probability of a binomial opinion (i.e. the probability expectation

of an opinion) about the value x as shown in Equation 3.2. A binomial opinion can be

visualized with a barycentric triangle as displayed in Figure 3.1. The vertices of the

triangle are the maximum points of each type of mass. Points in this triangle represent

opinions. The points (opinions) that are located in vertices are called absolute opinions.

P (x) = bx + axux (3.2)

Figure 3.1: SL opinion triangle representation

3.1.3 The Beta Distribution

SL uses the Beta PDF (probability density function, shown in Equation 3.5) to make

a mapping to binomial opinions. Assume that there is a binary event such as coin

flipping as before, where rx is the number of tails observed and sx is the number of

heads observed. These observations, (rx, sx) are mapped to the parameters of the beta

distribution, α and β as in Equation 3.3.
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α = rx + axW

β = sx + (1− ax)W
(3.3)

W is the prior weight which can be set to W = 2 to ensure a non-informative prior

weight. This is similar to setting the parameters of beta distribution to α = 1 and

β = 1. The expectation of a Beta distribution computed with this mapping is:

E(x) =
α

α+ β
=
rx + axW

rx + sxW
(3.4)

In Bayesian terms, this is closely related to the Beta-Bernoulli model where a random

variable, X, is assumed to be distributed with Bernoulli distribution, X ∼ Ber(p).

This is due to the fact that Beta distribution is the conjugate prior to the binomial

distribution. The parameter, p, of the binomial distribution is treated as a random

variable as well where p is distributed as a Beta distribution with hyper-parameters

(α, β) (p ∼ Beta(α, β)). Therefore, Equation 3.4 is driven from the expectation of

posterior predictive distribution, which is a Beta distribution with updated parameters.

P (x;α, β) =
xα−1(1− x)β−1

B(α, β)

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
=

(α− 1)!(β − 1)!

(α+ β − 1)!

(3.5)

The PDF of uninformative prior is shown in Figure 3.2 where α and β is set to 1. This

is equivalent to a uniform distribution. In SL, this is where rx and sx is zero and the

base rate (ax) is set to 0.5. When both parameters are equal the distribution is centred

and symmetric. Uncertainty mass is high in the conflicting cases such as α = 10, β = 10

and α = 3, β = 6. It is lower when α = 50, β = 10 as illustrated in the figure. SL,

in contrast with Bayesian approaches, aggregates the data shared between agents into

a compact and unified form (i.e. opinions). We use binomial opinions from SL with

projected probabilities in the next chapter as a basis for our decision-making strategy.

As explained in Chapter 2, we argue this trust model is interchangeable with a family

of probabilistic trust models.

We extend the notation for the trust model that we implemented by introducing own-

ership. An opinion held by some decision maker, i, about an agent, j, regarding some

issue is a tuple ωi:j = 〈bi:j , di:j , ui:j , ai:j〉, where bi:j is the belief mass associated with i’s

view that j will succeed in the future, comparable interactions (aka. belief ), di:j is that

associated with future failure (aka. disbelief ), ui:j is the belief mass associated with i’s

uncertainty where ui:j = 1− (bi:j + di:j), and ai:j ∈ [0, 1] is the prior, or base rate. The
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Figure 3.2: The PDF of beta distribution with varying α and β values

evidence used to construct binomial opinions are represented as a pair 〈ri:j , si:j〉 where

ri:j is the number of positive interactions that i experienced with j and si:j is the number

of negative interactions. The belief masses, bi:j , di:j and ui:j , are computed using the

formulae:

bi:j =
ri:j

(ri:j + si:j +W )

di:j =
si:j

(ri:j + si:j +W )

ui:j =
2

(ri:j + si:j +W )

(3.6)

where W is prior weight and set to W = 2 to have non-information prior weight. We can
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generate a single-valued, normalised trust assessment that can be used to rank and select

from among individuals by distributing the uncertainty between belief and disbelief via

our base rate, thus:

τi:j = bi:j + ai:j · ui:j (3.7)

Given that we consider the trust decision problem from the perspective of a single agent,

we typically refer to τj as the trust that our decision-maker has an agent j ∈ A, that rj is

the number of positive experiences our decision-maker has with provider j. Until here,

Equation 3.7 is useful to measure trustworthiness from direct experiences. Opinions

from advisors can be fused with a cumulative fusion function, which is simply adding

up evidence parameters, (ri:j , si:j), collected from others. There are also other ways to

fuse opinions as well. For instance, In SL, opinions from others can be fused by using

discounting based on our view of the trustworthiness of some witness providing opinions

of others.

3.1.4 The Dirichlet Distribution

The Dirichlet distribution is the generalization of Beta distributions. Dirichlet distribu-

tion is a conjugate prior to categorical and multinomial distributions and used widely in

Bayesian Learning. Equation 3.8 shows PDF of the distribution where the concentration

vector (α) is supplied along with the input vector (x). Various ternary plots of Dirich-

let distributions where supports are 3-dimensional is shown in Figure 3.3. The darker

shades in the figure represent higher density. Each black circle is a sample from the

distribution. Uninformative prior setting where α = (1, 1, 1) is uniform in every region.

In the case of α = (2, 2, 5), shaded area is larger. Thus, shows more uncertainty over the

estimated probability of the categorical or multinomial distribution that is captured.

P (x,α) =

∏K
i=1 x

αi−1
i

B(α)

B(α) =

∏K
i=1 Γ(αi)

Γ(
∏K
i=1 αi)

(3.8)

In common with binomial opinions, SL maps the multinomial opinions to a Dirichlet

Multinomial model. The major difference compared to the previous model is that masses

are distributions rather than single values, with the exception of the uncertainty mass.

The projected probability calculations are equal to the binomial version. Our decision-

making strategy is compatible with this extension to support the family of trust models

that support categorical values. SL’s opinions are used under a set of operators that
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Figure 3.3: The ternary plots of Dirichlet distributions where supports are 3-
dimensional vectors, black circles denote the samples that are taken from the distribu-

tion.

we will not be going into in thesis. We refer the reader to (Jøsang, 2016) for a more

detailed description of SL and the proofs behind the algebra.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is useful in the cases where a model (of the environment)

is not known beforehand (Kochenderfer, 2015). Not knowing the model (i.e. unknown

state transitions and rewards) requires an agent that can learn to take actions through

experience. The decision-making strategy in such situations must be dynamic: strategy

is learned while the agent interacts with the environment. Learning (making trial and
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error interactions) and applying the learned knowledge are orthogonal actions. There-

fore, the decision-maker agents must optimize between exploration versus exploitation

actions (Sutton et al., 1998).

Throughout this thesis, we put our attention to a particular model-free learning ap-

proach: Multi-Armed Bandits (MAB) which underpins our contributions. In Chapter 4,

we adapt a special case of a family of MABs to make decisions under constraints. In

Chapter 5, we use Continuum-Armed Bandits (CAB) directly to find appropriate attacks

that target trust models. Here, we provide an overview of these Bandit problems.

3.2.1 Multi-Armed Bandits

Multi-Armed Bandits (MAB) or K-armed Bandit(s) are one of the earliest RL ap-

proaches. This sequential decision-making problem usually includes a single state (i.e.

stateless), multiple actions and unknown rewards. A typical example is given for MAB

can be characterised as follows. Assume that there is a gambler that uses a slot machine

that has K number of arms that can be pulled at each time step (t = 1, 2, 3, ..., N). At

each time point (t) the gambler needs to decide which arm to pull given the previous

plays from the time range [0, t − 1]. The objective is to maximize the cumulative re-

ward given the time horizon (which can be finite or infinite). We provide a selection of

fundamental strategies used in selecting arms in this problem setting.

• ε-greedy strategy: ε portion of the time, the decision-maker explores the arms

uniformly, then 1 − ε portion of the time the best rewarding arm is pulled (i.e.

exploitation). The selection of when to explore or exploit is selected randomly.

• ε-first strategy: Instead of randomly selecting exploration or exploitation, this

strategy divides these actions into two phases. For Nε number of rounds, the

decision-maker pulls an arm uniformly (in some variations, the strategy is sequen-

tially pulling all the arms). For (1−ε)N trials, the best performing arm is selected.

• ε-decreasing strategy: Instead of a constant ε, these types of strategies discount

ε to reduce the amount of exploration throughout the decision-making. Therefore,

the decision-maker is highly explorative initially, later the decision-maker becomes

highly exploitative.

3.2.2 Continuum-Armed Bandits

The arms of Multi-Armed bandits are discrete, unique and usually limited. Continuum-

Armed Bandits (CAB) are the problem setting where the number of arms is infinite.

Assume that the decision-maker can pick any point in a real line. Each possible point

is assumed to be an arm, where the reward function is stochastic. This makes CAB a
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much harder problem setting than regular MABs. In Chapter 5, our considerations for

a strategy to explore a space of attacks in our vulnerability analysis include CABs. We

selected a hierarchical algorithm, X-armed Bandit Algorithm (Bubeck et al., 2011). We

provide a brief background on this approach.

Algorithm 3.1 X-armed Bandit Algorithm (Bubeck et al., 2011)

Parameters: Two real numbers v1 > 0 and ρ ∈ (0, 1), attack space X , all evidence E .

Auxiliary function LEAF(T ): outputs a leaf of T

Initialization: T = {(0, 1)} and B1,2 = B2,2 = +∞.

1: for n = 1, 2, ... do
2: (h, i)← (0, 1)
3: P ← {(h, i)}
4: while (h, i) ∈ T do
5: if Bh+1,2i−1 > Bh+1,2i then
6: (h, i)← (h+ 1, 2i− 1)
7: else if Bh+1,2i−1 < Bh+1,2i then
8: (h, i)← (h+ 1, 2i)
9: else

10: (h, i)← choose a child randomly

11: P ← P ∪ {(h, i)}
12: (H, I)← (h, i)
13: Arbitrarily choose one of arm in space X with respected to partition (H, I)
14: Y = E[θtr→te|E ′]− E[θtr→te|E ] . Receive corresponding reward for selected arm
15: T ← T ∪ {(H, I)}
16: for (h, i) ∈ P do
17: Th,i ← Th,i + 1
18: µ̂h,i ← (1− 1

Th,i
)µ̂h,i + Y

Th,i
. Update the mean µ̂h,i of node (h, i)

19: for (h, i) ∈ T do
20: Uh,i ← µ̂h,i +

√
(2lnn)/Th,i + ν1ρ

h

21: BH+1,2I−1 ← +∞
22: BH+1,2I ← +∞
23: T ′ ← T
24: while T ′ 6= {(0, 1)} do
25: (h, i)← LEAF(T ′

)

26: Bh,i ← min
{
Uh,i,max {Bh+1,2i−1, Bh+1,2i}

}
27: T ′ ← T ′ \ {(h, i)}

The algorithm divides space (i.e. real line) into regions. The divided regions are hierar-

chically represented by a binary tree. The nodes in binary tree is indexed with integer

pairs (h, i), where the depth of a node is h and i is to denote the index of all possible

nodes at the depth (in range 1 ≤ i ≤ 2h). Therefore, root node is represented as (0,1).

The children of the root node is denoted as (1, 1) and (1, 2), in general children of (h, i)

is the nodes (h + 1, 2i − 1) and (h + 1, 2i). Regions of X is associated with each node
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and shown as Ph,i ⊂ X and must satisfy the constraint, Ph,i = Ph+1,2i−1 ∪ Ph+1,2i for

all h ≥ 0 and 1 ≤ i ≤ 2h.

The statistical information that is stored in the nodes are:

• Th,i: number of times (h, i) and its descendants are played.

• µ̂h,i: average reward received in the region associated with (h, i)

• Uh,i: initial estimate of the region (h, i), which is sum of: µ̂h,i,

–
√

(2lnn)/Th,i: corresponding the uncertainty of rewards of the average

– ν1ρ
h: corresponding maximum variation of mean-payoff function in the region

Ph,i

• Bh,i: actual estimate of the mean-payoff function, calculated by Uh,i.

In particular, with the stored statistical information, the algorithm is progressively ex-

ploring the region in the following way. In each round, the region to play is selected by

picking the node with the highest B-value (Lines 6-10 of Algorithm 3.1). The region

that is selected is played and the corresponding reward is received (Lines 15-17). The

tree is updated with the previous statistics given the collected reward (Lines 19-33). In

detail, the path (a set of nodes) followed to select the region is updated with the reward

in Lines 19-21. The tree structure of space X , T is traversed and the initial estimate of

subregions are updated in Lines 23-25. Initial optimistic estimates for new descendants

of selected node (H, I) is set in Lines 26-27. B-values are updated in Lines 29-32.

3.3 Summary

In this chapter, we have presented the underlying techniques on which we will build

our contributions in this thesis. We introduced relevant concepts from subjective logic

and reinforcement learning including a discussion over our reasoning on choosing them.

In the following chapter, we introduce our decision processes that use trust models in

resource constrainted environments.



Chapter 4

Trust-Aware Decision Making

Observe constantly that all things

take place by change, and accustom

thyself.

Marcus Aurelius

In Chapter 2, we outlined the models of trust and discussed the issues and limitations

when they are applied in decision-making. We found that one of the assumptions that

are not relaxed is budgetary constraints that a decision-maker may have. In cases

where transactions and third-party information are costly, we argue that the decision-

making strategy needs to optimize towards investing in different types of information

to maximize the number of trustful transactions. To achieve this, we show how this

decision-making problem maps to budget-limited multi-armed bandit problems. Using

the adapted algorithms that we propose, decision-making agents can explore and exploit

the information gathered directly and indirectly when compared to greedy approaches.

4.1 Decision Making and Trust

Assume that a decision maker, δ, in a trust and reputation system, where the system

is completely observable and the behaviour of each service provider is stationary. In

this case, observability is an agent’s knowledge about model outcomes (i.e. stochastic

processes of providers). This knowledge may be modelled in terms of a metric that

denotes the trustworthiness of a provider, or in terms of a preference order. From the

point of a rational decision maker, this agent would interact with a provider that is the

most trustworthy, or the most preferred. Formally, when decision maker is given a set of

values that point towards trustworthiness of all providers, it selects one of the strongly

dominating options (Pratt et al., 1995) in this trivial example as:

41
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p̃ = arg max
pi

τ(δ, pi) (4.1)

where τ(i, j) is agent i’s degree of trustworthiness about agent j. The complexity of

finding this provider is linear (assuming the trustworthiness of all agents are known to

decision-maker in an unsorted order). The complementary addition to this simple model

when the utilities are considered is as follows: each agent may have different preferences

over each outcome. This could be modelled with utility theory, for instance: if the

outcomes are categorical (i.e. early, on time, late), the cardinal utility value given by

the agent of each outcome can be incorporated into decision-making as:

p̃ = arg max
pi

K∑
U(Oδ→pi)τ(δ, pi) (4.2)

where U(Oδ→pi) denotes the utility function of decision maker given the possible out-

come Oδ→pi = k from provider pi and K is the number of possible categories1. Subjective

preference of providers (i.e. each provider changes our utility calculation) can be incor-

porated into the utility function in this equation. When it is not taken into account,

Equation 4.2 reduces to Equation 4.1.

Until now, we assumed that there is not a cost for choosing a service provider. However,

this is not necessarily the case in many domains. For instance, in e-commerce, the costs

are involved while making transactions with sellers. The trust relationship involves con-

tinuous engagements between buyers and sellers. If we consider costs in the scope of an

optimization problem, a buyer who wishes to maximize their utility under these costs

needs to consider items that are purchased and the amount of budget available. In fact,

this is a combinatorial optimization problem, a canonical knapsack problem. To illus-

trate, assume that in the environment that agent is in there are a number of items with

different volumes and values. The problem is that given the available storage how many

of which items to pick to have the greatest total value. The version of this problem

that covers trust interactions can be considered under unbounded knapsack problems.

These set of these knapsack problems consider the cases when a buyer can make mul-

tiple purchases of the same item (i.e. picking the same item multiple times) without

limit. This addition changes the previous problem setting considerably. Although we

still assume that decision-makers know the exact trustworthiness of everybody when

transaction costs and the budget are involved, the objective now is to maximize the

total utility gained overall transactions.

Following this new problem setting, instead of picking the most trustworthy agent as in

Equation 4.2, the problem of the decision-maker (i.e. buyer) in this case is to consume

1When the domain of interactions are not categorical, the summation is switched with an integral
operator in Equation 4.2.
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the budget by engaging in transactions with other provider agents until the budget is

depleted. (assuming that the budget is fixed at the outset.) to maximize the utility

gained. We can then adapt the budget B into Equation 4.2. The resulting problem is

that amongst all possible ways to spend this budget, the objective is to find the optimal

algorithm, Ã, that maximizes the number of the utility gained over series of transactions:

Ã = arg max
A

m∑
j

N(pi)
K∑
U(Oδ→pi)τ(δ, pi)

subject to

m∑
j

N(pi)D(pi) ≤ B
(4.3)

where m is the total number of providers and N(pj) is a random variable that denotes the

number of interactions made between the decision-maker agent and provider pj . C(pj) is

to cost of querying provider pj . Total expenditure is deducted from the decision maker’s

budget B after each interaction. This is a well-studied problem, and its complexity is

known to be NP-hard (Kellerer et al., 2004). There have been many solutions with the

use of dynamic programming. Also, suboptimal heuristics are common, for instance

through a greedy algorithm, where the best agent is selected throughout the decision-

making.

Going back to our first problem setting, if the initial fundamental assumption is relaxed,

this changes the main goal of finding the most trustworthy party when the system is

not observable. We still assume that the behaviours of these parties are stationary for

the time being. As we explained in detail in Chapter 2, there have been many trust

models that are tackling this problem alone. These models estimate the trustworthiness

metric of each party by looking into statistical correlations, opinions of others, and so

on. If subjective preference of providers exists, adding the utilities into this new problem

setting can be done by changing our objective function as shown in Equation 4.3. In

overall, we assume a trust model exists (or selected) that provides the predictions of the

behaviours of others, τ(δ, pi, k). Although we relaxed a fundamental assumption, another

one remains. Gathering relevant information from trust systems is instantaneous. This

is known as a simplifying assumption.

One of another known assumption is always interacting with the most trustworthy party

(Yu et al., 2013a). This is in line with our starting point. However, when the assump-

tion of decision-makers being stationary is relaxed, continuing to interact with the most

trustworthy party may not be the most rational choice. Our hypothesis is that this

statement is true in environments where interactions are costly, similarly to the ones

we explained in Equation 4.3. When we compare two different cases: in cost-free en-

vironments, a natural action to do is simple. Decision-makers increase the number of
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observations in the environment and reduce the uncertainty over unknown parties. Con-

versely, in costly environments, decision-makers must work within their budget, while

aiming to satisfy these objectives:

• Accurately calculating the trustworthiness of others;

• Gathering relevant and significant information2;

• Maximizing the utility (e.g. maximizing the number of positive interactions);

One possible solution is to model this problem setting is to use a more general model

such as Markov decision process (MDP) (Sutton et al., 1998) or partially observable

MPDs (POMDP) (Åström, 1965). To give a simple example, a direct application of

MDPs to our starting problem setting is to have a single state and multiple actions

where actions represent transactions with different individuals. The rewards can be

modelled as the outcome of the transactions. State-transition probabilities (i.e. the

probability of making a transaction with agent A after agent B) does not exist (i.e.

equal to one). When we introduce uncertainty over behaviours, this mapping needs to

change such that where we need to increase the number of states to have the probability

estimation in our model. If we have a budget, the mapping our problem to MDPs

becomes more challenging (Kochenderfer, 2015; Tran-Thanh, 2012). One direction to

focus can be modelling this problem as a general multi-state Reinforcement Learning

problem. However, this may lead to a dimension of a problem that may be non-existent

in a trust environment in the cases where the throughout the decision-making process

the preferences of the decision-makers are stationary (i.e. one-state). Throughout this

chapter, we assume that the interactions made by each party do not change the state that

the party is in. An example that explains this case is assuming throughout interactions

the decision maker’s utility function changes by considering a different outcome to be

most preferred. Therefore, our focus is on the problems where the decision-maker is in

a single state, which are also known as stateless.

Stateless (i.e.) MDPs are known under Multi-Armed Bandit (MAB) problems. When

compared to the knapsack problem we introduced in Equation 4.3, we have an exploration-

exploitation dilemma in our final problem setting. MABs are known to be useful in

dealing with this trade-off . The true trustworthiness of other parties needs to be esti-

mated progressively, meanwhile, decision-makers are interacting with others. To solve

this sequential decision-making problem given the objectives above, we introduce our

framework in the following section.

The remainder of the chapter is organized as follows: In Section 4.2, we define the

constraints of the decision-makers may have and introduce our decision-making model.

2We define relevant and significant information such that it is rational for decision-makers to collect.
For instance, throughout the decision-making process, if the budget spends on an advisor that deceptively
reports information, we would like our model to reduce the amount of budget spend on this advisor.
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We elaborate on our experimental settings and evaluate our model in Section 4.3. We

discuss our results in Section 4.4, and finally, we provide a summary in Section 4.5.

4.2 A Model of Constraints

As discussed in Chapter 2, the models of trust utilize various information sources to

estimate the trustworthiness of others. In our decision-making model, we relax the

following simplifying assumptions made in the ongoing relationship between this esti-

mation process and decision process: First is that the interactions are costly. Second

is the decision-makers are constrained with a budget. The third is always selecting the

most trustworthy party. Finally, the costs of each transaction to providers and the cost

of the type of information varies. By doing these, we can integrate the models of trust

to take the budgetary constraints into account. This means that the decision-maker can

update the internal beliefs regarding the providers strategically. Our model should revert

towards the processes where the previous assumptions are valid if the constraints do not

exist. For instance, if collecting opinions of others is not costly, our model should not

perform worse than the simple decision models. When the costs of gathering direct evi-

dence (i.e. making interactions) are higher and gathering opinions of others (i.e. witness

information) is lower, we want our model to make appropriate deviations from explo-

ration to exploitation. An additional challenge of our decision processes is incorporating

witness information into the decision-making while being under exploration-exploitation

dilemma from direct evidence. As discussed in Chapter 2, trust models rely on this type

of information in many cases. In the following section, we will extend the notation from

Chapter 3.

4.2.1 The Problem Setting

We assume a finite set of agents where they take roles such as service providers pj and/or

consumers ci. Throughout the lifespan of agents, [0 : t], consumers interact with service

providers aim to maximize their utility. Given a budget allocated to each consumer (i.e.

decision-maker), we are interested in this problem: how can a decision-maker, δ, assess

the given service providers and decide with whom to interact in order do maximize utility

gains over time? We formally define our starting problem setting similar to Equation 4.3:
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Ã = arg max
A

m∑
j

N(pj)
K∑
U(Oδ→pj )τ(δ, pj)︸ ︷︷ ︸
G(A)

subject to

m∑
j

N(pj)D(pj) ≤ B

(4.4)

We make the following assumptions, while not losing generality: utility gained after each

interaction U(Oδ→pj ), is valued between the range [0, 1]. The number of providers, m, is

known beforehand and constant. The behaviours of providers are stationary probabilistic

(i.e. the probabilities doe not change over time). We identify each provider with a

given identifier, j. The outcomes of each interaction are categorical, where the number

of categories is denoted as K. In Multi-Armed Bandit (MAB) terms, our optimization

problem is finding an algorithm, A, that is close to an optimal algorithm, Ã, maximizing

our expected reward over time until B is exhausted for the player (i.e decision-maker),

where the optimal algorithm is impossible to achieve due to exploration steps. This is

also known as regret minimization, where we try to minimize the total regret, R(A).

R(A) = E[G(Ã)]−E[G(A)] (4.5)

where the expected total reward generated by the algorithm is denoted G(A). This

problem is an extension of MAB problems, also known as Budget-Limited Multi-Armed

Bandits (BL-MAB) (Tran-Thanh et al., 2010; Tran-Thanh, 2012). BL-MAB is, there-

fore, an appropriate means to model the trust decision-making process in the cases where

decision-makers are interacting with multiple unknown providers under budgetary con-

straints. We show there is a mapping of BL-MAB to direct interactions (i.e. DI). We

extend this model with actions (aka. arms) that do not return any utility gain (i.e. re-

ward), which is needed for incorporating retrieval of witness information into the model.

Unlike other approaches, we do not assume that gathering witness information is cost-

free. Therefore, we would like any algorithm, A to satisfy the constraint below, that the

probability of not exceeding budget is zero:

P

( m∑
j

N δ(pj)D(pj) +NO(pj)C(pj) ≤ B
)

= 1 (4.6)

where N δ(pj) is a random variable represents the number of times the decision-maker

δ interacts with pj and NO(pj) is a random variable that represents the number of

times the decision-maker gathers opinions about pj from agent O. D(pj) and C(pj) are

variables that denote the costs of these actions, respectively. We consider the cases where
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the cost of direct interaction is higher than witness information. If direct interaction

costs less than gathering witness evidence, or ∀j ∈ Z+ C(pj) ≤ D(pj), the rational

action would be to rely on collected direct evidence. This is due to the fact there is less

uncertainty involved when relying on ground truth versus collected opinions and there

will be a reward in the direct interactions. As discussed in Chapter 2, trust models tend

to handle third parties’ opinions with heuristics (such as filtering or discount) or/and

exploiting correlations between similarities in what is observed versus what is collected.

4.2.2 Decision-Making

In this section, we propose a set of algorithms based on BL-MAB. First, we elaborate

on these algorithms when the decision-makers are only leveraging direct evidence. We

explain the algorithms in order of complexity and similarities. Second, we extend them

further by allowing them to proactively use opinions from others (i.e. witness informa-

tion). Throughout the algorithms, we use a stopping criterion, the budget Bt is feasible.

This criterion, Bt ≥ miniC(pi), is satisfied when the is remaining budget to spend.

When the budget becomes not feasible for a set of providers or advisors, they are from

any selection done by the algorithm.

Greedy Algorithms

The common recommendation or sometimes implicit expectation of many trust mecha-

nisms for decision-makers is to leverage all the available information and pick the most

trustworthy provider. Algorithm 4.1 shows how providers are selected when the envi-

ronment only allows forming opinions from direct interaction. Initial operation of this

algorithm is to first get priors from trust models. For instance, if we use Subjective

Logic (SL), we derive a trust metric of each provider with the corresponding base rate

ai. Then while the budget is feasible, the algorithm selects and interacts the most trust-

worthy provider. Each outcome is recorded at E . In MAB terms, this algorithm does

not allocate any budget on exploration. All budget is allocated for exploitation. We

introduce this algorithm since it is simple and will be useful as a baseline.

Algorithm 4.1 Greedy Algorithm - Agreedy
1: t← 1;
2: Oδ→. ← {};
3: while the budget Bt is feasible do
4: pi ← arg maxpi

τδ(E,pi)
D(pi)

;

5: observe outcome Otδ→i;
6: Oδ→. ← Oδ→. ∪ {Otδ→i};
7: Bt ← Bt −D(pi);
8: t← t+ 1;
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Epsilon Algorithms

These algorithms are known to follow two phases: exploration and exploitation. The

budget is separated for these phases by the parameter ε, where ε ∈ [0, 1] and the budget

for exploration is εB and for exploitation is the remaining budget, (1− ε)B (Tran-Thanh

et al., 2010). Throughout the exploration phase, the decision-maker uniformly interacts

with service providers (i.e. uniformly pulling all arms)3. We introduce two variants

of epsilon algorithms with same exploration phase: Aε1 (as shown in Algorithm 4.2),

where the exploitation is same as Agreedy, and Aε2 , where the exploitation has done via

weighted sampling. By weight, we mean the degree of trustworthiness outputted by the

selected trust model. In other words, the probability of selecting pi is proportional to

τδ(ε, pi). When both of these epsilon algorithms are compared, Aε2 spends more time

to trying other providers than Aε1 , where Aε1 only switches to other providers if the

provider with the highest trustworthiness underperforms.

Algorithm 4.2 Epsilon First Algorithm - Aε1
1: t← 1;
2: Bexplore ← εB;
3: Bexploit ← B −Bexplore;
4: Otr→. ← {};
5: Exploration phase:
6: while the budget Bexplore

t is feasible and A 6= {} do
7: uniformly select i and observe outcome Otδ→i;
8: Bexplore

t+1 ← Bexplore
t −D(pi);

9: t← t+ 1;

10: Bexploit ← Bexploit +Bexplore;
11: Exploitation phase:
12: Same as Agreedy with budget Bexploit;

We now introduce a new variant of the epsilon algorithm, which we refer to denoted

as Aεgreedy . In this algorithm, the decision-maker alternates between exploration and

exploitation phases. Instead of switching once as in previous epsilon algorithms, the

phase is decided by sampling a Bernoulli distribution where the distribution’s parameter

is set as ε, in other words: p ∼ Ber(ε). By depending on the realization of p, the phase

is decided as shown in Algorithm 4.3. This is an interesting variant for showing the

performance difference between when exploitation is done via after developing the model

of providers (i.e. exploring the behaviours) versus the exploitation and exploration are

done in parallel.

3There are other exploration methods, such as Upper Confidence Bound (UCB) exploration, however,
empirical results show a minimal difference when the results of UCB is compared to uniform exploration
(Tran-Thanh et al., 2010).
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Algorithm 4.3 Epsilon Greedy Algorithm - Aεgreedy
1: while the budget Bt is feasible do
2: p ∼ Ber(ε);
3: if p is True then
4: uniformly select i and observe outcome Otδ→i;
5: Bt+1 ← Bt −D(pi);
6: t← t+ 1;
7: else
8: Same as Agreedy with budget B;

Filtering Algorithms

Two filtering algorithms for BL-MAB problems have been demonstrated empirical to

have better performance to epsilon algorithms (Sen et al., 2015a; Karnin et al., 2013).

These algorithms keep a set of potential candidates (i.e. a pool) throughout the sequen-

tial decision-making and go through a series of filtering passes. In each pass, the budget

is spent on the pool, rather than all the candidates as in Aε1 and Aε2 . The exploitation

and exploration phases are not distinct, therefore these algorithms can be seen as a

version of Aεgreedy , where the phases are done in a reducing fashion. The number of can-

didates in the pool decreases throughout the decision-making. The idea is that, through

this process, motivation comes from minimizing the budget spent on underperforming

(i.e. malicious or dishonest) providers in the initial rounds, such that the remaining

budget from these savings can be used on known providers. We refer to this behaviour

as being conservative. We adapt these algorithms into our problem setting as follows:

Al−split (as shown in Algorithm 4.4), after each pass calculates the number of providers

to be stored in the next pass (Line 11). Then, the most trustworthy providers are stored

(Line 12-14) and interacted with before the next pass starts (Line 4-8).

Algorithm 4.4 l-split Algorithm - Al−split
1: t← 1; NumPasses = 0;
2: A

′
= A;

3: while A
′ 6= ∅; do

4: for each i ∈ A′
do

5: observe outcome Otδ→i;
6: Oδ→. ← Oδ→. ∪ {Otδ→i};
7: Bt ← Bt −D(pi);
8: t← t+ 1;

9: NumPasses← NumPasses+ 1;
10: A

′
= ∅;

11: PoolSize←
⌈

|P|
lNumPasses

⌉
;

12: while PoolSize > 0 and A \A′ 6= ∅ do

13: A
′ ← A

′ ∪ {arg maxi∈A\A′
τδ(E,pi)
D(pi)

};
14: PoolSize← PoolSize− 1;
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Instead of filtering with a number of passes, a threshold can be used to filter the pool of

candidate providers. Survival of the Above Average (SOAAv) is the realization of this

heuristic, wherein our case, the average trust-cost ratio is calculated and compared with a

preset threshold. Depending on the changes to this metric, the candidates who are below

the threshold a. SOAAv starts uniformly sampling all the providers to initialize the

final threshold (i.e. PassAverageRatio) (Line 3-9). Then, average utility-reward ratio

amongst all interactions is calculated (Line 11). Later, depending on the trustworthiness

of the provider, the provider is selected according to (1 + x) ∗ PassAverageRatio. This

parameter x is simply for tuning the threshold as desired. For instance, x = 0 denotes

allowing agents above the threshold. This parameter is left for the implementer to tune

according to the environment: behaviours of providers and costs associated.

Algorithm 4.5 SOAAv Algorithm - ASOAAV

1: t← 1;A
′

= A;
2: while the budget Bt is feasible do
3: NumPullsInPass = 0; passAverageRatio = 0;
4: for each i ∈ A′

do
5: observe outcome Otδ→i;
6: Oδ→. ← Oδ→. ∪ {Otδ→i};
7: Bt ← Bt − C(pi);
8: NumPullsInPass← NumPullsInPass+ 1;
9: PassAverageRatio← PassAverageRatio+ τδ(E,pi)

D(pi)
;

10: if NumPullsInPass > 0 then
11: PassAverageRatio← PassAverageRatio

NumPullsInPass ;

12: A
′

= ∅;
13: for each i ∈ A do
14: if the budget is feasible and τδ(E , pi) ≥ (1 +x)∗PassAverageRatio then
15: A

′ ← A
′ ∪ {i};

We adapted these algorithms to be discrete BL-MAB algorithms, in which rewards are

categorical. After every interaction (i.e. pulling an arm), we calculate a decision met-

ric for all algorithms, τδ(E,pi)
D(pi)

. Epsilon algorithms use this metric to sort the candidate

providers in the exploitation phase. Filtering algorithms use this to choose the members

for the candidate pool. This metric enables having other trust models within the algo-

rithms introduced earlier. Until now, we showed how the direct information is collected

by these algorithms. We assumed witness information is cost-free and available to the

decision-maker in some form, formally denoted as E . In addition, we specifically showed

how we adapted these algorithms which are known to be (theoretically Aε1) empirically

better than other possible MAB algorithms. In the following section, we show how to

take into account opinions from others and the costs of these actions.
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Witness Information

The opinions from others (i.e. witness information (WI)) is known to be useful to

bootstrap trust assessments of providers that are unknown to a decision-maker. As

discussed in Chapter 2, models often use this information exploiting correlations between

direct observations and other decision-makers’ opinions. We denote opinions from others

in a similar way to the outcomes of direct interactions: O0:t
ci→pj , are the collected opinions

from ci about pj after t rounds. We assume when ci has any opinions, these may be

transformed by the ci, specifically for the decision-maker δ. In our model, we allow each

reported opinion Otci→pj to be categorical, rather than binary. Although, this does not

restrict the usage of continuous or binary opinions.

The proposed algorithms are useful in the cases where first-person observations (i.e.

O0:t
δ→.) are only available. However, when third-party opinions exist, we can this infor-

mation can be using exploration budget on witness information rather than sampling

the behaviour of unknown providers. This is straightforward with Epsilon algorithms,

where there is a clear separation of the budget, and our earlier work (Güneş et al., 2017)

presented results on this idea for Aε1 and Aε2 . The exploration budget was spent solely

on witness information gathered (as shown in Section 4.2.2), and we assumed a single

Oracle agent which provides this information.

Algorithm 4.6 Epsilon Algorithms with Witness Information

1: Bexplore ← εB;
2: Bexploit ← B −Bexplore;
3: Oδ→. ← {};
4: Exploration phase:
5: A← A;
6: while the budget Bexplore is feasible and A 6= {} do
7: uniformly select i from A;
8: Oδ→. ← Oδ→. ∪ {O0:tO

O→i};
9: Bexplore

t+1 ← Bexplore
t −D(pj);

10: A← A \ {i};
11: t← t+ 1;

12: Bexploit ← Bexploit +Bexplore;
13: Exploitation phase:
14: Invoke Epsilon algorithm’s exploitation phase with remaining budget Bexploit;

Filtering algorithms that switch between exploration and exploitation phases do not

distinctively parametrize the proportions of budget to be spent on each phase. There-

fore, the approach is taken earlier in Section 4.2.2 requires more changes in Filtering

algorithms. Besides, there is a potential that the budget might be spent unnecessarily

on witness information if the certainty of the assessments of providers is high. To take

this into account and generalize how we retrieve and integrate opinions from others, we

propose Algorithm 4.7. The idea is to gather opinions about the unknown providers

(i.e. the decision maker’s belief is uncertain about a provider), rather than uniformly
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sampling as we previously proposed in Section 4.2.2. The aim is to reduce unnecessary

exploration steps, and hence the budget expenditure, which can be used for exploitation

steps. We assume a trust model that can be used to compute an uncertainty measure of

each provider; we will elaborate on this formally in the following section. The heuristic

that we propose is compatible with both Epsilon and Filtering algorithms. Whenever

the decision-maker decides to interact with a provider, Algorithm 4.7 is invoked and

opinions about this provider are gathered.

Algorithm 4.7 Retrieval of opinions with respect to an uncertainty threshold, h

1: Before interacting with provider, i
2: Calculate uncertainty mass ui from τδ(E , pi);
3: if ui > h then
4: Retrieve opinions same as in Line 8-11 from Section 4.2.2;

A key limitation with this approach is we assume a single advisor, which can provide

opinions of others. In the case of multiple advisors (i.e. witnesses), making decisions

about which advisors to trust to get more information about the provider of interest is

more challenging. In this case, decision-makers may need to avoid, discount or transform

opinions of deceptive advisors throughout the decision-making process. A common to

compare direct evidence with opinions from advisors. A number of trust models dis-

cussed in Chapter 2 use different techniques so that these opinions can be used in the

assessment process (i.e. calculating trustworthiness of an advisor: τδ(E , ai)). Although

we have a process for deciding when to gather opinions about a provider, we now need

to address the question from whom we should seek opinions. This problem can also

be modelled as a BL-MAB problem. Assume the budget is distributed between direct

interaction (DI) and witness information (WI). We formalize this problem as:

Ãsub = arg min
Asub

ui

subject to

W∑
j

Nwj (pi)C
wj (pi) ≤ BWIτ̃δ(pl)

(4.7)

The reward in this sub-problem that decision-makers are looking for is minimizing total

uncertainty over the provider, pj , that decision-maker is interested in until the budget

allocated for witness information is exhausted. This is to help with the main BL-MAB

problem, which is making direct interactions. We invoke Asub only if a decision maker’s

uncertainty about the expected performance of provider i is above the threshold, h. The

budget allocated for all invocations of Asub is distributed amongst providers based on

their normalized trustworthiness: τ̃δ(pl) = τδ(E,pi)∑
l τδ(E,pl)

. Our intuition is to allocate more

budget to the more trustworthy providers to minimize the uncertainty assigned over

them.
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To give a concrete example on how this model is integrated with DI model, we first

divide the total budget into two portions: BWI is for witness information and BDI is

for direct interactions. If the BL-MAB algorithm, A, for DI decides to get witness in-

formation based on Algorithm 4.7, then another BL-MAB algorithm, Asub, is invoked

with a portion of BWI: BWIτ̃δ(pl). At this point, Asub uses the given budget selectively

on witnesses until uncertainty is lesser than the threshold, ui < h. Finally, the remain-

ing budget is added back to BWI. Asub is compatible with the introduced BL-MAB

algorithms. Only difference is that instead of τδ(E,pi)
D(pi)

as the comparison value in DI

model, we use trust values of advisors about a provider,
τδ(E,ai,pj)
C(ai)

. The advantage of

this witness model is being able to use algorithms that previously explained to solve this

sub-problem that is defined in Equation 4.7. This procedure does depend, however, on

a model of uncertainty about predictions of future performance of providers.

The decision model we present is a pair, (A,Asub), where we allocate a particular BL-

MAB algorithm for direct interaction and for witness information. We denote this as,

for instance: (Aε1 , Al−split) where Aε1 is used for direct interactions and Al−split is used

for witness information retrievals. All the adapted algorithms we introduced can be set

for A or Asub. In terms of budget allocation, we divide B such that A has BDI and Asub

has BWI.

The trust values of advisors are calculated by probability sensitive trust-discounting ap-

proach. Assume that there are three agents: A, B and C. A wants to interact C,

however, A does not have any prior knowledge about C. A can use B’s opinions about

C. Calculating trustworthiness of C with B’s opinions for A is in SL:

τA:C = τA:BbB:C + (1− τA:BbB:C)︸ ︷︷ ︸
uA:B

·aB:C (4.8)

Given this trust model, calculating how much trust agent A should B relies on the

availability of direct experience over B. In the cases, where this not possible, we can use

the following information generated from other agents who may provide their experiences

to the decision-makers. For instance, assume after A collecting B’s opinion and interacts

with C, A devises a difference metric that would be based on the distance between what

is observed (i.e. interacting C) versus what is said by others (i.e. opinions from B).

Kullback-Leiber (KL, i.e. relative entropy) divergence can be used to measure how far is

the observed behaviour from the opinions. In the case where both distributions that are

compared are equal, then KL divergence is to be zero. Numerical issues from using this

metric are: First, there is not an upper bound on the maximum value of the distance.

Second, the metric is not symmetric. Also, it is known to better suited to compare

the power of each sample (in our case, outcomes of interactions) when compared two

different distributions. Instead, we use degree of conflict measure from SL, that compares

subjective opinions via:
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DC(τA:C , τB:C) =
τA:CτB:C

2
(1− uA:C)(1− uB:C) (4.9)

We retain uncertainty in the opinions with this model given two different opinions to

calculate the conflict between opinions. Note that DC ∈ [0, 1] where DC = 0 means no

conflict. We set τA:B = 1−DC(τA:C , τB:C). This demonstrates the notion of discounting

the conflicts in the situations where A does not have any observations about B. By this,

the simple model explained here can use with direct interactions and opinions from

others. In each round, decision-maker is going to update the trustworthiness values of

advisors and providers. Specifically in each round, ωδ:j about each agent is updated with

evidence pair 〈ri:j , si:j〉. Next, if a direct interaction occurs and the outcome is observed,

the associated evidence pair is updated and trustworthiness of the party is calculated

by Equation 3.7 with SL. If an opinion from an advisor is received: First the degree

of conflict, DC, is calculated by Equation 4.9. Second, this is used in Equation 4.8 to

calculate final trustworthiness of the target provider.

4.3 Evaluation

In order to evaluate the contribution of our approach in various kinds of dynamic

decision-making scenarios discussed in Chapter 1, we implemented a simulation environ-

ment, where decision-makers for a set of rounds interact with other agents and collect

opinions until their budget is exhausted. We present our results through a series of ex-

periments comparing the performance of our decision-making algorithms with existing

models.

In evaluating our approach, our hypotheses are:

1. Hypothesis 1: If budgetary constraints are present, then our decision-making model

will perform better than greedy agents. In the cases where:

(a) Hypothesis 1.1: Only direct interactions are allowed.

(b) Hypothesis 1.2: Direction interactions and witness information are allowed.

2. Hypothesis 2: If there are no budgetary constraints does not exist, then the per-

formance of our model will be no worse than greedy agents.

In the following sections, we will elaborate on our simulation environment, and present

our results in the scope of our hypothesis.
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4.3.1 Experimental Setup

For our experiments, we create a pool of provider agent, and a single decision making

agent. We limit the number of interactions that the decision maker can initiate by the

given total budget (B). Each experiment session ends when the budget of this consumer

is exhausted. Providing agents persist throughout the session. We consider only binary

outcomes from direct interactions (i.e. success or failure), although our model can be

easily extended to support categorical (i.e. discrete) or continuous observations. A

single decision maker interacts with a number of providers. The outcomes of these

interactions are either success or failure. Probability of observing an outcome from a

provider is set to be: P (Oδ→pi) = θpi + noise where θpi is drawn from a behaviour

profile distribution. We ensure P (Oδ→pi) is within the range of [0, 1]. Particularly,

these probabilities are sampled from three provider behaviours: providers with highly

uncertain behaviour p̃1 ∼ Beta(1, 1), reliable providers p̃2 ∼ Beta(100, 1) and unreliable

providers p̃3 ∼ Beta(1, 100). The number of agents which are assigned these profiles are

shown in Tables 4.1 and 4.2.

Costs associated with acquiring opinions from others and making interactions with others

are varied with normal distributions. Providers and advisors are paired with a cost

drawn from two direct interaction cost distributions and two witness information cost

distributions. Costs for witness information are: low cost profile (c̃1 ∼ N(0.1, 0.05)) and

high cost profile(c̃2 ∼ N(0.2, 0.05)). Similarly, cost for direct interactions are: low cost

profile (d̃1 ∼ N(3, 0.5)) and high cost profile (d̃2 ∼ N(150, 25)). We restrict the values

drawn from these distributions to be larger than zero for numerical stability. Regarding

witness information threshold and budget, we select h to be 0.01 and BWI to be 0.005.

We elaborate on this in the discussion section.

We allow advisors to sway the decision-maker with making false reports about the

provider queried. This is done with three witness behaviour profiles (w̃1, w̃2 and w̃3).

Agents from honest profile w̃1 report their opinions without any alterations. Agents from

random profile w̃2 reports random opinions that do not rely on their own experience

with the provider. Finally, agents from dishonest profile w̃3 always report the opposite

of their own experience. If witness information is not available or not used, we denote

this behaviour as Ao. Additionally, we will elaborate on how advisors can be coordinated

to sway the decision-maker in an orchestrated fashion in the following chapter.

In evaluating our model, we employ these experimental conditions:

1. Provider behaviours: These are selected randomly from the specified profiles.

2. Costs assignments: Direct interaction and witness information costs are drawn

from the specified profiles.

3. Advisor behaviours: These are selected randomly from the specified profiles.
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Homogeneous Providers

Reliable Unreliable

Low Cost 15 15

High Cost 15 15

Diverse Providers

Reliable Unreliable

Low Cost 0 35

High Cost 15 0

Table 4.1: Provider behaviour profile configurations

Homogeneous Advisors

Honest Flip Random

Low Cost 10 10 10

High Cost 10 10 10

Diverse Advisors

Honest Flip Random

Low Cost 15 0 0

High Cost 0 35 0

Table 4.2: Advisor behaviour profile configurations

4. Availability of information: We select environments where consumers can use

solely direct information or direct and witness information combined.

In each condition, we compare performance of the proposed epsilon-based and filtering-

based algorithms with same underlying witness information handling.

4.3.2 Results

Each provider’s behaviour is sampled from the distributions mentioned before. The

number of providers in the different experimental conditions are shown in Table 4.2 and

Table 4.1. Shapiro-Wilk (Shapiro and Wilk, 1965) test is conducted on our results to

determine the appropriate statistical significance test. We selected this test because the

number of samples in our results are N < 5000. The results that we present in this

section have been found to be normally distributed with p < 0.05. According to this, we

selected pairwise t-test (Walpole and Myers, 2012) in our results. We elaborate in detail

about the statistical significance of our results with this test. The variables of adapted

BL-MAB algorithms are set the same as the original author’ variables. Throughout

our experiments, we conducted 3000 repetitions (N = 3000) in each of our experiment,

unless indicated otherwise.

Hypothesis 1

Figures 4.1 and 4.2 show the number of successful interactions that a decision-maker

makes in conditions 1, 2 and 4. These figures show the performance of decision-making

models only with direct interaction. Al−split in both diverse and homogenous settings

outperformed the baseline model, Agreedy in high budget configurations. This means

that the decision-making agent with Al−split is able to make better trust evaluations

throughout the rounds than other decision-making algorithms. The error bars represent

the standard error of the mean (SEM).
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Figure 4.1: Diverse providers in varying budget configurations with direct interactions
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Figure 4.2: Homogeneous providers in varying budget configuration with direct in-
teractions
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Condition 1 and 2 when diverse provider configuration is set (Figures 4.1 and 4.2),

represent the problem of having a high number of unreliable providers with low cost and

a low number of reliable providers with high cost. Aε1 and Al−split outperformed Agreedy

in high budget settings. These show significant benefit to use our adapted algorithms

while direct interactions in diverse populations. However, this benefit becomes minimal

when the budget is reduced. Aε2 , Aεgreedy and ASOAAV underperformed Agreedy in all

budget configurations.

Condition 1 and 2 when homogenous provider configuration is set (Figure 4.2), represent

the problem of having an equal number of providers from each profile. Similarly, Aε1 and

Al−split outperformed Agreedy in high budget settings. Compared to Figures 4.1 and 4.2,

ASOAAV also outperformed Agreedy. We notice that the performance of other algorithms,

Aεgreedy and Aε2 performed worse in this configuration than the diverse configuration.

Witness Information with Direct Interactions

Figures 4.3 to 4.5 show the average number of successful interactions when a pair of

witness information and direct interaction algorithm is used. In these figures, the budget

is set to the case where the performance of Agreedy is similar compared to others (B =

2× 105). Particularly, Figure 4.3 shows the performance of the algorithms when diverse

providers and homogenous advisors were selected. In this experimental condition, we

observe that witness information availability did not result in significant gains in the

performance. However, we found to be that when witness information is collected with

Al−split and direct interactions are made with Al−split, (Al−split, Al−split) on average

statistically outperformed the baseline pair, (Agreedy, Agreedy). This was also valid for

other pairs with all other witness models where direct interaction model was set to be

Agreedy.

Figure 4.4 shows the performance of the algorithms when diverse providers and diverse

advisors were selected. In this experiment condition, the ratio of the advisors being

truthful is less than the homogenous setting. The result is consistent with previous

experiment condition when (Al−split, Al−split) is compared with baseline pair, on aver-

age statistically outperformed the baseline pair, (Agreedy, Agreedy). However, there is a

marginal difference when (Al−split, Al−split) is compared to (Al−split, Ao). This behaviour

is similar in terms of performance gains overall direct interaction algorithms when they

are incorporating witness information into the decision-making process.

Figure 4.5 shows the performance of the algorithm when both provider and advisor

profiles are homogeneous. In overall as a direct interaction algorithm, the performance

of Agreedy is higher in this experiment condition, including when the witness informa-

tion was not used. Figure 4.6 shows similar behaviour, except the marginal perfor-

mance gains when witness information in cases for instance when (ASOAAV , A
o) and
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Figure 4.3: Diverse providers and homogenous advisors with different witness infor-
mation and direct interaction algorithms
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Figure 4.5: Homogenous providers and homogeneous advisors with different witness
information and direct interaction algorithms

(ASOAAV , Agreedy) is compared. In overall, the performance differences were minimal or

no performance gains observed in this experiment condition.

Hypothesis 2

Figure 4.7 shows the performance of our algorithms with only direct interactions and

homogenous providers when the costs are set to 1. Aε1 , Aεgreedy , Al−split and ASOAAV

outperforms Agreedy as the budget (i.e. simulation time) increases. This was statistically

significant when the budget is set to be B = 2.5 × 105 and B = 5 × 105. When the

behaviour profiles of providers were set to be diverse, the results were similar. The

significant difference was the higher performance of Aεgreedy and ASOAAV when they are

compared to Figure 4.1.

Summary

To summarize, we can state the following results regarding our two hypotheses:

• Hypothesis 1 was supported by our experiments: if the budgetary constraints ex-

ist, in the cases where there is only direct interaction our decision-making model
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Figure 4.6: Homogenous providers and diverse advisors with different witness infor-
mation and direct interaction algorithms
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performs significantly better than Agreedy. When both direct interaction and wit-

ness information exist, our decision-making model performs significantly better

than (Agreedy, Agreedy) in particular settings.

• Hypothesis 2 was supported by our experiments: if the budgetary constraints

do not exist, then our decision-making model performs significantly better than

Agreedy.

4.4 Discussion

Our results show that our decision-making model can offer improvements when decision-

makers are under budgetary constraints. Also, we show that our model can achieve a

higher number of trustworthy interactions both in information from direct interaction

and witness information settings. Particularly, we observed that this performance re-

quires a level of budget that is necessary for our model to learn about the behaviours

of others. Until this level, we found out that our decision-making model performs no

worse than Agreedy. This was the case when Aε1 and Al−split was selected for direct

interactions. When the witness information was included in the simulation setting, we

found out that the pair (Al−split, Al−split) outperformed in all other possible pairs in

diverse providers and homogenous settings.

One drawback with the results that we are presented is the underlying trust model

that is used. The simplicity of the model also has an effect on the results as well. We

argue that the simplicity of trust model is used was beneficial in our experimentation

to put a highlight on the decision-making process rather than the behaviour estimation

of providers. This helps with our generality claim where any trust model that is known

to have a higher performance than is still going to benefit from performance increase in

using our decision-making model.

The distribution of the budget amongst witness information and direct interaction is

a challenging problem that we have not addressed in this work. We used ε = 0.1

for direct information models, however, in our experiments this setting underperformed

significantly. The further investigation is needed to find appropriate budget distribution,

we identify that this relies on several factors. These are the cost distribution of the

providers, the amount of available budget and the usefulness of witness information.

We argue that the decision-maker must invest on witness information if the information

is useful. By this, we mean that there is a statistical correlation that the selected trust

model can make inferences.
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4.5 Summary

In resource-constrained environments, additional mechanisms to build trust are impor-

tant when decisions are made with the use of trust. As presented in our related work (in

Chapter 2), the decision-making strategies often ignore such budgetary restrictions and

tend to directly use the most trustworthy partner. As we have shown such strategies

underperform as decision-makers miss opportunities to explore others. The approach

presented here performs well in varying behavioural profiles and has a significant benefit

in increasing budgetary settings.

Our usage of a standard Subjective Logic makes it compatible with any trust model that

utilize sociological, direct and third-party information. Other types of information (cost-

free) information that a trust model that is applied can be directly taken into account

by this generalization. While we showed our decision processes’ performance under a

simple strategy by the use of dishonest advisors, the complex ways to influence the

decision-making is not explored here. To explore this direction in the following chapter,

we introduce a novel mechanism to explore attacks to trust and reputation systems.





Chapter 5

Vulnerability Analysis

If you know your enemy and know

yourself, you need not fear the result

of a hundred battles.

Sun Tzu

In Chapter 2, we discussed the problems posed by existence of malicious entities in

trust and reputation systems. We showed that current practice in existing work is to

evaluate them against known attacks by heavily relying on expert analysts. In practice,

the moderation process to attacks in these systems are known to be manual and time-

consuming. In addition, the complexity of attacks is expected to increase. In this

chapter, we argue that vulnerabilities in trust and reputation systems can be identified in

an automated manner. We formulate this problem as a black-box optimization problem

in the context of online community settings and apply efficient sampling methods. In this

way, we provide reliable and objective means to asses how robust trust and reputation

systems are to different kind of attacks.

5.1 Adversarial Behaviours

Often, designers of trust and reputation systems rely heavily on expert analysts to

evaluate their models. This gives us information about the systems when they are

pitched against known attacks and their performance in limited experimental settings.

As argued by Jøsang (2009; 2012), these types of analyses are limited:

“Many studies on robustness in the research literature suffer from the au-

thors desire to put their own trust and reputation system (TRS) designs

in a positive light, with the result that the robustness analyses often are

65
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too superficial and fail to consider realistic attacks. Publications providing

comprehensive robustness analyses are rare.”

The encounters that designers of TRSs have with adversaries can be thought as a “cat-

and-mouse game”. Defensive mechanisms are implemented to stop or mitigate the effect

of known attacks happening, meanwhile adversaries try to find new vulnerabilities. This

is a pattern common to a wide range of network and system security settings. For

example, injecting negative reviews for rival service providers (so called bad mouthing),

or purchasing good “reviews” (ballot stuffing) are known, simple strategies. In response,

TRS owners introduce controls; for example, only to permit reviews from confirmed

customers. This has led to more sophisticated attacks, such as where items are purchased

and then returned in order to qualify to inject negative reviews. Users may report such

incidents, but the moderation process is manual, time-consuming, and may be equally

used by dishonest sellers.

A concern for (near) future systems is that the complexity of attacks are expected

to increase, exceeding human capabilities through the malicious use of AI algorithms

(Brundage et al., 2018). TRSs may be influenced, for example, by sophisticated algo-

rithms automating the process of finding effective combinations of attacks. As discussed

in Chapter 2, the current means by which TRSs are evaluated is by assessing the accu-

racy of predictions across a population of simulated agents, or through the use of data

sets collected from rating sites. These approaches are used to asses vulnerabilities to

certain kinds of known attacks. While these methods are useful, they focus on simple

attacks by single actors, eschewing the possibility of coordinated strategic attacks.

Since this chapter is concerned with how to identify vulnerabilities in trust and reputa-

tion systems, we are interested in how the search process can be automated and what

can be inferred about the models that are subject to analysis. There are three main

challenges that need to be addressed here:

• Independence: The method needs to be independent of the targeted model. In

this way, the models can be compared and assessed in an objective manner.

• Generality: The method should, as much as possible, not presuppose the strategy

of the attacker.

• Scalability: The method needs to scale to the numbers of participants involved

in real world systems.

There are, as argued in Chapter 2, a small number of reported studies that analyse

robustness of TRSs against realistic attacks (Ruan and Durresi, 2016). Furthermore,

the given benchmarks are on the side of presenting the models perform in terms of

accuracy in predicting the risk involved in interactions between parties. To analyse
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attacks, they presume the existence of a set of known attacks (i.e specific behaviours);

they lack generality and/or devised specifically for a set of models. Within the space

of all attacks, we attempt to explore the unknown parts of the space, what an attacker

can do while tackling the key challenges.

The remainder of the chapter proceeds as follows. In Section 5.2, we define our frame-

work in terms of the trust environment, the space of attacks and our methods to search

this space. In Section 5.3, we evaluate the performance of our model in simulated and

real-world settings, and we conclude in Sections 5.4 and 5.5.

5.2 A Model for Vulnerability Search

Our aim is to capture the possibility of a strategic attacker that employs a coordinated

attack with a specific objective. For this reason, we diverge from the general approach

of starting with a model of the attacker. Instead of defining the types of attack strategy,

we introduce a description of the space of possible ways to manipulate the evidence used

by a TRS and propose methods for searching this space driven by a specific objective.

By adopting this approach, we introduce a novel method for rigorously assessing trust

and reputation systems.

5.2.1 Framework

Here, we define some notation, which aims to provide a general environment description.

We first introduce a model of the environment and observations that a TRS may use as

evidence, and using this we describe the space of possible attacker actions, which can

be computed with strategies.

5.2.1.1 Trust Environment

For generality, we are agnostic about the specific nature of the trust model being em-

ployed, and so we characterize the trust environment in abstract terms. We assume a set

of agents, A = {a1, ..., an}. This consists of (potentially overlapping) sets of consumers,

C = {c1, ..., cl} ⊆ A and service providers P = {p1, ..., pm} ⊆ A. Some consumers may

also act as witnesses W ⊆ C. We represent opinions of agents as: A single observation

at the time t is denoted as: Otci→pj . We assume that observations are discrete, and the

number of possible values that an observation may have is bounded:

Otci→pj ∈ 1, ..., k where k ≥ 2 (5.1)
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The series of direct (or reported) observations made by a witness, ci ∈ W, of the per-

formance of a provider, pj ∈ P, up to time t is a vector:

O1:t
ci→pj = (O1

ci→pj , ..., O
t
ci→pj ) (5.2)

Otci→pj = 0 denotes that an interaction is not occurred at time t. Similarly, Ot:t
′

ci→pj = 0

denotes that ci did not interact with pj between the time interval t and t
′
. Given these

environment settings, all information that is, in principle, available to form a prediction

of the future behaviour of an agent (i.e. a trust assessment) at time t is, therefore:

E =
{
O1:t
ci→pj | ci ∈ W, pj ∈ P

}
(5.3)

The aim here is to keep the definitions general in order to avoid restricting the applica-

bility of our robustness analysis to other statistical trust evaluation models. Hence, the

point is that the environment is characterized in terms of the fundamental (primitive)

actions an attacker can take.

5.2.1.2 Decision Making

We identify a specific agent, δ ∈ A as the decision maker. Given the evidence avail-

able, this agent needs to make assessments of the relative trustworthiness of potential

providers by using a trust evaluation method. Ideally, a decision maker would have

access to all the information (i.e. E). While this is reasonable in recommender systems,

this is not the case in multi-agent or peer-to-peer systems. In these settings, information

that decision maker relies on can be partially observable or unreliable. Therefore, we

consider decision-makers that have a partial view of the evidence available, Eδ ⊂ E .

We must also consider the fact that the veracity of information available to a decision

maker may vary. This is the case for both recommender systems and the multi-agent

context, where, evidence may be misleading; i.e. a reported witness observation may

differ from their real experience. Furthermore, in the multi-agent context, the veracity

of each reported observation may differ for each agent collating its own viewpoint on

the evidence of past interactions; e.g. O0:t
ci→pj may vary among agents because ci ∈ W

provided very different witness reports to different agents. For example ci may report

that an encounter with pj was successful to one agent and that it was unsuccessful to

another. We consider the perspective of the agent that is the target of the attack (the

decision maker, δ), and so O0:t
ci→pj is always understood to be the observations reported

by ci about pj to δ; actual observations may be missing and inaccurate ones may be

added. We refer to the set of evidence available to agent δ on the basis of reported

observations from other agents and its own direct experience as Ẽδ.
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The goal of a trust assessment model is to use any observable evidence to make as-

sessments of future performance. Assume that the decision maker uses a statistical

trust model and aims to compute, for δ interested in the future performance of pj , the

probability of the outcome of the next interaction. This may be formulated as:

τ(δ, pj , Ẽδ) = P (Ot+1
δ→pj | Ẽ

δ) (5.4)

Given that the trust evaluation method is probabilistic, the range of this function is:

τ(δ, pj , Ẽδ) ∈ [0, 1] (5.5)

We treat trust evaluation methods as interchangeable with other types of computational

trust models. Our main reason is that while majority of the models follow probabilis-

tic techniques (as in Equation 5.5), there are other evaluation methods that employ

heuristics or combine probabilistic approaches with heuristics. Therefore, the generated

value (i.e. rating) from each trust model may differ. For instance, this value can range

between [-1, 1] (Marsh, 1994) or be selected from a set of categories (e.g. low trust,

neutral, high trust) (Abdul-Rahman and Hailes, 2000). To satisfy our requirement for

independence, however, our approach must not restrict the choice of TRS. Therefore,

we treat as τ(δ, pj , Ẽδ) a black-box function.

The other issue is the visibility of these values. This is not a problem for TRS owners.

From an attacker’s standpoint, however the implemented systems may not show the

trustworthiness value of each provider. In commercial and live applications, any details

about the values and their generation process tend not to be publicly provided (which

is a well-known anti-pattern, “security through obscurity”). Users of these systems are

provided with an aggregation of assessments. This can be an ordered list which shows

the most trustworthy providers to the least. When this is the case, after an attack on the

system, the ranking list can be observed to see the effect of an attack. This is typically

a key factor defining the attacker’s objective, and we elaborate on this issue in the next

section.

Within a trust environment, we identify two complementary challenges:

1. The challenge for an adversary (or a set of adversaries) is to find types of attacks

that significantly influence the decision maker; and

2. The challenge for a trust and reputation system is how to interpret evidence in

a manner that is robust to the possibility of adversaries searching for means to

exploit the system.

Addressing both challenges is necessary to develop a generalised attacker model for trust

and reputation systems. Within these challenges, in the following section, we start by
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identifying possible ways to influence a TRS from an attacker’s perspective, then we

focus on solving the problem of finding effective attack strategies.

5.2.2 Attack Space

The main goal of designing our vulnerability analysis is around the objective of increas-

ing ranking of a decision-making agent. This type of behaviour can be achieved by

influencing a decision maker’s partial view of the evidence available (i.e Eδ) In terms of

primitive actions, these can be a combination of some removals (e.g. Eδ \ {Otwi→pj}),
some changes (e.g. Ot−1wi→pj = yc), or additions (e.g. Eδ ∪ {Ot:t

′

wi→pj}). Removals and

changes require legitimate access to the system. This is hard in practice, since TRSs

tend to employ some form of authentication mechanism to prevent unauthorized access

to reports generated by other parties. On the other hand, additions can be done without

acquiring this level of access. These primitive actions can be combined to form an attack

strategy. There are known instances of these strategies include Sybil, Whitewashing and

Denial of Service attacks. Attackers can generate multiple identities and inject new re-

ports about others to achieve their goals (aka. Sybil attacks). To avoid of consequences

any malicious actions, attackers can leave or re-enter to system restore their reputations

(aka. whitewashing). In addition, preventing new information entering the system (aka.

denial of service) can be used by attackers to delay updates to assessments.

Within these possible primitive actions to influence the system, one of the most common

classes of attack on TRSs centres on the injection of false evidence (Jøsang and Golbeck,

2009). For this reason, we primarily focus on injection of new evidence, (yet we later

elaborate on the applicability of our approach given the primitive actions are different).

One of the advantages of using this type of attack is that it does not require acquiring

unauthorized access to the evidence available. Furthermore, the knowledge around this

type of attacks are limited to basic types of attacks such as self-promoting (positive

reports about the attacker) or bad-mouthing (negative reports about the competitor

provider agents) (Hoffman et al., 2009). Our interest is in how to utilize such primitive

strategies to form a complex one. With respect to Chapter 2, this is in the area of

orchestrated attacks.

In this section, we provide a detailed characterisation of the means whereby an attacker

can introduce false evidence. We define an attack as an injection additional witness

reports to the evidence available to a decision maker. A successful attack is one for

which the relative trustworthiness of the provider agents is significantly changed from

the viewpoint of the decision maker, δ. If we assume that the evidence available to δ

prior to the attack is Eδ, an attack is the introduction of E ′ so that:

Ẽδ = E ′ + Eδ (5.6)
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where E ′ contains our misleading/fake reviews. We make no assumptions about the new

evidence, E ′. It may be from multiple witnesses, either because it is a collaborative

attack, or because an attacker can, in some way, control the generation of these reports.

For this reason, identifying rewarding attacks in some context is a highly complex prob-

lem, given that the target assessment model of TRSs is unknown.

We tackle this problem by making simplifying assumptions about the space and provide

our justifications for them. We consider attackers that are self-interested, and they

are participating agents in TRS. The intent of these attackers is to damage overall

assessments in TRS (i.e. not decreasing trust to the platform.), but to benefit from

the manipulations. We restrict our attention to the trust models where the temporal

information is not taken into account: ∀Owi→pj , Owk→pl ∈ E ′ the order which Owi→pj
and Owk→pl are introduced into a trust assessment model does not affect the outcome.

In practice, introducing crafted witness reports can be costly. These TRSs may allow

reports from parties who made the observation, which may incur a cost (Ramchurn

et al., 2004a; Fullam et al., 2005). For example, another cost can be acquiring/hiring

identities for attacker or the cost of adding reports. This restricts the amount of new

information entering to the system. We capture this condition by restricting the attacker

by the number of witness reports it can affect, and there will be limits to the number

of additional observations that it can inject into the system. We, therefore, investigate

cases in which an attacker is limited by: (1) its power, or the number of observations

that it can add through the attack (ρ = |E ′|); and (2) its control over the witnesses

(W ′ ⊆ W).

We use weak compositions to distribute ρ amongstW ′
. The intuition here is that within

the limited power of an attack, ρ, the number of ways the attack can be distributed can

be described by compositions. The compositions of a number denotes the number of

different sequences of numbers that their summation where the reports need be parti-

tioned in a way that benefits the attacker. Formally, a weak composition of any number

n into k parts is a sequence of non-negative integers (zeros are allowed) where the sum

of all values in this sequence is n. The elements in each sequence can be duplicates.

In addition, sequences are not required to have unique elements. To illustrate, weak

compositions of 5 into 2 parts are:

(5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5) (5.7)

The number of weak compositions (i.e. sequences) can be thought of in this following

manner: Assume that there are n + k − 1 spaces marked on a paper. We would like

to distribute n indistinguishable balls into these spaces. Each space can have either a

single ball or a vertical bar. Assume that we place the first and last space a vertical bar.

The number of ways to distribute the balls to this setting is:
(
n+k−1
n

)
. After this step,

there will be k − 1 empty spaces. Assume that we place vertical bars to these empty
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spaces. Within this helper representation, when bars are considered as cell boundaries,

the number of balls inside each cell can be seen as each digit of the sequence. Therefore,

the formula for the number of weak compositions n into k parts is:

J(n, k) =

(
n+ k − 1

n

)
(5.8)

The space of possible attacks is then the weak compositions of ρ into the space in which

the selected witnesses are controlled by the attacker to provide new reports. The number

of possible attacks is X , such that:

|X | =
(ρ+ k ·

∣∣∣{Owi→pj | wi ∈ W ′, pj ∈ P}∣∣∣− 1

k ·
∣∣∣{Owi→pj | wi ∈ W ′, pj ∈ P}∣∣∣

)
(5.9)

These weak compositions can be generated sequentially by the NEXTCOM Algorithm

(Nijenhuis and Wilf, 2014). By using this algorithm, we use the generated weak com-

positions to create possible sets of fake/false reviews, E ′. In Algorithm 5.1, we start by

generating of all the weak compositions limited by the power of attack (i.e. ρ) into the

possible ways of ways that power of attack can be partitioned (i.e. k · |W ′| · |P|). Each

generated weak composition, v is:

v = (v1, ..., vk|W ′||P|) | vi ∈ N for each i (5.10)

k|W ′||P|∑
i=1

vi = ρ (5.11)

The length of the sequences are k · |W ′| · |P|, and the sum of all elements from the

sequence sums to the attack power ρ.

The Algorithm 5.1 shows how we transform weak compositions (from Line 2) to the

altered evidence E ′. Line 8 divides the vector into chunks of evidence. The algorithm

outputs X , which is the set of all possible E ′s. To illustrate, assume a weak composition

created when k = 2, |W ′ | = 3, |P| = 2 and ρ = 10. In this case, the length of the

sequence is 12.

v = (

y=1︷︸︸︷
0 ,

y=2︷︸︸︷
1︸ ︷︷ ︸

Ow1→p1

, 1, 0︸︷︷︸
Ow1→p2

, 2, 1︸︷︷︸
Ow2→p1

, 0, 3︸︷︷︸
Ow2→p2

, 0, 1︸︷︷︸
Ow3→p1

, 1, 0︸︷︷︸
Ow3→p2

) (5.12)

As shown above, each two elements are mapped to controlled witness provider rela-

tionship pair. The indexing in Line 8 is used for accessing the elements of v given the
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Algorithm 5.1 Generates all possible attacks from weak compositions

1: X ← {};
2: for each v ∈ NEXTCOM(ρ, k · |W ′| · |P|) do
3: E ′ ← {};
4: for each wi ∈ W ′

, pj ∈ P do
5: y ← 1; x← 1;

6: Ot:t
′

wi→pj ← 0;
7: while y ≤ k do
8: counts = v(k((i−1)|P|+(j−1))+y);
9: while counts > 0 do

10: Ot:t+xwi→pj ← y;
11: counts← counts− 1; x← x+ 1;

12: y ← y + 1;

13: E ′ ← E ′ ∪ {Ot:t
′

wi→pj};
14: X ← X ∪ {E ′};
15: returns X ;

selections. In particular, each element of v corresponds to the count of new reports

with their outcome y, that will be injected into the system given each selected witness-

provider pair, wi → pj . Finally, in Lines 9-13, according to the count, these new reports

are added to form an attack.

To give a concrete example about the mapping, assume that Algorithm 5.1 is at a stage

where the w2 → p1 pair is selected. In addition, v is picked as shown in Equation 5.12.

In this case, we look at the v5 and v6. v5 corresponds to the number of new reports

that will be injected with the opinion y = 1 by w2 about p1. The same is done for v6,

although the opinions are valued as y = 2. The opinions, Ot:t
′

w2→p1 , that will be added to

E ′ is, therefore, (1, 1, 2).

The number of ways to inject new evidence is defined by Equation 5.9. We show a

numerical example to demonstrate the growth of this function in Figure 5.1. When

|W ′| and |P| are reasonably large, therefore, it is not feasible to sample even a small

percentage of this space. Thus, we explore a restriction on strategies that reduces this

large attack space, while avoiding the imposition of designed-in attacks.

5.2.2.1 Restricted Space

The aim here is to retain the challenge for the attacker, where in any realistic scenario its

search would be limited to the selection of witnesses to use in an attack, because using

a witness may be costly in some contexts (e.g. cost of spoofing or bribing the witness.).

In our previous attack space X definition, we considered incorporating all the controlled

witness into our attack. This exhaustive search in terms of computational time and

space is not feasible. For this reason, we turn our attention to a possible subset of (i.e.
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X̃ ⊆ X ). Our considerations for reducing the space is: Instead of using all controlled

witnesses, a subset of controlled witnesses can be selected. Then, each of these selected

witness can provide a portion of the number of malicious reviews.

The procedure to generate each E ′ in this space is as follows:

1. We make a selection from controlled witnesses (i.e. the number of selections, s)

2. The attack power, ρ, is distributed across these selected witnesses:

(a) ρ’s all restricted partitions to s (i.e. D = RPs(ρ)) and their the permutations

without repetition: PDs

(b) These permutations are then distributed to each (advisor, trustee) pair. The

number of ways to distribute these permutations is (|P| · k)s

Then, the number of attacks in this reduced space is:

|X̃ | =
(|W ′ |

s

)
D · PDs · (|P| · k)s (5.13)

where the number of restricted partitions of ρ into s parts is:

RPs(ρ) = RPs(ρ− s) +RPs−1(ρ− 1) (5.14)

where RP0(0) = 1 and RPs(ρ) = 0 if ρ ≤ 0 or s ≤ 0. The number of additional

reported observations from witnesses, ρ, is distributed across all partitions, restricted

by the number of selected witnesses and the number of providers. By this reduction,

each witness can provide a portion of the total malicious reviews (ρ) to a single selected

provider.

To give a concrete example of creation of a single attack, let k = 2, |W ′ | = 5, |P| = 2,

ρ = 5 and s = 2: First, assume that we make a selection of witnesses, which are

(w1, w3). Next, we select one of many restricted partitions, assume that the selection is

(3, 2). Then, we select an order of this partition selection (2, 3) (intuitively in this case,

there are only two: (3, 2) and (2, 3)). We consider all the cases, in which w1 provides 4

reports about all providers and likewise w3 provides 6 reports. A single attack within

this setting can be: Ot:t+2
w1→p3 = (1, 1) and Ot:t+3

w3→p5 = (2, 2, 2).

Algorithm 5.2 starts by selecting a subset of possible controlled witnesses (Line 2). The

power of the attack then is divided these witnesses: generating restricted partitions of

the power ρ into s parts. q denotes the set of the partitions for each witness as:

q = (q1, ..., qs) | qi ∈ N for each i (5.15)
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Algorithm 5.2 Generating attacks for selected witnesses

1: Input: (w1, ..., ws); the witnesses selected
2: X̃ ← {};
3: for each q ∈ generateRP(s, ρ) do
4: for each r ∈ generatePermutations(q) do
5: x← 1;
6: while x ≤ (|P| · k)s do
7: E ′ ← {};
8: val← x− 1;
9: for each wi ∈ (w1, ..., ws) do

10: index← val % (|P| · k);
11: j ← index

|P| ; counts← ri;

12: Owi→pj ← {};
13: while counts > 0 do
14: Owi→pj ← Owi→pj ∪ {index % |P|};
15: counts← counts− 1;

16: val← val
|P|·k ;

17: E ′ ← E ′ ∪ {Owi→pj};
18: x← x+ 1;

19: X̃ ← X̃ ∪ {E ′};
20: returns X̃ ;

Algorithm 5.3 Generating all attacks in X̃
1: X̃ ← {};
2: for each (w1, ..., ws)← selectWitnesses(W ′

) do
3: X ← X ∪ Algorithm 5.2 with (w1, ..., ws);

4: returns X̃ ;

The generation of these partitions can be done efficiently via the use of RuleAsc algo-

rithm (Kelleher and O’Sullivan, 2014). This computation of each partition would be

constant amortised time. Next, these partitions are permutated without repetition to

cover all possible ways of distributing each integer (Line 4). According to the number of

ways that each permutation q can be distributed (Line 6), we assign a proportion of ρ

to each selected witness wi (Line 9-11). The rest shows how this proportion is assigned

as a new report for the each witness and inserted as an attack E ′ to the attack set X̃ .

We generate all possible assignments of restricted partitions by using integer y. Assume

that reports from each witness is a k by |P| matrix. In Line 10, we select a cell from

the matrix and integer val represent the index of this cell. Given that the proportion

of ρ is ri for wi and this proportion is going to be added to provider j (Line 11), we

create a new set of reported opinions for the controlled witness about a provider in Line

12. Finally, we insert the new reports by integer counts in Line 14. We follow the same

steps until we finish iterating the tuple (w1, ..., ws).

The space requirement of generation of attacks can be reduced by a truncated version

of Algorithm 5.3, which stores a subset of attack space X̃ for a single witness selection
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(w1, ..., ws). Accessing an attack (i.e. E ′), with the attack search mechanisms that we

will introduce in this section, is not limited by this approach. To clarify, when the

methods request to access an attack from X̃ (i.e. a point in this space), we separate

the space uniformly into
(|W ′ |

s

)
regions. A point in this space can be accessed with

Algorithm 5.4.

Algorithm 5.4 Truncated version of Algorithm 5.3

1: Input: x ∈ [0, 1]; a point in the space
2: W̃ ← {(w1, ..., ws) | (w1, ..., ws) ∈ selectWitnesses(W ′

)};
3: X̃ ← Algorithm 5.2 with some arbitrary (w1, ..., ws);
4: witnessBinSize← 1.0

(|W
′ |
s )

; attackBinSize← 1.0
|X̃ | ;

5: i←
⌊
x − (x % witnessBinSize)

witnessBinSize

⌋
; j ←

⌊
x − (x % attackBinSize)

attackBinSize

⌋
;

6: returns E ′ from X̃i with witnesses changed to W̃j ;

We eliminate the number of attack through Algorithm 5.4. First, we create the com-

binations of selections of controlled witnesses we control (Line 2). Second, we create a

subset of attacks with arbitrary witnesses by using Algorithm 5.2. Then, we calculate

the sizes of bins for attacks and witnesses (Line 4). Later, the corresponding indices for

both bins are calculated (Line 5). Finally, the attack that is selected X̃i is returned with

witnesses changed to W̃j (Line 6). In this way, the space complexity is reduced to:

|X̃ | = D · PDs · (|P| · k)s (5.16)

The restricted space is a subset of all possible ways to inject malicious reports to the

system. As shown in Figure 5.1, when spaces compared numerically, including the

selecting a subset of controlled witnesses stage in unrestricted space, we reduce the

number of possible ways. In addition, during implementation, the restricted space size

can be further reduced in Algorithm 5.4 with a factor of 1/
(|W ′ |

s

)
. The constraint that we

take into account in our model, where the attacker has a certain power (i.e ρ) increases

the complexity of distributing the power. This requires generation of all attacks in

the selected space, before approaching to the problem of finding which attack is more

rewarding than others. In addition to this drawback, objective that the attacker want

to achieve may or may not be achievable with the given power. We elaborate on these

drawbacks and our solutions in Section 5.2.3.

Example Attack

To illustrate the kinds of attack within this space, and the potential effect of an attack on

the relative trustworthiness of the agents from the perspective of the target, δ, consider

Figure 5.2. Here, we have five providers, {p1 . . . p5} ∈ P and five witnesses, {c1 . . . c5} ∈
W, the attacker has power, ρ = 5, and it has control over (and/or has chosen) witnesses
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Figure 5.1: Log-lin plot of the comparison between attack spaces with all possible ways
to attack to system with system parameters, unless varied, being

ρ = 10, k = 2, |W | = 20, |W ′ | = 20, s = 2, |P | = 20

c1, c3 and c4 through which to target its attack. The aim is to improve the relative

position of provider p1 from the perspective of the decision maker, δ.

In Figure 5.2, we show the ranking of each provider, r(pi), before and after the attack,

where this ranking is based on the trustworthiness of each provider computed using a

beta distribution on the basis of positive (+1) and negative (−1) observations reported

by our witnesses. The detail of the attack is:

1. The attacker injects one positive rating from witness c1 regarding p1, increasing

c1’s overall view of p1 to +2.

2. It injects one negative rating from witness c3 to p3, reducing c3’s overall view of

p3 down by −1.

3. Finally, it injects three negative ratings from witness c4 regarding p5, dropping

this from +1 to −2.

Note how the attack is distributed against all competitors to p1’s relative position.

We intentionally chose a simple trust model in this example, but it serves to highlight

the kinds of attack that may be identified through our model. The questions that now

remain are: what is an optimal attack, and how do we discover such attacks efficiently

given the size of the search space?
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Figure 5.2: Agent δ’s relative rankings of service providers before and after a strategic
attack, where the ρ=5 and s=3. The malicious attacker, p1, has control over witnesses

c1, c3, c4 ∈ |W ′|.

5.2.2.2 Optimal Attacks

The value gained from an attack depends on the intent of an attacker. Following our

previous example, the optimal attack in this case for attacker pa is to find the attack

that gives the most trust value difference, while restricted by the power of attack, ρ.

The objective can be to gain a higher trust value:

E∗ = arg max
E ′

τ(δ, pa, Ẽδ)− τ(δ, pa, Eδ)

subject to Ẽδ = E ′ + Eδ
(5.17)

where τ(δ, pa, E) is the decision maker’s assessment of the trustworthiness of the attacker

pa. However, the rank of the attacker may not increase, even in the cases where the

optimal attack for this objective is found. This depends on the underlying formulation

of the TRS. In addition, the decision of which party to trust are not made in isolation.

A decision maker cares about how trustworthy an agent is with respect to others. As in

the example in previous section, it may be more effective to badmouth others than to
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inject more good reports to yourself. To this end, we change the attacker’s objective to

focus on its rank, in this case, it will be improving its statistical rank:

E∗ = arg max
E ′

r(δ, pa, Eδ)− r(δ, pa, Ẽδ)

subject to Ẽδ = E ′ + Eδ
(5.18)

The optimal attack with this objective may include attacks that only improve trust

value of pa and may not change the values of other providers. This looks same as the

optimization problem in Equation 5.17. However, the cases where improvement in rank

is possible by decreasing trust values of others and increasing attacker’s trust value are

not considered. When all the cases are taken in to account, this attacker’s objective is

a hard (in this case, discrete) optimisation problem, which is strongly non-convex. This

statement holds true for the ranking function (r(δ, pa, Eδ)), even if the trust assessment

function is convex or concave. The difficulty in this problem comes from the fact that the

objective function in Equation 5.18 depends on the implemented TRS, whose formulation

can be impossible to access or intrinsically complex. Therefore, gradient based methods

are not suitable and would fail to escape from local minima. For this reason, we propose

two sampling-based optimization strategies from the literature to search for attacks.

5.2.3 Searching Attacks

By formulating attackers objective as an optimization problem, we can use well-known

derivative-free methods for computing an attack. The main motivation in this approach

is that searching the attack space in a brute-force manner is not feasible. To solve

this, the idea is to sample the space by a set of rounds to approximate the solution of

the optimization problem. In our case, the criteria to stop depends on many factors,

such as computational resources of the attacker (i.e. having access to high-performance

computing clusters) and/or adapting to changes in the system. By taking these into

account, we introduce two sampling-based optimisation techniques:

Monte Carlo Sampling, MCS, is a Monte Carlo simulation-based approach to ran-

domly sample the objective function to approximate the expectation of the optimal

solution. In practice, until the stopping criterion is satisfied, we randomly select a set

of E ′ from X . At the end, we use best solution amongst all the candidate solutions pro-

duced. If the objective function is stochastic (i.e. trust function in Equation 5.5 being

stochastic makes the objective function in Equation 5.18 stochastic.), we can further re-

duce the number of sampling steps by sample average approximation method (Kleywegt

et al., 2002).

Hierarchical Sampling, HS, is a hierarchical optimisation technique, which assumes

the objective function has a smoothness property (locally Lipschitz) (Bubeck et al.,
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2011). This similarity property in our case is the assumption that similarly rewarding

attacks are closely ordered in the space. This method aims to estimate the reward of

a given objective accurately in the maxima (i.e. the highest reward), and loosely in

the remaining partitions of the attack space. To achieve this, a binary tree is used for

storing information about the attack space. Each node of this tree represents a partition

of the space and holds some statistical information about estimated reward of the region

(specifically, the number of times attacks are selected and the empirical average of the

rewards from the region). After each selection, these estimates are updated from bottom

up in the tree. At the end of sampling the space with a search strategy, the attack with

the highest reward is returned.

5.3 Evaluation

Up to this point, we defined the environment the attack is going to take place in, the

space of possible ways to attack the environment and the strategies to search for these

attacks. Within this scope of unknown orchestrated strategies to attack TRSs, our aim is

to characterize what these attacks are doing, the factors that influence the performance

of these attacks and finally answering the question of is it applicable in practice. Hence,

our hypotheses are:

• Hypothesis 1: Playing our (orchestrated) attack strategy is more rewarding than

simple types of attack strategies.

• Hypothesis 2: Using previous agents rather than injecting new agents to the system

yields a higher reward during attacks.

In our related work, we argued that the use of orchestrated strategies while attacking

TRSs is plausible. However, the question of is it beneficial in terms performance for at-

tackers remains. We capture this question by formulating our first hypothesis. We make

comparisons between incorporating simple strategies from the literature. We continue

by looking into the factors involved during an attack. The features of targeted envi-

ronment such as connectivity (the number of interactions between agents), behavioural

correlations between agents and finally use of agents that are already in the system or

newly created agents are in our focus. Finally, we argue that our attack model can be

used in real-world environments. To test these hypotheses, we make use of empirical

experiments with simulated datasets and a real-world dataset. With simulated settings,

we alter various factors of interest gracefully in the system. In addition, with the use of a

real-world data set, we expand our observations capture intrinsic transformations in the

dataset. This allows us to observe the differences in calculated strategies between the

simulated and the real-world data set experiments. While we aim to provide maximal
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coverage of possibilities with the use of simulated experiments, we further enhance our

results with the use of a real-world dataset. In addition to the experiments that designed

to test these hypotheses, we make an exploratory analysis on the characteristics of the

attacks with respect to TRSs and show the impact of the attacks.

5.3.1 Experimental Setup

Given our hypotheses, we divide our experimental setup into two parts. First, we explain

how the simulated data is generated. Second, we introduce our use of a real world data

set. For this, we use Yelp’s 2019 Dataset Challenge1, which includes reviews that are

written for businesses who are located in 10 metropolitan areas across United States and

Canada. Four widely studied TRSs along with a simple baseline (average) function are

selected for our investigation. These models (summarised below) represent a variety of

commonly employed techniques for handling malicious witnesses. We implemented them

based on information from respective papers, choosing reasonable values for parameters

after a set of runs to ensure that performance is not hindered. We chosen these models:

BRS Jøsang and Ismail (2002) uses Bayesian updating to fuse observations from differ-

ent providers and witnesses. The work by Whitby et al. (Whitby et al., 2004) extends

the model by adding a filtering mechanism where evidence that deviates from the ma-

jority up to a degree is discarded. We selected the filtering mechanism version of the

model, since we capture the original model with our baseline averaging model. TRAVOS

Teacy et al. (2006) discounts the influence of witnesses by heuristically calculating the

similarity between distributions of witness observations; in contrast, BRS discards out-

lier reports. In TRAVOS, similarity is calculated by tabulating the outcomes by using a

particular selection of bins that denote regions of the outcome distribution. The model is

selected for our evaluation with its first use of divergent reports in TRSs. HABIT Teacy

et al. (2012) is a hierarchical Bayesian model to estimate trustworthiness by similarities

between providers. Similar to TRAVOS, the decision maker calculates the similarity be-

tween the opinions of witnesses about a provider in comparison to other providers and

the weighted average is calculated. Except the method eliminates the similarity heuristic

by the use of the hierarchical model. EIGEN Kamvar et al. (2003) uses power iteration

to capture transitivity of trust between parties. The outcomes of observations are nor-

malised and stored in a global matrix. A global trust value is then calculated using the

left-principal eigenvector of this matrix. We selected this popular reputation model to

observe the performance of attack within a consumer-provider TRS setting. Other TRS

models were not chosen, due to the known limits on their applicability to this prob-

lem and/or their similarity to the chosen models. For instance, BLADE model Regan

et al. (2006b), limits our experimentation by making the assumption of no missing data

Heckerman (2008) in each sample of available data. The given closed-form solution for

1www.yelp.com/dataset
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computing trustworthiness of others relies on this assumption. Briefly, this means that

each consumer is assumed to make the same number of interactions with each provider

and receive same amount of reputational information from advisors about each provider

in the system. In practice, the samples that are collected can be incomplete.

To get further insights about our TRSs in these different data sets, we propose a simple

categorization of the attacks employed. This allows us to determine the type of attacks

and the direction of primitive actions. Our categories incorporate the attack definitions

given by Hoffman et al. (2009) and makes a concrete extension of their definitions.

As shown in Table 5.1, these definitions are, malicious attacker uses witnesses that has

control over to inject: self-promoting (SP) positive reports to the attacker, self-slandering

(SS): negative reports to the attacker, self-orchestrated (SO): both negative and positive

reports to the attacker, slandering (S): negative reports to other providers, promoting

(P): positive reports to other provider, orchestrated (O): positive and negative reports

to other providers and complete-orchestrated (CO): negative or positive reports to both

the attacker and providers.

Categories
CO O SP S SO SS P

Direction
Attacker (+, -) + +, - -
Others (+, -) +, - - +

Table 5.1: The categories of the attack strategies considered with their directions

We measure the frequency of each type of attack occurred by our attack strategy and the

degree of rank gain that is achieved. This is relevant to our hypotheses, because we can

then make comparisons between known types attacks versus our attack model in terms

of performance. If the characteristics of the environment differs, we can measure how

much it influences the attacker and the types of strategies used to benefit the attacker.

Finally, we can identify the types of attacks that has more impact on the models within

types of characteristics that they have using these metrics.

5.3.1.1 Simulated Dataset

Parameter Value Description

|P| 20 The number of provider agents

|W| 20 The number of witness agents

s 2 The number of witnesses under the attacker’s control

t 10 The number of provider observations made by each witness

Table 5.2: Experimental Parameters

To generate simulated data for our evaluation, we follow this procedure: Before the

attack, we assume a set of witnesses W interacted with a set of providers P over a

number of rounds. The outcome of the observations made by witnesses about providers



Chapter 5 Vulnerability Analysis 83

are drawn from categorical distributions (i.e. Ot
′
cj→pj ∼ Cat(θpj )) with a parameter

that is given to each provider. Parameters of categorical distribution, θpj , are drawn

from two different distributions. The first is a Dirichlet distribution (i.e. Dir(α)) with

all its parameters set to 1. The intuition to use this uninformative prior is to setting

equal probability to all possible assignments of θpj (i.e. the principle of indifference).

The second distribution is used for looking into the effect of providers, if we assume

that providers are behaving similarly. We capture this notion by using a Dirichlet

distribution with the parameters set to 20. Finally, to capture connectivity in TRSs, we

introduce a metric: indirect knowledge degree d, which denotes the probability of each

witness interacting with a provider and t denotes the number of times the interaction

has happened before:

Pr(Otpj→cj = x) =

{
1− d x = 0

d · θpjx x 6= 0
(5.19)

Witnesses transform their observations to the target by behaviour matrices Θwi , which

are right stochastic square matrices. Formally a single behaviour matrix is:

Θwi = (θwixy | θwixy ≥ 0,
∑

y θ
wi
xy = 1) ∈ Rk×k (5.20)

where each row sums to 1. Each row represents a probability vector and reports of

witnesses are categorically distributed by each row. The values for each row in Θwi is

drawn by a specified distribution where the supports of the distribution can be used as

a probability vector (the sum of each row is 1.0 and each element is larger than or equal

to zero). In our experiments, we used an uninformative Dirichlet distribution for each

row. When a witness reports an observation Otcj→pj to the decision maker, then the

reported observation is denoted as Otwj→pj ∼ Cat(θwix,∗) where θwix,∗ is the xth row of Θwi .

To illustrate concretely how the reports are transformed consider the following example.

If we assume binary observations (i.e. k = 2) and a witness is completely honest in

reporting the observation (i.e. no changes to what is observed), then the behaviour

matrix of the witness Θwi is an identity matrix Ik. At the same time, if the witness is

completely dishonest (i.e. opposite of what is observed), then the behaviour matrix is an

exchange matrix Jk. In the case of a matrix of ones multiplied with 0.5 (i.e. when k = 2:

Θwi =

[
0.5 0.5

0.5 0.5

]
), the reports will be random, independent of the observation. Given

these behaviour matrices, the number of reports that are generated by each witness is

denoted with t.

Throughout our simulated dataset experiments, we consider four experimental variables:

the strategy used to search for attacks (MCS or HS); the connectivity between witnesses

and providers (d); the power of the attacker (ρ); and the behaviour of witnesses (θci).

Other parameters are fixed as specified in Table 5.2. (given by the selected TRS) as the



84 Chapter 5 Vulnerability Analysis

attacker’s target. The rest of the parameters remain constant as shown in Table 5.2,

unless otherwise stated.

5.3.1.2 Real-World Dataset
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Figure 5.3: The average number of advisors (|W|) and the count of all reports (E)
available in random regions of each city.

In the previous section, we explained how the synthetic data is generated and how the

parameters are controlled. While, this is a common way to generate various instances

of the population, how much the process accurately models the interactions in a TRS in

practice is unknown. To explore real-world performance of our methods, we use a data

set released from the company Yelp, as their 2019 Dataset Challenge. Dataset includes

reviews that are given to restaurants, cafes and other types of businesses. In total, there

are 192609 records of business and 6685900 reviews in the data set from 2014 to 2018.

These businesses are located in ten different cities from the USA and Canada. In Yelp,

reviewers can provide reviews with 5 star ranking. In our experiments, we select 10

random locations that are close in proximity (less than 2 kilometres) to each city centre

from 2017-2018. Then, 20 restaurants which that are close to each location are selected.

Since TRAVOS, BRS and EIGEN models use binary observations (positive or negative)

in assessments, we preprocess the data as following: 5 star rating as 2 positive, 1 star

as 2 negative, 3 star as 1 positive and 1 negative, 4 star as 1 positive and, finally 2 star

as 1 negative report. Based on our observation in Figure 5.5, we tuned the exploration

percentage to 0.01% to search the space for all strategies across these experimental

settings.

We aim to capture various population settings in our sample from the dataset. Fig-

ure 5.3 shows the sample of the data that we gathered. In our sample, Vegas has more

3Brackets that are used in the equations inside the figures are Iversion brackets (Graham et al., 1989).
Brackets convert a logical proposition to 1 if proposition is satisfied, otherwise returns 0. Formally, if P

is a binary proposition , then: [P ] =

{
1 if P is true;
0 otherwise,
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Figure 5.4: Comparing the ratio of witnesses from each city, categorized by the
amount of reports that are provided to TRS (i.e. f(x))3.

reports and advisors than other cities. The fewest number of reports and advisors are

in Montreal. The sample overall in each city includes a higher number of reports than

the number of witnesses. Figure 5.4 shows the ratio of the witnesses from each city.

Witnesses who provided at least 2 reports, f(1) and f(2), were the most common in

every city. We observed that the ratio of the rest is marginal. In terms TRS selection,

Yelp uses simple weighted averaging. However, we further make experiments with all

TRSs mentioned before. We measure the probability of each witness interacting with a

provider, indirect knowledge degree, from samples in Yelp by calculating:

d =

∑
wi∈W

∑
pj∈P |O0:tmax

wi→pj |
|W| · |P| · tmax

(5.21)

We measured this to be d < 0.06 across all cities. While the number of reports given

by a witness, tmax, in the range of [2, 8]. In the simulated settings, we set d = 0.5, but

varied tmax in our experiments. Given in this initial analysis, when both datasets are

compared, the connectivity is expected to be significantly lower in the Yelp Dataset than

in our simulated experiments.

5.3.2 Results

Here, we present the results of our experiments. In each simulated experiment setting,

every experiment is repeated over 3000 different instances. By doing so, we minimise

the effect of different initial attacker ranks, uncertainty from the searching methods and

population settings. In our results, we plot the distribution of rank gain and mean

rank gain over these scenarios to illustrate the performance of our attacker model. To

validate the statistical significance, we performed pairwise Mann-Whitney U tests with
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Bonferroni correction. Our reason for choosing this test is that the resulting rank gain

distributions were not normally distributed according to Shapiro-Wilk tests. As men-

tioned, the rank gained after each attack from the target model is treated as a black-box

mechanism. This creates a new problem, where the attacker needs to make a decision

on the number points to be sampled from the attack space. Since, we omit any prior

knowledge regarding the TRSs used, we empirically determine a reasonable value for

all experiments. In Figure 5.5, we observed that as the size of attack space increases,

the proportion of the space required decreases to reach a plateau. Although, this does

not necessarily mean that if we determine a proportion of space of attacks to explore

from the observed plateau in every scenario, the attacker conducts an optimal attack.

However, our empirical observation offers a reasonable value for our analysis to iden-

tify vulnerabilities of the models. After this observation and given the selected TRSs,

we selected 1% in our simulated experiments. This value, in theory, may be derived

by relaxing the black-box assumption. We leave the selection of this parameter given

the characteristics of target model as a future work. Before going through the results

that correspond to each hypothesis, we elaborate on results regarding the selection of

different search strategies and optimizing attack strategies with respect to other TRSs.
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Figure 5.5: Mean rank gained from MCS with respect to the ratio of the attack space
explored in three different environments.

Identifying an effective search strategy

Figure 5.6 shows the performance of the attacker across different TRSs given the selected

search strategy and a comparison between the starting point of the attacker in our

simulated experiments. The attacker achieves a minimum of 2 rank gains on average for

all TRSs, but EIGEN and TRAVOS are significantly more vulnerable. With respect to
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our search strategies, MCS performed at least as well as HS for all TRSs, and showed a

significantly higher performance against BRS, EIGEN and TRAVOS. All three of these

cases were statistically significant with p < 0.001. The cause of these differences might

be due to the fact that the objective function lacks smoothness. Given the relative

performance of MCS and HS, we selected MCS for subsequent experiments.
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b) Attacker’s rank is the lowest (least trustworthy).

Figure 5.6: Comparing MCS and HS in varying TRSs. Triangles denote the mean of
the corresponding distribution.

Optimizing attack strategies

Figure 5.7 shows the performance (rank gain) as power ρ, population behaviour and

connectivity of available evidence (Figure 5.8) are varied. As the power of the attacker

increases, this may be exploited to achieve a greater rank gain for all TRSs (Figure 5.7a-

b). The rank gain is bounded by the starting rank of the attacker. The rate of increase

does, however, vary across the two population profiles. When the results from Figure 5.8

are compared with Figure 5.7a, the rank gain achieved against EIGEN is significantly

lower in the case when the population parameters are sampled from a concentrated

Dirichlet distribution. The average rank gained against other TRSs behaves similarly

as the power of the attack, ρ, is increased.

Hypothesis 1

Our hypothesis is to confirm that if our attack strategy is more rewarding than choosing

simple types of strategies, given the same attack power, ρ. For this, Figure 5.9 com-

pares the simple strategies and our attack model. The simple strategies considered are:

self-promoting from a random advisor, SPO, i.e Ot:t+ρwrandom→p1 = (1, ..., 1ρ) where p1 is

the attacker, slandering a random provider (we ensure that the rank of this provider is

higher than the attacker) from a random advisor, SO, Ot:t+ρwrandom→prandom = (2, ..., 2ρ). Our

experiments partially validate our hypothesis, where simple types of attack strategies

are less rewarding or same then our attack strategy. Particularly, on average slandering

was least effective. The significant difference is observed in EIGEN, BRS and TRAVOS
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Figure 5.7: Comparing TRSs where power of the attacker, the evidence available and
the population behaviour is varied. Error bars denote the standard error of the mean

rank gain.
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Figure 5.8: Comparing TRSs where power of the attacker, the evidence available and
the population behaviour is varied. Error bars denote the standard error of the mean

rank gain.

models, where MCS outperformed other strategies. All three of these cases were statisti-

cally significant with p < 0.001. The outliers show that some instances simple strategies

where able achieve the maximum reward, however on average the reward gained is much

lower.

Hypothesis 2

In our second hypothesis, we hypothesized that the attacker will gain higher reward

if an attacker uses our strategy with agents that have already engaged with the TRS,

rather than creating new agents (as is a Sybil attack). Figure 5.10 shows the difference

between the mean rank gain by selecting witnesses that are already in the system versus

creating new witness identities. Each point in the figure is computed by subtracting

the mean rank gained from selecting old witnesses from selecting new witnesses. Our
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Figure 5.9: Comparing MCS with SPO and SO. Triangles denote the mean and circles
denote the outliers of the corresponding distribution. The attacker rank is chosen to

be the lowest amongst all other providers.

results show that when attacker uses our model with the use of either model, mean rank

gain is identical for TRS models: Average, BRS and HABIT model. We observe that

increasing the number of advisors increased the mean rank gain for the TRAVOS model.

On the other hand, our results for the EIGEN model showed that creating new advisors

was a better choice for the attacker, since the difference is negatively increased.
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Figure 5.10: Mean rank difference of selecting witnesses that are already in the system
versus creating new witness identities.

The effect of connectivity and attack power towards selected strategies

Figure 5.12 shows when the connectivity is set to: t = 4 and t = 16. We observe that

the strategy that is selected the most is complete orchestrated (CO) across all settings.

The second highest ratio of selected strategy is self-promoting (SP). As the number of

reports increases, the ratio of this strategy decreases in all TRSs. Figure 5.13 shows

when the attack power is set to: ρ = 4 and ρ = 16. The figure shows that in each
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TRS model that we used in our experiments, complete orchastred (CO) was selected the

most. The percentages of CO in all TRSs in ρ = 16 is less than in the cases where ρ = 4.

When ρ = 16 in all cases, the ratio of SP is higher than in ρ = 4. This includes the

mean rank gain of SP, which is higher than CO. With the Yelp dataset, there were more

cases where a strategy was not found given where the attack power was set to ρ = 5.

Figure 5.11 shows the ratio of best attacks in EIGEN were SP. In TRAVOS, the rank

gains and the number strategies found were less than all others.
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Figure 5.11: Distributions of rank gain achieved when an attack type is selected in
varying TRSs: simulated and Yelp settings.

Summary

To summarize, the following can be stated regarding our hypothesis:

• Hypothesis 1 was supported by our experiments, our strategy is more rewarding

than simple types of attack strategies given the space we explored in our experi-

ments.

• Hypothesis 2 was not supported by our experiments: The results varied be-

tween different TRSs, when the attacker’s strategies incorporate witnesses versus

selecting witnesses that are already in the system.
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Figure 5.12: Distributions of rank gain achieved when an attack type is selected in
varying TRSs and connectivity settings.
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Figure 5.13: Distributions of rank gain achieved when an attack type is selected in
varying TRSs and power settings.

In addition to these hypotheses, our key finding is that the distributions of rank gain by

strategies that are identified by our model depends on connectivity, the attack power,

including new or reusing previous advisors, and the TRS that is targeted.
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5.4 Discussion

Our results show that devised strategies differ with respect to the environment that is

targeted. In particular, when the connectivity of TRS is increased, we see a decrease

in self-promoting being a good strategy, regardless of the attack power. Meanwhile,

when the connectivity is fixed, the effect of self-promotion increases for all TRSs models

with higher attack power. The amount of rank gain achieved was consistent in each

TRSs, when these strategies were selected: complete-orchastrated (CO), self-promoting

(SP) and self-orchastrated (SO), except in BRS self-slandering (SS) resulted a higher

rank gain than others. Overall, this shows that if an attacker uses advisors to invest

in injecting new reports directly to their account (i.e self-promoting), a better option

would be to distribute a portion of reports to conduct other strategies. Our results point

to this in expectation, whereas in smaller portion of the cases observed, other strategies,

such as orchestrated (O), slandering (S), self-orchestrated (SO) are higher rewarding

strategies.

In experiments made with the real dataset, we can not quantitatively measure the per-

formance of models in terms of trust predictions, since the ground truth does not exist.

Therefore, the parameters of models can not be selected by their empirical performance.

During the experiments, we continued to use the same parameters for TRS models as the

simulated data set. However, we suspect that TRAVOS’ robustness to attacks (average

rank gain was 0.35) may caused by the lower trust assessment performance. In terms

of performance of our attack model, we showed that the performance of Hierarchical

Sampling (HS) was lower than Monte Carlo Sampling (MCS). We suspect that it may

be due to the fact that the method’s main goal is to minimize cumulative regret on

rank gain. Therefore, a proportion of sampling steps are selected in nearby regions more

than distant parts of the space. As we stated earlier, our optimization problem is dis-

crete and non-linear. Another further direction to investigate is using techniques from

nonlinear integer programming. Onn (2010) shows if the problem is convex, there is a

polynomial time optimization over these problems if Graver bases are given. The idea

is to sample set X by following the direction of Graver bases vectors. If the previously

selected direction does not yield an increasing reward, another basis vector is selected

iteratively. However, computing Graver Bases is an exponentially hard problem. One

future research direction would be to investigate sampling techniques on Graver Bases

to direct MCS. This may result higher performance than MCS if our objective function

is known to be or given as convex.

In our experiments, we used the direct addition of false evidence. However, this does not

limit the applicability of our model to include other primitives. A selection of primitive

strategies can be combined and used in our model. For instance, the space of attacks

can be directly tailored for the attack that requires direct access to systems, in this way

attacker can explore which sets of information to be removed from the system. However,
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attacks that require an ordered sequence of causally-related primitive actions, such as

oscillation attack (Srivatsa et al., 2005), camouflage attack, reputation lag (Muller et al.,

2016), exit attack requires further additions to our model. Our method can be used

to analyse vulnerabilities in trust models that use stereotypical information. Instead of

having primitive actions that involve injection of evidence, we can explore which features

are best to acquire to achieve a certain level of rank for the targeted decision maker.

Identified vulnerabilities (attack types) varied between the simulated data set and Yelp

data set. We believe that the choices of strategies that our method identified was due

to the intrinsic differences in structure between two datasets. We showed in Figure 5.4

the sparsity of dataset in terms of having high ratio of witnesses having provided 1

or 2 reports significantly affects the choice of a good strategy. This ratio is higher

in our simulated dataset, modelled this by indirect knowledge degree. Therefore, our

findings show signs that our method exploits the structure of the dataset and generate

an appropriate strategy. In addition, the results from simulated versus Yelp data set

were consistent in terms of the proportions of selected strategies. A major difference was

observed in TRAVOS, where the rank gains where significantly lower than others. We

suspect that this is due to not being able to select parameters required for the model

empirically. Since the ground truth can not be quantitatively measured to increase

performance of the models.

Our reasoning for selecting specific categories in our experimentation are two fold. First,

this is to analyse how much reward can be achieved if the attack is one of those considered

in prior work. A major difference here is that these categorizations given by the prior

work do not give a direct plan on which advisors to select. The second reason is that

when we have specified these categorized, in our analysis we are left with the cases where

the attack was not in any of these categories. To capture the remaining attack types, self

slandering and promoting others were added to our analysis. In our results, we found

out these two strategies counter-intuitively result in rank gains, although the occurrence

of these are few and the rank gains are marginal. These cases were most common in

BRS. We predict that this is due to discounting/removal mechanisms that such models

have for outlier providers. In rare cases, such strategies may allow the provider to be

within the group by boosting or behaving similarly to others. However, these two extra

strategies do not necessarily mean that these can be only attack types in the space of

injecting new evidence by a set of advisors. These categories can be expanded by, for

instance, is the advisor selected always provides negative feedback? This alone can be a

category that can be factored in for further analysis.

It is worth mentioning the computational cost of searching for attacks. On our test

system4, we found that increasing number of witnesses and providers entails a significant

4We used IRIDIS 4 HPC facilities at the University of Southampton, where a single simulation is run
on a node, which includes 2.6 GHz Intel Sandybridge processors with 16 GB RAM, running Red Hat
Enterprise Linux Server release 6.10 (Santiago).
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computational cost. This difference is shown in Table 5.3, which simulated setting had

20 witnesses, while Yelp setting had between 200 and 500 witnesses. The difference

between the time taken for each attack search in different TRSs varied significantly.

Figure 5.14 shows this attack search performance difference. This observation opens

room for further research on approximating the targeted TRS to achieve gains in terms

of time. We project that employing a set of offline TRSs and finding a similar TRS

which can be selected as a representative of the actual targeted TRS is a promising

future direction.

Assumptions made in this research include that the attacker can observe all available

evidence, and knows the TRS being employed. The attacker can, therefore, calculate

the ranks of each provider whenever the evidence changes. In practice, the attacker

will have some uncertainty of the TRS being used in the target system. From the

perspective of the designer, however, it is reasonable to analyse resilience of a TRS

from this worst-case perspective. It is worth mentioning that our attacker model selects

witnesses according to the objective function without considering the cost of using a

particular witness. Costs associated with witness selection may vary; e.g. employing a

witness considered trustworthy may incur higher cost. This could, however, be captured

by adapting the objective function. Having said this, we have demonstrated that our

TRS analysis method can assist the designers of TRSs to identify vulnerabilities against

orchestrated attacks. Coordinated attack patterns identified for a specific TRS may

be used as a basis for automated attack recognition mechanisms. Suspicious patterns

identified can then be passed on for further investigation.

Dataset Average Deviation Total

Yelp 4:23:31 9:41:44 83 days, 10:43:47

Simulated 0:00:20 0:00:58 786 days, 4:28:59

Table 5.3: Average time taken for each attack search and total simulation time

We view the TRS analysis method proposed as a basis for reducing vulnerabilities in

future trust models. Coordinated attack patterns identified for a specific TRS may be

used as a basis for automated attack recognition mechanisms to supplement the system.

Suspicious patterns identified can be passed on for further investigation.
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Figure 5.14: Distributions of time taken for each attack search in varying TRSs

5.5 Summary

We have introduced and demonstrated the practical value of a new and generic method

for identifying vulnerabilities in TRSs. Given a characterisation of the space of possible

attacks, we define an attacker model. Our model may then be employed to search for

effective strategies through derivative-free optimisation methods. The outcome is a set

of attack profiles and an estimate of the vulnerability of the TRS to an attack of this

kind. In this way, we contribute to the development of future trust and reputation

systems that are less vulnerable to sophisticated external threats. In the next chapter,

we discuss on how the contributions from Chapter 4 and Chapter 5 can be applied in

diverse scenarios.
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Applications

So far, we have presented trust based decision-making processes in resource constrained

environments and mechanisms to search for attacks in trust models to explore vul-

nerabilities. Our decision processes enable decision-makers to strategically spend their

resources in varying information sources by using a general trust model, meanwhile the

techniques we devised for our vulnerability analysis complement these decision processes

for a broad range of trust models.

In this chapter, we will provide some discussion and future research directions regarding

some example applications of our decision processes and our attack search mechanisms

in varying multi-agent systems, where trust is applicable. These examples will motivate

how both of our contributions can be used together in diverse scenarios to tackle real-

world challenges.

6.1 Automated Negotiation

Negotiation between autonomous agents is known to be a pivotal concept in multi-agent

systems (Jennings et al., 2001). The concept is useful to formalize the interests of agents,

interdependencies, and managing coordination-cooperation between agents at run-time.

Example applications of this concept include conflicts between buyers and sellers in e-

commerce (Kraus, 2001), energy trading in smart grids and online dispute resolution.

Broadly, negotiation incorporates three topics: protocols (rules that explain how agents

will negotiate), objects (i.e. preferences) and the decision-making models which agents

use to achieve their objectives. While these cover more about underlying mechanisms

of single negotiation, the negotiations are typically repeated over time.

In repeated negotiation scenarios (a single negotiation session illustrated in Figure 6.1),

agents may choose to engage in a negotiation with previously known agents or those

that have not yet been encountered. Between repetition with the knowledge gained from

97
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Figure 6.1: A multi-party negotiation session example, where x and y agrees on the
offer bx and z walks away from negotiation.

previous sessions, agents may be able to predict a degree of trust about the behaviour

of other agents. Conceptually, trust in negotiation can be thought as an agent’s belief

about other agents being fair in each negotiation session. This metric can be computed

by a social welfare function, if the utility functions of all parties are known (Fatima

et al., 2014). However, agents being self-interested, makes the evaluation of a negotiation

session challenging, since the utility function of the other parties (i.e. opponents) are

unknown. Estimating utility functions is possible with prediction mechanisms that are

known as opponent modelling methods (Hindriks and Tykhonov, 2008; Hindriks et al.,

2009; Baarslag et al., 2013). These tend to use recordings of actions from a negotiation

session.

The use of opponent modelling would enable a measure for the outcome of a negotiation

session. By this, agents may build trust on other agents regarding their cooperation

levels. The decision-making mechanisms that we elaborated on in Chapter 4 would

apply in these cases, where an interaction can represent a single negotiation session and

the outcome can be estimated (unlike the cases that we focused where the decision-maker

sees the true outcome.) Our methods require environments where querying agents for

other agents’ trust is possible. Companies that provide analysis of other companies,

for instance Gartner, can be given as example to witness information. Advisory and

consultation services tend to have a cost for their analysis. The duration of negotiation

and the resulting agreement can be interpreted as the costs of a direct interaction.
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The degree of trust can help the choice of partners and the negotiation strategy (Ram-

churn et al., 2004b). Depending on the trust level, the duration of negotiation can be

lower. A hybrid model that includes our decision-making model for choosing partners

and a negotiation strategy that takes into account the level of trust would increase the

utility gained from a repeated set of negotiations. Other types of sociological informa-

tion that we elaborated on in Chapter 2 can be incorporated by the trust model that

is selected. The features of negotiating parties that can be taken into account include

certificates, accreditation and degrees.

Our vulnerability analysis that we elaborated in Chapter 5 directly applies in this do-

main. Our methods to search for attacks can directly invoke this hybrid model to find

types of attacks and the necessary strength that would be required to manipulate the

decision-makers. In each negotiation session, an attacker can compute the degree of

false information to inject to reduce the reputation of competitor agents. Therefore,

decision-maker agents would end up preferring to negotiate with the attacker. By this,

we can measure the robustness of overall negotiation strategy.

6.2 Task Delegation

Task delegation (i.e. task allocation) in multi-agent systems is the process of agents per-

forming tasks behalf of other agents (Griffiths, 2005). This is related to crowdsourcing

where agents tend to represent human teams. The field has been arisen by the crowd-

sourcing markets. In these, requesters would like their tasks to be completed by a set

of workers which complete these tasks in exchange for a payment (Zheng et al., 2017).

Amazon Mechnical Turk can be given as an example for a crowdsourcing market. The

tasks include completing surveys and labelling images in this platform. The common

challenges in the applications stem from varying worker skill levels and the difficulty of

tasks (workers willing to accept the task according its price, i.e. difficulty-price ratio).

Tackling these require a decision-making strategy, which needs to take these into account

and make decisions on selection of some tasks for some workers with appropriate pricing.

As an application of our methods, we are interested in the process of selecting/filtering

workers from a pool of workers.

Trust and Reputation Systems have been employed in crowdsourcing (Slivkins and

Vaughan, 2014). The general motivation is to encourage high quality tasks and re-

duce spams for workers. From the requester’s perspective, this is to find highly skilled

workers (specifically to distinguish workers in terms of performance and as a support

tool for assessing performance as a prior belief.) There have been a set of decision pro-

cesses that introduced with the usage of TRS. While Ho et al. (2012) and Zhang and

van der Schaar (2012) use social norms to incentivize good behavior which incorporates
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reputation systems, Yu et al. (2013b, 2015) proposes preliminary approaches to tackle

task delegation in terms of budgetary constraints and reputation awareness.

The decision-making mechanisms that we developed can be adapted into task alloca-

tion setting. However, this requires significant changes in order to solve domain specific

challenges. Direct application can be useful in a simplified version of crowdsourcing.

Instead of tasks having prices associated to them, assume that workers designate the

prices for their services and the tasks given to workers can be completed and verifiable

instantaneously. While the first assumption is reasonable, the second one is unrealistic

which requires further attention. Advisors in TRSs can be thought as different crowd-

sourcing markets sharing the reputational information about workers with each other.

With these assumptions in place, our work in Chapter 4 can be useful in task delegation

with incorporating third-party information under the budgetary constraints.

6.3 Transfer of Trust

One of the main challenges in building trust as detailed in Chapter 2 is cold-start (i.e.

newcomer) problem. This occurs when agents join to a system (or a team) where they

are unknown to other agents. Since “Robots are agents.” (Kaminka, 2012), this is a

true phenomenon in multi-robot settings as well. Agents leaving/joining the system and

creating teams is a fundamental concern for multi-agent systems (MASs), especially for

solving complex problems where formation of groups (sometimes called ad-hoc teams)

(Jennings et al., 1995; Sycara, 1998). Complex problems include distributed learning

tasks where agents complete tasks together and share the learned rewards via commu-

nication (Dutta et al., 2005).

To build trust throughout the formation of teams, it is known that various information

sources are used (except direct evidence) in the mitigation of this problem. Different

types of information can be collected by various sources (i.e. advisors) and can be fused

for trust assessments. While some trust models require opinions to be shared in an

explicit manner (for instance, Agent A reports that Agent A’s interaction with Agent

B at the time t is positive.), others use aggregated metrics to be implicit (for instance,

Agent A reports that Agent B’s reputation is 4.85.). There are two main advantages

of using implicit approaches: preserving a level of privacy and reducing the amount

of communication between agents. The shared metric in implicit approaches can be

not only in the forms of a simple metric like a score, it can be, for instance a vector

containing locally learned parameters of an advisor. Agents dictated by a shared trust

model can share the learned parameters to bootstrap the new agent’s trust models.

The process of sharing parameters learned by agents is similar to the problems tackled

in Federated Learning (aka. Cooperative Learning). Agents learn from their local ob-

servations and communicate with each other (decentralized setting) or with a central
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server (i.e. team leader) (centralized setting). Our attack model to analyse vulnera-

bilities in trust systems can be useful in decentralized setting. The specification of the

space of attacks, for instance, introducing a backdoor (Bagdasaryan et al., 2020) for a

classification task for a single client can be modelled and our methods of searching this

space can be applied in this domain.

In online communities, attacks are common. These attacks can be found by so called

experts, who learn the underlying formula of the system. Sometimes the system’s for-

mulation is public, sometimes it is hidden (i.e. blackbox). In these cases, our model is

general enough to represent different types of actions that attacker may use. Although,

this requires clear definition of which actions that can be taken by users. To reduce the

space complexity, a robust representation is also necessary for practical reasons.

6.4 Multi-Armed Bandits with Informative Arms

The decision-making model that we explained in Chapter 2 is a special case of a Budget-

Limited Multi-Armed Bandit (BL-MAB), when witness information is incorporated. We

used the problem of collecting witness information as a Multi-Armed Bandit problem

where the collected rewards influence direct interactions. This special case can be gen-

eralized, which would enable a broader set of applications. Our assumption was that the

actions that the decision makers take does not change the system state. This assumes

that the distribution that define agents’ behaviour is constant. Consider a BL-MAB

problem, where there are a set of true arms k = 1, ...,K that return a stochastic reward

when pulled and informative arms l = 1, ..., L which does not return any reward, rather

provide some information about true arms. Assume that the number of true and infor-

mative arms are equal and there is one-to-one mapping: for instance, information about

arm k = 1 can be retrieved when the l = 1 is pulled.

The given informal BL-MAB model above is a generalization of Chapter 2. In this

thesis, we consider the cases where these costs of true arms is higher than informative

arms. In addition, pulling an informative arm represent the decision maker purchasing

an opinion (or a set of opinions) from advisors, while pulling a true arm represents the

decision maker interacting with a provider. The decision process that we introduced

uses informative arms when there is not enough information about the true arms. There

are some related work in this respect: Pandey et al. (2007) investigates MABs that have

some dependency rules between arms (this is similar to a provider behaving in a similar

manner to another provider); and Gupta et al. (2019, 2020) assumes that the arms are

parametrized with a shared random variable (this is the assumption that the arms are

correlated). As a future direction, this generalization would open more applications

which include recommender systems and online advertisement selection.



102 Chapter 6 Applications

Another interesting path to take is to investigate a variation MAB algorithms that has

some similarity our approach is use of Contextual Bandits (Slivkins, 2019). In these, a

feature vector is observed before each arm is pulled. The reward gained from the arm

depends on the feature vector (i.e. context). Rewards are independent and identically

distributed (i.e. i.i.d.) according to the feature vector and the arm. While this could be

useful to model the trustworthiness of others as the context changes. For example, Agent

A trusts Agent B for X type of tasks, not for Y type of tasks, contextual algorithms

with a single constrained source would be a better direction for future work (Wu et al.,

2015).

The model we proposed is a variation of the BL-MAB model with arms that do not

yield an immediate reward. Multi-armed bandits are used in advertising, where if you

have a set of arms (advertisements) to show it to the user (you select an arm). Getting

information about the user to select an appropriate arm could be costly. There are

contextual bandits, these can be budget-limited. Each adverting company can provide a

set of features of a customer for a cost. These could be modeled as an arm. Purchasing

knowledge for trust (witness information can be also sociological information) can be

applied in this direction as well.

6.5 Summary

In this chapter, we explained several directions that our research can be applied along-

side with some limitations of our approaches. In particular, we covered the potential

applications in automation negotiation, task delegation, transfer of trust between part-

ners and future directions in generalization of our decision-process in a larger context.

We think that these are interesting avenues for future research and potentially relevant

to other types of challenges in varying multi-agent systems.
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Conclusions

In this thesis, we focused on developing techniques to improve trust systems by the use of

strategic behaviours. We investigated how agents may make strategic decisions on whom

to trust under budgetary constraints, and how to create complex adversarial behaviours

that can hinder this decision-making so that we can gain a level of understanding that

is required to be able to establish defenses against them. Although we pointed towards

the potential impacts of our research contributions throughout, we further explored their

application in a number of domains.

To summarise, the main contributions of this thesis are:

• A general trust-based decision model under budgetary constraints. We presented a

decision model that is compatible with statistical trust models. This model uses the

available budget on acquiring information that varies in trustworthiness and cost.

We showed that our model can significantly improve the number of trustworthy

engagements when compared to relying on a single source of information. Our

results show that our decision-making strategy significantly outperforms greedy

approaches in constrained environments with third-party information.

• A mechanism to search strategic attacks. We have developed a general mecha-

nism to create attackers that are capable of selecting which partners to collude

with and devise attacks that are targeted. The mechanism allows for attackers

to set different objectives and agnostic to the deployed TRS. In our evaluation,

we show the properties that affect the performance of the generated attacks. In

terms of injecting of misleading reviews, we found that that attacks found by our

search mechanisms are more devastating than the ones that are considered in the

literature when both have the same amount of power in their attacks.

• Vulnerability analysis of trust models. We conducted a rigorous analysis of a num-

ber of predominant trust models from the literature to explore the effects of strate-

gic attacks that are generated by our mechanism. We found that vulnerabilities
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varied in simulated and real datasets across the trust models in our experiments.

The properties we looked at such as connectivity of the system, usage of colluders

from inside or outside of the system and power of the attack guided the chosen

strategy for the attack. Particularly, we found out that attackers that strategi-

cally distribute misleading reviews can increase their rank significantly in all trust

models that we tested when compared to promoting themselves directly.

Our research contributions have a significant impact on trust systems where constraints

matter. By developing mechanisms to support trust-based decision making in con-

strained environments, we contributed to provide favourable behaviours that satisfy the

needs of TRSs designers. By looking into the adversarial behaviours and vulnerabilities

that TRSs may have, we contributed to the question of how to devise unfavourable be-

haviours that can influence TRSs. With all these, we believe this simultaneous effort

on developing strategic behaviours in TRSs was necessary to answer the next impor-

tant research question, which is how we can devise a new TRS that can utilize our

advancements in both fronts.
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K. J. Åström. Optimal control of markov processes with incomplete state information

I. 10:174–205, 1965. ISSN 0022-247X.

T. Baarslag, M. Hendrikx, K. Hindriks, and C. Jonker. Predicting the Performance of

Opponent Models in Automated Negotiation. In 2013 IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT),

volume 2, pages 59–66, November 2013.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How To Backdoor Fed-

erated Learning. In International Conference on Artificial Intelligence and Statistics,

pages 2938–2948. PMLR, June 2020.

N. Baracaldo, B. Chen, H. Ludwig, A. Safavi, and R. Zhang. Detecting Poisoning Attacks

on Machine Learning in IoT Environments. In 2018 IEEE International Congress on

Internet of Things (ICIOT), pages 57–64, July 2018.

N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi. Mitigating Poisoning Attacks

on Machine Learning Models: A Data Provenance Based Approach. In Proceedings

of the 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17, pages

103–110, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5202-4.

105



106 BIBLIOGRAPHY

K. S. Barber and J. Kim. Soft Security: Isolating Unreliable Agents from Society.

In R. Falcone, S. Barber, L. Korba, and M. Singh, editors, Trust, Reputation, and

Security: Theories and Practice, Lecture Notes in Computer Science, pages 224–233,

Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-36609-6.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning.

Machine Learning, 81(2):121–148, November 2010. ISSN 1573-0565.

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can Machine Learning

Be Secure? In Proceedings of the 2006 ACM Symposium on Information, Computer

and Communications Security, ASIACCS ’06, pages 16–25, New York, NY, USA,

2006. ACM. ISBN 978-1-59593-272-3.

C. Bertocco and C. Ferrari. Context-Dependent Reputation Management for Soft Secu-

rity in Multi Agent Systems. In 2008 IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, volume 3, pages 77–81, December

2008.

A. J. Bidgoly and B. T. Ladani. Modeling and quantitative verification of trust systems

against malicious attackers. The Computer Journal, 59(7):1005–1027, 2016.

B. Biggio, B. Nelson, and P. Laskov. Poisoning Attacks against Support Vector Machines.

arXiv:1206.6389 [cs, stat], June 2012.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognition, 84:317–331, December 2018. ISSN 0031-3203.

V. Botelho, F. Enembreck, B. C. Avila, H. de Azevedo, and E. E. Scalabrin. Encrypted

certified trust in multi-agent system. In 2009 13th International Conference on Com-

puter Supported Cooperative Work in Design, pages 227–232, April 2009.

D. Bromley. Reputation, Image, and Impression Management. John Wiley & Sons,

1996. ISBN 0-471-93869-6 (Hardcover).

M. Brundage, S. Avin, J. Clark, H. Toner, P. Eckersley, B. Garfinkel, A. Dafoe,

P. Scharre, T. Zeitzoff, B. Filar, et al. The malicious use of artificial intelligence:

Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228, 2018.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-Armed Bandits. Journal of
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