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Abstract 

Flooding is one of the most dangerous and costly natural disasters with wide ranging social, 

economic and environment impact. In low-lying coastal areas, flooding typically arises through 

four main sources; at the coast as a result of (1) storm surges and (2) waves, and terrestrially, 

through (3) fluvial (river) and (4) pluvial (surface water) flooding. When two or more of the 

sources combine, compound flooding can occur, and the catastrophic results can be magnified 

greatly, leading to some of the worst flood events (such as Hurricane Harvey in Houston, USA). 

Despite the increased consequences, compound flooding is far less well understood compared 

to the individual sources, particularly in the UK. The overall aim of this thesis is therefore to 

determine which regions of the UK coast are most subject to compound flooding, which 

combination of source variables are most apparent, and what variables (e.g., meteorological 

conditions, catchment characteristics) control the spatial patterns evident in compound events, 

to help inform future compound flood defence and response strategies.  

The first objective is to assess the potential for compound flooding arising from the 

joint occurrence of extreme sea levels and river discharge around the coast of UK and 

investigate the driving mechanisms involved. The west coast is identified as having a far greater 

number of joint occurring events compared to the east coast (3-6 events per decade compared 

to 0-1). The primary cause of this spatial variability is found to be the meteorological conditions 

leading to extreme surge and river discharge on the west coast are similar storm types, whereas 

on the east coast, the storms typically follow different weather patterns and tracks. The strength 

and phase of dependence between extreme surge and river discharge is compared to river 

catchment characteristics (i.e., flashiness, catchment size and elevation gradient). It’s found 

that high skew surges tend to occur more frequently with high river discharge at catchments 

with a lower base flow index, smaller catchment area, and steeper elevation gradient.  

The second objective is to quantify the risk of underestimating compound flooding 

around the coast of the UK arising from the joint occurrence of all possible pairs of the four 

main flood sources. The most extreme events joint occurrences were found between surge and 

waves (at Liverpool with 17 events per decade) whilst the strongest dependence was between 

wave and river discharge. All flood combination pairs showed a stronger dependence on the 

west coast compared to the east (for example, for wave vs river discharge, on the west coast, τ 

=0.35-0.5, whilst on the east coast τ = 0.05-0.2). Furthermore, it is shown that ignoring the 

relationship between the flood sources can lead to an underestimation of the flood risk by 5-6 

times when compared to considering the flood sources dependent on each other. 

Finally, a novel methodology is developed to extend compound flood records beyond 

the observed overlapping datasets, using the weather patterns likely to lead to compound flood 

events. In a historical meteorological reanalysis (1851-2017), no increasing or decreasing long-

term trend was found in compound flood events (involving extreme surge and river discharge). 

Similar interannual and decadal variability was seen in the meteorological record compared to 

long-term individual surge and river discharge records.  Clustering of surge events found in the 

periods 1925-1945 and 1995-2005 and fewer events in the mid 20th century (1945-1985) which 

matched to the compound events identified using the meteorological approach.  

Based on these findings, the areas of the UK most at risk to compound flooding have 

been located and therefore, flood defences and responses can be designed to cope much more 

effectively with compound flood events. The identification of the meteorological conditions 

leading to compound flood events can be implemented into forecasting capabilities, reducing 

emergency response reaction times and potentially reducing deaths, injuries and damages. 

Furthermore, these weather patterns could be used to better understand the future risk of 

compound flooding, by examining their occurrence in future climate predictions. 
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1. Introduction 

1.1 Background, motivation and justification 
 

Flooding is one of the most dangerous and costly natural disasters. From 1980 to 2013, floods 

accounted for more than 1 trillion USD in losses and resulted in at least 220,000 fatalities 

globally (Munich Re, 2017). More than 50% of these deaths and a large proportion of the 

economic losses occurred in densely populated low-lying coastal regions. Globally, coastal 

areas are home to more than 600 million people and constitute strategic economic centres 

(McGranahan et al., 2007). Recent flood events, for example, Cyclone Nargis in Myanmar 

(Fritz et al., 2009), Hurricane Katrina in the US (Jonkman et al., 2009), Storm Xynthia in 

France (Lumbroso & Vinet, 2011), flooding in the UK over the winter of 2013–2014 (Haigh 

et al., 2016), and Hurricane Harvey in the US (Emanuel, 2017), have demonstrated the ever-

present threat of serious flood impacts in coastal regions despite improvements in levels of 

flood protection and advancements in flood forecasting and warnings. Furthermore, coastal 

flooding is a growing threat due to mean sea-level rise and changes in storminess (Church et 

al., 2013; Nerem et al., 2018), ongoing vertical land movement, especially subsistence (Brown 

& Nicholls, 2015; Nicholls et al., 2021), and rapid population growth and accompanying 

development in flood-exposed areas  (Brown et al., 2018; Hallegatte et al., 2013)  

Flooding in coastal regions arises from four main source mechanisms (and their interactions):  

(1) storm surge combined with high astronomical tide (storm tides);  

(2) locally (wind) or remotely (swell) generated waves; 

(3) river discharge (fluvial); or  

(4) direct surface run-off (pluvial).  

The first two sources are oceanographic in origin, while the latter two mainly arise from heavy 

precipitation but can also be caused by snow melt. Flooding can also be caused by tsunami’s; 

however, they are not considered in this thesis as they’re 1) extremely uncommon in the UK 

and 2) geological in origin rather than climatic. Erosion can also lead to flooding via a breach 

of a natural barrier or damaging the structure integrity of a hard engineered defence; or by 

mediating the source of flooding (e.g. beach lowering increasing overtopping). As erosion is 

geological in nature it’s not considered further. Most existing flood risk assessments consider 

these four main drivers of flooding separately. However, in coastal regions, floods are often 
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caused by more than just one factor because they may be correlated (i.e., with storms). 

Furthermore, the adverse consequences of a flood can be greatly exacerbated when the 

oceanographic (storm tides and waves), fluvial, and/or pluvial drivers occur concurrently or in 

close succession (i.e., a few hours to days apart). Depending on local characteristics (which 

influence lag times between variables), this can result in disproportionately extreme events, 

referred to as compound flood events. Compound events are defined by the Intergovernmental 

Panel on Climate Change (Seneviratne et al., 2012) as “(1) two or more extreme events 

occurring simultaneously or successively, (2) combinations 45 of extreme events with underlying 

conditions that amplify the impact, (3) and combinations of events that are not them- selves 

extremes but lead to an extreme event when combined”. With the potential to create 

considerable destruction, the World Climate Research Program (WCRP) Grand Challenge on 

Weather and Climate Extremes has recently identified compound events as an international 

research priority (Zscheischler et al., 2018). Recently, Zscheischler et al., (2020) more 

specifically defined compound weather/ climate events as “the combination of multiple drivers 

and/or hazards that contributes to societal or environmental risk”. Drivers include the 

processes, variables and phenomena present in climate/weather which can span over varying 

spatial and temporal scales; whilst hazards are the immediate physical precursor to negative 

impact (e.g. floods, wildfires or drought). Finally, the risk is simply defined as the probability 

of hazards occurring multiplied by the consequences. 

A recent example of compound flooding occurred during Hurricane Harvey in 2017 in the 

USA. Record-breaking rainfall, river discharge, and run-off, combined with a moderate but 

long-lasting storm surge, resulted in disastrous flooding in Houston (USA) (Emanuel, 2017). 

It was the second-costliest natural disaster in US history (Blake & Zelinksy, 2018). Hurricane 

Irma in 2017 was also a prime example of compound flooding, where significant flooding 

occurred along the St Johns River in Jacksonville (US) as a result of a combined storm surge 

and extensive rainfall run-off (Cangialosi et al., 2017). Compound flooding can also arise from 

extratropical storms. For example, a storm surge on the Adriatic coast of Italy obstructed large 

amounts of freshwater run-off (generated by the same storm) from draining, causing major 

compound flooding in Ravenna, Italy (Bevacqua et al., 2017). It is now recognised that by not 

considering compound flooding, the risk may be greatly underestimated (Wahl et al., 2015).  

Northern Europe, and specifically the UK, has a long history of coastal flooding, resulting in 

large numbers of fatalities, damage to property and infrastructure as well as environmental 

consequences (Lamb, 1991). Whilst tropical cyclones do not impact the British Isles, extra-
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tropical storms frequently hit the UK during the winter season (Wolf et al., 2020). The most 

severe coastal flooding event in living memory (in Northern Europe) was the North Sea flood 

of 1953, which killed 307 along the east coast of England, 30 in Scotland, 1836 people in the 

Netherlands, 40 in Belgium and resulted in more than 250 boating related deaths (Baxter, 2005; 

Wadey et al., 2015). The total damage in England and Scotland was estimated to be £50 million 

(or £1.5 billion today). This event triggered a far greater interest in flood risk management, 

with sophisticated flood defences (such as the Delta Works programme in the Netherlands and 

the Thames barrier in the UK), forecasting systems and monitoring systems (such as tide 

gauges) all being developed (Lumbroso & Vinet, 2011; Wadey et al., 2015). 

The most notable flooding in the UK since 1953, occurred during the 2013-14 storm season, 

notably Storm Xaver which occurred during 5th-6th December 2013. Unlike the 1953 event, 

which only caused flooding along the east coast, Xaver impacted coastlines in Ireland, 

Scotland, Wales, northwest England, the east coast and English Channel. Measures taken after 

the 1953 event resulted in only 2800 properties flooded in December 2013, compared to 24,000 

in 1953, but importantly the 2013 event resulted in no fatalities. Despite this, the 2013-14 storm 

season still cost £1.3 billion, highlighting a continued need to develop monitoring, forecasting 

and defensive schemes (Chartteron et al., 2016). 

The UK is not only susceptible to marine based flooding, but also has a long history of pluvial 

and fluvial flooding. In recent times, the 2007 summer floods were generated by Britain’s 

wettest May-July period since records began in 1776. Flooding occurred across the Midlands 

and north England, Wales and Scotland (Marsh et al., 2007). The Environment Agency 

estimated damage costs of ~£3.2 billion (Environment Agency et al., 2013). The 2013-14 storm 

season also had considerable inland flooding. Whilst the total number of properties flooded 

was less than the 2007 events, the combined impact with coastal flooding stretched the response 

teams’ abilities. Notable areas flooded included the Somerset Levels, where 6900 ha of 

agriculture land were affected (Kendon & McCarthy, 2015). More recently, Storms Ciara and 

Dennis in 2020 produced the wettest February since records began in 1776, causing wide 

spread flooding across the UK with estimated insurance losses of £150-200 million and £175-

225 million for Storms Ciara and Dennis, respectively (Finlay, 2020). 

Flooding can also have a huge impact on critical infrastructure, such as power and 

transportation networks. This can directly hamper recovery efforts, for example, loss of power 

can prevent urban waste water pumps functioning to remove water (Burzel & Becker, 2014) 

and loss of transportation networks can prevent emergency services attending the area affected 
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(Lu et al., 2015). Once the immediate danger has passed, the cost of repairing such 

infrastructure can be considerable; for example, during the 2013/14 winter storms in the UK, 

the Dawlish rail line to Plymouth and Cornwall, collapsed in the sea as a result of waves and a 

storm surge overnight on 4th and 5th February 2014. The closure and repair of the line was 

estimated to be up to £1.2 billion (Dawson et al., 2016; Dawson et al., 2018; Devon Maritime 

Forum, 2014) 

The need to consider compound events in the design of flood protection schemes in the UK is 

strongly illustrated by the flood event on the 24th–25th December 1999 in Lymington, on the 

southern coast of England where significant flooding occurred despite a significant recent 

upgrade in flood defences. On the 16–17 December 1989, Lymington was flooded by high sea 

levels and waves, with considerable damage to 50 houses and the railway line (Haigh et al., 

2015; Ruocco et al., 2011; Wadey, 2013) This event was the driving force for a large upgrade 

of coastal flood defences for the town, including new sluice gates which allowed the Lymington 

River to drain at low tide but sealed it from tidal flooding during high sea levels. However, no 

allowance or consideration of compound flooding appears to have been made in the design. 

Ten years later, on 24 December 1999, a storm surge was generated that did not directly cause 

flooding itself because of the raised defences. However, the storm surge prevented the sluice 

gates from opening for a prolonged period, while large volumes of rainfall in the Lymington 

River catchment during the storm raised the river flow. Combined with the lack of drainage, 

this caused flooding from the river on the upstream side of the sea defences (Ruocco et al., 

2011b). After 1999, the Lymington flood defences were upgraded again. This experience 

strongly highlights the importance of considering compound flooding when assessing and 

designing flood management.  

In the last two decades, there has been a rapid increase in the number of studies starting to look 

at compound flooding. These are reviewed in detail in Chapter 2. Key papers include those 

which have looked at compound flooding globally (Ward et al., 2018); developed new methods 

of assessing joint probability (Wahl et al., 2015); studied future compound flooding risk 

(Bevacqua et al., 2019, 2020); and carried out sensitivity test on the range of approaches to 

assess compound flooding (Camus et al., 2021). Within the UK, Svensson and Jones (2002 and 

2004) provided the most spatially comprehensive appraisal of compound flood around the UK 

for extreme river discharge and water level. A joint probability method was developed for the 

Department for Environment, Food and Rural Affairs (DEFRA) in the UK, JOIN-SEA 

(Hawkes et al., 2002), which formed the primary method of compound flooding assessment 
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through the early 2000. JOIN-SEA is likely to be superseded by new multivariate approaches 

(Gouldby et al., 2017) for coastal design. There are still key knowledge gaps relating to 

compound flooding however.  

Thus far, no study has considered how compound flood occurrences in different areas of the 

UK vary. Svensson and Jones (2002 and 2004) consider the western and eastern coasts of the 

UK separately, and so do not identify any variability. Furthermore, no study has considered the 

driving forces behind compound flooding in the UK, either at a national scale (such as 

meteorological conditions) or at a localised catchment scale (such as catchment size, elevation 

or geology). 

To date, no studies have considered the four main sources of flooding in the UK (water level, 

waves, fluvial and pluvial) in a single study, with most focusing on occurrences of two sources. 

By not taking all flood sources into account, an underestimation of the total flood risk can 

occur. 

Finally, a key limit on studying compound flooding is the lack of data. Overlapping observed 

(or modelled) datasets for each variable are required, which typically limits studies to the last 

50 years. The conclusions which can be drawn on temporal trends in compound flooding are 

therefore reduced, and so far, no studies have analysed long term compound flooding trends.  

 

1.2 Aims and Objectives 

The overall aim of this thesis is to determine which regions of the UK coast are most subject 

to compound flooding, which combination of source variables are most apparent, and 

what variables (e.g. meteorological conditions, catchment characteristics) control the 

spatial patterns evident in compound events. This aim will be addressed through the 

following three thesis objectives:  

• Thesis Objective 1: To assess the potential for compound flooding arising from the 

joint occurrence of high sea levels and high river discharge around the coast of UK and 

investigate the driving mechanisms involved;  

• Thesis Objective 2: To quantify the hazard of underestimating compound flooding 

around the coast of the UK arising from the joint occurrence of all possible pairs of the 

four main flood sources; and  
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• Thesis Objective 3: To evaluate how the frequency of compounding flooding has 

varied in the past and might vary in the future. 

Objective 1 focuses on only two drivers of flooding in coastal regions, high sea levels and high 

river discharge and develops a comprehensive novel frame work to identify spatial patterns of 

compound flooding and driving mechanisms, beyond that undertaken to date. Tide gauge data 

and river discharge records, covering the period from 1915 to 2018, are used to map where on 

the coast high sea levels can occur at the same time as high river discharge. Then, weather 

patterns and catchment characteristics are examined to assess why large storm surges and high 

river discharge are more likely to coincide along certain stretches of coastline compared to 

others. Building on Thesis Objective 1, Thesis Objective 2 assesses all four drivers of 

compound flooding around the UK coast. Statistical approaches are used to quantify if flood 

likelihood is under-estimated if compound flooding is not considered, for the period 1915 to 

2018. In Thesis Objective 3, the weather patterns, identified in Thesis Objective 1, that 

typically cause compound flooding are used to evaluate how the frequency of compounding 

flooding has varied historically from 1851 to 2017 and might vary in the future for different 

climate projections up to the year 2095. 

 

1.3 Structure of Thesis 
 

The structure of the thesis is as follows. Chapter 2 provides a comprehensive literature review 

which defines what compound flooding is, discusses the state-of-the-art research undertaken 

in recent decades, and describes what the key knowledge gaps are. Chapter 4 focuses on Thesis 

Objective 1, which assesses the joint occurrence of extreme storms surges and river discharge 

occurring around the UK coastline. Chapter 0 is based on Thesis Objective 2, which focuses 

on the compound flood risk from the joint occurrence of all four major flooding sources around 

the UK coast. Chapter 6 focuses on Thesis Objective 3, which uses weather patterns as a proxy 

to expand the records of compound flood events beyond the observed datasets. In Chapter 7, 

the conclusions, implications and further work are discussed. 



 

23 

 

2. Literature Review 

This chapter provides a background and literature review of compound flooding. Section 2.1 

explains the individual source components that can give rise to flooding in coastal regions. In 

particular, it outlines their relevance to the UK. The definitions and types of compound 

flooding are described in Section 2.2. Section 2.3 reviews important past compound flooding 

events that have occurred in the UK and internationally. Section 2.4 provides a simple overview 

of all relevant studies that have assessed compound flooding to date. A definition of the 

different variables that have been used in past studies is discussed in Section 2.5 to aid in the 

comparison among studies. Section 2.6 discusses the methods of extreme sampling and event 

definitions. A review of the approaches used is discussed in Section 2.7. Finally, the key 

knowledge gaps are highlight in Section 2.8. 

 

2.1 Individual flood sources 

Flooding in a coastal environment can occur through a variety of distinct source mechanisms, 

as follows: (i) as a storm generated surge, combined with high astronomical tide; (ii) through 

wind driven wave setup and runup; and through precipitation (or snow melt), either through 

(iii) increased river discharge (fluvial) of directly as (iv) runoff (pluvial). Each of these four 

sources is briefly described in the following sub-sections. Flooding can also arise due to ground 

water, tsunamis or breach flood barriers (natural or engineered), but these are not considered 

in this thesis. A summary of the different variables can be seen in Figure 2.1. 
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Figure 2.1: The major compound flooding sources and their variables. 

2.1.1 Storm tides 

Extreme still sea levels are caused by the combination of three principle factors, as follows :(1) 

mean sea level (MSL), the long term (monthly to yearly) variations in sea levels primarily due 

to the thermal expansion of the oceans and melting of continental ice sheets and glaciers; (2) 

astronomical tides, created by the gravitational attraction and rotation of the Earth, Moon and 

Sun system; and (3) storm surges, which are generated by strong winds and low air atmospheric 

pressures (Pugh, 2004). Tides are deterministic and can be predicted accurately into the future, 

whereas storm surges are stochastic. Storm tides arise when a large storm surge coincides with 

high water of a spring astronomical tide (when the Moon and Sun are in phase and create the 

largest high water), producing extreme high still sea levels.  

Storm surges in the UK are generated by extra-tropical storms (those which formed between 

30-60 latitude). These typically differ from those created by tropical cyclones, lasting longer 

(several days rather than hours to days). They have a larger spatial scale (~1000km compared 

to ~500km) but smaller amplitude (typically 2-3m compared to 5-10m) (Haigh et al., 2016; 

Pugh & Woodworth, 2014). Haigh et al. (2016) looked at the distribution of extreme water 
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levels and surges around the UK. They found that most extreme sea level events were generated 

by moderate, rather than extreme storm surges, coinciding with spring high tides. They also 

found four distinct footprint categories, with the storm tracks and location of storm centre 

defining which of the four footprints occurred. Brown et al. (2010) modelled present and future 

surges in the eastern Irish sea, finding that sea level rise was found to have a greater impact on 

the surge height compared to increased wind velocities. 

 

2.1.2 Waves 

Wind waves are generated by wind stress causing variations in the sea surface height, which 

develop into waves propagating in the wind direction. As the waves travel towards the coastline 

the seabed shoals, a process known as wave set-up may occur. The reduced depth causes the 

waves to be slowed down and compressed, resulting in an increase in amplitude and this can 

result in waves overtopping sea defences (Pugh & Woodworth, 2014). Wave run up is the 

additional height that broken waves attain as the run up the shore and can lead to defence over 

wash (Poate et al., 2016). Wave setup is important because it can increase water depth in the 

order of tens of centimetres during a storm surge, which is not observed in tide gauge records. 

This can be of particular significance as a storm tide might not necessarily lead to flooding, 

however the waves generated by the storm may lead to overtopping of the sea defences. Despite 

their impact, there are currently no national operational flood forecasting systems which 

include wave setup. This is because of the complexity involved, as waves and set-up would 

need to be modelled in great detail for every beach, harbour and bay along a coastline (Pugh & 

Woodworth, 2014). More recently however, a forecasting tool (South West Partnership for 

Environment and Economic Prosperity -Operational Wave and Water Level model or SWEEP-

OWWL, https://sweep.ac.uk/owwl/) has been developed to accurately forecast run up and set 

up in the southwest of the UK for 1000 km of coastline using computationally efficient models 

(Stokes et al., 2021). Infragravity waves (those with a period 20-200 seconds) can also pose a 

hazard and are not currently in forecast services. For example, in the Bay of Biscay in the 2013-

14 winter, infragravity waves lead to dune breaching and wash over deposition at many 

locations (Baumann et al., 2017). 

Malagon Santos et al., (2017) looked at the spatial distribution of extreme wave events using 

similar technique to Haigh et al., (2016). Six main spatial footprint types of extreme storm-

wave events were identified, whilst Haigh et al. (2016) found four for storm-tides. Additionally, 
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no clear pattern was found between storm centre and the occurrence of extreme waves, in 

contrast to Haigh et al. (2016) which found a link between storm centres and extreme sea levels. 

This study, however, was severely limited by data availability (between 6 and 13 years of data 

at each site). Localised studies agree, for example in the northwest of England, that the largest 

waves are formed from depressions tracking across the UK from a south-westerly direction. 

This makes future extreme wave events closely linked to future North Atlantic storm tracks.  

Fetch limitation in enclosed seas may limit future change of the wave climate however. For 

example in the Eastern Irish Sea, the wave heights are limited by fetch, so the frequency of 

events from different directions and duration of events are of greater concern (Wolf et al., 

2011). 

Waves have numerous parameters that can change how they might impact a coastline. These 

include height, length, period and propagation direction, which will all have an impact on the 

potential damage caused when the waves break on the coast. It is therefore important to take 

into account all covariates when assessing wave impacts. Callaghan et al. (2008) highlighted 

this when looking at the joint probability of wave height, period and direction, event duration, 

tidal anomalies and event clustering in the context of beach erosion. 

 

2.1.3 River flooding 

River (or fluvial) flooding occurs when excessive precipitation (or snow melt) over an extended 

period of time causes a river to exceed its capacity. In hilly or mountainous areas, floods can 

occur very shortly (within minutes) after heavy rain. In flatter areas, the flood water tends to 

rise more slowly and generally be shallower but may remain for days and be more far spread 

(Shaw et al., 2011). 

Long term trends in fluvial flooding in the UK were investigated from 1884-2013 in Stevens 

et al. (2016). An increase in reported flood events is seen, associated with increased exposure 

due to development on floodplains. When the data was detrended for exposure, no trend is 

observed over time, however significant decadal variability is seen.  

Tidal blocking in estuaries (where a high tide reduces the fluvial outflow) can also cause rivers 

to back up and flood. This highlights the need to include tidal regimes in hydrographical 

modelling (Robins et al., 2018). 
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2.1.4 Surface flooding 

Surface flooding (or pluvial flooding), often occurs during short intense period of rainfall that 

cannot be displaced via drainage systems or groundwater sources quickly enough and can often 

happen in areas not frequently affected by flooding (Houston et al., 2011).Urban areas are most 

likely to be at risk due to their built-up nature. Pluvial flooding risk accounts for approximately 

one-third of flood risk from all sources in the UK. Approximately two million people (5% of 

the urban UK population) are at risk of an annual 0.5% risk of surface flooding (1 in 200 return 

period) (Houston et al., 2011). 

Assessing the hydrological risk of flooding is made difficult by the numerous variables to be 

considered. For example, pluvial flooding could be influenced by soil saturation and rainfall 

intensity and duration, whilst riverine flooding could be measured by peak flow, duration of 

peak and extent of flooding area. A univariate case in hydrological applications, such as 

frequency analysis, therefore may lead to underestimation or overestimation of the risk (Hao 

& Singh, 2016). In many compound flooding studies, rainfall is used as a proxy for pluvial 

flooding (e.g. Wahl et al., 2015). Whilst this is acceptable on a large scale, true pluvial flooding 

should take into account parameters such as elevation, drainage and surface type, typically 

through hydrodynamic modelling. 

 

2.2 Definitions and mechanisms of compound flooding 

There are currently only broad definitions on what a compound flooding event is. As mentioned 

previously, compound events are defined by the IPCC (Seneviratne et al., 2012) as: (1) two or 

more extreme events occurring simultaneously or successively; (2) combinations of extreme 

events with underlying conditions that amplify the impact; (3) combinations of events that are 

not themselves extremes but lead to an extreme event when combined. These, however, are not 

specific to flooding. Coastal compound flooding can occur through various combinations of 

the four source mechanisms. Mazas & Hamm (2017) refer to three generalised multivariate 

cases: Type A – a single metocean process which can be described by multiple parameters, for 

example, a sea state can be described by variables including significant wave height; peak 

period and peak direction; Type B – a single metocean process which is made up of several 

base processes, for example, total sea level is made up of MSL, astronomical tides, 

meteorological surge and wave set up; and Type C – the joint occurrence of several distinct 

metocean processes such as waves, sea level, wind, rainfall and river flow. Recently 
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Zscheischler et al. (2020) more specifically defined compound weather/ climate events as “the 

combination of multiple drivers and/or hazards that contributes to societal or environmental 

risk”. 

Five different event mechanism have been defined for this review which can lead to a 

compound flooding event, as follows:  

1. Two or more variables are extreme. 

2. One variable is extreme by the other(s) is(are) moderate. 

3. Combinations of variables that are not themselves extreme but lead to an extreme event 

when combined. 

4. One or more variables interacting with a human element. 

5. Clustering or sequences of repeated events. 

These five types are discussed in more detail in the sections below.  

 

2.2.1 Two or more variables are extreme 

The first type of compound events is when two or more variables are extreme. An example of 

this type of event is, in an estuarine region, when the joint occurrence of both a storm tide and 

extreme river discharge results in water levels being increased to the point where inundation 

occurs or is exacerbated. Another example is that of tropical cyclones that are more likely to 

result in a joint occurrence of extremes flooding sources, when compared to extratropical 

cyclones. This is because tropical cyclones are typically small in diameter and very intense. 

The strong winds associated can produce large storm surges and waves, whilst also delivering 

large quantities of rainfall in the same area (Pugh, 2004). 

 

2.2.2 One variable is extreme but the other(s) is (are) moderate 

Compound flooding does not necessarily require both source mechanisms to be extreme. For 

example, in an area lying at a similar altitude to the MSL, a moderate storm surge (or spring 

tide) might not cause flooding. However, it may be high enough to prevent or slow down a 

river from draining, such that any heavy precipitation in the area is then more likely to cause 

flooding (Wahl et al., 2015). 
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2.2.3 Combinations of variables that are not themselves extremes but lead 

to an extreme event when combined 

Unlike events in Section 2.2.2, this category involves no extreme variables. This type of event 

may arise, for example, when a moderate storm surge combines with a moderate wave height 

or period to produce water levels which may produce overtopping. As described further in 

Sections 2.6 and 2.7, the lack of extremes makes this type of compound event particularly 

difficult to classify and identify. Localalised overtopping events however have been identified 

due to a combination of moderate waves and spring tides,  using a novel overtopping 

monitoring system “WireWall” in Crosby, northwest England (Brown et al., 2018). 

 

2.2.4 One or more variables interacting with a human element 

A compound flood event may also occur due to the presence of man-made environmental 

adaptations or engineering solutions. For example, in a scenario where a human settlement is 

close to MSL and precipitation flows out from man-made storm drains at low tide; should a 

moderate storm surge occur, it may not cause seaward flooding, however if the sea level is held 

above the storm drains over multiple tidal cycles, precipitation may not drain away, resulting 

in terrestrial flooding. An example of this would by the flooding in Lymington, UK in 1999 

(described in Section 2.3.2). 

  

2.2.5 Clustering or sequences of repeated events 

It is important to note that compound flooding can also be produced by only one flooding 

source type. For example, an extreme rainfall event might be followed by another before the 

initial precipitation has been carried away and the system recovered. The cumulative water 

then results in flooding. As an example of this would be Brisbane, Australia flooding (January 

2011) described in Section 2.3.1. Two storms arrived two days apart, the flood defences could 

handle the individual storms, however the combined rainfall created a flood event. (Leonard et 

al., 2014). 
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2.3 Past compound flooding events 

Compound events are typically less well recorded compared to single source events, due to 

their complicated nature or lack of measurements for all the flood sources responsible. 

However, some of the worst flooding events around the globe have been due to compound 

flooding. This section briefly describes a selection of the more recent and significant events. 

 

2.3.1 Global events 

A recent example of compound flooding was Hurricane Harvey in 2017, in the USA. The 

stationarity of the storm track led to record levels of rainfall (a return period of 100-2000 years 

(Emanuel, 2017). The hurricane also generated a moderate storm surge, which resulted in 

elevated water levels over 5 days. The surge prevented the rainfall from draining into the sea, 

causing much of Houston to be inundated, leading to the second most costly hurricane to impact 

the USA (NOAA, 2018b).  

Cyclone Idai was a long-lived tropical cyclone travelled within the Mozambique Channel in 

March 2019, causing catastrophic damage along its path in Madagascar, Malawi, Zimbabwe, 

and most importantly in Mozambique where it made landfall twice. The second landfall on 14th 

March 2019 devastated the city of Beira and neighbouring communities. Severe rainfall over 

several days prior to and before the landfall combined with extreme winds of more than 160 

km/h. No precise measurements are available, however it is estimated a maximum storm surge 

of 4.4m was produced, along with 600 mm of accumulated rainfall over a 2 week period (Probst 

& Annunziato, 2019). It’s estimated that at least 1000 people were killed and ~$1 billion of 

infrastructure was destroyed. Furthermore, the resultant conditions lead to outbreaks of 

diseases such as Cholera and Malaria (Mongo et al., 2020). 

Hurricane Matthew was, at its peak, a category 5 tropical cyclone which made landfall in Haiti, 

Cuba, Grand Bahama Island and USA in 2016. In Cuba, a surge of up to 13 ft was observed, 

coupled with waves of 30 ft, resulted in sea water inundation 300 ft inland (Stewart, 2017). In 

Florida, USA, the combined effect of the surge and tide produced maximum inundation levels 

of 5 to 7 ft, the region also received 10 inches of rain. 585 deaths were attributed to the hurricane 

and in Haiti alone estimated damages were $1.9 billion USD, equal to more than 10 percent of 

the country’s GDP. The damage caused by Matthew in USA totalled approximately $10 billion 
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USD and the 10th most destructive hurricane to affect the United States (at the time) (Stewart, 

2017). 

Hurricane Sandy (October-November 2012) featured an unusual path, which resulted from 

multiple weather systems coinciding over the North American continent and the North Atlantic 

that steered Sandy back towards the coast, leading to substantial inland rain and flooding. 

Coming almost directly from the east, the storm caused the highest storm surge in at least 300 

years and coinciding with a high (spring) tide as well as inland precipitation (pluvial flooding), 

the storm led to widespread flooding in New York City and surrounding areas (Zscheischler et 

al., 2018).   

A high storm tide brought by Typhoon Longwang in 2005 impeded the discharge of the rain 

runoff resulting in the inundation of a 13.69 km2 area in Fuzhou city, China, and over 62 people 

died (Lian et al., 2013). Fuzhou was struck by tropical cyclones 56 times in the historical period 

1949–2011.   

The 2010/2011 wet season in Queensland, Australia resulted in a series of floods during a La 

Nina event; Brisbane City was flooded by two storms separated by two days (11th-13th January 

2011). The rainfall from the first storm was absorbed by Wivenhoe Dam; however, the second 

resulted in the dam releasing floodwater onto downstream Brisbane, producing A$2.39 billion 

if damage and affecting 200,000 people. This flood event can be considered a compound event 

as either storm on its own could have been contained by the city’s flood defences, but once 

combined, proved to be too much (Leonard et al., 2014).  

It is not just regions affected by tropical cyclones that are at risk of compound flooding. In 

2015, a low-pressure system in the Adriatic Sea drove strong wind at the Italian coast. The 

resultant storm surge generated the highest sea levels seen in 18 years in the coastal area of 

Ravenna. The surge was combined with 80 mm of rainfall on the day prior to the storm and 90 

mm on the day of the storm. Rainfall runoff was blocked by the surge, producing major 

flooding in the area (Bevacqua et al., 2017).  

In the northern Netherlands, a slow-moving low-pressure system resulted in the free gravity 

drainage being blocked over five consecutive tidal cycles. Combined with high rainfall (60 mm 

in 5 days), this resulted in high inland water levels and precautionary evacuation (van den Hurk 

et al., 2015). 

In the eastern Baltic Sea, compound flooding occurred along the Polish coast in 2009. Strong 

northerly winds did not generate an extreme storm surge, however it did push seawater 
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upstream of the Odra and Vistula rivers at the time of increased runoff from rainfall and caused 

inundation along several rivers (Kowalewska-Kalkowska, 2018; Paprotny et al., 2020). 

On 28th February 2010, Storm Xynthia wreaked havoc on the French Atlantic coastline, causing 

more than 30 casualties because of coastal flooding through a combination of a storm surge 

occurring at the high water of a spring tide. But an in-depth analysis also shown the role played 

by the waves, that increased the ocean roughness and whose breaking added a set-up 

component (Mazas & Hamm, 2017).  

2.3.2 UK events 

In the UK, compound flooding events were not systematically documented and resulted in 

flooding in coastal regions. Lymington, a coastal town in the western Solent, has strong fluvial 

influence (from Lymington River) and in 1989 the town suffered a major flood event, with 

damage to 50 houses and the railway line (Haigh et al., 2015). This led to a large investment in 

coastal flood defences in the town, including sluice gates which allowed the river to drain at 

low tide, but protected it from tidal flooding during high waters and surges. In 1999, a winter 

storm generated a storm surge which did not directly cause a flood; however, it prevented the 

flood gates opening over several tidal cycles. Large volumes of rainfall caused increased river 

flow, resulting in flooding on the fluvial side of the sea defences (Ruocco et al., 2011b). This 

series of flooding events has been poorly categorised in studies yet highlights the hazard of not 

taking into account multiple sources when planning flood defences.  

On the southwest UK coast, the 2013-14 winter storm season produced the largest storm surge 

for 60 years combined with waves and rainfall to cause some of the worst coastal flooding for 

20 years. Significant damage occurred, including the destruction of the main railway line in 

Dawlish, Devon. Estimated cost of the railway closure alone is between £60 million up to £1.2 

billion (Devon Maritime Forum, 2014). The 2013-14 winter seasons was also one of the wettest 

on record (Kendon & McCarthy, 2015). The sustained heavy rainfall combined with the high 

spring tides in the Severn Estuary resulted in extensive flooding in the Somerset Levels (Met 

Office & CEH, 2014). 

 

2.4 General review 

Due to the complexities involved and often the lack of long-term observation data, the 

assessment of compound flooding is a relatively young science, with most advancements being 
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made in the past 15 years (Figure 2.2) As part of this review, 68 papers were identified that 

assessed compound flooding in different parts of the world and these are listed in Table 8.1 and 

Figure 2.3. The majority of studies have considered sea level and river discharge or rainfall. 

Across the papers, 12 examined coincidence of surge and precipitation; 18 investigated surge 

and river discharge; 18 assessed surge and waves; 1 paper analysed surge, precipitation, river 

discharge and waves; 1 precipitation and runoff; and 1 precipitation and river discharge. 12 

papers included modelling of compound events. Study areas have predominantly included the 

UK (Svensson & Jones, 2004; Svensson & Jones, 2002) and Europe (Petroliagkis et al., 2016), 

USA (Wahl et al., 2015), Australia (Zheng et al., 2013, 2014), and China (Fang et al., 2020). 

Recently there have been 2 studies that focused globally (Couasnon et al., 2019; Ward et al., 

2018).  

Across these 68 studies, there were large variations in definition of variables and the 

approaches used. In the two sections below, the different methodologies and approaches 

(Sections 2.6 and 2.7 respectively) are reviewed and compared to highlight the impact they can 

have on compound flooding assessments.  

 

Figure 2.2: timeseries of compound flooding paper publications 
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Figure 2.3: Distribution of compound flooding paper source variations; Sea Level (SL); Waves 

(WA); River Discharge (RD); Precipitation (PR) and Hydrodynamic modelling 

(MODELLING) 

 

 

2.5 Measurement of variables 

In addition to variation in methodology, there is a lot of disparity in definition of source 

variables throughout the 68 studies identified above that have assessed compound flooding to 

date. This can be due to the disparity in data availability or the lack of a standard measurement 

method within the variables. This variability makes it difficult to directly compare studies. In 

the sections below, a brief overview is given of which specific variables were assessed for each 

of the four source drivers of flooding, across the different studies.  

 

2.5.1 Sea level 

Sea level is typically recorded using a tide gauge. The data recorded contains the various 

components of sea level; astronomical tide, surge level (excluding waves) and mean sea level. 

Compound flooding studies have varied in how they separate these components, and whether 

they use the total recorded water level or just the storm surge component. Studies which use 

the total water level (TWL) (For example, Lian et al., 2013), include the deterministic 

astronomical tide, and so reduce the statistical relationship found between TWL and the other 

variable depending on the state of tide (high/low or spring/neap). However, using the TWL 

SL vs PR, 12

SL vs RD, 19

SL vs WA, 18

PR vs RD, 1

RU vs PR, 1

SL vs WA vs PR vs RD, 2
MODELLING, 15
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will show water level likely to cause flooding, which could be more useful for coastal 

management decisions. Conversely, considering just the surge component could increase the 

dependence or correlation, and so demonstrate compound flooding occurrences where the 

effects of tides might hide it. In the UK, the National Tide and Sea Level Facility (NTSLF) has 

been maintaining a network of 44 tide gauges for over 100 years. 

Furthermore, studies differ in their method of separating out the sea level components. For 

example, Svensson and Jones (2002) use the non-tidal residual (NTR, the measured water level 

minus the astronomical tide) for the surge component. This method, however, as shown by 

(Horsburgh & Wilson, 2007) can lead to harmonic prediction errors or timing errors and non-

linear interactions, which can artificially bias the surge. A more accurate method used is to 

extract the skew surge (the difference between the maximum observed water level and the 

maximum predicted tidal level regardless of their timings within the tidal cycle), as used in 

Ward et al. (2018). With the skew surge extraction, there is only one surge value per tidal cycle, 

this results in a temporal scale variability when comparing to studies using the NTR which will 

contain a value for every water level measurement. 

 

2.5.2 Waves 

The most commonly used variable to describe waves in compound flooding studies is 

significant wave height (Hs). Traditionally this is defined as the mean of the highest third of 

the measured waves (H1/3) but can also be computed from the wave energy spectrum (Hm0). 

Whilst equal in deep water, Hmo can be found to overestimate significant wave height by 

approximately 5% in shallow water (Mangor et al., 2017). Wave height is not the only 

parameter that can affect the flooding resulting from waves. Wave period (typically defined as 

mean zero-crossing period (Tz) or peak energy period (Tp)) can often have a greater impact. 

For example, long period swell waves have been found to cause significant flooding along the 

English Channel coastline (Sibley & Cox, 2014). These waves may have lower wave heights 

but longer run-up, resulting in overtopping of sea defences. Wave direction can also have a 

huge bearing on the flooding impact, particularly at a local scale. For example, Mazas & Hamm 

(2017) developed a bivariate method for determining extreme joint probabilities of wave height 

and period for sea states; however, for determining the extreme joint probability of waves and 

sea level, just significant wave height was used. Finally, the Atlantic facing coasts of the British 

Isles can also see combination of wind-sea and swell-sea waves (known as a bimodal sea state), 
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further complicating wave analysis (Mason & Dhoop, 2018; Orimoloye et al., 2021) These 

properties of a wave are more complicated to analyse and require wave energy spectra data, 

which are typically limited in data length. As a result, these wave parameters are typically 

ignored in compound flood studies, particularly at larger spatial scales.  

In the UK, a network of wave buoys is maintained by organisations including the Environment 

Agency (EA), Met Office, Coastal Channel Observatory (CCO), which feed into wave 

forecasting and CEFAS’s WaveNet datahub (http://wavenet.cefas.co.uk). 

 

2.5.3 Riverine 

Riverine output can be described using river level (stage) or flow. Typically, flow is used for 

studies, however, this can be measured over different periods. Studies have used hourly 

discharge (Serafin et al., 2019); daily total flow (Moftakhari et al., 2017) or mean daily flow 

(Couasnon et al., 2019; Ward et al., 2018). Ikeuchi et al., (2017) ran a global model to simulate 

coupled fluvial floods and storm surges whilst river flow and a Digital Elevation Model (DEM) 

were used to produce inundation depths. In the UK, the National River Flow Archive (NRFA) 

supplies the gauged daily flow as the mean daily flow. However is should be noted that the 

gauging stations might not be at the point of impact and miss the downstream inflow. 

 

2.5.4 Pluvial 

In compound flooding studies (e.g., Wahl et al., 2015), pluvial flooding is typically represented 

using precipitation as a proxy. These studies use either observed weather station data or gridded 

modelled datasets. As with river flow, difficulty in comparison among studies arises because 

studies use different temporal scales. Cumulative daily precipitation is the most commonly 

used (e.g. Bevacqua et al., 2019; Wahl et al., 2015; Wu et al., 2018), however, cumulative 

hourly has also been used when available (van den Hurk et al., 2015). In more localised 

modelling studies, pluvial flooding, will be modelled as an extent with regards to area affected 

(Ray et al., 2011). In the UK, a network of weather stations measuring precipitation is 

maintained by the EA and the Met Office for forecasting and data access is provided by the 

Centre for Environmental Data Analysis (CEDA). 
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2.5.5 Weather Patterns and systems 

Weather patterns have been used to define compound flooding in a number of studies using 

different methodology, however all studies have used low pressure system as the weather 

pattern. Svensson and Jones (2002 and 2004) tracked several low-pressure systems which led 

to joint extreme river and surge events. Wu et al. (2018) used sea level pressure to define rain 

only, surge only and compound events, however did not use a rainfall component when 

producing their synoptic maps. Wahl et al. (2015) is the only study so far to use different 

variables (sea level pressure, wind speed and rainfall) to classify the meteorological conditions 

leading to compound events.  

 

2.5.6 Site selection criteria 

Studies also vary in how they select the data locations used. Studies using observed data 

typically use the wave/sea level sites as the reference gauge and select the river/precipitation 

gauges within a certain radius (Wahl et al., 2015; Ward et al., 2018), or nearest gridded node 

when using modelled data (Couasnon et al., 2019). This is primarily because the marine 

measuring sites are usually fewer in number. As with defining the variables, there is no set 

guidance for matching variable measurement sites. Studies use a combination of the following 

selection criteria; within a certain radius of reference gauge; minimum upstream basin area; 

minimum discharge of river; maximum distance between river basin and tide gauge 

Conversely, (Svensson & Jones, 2004; Svensson & Jones, 2002) measured the dependence 

between every tide gauge and river gauge, this can produce result which are not relevant due 

to the location of the corresponding gauges. 

2.6 Definitions of extreme sampling and compound event 

extraction  

In this section, the methods of extracting a subset of extreme values from a time series are 

discussed, as well as how compound events can be sampled from two time series.  

 

2.6.1 Extreme sampling 

When using extreme value analysis (EVA) (both for a single source or multi-hazards), there 

are numerous methods for extracting extreme events. Two main approaches have been typically 
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applied in the literature. The first method relies on deriving a block maximum (or minimum), 

whereby the maximum value is chosen within a time period (or block), typically looking at the 

annual maximum (AMAX). The second method involves extracting peak values above (or 

below a certain threshold, from a continuous record (peaks over threshold, POT) (Bezak et al., 

2014). A third approach, the r-largest approach can also be used whereby a set number (r) of 

samples is extracted. This can provide more information than a block maxima approach, 

however the size of r is critical. If r is too large, a bias can occur, the variance of the estimator 

can be high. (Smith, 1986). 

If the dataset is sufficiently long enough, the empirical distribution of the annual maximum can 

be obtained directly from the time series. To extrapolate to very high values, an extreme 

distribution is fitted. The statistical theory of extremes says that the maximum of 𝑛 independent 

identically distributed random variables, as 𝑛 is high, is a random variable with a distribution 

of only three types which have a unified distribution under the GEV (Generalized Extreme 

Value) (Coles et al., 2001).  

Samples extracted from the timeseries using POT must be sufficiently separated in time to be 

considered independent. For example, a storm surge generated peak water level, must be 

spaced far enough from the next peak to ensure they are not generated by the same storm. In 

contrast to the AMAX method, these are not the maximum value during a particular period, 

instead chosen based on their exceedance of a set threshold. An asymptotic result of the theory 

of extremes states the conditional distribution of a random variable, for high threshold, tends 

to the Generalised Pareto Distribution (GPD). Instead of considering the maximum in a block 

as in the AMAX, the r-largest approach can be used to estimate the empirical distribution if 

events are found to be independent, the GEV distribution can be used. 

 

2.6.2 Extreme compound event extraction 

A number of multivariate statistical methods are available to represent the relationship between 

extremes. The choice of methods can have great implications on the results. Methods used 

include a threshold excess (AND), point processes methods and conditional method (OR) 

(Coles et al., 2001; Zheng et al., 2013) (Figure 2.4).  
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Figure 2.4: Graphical representation of the different multivariate statistical methods (where X 

and Y are representative variables) A) threshold excess (AND) B) point process, C) conditional 

method (OR) (Zheng et al., 2013). 

 

Ward et al. (2018) used a threshold excess method, extracting events where both storm surge 

and river discharge are extreme. Wahl et al. (2015) used a conditional approach, taking the 

highest storm surge, and identifying the precipitation in the same time frame. Zheng et al. 

(2014) compared the three different extraction methods, finding the point process method was 

the most suitable in their case study, as the bias from the threshold was lowered. 

 

2.7 Review of approaches to analysing compound flooding 

Across the different relevant studies, six main methods have been used to assess compound 

flooding. These methods, are discussed in the sections below, starting with the simplest 

(conceptual assessments), moving to statistical descriptions and joint probability extreme value 

analysis; then taking a deeper look at the drivers of compound flood events and finally using 

hydrodynamic modelling. 

 

2.7.1 Approach 1: Conceptual assessments 

The first approach is to simple construct a conceptual understanding of which variables might 

occur concurrently or be statistically linked in some way. For example, (Gill & Malamud, 2014, 

2017) considered 21 natural and 18 anthropogenic hazards (including flooding) in a purely 

theoretical concept, by synthesising the identified interaction relationship between the hazards 

rather than measuring the relationship between the hazards (Figure 2.5). They found flooding 
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was the third most linked secondary hazard (i.e. triggered by the primary hazard) after 

landslides and volcanic eruptions. 

 

Figure 2.5: An example of a network of hazard interactions (a cascade system) (Gill & 

Malamud, 2014). 

 

Kew et al. (2013) used a simplistic approach to assess dependence of surge and river discharge 

in the Rhine delta in the Netherlands. North-north-westerly winds and long duration 

precipitation were used as proxies to represent surge and river discharge respectively. They 

found the probability of extreme surge conditions following extreme 20-day precipitation to be 

around 3 times higher than if the variables were considered independent. 

 

2.7.2 Approach 2: Case study of an individual compound flooding event 

The second approach is to study a specific compound event, rather than looking for events 

within a time period. For example, this approach was taken by van den Hurk et al., (2015). 

They modelled an event in the Netherlands in 2012, which came close to causing major 

flooding. A series of low-pressure systems passed over the North Sea producing >60mm of 
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rain over a 5-day period. During this period the storm surge which was generated, prevented 

gravity drains to reduce the fresh water in the system. They used an ensemble of regional 

climate model simulations (simulating 800 years of current climate conditions) to show 

combined occurrence of extreme rainfall and storm surge are physically linked by the same 

mechanisms. 

 

2.7.3 Approach 3: Statistical dependence description 

The third approach is to use statistical dependence methods to quantify the relationship between 

the difference flooding sources and thus far this has been the most common approach to analyse 

compound flooding. Studies have used observed or modelled reanalysis data to look at the 

dependence between variables, at individual sites or many sites in a region. There are a variety 

of methods, including; Kendalls Rank Correlation Tau; Spearman’s rank correlation 

coefficient; the Chi statistics of (Coles et al., 1999); the empirical upper tail dependence 

coefficient CFG (Capéraá‐Fougéres‐Genest) estimator; or measuring the number of events 

(through a joint occurrence count or co-occurring annual maxima). Frequently, studies will use 

more than one of these methods, allowing a comparison. 

Ganguli & Merz (2019) used both Kendall’s Tau and the CFG estimator to assess the 

relationship between high coastal water levels and peak river discharge over northwestern 

Europe. They find an upward trend in compound hazard ratio frequency at midlatitudes (gauges 

from 47°N to 60°N) and a downward trend along the high latitude (>60°N) regions of 

northwestern Europe. 

Svensson & Jones, (2002, 2004) have conducted the most comprehensive study on the joint 

probability of storm surges, river flow and precipitation around Britain to date. They used 

techniques from Buishand (1984) and Coles et al. (1999) for measuring the dependence as the 

variables reach their extreme. On the east coast, they found that the strongest river flow–surge 

dependence occurs between river flow on the north shore of the Firth of Forth and surge at 

Aberdeen, Wick and Lerwick. The Firth of Forth is not sheltered from south-westerly winds 

by any topographic barrier (unlike most estuaries on the east coast). Precipitation from this 

direction may therefore be enhanced as it falls on the hills on the northern side of the firth, 

resulting in high river flow. Along the south and west Coasts, areas of high dependence were 

found in southwest Britain, southern Wales, the Solway Firth (western Scotland). Higher 

dependence was frequently found in hilly catchment areas. Seasonality was also found to have 
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an impact, with more dependence being seen in the winter compared to the summer. When the 

analysis was lagged, the dependence was found to be strongest when rainfall occurred 1 day 

before the peak river flow and surge. 

Petroliagkis et al. (2016) performed the most comprehensive joint probability study for the 

European coast lines. They analysed the statistical dependence of storm surge and wave; storm 

surge and river discharge; and wave and river discharge using techniques developed by 

Svensson & Jones (2002) and Hawkes (2005). 32 sites from across Europe (including rivers 

draining into Atlantic Ocean, Mediterranean, North and Black Seas) were analysed. Due to the 

lack of long-term observational data, hindcast simulations were used for the primary variables. 

Approximately 23 years of river discharge and 35 years of surge and wave simulation data 

were used. Validation of the hindcasts were conducted using <5 years of data from just one site 

at the mouth of the Rhine River in the Netherlands, with no long-term series validation in the 

UK. When comparing surge and waves, they found that east coast sites were led by waves (i.e. 

the surge lagged behind waves) and were modest to well correlated (0.38<p<0.53). For sites 

along the south and west coasts, it was predominantly surge led between modest and strong 

correlation (0.54<P<0.69). For surge and river discharge, only one site was found to be 

discharge-led (Thames) at 1 day of lag with zero correlation. All other sites around the British 

Isles are surge-led with moderate correlation (0.12<p<0.37) with the maximum found at 1-5 

days. When looking at wave and discharge, all British sites are wave-led.  

Statistical approaches have also been used on a global scale, assessments of the dependence 

include between storm surge and waves (Marcos et al., 2019) and storm surges and river 

discharge using observed data (Ward et al., 2018) and modelled data (Couasnon et al., 2019). 

However, whilst Ward et al. (2018) and Marcos et al. (2019) use Kendall’s Tau and copulas to 

measure dependence, Couasnon et al. (2019) use Spearman’s rank correlation. When 

comparing the results from Ward et al. (2018) and Couasnon et al. (2019), the global spatial 

pattern is broadly similar, with strong dependence being found on the east and west coasts of 

USA, northwestern Europe, Japan and Australia. The study using modelled data (Couasnon et 

al., 2019) also found areas with no observed data to have a strong relationship, highlighting the 

requirement for data, when assessing compound flooding. Ward et al. (2018) and Marcos et al. 

(2019) both also use copula model to assess the joint exceedance probability, finding the joint 

return period (50‐year) conditions have a higher return period when analysed in independence.  
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2.7.4 Approach 4: Joint probability extreme value analysis 

The fourth approach goes a step further than approach three and quantifies the likelihood of 

the flood sources being extreme at the same time, rather than just measuring the relationship. 

This provides a far more useable data product to flood and coast risk management agencies 

when calculating design levels. In the UK, the R&D joint probability programme (funded by 

Department for Environment Food and Agricultural Affairs; DEFRA) commissioned a number 

of studies looking at joint probability of a variety of flooding risks. This resulted in a product 

called ‘JOIN-SEA’ (HR Wallingford, 1998), a software package designed to calculated joint 

probability between waves at high water and storm-tide. It was found that dependence should 

be expected between surge and wave, as both are generated by the same weather systems. The 

degree of statistical dependence differed from one site to another (due to local topographical 

features and atmospheric circulation). The software (produced in 1998) was written in 

FORTRAN-77, which limits it’s use on modern operating systems (Petroliagkis et al., 2016). 

Hawkes et al., (2002) expanded on this method by introducing the joint probability density of 

three variables (storm tide, wave height and period) which highlighted the need to take into 

account different wave variables. Hawkes et al. (2002) used JOIN-SEA to run dependence and 

joint probability on surge and wave height; surge and tide; surge and river flow; and surge and 

precipitation. Results showed that surge and river flow were generally more correlated on the 

west coast than east and generally on short steep rivers, rather than long flat ones. Less 

correlation was found between rainfall and surge. Whilst this study is the most comprehensive 

joint probability study for the UK, it was again limited by data. 24 tide gauges were used, whilst 

today over 40 are available in UK Tide Gauge network (National Tidal and Sea Level Facility, 

2018). Waves data was extracted from a model run covering 12 years, with no validation using 

observation data. 

Samuels & Burt (2002) looked at dependence between peak sea levels at the Cardiff, UK and 

peak river flow on the Taff at Pontypridd using the JOIN-SEA approach. They concluded that 

there was no correlation between the two variables. This is in contrast to Svensson & Jones, 

(2004), who found dependence between daily mean river flow and surge. This is due to using 

peak sea level, which in the Bristol channel is dominated by astronomical tide. This can lead 

to lower dependence as only the surge is physically associated with intense rainfall under the 

same weather patterns. This highlights how critical data selection is for joint probability studies 

(Hawkes, 2008). 
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The Heffernan & Tawn, (2004) (H&T) approach entails of modelling pairwise dependencies 

on common scales using a single variable above a high threshold and all remaining transformed 

variables and has been used by multiple studies. Keef et al. (2009) used the H&T approach to 

measure the spatial dependence of extreme precipitation and river discharge separately in Great 

Britain. Precipitation was found to have a weaker spatial dependence in upland areas, whilst 

river flow spatial dependence was predominantly affected by catchment characteristics. 

Similarly, (Lamb et al., 2010) used the same techniques to measure the joint probability of 

extreme river flow or sea level at multiple locations across England. This was then used to 

model economic damages and calculate a risk profile. It should be noted, neither study 

compared the relationship between the different variables (i.e. precipitation vs river flow (Keef 

et al., 2009) or river flow vs sea level (Lamb et al., 2010)).  Gouldby et al. (2014) and Wyncoll 

et al. (2016) developed an approach using H&T to model the joint probability of wind, waves 

and surge in Santander, Spain and England respectively. Both involved generating synthetic 

events to identify the boundary conditions for coastal flood simulations   

White, (2007) used the techniques from Heffernan and Tawn (2004) to assess compound 

flooding in the River Ouse, Sussex. He found that river flow and tidally dominated water levels 

acted independently in different parts of the river system. However, there was a part of the river 

where the combination of surge and river flows were likely to act together. White (2007) also 

demonstrated that in some estuaries, fluvial, surge and tide components may all have an 

important impact on water levels. Such that a trivariate joint probability method may be 

necessary. The introduction of a third variable however, could make probability calculations 

extremely complex (Petroliagkis et al., 2016). The approaches based on Heffernan & Tawn 

(2004) however can suffer from the drawback that the marginal parameters need to be 

independent from each other or that the marginal distributions need to be from the same family. 

Zheng et al. (2013) used a bivariate logistic threshold-excess model to look at the dependence 

between rainfall and storm surge around the Australia coast. They found that the probability of 

an extreme surge coinciding with an extreme rainfall event can be up to 35 times higher than 

if one would assume independence. 

The second approach uses copula, which are joint distributions able to handle mixed marginal 

distributions and to account for the structure of dependence overlooking the margins. When 

using copulas, the dependence function is studied separately from the marginal distributions. 

There are a number of different families of copula, each with its own benefits and drawback 
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(Hao & Singh, 2016); including empirical, meta-elliptical, Archimedean, extreme value, vine 

and entropy copulas. 

Bevacqua et al. (2017) used paired copula construction (vine copula) to investigate the 

compound flooding in Ravenna, Italy caused by surge and river discharge. A vine copula 

allowed the input of multiple rivers, tide gauges and meteorological forcing’s to produce a 5-

dimensional model. It is shown that ignoring the dependence between sea and river levels 

underestimates the risk, the 20-year return period became 32-years when moving from 

dependent to independent.  

Masina et al. (2015) used a copula approach to estimate the joint probability of water levels 

and wave heights of the Ravenna coast, taking into account seasonality and direction. They 

found 3 to 4 events are predicted to exceed the threshold of 2.5 m at the Ravenna coast in a 

100-year period. 

Lian et al. (2013) estimated the joint probability for a combination of extreme precipitation and 

storm tide in Fuzhou, China using copula techniques. They show that the joint probability has 

increased by more than 300% on average after 1984. 

Bengtsson (2016) found that extreme sea level and rainfall events occurring simultaneously 

were very rare in Malmo, Sweden. Copula and conditional probabilities were used and found 

the combination of 1-year rainfall and 1-year sea level has a return period of more than 200 

years. 

Wahl et al. (2012) introduced higher dimension copula models, using wave height and two 

storm surge parameters (intensity and highest turning point) in the German Bight, finding 

realistic exceedance probabilities and improving the overall results from integrated flood risk 

analyses in the area. 

Li et al. (2014) compared a variety of copula-based methods (the Archimedean copula method, 

the Gaussian copula method, the physics-combined Gaussian copula and the Logistic model) 

looking at significant wave height, storm duration, surge level and peak wave period. It was 

found the Gaussian copula were the most suitable option for the Dutch coastline. 

The most spatially comprehensive copula-based approach was conducted by (Wahl et al., 

2015), who looked at the dependence between storm surges and rainfall for the entire mainland 

USA coastline. A range of copula functions were used (Frank, Gumbel, Clayton, Galambos 

and Hüsler-Reiss) depending on their fit. Compound flooding was found more likely on the 

Atlantic and Gulf coasts when compared the Pacific. There is also evidence that the number of 
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events has increased significantly over the last decade. Whilst this is primarily due to long-

term sea-level rise, in the case study (New York City), the increase in compound events was 

attributed to a shift toward surge causing weather patterns which also favours increase 

precipitation. 

Mazas & Hamm (2017) used an event-based copula method (Gumbel-Hougaard, Galambos 

and Hüsler-Reiss) to simulate the joint probability of waves and sea level. They compare their 

methodology to that of JOIN-SEA (HR Wallingford, 1998). Whilst there was good agreement 

in the marginal distributions, there is less good agreement in the upper tail. JOIN-SEA is 

constrained to assume a constant level of dependence past the chosen threshold, whilst extreme 

value copulas makes the dependence between extreme waves and sea levels continue to 

increase in the upper tail. They note that the correlation coefficient in JOIN-SEA is seen to 

continue to increase in the upper tail, suggesting the use of copulas is more appropriate in this 

scenario.  

More recently, several studies have used copula based approaches to analyse future compound 

flood risk. Moftakhari et al. (2017) used copula and bivariate dependence to characterise the 

compounding effects of sea level rise and fluvial flooding around the USA, one of the few 

papers to model non-stationary compound flooding. They quantify the flooding probabilities 

for 2030 and 2050 under RCP. 4.5 and 8.5, finding an increasing likelihood of river flooding 

under SLR. Bevacqua et al. (2019) analyse the future compound flood risk of high sea level 

and precipitation in Europe. the datasets of future storm surge and precipitation levels are 

simulated using climate models through a DFLOW FM model. A copula-based joint 

probability model is then applied to the datasets. They find an increasing future compound 

flood risk across the northern Europe coast, whilst southern Europe and the Mediterranean 

reduces. Arns et al. (2017) also look at future compound flooding risk, however they used a 

Mike21 hydrodynamic model to produce the wave and surge heights under various RCP 

projections, and then use copulas to identify the joint return periods in the German Bight. 

 

2.7.5 Approach 5: Assessment of compound flood drivers 

The fifth approach is to analyse the drivers associated with the flooding sources. Primarily, this 

means the meteorological conditions leading to flooding conditions. For example, Rueda et al. 

(2016) looked at the relationship between extreme wave and surges using weather patterns. For 

each of their prescribed weather patterns, significant wave height, mean wave period and surge 
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level were modelled for Santander, Spain. The variables of interested were modelled used the 

GEV distributions and Gaussian copulas to model the interdependence. This method allowed 

the identification of weather types responsible for flooding events. 

Wu et al. (2018) use a bivariate threshold model to analyse dependence between rainfall and 

storm surge, in Australia similarly to Zheng et al. (2013). They then extracted the mean sea 

level pressure (MSLP) which occurred on rain-only, surge only and coincident extreme events. 

A Pearson product-moment correlation was used to establish spatially similar conditions 

throughout the meteorological dataset. They identified different synoptic patterns were 

responsible for each combination at each site. However, by only considering MSLP, they 

ignored other meteorological drivers such as wind strength and direction and precipitation.  

An alternative approach is to infer storm surges, for example, using metrological data and 

weather pattern analysis, which often extends much further back in time. This technique 

involves deriving the key driving weather patterns in an area of interest, by grouping historic 

weather patterns into sets. The primary application of this methodology has been 

meteorological forecasting. One of the earliest examples being the Grosswetterlagen (GWL) 

weather regimes (Hess & Brezowsky, 1969).  In the GWL approach, 29 large scale circulation 

weather types were derived centred over Germany and mainland Europe. They were designed 

to represent weather regimes which persist for at least three days, however the GWL patterns 

were derived subjectively. James (2007) subsequently developed an objective classification for 

deriving the GWL patterns. In the UK, a set of circulation patterns, the Lamb weather types 

(Lamb, 1972), reflected the daily changes in British Isles at a more localised scale compared 

to the GWL. Seven basic weather types were originally derived: cyclonic, anticyclonic, 

northerly, easterly, southerly, westerly and north‐westerly. These were subsequently 

reclassified, expanded and selected more objectively through work by Jenkinson & Collinson 

(1977) and Santer et al. (1993).  More recently, Neal et al. (2016), derived a set of 30 and 8 

weather patterns, through k means clustering of daily mean sea level pressure. These patterns 

are for use on medium-range (30 days) and monthly/seasonal timescales, providing a 

probabilistic insight into which pattern is most likely, and the key aspects of the pattern. The 

forecasting tool has been used in predicting climatic extremes including: droughts (Richardson 

et al., 2018); coastal flooding through storms surges or waves (Neal et al., 2018); and flooding 

through extreme precipitation (Richardson et al., 2020). The use of weather pattern forecasting 

for compound flooding was undertaken in Chapter 3.  
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Weather patterning approaches have started to be assessed for compound flooding studies. For 

example, Wahl et al. (2015) identified the prevailing synoptic weather patterns in compound 

events (extreme storm surge and extreme precipitation) and non-compound events (extreme 

storm surge and low precipitation) for New York City, USA. The number of each storm type 

was identified within the 20th Century hindcast dataset using the centred pattern correlation 

technique. They found an increase in the ratio of storms leading to compound events compared 

to non-compound events in the first 30 years of data (1850-1870) compared to the most recent 

30 years of data.  

Rueda et al. (2016) created 100 different weather pattern classifications for Santander, Spain 

using SLP. For each weather type, the skew surge, Hs and Tp were modelled using GEV 

distributions and a Gaussian copula, to measure the relationship between the variables. This 

allowed the joint probability of the variables to be analysed per weather type, providing insight 

into the relationship between weather patterns and extreme sea states. Whilst this methodology 

did not take into account tides, for coastal flooding forecasting, they could be added for other 

sites.  

Wu et al. (2018) mapped the dependence of extreme rainfall and storm surges in Australia. A 

Bivariate Logistic Threshold Excess model (Coles, 2001, Zheng et al., 2013) was used to 

identify compound and non-compound events. The MSLP data from each event were extracted 

and their similarity was established using Pearson’s Correlation to compare the grid point of 

each event against the other events. This produced a reference conditions for each event type. 

A second pass over the meteorological data was then made, identifying potential compound 

and non-compound events. Their methods highlighted the ability to supplement the observed 

data record with different sources (meteorological in this instance). However, the use of just 

MSLP as a variable reduces its effectiveness, as other variables (namely windspeed, WS and 

precipitable water content, PWC) can have a huge impact on the likelihood of compound 

events. 

 

2.7.6 Approach 6: Hydrodynamic modelling 

The final approach is to use a hydrodynamic model to simulate a region flooding from multiple 

sources, providing more data on the extent of a flood event. Compound hydrodynamic 

modelling typically examines the water levels on much smaller scales due to the labour and 

processing power involved. Thus far, all compound hydrodynamic modelling studies have 
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involved storm surge/water level combined with either rainfall or river discharge. For example, 

Klerk et al. (2015) explored the relationship between high sea levels at Hoek van Holland and 

high river discharge at Lobith (both in the Netherlands). They use physical models forced by 

the same atmospheric conditions leading to cooccurring storm surge and river discharge. The 

the strongest dependence was found at a lag of 6 days, concluding no significant threat was 

present and dependence in flood protection wasn’t needed. Although they noted climate change 

may lead to more extreme conditions. Khanal et al. (2018) reinvestigated the region using 

extended data sets from a storm surge model and 2 river discharge models. They found the 

probability of finding a co-occurrence of extreme river discharge and storm surge conditions 

were 4 times higher, compared to random chance, highlighting the need for robust datasets. 

Lian et al. (2013) combined two approaches, developing a complex hydrodynamic model of 

the river system in Fuzhou, China combined with a copula based joint probability assessment 

of rainfall and tidal level. Merging these two methods allowed quantification of the 

effectiveness of outlet pumps, creating useable data for flood risk management. 

Another use of hydrodynamic modelling is in representing previously observed compound 

flood events. For example Olbert et al. (2017) used multiple nested models to simulate a flood 

event in November 2009, which impacted Lee Estuary and flooded Cork City Ireland. Flood 

wave propagation was simulated on a 2 m grid, creating a high-resolution model useful for 

flood planning. Kumbier et al. (2018) investigated the impacts of a compound flooding event 

(riverine flooding and storm tide) using Delft3D on Shoalhaven Estuary, Australia in 2016. 

The model found that a flood risk assessment only accounting for the storm tide would have 

underestimated the flood extent of the storm event by 30%. 

Hydrodynamic modelling has also frequently been used to analyse the inundation extent of 

compound flooding from hurricanes and typhoons. Some have modelled previous events. For 

example, Torres et al. (2015)  modelled Galveston Bay, USA, using simulated tracks of 

hurricanes which have hit the area (E.g. Hurricanes Katrina, Ike and Isaac). A relationship was 

found between rainfall-runoff and storm surge in region, with peak surge and peak runoff being 

separated by less than 24 hours in most modelled scenarios. Silva-Araya et al., (2018) used 

similar methodology to model Hurricane Georges (1998) and its impact on the east coast of 

Puerto Rico. They found the peak freshwater runoff did not coincide with the peak storm surge, 

however the increased runoff was enough to increase flood levels compared to storm surge 

alone. An issue with hydrodynamic modelling is the limitations in region size. Ikeuchi et al. 

(2017) showed that a global model (CaMa flood river model) can be used to represent a large-
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scale region (the Ganges-Brahmaputra-Meghna Delta) for Cyclone Sird in 2007, this in contrast 

to previous studies which had investigated far smaller regions due to the processing 

requirements of running a high scale model over larger areas. 

Saleh et al. (2017) looked to understand how uncertainties in meteorological drivers are 

translated into uncertainties in compound flood inundation models, using Newark Bay in New 

Jersey, USA during Hurricanes Irene and Sandy. It highlighted the propagation of uncertainty 

in meteorological forecasts of hurricanes can lead to large errors in flood maps. 

Other studies have used hypothetical events to model the potential compound flooding extent, 

for example Chen & Liu (2014) simulated a Typhoon Haiyan sized event in the Tsengwen 

River basin, Taiwan to generate surge and river discharge at 200 year return period. Bilskie & 

Hagen (2018) modelled a hypothetical hurricane hitting the Louisiana coastline, similar to 

Hurricanes Harvey, Irma and Maria and found that the combination of rainfall and storm surge 

were less than the individual components on their own, in contrast to previous studies. 

 

2.8 Summary and knowledge gaps 

This chapter has undertaken a comprehensive literature review of compound flooding: starting 

with the individual flood sources themselves (surges, waves, fluvial and pluvial); the 

mechanisms leading to compound floods; previous compound flood events. The impact of how 

variables and extremes were defined was highlighted; and ending with a review of the different 

approach to assessing compound flooding, from simple conceptual models, to detailed 

localised hydrodynamic models. 

Around the UK there have been several national scale studies, however, all have their 

drawbacks. Petroliagkis et al. (2016) used only hindcast model data with no validation in the 

UK. Svensson & Jones (2002, 2004) showed dependence around the UK, however made no 

comparison between different coastlines. Mazas & Hamm (2017) demonstrated that using 

traditional statistical methods might not yield as accurate results as using copulas. Thus far no 

study has looked at the spatial variability of compound flooding around the entire UK coastline. 

Svensson & Jones (2002, 2004) split their papers into east coast and the west and south coast. 

As a result, they do not compare between the two coastlines. Furthermore, whilst they assess 

the meteorological conditions causing both occurrences, no nationwide comparison is done of 

these drivers. Finally, there have been no studies which categorise the impact catchment 
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characteristics have on compound flooding. Therefore, first object of this thesis is to assess 

compound flooding due to high sea levels and river flow around the UK coast and determine 

their drivers. 

Another key knowledge gap is that no study has assessed the joint occurrence of all of the 

variables (i.e. surges, waves, river flow and precipitation) around the UK. Svensson & Jones 

(2002, 2004) used surges, rainfall and precipitation. Hawkes (2005) collated studies on joint 

probability at the time in the UK, to look at the dependence and joint probability of wave height 

and surge, tide and surge, river flow and surge and precipitation and surge. Petroliagkis et al. 

(2016) produced a similar report for Europe, looking at surges, river flow and waves. However 

as mentioned previously, this was limited by the lack of observed data was used. Comparison 

of the two studies highlighted the difficulty using modelled data, with results varying based on 

the location of the modelled grid point used. The second objective of this thesis, is to determine 

the characteristics and likelihood of all coastal flood sources (storm tides, waves, river 

discharge (fluvial), precipitation (pluvial)) occurring concurrently. 

Finally, no study has assessed the changes in compound flooding in the UK temporally. During 

their study on compound flooding in the USA, Wahl et al. (2015) used New York City as a 

case study and found that meteorological conditions favouring compound flooding had 

increased over the 20th century. No such work has been conducted in the UK. Furthermore, no 

study has looked at future risk from compound flooding. Therefore, my third objective, is to 

identify past and future changes in the meteorological conditions leading to compound flooding 

around the UK coastline. 
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3. Data 

Five main data types were used in this study, namely: (1) sea- level timeseries; (2) wave 

timeseries; (3) river discharge records; (4) rainfall data; (5) North Atlantic Oscillation (NAO) 

Index; and (6) meteorological datasets. These are described in the following six sub-sections. 

In Section 4.2.7, the site selection methods are described, with the subsequent analysis outlined 

in Section 4.3.  

This chapter describes datasets used within this thesis; the four main flood sources (sea level, 

wave, river discharge and rainfall (as a proxy for surface flooding). Meteorological data is used 

to analyse the flood source co-occurrences. 

 

3.1 Sea level data 

Sea level time-series from the UK National Tide Gauge network were obtained from the British 

Oceanographic Data Centre (British Oceanographic Data Centre, 2018). Data is available for 

43 tide gauge sites around the UK coast. Sea level records are available as hourly measurements 

before 1993 and quarter hourly after 1993. The longest sea level record (Newlyn) starts in 1915, 

whilst the shortest (Portrush) begins in 1995. Data up to the end of 2016 is considered. The 

data has been previously quality controlled by the BODC, with questionable values flagged as 

improbable, null or interpolated (Mcgarrigle et al., 2015). Any values that were flagged as 

improbable or null have been removed from the analysis.  

 

3.2 Wave data 

Observed wave data is limited temporally in the UK, with an average data length of ~10 years 

per wave buoy. Therefore, a global wave hindcast, GOW2, was used instead (Perez et al., 

2017). Data is available from 1979 to 2018 (39 years of data). Outputs include hourly sea state 

parameters (significant wave height, peak period and mean wave direction) and 3-hourly 

spectra (in shallow coastal locations). The modelled data is validated against observed wave 

buoy data acquired from the Channel Coastal Observatory (CCO, 2020) and Wavenet from the 

Centre for Environmental, Fisheries and Aquaculture Science (CEFAS, 2020a). Buoy data is 

quality controlled by the respective institutes (CEFAS, 2020b; Mason & Dhoop, 2017). Wave 

buoys were selected nearest to each GOW2 node used (see Section 4.2.7.). Data at every site 
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using the Pearson correlation coefficient, root mean square difference (RMSD) and standard 

deviation (Figure 3.1 Figure 3.2). Only significant wave height was found to be performed 

satisfactorily, showing correlation between 0.5-0.95, and RMSD and standard deviations below 

1 for most sites, therefore peak period and wave direction were not considered in this study. 

On a global grid, the spatial resolution is half a degree (~55km), however in shallow coastal 

locations (such as those in this study), a spatial resolution of around 25km is available. The 

model’s performance is reduced in water depths less than 5m, therefore sites below this depth 

were not selected.  

 

Figure 3.1: Taylor plot (Taylor, 2001) of GOW2 wave model performance vs the nearest local 

wavebuoy reference for significant wave height (Hs) at all study sites, showing standard 

deviation in black, root mean square difference (RMSD) in green and correlation coefficient in 

blue. 
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Figure 3.2: Taylor plot (Taylor, 2001) of GOW2 wave model performance vs the nearest local 

wavebuoy reference for peak period (Tp) at all study sites, showing standard deviation in black, 

root mean square difference (RMSD) in green and correlation coefficient in blue. 

 

3.3 River discharge data 

River discharge data was obtained from the UK’s National River Flow Archive (CEH, 2018). 

Data is available for more than 1,500 river gauge sites (see Sections 3.2.1 and 4.2.1 for selection 

criteria). The measurements are available as daily mean rates. The longest river discharge 

record (Kingston, on the Thames) starts in 1883, whilst the shortest (Deerhurst on the Severn), 

begins in 1995. Again, data up to the end of 2016 are considered. The data has been previously 
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quality controlled by the Centre for Ecology & Hydrology (CEH), and data that was flagged 

as suspect is excluded (Dixon et al., 2013). 

 

3.4 Rainfall data 

Daily rainfall totals were obtained from the Met Office Integrated Data Archive System 

(MIDAS) Land and Marine Surface Stations Data (CEDA, http://archive.ceda.ac.uk last 

access: 1st February 2019). The dataset comprises daily and hourly weather measurements, for 

the period of 1853 to present at over 5,000 weather station, with almost 4,000 providing daily 

rainfall data. Sites are selected closest to the 43 tide gauges (see Section 4.2.7 for selection 

criteria). Data is checked for quality by both the Met Office and Environment Agency (who 

manage the weather stations).  

 

3.5 Meteorological data 

Gridded mean sea level pressure (MSLP), near-surface U and V wind and precipitable water 

content (PWC, entire atmosphere considered as a single layer) fields are used to investigate the 

meteorological conditions that drive compound and non-compound events in Chapters 4 and 

5. Data from the 20th Century global meteorological Reanalysis (A blend of observations and 

past short range weather forecasts rerun with modern forecasting models) are used, Version 2c 

(Compo et al., 2011), obtained from the National Oceanic and Atmospheric Administration 

website (NOAA; https://www.esrl.noaa.gov/psd/data/20thC_Rean/). The fields have a spatial 

and temporal resolution of 2 degrees (222km) and 6 hours, respectively and are available from 

1851. Whilst the spatial resolution is relatively coarse, the 20th Century Reanalysis was chosen 

to encompass the full time series of the datasets used. Finer resolution reanalysis datasets (such 

as ERA-5) have shorter timeseries. The area is focused on 34˚N to 70˚N and 60˚W to 20˚E, 

which encompasses the region where storms affecting the UK are generated and influence the 

region. 

The results in Chapter 4 are also compared to Coastal Decider (Neal et al., 2016). This is based 

on probabilistic weather-pattern forecasts and helps in identifying periods with an increased 

likelihood of coastal flooding from high sea levels around the UK. Coastal Decider uses a set 

of 30 distinct weather patterns (referred to as the “Met Office weather patterns”) which were 

derived by Neal et al. (2016) using k-means clustering techniques. These weather patterns 

https://www.esrl.noaa.gov/psd/data/20thC_Rean/
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represent the large-scale meteorological conditions experienced over the UK and surrounding 

European area. Neal et al. (2018) used a daily historical weather-pattern catalogue to show that 

particular weather patterns tend to relate to high sea level events at different sites around the 

UK, with this analysis forming the basis for Coastal Decider. Other research which relates the 

Met Office weather patterns to meteorologically induced hazards includes that of (Richardson 

et al., 2018) who related the weather patterns to precipitation observations for the application 

of drought forecasting.  

 

3.6 Catchment Characteristics 

River catchment characteristics were obtained or calculated from information on the NRFA 

website for each of the river discharge sites analysed. Three catchment characteristics were 

considered as follows: (i) the base flow index (BFI), (ii) catchment area, (iii) and catchment 

elevation variation. The BFI is a measure of the proportion of the river run-off that derives 

from stored sources (Gustard et al., 1992) and gives an indication of the flashiness (how quickly 

a river responds to precipitation) of a catchment. The more permeable the rock and soils in a 

catchment, the higher the base flow. Rivers draining impervious clay catchments (with minimal 

lake or reservoir storage) typically have baseflow indices in the range 0.15 to 0.35, whilst chalk 

streams have a BFI greater than 0.9 as a consequence of the high ground- water component in 

the river flow. The catchment area is the size of the drainage basin of a particular river. Both 

the BFI and catchment area are provided directly on the NRFA website for each catchment 

(CEH, 2018). The catchment elevation variation is a measure of the steepness of a catchment. 

The NRFA provides statistics on the elevation of the minimum and maximum elevations in a 

catchment along with the elevations at the 10, 50, and 90 percentiles of the river catchment. 

An elevation variation index was calculated by taking the difference between the 90 and 10 

elevation percentiles and normalising these about the mean of all sites; values close to 1 

indicate a catchment with a steep elevation gradient, and values close to 0 indicate a catchment 

with a gentle gradient.  

 

3.7 Climatic indices 

The NAO has been selected to compare to compound flooding in Chapter 5 as the primary 

driving teleconnection which influences the UK (and Northern Europe) climate (Hurrell & 
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Deser, 2010). Other oscillations considered were the Arctic Oscillation (AO) and Atlantic 

Multidecadal Oscillation (AMO). These were discounted due to the lack of influence over the 

UK compared to the NAO (in the case of the AO, Ambaum et al., 2001); or due to the relative 

shortness of observed data masking any long term influence the AMO may have. The NAO 

index is used to examine the connection between the phase of NAO and compound flooding. 

The NAO index has been obtained from the Climate Prediction Centre, National Oceanic and 

Atmospheric Administration (CPC, NOAA; 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). The index is 

obtained by applying the Rotated Principal Component Analysis procedure (RPCA) (Barnston 

& Livezey, 1987), to monthly standardized 500-mb height anomalies obtained from the 

(Climate Data Assimilation System) CDAS in the analysis region 20N-90N from January 1950 

to present. The winter NAO index was calculated from averaging NAO for the winter months, 

with winter defined as December, January, February and March (DJFM), in line with Hurrell 

(1995), who identified decadal trends in the NAO winters. 

In addition to the NAO, the AMO was selected for use due to the longer time scales being 

examined. The AMO is a mode of natural variability in the North Atlantic with a period of 60-

80 years. The AMO index is based upon sea surface temperature anomalies in the North 

Atlantic basin over 0-80N, from 1856 to present (Enfield et al., 2001). The index was obtained 

from the Physical Science Laboratory, NOAA (PSL, NOAA; 

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/). The annual winter AMO index was 

calculated from the average monthly AMO between December, January, February and March 

(DJFM), in line with the winter NAO. 

 

3.8 Future Projections 

To understand future risk of compound flooding, outputs from a global climate model (GCM) 

were used. HADGEM2-ES (Met Office Hadley Centre, 2012) was selected as it is known to 

accurately reproducing UK climate from the CMIP5 models (Zappa et al., 2013). Although 3 

and 6 hourly data are available for some parameters, the three variables required here (i.e., 

MSLP, WS and PWC) were only available together at a daily frequency. Data was used for the 

period from 2005-2095. The projected data had a different resolution (1.25 degrees latitude by 

1.875 degrees longitude), compared to the reference conditions based on the 20th Century data 

(2.0 degrees latitude by 2.0 degrees longitude). Therefore, the reference conditions were 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
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interpolated to same resolution as the projection data. The Hadley Centre family of GCM’s 

(including HADGEM2-ES) uniquely use a “360 day” calendar, where by each year has 360 

days (conceptualized as 12 months of 30 days each). Other studies (e.g. Ruosteenoja et al., 

2016) have inserted 5 days (6 on leap years) of data interpolated data from other periods, spread 

equally across the year. This results in an average of 1.4% of data being interpolated. As this 

thesis is looking at extreme tail events, interpolating temporally could result in undesirable 

data. For this reason, coupled with the fact this study is not comparing different GCM’s, a 

decision was made to keep the calendar year as it is.  

Two different projections were used, Representative Concentration Pathways (RCP) 2.6 and 

RCP8.5. These refer to the radiative forcing’s in the year 2100 (2.6 and 8.5 W/m2, respectively). 

These represent the climate modelling scenarios depending on different volumes of greenhouse 

gases released. RCP2.6 is a “stringent pathway” with CO2 emissions declining by 2020 and 

reaching zero by 2100. In RCP8.5, emissions will continue to rise through to 2100 and typically 

taken as the worst-case scenario (IPCC, 2014). These two pathways were chosen to test the 

viability of this method, as the most chance of showing variation on future compound flooding. 

Another variation from the reference conditions is the use of precipitation flux (the rainfall 

falling), as opposed to PWC within the reference conditions.  
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4. Assessing the characteristic and drivers of storm 

surge and fluvial compound flooding events around 

the UK coast 

This chapter has been adapted from the following publication: 

Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, 

A. and Darby, S. E.: Assessing the characteristics and drivers of compound flooding 

events around the UK coast, Hydrol. Earth Syst. Sci., 23(7), 3117–3139, 

doi:10.5194/hess-23-3117-2019, 2019. 

 

4.1 Introduction 

This chapter focuses on the dependence between coastal and river flooding around the UK. As 

underlined in Chapter 2, previous studies have investigated the spatial difference in the 

likelihood of extreme storm surges to occur simultaneously with extreme river discharge, 

however no study has been comprehensive. Svensson and Jones (2002 and 2004) examined the 

west and east coasts independently and briefly examined the storm tracks (following the centre 

of the low pressure systems) associated with compound events. Petroliagkis et al. (2013), 

examined dependency between storm surge and river discharge in Europe, and used 10 sites in 

the UK, but did not investigate variation between different areas of the UK. More recently in 

their global study; Ward et al. (2018) identified a west-east difference in the strength of 

dependence between extreme storm surges and river discharge. Crucially however, none of the 

studies identified the reason or reasons for this spatial variability. A key knowledge gap is 

therefore to identify the meteorological conditions which lead to compound and non-compound 

events and if they are the driver behind any potential spatial variability. Finally, those studies 

which did identify a spatial pattern in the UK (Petroliagkis et al., 2016; Ward et al., 2018), 

were working at larger resolutions (European and globally respectively) and so only featured a 

handful of sites within the UK. Therefore, a key knowledge gap is how compound flooding 

varies at a more localised scale, and the impact of riverine catchment characteristics (i.e. 

flashiness, size, and elevation gradient) on compound flooding. 
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The overall objective of this chapter is to assess the potential for compound flooding arising 

from the joint occurrence of high storm surge and high river discharge around the coast of UK. 

To achieves this, the sub-objectives in this study are as follows: 

1. To map the spatial dependence between storm surges and high river discharge around 

the UK  

2. To investigate the meteorological conditions that drive compound and non-compound 

events across the UK.  

3. To examine how the strength and phase of dependence between storm surge and river 

discharge are influenced by the characteristics (i.e. flashiness, size, and elevation 

gradient) of the corresponding river catchments 

 

4.2 Methodology 

The analysis was undertaken in three main stages, each addressing one of the three sub-

objectives outlined above. These stages are described in turn in the sections below.  

4.2.1 Site Selection 

From the available datasets, described above in Sections 3.2.1 and 3.2.2, combinations of tide 

gauge and river discharge sites were matched that satisfied the following criteria: (1) there are 

at least 15 years of overlapping records and (2) daily mean river discharge is at least 5 m3 s−1 

at the river site. Previous studies often matched river gauge sites to the nearest tide gauge sites 

(Paprotny et al., 2018) or every river gauge to every tide gauge site (Svensson and Jones, 2002, 

2004). However, because of the complex topography of the coastline, this does not always 

associate a river gauge site to the hydrologically relevant tide gauge (and coast) for that river 

system. Therefore, each river site was matched visually to the tide gauge site nearest to the 

appropriate river mouth. Nine tide gauge sites – (1) Dover; (2) Newhaven; (3) Port Erin, Isle 

of Man; (4) St Helier, Jersey; (5) St Mary’s, Isles of Scilly; (6) Stornoway, Isle of Lewis and 

Isle of Harris; (7) Lerwick, Shetland Islands; (8) Lowestoft; and (9) Harwich – were excluded 

from the analysis, as there were no appropriate nearby river systems with discharge 

measurements or the corresponding overlapping record length was less than 15 years for that 

specific combination of sites. 

Following this selection, there are 326 combinations of discharge stations and tide gauges, the 

locations of which are shown in Figure 4.1, linked to 33 tide gauge sites. In Figure 4.1a, and 
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subsequent figures of this nature hereafter, river sites discharging onto the western, eastern, 

and southern coasts of the UK are plotted as triangles, circles, and squares, respectively. There 

is good spatial coverage across most of the country, except in the south-east. The river sites 

discharging along the south-east tend to have discharges below 5 m3 s−1 or the overlapping data 

lengths are less than 15 years. Some tide gauge sites (e.g. Newlyn (5) and Wick [26]) are not 

in the near vicinity of where corresponding rivers drain into the sea. However, as storm surges 

have large spatial extents, they are close enough to be considered representative of the broader- 

scale storm surge characteristics in that area. 

The number of years for which overlapping data are available for both sites is also shown in 

Figure 4.1a. The tide gauge data were typically the shorter of the two sets. The mean 

overlapping length across all sites was 24 years, with a maximum of 50 years. Tide gauges had 

an average of 10 river gauges linked to them (Figure 4.1b), with a minimum of 1 (Newlyn [5], 

Fishguard [12] and Holyhead [14]) and a maximum of 37 (Immingham [31]). At some tide 

gauge sites, multiple sub-catchments have been used, sometimes with multiple discharge 

stations on the same river. Details of the location of the combination of sites and their 

overlapping data lengths are given in Table 9.1. 

 

Figure 4.1: (a) Location and overlapping data length (in years) of the 33 tide gauge sites 

(black dots) and 326 river discharge stations (triangles, circles and squares show the river 

stations that discharge onto the west, east and south coasts, respectively); and (b) pairing of 

the tide gauge and river discharge stations. 
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4.2.2 Joint Occurrence and dependence 

The first sub-objective is to map the dependence between storm surge and river discharge, 

comparing different methods for quantifying the dependence between these two variables. For 

sea level, two parameters were considered: (1) total still sea- level and (2) storm surge (i.e. the 

meteorological component of sea level). To represent the latter, the skew surge parameter is 

used, which is the difference between the maximum observed high water and the maximum 

predicted (astronomical) high water, in each tidal cycle, regardless of its timing. To extract 

time series of skew surges from the sea-level records at each tide gauge site, the approach of 

Haigh et al., (2016) is followed. To do this, first a harmonic analysis is performed for each 

calendar year, using the T-Tide harmonic analysis package (Pawlowicz et al., 2002) with the 

standard 67 tidal constituents. Each instance of observed and predicted high water was 

identified, and the difference between the two was computed to give time series of skew surges. 

Daily maxima of total still sea level and skew surge time series were then extracted at each tide 

gauge site. The exact time of the daily maxima was retained for the meteorological analyses, 

described later in Sect. 4.2. The river discharge records were obtained in the format of daily 

mean values, and so no pre-processing was necessary on these records.  

Extreme levels were extracted for each of the three (i.e. total sea level, skew surge, and river 

discharge) daily time series, at each site, using a peaks-over-threshold (POT) approach. A 

declustering algorithm was used, with a storm length of 48 h (Haigh et al., 2016, found that 

storms in the UK typically affect sea level for 3.5 days) to guarantee independent events. The 

threshold was varied at each site to ensure that each of the three time series had on average 2.3 

to 2.5 extreme levels per year. This threshold range ensured that (1) there were enough data 

points to estimate dependence between the variables reliably and (2) the threshold was high 

enough for the exceedances to be considered “extreme” (Svensson & Jones, 2005). The average 

thresholds across all sites were the 99, 99.1, and 99.2 percentiles for total sea level, skew surge 

and river discharge, respectively. 

Two different approaches were used to assess the dependence between total sea level or skew 

surge and river discharge. The first approach is hereafter known as the “dependence method”. 

Here, dependence is calculated between the daily maximum total sea-level or skew surge and 

discharge time series using Kendall’s rank correlation τ (Kendall, 1938), which, unlike 

Pearson’s correlation coefficient, captures non- linear relationships. Significance was assessed 
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at α = 0.05 (i.e. 95 % confidence level), using corresponding p values estimated from exact 

permutation distributions. The analysis is repeated using time lags from −5 to +5 days. For 

example, for daily maximum skew surge, corresponding daily maximum discharge values are 

selected with time lags of −5, −4, −3, −2, −1, 0, +1, +2, +3, +4, and +5 days. This is to allow 

for that fact that when a storm approaches the coast, for example, it might first generate a high 

storm surge be- fore travelling inland and generating high precipitation and therefore elevated 

river discharge sometime afterwards. 

The second approach is hereafter known as the “joint occurrence method”. Here, the number 

of times extreme total sea-levels events, or skew surges events, above the chosen threshold for 

that site, occurring on the same day as extreme river discharge are counted. Each pair of sites 

has varying overlapping data lengths. Therefore, to standardise the results, the number of joint 

occurrences per decade were determined. Again, the analysis is repeated but lag the discharge 

using time lags of −5 to +5 days. 

To illustrate the approaches, time series of daily maximum skew surges are plotted against 

records of daily maximum river discharge at the 0-day lag for Devonport (south- western coast) 

and Whitby (eastern coast) in Figure 4.2a and b length of 48 h (which is appropriate, as Haigh 

et al., 2016, found that storms in the UK typically affect sea level for 3.5 days) to guarantee 

independent events. The threshold is varied at each site to ensure that each of the three time-

series had on average 2.3 to 2.5 extreme levels per year. This threshold range ensured that (1) 

there were enough data points to estimate dependence between the variables reliably and (2) 

the threshold was high enough for the exceedances to be considered “extreme” (Hawkes et al., 

2005). The average thresholds across all sites were the 99, 99.1, and 99.2 percentiles for total 

sea level, skew surge and river discharge, respectively. 
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Figure 4.2: Daily maximum skew surge plotted against daily maximum river discharge for (a) 

Devonport; and (b) Whitby. The dotted red lines indicate the high percentiles chosen in the 

analysis for the two variables at these sites. Red dots (plotted in Zone 2) show the events with 

potential for compound flooding (i.e., joint occurrence of high storm surge and large river 

discharge) whereas blue (Zone 1) and green (Zone 3) define the non-compound events (i.e., 

high storm surge or high river discharge only, respectively). 
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4.2.3 Meteorological analysis 

The second sub-objective of this chapter is to investigate the meteorological conditions that 

drive compound (i.e. joint occurrence of high skew surges and large river discharge) and non-

compound (i.e. high skew surge or high river discharge only) events across the UK. For each 

site, fields of MSLP, wind speed, and PWC were extracted for the 6 h period closest to the 

peak of each (1) extreme total sea level or skew surge event (i.e. all the events in Zone 1 in 

Figure 4.2), (2) each joint-occurrence event (i.e. all the events in Zone 2 in Figure 4.2), and (3) 

each extreme river flow event (i.e. all the events in Zone 3 in Figure 4.2). For each site, and 

each of these three types of events, composite plots of MSLP, wind speed, and PWC were 

extracted by taking an arithmetic mean and standard deviation of the data at each hindcast grid 

cell through the time of the corresponding events. The composite plots thus represent the mean 

(with variance around the mean) conditions of the storms that generate compound and non-

compound events. Tracks of all responsible storms were digitised for the three different event 

types, using the storm tracking algorithm developed by Haigh et al. (2016). This captures the 

location of the storm centre for each 6-hourly time step of the metrological reanalysis, from 

cyclogenesis to storm dissipation or when the storm leaves the area of interest (defined above). 

The mean storm track were calculated for each event type at each site. This allows a comparison 

and contrast of the weather patterns which cause the compound and non- compound events.  

 

4.2.4 Catchment Correlations 

The final chapter sub-objective is to briefly examine how the strength and phase of dependence 

between total sea level or skew surge and river discharge are influenced by the characteristics 

of the corresponding river catchments. To do this correlation coefficients were calculated 

between the strength of dependence (or number of joint occurrences per decade) and the 

maximum phase lag, with the three selected catchment variables (BFI, catchment area, and 

catchment elevation variation). Again, significance was assessed at α = 0.05. It’s hypothesised 

that the lower the BFI, the smaller the catchment area, and the greater the average elevation 

gradient, the more likely that high total sea levels or skew surges will occur around the same 

time as high river discharge. The higher the BFI, the larger the catchment area, and the gentler 

the elevation gradient of the catchment, the more likely it is that high river discharge will occur 

several days after high total sea level or skew surge for the sites closest to the coast.  
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4.3 Results 

4.3.1 Dependence and Joint Occurrences 

Two methods were used to assess the dependence between high total sea level or high skew 

surge with high river discharge, across the 326 combinations of discharge stations and tide 

gauge sites. The results of the first method, the dependence method, are shown in Figure 

4.3aFigure 4.4a for daily maximum total sea level and daily maximum skew surge, 

respectively, with daily maximum river discharge for the 0-day lag. As expected, there is 

generally greater dependence between skew surges and river discharge (Figure 4.4a) than 

between total sea level and river discharge (Figure 4.3a). This is because total sea levels are 

strongly influenced by the deterministic tidal component around the majority of the coastline 

of the UK (Haigh et al., 2016). Interestingly, the dependence is stronger for total sea levels for 

sites linked to tide gauges in the northern Irish Sea (e.g. Portrush [20] and Bangor [19] in North 

Ireland and Portpatrick [21] and Millport [22] in Scotland), and this is most likely because tidal 

range is small here and not such a dominant factor on total sea levels compared to other sites. 

A clear spatial variation in the dependence between high sea levels or skew surges with high 

river discharge is evident in Figs. 3a and 4a. For many of the sites along the south- western and 

western coasts of the UK, τ typically ranges from 0.1 to 0.35, whilst along the eastern coast, 

this drops to 0.0 to 0.15. The greatest dependence is found at river gauges linked to the Millport 

[22] and Portpatrick [21] tide gauges in south-western Scotland. The lowest dependence is 

located at river gauges near Cromer [32] on the eastern coast. Two river sites linked to the 

Bangor [19] tide gauge in Northern Ireland show negative dependence.  
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Figure 4.3: (a) Kendall’s Rank Correlation 𝜏 between daily maximum total sea level and daily 

maximum river discharge; and (b) number of joint occurrences per decade between extreme 

total sea levels and river discharge, at 0-day lag. Thick black lines in (a) represent that the 

dependence is statistically significant (95% confidence) at these sites. Note that the triangles, 

circles and squares show the river stations that discharge onto the west, east and south coasts, 

respectively. 

 

Figure 4.4: (a) Kendall’s Rank Correlation 𝜏 between daily maximum skew surge and daily 

maximum river discharge; and (b) number of joint occurrences per decade between extreme 

skew surge and extreme river discharge, at 0-day lag. Sites with across through them in (a) 

represent that the dependence is not statistically significant (95% confidence) at these sites. 
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Note that the triangles, circles and squares show the river stations that discharge onto the 

west, east and south coasts, respectively. 

The dependence is also calculated between daily maximum total sea level or skew surge and 

daily maximum river discharge using time lags from −5 to +5 days. Dependence is typically 

weak until the −1-day lag. Interestingly the dependence is higher for +1-day to +5-day lags 

compared to −5-day to −1-day lags. This is illustrated in Figure 4.5 for the six river sites closest 

to the tide gauges of Bournemouth [2], Devonport [4], Workington [18], Ullapool [24], Whitby 

[30], and Cromer [32]. The distributions are typically skewed to the right, and this is probably 

because river levels remain elevated for several days after a storm event. The lag day when 

there is the maximum dependence between daily maximum skew surge and daily maximum 

river discharge is shown in Figure 4.6a for all sites. Interestingly, 42 inland sites (13 % of the 

326 sites) on the eastern coast have a maximum correlation at the −1-day lag. The majority of 

the sites (188; 58 %) have maximum correlation at the 0-day lag. Sites on the south-western 

and western coast typically have maximum correlations between +1 and +5 days. The number 

of sites on each day of maximum dependence can be seen in Table 4.1. The sites with maximum 

correlations at the +4-day and +5-day lag are mostly situation in the Severn River, which has 

a large catchment area (see Sect. 3.4.3).  

 

Figure 4.5: Kendall’s Rank Correlation 𝜏 plotted against day of lag at the follow sites: (a) 

Bournemouth [2]; (b) Devonport [5]; (c) Workington [18]; (d) Ullapool [24]; (e) Whitby 

[30]; and (f) Cromer [32]. The red dot shows the day with maximum lag. 
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Figure 4.6: (a) The lag day when the Kendall’s Rank Correlation 𝜏 is maximum between daily 

maximum skew surge and daily maximum river discharge; and (b) when the lag day when the 

number of joint occurrences between high skew surge and high river discharge is maximum. 

Note that the triangles, circles and squares show the river stations that discharge onto the west, 

east and south coasts, respectively. 

 

Table 4.1: Day of maximum dependence between high skew surges and river discharge; in 

number of sites and percentage of sites 

Day of maximum 

dependence 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 

Number of sites 0 0 0 0 42 188 50 19 21 3 3 

Percentage of sites 0% 0% 0% 0% 13% 58% 15% 6% 6.4% 1% 1% 

 

 

The results for the second method, the joint-occurrence method, are shown in Figure 

4.3bFigure 4.4b for high total sea levels and high river discharge and high skew surges and 

high river discharge, respectively, at the 0-day lag. The spatial patterns are very similar to those 

of the daily dependence results. For many of the sites along the south-western and western 

coasts of the UK, there are a higher number of joint occurrences between high skew surges and 

high river discharge (between three and six joint events per decade) than for sites along the 

eastern coast (between zero and one joint events per decade). Sites with the largest numbers of 

joint occurrences (five to six events per decade) include river discharge sites linked to Millport 
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[22], Workington [18], Mumbles [10], Devon- port [4], and Bournemouth [2] tide gauges. 

There are several sites along the south-western and western coasts which show low (< 1 event 

per decade) or zero joint occurrences at the 0-day lag. These include river discharge sites linked 

to tide gauges at Heysham [17] and Portsmouth [1] in England; Bangor [19] in Ireland; 

Barmouth [13] and Milford Haven [11] in Wales; and Portpatrick [21], Ullapool [24], and 

Kinlochbervie [25] in Scotland. Interestingly, there is large variation on a regional or local 

scale, particularly in areas which mostly have high numbers of joint occurrences. For example, 

at many sites around the Bristol Channel, the number of joint occurrences varies between one 

to four per decade at river discharge sites less than 80 km apart. The number of sites with joint 

occurrences per decade between (i) total water level and river discharge and (ii) skew surge 

and river discharge can be seen in Table 4.2. 

Table 4.2: The number of sites with joint occurrences per decade between (i) total water level 

and river discharge; and (ii) skew surge and river discharge. 

Total number of sites with joint 

occurrences per decade between: 

0 0-1 1-2 2-3 3-4 4-5 >5 

Extreme total water level and river 

discharge (percentage of sites) 

61 

(19%) 

169 

(52%) 

76 

(23%) 

17 

(5%) 

2 

(1%) 

1 

(0.3%) 

0 

Extreme skew surge and river 

discharge (percentage of sites) 

24 

(7%) 

97 

(30%) 

97 

(30%) 

56 

(17%) 

31 

(10%) 

14  

(4%) 

7 

(2%) 

 

 

The lag day when there are the maximum number of joint occurrences between high skew 

surge and high river dis- charge is shown in Figure 4.6b for all study sites. The results are 

similar to those seen for the daily maximum dependence approach (Figure 4.6a). Inland sites 

on the eastern coast typically have a maximum number of joint occurrences at the −1-day to 

−3-day lag, whereas several sites on the western coast have a maximum number of joint 

occurrences at the +1-day to +5-day lag.  

 

4.3.2 Meteorological analysis 

The next step is to investigate the meteorological conditions that drive compound (i.e., joint 

occurrence of high skew surges and large river discharge) and non-compound events (i.e. high 

skew surge or high river discharge only) events across the UK. Here the focus is on skew surge 

rather than total sea level, as the dependence between skew surges and river discharge is 
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stronger. At each of the 326 river discharge sites, composite plots have been derived of SLP, 

wind speed, and PWC through the time of the events that have led to (1) high skew surge events 

only, (2) joint-occurrence events, and (3) high river discharge events only. To illustrate the 

results of this component two contrasting sites are focused on: Devonport [4] on the UK south-

western coast, where high storm surges and high river discharge have occurred at similar times 

in the past (Figure 4.2a), and Whitby [30] on the UK eastern coast, where high storm surges 

have never occurred (during the period of record) at times of high river discharge (Figure 4.2b).  

Composite plots are shown in Figure 4.7 and Figure 4.8 for Devonport [4] and Whitby [30], 

respectively, for SLP (Figure 4.7a, d, and g and Figure 4.8a, d, and g), wind speed (Figure 4.7b, 

e, and h and Figure 4.8b, e, and h), and PWC (Figure 4.7c, f, and i and Figure 4.8c, f, and i) for 

the events that had (1) only high skew surge (Figure 4.7a, b, and c and Figure 4.8a, b, and c), 

(2) both high skew surge and high river discharge (Figure 4.7d, e, and f and Figure 4.8d, e, and 

f), and (3) only high river discharge (Figure 4.7g, h, i and Figure 4.8g, h, and i). The number 

of events recorded for each type is listed, and the average standard deviation (SD), across all 

grid cells, is also reported. The latter gives an indication of the spread of the spatial patterns 

across all the corresponding events (i.e. a low SD indicates that the storms across all events 

have very similar spatial patterns).  

At Devonport (Figure 4.7), the meteorological patterns in SLP are similar across the three event 

types. All three event types feature a low-pressure system to the north-west of Ireland (Figure 

4.7a, d and g), with strong south-westerly winds affecting the south-western coast. As expected, 

the wind speed is more intense along the southern coast for the skew surge- only (Figure 4.7b) 

and joint event types (Figure 4.7e) compared to the events with river discharge only (Figure 

4.7g). The differences in PWC patterns are more pronounced. There is low PWC over the 

south-west for the surge only events (Figure 4.7c) and higher PWC for the joint and river only 

event types (Figure 4.7f and j). The composite plot of PWC is characterised by a higher SD for 

surge-only events (e.g. there is more spread across the range of events) in comparison to the 

event types that are joint and river only.  
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Figure 4.7: Meteorology conditions for Devonport [5]: first column, sea level pressure 

(mbar); second column, wind speed (m/s) and direction (grey arrows); third column, 

precipitable water content (kg/m2); during (a, b and c) high skew surge events only, (d, e and 

f) both high skew surge and high river discharge events, and (g, h and i) extreme high river 

discharge events only. SD correspond to the averaged standard deviation over the grid for 

each variable across the selected events. 
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Figure 4.8: Meteorology conditions for Whitby [30]: first column, sea level pressure (mbar); 

second column, wind speed (m/s) and direction (grey arrows); third column, precipitable 

water content (kg/m2); during (a, b and c) high skew surge only events, (d, e and f) both high 

skew surge and high river discharge events, and (g, h and i) extreme high river discharge only 

events. SD correspond to the averaged standard deviation over the grid for each variable 

across the selected events. 

In contrast, at Whitby, the meteorological patterns in SLP are very different across the two 

event types (note that no joint high skew surge and high river discharge were observed here; 

Figure 8), showing that the storms that lead to high skew surges are distinct from the storms 

that lead to high rainfall and therefore river discharge. For events with high skew surge only, 

the storm centre is situated over Scandinavia (Figure 4.8a), producing strong north-westerly 

winds across the North Sea (Figure 4.8b). PWC is low for the entire eastern coast (Figure 4.8c). 

For events with high river only, a weaker low- pressure system is centred over central UK 

(Figure 4.8g). The wind speeds are therefore low on the eastern coast (Figure 4.8h). However, 

the PWC is high over much of the UK.  For sites on the western coast of the UK, the storms 

typically have similar SLP characteristics between the three event types, whereas for sites on 

the eastern coast, the storms are more distinct.  



 

74 

 

The tracks of the storms responsible for each of the three event types are digitised at these two 

selected sites. These storm tracks are shown in Figure 4.9 for Devonport (Figure 4.9a–c) and 

Whitby (Figure 4.9d–f). The mean storm tracks are overlaid in each instance. At Devonport, 

the mean storm tracks are typically similar, moving in an easterly–north-easterly direction and 

cross over the north or just to the north of Scotland (Figure 4.9a, b, and c). The slight variation 

is likely due to the resolution of the average track. In contrast, at Whitby, the mean storm tracks 

for the high skew surge events and high river discharge events are very different. The mean 

storm track for the high skew surge events passes to the north of Scotland (Figure 4.9d), while 

the events with high river only cross central UK (Figure 4.9f), all in a west–east direction.  

 

Figure 4.9: Storm tracks for Devonport [5] (a, b and c) and Whitby [30] (d, e and f) over 

Northern Europe. The first column (a, d) shows high skew surge only events. The second 

column (b, e) both high skew surge and high river discharge events. The third column (c, f) 

shows high river discharge only events. The blue line represents the mean storm track. Grey 

lines show individual storm tracks with the location of the storm at peak skew surge and/or 

peak river discharge shown by the red dot. 

4.3.3 Localised correlations 

The analysis of weather types (described in Sect. 4.2) has helped to explain national-scale 

spatial variations in the occurrence of compound events (i.e. the west–east difference shown in 

Figure 4.4), but to understand variations locally, other variables must be considered. Therefore, 
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how the strength and phase of dependence between skew surge and river discharge is 

influenced by the characteristics of the corresponding river catchments is assessed.  

The three selected catchment characteristics (BFI, catchment area, and catchment elevation 

variation) are plotted in Figure 4.10a, b, and c, respectively. The river sites that drain onto the 

central southern coast typically have the greatest BFI (nearly 1, i.e. extremely porous chalk), 

whilst those on the north-western coast typically have the lowest (0–0.2, i.e. predominately 

clay soils; Figure 4.10a). Catchments are largest on the Severn River, the river Bann in 

Northern Ireland, and the eastern coast of Scotland, whereas smaller catchments are found in 

Cornwall, western Scotland, and around Weymouth (Figure 4.10b). The largest elevation 

variation is seen on the river Spey in Scotland, and altitude variation is low across the eastern 

coast of UK between Immingham and Dover (Figure 4.10c). Visually, there is no obvious 

strong spatial correlation be- tween any of the three catchment characteristics (Figure 10) and 

either the rank correlation between daily maximum skew surge and daily maximum river 

discharge (Figure 4.4a) or the number of joint occurrences per decade between extreme skew 

surge and extreme river discharge (Figure 4.4b).  

 

Figure 4.10: (a) Base flow index; (b) catchment area size (logged km2); and (c) catchment 

altitude variation (normalised). Note that the triangles, circles and squares show the river 

stations that discharge onto the west, east and south coasts, respectively. 

The rank correlation for daily maximum skew surge and daily maximum river discharge (at the 

0-day lag) is plotted against the three catchment characteristics for each site in Figure 4.11a, b, 

and c. The day of maximum lag for the rank correlation is plotted against the three catchment 

characteristics for each site in Figure 4.11d, e, and f. Corresponding correlation coefficients 

(CCs) are listed in Table 4.3, first for all sites and then just the river sites closest to the 33 tide 

gauge sites. There is a negative correlation (CC=−0.5, significant at 95 %) between dependence 

and BFI. This is in line with the hypothesis that the lower the BFI of the site (e.g. the flashier 
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the catchment), the more likely that high skew surges will occur around the same time as high 

river discharge. There is a statistically significant negative correlation (CC = −0.31) between 

dependence and catchment area. Again, this is in line with the hypothesis that high skew surges 

are more likely to occur around the same time as high river discharge in small catchments. 

There is a weak but statistically significant positive correlation (CC = 0.16) between 

dependence and catchment altitude variation. Again, this is in line with the hypothesis that the 

steeper the catchment, the more likely that high skew surges will occur around the same time 

as high river discharge. The correlation is higher (CC = 0.34, significant at 95 %) for just the 

33 river sites closest to each tide gauge site. The correlations between the three catchment 

characteristics and the day of maximum lag are not as strong (Table 4.3; Figure 4.11d, e and 

f). There is a weak statistically significant correlation (CC = 0.21, significant at 95 %) between 

the day of the maximum lag and BFI. Sites with larger BFI typically have larger positive lags. 

There is also a weak, statistically significant correlation (CC = 0.11, significant at 95 %) 

between the day of the maximum lag and catchment area. Sites with large catchment area 

typically have larger positive lags.  

 

Figure 4.11: Kendall’s Rank Correlation 𝜏 between daily maximum skew surge and daily 

maximum river discharge with: (a) base flow index; (b) catchment area size (logged km2); (c) 

catchment altitude variation (normalised); and correlation of the day of lag with the largest 
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Kendall’s Rank Correlation 𝜏 with: (d) base flow index; (e) catchment area size (logged km2); 

(f) catchment altitude variation (normalised), for all sites. 

Table 4.3: Correlation between catchment variables and: (i) the number of joint occurrences 

per decade between high skew surges and river discharge; and (ii) the lag day when there is 

the maximum number of joint occurrences between high skew surge and high river discharge. 

Bold text indicates statistical significance at a 95% confidence interval. 

Catchment 

Variable 

All Sites Coastal Sites 

Dependence Lag Dependence Lag 

BFI -0.50 0.21 -0.48 0.17 

Catchment 

Area Size -0.31 0.12 -0.33 0.13 

Altitude 

Variation 0.16 -0.032 0.34 0.17 

 

4.4 Discussion 

In this chapter, the potential for compound flooding arising from the joint occurrence of 

extreme total water level or skew surge and river discharges around the coast of UK has been 

assessed. Like earlier studies (i.e. Svensson and Jones, 2002, 2004; Petroliagkis et al., 2016; 

Paprotny et al., 2018), the joint occurrence of high skew surges and high river discharge have 

been identified to occur more frequently on the south-western and western coasts of the UK 

compared to the eastern coast. However, for the first time, it’s shown that this spatial variability 

is driven by meteorological differences in storm characteristics. On the western coast of the 

UK, the storms that generate high skew surges and high river discharge are typically similar in 

characteristics (i.e. there is a low-pressure system to the north-west of Ireland with strong 

south-westerly winds affecting the south- western coast) and track across the UK on 

comparable path- ways. In contrast, on the eastern coast, the storms that typically generate high 

skew surges (i.e. when there is a low pressure over Scandinavia producing strong north-

westerly winds across the North Sea) are distinct from the types of storms that tend to generate 

high river discharge in this area (i.e. when there is a weaker low-pressure system over central 

UK).  

For the first time, relationships have been identified across the UK between the strength and 

phase of the dependence between high skew surge and high river discharge and the 

characteristics of the corresponding river catchments. High skew surges are found to occur 
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more frequently with high discharge in catchments with a lower base flow index, smaller area, 

and steeper elevation gradient. In catchments with a high base flow index, large area, and 

shallow elevation gradient, the peak river flow tends to occur several days after high skew 

surge. It’s also found that for inland river discharge sites on the eastern coast, the maximum 

number of joint occurrences happens when river discharge occurs −1 days before peak skew 

surge. This is because the maximum storm surge in the North Sea occurs after the storm has 

crossed the North Sea into Scandinavia, whereas the high rainfall occurs a day earlier when the 

storm is centred over the UK.  

The key concern for compound flooding is when estuaries or coastal regions experience both 

high storm surge and high river discharge around the same time (i.e. the 0-day lag), which is 

likely to lead to disproportionately large adverse flood consequences. Of the 33 tide gauge sites 

considered, dependence between high skew surge and high river discharge is at its maximum 

at the 0-day lag at 19 sites. At most other sites, high river discharge occurs between +1 and +5 

days after peak skew surge, and therefore compound flooding is not as much of a concern. 

However, there are still important implications for flood management and emergency response 

if a large fluvial flood occurs several days after a major coastal flood, as this is likely to stretch 

emergency services.  

The meteorological analysis undertaken indicates subtle differences in the types of storms that 

tend to generate compound events compared to non-compound events, particularly for sites on 

the western coast of the UK (see Figure 4.6). As compound events tend to exacerbate the 

adverse consequences of a flood, it is vital that they are forecasted accurately, and that 

appropriate warning is provided. Further- more, the best response to a compound event might 

differ from a non-compound event. Therefore, being able to accurately forecast that an event 

might be a compound event, as opposed to a non-compound event, is crucial. With these 

insights and improvement in forecast opportunities discussed below, these aspects of 

emergency response should be analysed in more detail.  

In this study, the same daily historical weather-pattern catalogue are used as Neal et al., (2018) 

and Richardson et al. (2018) to calculate the modal weather pattern at each site for (1) high 

skew surge events only, (2) joint-occurrence events, and (3) high river discharge events only. 

This is done in order to briefly assess whether Coastal Decider could be expanded to give early 

warnings of events with the potential to generate compound flooding from both high sea level 

and high river discharge. Results are shown in Figure 4.12. Nearly all the events are dominated 

by the higher-numbered weather patterns, which tend to be the more stormy types and which 
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are most likely to occur in the winter. Clear distinctions are found along coastal regions. 

Weather pattern 30 occurs for sites along the south-western and western UK coast for each of 

the three types of events. This is one of the stormiest weather patterns, with a large depression 

situated to the north of Scotland. This causes a strong westerly flow across the UK, with frontal 

rainfall being particularly heavy in western parts of the UK. Weather pattern 20 is dominant 

along the central western coast, particularly from the Bristol Channel northwards. This weather 

pattern is similar to weather pat- tern 30, but with the depression centre being further north, 

therefore shifting the wind and rain impacts further north. Sites in Scotland typically feature 

weather patterns 20 (cyclonic westerly) and 21 (cyclonic south-westerly). Along the eastern 

coast, high skew surge and river discharge events experience different weather patterns, with 

pattern 14 (cyclonic northerly) generally being seen during high skew surge events compared 

to patterns 11 (low pressure centred over the UK), 24 (southerly tracking cyclone centred over 

the North Sea), and 30 (very cyclonic westerly), which are generally related to high river 

events. These results indicate that it may be possible to extend the forecasting capability of 

Coastal Decider to also include indications for the likelihood of compound events. Small-scale 

weather features will need to be included in the mean composites for each weather pattern (e.g. 

weather pattern 30, which is a very stormy cyclonic south-westerly type, will have a mean 

composite that is formed from many subtle variations in the overall broad- scale stormy south-

westerly flow; this means that the small- scale (and perhaps rarer) features will still be 

represented within a broader-scale weather pattern).  
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Figure 4.12: The modal weather pattern type (indicated by the colours in the legend) for 

extreme surge only events (top left segment), extreme river flow only events (top right 

segment), and extreme joint occurrence events (bottom segment) observed at the study 

locations. 

So far, just considered high water levels which produce the potential for flooding have been 

considered. In periods of high runoff in the UK, such as 1998, 2000, and 2007, floods happened 

repetitively near the tidal limit of rivers due to tidal locking at high tide, such as the floods in 

Lewes in 2000 (White, 2007). However, these may not be compound events as defined here. 

To briefly assess the extent of flooding during compound events, the dates of joint occurrences 

at Devonport (which had a higher number of joint occurrences per decade) were compared with 

reports of coastal flooding in the SurgeWatch database (Haigh et al., 2015, 2017). SurgeWatch 

records the social, economic, and environmental consequences of 330 coastal floods that have 
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impacted the UK in the last 100 years. Of the nine joint-occurrence events when there was both 

high skew surge and high river discharge observed at Devonport, seven events had reports of 

coastal flooding. Events with significant flooding included the following: 24–25 December 

1999, which caused extensive flooding in Lymington, Dorset, as discussed below, and the 14th 

February 2014 storm, which led to the destruction of the main railway line in Dawlish (Devon 

Maritime Forum, 2014), note that this event also had large waves. No flooding was reported 

for the Great Storm of 15–16 October 1987 (Burt & Mansfield, 1988). There was extensive 

wind damage to the UK during this event, but little coastal flooding because the event coincided 

with neap tides.  

As stated earlier, compound flooding can occur not only during two (or more) extreme events 

but also when just one flood source is extreme (for example, extreme river discharge combines 

with a moderate storm surge) or when two moderate flooding sources combine to create a flood 

event. It should be noted that the latter two types of compound flooding involving moderate 

events were beyond the scope of this paper and so were not considered in the methods. These 

types of events are important, however, and need to be recognised in future studies into flood 

risk.  

 

4.5 Conclusions 

This chapter has assessed the potential for compound flooding arising from the joint occurrence 

of extreme total water level or skew surge and river discharges around the coast of UK. It’s 

found that the joint occurrence of high skew surges and high river discharge occurs more 

frequently during the study period (15–50 years) at sites on the south-western and western 

coasts of the UK (between three and six joint events per decade), compared to sites along the 

eastern coast (between zero and one joint events per decade). For the first time, this study 

showed that the spatial variability in the dependence and number of joint occurrences of high 

skew surges and high river discharge is driven by meteorological differences in storm 

characteristics. On the western coast of the UK, the storms that generate high skew surges and 

high river discharge are typically similar in characteristics and track across the UK on 

comparable pathways. In contrast, on the eastern coast, the storms that typically generate high 

skew surges are mostly distinct from the types of storms that tend to generate high river 

discharge. High skew surges are found to occur more frequently with high river discharge at 

catchments with a lower base flow index, smaller catchment area, and steeper elevation 
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gradient. In catchments with a high base flow index, large catchment area, and shallow 

elevation gradient, the peak river flow tends to occur several days after the high skew surge. 

The previous lack of consideration of compound flooding means that flood risk has likely been 

underestimated around UK coasts, particularly along the south-western and western coasts. 

Furthermore, the additional damages caused due to compound events are unknown. It is 

therefore crucial that this be addressed in future assessments of flood risk and flood 

management approaches.  
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5. The potential for compound flooding around the UK 

from all flood sources. 

 

5.1 Introduction 

Relatively few studies have considered more than two sources. Key papers which have 

included more than two flooding sources include Hawkes (2005) who assessed: wave height 

and sea level; river flow and surge; rainfall and sea level and wind-sea and swell using JOIN-

SEA, a joint probability calculating software. A spatial pattern was found in combinations, 

such as river discharge and surge, with stronger dependence found on the west coast. However, 

no spatially coherent pattern was found in wave height and sea level. Petrogiliakis et al. (2016) 

examined the dependence between three source variables: storm surge, river discharge and 

waves, around Europe including 10 sites around the UK. The strongest dependence was found 

in the southwest for all combinations. No study has considered waves coupled with river 

discharge or rainfall. In summary whilst compound flooding research has grown in recent 

years, typically, studies have only considered two of the flood sources. Those that have covered 

three or more (such as Hawkes, 2005) have not considered all the potential  flood pair 

combinations (for example, waves occurring with river discharge). Finally, whilst the role the 

NAO on individual flooding sources has been well studied (Haylock & Goodess, 2004; P. L. 

Woodworth et al., 2007), no study has considered the role climate oscillations have on 

compound flooding. 

The overall objective of this chapter is to assess the compound flood potential around the coast 

of the UK arising from the joint occurrence of all possible pairs of the four main flood sources. 

To achieves this, the sub-objectives in this study are therefore fourfold, as follows: 

1. To map the spatial dependence between all possible pairs of the four main source 

variables around the UK coast, comparing different methods for quantifying the 

dependence between these two variables. 

2. To investigate the meteorological conditions that drive compound and non-compound 

events across the UK. 

3. To investigate the influence of the North Atlantic Oscillation on compound flooding; 

and 
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4. To quantify how much the return levels of the source variables are underestimated if 

variables are considered independent versus dependent.  

The approach incorporates the four main flood source drivers (storm-tides, waves, river 

discharge, and surface run-off) affecting coastal regions. However, this will not account for the 

pluvial source directly, as pluvial flooding is a much smaller scale process. Instead, like Wahl 

et al. (2015), this study will use rainfall at each analysis site as a proxy for surface runoff. The 

influence of groundwater and subsurface contributions is not explicitly addressed, as this is 

only important in very localised areas (areas of outcrop chalk). Furthermore, a wave hindcast 

is used due to the lack of observations. There can be some limitations using nearshore data, at 

depth limited sites, large waves can have the same impact at the shoreline as smaller waves 

dues to breaking. In addition, macro tidal regions may see no impact from waves due to the 

low water height. 

The structure of this chapter is as follows: Section 4.2 will discuss the different datasets used 

to describe the flood sources. Section 4.3 will describe the methodology used to answer the 

three sub-objectives. The results are described in Section 4.4 and discussed in Section 4.5. 

Finally, conclusions and future implications are examined in Section 4.6. 

 

5.2 Methodology  

The analysis was undertaken in four main stages, each addressing one of the four-chapter sub-

objectives outlined above. These stages are described in turn in the sections below.  

5.2.1 Data selection 

From the datasets described in Sections 3.1-3.4, data were extracted at coastal sites. With the 

fewest sites available, the tide gauges are used as the primary site, and the nearest 

observation/modelled point of each of the other three datasets (wave, river and rainfall) is 

selected which met the follow criteria: 

1.  A data overlap >15 years; and  

2. The selected observation/modelled points had to be hydrologically relevant to each other 

at each site. For example, a river gauge may be located close to two coastlines however as 

the river only flows out into one of these coasts, the wave node is selected from this coast. 

It should be noted that there may be situations where the same coastal management unit is 

responsible for two sets of coastline, and so riverine flooding on one coastline simultaneous 
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to riverine flooding on another might be relevant. This type of compound flooding is 

outside the scope of this study however. 

The selected sites can be seen in Figure 5.2 and Table 10.1, with the number of years of overlap 

in each site pairings seen in Figure 5.1. Due to the above criteria, nine tide gauge sites featured 

no river discharge site (Dover, Newhaven, St Mary’s, Port Erin, Port Ellen, Stornoway, 

Lerwick, Lowestoft and Harwich), and hence were removed from the analysis. Therefore, 33 

sites have been considered in surge/river combination.  

 

Figure 5.1: Overview of length of time series with overlapping data between each pair of source 

variables. 
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Figure 5.2: Overview of the matched tide, wave, river discharge and rainfall gauge sites 

employed in this study. 

 

5.2.2 Dependence and joint occurrence 

The first sub-objective is to map the spatial dependence between all possible pairs of the four 

main source variables around the UK coast, comparing different methods for quantifying the 

dependence between these two variables. For sea level, the skew surge parameter is used, See 

Chapter 4.2.2 for extraction methods. For waves, daily maximum heights are extracted from 
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the high-frequency time-series. JOIN-SEA (HR Wallingford, 1998) identified waves at high 

water in macrotidal regions to be the hazard (and conversely less risk posed at low water). As 

the tidal cycle was not considered in the wave height, this might impact the use of daily 

maximum significant wave height. The river discharge records were obtained in the format of 

daily mean values, and so no pre-processing was necessary on these records. Likewise, rainfall 

data were acquired as daily total accumulation, and no additional processing was required.  

Extreme levels were extracted for each of the four datasets (i.e. skew surge, wave height, river 

discharge and rainfall) daily time series, at each site, using a peaks-over-threshold (POT) 

approach (Figure 5.3). The 99th percentile is used in each case, this threshold was selected 

based on the findings in Section 4.2.1, which used a variable threshold but the found the 

threshold varied by just 0.3th. A declustering algorithm is used, with a storm length of 48 hours 

to guarantee independent events. 

Across the four source variables there are six possible pair combinations, as follows: 

1. Surge and wave (referred as SUvsWA); 

2. Surge and river discharge (SUvsRD); 

3. Surge and rainfall (SUvsRA); 

4. Wave and river discharge (WAvsRD); 

5. Waves and rainfall (WAvsRA); and 

6. River discharge and rainfall (RDvsRA). 
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Figure 5.3: Daily maximum (a) surge vs waves, (b) surge vs river discharge, (c) surge vs 

rainfall, (d) wave vs river discharge, (e) wave vs rainfall, and (f) rainfall vs river discharge, for 

Devonport. The dotted red lines represent the 99th percentile of each variable. 

 

Two different approaches were used to assess the relationship between the six variable pairs. 

The ‘dependence method’ and the ‘joint occurrence method’, full descriptions of the 

methodology can be seen in Sect. 4.2.2 

 

5.2.3 Meteorological analysis 

The second sub-objective is to investigate the meteorological conditions that drive compound 

and non-compound events across the UK. To do this, a similar approach was followed to that 
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previously applied in Hendry et al. (2019). For each site, fields of SLP, wind speed and PWC 

are extracted for the 6-hour period closest to the peak of each: (1) extreme single source event 

(e.g. surge only events); and (2) each joint occurrence event (e.g. SUvsWA). Full description 

of the methodology can be seen in Sect. 4.2.3. 

 

5.2.4 NAO analysis 

The third subobjective is to investigate the influence of the North Atlantic Oscillation on 

compound flooding. To achieve this, the average North Atlantic Oscillation (NAO) index of 

each winter season (December to March) was calculated and divided into NAO negative years 

(NAO<-0.5), NAO neutral ( -0.5<NAO< 0.5) and NAO positive (NAO>0.5). For the date of 

each extreme event identified, the winter NAO index value is extracted (for both single source 

extreme events and joint occurring events). The modal NAO phase observed for each extreme 

type is calculated and compared to understand the impact of NAO on compound events. 

 

5.2.5 Return Periods 

The fourth sub-objective is to quantify how much return levels of the source variables are 

underestimated if the dependence between variables is not considered. To do this, first the pair 

of sources are assumed to be fully independent, and calculate the exceedance probability of 

each flood source separately, by using the POT methods as described in Section 3.1 using the 

99th percentile. A Generalised Pareto Distribution (GPD) is then fitted to the extracted 

extremes. The 10-year return levels are identified for each of the four main sources (dashed red 

line, Figure 5.4). The joint probability between pairs is then calculated by the probability of 

one flood source exceeding the 10-year level multiplied by another flood source exceeding the 

10-year level (i.e. the 100-year joint event). Second, the joint return period of difference 

sources are calculated, by applying copular theory to stations where the dependence between 

variables is statistically significance (α< 0.05). Three different copulas are applied; (1) Gumbel 

(upper tail dependence), (2) Frank (no tail dependence) and (3) Clayton (lower tail 

dependence), selected for each pair by comparing the non-parametric tail dependence 

coefficients. A Cramer-von-Mises test is used to assess goodness of fit (Genest et al., 2009). 

The copula model is then used to calculate the probability of the 10-year levels being reached 
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in both flood sources (thick red line in Figure 5.4). Finally, the factor difference in return period 

is calculated between the dependence and independence case. 

 

Figure 5.4: Summary of methods for return period extraction.  Black circles represent the 

extracted extreme surge and wave datasets, the dashed red line represents the independent 10-

year return levels. The solid red line represents the dependent probability of reaching those 

levels 

 

 

5.3 Results 

5.3.1 Dependence and Joint Occurrences 

Two methods are used to assess the dependence between each of the six pairs of variables, 

across the 33 sites. The results of the first method, the dependence method, are shown in Figure 

5.5; only sites with statistically significant (at 95% confidence) are shown. For each of the six 

pairs of variables, the dependence at 0-day lag shows a clear spatial pattern, with generally 

greater dependence between all the six pairs of variables at sites on the west coast of the UK, 

compared to the east. The strongest dependence is found between WAvsRD and WAvsRA, 
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particularly for sites in the southwest, with sites having values of 0.35-0.5, whilst east coast 

sites typically have dependence values of 0.05-0.2.   

 

 

Figure 5.5: The dependence (Kendall’s Tau) between each of the source variable pairs. 

The results of the second method, the joint occurrence method, are shown in Figure 5.6. The 

greatest number of joint occurrences is found between surge and wave (Figure 5.6a), with a 

maximum of 17 joint occurrences per decade being seen at Liverpool. There’s also a clear split 

between west and east coast sites, with sites along the west coast (Portsmouth to Kinlochbervie) 

experiencing 6-17 events per decade, compared to east coast sites (Wick to Newhaven), which 
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experienced 0-8 events per decade. The 5 remaining source pairs have far fewer joint 

occurrences. WAvsRD (Figure 5.6d) contains the next greatest number of joint occurrences 

per decade, particularly in the south west, with Devonport experiencing around 9 events per 

decade. Sites from Dover clockwise around to North Shields mostly feature 3-7 events per 

decade. East coast sites Whitby, Immingham, and Cromer feature no joint occurrences over 

their data lengths. SUvsRD (Figure 5.6b) experiences a similar west/east spatial pattern to 

WAvsRD, with the greatest number of joint occurrences being found on the southwest coast, 

with the greatest number of joint occurrences at Bournemouth (7 events per decade). The 

spatial pattern varies slight from WAvsRD, with northeast sites experiencing far fewer events 

(all but one site had 1 or 0 events per decade). RDvsRA (Figure 5.6f) exhibits a different spatial 

pattern compared to any of the other flood pair combinations. The most joint occurrences are 

found at sites in Northern Ireland (9 events per decade), the north of England and south of 

Scotland (3-4 events per decade). Sites in the north of Scotland and south of England have far 

lower number of joint occurrences (0 – 3 events per decade). SUvsRA (Figure 5.6c) and 

WAvsRA (Figure 5.6e) both feature relatively low numbers of joint occurrences (<3 events per 

decade) across all sites around the UK, with 25 and 18 sites showing zero joint occurrences 

respectively. No discernible national scale spatial pattern is evident. 
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Figure 5.6: The joint occurrence per decade for each source variable pair. 

The dependence is also calculated between each of the six pairs of variables using time lags 

from −5 to +5 days. The day when there is the maximum dependence between pairs of variables 

is shown in Figure 5.7 for all sites. No clear spatial pattern is evident for the six pair 

combinations. Along the west coast, SUvsWA (Figure 5.7a) for example, experiences the 

greatest dependence on day 0 or when waves occurred 1 day after the surge, whilst for sites in 

the southeast (Southampton to Harwich) the greatest dependence is found when waves occur 1 

day before the surge. For sites on the east coast (Lowestoft to North Shields) the greatest 

dependence is found when waves occur 1 day prior to the surge. A distinct west/east difference 

is evident for SUvsRA (Figure 5.7c), with sites Wick to Portsmouth along the east and south 
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coast all having the greatest dependence when the surge occurred the same day as rainfall. For 

sites on the west coast the greatest dependence is when rainfall occurred a day after the surge. 

SUvsRD (Figure 5.7b) does not feature such a clear spatial pattern, although 40% of sites along 

the south and west coasts also have a maximum dependence when river discharge occurs 1-3 

days after the surge. For RDvsRA (Figure 5.7f), most sites have largest dependence at 0-day 

lag. However, 8 of the sites experience maximum dependence when rainfall occurs before river 

discharge. There is no clear spatial pattern however and is mostly likely due to the local river’s 

response time to rainfall. 

 

Figure 5.7: The lag day of maximum dependence between each pair of source variables. (a) 

surge vs waves; (b) surge vs river discharge; (c) surge vs rainfall; (d) waves vs river discharge; 
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(e) waves vs rainfall, and (f) river discharge vs rainfall. The flood source variables labelled on 

the x axis is lagged ±5 days around the y axis flood source variable. For example, (a) is showing 

the peak dependence when waves are lagged ±5 days after the skew surge. 

 

 

5.3.2 Meteorological Analysis 

Next, the meteorological conditions that drive compound (i.e., joint occurrence of source pairs) 

and non-compound events (i.e. single source events only) events across the UK are 

investigated. To illustrate the results of this component, two contrasting sites are focused on: 

Devonport on the UK south-west coast, which has high dependence and joint occurrences 

across all flood source pairs; and Cromer, on the UK eastern coast, which has low dependence 

and joint occurrences between flood source pairs.  

Composite plots of wind speed, PWC and SLP pressure are shown in Figure 5.8 and Figure 5.9 

at Devonport, for the four single source events and then for the six pairs of joint event types, 

respectively. For the single source extreme events at Devonport (Figure 5.8), all events featured 

a depression situated in the North Atlantic. For surge and wave events the depression is located 

northwest of Ireland (~55N 11W), whilst for river and rainfall events the depression is 

positioned southwest of Iceland (~ 60N 25W). The depression is weaker for rainfall events, 

compared to the other three source events. All event types featured a band of rainfall running 

along the isobars southeast of the low. The events differed in wind strength, with far stronger 

winds (up to 20m/s) being seen for the surge and wave events over Devonport and in the 

western English Channel, whilst river and rainfall events had lower wind speeds (15m/s for 

river events, 5-10/s for rainfall). For the joint occurrence events at Devonport (Figure 5.8), 

SUvsWA, SUvsRD, WAvsRD and WAvsRA events all feature similar weather pattern types 

compared to the single source events; with a low-pressure systems situation over the North 

Atlantic and the strong, south-westerly winds funnelling up the western English Channel. 

Synoptic weather patterns during WAvsRA events differs slightly, with significantly more 

PWC over the entire British Isles, rather than the band of PWC seen in the SUvsWA, SUvsRD 

and WAvsRD event (however only one joint event is observed). RDvsRA events features a 

depression further west (~60N 35W) than for the other joint occurrence or single event. The 

band of PWC features over just the southwest of the UK with less intense rainfall. 
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Figure 5.8: Meteorology conditions for Devonport [Site 5]: (a, c, e, g) wind speed (m s−1) and 

direction (grey arrows), (b, d ,f, h) precipitable water content (kgm−2) and sea-level pressure 

contours (mbar) during (a, b) extreme skew surge events, (c, d) extreme wave events, (e, f) 

extreme river discharge events, (g, h) extreme rainfall events.  
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Figure 5.9: Meteorology conditions for Devonport joint extreme occurrences [Site 5]: (a, c, e, 

g) wind speed (m s−1) and direction (grey arrows), (b, d ,f, h) precipitable water content (kgm−2) 

and sea-level pressure contours (mbar) during (a, b) skew surge vs wave, (c, d) skew surge vs 

river discharge, (e, f) skew surge vs rainfall, (g, h) wave vs river discharge, (i, j) wave vs 

rainfall, (k, k) river discharge vs rainfall.  
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Composite plots of wind speed, PWC and SLP pressure are shown in Figure 5.10 Figure 5.11 

at Cromer, for the four single source events and then for the six pairs of joint event types, 

respectively. The synoptic weather patterns for the single source events at Cromer (Figure 5.10) 

differ significantly from each other. Surge and wave extreme events feature a depression over 

Scandinavia (~65N 15W), with strong northerly winds funnelling down the North Sea and low 

PWC levels over Cromer. Extreme river events feature a low over the North Atlantic, with 

weak winds. Rainfall events on the other hand, have a far less defined weather pattern, with 

high PWC levels across the entire British Isles and low winds. It should be noted, Rainfall 

events experience a higher standard deviation than the other flood sources (6.3 in PWC 

compared to 5.4 in surge, the next highest), suggesting more variable conditions. The 

meteorological conditions of joint occurrence events at Cromer are seen in Figure 5.11. In 

contrast to Devonport, only SUvsWA (Figure 5.11a) and RDvsRA (Figure 5.11k) features the 

same weather pattern as it’s single sources. All other combinations bear little resemblance to 

both sources, for example WAvsRD features a low depression over. Either no events or just 

one event were seen in Cromer for SUvsRD, SUvsRA or WAvsRA pairs. 
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Figure 5.10: Meteorology conditions for Cromer [Site 38]: (a, c, e, g) wind speed (m s−1) and 

direction (grey arrows), (b, d ,f, h) precipitable water content (kgm−2) and sea-level pressure 

contours (mbar) during (a, b) extreme skew surge events, (c, d) extreme wave events, (e, f) 

extreme river discharge events, (g, h) extreme rainfall events.  
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Figure 5.11: Meteorology conditions for Cromer joint extreme occurrences [Site 38]: (a, c, e, 

g) wind speed (m s−1) and direction (grey arrows), and (b, d ,f, h) precipitable water content 

(kgm−2) and sea-level pressure contours (mbar) during (a, b) skew surge vs wave, (c, d) skew 

surge vs river discharge, (e, f) skew surge vs rainfall, (g, h) wave vs river discharge, (i, j) wave 

vs rainfall, (k, k) river discharge vs rainfall.  
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5.3.3 NAO Analysis 

The NAO index value was identified for each of the compound (i.e. joint occurrence of source 

pairs) and non-compound events (i.e. single source events only) to gauge the impact of the 

NAO on the weather patterns leading to compound flooding. The same two contrasting sites 

(Devonport in the southwest and Cromer in the east) are used. At Devonport (Table 5.1), surge, 

wave and river events were found to occur most often (66.6%, 44.5% and 55.5% respectively) 

during strong positive winter NAO years, whilst rainfall events tended to occur during weak 

NAO years (62.9% of events). For compound events, SUvsWA, WAvsRD and WAvsRA 

occurred on strong positive winter NAO years (50%, 57.6% and 66.6% respectively) whilst 

SUvsRD events typically occurred in weak NAO winters (69.2%). 

Table 5.1: The number of single source and joint occurrence extreme events (percentage in 

brackets) which fall under a negative winter NAO (wNAO <-0.5); a weak winter NAO (-

0.5<wNAO<0.5) and positive winter NAO (wNAO>0.5) for Devonport [Site 5]. 

Extreme flood source event Negative winter 

NAO 

(wNAO <-0.5) 

Weak Winter NAO  

(-0.5<wNAO<0.5) 

Positive winter 

NAO 

(wNAO>0.5) 

Storm surge 3 (7.7%) 10 (25.6%) 26 (66.6%) 

Significant wave height 11 (24.4%) 14 (31.1%) 20 (44.5%) 

River discharge 9 (12.5%) 23 (31.9%) 40 (55.5%) 

Rainfall 0 22 (62.9%) 13 (37.1%) 

Surge vs wave height 6 (17.6) 11 (32.4%) 17 (50%) 

Surge vs river discharge 1 (7.7%) 9 (69.2%) 3 (23.1%) 

Surge vs rainfall No events 

Wave height vs river 

discharge 

4 (12.1%) 10 (30.3%) 19 (57.6%) 

Wave height vs rainfall 1 (33.3%) 0 2 (66.6%) 

River discharge vs rainfall 1 (33.3.%) 0 2 (66.6%) 
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Cromer, on the other hand (Table 5.2), experienced strong positive NAO’s for the majority of 

surge and wave events (45.7% and 72.2% respectively) whilst river and rainfall events were 

typically weak events (51.3% and 53.2% respectively). For compound events, 52% of 

SUvsWA events are found to occur in strong positive winter NAO years, whilst SUvsRD was 

mostly during weak NAO years (66.6%). the other compound flood pairs featured too few 

events to draw conclusions. 

Table 5.2: The number of single source and joint occurrence extreme events (percentage in 

brackets) which fall under a negative winter NAO (wNAO <-0.5); a weak winter NAO (-

0.5<wNAO<0.5) and positive winter NAO (wNAO>0.5) for Cromer [Site 38]. 

Extreme flood source event Negative winter 

NAO 

(wNAO <-0.5) 

Weak Winter NAO  

(-0.5<wNAO<0.5) 

Positive winter 

NAO 

(wNAO>0.5) 

Storm surge 6 (8.6%) 32 (45.7%) 32 (45.7%) 

Significant wave height 4 (5.6%) 16 (22.2%) 52 (72.2%) 

River discharge 17 (23.0%) 38 (51.3%) 19 (25.7%) 

Rainfall 2 (4.3%) 25 (53.2%) 20 (42.5%) 

Surge vs wave height 1 (5.3%) 8 (42.1%) 10 (52.6%) 

Surge vs river discharge 0 0 1 (100%) 

Surge vs rainfall No events 

Wave height vs river 

discharge 

0 2 (66.6%) 1 %33.3%) 

Wave height vs rainfall No events 

River discharge vs rainfall 0 1 1 (100%) 

 

. 
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5.3.4 Return Periods 

Finally, how much return levels of the source variables are underestimated if the dependence 

between variables is not considered, is investigated. For each of the six source pairings, the 

return period factor increases when dependence between variables is accounted (as shown in 

Figure 5.12). The spatial patterns in results match closely those for dependence shown in Figure 

5.5). The greatest increase in return period is found for sites on the west coast in all flood pair 

combinations. The greatest spatial variability is found in SUvsWA (Figure 5.12a). Sites on the 

north west coast (e.g., Liverpool, Heysham and Workington) increase 4-5 times when assuming 

independence compared to accounting for dependence between source pairs. In comparison, 

sites on the east coast (e.g., Immingham, Whitby and North Shields) have a probability increase 

of just 0.5-2 times. The greatest magnitude of probability increase is found for WAvsRD 

(Figure 5.12d), where sites across the entire west coast from Newlyn in the south to 

Kinlochbervie in North Scotland see a factor increase in probability of 5-6 times. WAvsRA 

experiences similar probability increase of up to 5-6 times, however this is primarily in Wales 

and the southwest. RAvsRD (Figure 5.12f), has the least distinct spatial pattern with increase 

of up to 5 times being found on both the east and west coasts.  SUvsRD and SUvsRA (Figure 

5.12b and c) experience the lowest increases in probability of around 3-4 times on the west 

coast and 2-3 times on the east coast. 
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Figure 5.12: Factor decrease in return period when flood source variables are considered 

independent (using a GEV model) to dependent (using a copula model). 

 

 

5.4 Discussion 

This chapter has assessed the potential for compound flooding arising from the main flood 

source combinations around the coast of the UK. This has been achieved by analysing the joint 

occurrence of extreme events, and the dependency between the flood pair combinations. For 

all combinations a spatial pattern is seen in the dependence, with sites along the west and south 
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west coasts having greater dependence between source variables compared to the east. The 

same spatial pattern is found for most pairs in joint occurrences, however for RDvsRA and 

WAvsRA, no definitive pattern is seen. This confirms the spatial pattern found in previous 

studies (Hawkes, 2005; Petroliagkis et al., 2016). 

For the first time the types of weather patterns which can lead to different types of compound 

events are identified. On the west coast, it’s shown that surge, wave and riverine flooding 

(Figure 5.8a, c and e) are all generated by similar weather patterns.  

Extreme rainfall events (Figure 5.8g) typically feature reduced wind strength, this suggest why 

extreme rainfall events do not occur in compound events as frequently, as strong winds are not 

present to generate surge and waves (Figure 5.9c, e and f). On the other hand, the extremes on 

the east coast typically experience different weather patterns. Surge and wave extremes (Figure 

5.11a and c) typically feature a low over Scandinavia, whilst river and rainfall events are far 

weaker systems with a lower further west over the UK or Atlantic. 

The NAO is the primary mode of atmospheric variability in the North Atlantic, expressed as 

the difference in mean sea level pressure between Iceland and the Azores. An increase in the 

winter NAO typically results in a greater number of storms crossing northern Europe at higher 

latitudes, resulting in increased surge and wave activity in the southern North Sea. A reduction 

in NAO leads to fewer and weaker storms which cross at lower latitudes (Hurrell, 1995; Jones 

et al., 1997). Haylock and Goodess (2004) analysed the correlation between the NAO and the 

number of days with extreme rainfall in Europe. In the southwest UK, they found weak positive 

correlation, matching to the results for Devonport, whilst no correlation was found on the east 

coast of the UK, agreeing with the results for Cromer. This is consistent with the results 

presented here. For example, at Devonport, the majority of surge, wave and river extreme 

events occur during positive winter NAO phases. Precipitation events were found to be 

associated with weaker NAO winters at both sites.  

The joint probability of extreme flood source pairs is calculated in two ways, when sources are 

considered independent of each other and dependent on each other. The change in joint 

probability is then calculated (Figure 5.12). The probability of both flood sources reaching a 

10-year level is found to increase when sources were considered dependent, compared to 

independent, across all sites and for all flood combinations. The east/west spatial variability is 

also seen in all pairs of source variables, similarly to spatial variations in dependence (Figure 

5.5). When looking at the relationship between surge and waves globally, Marcos et al (2019) 
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found a far greater ratio of increase in return periods (~15 times higher when considering 

independent vs dependent compared to 2-3 in Figure 5.12) on the south east UK coast. 

However, they used a 50-year return period, which may show a greater change between 

independent and dependent relationships. 

This study has been a broad analysis of compound flooding in the UK from the main sources 

of flooding, to identify national scale spatial patterns, therefore only the primary variable was 

assessed. However, each flood source can be impacted by a range of variables (Figure 2.1). For 

example, daily total rainfall is used as proxy for pluvial flooding, based on the nearest rain 

gauge to each tide gauge, however surface run off is affected by a range of variables, including 

rainfall duration, surface type (i.e. proportion of tarmacked and paved surfaces), ground 

saturation, ground composition, urban drainage systems (Gaitan et al., 2016)). To more fully 

evaluate the pluvial flood risk, detailed localised modelling would be required considering all 

the variables mentioned above. As this study was looking on a national scale however, this was 

not feasible. 

Similarly, flooding created by waves is also affected by wave period and direction as well as 

localised topography of the shoaling coastline. Period and direction were not investigated, due 

to validation of the hindcast modelled dataset used in the study showed period and direction 

performed poorly against the observed data. As with pluvial flooding, wave run up is highly 

dependent on localised coastal topography and would require finer scale modelling to more 

accurately account for wave flooding. 

For sea level, the analysis focused on the skew surge rather than total water level (TWL). In 

Chapter 3, both skew surge and TWL were analysed and a relationship found in both, however 

it was much stronger in the skew surge as the probability of the surge occurring coincidently 

with a high astronomical tide was removed. For demonstrating the overall relationship between 

the flooding sources this is appropriate. However, it should be noted that this doesn’t 

necessarily establish if flooding events occurred. Haigh et al. (2016) found for the UK, the 

majority of coastal flooding events occurred when a moderate surge aligned with a spring 

astronomical high tide, rather than an extreme surge. Therefore, analysing simply an extreme 

surge may cause flooding events to be overlooked. Haigh et al. (2016) also found that whilst 

extreme skew surges had increase over time, flood events had not, due to improvements in 

flood defences and forecasting. Using extreme compound events as opposed to occurrences of 

actual flooding may not be a true representation of flooding. 
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An additional limitation to the research is the length of the datasets used. An average 

overlapping data length of 23 years was obtained between source variables, this does have the 

potential to overlook several multi-decadal features such as the lunar nodal cycle and the 

Atlantic Multidecadal Oscillation (AMO). If total water level is considered, the impact of the 

18.6 year lunar nodal cycle can have great impact on astronomical tides (Haigh et al., 2011), 

and so a minimum of 2 lunar nodal cycles are required. Furthermore, decadal clustering of 

extremes (i.e. groupings of extreme events in some decades and not others) was found in the 

surge time-series in the UK (M. P. Wadey et al., 2014), which suggested these might be linked 

to regional changes in climate, such as the NAO and the AMO, further illustrating the need for 

longer time-series. More recently, a new climatic index has been developed, Western Europe 

Pressure Anomaly (WEPA) (Castelle et al., 2017). WEPA captures the sea level pressure 

gradient between Ireland and the Canary Islands, and outperforms climatic index (such as the 

NAO) when studying extreme waves, particularly for the 2013/14 winter season. Future work 

could consider the impacts of WEPA on compound flooding. 

 

5.5 Conclusions 

This chapter has assessed the potential for compound flooding around the UK coast arising 

from the joint occurrence of pairs of the four main sources of flooding, namely: storm surge, 

waves, river-discharge and surface runoff. It was found that the joint occurrence and 

dependence of all six pairs of joint variables occurs more frequently during the study period 

(15–50 years) at sites on the south-western and western coasts of the UK, compared to sites 

along the eastern coast. The strongest dependence is between waves and river discharge, whilst 

the greatest number of joint occurrences is between surge and waves. It’s shown, for the first 

time, that the spatial variability in the dependence and number of joint occurrences of extreme 

flood sources is driven by meteorological differences in storm characteristics. In the west, the 

flood sources are typically driven by the same weather patterns, however on the east coast, the 

different flood sources are driven by differing weather systems (i.e., surge and waves are 

typically generated by a low-pressure system over Scandinavia, whilst river and rainfall had 

less well defined weather patterns, with no low pressure centre), reducing the likelihood of 

compound events. The influence of the NAO on compound flooding is also examined. It’s 

found that compound events excluding rainfall on the west coast are more likely to occur during 

a positive NAO winter. On the east coast, whilst surge and wave events occur during a positive 
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NAO winter, rainfall and river discharge events are more likely during a weak NAO winter.  

Finally, it’s found that return periods of variables are underestimated, particularly for sites on 

the west coast, when the dependence between variables is ignored. Failure to account 

compound flooding could result in an underestimation of the flood risk by 5-6 times for some 

flood combinations such as wave vs river discharge, when comparing an independent to 

dependent relationship. 

The results presented in this chapter have shown that all flood sources must be considered 

collectively when assessing the risk from flooding, and to do so otherwise could result in a 

significant underestimation of the risk, with disastrous consequences. This risk is not uniform 

however, and a greater emphasis of compound flooding research should be placed on the west 

coast of the UK. It is therefore crucial that future flood management approaches and forecasting 

techniques consider compound flooding and its drivers. 
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6. Using meteorological drivers to identify potential past 

and future compound flood events in the UK. 

 

6.1 Introduction 

The analyses presented in Chapters 3 and 4 assessed the occurrences of compound extreme 

events around the UK coast using observed data. A key outcome of this component of the study 

was that that certain types of weather conditions favour the joint occurrence of storm surge and 

river discharge, while other weather patterns do not, and this therefore influences the stretches 

of coastline were compound flooding is more likely to occur. For example, findings show that 

compound flooding is more likely to occur on the west coast of the UK, where storms over the 

North Atlantic cause both strong south-westerly winds and a band of rain from the southwest. 

In contrast, on the east coast, compound flooding is less likely to occur because the storms that 

generate large storm surges, do not generate high river discharge. The analysis therefore gave 

key insight into understanding of compound events. However, a key limitation of the analysis 

undertaken in Chapters 3 and 4, is the data availability. The average overlapping data length of 

sea levels and river flow in Chapter 3 was 29 years. This creates uncertainties when attempting 

to interpret whether there is evidence for long-term changes in the frequency of compound 

flooding. The dataset is often too short to discern whether compound flooding is becoming 

more or less likely to occur and to determine what the impact of multidecadal cycles, and in 

particular, atmospheric variability due to the North Atlantic Oscillation (NAO) and Atlantic 

Multidecadal Oscillation (AMO), is. These climate teleconnection patterns influence the storm 

track and amount of rainfall, and so could indirectly affect compound flooding. Furthermore, 

sea levels are influenced by multi-decadal astronomical tidal cycles, such as the 18.6 lunar 

nodal cycle, which can influence flooding. Haigh et al. (2011) recommends that 36 years of 

data are used in sea level analyses (e.g., at least two complete nodal cycles), to capture this 

variability. Failure to do so, could result in a greater or larger number of flooding events being 

identified, and in changes being falsely interpreted as a variation in the flooding climate, rather 

than the increased (or decreased) water level due to the astronomical tide resulting in greater 

(or lower) storm tides. 
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One way of overcoming the lack of long observed data, is to use non quality-controlled 

evidence over many hundreds or thousands of years. For example, in the UK, databases such 

as Surgewatch (Haigh et al., 2016; Haigh et al., 2017; https://www.surgewatch.org/) have 

qualitatively identified major coastal flood events going back as far as 1014 using a wide range 

of ‘soft’ sources, such as periodicals, newspapers, monthly weather and hydrological reports 

professional reports and other online sources (such as blogs and social media). Brázdil et al. 

(2006) performed a similar historical flood database on riverine flooding in Europe. Whilst 

these methods have issues with data accuracy, they do provide context to modern extreme 

events. To quantitatively improve extreme estimations, datasets can be extended with historic 

events or paleofloods, thus reducing uncertainties and better representing potential outliers. 

This technique has been used for both river (Benito et al., 2004; Hosking & Wallis, 1986; 

Payrastre et al., 2011; Stedinger & Baker, 1987) and skew surges (Hamdi et al., 2015) 

An alternative method is to assess data on a regional scale and combine observed timeseries to 

create a single continuous longer sea level dataset. Combining several local datasets has 

produced a technique known as Regional Frequency Analysis (RFA), whereby different 

locations in a region are clustered together to use all of the available data (Bernardara et al., 

2011; Weiss et al., 2014). This method is based on the index flood principle (Dalrymple, 1960) 

which uses a local index at each site to preserve any individualities in a region. There are 

limitations with this technique, for example the probability distribution of the extreme values 

must be the same at all sites within a region to allow the fitting of a distribution curve  (Frau et 

al., 2018; Hosking & Wallis, 1997). The RFA technique has been combined with paleoflood 

records by Nguyen et al., (2014) for river discharge; Hamdi et al. (2016) for oceanic and 

meteorological parameters and Frau et al. (2018) for storm surges. No study however, has used 

these methods yet to expand compound flooding databases.  

Another limitation of just using observations in compound flooding studies, is that one cannot 

then consider how the frequency of compound flooding may change in the future. To date, 

Bevacqua et al. (2019, 2020) are the only studies assessing how compound flooding may 

change in the future with climate change. Storm surges were simulated through a DFLOW FM 

model, waves through Wavewatch III and astronomical tides were simulated using FES2012 

model. The three models were uncoupled. All were forced using climate projections from 

CMIP5 multi-model ensembles, under RCP 8.5 conditions. Precipitation was taken directly 

from the projections. Statistical analysis was then applied to the modelled datasets using an 

“AND” return period (where both variables must pass an extreme threshold) to identify the 
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compound return periods. They found that the greatest compound flooding probability is seen 

in the Mediterranean, however climate projections showed an increase in compound flood 

probability along parts of the northern European coast. 

As described in Section 2.7.5, an alternative method to observe compound events is to assess 

the source drivers which lead to such events, i.e., by identifying the weather patterns which 

lead to compound flood events via techniques as seen in Neal et al. (2016) and Hemer et al 

(2008). Therefore, the objective of this chapter is to evaluate how compounding flooding might 

vary in the future and extend historic compound flooding records. To address this objective 

there are three sub-objectives as follows: 

1. To establish a method to extend compound flood records in the UK beyond traditional 

observed data methods, by using synoptic weather patterns as a proxy; 

2. To analyse whether the frequency of storms that tend to lead to compound flooding has 

changed over the period 1851 to 2017; and 

3. To assess any potential future changes in compound flooding up to the year 2095 under 

RCP2.6 and 8.5 conditions (explained in Section 5.2.2). 

The structure of this chapter is as follows: Section 5.2 discusses the different datasets used in 

this analysis. Section 5.3 describes the methodology used to address the three sub-objectives. 

The results are described in Section 5.4 and discussed in Section 5.5. Finally, conclusions and 

future implications are examined in Section 5.6. 

 

6.2 Methodology 

The analysis was undertaken in three main stages described in turn in the sections below, 

each addressing one of the three-chapter sub-objectives outlined in Section 5.1.  

6.2.1 Define reference compound conditions  

The reference conditions were produced from the joint occurrence of extreme storm surges and 

river discharge calculated in Chapter 3. Four sites were selected, spaced at roughly equal 

distances, chosen according to the number of joint occurring extreme events. A high number 

of joint extreme events were required, to provide enough test events for technique validation. 

Sites were therefore only picked along the west coast, as much fewer compound events are 

observed along the east coast (Figure 4.4). The 4 sites (from south to north) were Devonport, 

Fishguard, Heysham and Kinlochbervie (Figure 6.1). At each site, the reference conditions 



 

112 

 

were defined as the composite meteorological conditions identified in Chapter 3 for the joint 

occurrence events of extreme storm surge and river discharge; based upon MSLP, WS and 

PWC (Figure 6.2Figure 6.3,Figure 6.4Figure 6.5). Unlike in Chapters 3 and 4, here the entire 

temporal data extent (1851-2017) is analysed.  

 

Figure 6.1: Location of the study sites for Section 5. 
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Figure 6.2: Reference Meteorological conditions for Devonport for: (a) Sea level pressure 

(hPa); (b) Wind speed (m/s); and (c) Precipitable water content (kg/m3). 

 

Figure 6.3: Reference Meteorological conditions for Fishguard a) Sea level pressure (hPa) b) 

Wind speed (m/s) c) Precipitable water content (kg/m3). 
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Figure 6.4: Reference Meteorological conditions for Heysham a) Sea level pressure (hPa) b) 

Wind speed (m/s) c) Precipitable water content (kg/m3). 

 

 

Figure 6.5: Reference Meteorological conditions for Kinlochbervie a) Sea level pressure (hPa) 

b) Wind speed (m/s) c) Precipitable water content (kg/m3). 
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6.2.2 Establish a method to extend compound flood records  

The first sub-objective is to establish a method to extend compound flood records in the UK 

beyond traditional observed data methods, by using synoptic weather patterns as a proxy. Two 

different techniques were used to compare meteorological conditions to the reference 

conditions (Figure 6.2,Figure 6.3,Figure 6.4 Figure 6.5). The first approach calculated the 

distance from the reference conditions measured using the Pearson’s Correlation (PC) method 

based on the technique of (Wu et al., 2018). This provided the degree of similarity of spatial 

structures (i.e., high- and low-pressure systems in the similar places). The second method used 

the difference in magnitude as measured using a sum of square difference (SSD) method, based 

on a modified Kirchoffer score (Hemer et al., 2008). Each time stamp (1850 to 2017) of the 

20th century reanalysis dataset contained three variables (MSLP, WS and PWC). This provided 

almost 170 years of MSLP, WS and PWC data at 6 hourly intervals, resulting in 241,920 unique 

meteorological conditions to sample and test against. As shown in Chapters 3 and 4, weather 

systems were resolved adequately in the 20th Century Reanalysis. Each timestamp was then 

tested using both the PC and SSD method, thus resulting in 6 tests scores comparing the 

reference conditions to the conditions during the time stamp. 

 

 

For the PC method, a modified version of Wu et al (2018) was used. Individual timestamps 

were not normalized, to maintain a seasonal variation. The Pearson product-moment 

correlation (Equation 1) was calculated between every grid point in the selected region between 

the reference conditions and each timestamp. This created a single correlation number at each 

time stamp. 

Equation 1:  𝜌(𝐴, 𝐵) =
1

𝑁−1
∑ (

𝐴𝑖−𝜇𝐴

𝜎𝐴

𝑁
𝑖=1 )(

𝐵𝑖−𝜇𝑖

𝜎𝐵
) 

where 𝜇𝐴 and 𝜎𝐴 are the mean and standard deviation of A (the reference conditions), 

 respectively, and 𝜇𝐵 and 𝜎𝐵 are the mean and standard deviation of B (the sample 

timestamp). 
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The SSD method is partially based on the Kirchhoffer sum-of squares technique (Kirchhofer, 

1973; Yarnal, 1993). This procedure calculates the total difference between the gridded 

synoptic maps and reference conditions. Each time stamp is compared to the reference 

condition using the sum of squares equation, as follows: 

 

Equation 2:  𝑆 =  ∑ (𝑍𝑖,𝑎 − 𝑍𝑖,𝑏)2𝑁
𝑖=1  

 

where S is the Kirchhofer score, Zi,a is the normalised grid value of point i at time a (reference 

conditions), Zi,b is the grid value of point i at time b, and N is the number of data points in the 

grid. 

Hemer et al (2008) also introduced a Kirchhofer score for each row and column as they found 

it possible that a comparison of two grids could generate a low value of S, indicating overall 

statistical similarity, but have very different patterns in certain sectors of the synoptic chart. It 

was decided this was not necessary in this study, as the PC method would eliminate any 

distance variations that might lead to false positive results. Furthermore, tests found the 

thresholds for the row and column scores were very sensitive to changes in region size. 

To ensure the correct region was investigated, three regions were tested. These regions were: 

(i) the entire North Atlantic basin (Region A); (ii) 40N-60N 30W-20E (Region B); and (iii) 

34N-66N 30W-20E (Region C) (Figure 6.6). These regions were tested against the PC method, 

by correlating their reference conditions against the observed events which made up the 

reference conditions. 
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Figure 6.6: Different study regions used: a) entire North Atlantic basin (34N-70N 60W-20E); 

b) 40N-60N 30W-20E; and c) 34N-66N 30W-20E. 

 

A threshold has to be set to determine if the meteorological conditions at a timestamp are 

similar to the reference conditions to be flagged as a compound event. Three different methods 

were tested for threshold determination. The first threshold used the lowest correlation/ highest 

SSD when the reference conditions were compared to the historic known compound extreme 

events from which the reference event composite was created (Figure 6.8Figure 6.9Figure 6.10 

Figure 6.11). Outliers were removed if they were more than 1.5 interquartile ranges above the 

upper quartile (75th percentile) or below the lower quartile (25th percentile). The second 

threshold was set using a percentile method. The 99th percentile of the correlations for each 

time stamp was extracted, and this was used as the passing threshold. For the SSD this was set 

at the 1st percentile (a higher SSD indicates greater deviation from the reference conditions). 

This method therefore ensured only the highest correlations/lowest SSD events were identified, 

however, it did mean some of the historic events might be missed off. The final threshold 

method involved using a variable percentile threshold. For the period of observed sea level and 

river flow data, the number of compound events is known. The correlation/SSD results were 

trimmed to this period and a threshold calculated so that the same or similar number of 

compound events were identified as had been observed. This method resulted in a different 

threshold for each site. 

To ensure compound events were only captured once, a declustering algorithm was used. Of 

those passing the threshold tests, time stamps were first sorted by their correlation/SSD score, 
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to ensure the largest scores were kept. Results were then removed within ± 24 hours of each 

other. 24 hours was selected to remain consistent with the declustering algorithms used in 

Chapters 3 and 4. Remaining flagged events were then chronologically re-sorted. 

The resulting flagged events were then validated. This was initially done using the observed 

time period. The number and temporal location of flagged events were compared to observed 

compound events. The different methodologies’ success was based on these results. 

 

6.3.3 Temporal trends of compound flooding in the UK 

The second sub-objective is to analyse whether the frequency of storms that tend to lead to 

compound flooding has changed over the period 1851 to 2017. The number of flagged events 

is initially calculated as an annual and decadal count, and trend lines are fitted. The number of 

events is then compared to climatic indices to see if these are a contributing factor. Both the 

NAO and AMO are considered. First, just a visual comparison is made, comparing troughs and 

peaks in the indices and number of compound events, then second, the NAO and AMO are 

correlated against the number of events annually.  

 

6.3.4 Future changes in compound flooding in the UK 

The third and final sub-objective is to assess any potential future changes in compound flooding 

up to the year 2095 under RCP2.6 and 8.5 conditions. This was done by applying the same 

methodology above to the HADGEM2-ES climate projections described in Section 5.3.1 and 

5.3.2. The RCP2.6 and RCP8.5 scenarios were used to show the extreme cases and test if this 

method can show future changes in compound flooding. Modifications to the methodology 

were made to allow for the differences in the datasets. As described in section 5.2.2, daily data 

was used to ensure all three variables (MSLP, WS and PWC) are available, compared to 6-

hourly in the 20th century reanalysis. When using the 20th century reanalysis, the declustering 

algorithm removed flagged data points which were within 24 hours of another flagged point. 

As this could not be done for daily, the declustering was extended to ±48 hours instead of 24 

hours. With precipitation flux being used instead of PWC, the PC and SSD were much lower 

when compared to the 20th century reanalysis. This prevented the thresholds for PWC being 

used on the HADGEM2-ES dataset, therefore just MSLP and PWC were used. 
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6.3 Results 

6.3.1 Establish a method to extend compound flood records  

The first sub-objective was to establish a method to extend compound flood records in the UK 

beyond traditional observed datasets, by using synoptic weather patterns as a proxy. To achieve 

this, two different methods were established to extend the compound flooding dataset using 

weather patterns: (1) the Pearson’s Correlation (PC) method to measure the spatial distance a 

weather system is from the reference conditions; and (2) the sum of square difference (SSD) 

method to measure the difference in magnitude from the reference conditions. By combining 

these two methods, the weather systems most similar to the conditions resulting in compound 

extreme events can be identified in the 20th Century reanalysis dataset extending from 1851 to 

2017. 

The first step was to identify the region most appropriate for UK weather systems. Initially, the 

weather patterns across the entire North Atlantic basin (Region A) were analysed. The region 

was tested using the correlation method (PC) on known compound flood event dates. On these 

test events, Region A produced a relatively low correlation (Figure 6.7), due to large areas in 

the western North Atlantic unrelated to the UK’s weather regime. Next, Region B used the 

eastern half of the North Atlantic through to Scandinavia. This captured the weather regimes 

most related to the UK when focused on MSLP and WS, however PWC was still lower, due to 

missing off the band of rain which travels diagonally from southwest to northeast (Figure 6.6c). 

This was found to reduce the correlation (Figure 6.7b) on the test events, therefore the latitude 

limits were increased to 34N-66N (Region C) to capture the region from the Azores in the south 

to Iceland in the north. This generated acceptable correlations for all events and variables. 
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Figure 6.7: Correlation at Devonport comparing the reference composite of a) mean sea level 

pressure, b) wind speed and c) precipitable water content against known compound extreme 

events (labelled 1-11) during the observed period (1987-2016) for the three different regions 

of interest. 

The next step required calculating a threshold for when the PC and SSD test results classified 

as a compound flood event. The meteorological conditions during each individual observed 

compound flood events were used as test events against the reference compound conditions at 

each of the four selected sites (Figure 6.8 for Devonport, Figure 6.9 for Fishguard, Figure 6.10 

for Heysham and Figure 6.11 for Kinlochbervie) for the PC and SSD tests. 

 

Figure 6.8: Boxplot of a) Correlation and b) SSD values at Devonport comparing the 

reference composite of mean sea level pressure (MSLP), wind speed (WS) and precipitable 

water content (PWC) against known compound extreme events during the observed period. 
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The central red line represents the median, the top and bottom edges of the box represent the 

25th and 75th percentiles, the whiskers represent the most extreme data points not considered 

outlets, red crosses represent outliers (more than 1.5 times the interquartile range away from 

the bottom or top of the box). 

 

Figure 6.9: Boxplot of a) correlation and b) SSD values at Fishguard comparing the reference 

composite of mean sea level pressure (MSLP), wind speed (WS) and precipitable water 

content (PWC) against known compound extreme events during the observed period. The 

central red line represents the median, the top and bottom edges of the box represent the 25th 

and 75th percentiles, the whiskers represent the most extreme data points not considered 

outlets, red crosses represent outliers (more than 1.5 times the interquartile range away from 

the bottom or top of the box). 
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Figure 6.10: Boxplot of a) Correlation and b) SSD values at Heysham comparing the 

reference composite of mean sea level pressure (MSLP), wind speed (WS) and precipitable 

water content (PWC) against known compound extreme events during the observed period. 

The central red line represents the median, the top and bottom edges of the box represent the 

25th and 75th percentiles, the whiskers represent the most extreme data points not considered 

outlets, red crosses represent outliers (more than 1.5 times the interquartile range away from 

the bottom or top of the box). 
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Figure 6.11: Boxplot of a) correlation and b) SSD values at Kinlochbervie comparing the 

reference composite of mean sea level pressure (MSLP), wind speed (WS) and precipitable 

water content (PWC) against known compound extreme events during the observed period. 

The central red line represents the median, the top and bottom edges of the box represent the 

25th and 75th percentiles, the whiskers represent the most extreme data points not considered 

outlets, red crosses represent outliers (more than 1.5 times the interquartile range away from 

the bottom or top of the box). 

The lowest correlating (or highest for the SSD method) event was selected as the threshold 

(hereafter referred to as threshold method 1). This was then applied to the 20th century 

reanalysis dataset for the time period of overlapping observed sea level and river flow datasets. 

To ensure the threshold was accurately identifying compound events, the number of flagged 

events is compared to the number of events found the observed dataset (Figure 6.12 shown for 

Devonport). For all sites, threshold method 1 was found to overestimate the number of 

compound event occurring. For example, at Devonport, 11 events were identified in the 

observed tide/river gauge records, whilst using the PC/SSD method, 66 events were found 

during the same 26-year time period (Figure 6.12). 
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Figure 6.12: Number of events at Devonport above the threshold method 1 for all tests. a), c) 

and e) are using the PC test, b), d) and f) are using the SSD test for the observed data period. 

 

To reduce the number of events in the time period a fixed threshold (referred to as threshold 

method 2) was used. Initially time stamps with correlations and SSD greater than the 99th 

percentile in all 6 tests were used. Whilst this did bring the number closer to the observed 

record, it still resulted in an overestimation of events (44 for Devonport compared to 11 

observed events, Figure 6.13).  

 

Figure 6.13: Number of events at Devonport above the threshold method 2 for all tests. a), c) 

and e) are using the PC test, b), d) and f) are using the SSD test for the observed data period. 
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Finally, a variable threshold approach (threshold method 3) was tested (Figure 6.14). To ensure 

storms were captured in the correct locations, the PC test thresholds were kept as those in 

threshold method 1. Only the SSD threshold was adjusted from the reference events, as this is 

a measure of the magnitude of the storms. It should be noted that the threshold was found to be 

different at each site ( 

), suggesting the range in magnitude of storms leading to compound flood events varies from 

site to site. Using this method, the number of events identified using the PC/SSD approach was 

matched the number of events in observed data. 

 

Figure 6.14: Number of events at Devonport above the threshold method 3 for all tests. a), c) 

and e) are using the PC test, b), d) and f) are using the SSD test for the observed data period. 

Table 6.1: the threshold selected using threshold method 3. 

Site SSD percentile threshold 

Devonport 99.1th 

Fishguard 98.5th 

Heysham 99th 

Kinlochbervie 96th 
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6.3.2 Temporal trends of compound flooding in the UK 

The second sub-objective was to analyse whether the frequency of storms that tend to lead to 

compound flooding has changed over the period 1851 to 2017. This was achieved by using the 

variable threshold methodology (threshold method 3) established in Section 5.4.1. and 

extended to the entire 20th Century reanalysis dataset period (1851 to 2017) (Figure 6.15).  

To assess temporal changes, the number of events per year were plotted for the four sites  

(chosen forthe high number jointly occurring extreme surge and discharge events at each of the 

four sites Figure 4.4) and are shown in Figure 6.16a-d.  The maximum number of events per 

year was 3 across all sites. At each of the four sites there is no statistically significant temporal 

trend evident, but there is year to year variability. For example, at Fishguard (Figure 6.16b), 

the number of events per year drops from 3 to 0 in consecutive years between 1975 and 1976. 

 

Figure 6.15: Number of events at Devonport above the threshold method 3 for all tests. a), c) 

and e) are using the PC test, b), d) and f) are using the SSD test. For the entire 20th Century 

reanalysis time series (1851-2017), zoomed into above the thresholds. 
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Figure 6.16: Frequency of compound events per year at a) Devonport b) Fishguard c) 

Heysham d) Kinlochbervie. 

The number of events per decade is shown in Figure 6.17a-d for all sites. Devonport (Figure 

6.17a) featured a maximum of 6 events per decade (1990’s), and a minimum of 1 event per 

decade (1950’s and 1960’s). Fishguard (Figure 6.17b) has the most events per decade, with 10 

events per decade in the 1850’s. Qualitatively, it appears from Figure 6.17b that the number of 

events per decade declines over the entire time period, however, no statistically significant 

trend was computed. Heysham (Figure 6.17c), had the fewest events per decade (between 4-

0). Finally, at Kinlochbervie (shown in Figure 6.17d), the most events (9) occurred in the 

1990’s towards the end of the dataset, with a minimum of 1 event per decade in the 1970’s and 

2010’s. Furthermore, Fishguard and Heysham also featured decades with no events in 1950’s 

(Fishguard) and 1910’s, 1960 ’s and 2010’s (Heysham). 
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Figure 6.17: Frequency of compound events per decade at a) Devonport b) Fishguard c) 

Heysham d) Kinlochbervie. 

When comparing between sites, the events identified are not uniform. For example, at 

Devonport (Figure 6.16a) between 1989 and 1994, at least 1 event was identified each year. 

This clustering was not seen at any other site. The inter-site variation would suggest the 

composite weather patterns are unique enough to discern compound flooding on at least a 

regional basis. The total number of events identified throughout the timeseries is listed in Table 

6.2. The greatest number of events was found at Fishguard (73) whilst the fewest were found 

at Heysham (34). This appears to be no relationship to the variable thresholds in  

. 
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Table 6.2: The number of compound events observed through the entire 20th Century 

Reanalysis time series (1851-2017) as a total and average per year over the time period. 

Site Total number of 

events 

Average number of 

events per year (over 

the entire time period) 

Devonport 54 0.32 

Fishguard 73 0.42 

Heysham 34 0.20 

Kinlochbervie 59 0.35 

The number of events per year was correlated against the winter NAO for the corresponding 

year at each site and comparisons are shown in Figure 6.18a-d. Whilst all sites show positive 

correlation, it is relatively weak, with Devonport and Kinlochbervie having the strongest 

correlation (r= 0.33 and 0.29 respectively) and Fishguard and Heysham the weakest r= 0.15 

and 0.22 respectively, both of which are statistically insignificant). For the winter AMO the 

correlation is shown in (Figure 6.19a-d) and is weaker than the NAO results. All sites show a 

negative correlation with the NAO, with the greatest at r = -0.11 (Devonport) and weakest at 

Fishguard with r = 0. 
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Figure 6.18: Scatter plot of the winter NAO index against number of events per decade at a) 

Devonport b) Fishguard c) Heysham d) Kinlochbervie. The red line indicates the linear 

regression between the two variables, correlation between the two variables is also displayed. 

 

 

Figure 6.19: Scatter plot of the AMO index against number of events per decade at a) 

Devonport b) Fishguard c) Heysham d) Kinlochbervie. The red line indicates the linear 

regression between the two variables, correlation between the two variables is also displayed. 
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6.3.3 Future changes in compound flooding in the UK 

The final sub-objective was to assess whether there is any evidence that events with compound 

flooding potential could change in the future (up to the year 2095) under the RCP 2.6 and 8.5 

climate change scenarios. As discussed in Section 5.3.3, because HADGEM2-ES only uses 

precipitation flux instead of PWC, the rainfall component had to be discounted from this 

investigation. Therefore, the following results cannot be compared directly to the historic and 

present-day compound flooding conditions. Instead results under RCP 2.6 and 8.5 are 

compared to each other, to assess if this methodology is viable. Figure 6.20 andFigure 6.21 

show identified compound events under the RCP 2.6 and 8.5 scenarios respectively. A total of 

86 compound events were found during the century for RCP 2.6 and 69 compound events for 

RCP 8.5. When observing both annual and decadal compound flood occurrences (Figure 6.22a 

and b), no increasing or decreasing trend is evident. Both climate scenarios appear, however, 

to have more compound flood events in the first half of the 21st Century compared to the second 

half. For RCP2.6, 54 events were seen in the first half, compared to 32 in the second half, whilst 

for RCP8.5, 45 were seen in the first half of the century, compared to 24 in the second. Both 

scenarios show a trough between 2055 and 2065 before increasing towards the end by 2085. 

The greatest difference between RCP 2.6 and 8.5 occurs between 2045 and 2055 when RCP 

2.6 has 13 events compared to 6 events in RCP 8.5. 

 

Figure 6.20: Correlation and Sum of Squared difference tests for a) and b) mean sea level 

pressure and c) and d) wind speed for HADGEM20-ES RCP 2.6 scenario to compound 

flooding reference conditions at Devonport. 
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Figure 6.21: Correlation and Sum of Squared difference tests for a) and b) mean sea level 

pressure and c) and d) wind speed for HADGEM20-ES RCP 8.5 scenario to compound 

flooding reference conditions at Devonport. 

 

Figure 6.22: Frequency of compound events a) per year b) per decade identified in RCP2.6 

and RCP8.5 scenarios from HADGEM2-ES projection. 
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6.4 Discussion 

This chapter has developed a novel method for identifying events with compound flood 

potential using meteorological approaches, and assessed how the frequency of events has 

changed on centennial scales in the past and future, during periods when no direct observed 

records are available. Section 5.4.1 tested a range of thresholds for classifying a weather pattern 

as a compound flood event. The initial threshold used the weather patterns from observed 

events as the base threshold, however this was found to be too broad. The method found to be 

most effective was to vary the magnitude threshold (SSD) to match the number of observed 

events. This creates errors, as know compound events are not picked up.  

Selecting an appropriate threshold is difficult for compound flooding compared to other 

weather pattern methods (see for example Neal et al., 2016), where only one variable and test 

was selected (predominantly sea level pressure). Studies which have looked at compound 

flooding weather pattern typologies (such as Wu et al., 2018) have just used sea level pressure, 

however, as shown in Section 4.4.2, wind speed and rainfall have a large impact in the UK on 

whether a storm will produce a single source event or a compound event.  

No statistically significant trend was seen in the number of events occurring over the past time 

period 1851 to 2017. Due to the novelty of this study in extending the compound flooding 

records, no other studies are available to compare the results to directly. Instead they can be 

compared to changes in single source flood events. Haigh et al. (2010) analysed temporal 

changes in extreme water levels in the Channel, and found an increase in extreme water levels 

through the 20th century primarily due to the mean sea level rise. When looking at temporal 

changes in the surge component (which is most related to the weather patterns), they found 

considerable intra and inter-decadal variability in surge activity, however, no evidence of 

increasing trends. Furthermore, Woodworth & Blackman (2002) had similar finding for 

Liverpool over the period of 1768- 1999, with no overall increasing trend in surge. These 

studies corresponds to the results found in Section 5.4.2, which highlight decadal variability 

(Figure 6.16 Figure 6.17) but no overall longer-term trend. 

Wadey et al. (2014) studied a century of sea level data for Newlyn, Cornwall, which serves a 

good comparison for the performance of the methodology at Devonport (100 km away). They 

also found clustering of extreme sea level events in the periods 1925-1945 and 1995-2005, 

whilst fewer events in the mid 20th Century (1945-1985). This is in agreement with Figure 

6.16Figure 6.17, suggesting this methodology has merits. 
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A nationwide assessment of trends in UK river extreme flows was conducted by Hannaford & 

Marsh (2008). Over the periods of 1959-2003 and 1969-2003 they found an increasing trend 

in the frequency of POT (peak over threshold) events, particularly in maritime-influenced 

uplands areas of the north and west, however trends were not as strong for lowland areas. They 

also found strong correlation with the NAO, which likely linked the increasing trends to the 

more positive NAO phase prevalent from 1960’s onwards. When comparing the same time 

period used in Hannaford & Marsh (2008) to Figure 6.16Figure 6.17, all sites show fewer 

events in the first half (1960-1980) of the century compared to the second half (1980-present). 

This would likely produce a similar positive trend to Hannaford and Marsh (2008). 

A detailed study of one the UK’s longest continuous river discharge records (1883- present) at 

Teddington on the Thames River revealed no long-term change in flood magnitude (Marsh & 

Harvey, 2012). Whilst this site is not related to any of the study sites, it does agree with the 

findings that no long-term trend in compound events is seen across any site.  

The annual number of meteorological events with compound flooding potential was correlated 

against both the NAO and AMO to understand how climate oscillations can impact the 

frequency of events over the longer term. Positive correlation was found at all four sites (Figure 

6.18), however, overall the correlation was weak (p = 0.14 - 0.33). This is in line with Table 

6.2, which showed that whilst the majority of extreme surge and river events occurred during 

strong positive NAO years, the majority of compound events occurred during weak NAO 

winter years. Woodworth et al. (2007) found positive correlation between extreme surge and 

NAO around the UK, however, it was weakest on the west coast. This perhaps explains why 

the correlations in Figure 6.18 were relatively weak, despite Hannaford & Marsh (2008) finding 

strong correlation between extreme river flows and the NAO. 

The AMO showed no correlation with the annual number of events. This was surprising as it’s 

suggested long term variability of sea surface temperature in the North Atlantic can be 

associated with development and occurrence of extra-tropical storms over multidecadal time 

series (Brooks et al., 2020; Shaffrey & Sutton, 2006). Further studies, such as Peings & 

Magnusdottir (2014), suggest that AMO precedes the NAO by 10-15 years. Therefore, further 

analysis may require using time-lagged correlations.  

The final sub-objective investigated if the same methodology could be applied to understand 

possible changes in the frequency of compound flooding in the future, using Devonport as a 

case study. Due to the difference in representation of precipitation (precipitation flux vs 
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precipitable water content), the reference compound flooding conditions were not able to apply 

a precipitation variable and focused on mean sea level pressure and wind speed. With this in 

mind, no comparison is made between the hindcast projection records. Surprisingly more 

compound events (86 compared to 69) were observed in RCP 2.6. This reason for this is 

unknown. However, when the SSD test was removed, and events identified on correlation 

alone, RCP 8.5 identified more events, suggesting the threshold methodology needs improving. 

When looking at temporal trends, fewer events were seen in the latter half of the century. This 

is in contrast to  the findings of Bevacqua et al. (2019), who found that the southwest of the 

UK was a hotspot for compound flooding probability increase under RCP 8.5 condition. It 

should be noted they identified precipitation as the primary driver of compound flooding 

probability change in the UK, whilst no precipitation variable was used in the future projection 

portion of this work.   

 

6.5 Conclusions 

This chapter has developed, for the first time, a methodology for studying compound flooding 

using weather patterning approaches, allowing changes in the frequency of events to be 

assessed over longer periods of time where no traditional observed direct records of compound 

flood events are available. This work has been carried out to demonstrate if the methodology 

is feasible and if it produces results similar to long term time series of the individual flood 

sources.  

When investigating the entire 20th Century reanalysis timeseries length (1851 – 2017), it is 

found that no significant increasing or decreasing trend in compound flood events is found for 

any of the sites considered. There is interannual and interdecadal variability at all sites, with a 

maximum of 10 events per decade (Fishguard) whilst two sites (Fishguard and Heysham) 

feature decades with no compound flood events. Furthermore, the number of events per year 

were correlated to two different climate indices (the North Atlantic Oscillation, NAO and the 

Atlantic Multi-decadal Oscillation, AMO). Whilst the NAO showed stronger correlation 

(maximum of 0.34 at Devonport) no sites showed statistically significant correlation with either 

the NAO or AMO. 

The method used three different variables (mean sea level pressure, wind speed and 

precipitable water content) and two different tests (location, using a correlation method; and 
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magnitude, using a sum of square difference method). This resulted in six different tests being 

applied to each timestamp and so raised the sensitivity of passing all six thresholds. All three 

variables were selected due to the impact they had on compound flood events compared to 

single source flood events (see Section 4.4.2). Further work could identify which variables and 

tests are most appropriate to allow for the most accurate results when comparing the 20th 

Century Reanalysis to observed events. 

Once the two tests (PC and SSD) had been applied to the time series, a threshold had to be 

selected to identify what classes as a compound flood event. Due to the sensitivity the most 

appropriate method was found to be to manually adjust the threshold of the SSD tests until the 

same number of events was found as in the observed records. Unfortunately, this method is not 

as accurate, since the observed events were not always identified in the reanalysis timeseries. 

This highlights how sensitive the method is to threshold selection. Further work should identify 

the best threshold approach. 

The meteorological reanalysis used the 20th Century Reanalysis and this was selected for its 

long temporal length (1851 to 2017). However, it is relatively coarse spatially (2o). As a result, 

the reference conditions used as “compound flood conditions” may not have captured the 

conditions adequately, particularly as Section 5.4.1 highlighted how sensitive the methodology 

is. Further work should explore using a higher spatial resolution hindcast, such as ERA5 by 

ECMWF (Hersbach et al., 2018), which runs from 1950 to present. But there is a balance 

between have a long enough timeseries to explore the temporal trends in compound flooding, 

but a high enough spatial resolution to accurately capture the location and magnitude of the 

storm system. Furthermore, some events might be lost for overlapping time series which date 

further back than 1950. 

As an application demonstrator, the methodology was only applied to compound flooding 

relating to the simultaneous occurrence of extreme storm surges and river flow at four sites 

around the UK. Additional work could develop the methods to incorporate the different 

combinations of compound flooding (including wave and pluvial). Furthermore, increase the 

number of sites both nationally and globally.  

The work on future climate projections showed the method has potential, however it requires 

further refinement to use as a reliable assessment of future compound flooding changes. To 

address the mismatching rainfall parameter used in the 20th Century Reanalysis and 

HADGEM2-ES, a different reanalysis could be selected which uses precipitation flux. 20th 
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Century Reanalysis was selected to derive the reference conditions based on its long time series 

(going back to 1851) for use in historic compound flooding. For future projections, this length 

is not required. A reanalysis product such as ERA5 (Hersbach et al., 2018) provide precipitation 

flux, and has a temporal coverage of 1950-present, which is enough for most of the overlapping 

observed datasets (tide and river gauges). ERA5 also has the added benefit of having a much 

higher temporal and spatial resolution (hourly and 0.25o respectively). 

The results in this chapter have shown a method which could have far reaching applications. It 

has been demonstrated for use on historic weather data, but could also be used as a forecasting 

tool. The UK Met Office is already using weather pattern analysis tools such as Decider (Neal 

et al., 2016). If the methods set out can be refined, they could help to forecast potential 

compound flood events, which have traditionally been difficult to forecast. Finally, the same 

methodology could be further applied to future climate data, to gain a better understanding of 

potential future compound flooding. 
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7. Conclusions, implications and future work 

7.1 Conclusions 

The overall aim of this thesis has been to determine which regions of the UK coast are more 

subject to compound flooding, which combination of source variables are most apparent, and 

what variables (e.g. meteorological conditions, catchment characteristics) control the spatial 

patterns evident in compound events. This information is vital to support flood risk 

management, planning and emergency preparedness and response for now and in the future.  

The first objective was to assess the potential for compound flooding arising from the joint 

occurrence of high sea levels and high river discharge around the coast of UK and the driving 

mechanisms involved. Results from two different statistical approaches, showed that there is 

clear evidence that joint occurrences of extreme sea levels and river discharge occur at a greater 

frequency on the western coast of the UK (between three and six joint events per decade) when 

compared to the eastern coast (between zero and one joint event per decade). To understand 

the relationship between extreme sea levels and river discharge, the meteorological conditions 

leading to individual extreme events were compared to joint extreme events. Along the south 

and western coasts, the storms which generate extreme surge or river discharge were found to 

be similar in characteristics in terms of sea-level pressure, wind speeds and rainfall. On the 

other hand, storms along the eastern coast which produced high surges were typically distinct 

from those which resulted in extreme river flow. The tracks of storms were also compared and 

this showed storms causing west coast flood events followed a similar route, whilst on the 

eastern coast, storms typically follow different pathways for the two flood types. The storm 

systems characteristics and tracks show that the meteorological conditions driving flood 

variables are the key factor controlling the likelihood of compound flooding (by extreme storm 

surges and river discharge) is likely in a given area of the UK. 

At a more localised spatial scale, variation in the number of joint occurrences and dependency 

was investigated. This was achieved by correlating the joint extreme occurrence, at various 

time lags, with catchment characteristics (e.g., catchment size, base flow index and elevation 

gradient). Catchments with a larger area, high base flow index and shallow gradient were found 

to have a weaker relationship between surge and river discharge, as peak discharge tended to 

occur several days after the skew surge had peaked.  
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Additionally, the application of compound flood forecasting was tested using the Met Office’s 

Decider tool, which uses 30 weather patterns to forecast potential consequences. It was found 

that on the west coast, the same or similar weather patterns (for example at Devonport: weather 

patterns 21 and 30) were responsible for surge only, river only and compound events. In 

contrast, on the east coast the weather patterns varied greatly for the different flood types. 

The second objective expanded on the first to quantify the risk of underestimating compound 

flooding around the coast of the UK arising from the joint occurrence of all possible pairs of 

the four main flood sources. This was achieved by expanding upon the methodology of Chapter 

3 to include precipitation (as a proxy for pluvial flooding) and wave height. It was found that 

the joint occurrence (and dependency) of six pairs of variables (i.e. surge vs wave, surge vs 

river discharge, surge vs rainfall, wave vs river discharge, wave vs rainfall and river discharge 

vs rainfall) occurs more frequently along the south and west coasts of the UK when compared 

to the east coast. The greatest number of joint occurrences and strongest dependency were 

found to be between skew surge and waves, showing a substantially stronger relationship 

compared to the other flood combinations. The next strongest relationship was found between 

waves and river discharge. 

It is also shown for the first time that the variation in compound extreme events is primarily 

driven by meteorological difference in storm characteristics for all variable combinations. On 

the west coast all four flood sources are primarily driven by the same weather patterns, whilst 

on the east coast the coastal flood sources (storm surges and waves) are generated by differing 

weather systems to terrestrial (pluvial and fluvial). The influence of the North Atlantic 

Oscillation (NAO) on compound flooding was also investigated. Results showed that 

compound events on the west coast (excluding rainfall) are more likely during a positive winter 

NAO. On the east coast, surge and wave events are more likely to occur during a positive winter 

NAO, whilst rainfall and river discharge events are more likely during a weak winter NAO.   

Finally, the return period of extreme events is found to be underestimated if dependence 

between variables is ignored. The flood frequency could be 5-6 times greater along the west 

coast, if variables are considered together as opposed to calculated as if independent of each 

other. This is a particularly important finding for flood management and planning.  

The third objective was to assess how compound flooding varied in historical records (1851-

2017) and might vary in the future (up to 2095), by using an indirect metrological based 

analysis to extend historic direct compound flooding records. This was achieved by developing 
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a novel method of identifying potential compound flooding events, by using the synoptic 

weather patterns which typically generate the flooding sources as a proxy. The method 

measured both magnitude and location of weather systems around the British Isles. It was found 

that the results were extremely sensitive to the threshold selected to identify compound flood 

events, and is an area of further refinement moving forwards. The results in Chapter 5 match 

to studies looking at long-term trends in both extreme river flow and surges, this suggest the 

methodology could be used in the future.   

A key finding is that over the past 170 years (i.e., since 1851) no evidence was found that the 

weather patterns that typically generate compound events have increased or decreased over 

time, but there is year to year variability. When comparing the number of compound events 

over the last 170 years to climatic indices, weak positive correlation was found against the 

NAO, whilst no statistically significant correlation was found for the Atlantic Multidecadal 

Oscillation (AMO). Stronger positive correlation was expected with the NAO, as the individual 

flood sources (surge and flow) typically produce strong positive correlation against the NAO. 

Finally, the approach was applied to future climate projections (up to 2095) under two 

difference emissions scenarios (RCP 2.6 and 8.5). Results showed no significant increase in 

compound flood potential, which disagrees with a recent study (Bevacqua et al., 2019). 

However, a number of key issues restricted successful implementation of this approach. These 

include identifying a precipitation variable which is valid for both the reference conditions 

(from the 20th Century Reanalysis) and climate projections; and improving the threshold 

identification for classifying a compound flood event. With refinement, results highlight the 

potential to use this method to assess possible future changes in compound flood analysis with 

further refinement. This study used the skew surge component, which does not take into 

account sea level rise. Sea level rise projections by the IPCC (2021), up to 2100 are between 

0.3 and 1.8m, which will cause the number of coastal flooding events to increase greatly. 

Limitations in this study were primarily down to data availability. The location of the data 

source can have a huge impact on the timeseries. For example, using a wave node in deep water 

vs shallow water will result in the wave parameters changing, as well as having implications 

on the performance of the wave model, as models frequently perform inadequately in shallow 

water (if using a model over observed data). In addition, the location of the river gauge has a 

huge impact on identifying compound events, as the timing of co-occurring events is greatly 

impacted by how downstream the river gauge is.  
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The frequency of the data source also has implications on the study. Gauged daily flow was 

used for river flow, whilst meteorological data was available at 6 hourly. Therefore, the results 

extreme river events may not have a link to the meteorological conditions found.  

The duration of available data also had an impact, a minimum of 15 years of overlapping data 

was used. This is placed a limit on the accuracy of the extreme value analysis performed in 

Chapter 4. 10-year return periods were used, as extrapolating large return periods might lead 

to large uncertainties (such as 50 and 100 years, which are commonly used for by flood 

planning authorities). 

This study has analysed changes in the hazard source (i.e., the surge and the meteorological 

conditions leading to that surge). The pathway of the hazard has not been considered, or how 

this might change through the time series, for example through natural or man-made changed 

in flood defences. 

Chapter 5 focused on meteorological data to understand future changes in compound flooding, 

however the coastal/river response needs consideration, as the hazard might be dampened or 

amplified due to future changes in conditions (for example, through sea level rise). 

Particularly novel and key output from this thesis are: 

1. A new understanding for the UK that will benefit national flood hazard management. 

This included the first detailed assessment of meteorological drivers of compound 

flooding in the UK. The weather patterns and storm tracks which lead to compound and 

single source flood events were analysed, and found to be the primary reason for 

variability in compound flooding around the UK. For the first time, the characteristics 

of river catchments were used to assess compound flooding, this provided clarity to 

why some river/estuaries are more likely to result in compound flooding than other on 

a more localised scale which couldn’t be explained by the meteorological drivers. 

Furthermore the first assessment of all four primary flood sources into one unified 

study. Whilst studies have included multiple sources, none had previously incorporated 

all four drivers (storm tides, waves, pluvial and fluvial) and established if there are any 

connections between all four. Furthermore, this thesis has quantified for the first time 

how the flood risk can be significant underestimated if flood sources are treated as 

independent compared to as compound events 

1. New methods/approached transferable to other locations for global impact. This 

includes the use of a novel method to extend compound flooding records beyond 
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directly observed records, which has previously been a key limiting factor in assessing 

temporal trends in compound flooding. This methodology involved using the weather 

patterns leading to compound events to expand timeseries records. Furthermore, these 

methods were shown to have the potential to be used to predict changes in compound 

flood occurrences, using future climate projections. 

 

 

7.2 Implications 

Establishing the spatial variability of compound flooding involving skew surge and river 

discharge can have significant implications and benefits for all aspects of flood management. 

The results highlight the different requirement for flood defence planning at different locations. 

On the west coast, where compound flooding has been shown to be more prevalent, defence 

planning and upgrading must incorporate the potential for compound flooding. In contrast, on 

the east coast flooding defence planning should focus on the single flood sources, where the 

threat of, for example, of a large storm surge is far greater than of a compound event.  

The flood event in Lymington, UK in 1999, highlights the need to plan for compound events. 

An investment in flood defences protected the town against extreme sea levels, including new 

sluice gates on the river. In December 1999, a storm surge forced the gates shut on the river 

over several tidal cycles, whilst intense rainfall caused the river to build on the fluvial side, 

which eventually burst its banks and caused flooding of property (Ruocco et al., 2011a; Turner, 

2000) The research in this thesis has highlighted that on the south coast (where Lymington is 

found), extreme surges and river discharge are caused by the same physical mechanisms and 

so this type of event is likely and needs protecting against. Areas identified in the thesis as 

being at higher likelihood of compound flooding should be modelled in greater detail to help 

plan future flood risk accordingly. 

Flood defences are not the only aspect of management, however. This research can also 

improve the emergency response to flooding. The application of Coastal Decider (Neal et al., 

2016) to compound flooding events in Section 3.3.4 showed the potential to use weather pattern 

forecasting to identify regions likely to be flooded and allow response resources such as pumps 

and barriers to be mobilised to affected sites quicker. Additionally, emergency planning may 

differ for compound events. For examples, roads that were typically used for evacuation during 
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coastal flooding only events might become blocked if river flooding also occurs 

simultaneously.  This could result in areas being cut off from emergency services, increasing 

risk to life and infrastructure. This is highlighted by the Fukushima Daiichi nuclear disaster in 

2011, when 9.0 magnitude earthquake triggered a tsunami hitting eastern Japan. The nuclear 

powerplant was damaged by the tsunami, however, the response plan was disrupted in part due 

to blocked roads from the earthquake. Whilst not a pure compound flood event, the lack of 

planning for compounding natural hazard events (in this case, a tsunami combined with an 

earthquake) resulted in a major nuclear disaster and 18,500 deaths (Funabashi & Kitazawa, 

2012). Emergency planning should therefore encompass scenarios based on the single source 

and compound flood events. 

The findings in Chapter 3 indicated that the characteristics of river catchments can have a large 

impact on the likelihood of compound flooding. Rivers which respond more rapidly to rainfall 

(i.e. have a steep hydrograph) through smaller, steeper catchments with a more clay-based 

geology are more likely to coincide with a surge peak. Areas such as South Wales experienced 

high levels of compound flood variability when looking at surge vs river discharge, this is 

because of the difference in catchment characteristics, therefore in these regions, when 

distributing flood defence resources, “flashy rivers” (those which respond quickly to rainfall) 

should be focused on for compound flood defences. This could include “hard” flood defences, 

such as increasing embankment sizes or dredging, or soft engineering approaches such as flood 

plain zoning or managed realignments. 

Objective 2 highlighted and quantified, for the first time, that flood likelihood is significantly 

underestimate if the four drives are considered independent, particularly for the west coast of 

the UK. Therefore, future flood risk planning collectively should consider all types of flooding 

potential, rather than calculating each individually, as has been traditionally done in the past. 

The Environment Agency is currently updating its guidance on joint probability events. The 

methods and insights of this research can inform such analysis. 

Until now, assessment of compound flooding has been limited by the amount of overlapping 

data of the four flood variables, either observed or modelled. This frequently amounted in short 

data lengths. For example, Ward et al. (2018) is the largest global study and has mean overlap 

of 39 years between river discharge stations and tide gauges. Shorter datasets prevent 

conclusions being drawn on temporal changes in compound events. By extending this record 

to almost 170 years using a unique weather patterning approach on the 20th century Reanalysis 
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dataset, far more robust insight can be drawn on flood events and the influence of systematic 

trends vs multidecadal regional climate variability; in this study, the latter effect dominates. 

Flood forecasting using weather patterns has advantages over more common numerical weather 

predictions (NWP) as they provide longer lead times. Longer lead in times are extremely useful 

to governments and response agencies. Large-scale multi-regional coordinated responses can 

take several days to weeks to coordinate, which is a not a time scale currently possible from 

forecasts using regularly updating coupled ocean-atmosphere models (Neal et al., 2018). The 

use of predetermined weather patterns allows for forecast to be made from further out than 

traditional NWP’s. The Met Office Coastal Decider tool has already been shown to be an 

effective forecasting tool for storm surges and waves for as much as 32 days out, by using 30 

weather patterns with associated likelihoods of extreme surge and waves occurring around the 

UK (Neal et al., 2018). The ability to forecast for compound flood events from any combination 

of storm surges, waves, rivers and pluvial flooding would significantly improve the UK Flood 

Forecasting Centres capabilities, and improve responses to floods, potentially lowering the 

impact in terms of damages, injuries and deaths. 

Understanding long term future changes in compound flooding events is a key part of managing 

them. The individual sources of flooding have been relatively well studied with regards to 

future climate change. For example, storm surges and waves will be more likely to cause floods 

due to rising mean sea levels (Hinkel et al., 2014; Vitousek et al., 2017) and  storm intensity 

may increase (Lennart Bengtsson et al., 2006; Shaw et al., 2016). Furthermore, the probability 

of extreme precipitation events has been found to increase, raising the likelihood of pluvial and 

fluvial flood events (Otto et al., 2018). However, just one study to date has investigated 

compound flooding under climate change (i.e., Bevacqua et al., 2019). Surge and precipitation 

models were forced with CMIP5 projections from the business-as-usual RCP 8.5 scenario. 

They found an increased probability of compound flooding in the UK would increase. This 

highlights the need for increased studies on future changes in compound flooding. Using 

weather types as a proxy for compound flooding as shown in this thesis is a key way this can 

this assessment can be done.  

 

7.3 Further work 

This research has raised a number of further research questions, and avenues of investigation 

for future work. These are summarised below.  
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1. The first objective of this study (Chapter 3) investigated the national scale likelihood 

of extreme sea levels occurring around the same time as extreme river flow. Whilst 

extreme flow indicates the likelihood of flooding, the capacity and anthropogenic flood 

defences of the rivers are not specified, therefore it is unknown at what point river flow 

will lead to a river breaching its bank. Further studies should use hydrodynamic 

modelling to study compound flooding in more localised regions, focusing on the 

catchments found to have high incidents of compound flooding (such as Wales, 

southwest and northwest of England). This would allow accurate analysis on when river 

and coastal flood defences would be breached, as well as the extent and depth of 

flooding. 

2. The work in Objective 1 (Chapter 3) highlighted the important impact catchment 

characteristics can have on the response of rivers and thus on compound flooding. The 

study looked at three different variables (i.e., Base Flow Index, catchment size and 

elevation variation). Whilst these were considered the most important variables, 

additional catchment characteristics may be of importance in specific locations. These 

could include land usage, for example woodlands will slow down water reaching a river 

and flatten the flood curve, whilst human developments typically speed up the time it 

takes water in the catchment to reach the river. Geomorphology would also need further 

investigation. Whilst Base Flow Index and elevation variation gave broad 

characterisation of a catchment’s sediment and gradient, more detailed data, such as 

bedrock type and high resolution topography would provide greater insight. 

Additionally, human adaptations to the river and water course (such as weirs, dams and 

reservoirs) and will have a large impact on the flood hydrograph.  

3. The analysis in Objective 2 (Chapter 4) looked at all the possible combinations of pairs 

of flooding sources. However, it did not consider higher dimensions of occurrences 

(i.e., 3 or more sources). This can involve more complex statistical models which have 

been done at local scales (Bevacqua et al., 2017) which could be hard to do on a national 

scale. Future studies should look at multidimensional compound flooding studies on a 

larger scale. 

4. This study used observed discrete datasets for all the variables (excluding waves). With 

44 tide gauges in the UK National Tide Gauge Network, and a coastline of ~12,000 km 

(CIA, 2020), data is only available on average every ~270 km. Using a modelled 

hindcast datasets could provide a continuous record of compound flooding along the 
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UK coastline, which would be of more use to UK flood and coastal erosion 

management. For example, Couasnon et al. (2019) used the CaMa-Flood model v362 

(Yamazaki et al., 2014) for river discharge and the Global Tide and Surge Model 

(GTSM) (Muis et al., 2016).  

5. Throughout this thesis, rainfall has been used as a proxy for pluvial flooding, as has 

been applied in other compound flood studies (e.g. Wahl et al., 2015). Whilst this is 

acceptable on a large scale; to truly account for pluvial flooding, a more accurate metric 

would be required. Typically, pluvial flooding is assessed using inundation models, 

which consider factors such ground type and slope. Future compound flooding studies 

should find a way to incorporate more accurate pluvial flooding measurements on a 

large scale.  

6. Objective 2 (Chapter 4) used significant wave height to represent waves, however, as 

specified earlier, wave period, direction and spreading can all have impact on the wave 

climate and potential impact. Future work using all wave parameters (a longer observed 

record, or hindcast with more accurate representation of all wave parameters) would 

help to identify regions at risk of compound flooding involving waves. Furthermore, 

Coastal bathymetry and geomorphology can also have an impact on the nature of a 

wave hitting the coastline, for example, a steep beach run up versus a shallow run up. 

Finally, the impact of an open coast versus a fetch limited coast (such as the Irish Sea), 

which can reduce wave parameters such as wave period.  

7. Objective 3 (Chapter 5) investigated a novel method of assessing compound flooding 

using the weather patterns that typically drive compound events. The technique 

however was difficult to implement successfully due to compound events requiring 

multiple weather parameters (mean sea level pressure, wind speed and precipitable 

water content) to define the synoptic patterns. When combined with two different tests 

(magnitude and location) this created six thresholds to define compound events. Further 

work should analyse if all the tests are required. For example, when comparing the 

reference conditions against known compound events (Figure 6.7), the correlation for 

mean sea level pressure was larger compared to wind speed and precipitable water 

content, however had a far great sum of square difference score (i.e., events differed 

more from the reference conditions), compared to the other variables. This would 

suggest that mean sea level pressure was far more sensitive to changes in magnitude 

than location. Another difficulty was setting the threshold to classify a weather pattern 

as a compound event. Finding a balance between avoiding false positive results but 
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capturing known compound events was challenging when using the six tests mentioned 

above. Further work should study how the thresholds could be calculated to accurately 

assess compound flooding in weather patterns. 

8. This thesis also attempted to apply the same weather pattern technique to future climate 

projection (HADGEM2-ES). However, the projection and the meteorological 

reanalysis used (20th Century Reanalysis) did not have the same precipitation 

parameters available (precipitation flux, and precipitable water content). Therefore, the 

reference compound flooding conditions generated from the reanalysis data did not 

match. The 20th Century reanalysis was selected to for its long temporal coverage, 

however further work into future compound flooding should use a shorter 

meteorological dataset (such as ERA5) to better match climate projections.  
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8. Appendix A 

Table 8.1: List compound flooding studies per variables analysed and in chronological order. 

The scale number indicates studies that are: (1) localised; (2) regional; or (3) global in scale. 

Variables 
 

Reference scale year 

Sea Level & Precipitation 1 Bevacqua et al., 2019 2 2019 

 
3 Wu et al., 2018 2 2018 

 
4 Tu et al., 2018 1 2018 

 
5 Bengtsson, 2016 1 2016 

 
6 van der Hurk et al., 2015  1 2015 

 
7 Wahl et al., 2015 2 2015 

 
8 Zheng et al., 2015 1 2015 

 
9 Zheng et al., 2014 1 2014 

 
10 Xu et al., 2014 1 2014 

 
11 Zheng et al., 2013 2 2013 

 
12 Lian et al., 2013 1 2013 

Sea Level & River Discharge 1 Ganguli and Merz, 2019a 2 2019 

 
2 Hendry et al., 2019 2 2019 

 
3 Couasnon et al., 2019 3 2019 

 
4 Khanal et al., 2018 1 2018 

 
5 Ward et al., 2018 3 2018 

 
7 Couasnon et al., 2018 1 2018 

 
8 Bevacqua et al., 2017 1 2017 

 
9 Moftakhari et al., 2017 2 2017 

 
10 Klerk et al., 2015 1 2015 

 
11 Kew et al., 2013 1 2013 
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12 Lamb et al., 2010 2 2010 

Variables  Reference scale year 

 
13 White, 2007 2 2007 

 
14 Defra/Environmental Agency, 2003 2 2005 

 
15 Svensson and Jones, 2004 2 2004 

 
16 Samuels and Bart, 2002 1 2002 

 
17 Svensson and Jones, 2002 2 2002 

 
18 Mantz and Wakeling, 1979 1 1979 

 
19 Kowalewska-Kalkowska and 

Wiśniewski, 2009 

1 2009 

Sea Level & Waves 1 Marcos et al., 2019 3 2019 

 
3 Petroliagkis, 2018 2 2018 

 
4 Mazas and Hamm, 2017 1 2017 

 
5 Arns et al., 2017 1 2017 

 
6 Wyncoll et al., 2016 2 2016 

 
7 Rueda et al., 2016 1 2016 

 
8 Masina et al., 2015 1 2015 

 
9 Li et al., 2014 1 2014 

 
10 Serafin and Ruggiero, 2014 1 2014 

 
11 Gouldby et al., 2014 1 2014 

 
12 Wahl et al., 2012 1 2012 

 
13 Hawkes and Svensson, 2005 2 2005 

 
14 Defra, 2005 2 2005 

 
15 Hawkes_et_al_2002 2 2002 

 
16 Owen et al., 1997  2 1997 
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17 Hawkes and Hague, 1994 2 1994 

Variables  Reference scale year 

 
18 HRL, 1990  1 1990 

Precipitation & River 

Discharge 

1 Keef et al., 2009  2 2009 

Runoff & Precipitation 1 Liu et al., 2018 1 2018 

Sea Level, Waves, River & 

Precipitation 

1 Paprotny et al., 2018 2 2018 

 
2 Paprotny et al., 2020 2 2020 

Modelling 1 Kumbier et al. (2018)  
 

2018 

 
2 Olbert et al. (2017)  

 
2017 

 
3 Chen and Liu, 2014 

 
2014 

 
4 Acreman, 1994 

 
1994 

 
5 Bilskie and Hagen (2018) 

 
2018 

 
6 Silva –Araya et al (2018)  

 
2018 

 
7 Ikeuchi et al. (2017)  

 
2017 

 
8 Bacopoulos et al. (2017) 

 
2017 

 
9 Saleh et al. (2017)  

 
2017 

 
10 Torres et al. (2015)  

 
2015 

 
11 Thompson and Frazier (2014)  

 
2014 

 
12 Ray et al., 2011  

 
2011 

 
13 Sopelana et al 2018 1 2018 

 
14 Kowalewska-Kalkowska and 

Kowalewski (2006) 

1 2006 

 
15 Kowalewska-Kalkowska and 

Kowalewski (2011) 

1 2011 
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9. Appendix B 

Table 9.1: The pairs of tide gauge sites and river discharge stations used in Chapter 3. 

Tide Gauge 

Tide 

Gauge 

Latitude 

(deg) 

Tide 

Gauge 

longitude 

(deg) 

River 

Gauge 

ID River  

River Gauge 

Location 

River 

Gauge 

Latitude 

(deg) 

River 

Gauge 

longitude 

(deg) 

Aberdeen 57.14 -2.08 12002 Dee Park 57.08 -2.33 

Aberdeen 57.14 -2.08 12001 Dee Woodend 57.05 -2.60 

Aberdeen 57.14 -2.08 12003 Dee Polhollick 57.06 -3.08 

Aberdeen 57.14 -2.08 11001 Don Parkhill 57.22 -2.19 

Aberdeen 57.14 -2.08 13007 

North 

Esk Logie Mill 56.77 -2.49 

Aberdeen 57.14 -2.08 9002 

Devero

n Muiresk 57.54 -2.49 

Aberdeen 57.14 -2.08 11002 Don Haughton 57.27 -2.40 

Aberdeen 57.14 -2.08 13008 

South 

Esk Brechin 56.73 -2.65 

Aberdeen 57.14 -2.08 12007 Dee Mar Lodge 56.99 -3.49 

Aberdeen 57.14 -2.08 11003 Don 

Bridge of 

Alford 57.24 -2.72 

Aberdeen 57.14 -2.08 9001 

Devero

n Avochie 57.51 -2.78 

Aberdeen 57.14 -2.08 10003 Ythan Ellon 57.36 -2.09 

Aberdeen 57.14 -2.08 12008 Feugh Heugh Head 57.03 -2.52 

Aberdeen 57.14 -2.08 13012 

South 

Esk 

Gella 

Bridge 56.78 -3.03 

Avonmouth 51.51 -2.71 54057 Severn Haw Bridge 51.95 -2.23 

Avonmouth 51.51 -2.71 54032 Severn 

Saxons 

Lode 52.05 -2.20 

Avonmouth 51.51 -2.71 55023 Wye Redbrook 51.80 -2.69 

Avonmouth 51.51 -2.71 54001 Severn Bewdley 52.38 -2.32 

Avonmouth 51.51 -2.71 54095 Severn Buildwas 52.64 -2.52 

Avonmouth 51.51 -2.71 55002 Wye Belmont 52.04 -2.75 

Avonmouth 51.51 -2.71 54005 Severn Montford 52.72 -2.87 

Avonmouth 51.51 -2.71 55007 Wye Erwood 52.09 -3.35 

Avonmouth 51.51 -2.71 54028 

Vyrnw

y 

Llanymynec

h 52.77 -3.11 



 

 174 

Avonmouth 51.51 -2.71 53018 Avon Bathford 51.40 -2.31 

Avonmouth 51.51 -2.71 54029 Teme 

Knightsford 

Bridge 52.20 -2.39 

Avonmouth 51.51 -2.71 54002 Avon Evesham 52.09 -1.94 

Avonmouth 51.51 -2.71 54014 Severn Abermule 52.55 -3.23 

Avonmouth 51.51 -2.71 54008 Teme Tenbury 52.31 -2.59 

Avonmouth 51.51 -2.71 55003 Lugg Lugwardine 52.06 -2.66 

Avonmouth 51.51 -2.71 55012 Irfon Cilmery 52.15 -3.47 

Avonmouth 51.51 -2.71 55016 Ithon Disserth 52.21 -3.43 

Avonmouth 51.51 -2.71 54080 Severn Dolwen 52.45 -3.49 

Avonmouth 51.51 -2.71 54012 Tern Walcot 52.71 -2.60 

Avonmouth 51.51 -2.71 54038 Tanat 

Llanyblodw

el 52.79 -3.11 

Avonmouth 51.51 -2.71 55026 Wye Ddol Farm 52.30 -3.50 

Avonmouth 51.51 -2.71 55029 

Monno

w Grosmont 51.92 -2.85 

Avonmouth 51.51 -2.71 55021 Lugg Butts Bridge 52.23 -2.73 

Avonmouth 51.51 -2.71 55032 Elan Caban Dam 52.27 -3.57 

Bangor 54.66 -5.67 

20500

4 Lagan Newforge 54.55 -5.95 

Bangor 54.66 -5.67 

20301

8 

Six-

Mile 

Water Antrim 54.72 -6.22 

Bangor 54.66 -5.67 

20309

7 

Upper 

Bann Moyallen 54.39 -6.39 

Barmouth 52.72 -4.05 64001 Dyfi Dyfi Bridge 52.60 -3.85 

Barmouth 52.72 -4.05 63001 

Ystwyt

h 

Pont 

Llolwyn 52.38 -4.07 

Barmouth 52.72 -4.05 65001 Glaslyn Beddgelert 53.01 -4.10 

Bournemout

h 50.71 -1.87 43021 Avon Knapp Mill 50.75 -1.78 

Bournemout

h 50.71 -1.87 43003 Avon 

East Mills  

Total 50.93 -1.77 

Bournemout

h 50.71 -1.87 43007 Stour Throop 50.76 -1.84 

Cromer 52.93 1.30 33035 

Ely 

Ouse 

Denver 

Complex 52.58 0.35 

Cromer 52.93 1.30 33026 

Bedfor

d Ouse Offord 52.29 -0.22 
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Cromer 52.93 1.30 33039 

Bedfor

d Ouse Roxton 52.17 -0.30 

Cromer 52.93 1.30 33002 

Bedfor

d Ouse Bedford 52.13 -0.46 

Devonport 50.37 -4.19 47001 Tamar Gunnislake 50.53 -4.22 

Devonport 50.37 -4.19 46003 Dart 

Austins 

Bridge 50.48 -3.76 

Devonport 50.37 -4.19 47019 Tamar 

Polson 

Bridge 50.64 -4.33 

Devonport 50.37 -4.19 46002 Teign Preston 50.56 -3.62 

Devonport 50.37 -4.19 47015 Tavy Ludbrook 50.49 -4.15 

Devonport 50.37 -4.19 47006 Lyd Lifton Park 50.64 -4.28 

Fishguard 52.01 -4.98 62001 Teifi Glanteifi 52.05 -4.56 

Heysham 54.03 -2.92 72004 Lune Caton 54.08 -2.72 

Heysham 54.03 -2.92 71001 Ribble Samlesbury 53.77 -2.62 

Heysham 54.03 -2.92 71009 Ribble 

New 

Jumbles 

Rock 53.83 -2.45 

Heysham 54.03 -2.92 73010 Leven 

Newby 

Bridge 54.27 -2.97 

Heysham 54.03 -2.92 71006 Ribble Henthorn 53.85 -2.42 

Heysham 54.03 -2.92 72005 Lune Killington 54.31 -2.58 

Heysham 54.03 -2.92 73005 Kent Sedgwick 54.28 -2.75 

Heysham 54.03 -2.92 72011 

Rawthe

y Brigflatts 54.31 -2.55 

Heysham 54.03 -2.92 71008 Hodder 

Hodder 

Place 53.85 -2.45 

Heysham 54.03 -2.92 71004 Calder 

Whalley 

Weir 53.82 -2.41 

Heysham 54.03 -2.92 71011 Ribble Arnford 54.00 -2.25 

Heysham 54.03 -2.92 72002 Wyre St Michaels 53.86 -2.82 

Heysham 54.03 -2.92 72015 Lune 

Lunes 

Bridge 54.42 -2.60 

Heysham 54.03 -2.92 74001 

Duddo

n 

Duddon 

Hall 54.30 -3.24 

Hinkley 51.22 -3.13 45001 Exe Thorverton 50.80 -3.51 

Hinkley 51.22 -3.13 45002 Exe Stoodleigh 50.95 -3.51 

Hinkley 51.22 -3.13 45011 Barle Brushford 51.02 -3.53 

Holyhead 53.31 -4.62 65006 Seiont Peblig Mill 53.14 -4.25 

Ilfracombe 51.21 -4.11 50001 Taw Umberleigh 50.99 -3.99 
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Ilfracombe 51.21 -4.11 50002 

Torridg

e Torrington 50.95 -4.14 

Ilfracombe 51.21 -4.11 50006 Mole Woodleigh 50.97 -3.91 

Ilfracombe 51.21 -4.11 50010 

Torridg

e 

Rockhay 

Bridge 50.84 -4.12 

Immingham 53.63 -0.19 28022 Trent 

North 

Muskham 53.14 -0.80 

Immingham 53.63 -0.19 28009 Trent Colwick 52.95 -1.08 

Immingham 53.63 -0.19 28007 Trent Shardlow 52.86 -1.33 

Immingham 53.63 -0.19 27009 Ouse Skelton 53.99 -1.13 

Immingham 53.63 -0.19 28019 Trent 

Drakelow 

Park 52.78 -1.65 

Immingham 53.63 -0.19 27003 Aire Beal Weir 53.72 -1.20 

Immingham 53.63 -0.19 27007 Ure 

Westwick 

Lock 54.10 -1.46 

Immingham 53.63 -0.19 27071 Swale Crakehill 54.15 -1.35 

Immingham 53.63 -0.19 27079 Calder Methley 53.73 -1.38 

Immingham 53.63 -0.19 28067 

Derwe

nt 

Church 

Wilne 52.88 -1.34 

Immingham 53.63 -0.19 27080 Aire Lemonroyd 53.75 -1.42 

Immingham 53.63 -0.19 27002 Wharfe 

Flint Mill 

Weir 53.92 -1.36 

Immingham 53.63 -0.19 27089 Wharfe Tadcaster 53.89 -1.27 

Immingham 53.63 -0.19 28085 

Derwe

nt 

St Mary's 

Bridge 52.93 -1.47 

Immingham 53.63 -0.19 27041 

Derwe

nt 

Buttercramb

e 54.02 -0.88 

Immingham 53.63 -0.19 27034 

Derwe

nt 

Stamford 

Bridge 54.27 -1.71 

Immingham 53.63 -0.19 27021 Don Doncaster 53.53 -1.14 

Immingham 53.63 -0.19 27028 Aire Armley 53.80 -1.57 

Immingham 53.63 -0.19 28117 

Derwe

nt 

Whatstandw

ell 53.09 -1.51 

Immingham 53.63 -0.19 27043 Wharfe Addingham 53.94 -1.86 

Immingham 53.63 -0.19 28080 Tame 

Lea Marston 

Lakes 52.54 -1.69 

Immingham 53.63 -0.19 28018 Dove 

Marston on 

Dove 52.86 -1.65 
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Immingham 53.63 -0.19 27090 Swale 

Catterick 

Bridge 54.39 -1.65 

Immingham 53.63 -0.19 28011 

Derwe

nt 

Matlock 

Bath 53.12 -1.56 

Immingham 53.63 -0.19 28012 Trent Yoxall 52.76 -1.80 

Immingham 53.63 -0.19 28074 Soar Kegworth 52.83 -1.27 

Immingham 53.63 -0.19 28093 Soar 

Pillings 

Lock 52.76 -1.16 

Immingham 53.63 -0.19 27062 Nidd Skip Bridge 54.00 -1.26 

Immingham 53.63 -0.19 27029 Calder Elland 53.69 -1.81 

Immingham 53.63 -0.19 27001 Nidd 

Hunsingore 

Weir 53.97 -1.35 

Immingham 53.63 -0.19 28008 Dove 

Rocester 

Weir 52.95 -1.83 

Immingham 53.63 -0.19 27035 Aire 

Kildwick 

Bridge 53.91 -1.98 

Immingham 53.63 -0.19 28043 

Derwe

nt Chatsworth 53.21 -1.61 

Immingham 53.63 -0.19 28014 Sow Milford 52.79 -2.04 

Immingham 53.63 -0.19 28003 Tame Water Orton 52.52 -1.75 

Immingham 53.63 -0.19 27006 Don 

Hadfields 

Weir 53.41 -1.41 

Immingham 53.63 -0.19 27053 Nidd Birstwith 54.04 -1.65 

Kinlochberv

ie 58.46 -5.05 96002 Naver Apigill 58.48 -4.21 

Kinlochberv

ie 58.46 -5.05 96004 

Strath

more Allnabad 58.35 -4.65 

Leith 55.99 -3.18 15006 Tay Ballathie 56.51 -3.39 

Leith 55.99 -3.18 15003 Tay Caputh 56.54 -3.49 

Leith 55.99 -3.18 21009 Tweed Norham 55.72 -2.16 

Leith 55.99 -3.18 15012 

Tumme

l Pitlochry 56.70 -3.72 

Leith 55.99 -3.18 21021 Tweed Sprouston 55.61 -2.39 

Leith 55.99 -3.18 15007 Tay Pitnacree 56.66 -3.76 

Leith 55.99 -3.18 15016 Tay Kenmore 56.60 -3.99 

Leith 55.99 -3.18 18011 Forth Craigforth 56.14 -3.97 

leith 55.99 -3.18 21006 Tweed Boleside 55.59 -2.80 

Leith 55.99 -3.18 16004 Earn 

Forteviot 

Bridge 56.35 -3.55 
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Leith 55.99 -3.18 18003 Teith 

Bridge of 

Teith 56.19 -4.06 

Leith 55.99 -3.18 16001 Earn 

Kinkell 

Bridge 56.33 -3.73 

Leith 55.99 -3.18 21008 Teviot 

Ormiston 

Mill 55.55 -2.47 

Leith 55.99 -3.18 15034 Garry 

Killiecranki

e 56.75 -3.80 

Leith 55.99 -3.18 21003 Tweed Peebles 55.65 -3.18 

Leith 55.99 -3.18 15024 

Dochar

t Killin 56.46 -4.33 

Leith 55.99 -3.18 18010 Forth Gargunnock 56.13 -4.07 

Leith 55.99 -3.18 21007 

Ettrick 

Water Lindean 55.57 -2.82 

Leith 55.99 -3.18 15025 Ericht Craighall 56.61 -3.35 

Leith 55.99 -3.18 18008 Leny Anie 56.26 -4.29 

Leith 55.99 -3.18 15011 Lyon 

Comrie 

Bridge 56.61 -3.98 

Leith 55.99 -3.18 21005 Tweed Lyne Ford 55.64 -3.26 

Leith 55.99 -3.18 21012 Teviot Hawick 55.43 -2.76 

Leith 55.99 -3.18 15010 Isla 

Wester 

Cardean 56.61 -3.15 

Leith 55.99 -3.18 18015 

Eas 

Gobhai

n 

Loch 

Venachar 56.23 -4.26 

Leith 55.99 -3.18 15039 Tilt 

Marble 

Lodge 56.82 -3.82 

Leith 55.99 -3.18 15023 Braan Hermitage 56.56 -3.61 

Leith 55.99 -3.18 18005 

Allan 

Water 

Bridge of 

Allan 56.16 -3.96 

Leith 55.99 -3.18 15041 Lyon 

Camusvrach

an 56.60 -4.25 

Leith 55.99 -3.18 21022 

Whitea

dder 

Water 

Hutton 

Castle 55.79 -2.19 

Leith 55.99 -3.18 21011 

Yarrow 

Water Philiphaugh 55.54 -2.89 

Leith 55.99 -3.18 19001 

Almon

d Craigiehall 55.96 -3.34 

Leith 55.99 -3.18 15013 

Almon

d 

Almondban

k 56.42 -3.51 
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Leith 55.99 -3.18 18001 

Allan 

Water Kinbuck 56.23 -3.95 

Leith 55.99 -3.18 16003 

Ruchill 

Water 

Cultybragga

n 56.36 -4.00 

Leith 55.99 -3.18 21020 

Yarrow 

Water 

Gordon 

Arms 55.51 -3.09 

Liverpool 53.45 -3.02 67027 Dee Ironbridge 53.13 -2.87 

Liverpool 53.45 -3.02 67033 Dee 

Chester 

Suspension 

Bridge 53.19 -2.88 

Liverpool 53.45 -3.02 67015 Dee Manley Hall 52.97 -2.97 

Liverpool 53.45 -3.02 69002 Irwell 

Adelphi 

Weir 53.49 -2.26 

Liverpool 53.45 -3.02 67001 Dee Bala 52.91 -3.58 

Liverpool 53.45 -3.02 69007 Mersey 

Ashton 

Weir 53.44 -2.34 

Liverpool 53.45 -3.02 68001 Weaver Ashbrook 53.17 -2.49 

Liverpool 53.45 -3.02 67006 Alwen Druid 52.98 -3.43 

Liverpool 53.45 -3.02 68003 Dane Rudheath 53.24 -2.50 

Llandudno 53.33 -3.83 66011 Conwy 

Cwmlanerc

h 53.11 -3.79 

Llandudno 53.33 -3.83 66025 Clwyd Pont Dafydd 53.26 -3.43 

Llandudno 53.33 -3.83 66001 Clwyd 

Pont-y-

Cambwll 53.23 -3.39 

Llandudno 53.33 -3.83 66012 Lledr Pont Gethin 53.07 -3.81 

Milford 

Haven 51.71 -5.05 60003 Taf Clog-y-Fran 51.81 -4.56 

Milford 

Haven 51.71 -5.05 61002 

Eastern 

Cledda

u 

Canaston 

Bridge 51.80 -4.80 

Milford 

Haven 51.71 -5.05 61001 

Wester

n 

Cledda

u 

Prendergast 

Mill 51.82 -4.97 

Millport 55.75 -4.91 84013 Clyde Daldowie 55.83 -4.12 

Millport 55.75 -4.91 85001 Leven Linnbrane 55.99 -4.58 

Millport 55.75 -4.91 84005 Clyde Blairston 55.80 -4.07 

Millport 55.75 -4.91 84003 Clyde Hazelbank 55.69 -3.85 
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Millport 55.75 -4.91 84018 Clyde 

Tulliford 

Mill 55.64 -3.76 

Millport 55.75 -4.91 89003 Orchy Glen Orchy 56.45 -4.86 

Millport 55.75 -4.91 84004 Clyde 

Sills of 

Clyde 55.66 -3.70 

Millport 55.75 -4.91 83006 Ayr Mainholm 55.46 -4.59 

Millport 55.75 -4.91 86002 

Eachai

g Eckford 56.02 -4.99 

Millport 55.75 -4.91 83005 Irvine Shewalton 55.60 -4.63 

Millport 55.75 -4.91 84001 Kelvin Killermont 55.91 -4.31 

Millport 55.75 -4.91 84014 

Avon 

Water Fairholm 55.74 -3.99 

Millport 55.75 -4.91 85002 

Endric

k 

Water Gaidrew 56.05 -4.44 

Millport 55.75 -4.91 82002 Doon 

Auchendran

e 55.41 -4.63 

Millport 55.75 -4.91 84015 Kelvin Dryfield 55.94 -4.18 

Millport 55.75 -4.91 82001 Girvan Robstone 55.26 -4.81 

Millport 55.75 -4.91 84012 

White 

Cart 

Water Hawkhead 55.84 -4.40 

Millport 55.75 -4.91 83009 

Garnoc

k Kilwinning 55.65 -4.69 

Millport 55.75 -4.91 83013 Irvine Glenfield 55.60 -4.49 

Millport 55.75 -4.91 85003 Falloch 

Glen 

Falloch 56.34 -4.72 

Millport 55.75 -4.91 83004 

Lugar 

Water Langholm 55.47 -4.36 

Millport 55.75 -4.91 83003 Ayr Catrine 55.50 -4.34 

Mumbles 51.57 -3.98 60010 Tywi Capel Dewi 51.86 -4.20 

Mumbles 51.57 -3.98 59001 Tawe 

Ynystanglw

s 51.68 -3.90 

Mumbles 51.57 -3.98 60002 Cothi 

Felin 

Mynachdy 51.88 -4.17 

Mumbles 51.57 -3.98 60007 Tywi 

Dolau 

Hirion 52.01 -3.81 

Mumbles 51.57 -3.98 58002 Neath Resolven 51.70 -3.72 

Mumbles 51.57 -3.98 58001 

Ogmor

e Bridgend 51.50 -3.58 

Mumbles 51.57 -3.98 58012 Afan 

Marcroft 

Weir 51.60 -3.78 
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Mumbles 51.57 -3.98 60006 Gwili Glangwili 51.87 -4.28 

Newlyn 50.10 -5.54 49001 Camel Denby 50.48 -4.80 

Newport 51.55 -2.99 56001 Usk Chainbridge 51.74 -2.95 

Newport 55.01 -1.44 23003 

North 

Tyne Reaverhill 55.05 -2.15 

Newport 51.55 -2.99 57005 Taff Pontypridd 51.60 -3.33 

Newport 51.55 -2.99 56002 Ebbw Rhiwderin 51.59 -3.07 

Newport 51.55 -2.99 57007 Taff 

Fiddlers 

Elbow 51.65 -3.32 

Newport 51.55 -2.99 57006 

Rhond

da Trehafod 51.61 -3.37 

Newport 51.55 -2.99 57008 

Rhymn

ey Llanedeyrn 51.53 -3.12 

North 

Shields 55.01 -1.44 23001 Tyne Bywell 54.95 -1.94 

North 

Shields 55.01 -1.44 23004 

South 

Tyne 

Haydon 

Bridge 54.98 -2.22 

North 

Shields 55.01 -1.44 24009 Wear 

Chester le 

Street 54.85 -1.56 

North 

Shields 55.01 -1.44 24001 Wear 

Sunderland 

Bridge 54.73 -1.59 

North 

Shields 55.01 -1.44 23006 

South 

Tyne 

Featherston

e 54.94 -2.51 

North 

Shields 55.01 -1.44 22001 Coquet Morwick 55.33 -1.63 

North 

Shields 55.01 -1.44 23022 

North 

Tyne Uglydub 55.18 -2.45 

North 

Shields 55.01 -1.44 23005 

North 

Tyne Tarset 55.17 -2.35 

North 

Shields 55.01 -1.44 24008 Wear Witton Park 54.67 -1.73 

North 

Shields 55.01 -1.44 23008 Rede Rede Bridge 55.14 -2.21 

North 

Shields 55.01 -1.44 22009 Coquet Rothbury 55.31 -1.89 

Portpatrick 54.84 -5.12 81002 Cree 

Newton 

Stewart 54.96 -4.48 

Portpatrick 54.84 -5.12 81004 

Bladno

ch Low Malzie 54.86 -4.52 

Portpatrick 54.84 -5.12 81006 

Water 

of 

Minnoch 

Bridge 55.04 -4.57 
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Minnoc

h 

Portpatrick 54.84 -5.12 81003 Luce 

Airyhemmi

ng 54.90 -4.84 

Portrush 55.21 -6.66 

20304

0 

Lower 

Bann Movanagher 54.98 -6.55 

Portrush 55.21 -6.66 

20101

0 

Mourn

e 

Drumnabuo

y House 54.81 -7.46 

Portrush 55.21 -6.66 

20309

3 Main 

Shane's 

Viaduct 54.74 -6.31 

Portrush 55.21 -6.66 

20301

0 

Blackw

ater 

Maydown 

Bridge 54.41 -6.74 

Portrush 55.21 -6.66 

20100

9 

Owenk

illew Crosh 54.73 -7.35 

Portrush 55.21 -6.66 

20100

8 Derg Castlederg 54.71 -7.59 

Portrush 54.84 -5.12 82003 

Stincha

r Balnowlart 55.11 -4.97 

Portrush 55.21 -6.66 

20301

2 

Ballind

erry 

Ballinderry 

Bridge 54.66 -6.56 

Portrush 55.21 -6.66 

20302

0 Moyola 

Moyola 

New Bridge 54.66 -6.52 

Portrush 55.21 -6.66 

20100

6 

Drumra

gh 

Campsie 

Bridge 54.60 -7.29 

Portrush 55.21 -6.66 

23600

5 

Colebr

ooke 

Ballindarrag

h Bridge 54.27 -7.49 

Portrush 55.21 -6.66 

20200

2 

Faugha

n Drumahoe 54.98 -7.28 

Portrush 55.21 -6.66 

20400

1 Bush 

Seneirl 

Bridge 55.16 -6.52 

Portrush 55.21 -6.66 

20100

5 

Camow

en 

Camowen 

Terrace 54.60 -7.29 

Portrush 55.21 -6.66 

20301

1 Main Dromona 54.92 -6.37 

Portrush 55.21 -6.66 

20309

2 Main Dunminning 54.94 -6.36 

Portrush 55.21 -6.66 

23600

7 Sillees 

Drumrainey 

Bridge 54.31 -7.69 

Portrush 55.21 -6.66 

20100

2 

Fairyw

ater 

Dudgeon 

Bridge 54.63 -7.37 

Portrush 55.21 -6.66 

20302

7 Braid Ballee 54.85 -6.29 
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Portsmouth 50.80 -1.11 42004 Test Broadlands 50.97 -1.50 

Portsmouth 50.80 -1.11 42023 Itchen 

Riverside 

Park 50.94 -1.37 

Portsmouth 50.80 -1.11 42024 Test 

Chilbolton 

Total 51.15 -1.45 

Portsmouth 50.80 -1.11 42010 Itchen 

Highbridge 

& Allbrook 

Total 50.99 -1.34 

Sheerness 51.45 0.74 39001 

Thame

s Kingston 51.41 -0.31 

Sheerness 51.45 0.74 39072 

Thame

s 

Royal 

Windsor 

Park 51.49 -0.59 

Sheerness 51.45 0.74 39121 

Thame

s Walton 51.39 -0.42 

Sheerness 51.45 0.74 39111 

Thame

s Staines 51.43 -0.51 

Sheerness 51.45 0.74 39130 

Thame

s Reading 51.46 -0.97 

Sheerness 51.45 0.74 39002 

Thame

s Days Weir 51.64 -1.18 

Sheerness 51.45 0.74 39046 

Thame

s 

Sutton 

Courtenay 51.65 -1.25 

Sheerness 51.45 0.74 39129 

Thame

s Farmoor 51.76 -1.36 

Sheerness 51.45 0.74 39008 

Thame

s Eynsham 51.77 -1.35 

Sheerness 51.45 0.74 40003 

Medwa

y 

Teston / 

East 

Farleigh 51.25 0.45 

Sheerness 51.45 0.74 39016 Kennet Theale 51.43 -1.07 

Sheerness 51.45 0.74 39079 Wey Weybridge 51.37 -0.46 

Sheerness 51.45 0.74 39104 Mole Esher 51.38 -0.37 

Sheerness 51.45 0.74 39103 Kennet Newbury 51.40 -1.32 

Tobermory 56.62 -6.06 91002 Lochy Camisky 56.88 -5.05 

Tobermory 56.62 -6.06 92001 Shiel Shielfoot 56.76 -5.83 

Tobermory 56.62 -6.06 90003 Nevis Claggan 56.82 -5.09 

Ullapool 57.90 -5.16 94001 Ewe Poolewe 57.76 -5.61 

Ullapool 57.90 -5.16 93001 Carron New Kelso 57.43 -5.44 

Ullapool 57.90 -5.16 95001 Inver 

Little 

Assynt 58.17 -5.16 

Ullapool 57.90 -5.16 95002 Broom Inverbroom 57.81 -5.06 
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Weymouth 50.61 -2.45 44001 Frome 

East Stoke 

Total 50.68 -2.19 

Weymouth 50.61 -2.45 43009 Stour Hammoon 50.93 -2.26 

Weymouth 50.61 -2.45 45004 Axe Whitford 50.75 -3.05 

Whitby 54.49 -0.61 25009 Tees Low Moor 54.49 -1.44 

Whitby 54.49 -0.61 25001 Tees Broken Scar 54.52 -1.60 

Whitby 54.49 -0.61 25008 Tees 

Barnard 

Castle 54.54 -1.93 

Whitby 54.49 -0.61 25018 Tees 

Middleton 

in Teesdale 54.62 -2.08 

Whitby 54.49 -0.61 27092 Esk Briggswath 54.46 -0.65 

Wick 58.44 -3.09 6007 Ness Ness-side 57.45 -4.26 

Wick 58.44 -3.09 8006 Spey Boat o Brig 57.55 -3.14 

Wick 58.44 -3.09 4001 Conon Moy Bridge 57.56 -4.54 

Wick 58.44 -3.09 8010 Spey Grantown 57.32 -3.61 

Wick 58.44 -3.09 5003 Glass 

Kerrow 

Wood 57.35 -4.74 

Wick 58.44 -3.09 8005 Spey 

Boat of 

Garten 57.25 -3.75 

Wick 58.44 -3.09 8002 Spey Kinrara 57.15 -3.85 

Wick 58.44 -3.09 7002 

Findho

rn Forres 57.61 -3.64 

Wick 58.44 -3.09 5002 Farrar Struy 57.43 -4.68 

Wick 58.44 -3.09 3003 Oykel 

Easter 

Turnaig 57.96 -4.70 

Wick 58.44 -3.09 8004 Avon 

Delnashaug

h 57.40 -3.36 

Wick 58.44 -3.09 7001 

Findho

rn Shenachie 57.38 -3.95 

Wick 58.44 -3.09 2001 

Helmsd

ale Kilphedir 58.14 -3.70 

Wick 58.44 -3.09 2002 Brora Bruachrobie 58.01 -3.88 

Wick 58.44 -3.09 3002 Carron Sgodachail 57.89 -4.55 

Wick 58.44 -3.09 97002 Thurso Halkirk 58.52 -3.49 

Wick 58.44 -3.09 8013 Feshie 

Feshie 

Bridge 57.12 -3.90 

Wick 58.44 -3.09 3004 Cassley Rosehall 57.98 -4.59 

Wick 58.44 -3.09 4005 Meig Glenmeanie 57.53 -4.87 

Wick 58.44 -3.09 4003 Alness Alness 57.70 -4.26 
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Wick 58.44 -3.09 8007 Spey Invertruim 57.04 -4.16 

Wick 58.44 -3.09 8009 

Dulnai

n 

Balnaan 

Bridge 57.30 -3.70 

Wick 58.44 -3.09 4004 

Blackw

ater Contin 57.57 -4.59 

Wick 58.44 -3.09 6009 

Morist

on Levishie 57.22 -4.65 

Wick 58.44 -3.09 7004 Nairn Firhall 57.57 -3.87 

Wick 58.44 -3.09 5004 Glass Fasnakyle 57.32 -4.80 

Wick 58.44 -3.09 96001 

Hallada

le Halladale 58.48 -3.90 

Workington 54.65 -3.57 76007 Eden Sheepmount 54.90 -2.95 

Workington 54.65 -3.57 80002 Dee Glenlochar 54.96 -3.98 

Workington 54.65 -3.57 78003 Annan Brydekirk 55.02 -3.27 

Workington 54.65 -3.57 79002 Nith Friars Carse 55.15 -3.69 

Workington 54.65 -3.57 75002 

Derwe

nt Camerton 54.66 -3.49 

Workington 54.65 -3.57 77002 Esk Canonbie 55.07 -2.94 

Workington 54.65 -3.57 79006 Nith Drumlanrig 55.27 -3.80 

Workington 54.65 -3.57 75003 

Derwe

nt Ouse Bridge 54.68 -3.24 

Workington 54.65 -3.57 76003 Eamont Udford 54.67 -2.66 

Workington 54.65 -3.57 76005 Eden 

Temple 

Sowerby 54.65 -2.61 

Workington 54.65 -3.57 75005 

Derwe

nt Portinscale 54.60 -3.16 

Workington 54.65 -3.57 77003 

Liddel 

Water 

Rowanburnf

oot 55.07 -2.92 

Workington 54.65 -3.57 78006 Annan Woodfoot 55.29 -3.42 

Workington 54.65 -3.57 79005 

Cluden 

Water 

Fiddlers 

Ford 55.10 -3.68 

Workington 54.65 -3.57 76015 Eamont 

Pooley 

Bridge 54.62 -2.82 

Workington 54.65 -3.57 78005 

Kinnel 

Water Bridgemuir 55.15 -3.43 

Workington 54.65 -3.57 76008 Irthing Greenholme 54.91 -2.80 

Workington 58.44 -3.09 4006 Bran 

Dosmuchera

n 57.60 -5.01 

Workington 54.65 -3.57 80001 Urr Dalbeattie 54.93 -3.84 

Workington 54.65 -3.57 79003 Nith Hall Bridge 55.39 -4.08 
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Workington 54.65 -3.57 79004 

Scar 

Water Capenoch 55.23 -3.82 

Workington 54.65 -3.57 75004 Cocker 

Southwaite 

Bridge 54.64 -3.35 

Workington 54.65 -3.57 74005 Ehen Braystones 54.44 -3.53 
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10. Appendix C 

Table 10.1: The pairs of tide gauge, river discharge and rainfall stations and wave nodes used 

in Chapter 4. 

Site 
No. 

Tide gauge 

Tide 
gauge 
latitude 
(deg.) 

Tide 
gauge 
longitude 
(deg.) 

Wave 
node 
latitude 
(deg.) 

Wave 
node 
longitude 
(deg.) 

River 
gauge 
latitude 
(deg.) 

River 
gauge 
longitude 
(deg.) 

Rainfall 
station 
latitude 
(deg.) 

Rainfall 
station 
longitude 
(deg.) 

1 Newhaven 50.78 0.06 50.75 0.0 N/A N/A 50.8 0.01 

2 Portsmouth 50.8 -1.11 50.75 -1.13 50.94 -1.37 50.79 -1.04 

3 Bournemouth 50.71 -1.87 50.63 -1.88 50.76 -1.84 50.75 -1.94 

4 Weymouth 50.61 -2.45 50.5 -2.38 50.68 -2.19 50.52 -2.45 

5 Devonport 50.37 -4.19 50.25 -4.25 50.49 -4.15 50.35 -4.12 

6 Newlyn 50.1 -5.54 50.13 -5.5 50.48 -4.8 50.13 -5.57 

7 St Marys 49.92 -6.32 50.13 -5.88 N/A N/A 49.91 -6.29 

8 Ilfracombe 51.21 -4.11 51.25 -4.13 50.99 -3.99 51.16 -4.09 

9 Hinkley 51.22 -3.13 51.25 -3.13 51.02 -3.53 51.15 -3.08 

10 Avonmouth 51.51 -2.71 51.5 -2.88 51.8 -2.69 51.44 -2.74 

11 Newport 51.55 -2.99 51.5 -3 51.59 -3.07 51.55 -2.96 

12 Mumbles 51.57 -3.98 51.5 -4 51.68 -3.9 51.57 -3.98 

13 
Milford 
Haven 

51.71 -5.05 51.63 -5.13 51.82 -4.97 51.71 -5.05 

14 Fishguard 52.01 -4.98 52.13 -5 52.05 -4.56 51.97 -4.87 

15 Barmouth 52.72 -4.05 52.75 -4.25 52.6 -3.85 52.77 -3.87 

16 Holyhead 53.31 -4.62 53.38 -4.63 53.14 -4.25 53.3 -4.68 

17 Llandudno 53.33 -3.83 53.38 -3.88 53.11 -3.79 53.29 -3.71 



 

 188 

18 Liverpool 53.45 -3.02 53.5 -3.25 53.19 -2.88 53.35 -3.08 

19 Heysham 54.03 -2.92 54 -3.13 54.08 -2.72 54.02 -2.82 

20 Workington 54.65 -3.57 54.63 -3.63 54.66 -3.49 54.71 -3.43 

21 
Port Erin, Isle 
of Man 

54.09 -4.77 54.13 -4.75 N/A N/A 54.13 -4.67 

22 Bangor 54.66 -5.67 54.75 -5.63 54.55 -5.95 54.67 -5.75 

23 Portrush 55.21 -6.66 55.25 -6.63 55.16 -6.52 55.11 -6.66 

24 Portpatrick 54.84 -5.12 54.5 -5.25 54.9 -4.84 54.74 -4.96 

25 Milport 55.75 -4.91 55.63 -5 55.65 -4.69 55.75 -4.91 

26 Port Ellen 55.63 -6.19 55.63 -6.13 N/A N/A 55.68 -6.25 

27 Tobermory 56.62 -6.06 56.63 -6.25 56.76 -5.83 56.54 -5.96 

28 Stornoway 58.21 -6.39 58.13 -6.38 N/A N/A 58.21 -6.32 

29 Ullapool 57.9 -5.16 58 -5.5 57.81 -5.06 57.96 -5.13 

30 Kinlochbervie 58.46 -5.05 58.5 -5.13 58.35 -4.65 58.31 -4.92 

31 Lerwick 60.15 -1.14 60.13 -1.13 N/A N/A 58.95 -2.9 

32 Wick 58.44 -3.09 58.5 -3 58.52 -3.49 58.45 -3.09 

33 Aberdeen 57.14 -2.08 57.13 -2 57.22 -2.19 57.21 -2.2 

34 Leith 55.99 -3.18 56 -3.13 55.96 -3.34 55.97 -3.21 

35 North Shields 55.01 -1.44 55 -1.38 54.85 -1.56 55.02 -1.42 

36 Whitby 54.49 -0.61 54.5 -0.63 54.46 -0.65 54.47 -0.62 

37 Immingham 53.63 -0.19 53.5 0.25 53.14 -0.8 53.5 -0.18 

38 Cromer 52.93 1.3 53 1.25 52.58 0.35 52.95 1.12 

39 Lowestoft 52.47 1.75 52.5 1.88 N/A N/A 52.45 1.54 

40 Harwich 51.95 1.29 51.88 1.38 N/A N/A 51.91 1.09 

41 Sheerness 51.45 0.74 51.5 0.88 51.25 0.45 51.35 0.75 

42 Dover 51.11 1.32 51.13 1.38 N/A N/A 51.19 1.28 

43 Jersey 49.18 -2.12 49.38 -1.88 N/A N/A 49.2 -2.13 
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