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With the detection of GW150914, the era of gravitational wave astronomy has com-
menced. One possible source of gravitational waves is accreting neutron stars. Many
low mass X-ray binary neutron stars are spinning at frequencies considerably lower
than the neutron star break-up frequency. Gravitational wave emission might account
for this observed maximum spin cap. For an isolated neutron star to emit gravitational
waves, it must deform from its axial symmetry to produce a time-varying gravitational
field. One way this can occur is through the development of a misaligned quadrupole
moment. A quadrupole moment or mountain’ can develop if temperature asymmetries

exist in a neutron star crust.

In this thesis, we investigate whether temperature asymmetries can develop in an ac-
creted neutron star crust. We construct a self-consistent model of a spherically sym-
metric background thermal profile of an accreted crust. A temperature perturbation
is then induced by inserting a magnetic field. The presence of a magnetic field causes
anisotropies in the thermal conductivity to develop, due to electrons interacting with
the field. We explore the parameter space of accretion rate, impurity parameter and
magnetic field strength. We then investigate the influence of shallow crustal heating on
our model. Later, we consider the effects of existing temperature asymmetries on the
surface of the crust, which can arise from non-spherical accretion. We find these per-
turbation mechanisms are unlikely to induce temperature asymmetries that can pro-
duce a sufficiently large mass quadrupole moment which generates energy losses via

gravitational wave emission to balance the spin-up torque from accretion.
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CHAPTER |

Introduction

1.1 Introduction to gravitational waves

In 1916, Albert Einstein published his general theory of relativity (Einstein, 1916). In this
theory, Einstein proposed gravity as a geometric property of spacetime. Curvature in
spacetime arises from the presence of mass and energy. A consequence of this theory
is the existence of gravitational waves. Gravitational waves are generated when a body’s
mass quadrupole, or higher order mass multipole, changes in time. A quadrupole mo-
ment is the lowest order moment that generates gravitational waves, as the conservation
of mass does not allow monopole radiation and the conservation of momentum doesn't
allow dipole radiation (Saulson, 1994). The measure of the distortion of spacetime caused
by gravitational waves is known as strain.

Gravitational wave detectors, such as LIGO, measure gravitational wave strain using laser
interferometry. As a gravitational wave passes through the detector, two arms, which are
orthogonal to each other, measure the relative change in length induced by the gravita-
tional wave, as one arm is squeezed and the other is stretched.

In 2015, LIGO detected a gravitational wave signal for the first time (Abbott et al., 2016b).
The signal came from two coalescing black holes of mass ~ 30Mg. The signal lasted
for ~ 0.2s, showing an increase in frequency consistent with an inspiral, merger and
ringdown, producing a final single black hole. The gravitational wave strain measured
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from this event was 1 x 1072!. Since this initial detection, there have been eight fur-
ther confirmed detections of binary black hole mergers (GW151226 (Abbott et al., 2016a),
GW170104 (Abbott et al,, 2017b), GW170814 (Abbott et al., 2017d), GW170608 (Abbott
et al., 2017¢c), GW170729, GW170809, GW170818 and GW170823 (Abbott et al., 2018b)).

In 2017, LIGO detected the first gravitational wave signal from a pair of inspiralling neu-
tron stars, with a strain amplitude of order 10722 (Abbott et al,, 2017e). A v-ray burst,
GRB 170817A, was detected 1.7s after the binary neutron star merger (GW170817), which
originated from the same region of the sky as GW170817 (Abbott et al., 2017f). The coinci-
dence of these signals sparks the dawn of a new era of multi-messenger astronomy. This
combination of gravitational wave and electromagnetic signals enables new insights to
be made into gravitation, astrophysics and cosmology (Abbott et al., 2017h). From this
detection alone, constraints were placed on the measurement of the Hubble constant
(Abbott et al., 2017a), binary neutron star mergers were found to be sources of heavy el-
ements in the universe (Kasen et al., 2017), gravitational waves were confirmed to travel
at (or close to) the speed of light (Abbott et al., 2017g) and constraints were also placed

on the neutron star radii and equation of state (Abbott et al., 2018a).

As the era of gravitational wave astronomy is well and truly upon us, gravitational waves
are proving to be an effective new tool for probing the universe, enabling us to gain
a deeper insight into the laws of physics. Neutron stars are particularly interesting ob-
jects to use to study fundamental physics, due to their extreme compactness which gives
rise to the existence of matter at the highest known pressures in the universe. The in-
credibly strong gravitational fields of neutron stars makes them excellent subjects for
gravitational wave astronomy. The combination of these properties make neutron stars

fantastic laboratories for testing the laws of physics in extreme environments.

1.2 Neutron stars as sources of continuous gravitational waves

The gravitational wave signals that have been detected so far have come from coalesc-
ing compact binaries. Another type of gravitational wave signal that is expected to be
detected in the near future is continuous waves. The most likely source of continuous
gravitational waves are spinning neutron stars. For a neutron star to produce gravita-
tional waves, it must develop a deformation from its axial symmetry. There are three
key mechanisms in which an isolated neutron star may produce continuous gravita-
tional waves: precession, non-axisymmetric instabilities and non-axisymmetric defor-

mations.



1.2. Neutron stars as sources of continuous gravitational waves 3

1.2.1 Gravitational waves from freely precessing neutron stars

Free precession of a neutron star occurs when the star develops a deformation that is
misaligned from its axis of rotation. The deformation may be supported by either crustal
deformations or an internal magnetic field. The precession could be excited by a phys-
ical mechanism such as accretion torques, electromagnetic torques, glitches and stellar
encounters (Jones and Andersson, 2001). A neutron star is most likely to develop an

oblate deformation, arising in the solid neutron star crust.

Once the star is in free precession, damping effects will take place. Kinetic energy from
the star’s ‘'wobble’ is dissipated into the star as thermal energy. Gravitational waves will
also radiate energy away. Jones and Andersson (2001) finds the precession of stars with
an oblate deformation are quickly damped. Stars that develop deformations through
astrophysical processes, produce gravitational wave signals that may well be too weak
to detect by LIGO.

1.2.2 Gravitational waves from neutron star instabilities

Neutron stars can develop unstable modes of oscillation. If these oscillations are non-
axisymmetric, the star will generate gravitational waves. Neutron stars can support a
large number of different pulsation modes, the most important modes that lead to grav-

itational wave emission are the so-called f-modes and r-modes.

The f-mode is the fundamental mode, which is restored predominantly by pressure
forces. The f-mode is most likely to develop during violent processes, such as neutron
star mergers or neutron star formation by supernova core collapse (Glampedakis and
Gualtieri, 2018). The f-mode generates gravitational radiation readily, although this also
acts as a rapid damping mechanism.

R-modes in rotating stars, are caused by the Coriolis force, which acts as a restoring force
(Andersson, 2003). The r-mode satisfies the requirements for the the Chandrasekhar-
Friedman-Schutz (CFS) instability (Chandrasekhar, 1970; Friedman and Schutz, 1978),
which demonstrates the star is able to find lower energy and angular momentum con-
figurations, allowing the mode amplitude to grow. The r-mode is consequently unstable
to gravitational wave emission (Andersson, 1998). Viscosity of the neutron star interior
provides damping to the system. The r-mode instability grows as long as the timescale
required to damp the system by viscosity is longer than than the gravitational wave driv-

ing timescale.
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1.2.3 Gravitational waves from neutron star mountains

Steadily spinning neutron stars can also develop non-axisymmetric deformations by
growing mountains. Mountains can arise when the star is distorted by the presence of
a magnetic field or when the solid crust is strained. In accreting systems, the transfer
of matter through accretion can incite crustal mountains through the development of
temperature asymmetries and magnetically confined mountains. It is these types of
mountains we will examine in this thesis.

1.2.3.1 Magnetic mountains

The magnetic field of a neutron star can induce quadrupolar deformations. The poloidal
component of the magnetic field tends to deform the star to an oblate shape, and the
toroidal field tends to generate a prolate deformation (Glampedakis and Gualtieri, 2018).
If these deformations are misaligned to the axis of rotation, the neutron star will generate

gravitational radiation as it spins.

Another type of magnetically induced deformation that may occur in accreting neu-
tron stars is that of magnetically confined mountains. As material is accreted onto the
neutron star, the accreted matter accumulates in a column at the polar caps, creating a
small distortion in the magnetic field. At the bottom of the accreted column, a horizontal
pressure gradient develops, causing the magnetic field to deform at the poles. As the ac-
creted material spreads towards the equator, the frozen-in magnetic flux is dragged and
compressed into a belt at the magnetic equator. This magnetic belt restricts the accreted
matter to the magnetic poles, causing mountains to form. The magnetic poles are usu-
ally misaligned from the axis of rotation, resulting in the emission of gravitational waves
as the neutron star spins (Payne and Melatos, 2004; Melatos and Payne, 2005; Vigelius
and Melatos, 2009).

1.2.3.2 Thermal Mountains

Many low mass X-ray binary neutron stars have been observed to be rotating within the
narrow spin frequency range 250-750Hz (Patruno et al., 2017). As these are accreting
systems, a broad range of rotational frequencies, up to the break up frequency of ~
1500 Hz, would be expected, due to the transfer of angular momentum. The spin-up
torque from accretion could be reduced by the interaction of the accretion disk with
the magnetosphere of the neutron star, as discussed by White and Zhang (1997). This
mechanism requires a link between the accretion rate and magnetic field strength of
LMXBs, although it is unclear as to why this should exist. An alternative explanation
for this observation, comes from the possibility that these neutron stars are developing

some form of asymmetry through accretion, causing them to lose energy by radiating
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gravitational waves.

As accreted material falls onto the neutron star surface, it begins to undergo compres-
sion. As the matter is compressed, pressure sensitive electron capture reactions begin
to occur, resulting in the formation of higher density matter. The temperature of an ac-
creted crust is hot enough for the electron capture reactions to also be temperature sen-
sitive. If temperature asymmetries exist in the crust, lateral density variations develop,
as hotter regions capture electrons at lower pressures. If a temperature asymmetries
exist in the accreted crust, a mass quadrupole moment can develop. If the mountain is
misaligned from the star’s axis of rotation, gravitational wave radiation is emitted as the
star rotates (Bildsten, 1998) (Ushomirsky et al., 2000).

1.3 Searching for continuous gravitational waves

Advanced LIGO targets astrophysical sources that emit gravitational waves within the
frequency range 10-10*Hz (Martynov et al., 2016). Neutron stars with mountain defor-
mations emit gravitational waves at frequencies double their spin frequency. Stars with
rotational frequencies in the range 250-750Hz produce continuous gravitational wave
signals that lie well within the detectable bounds of LIGO. Although the signals produced
by these deformed spinning neutron stars are potentially detectable with LIGO, there are
many constraints hindering detection.

The gravitational wave strain amplitude of continuous sources in the Milky Way galaxy
is expected to be many orders of magnitude smaller than those detected from compact
binary mergers (Glampedakis and Gualtieri, 2018). In order to detect these weak signals,
data must be integrated over long time periods (Riles, 2017). This becomes very com-
putationally expensive in the case of all-sky searches, due to the Doppler modulation of
the signal caused by the Earth’s rotation (Sathyaprakash and Schutz, 2009). Constraining
the parameter space, such as sky-location, enables less computationally costly targeted
sky searches to be conducted.

To extract such a weak signal, a large sample of data (~ years) is required. One of the
biggest drawbacks of this, is the targeted source must sustain a non-axisymmetric de-
formation for the duration of the data set, to ensure gravitational waves are being con-
tinually emitted. For this reason, accreting neutron stars are of particular interest. The
accretion spin-up torque in accreting neutron stars may be halted by energy losses due
to gravitational wave emission. This mechanism was first discussed in the context of
gravitational wave emission from f-mode instabilities by Papaloizou and Pringle (1978)
and Wagoner (1984), and for gravitational waves generated by r-mode instabilities by

Andersson et al. (1999). Sufficiently large neutron star mountains may also generate an-
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gular momentum losses via gravitational wave emission as considered by Bildsten (1998),
Ushomirsky et al. (2000), Haskell et al. (2006), Johnson-McDaniel and Owen (2013), Cut-
ler (2002), Haskell et al. (2008), Payne and Melatos (2004), Melatos and Payne (2005) and
Vigelius and Melatos (2009).

The LMXBs Scorpius X-1 and XTE J1751-305 have been targeted as continuous gravita-
tional wave sources, as they are expected to emit signals that are detectable by LIGO.
Although no detections have been claimed to date, upper limits have been placed on
the gravitational wave strain of these sources of 1.8 x 10~2* (Meadors et al., 2017).

Understanding the physics of neutron stars from a theoretical perspective, along with
electromagnetic observations, will help to guide targeted continuous gravitational wave

searches, with the hope of detecting these elusive signals in the near future.

1.4 Thesis outline

In this thesis, the work of Bildsten (1998) and Ushomirsky et al. (2000) is built upon by
developing a self-consistent model of an accreted neutron star crust, to investigate if
temperature asymmetries can develop in the presence of a magnetic field. Bildsten
(1998) and Ushomirsky et al. (2000) assumed the existence of temperature asymme-
tries in an accreted neutron star crust. We intend to close the loop on this work by
quantifying the temperature perturbation that can develop in an accreted neutron star
crust. We explore the parameter space of accretion rate and crustal impurity param-
eter, to determine if these temperature asymmetries are sufficiently large to produce
a mass quadrupole moment, that is misaligned from the axis of rotation, that can gen-
erate energy losses via gravitational radiation which balances the spin-up torque from

accretion.

Chapter 2 reviews some of theory behind gravitational wave emission and takes an in-
depth look at how thermal mountains can develop in an accreted crust, along with the
maximum mountain the crust can sustain before cracking, by reviewing the work of
Bildsten (1998) and Ushomirsky et al. (2000). The possibility of thermal instabilities, aris-
ing from the magnetic field in the crust, following the work of Price et al. (2012), is also

discussed.

In chapter 3, we begin our original work by constructing a toy model of a constant den-
sity neutron star crust. A magnetic field is then inserted into a spherically symmetric
background model of the thermal profile of an accreted crust, to incite a temperature

perturbation.

Later in chapter 4, we build upon the toy model that was developed in chapter 3, by using
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a realistic equation of state. A neutron star core is constructed using relativistic gravity
and an accreted crust placed on top, constructed in Newtonian gravity. The background
thermal profile of a spherically symmetric crust is then modelled for a normal core and
a superfluid core. We then incite a temperature perturbation by inserting a magnetic
field and determine a value of §7'/T for both stars from this self-contained model. Re-
cent observations have shown a shallow crustal heating mechanism may exist in some
LMXBs. We explore this possibility by studying the effects shallow crustal heating has

on our model and ultimately on the value of 67'/T.

In chapter 5, we build on our model from chapter 4 by introducing non-spherical ac-
cretion. This modification implements a temperature asymmetry onto the surface of
the neutron star crust. The effects this temperature perturbation has on the thermal
profile for a realistic neutron star is modelled independently and then compared to the
temperature perturbation induced by the presence of the magnetic field. Finally, we

conclude in chapter 6.
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CHAPTER 2

Neutron star mountains

Neutron stars are incredibly dense objects. They have a central density of the order
pe ~ 10 g cm~3 and magnetic field strength of up to B ~ 10'® Gauss. This high density
creates a strong gravitational environment, making neutron stars excellent laboratories
for testing the laws of physics in extreme conditions. These properties also make neu-
tron stars excellent gravitational wave source candidates (Shapiro and Teukolsky, 1983,
p.2).

For an isolated neutron star to emit gravitational waves, it must deform from its spher-
ical symmetry to produce a time-varying gravitational field. One way this can occur is
through the development of a misaligned quadrupole moment. A quadrupole moment
or ‘mountain’ can develop if temperature asymmetries exist in a neutron star crust (Bild-
sten, 1998).

In this chapter, a literature review of the theory behind gravitational wave emission is
considered. The structure of a neutron star and the composition is then discussed. The
work of Bildsten (1998) and Ushomirsky et al. (2000) on the possible sources of tem-
perature and compositional asymmetries is reviewed, and calculations to quantify the
magnitude of such asymmetries are then performed. Lastly, how the magnetic field in-

fluences the temperature evolution within the neutron star crust is investigated.
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2.1 Gravitational waves

Gravitational radiation arises when a source produces a time-varying gravitational field.
Gravitational waves travel at the speed of light and send ripples through spacetime. Fora
rotating neutron star to emit gravitational waves it must deform from its axial symmetry.
The development of a mass quadrupole moment is investigated, as this is the lowest
order non-conserved mass multipole of a system. In this section the Greek alphabet is
used to for spacetime components, and Latin alphabet is used for spatial components

only.

2.11 Propagation of gravitational waves

A description of the propagation of gravitational waves is obtained from the linearised
Einstein equations (Misner et al., 1973). In geometrised units (G=c=1), the Einstein field
equations can be written as

Gy = 87T, (2.1.1)

where G, is the Einstein tensor and 7}, is the stress-energy tensor.
The Einstein equation can be linearised by being placed in the weak field limit as
Guv = Nuv + huw |h,u11| <1, (212)

where g, is the metric tensor, 7, is the Minkowski metric and A, is the metric per-
turbation. This approximation corresponds to a perturbation on a flat spacetime back-
ground. In this limit the linearised Einstein field equation becomes

+ hy,

vo,

= 167 T}, (2.1.3)

pv,o pou,v

—he nuvﬁzg + B
where EW is the trace reversed metric perturbation tensor and is defined as

- 1
h/ﬂ/ - h,u,y - §7luuh- (214)

The linearised field equation can be simplified further by introducing the gauge condi-
tion
hke, = 0. (2.1.5)

QO

By applying this gauge condition and placing the linearised field equation in a vacuum,

the wave equation is retrieved:

Oh,, =h%,  =0. (2.1.6)

rY — "uv,a

The gravitational wave can be transformed into the transverse-traceless gauge hE,,T in
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which only the spatial components are non-zero (Misner et al., 1973, p.947). This is writ-
ten as a function of the polarisation tensors

hip = hyefy +hxel, (2.17)

where e;“k and ejxk are the plus and cross polarisation tensors respectively (Misner et al.,
1973, p.953) and can be written as

0 0 0 0000
0 1 0 0010
ot — eX — (2.1.8)
Ik 00 —1 0 Ik 0100
00 0 0 0000

These polarisations arise as they are the only non-vanishing components of h]T,;f and
correspond to the relative acceleration experienced by particles transverse to the di-

rection of propagation of the gravitational wave.

2.1.2 Mass quadrupole moment

The mass quadrupole moment of a neutron star can be calculated, to a good approxi-
mation, in the Newtonian limit. To determine if a Newtonian approximation is suitable,
a measure of the compactness of a neutron star is required. The compactness param-
eter is a dimensionless number obtained from the ratio of mass M and radius R of an
object. This presents a measure of the importance of general relativity in the system.

The compactness of a neutron star is

M M 10km
7oA (1.4M@> < R ) (219

where Mg, is the mass of the sun. The measure of compactness given in equation (2.1.9)

is sufficiently small such that the gravitational wave emission from a neutron star can
be treated as a weak-field correction to Newtonian gravity. A more in-depth treatment
of a neutron star in general relativity and Newtonian gravity is conducted in chapter 4
of this thesis.

The trace-free mass quadrupole moment in the Newtonian limit is mathematically de-

fined in Cartesian coordinates as (Misner et al., 1973)

1
= / p [mjxk _ 35jk(x)2] av, (2.110)
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and in the transverse-traceless gauge #;, becomes
1
7 = Py PunFim — 5 Pk (Pumfim) (2.1.11)

where m 4 is the mass of the Ath particle, a:]A are the spatial coordinates of the Ath par-
ticle, 0,1 is the Kronecker delta and Pj; is the projection tensor where

Pji, = 0j, — njny, (2.1.12)

and n; is the unit vector in the direction of the propagation. The mass quadrupole is
related to the observable quantity luminosity Lgw by the following relationship

dE 1G

L = = _—_——
GW = "t 5¢°

(Fd™), (2.1.13)
where dot indicates the derivative with respect to time and (...) means ‘time averaged

over one period.

The gravitational wave luminosity equation can be modified further to the more specific
case of a rigid neutron star crust supporting a mountain. For an object with moments of
inertia I3, I and I3 that is non-axisymmetric (I; # I) rotating about the principle axis
e3 the gravitational luminosity is

dE 332G 2

— =-" (L - L)*Q° 2.1.14

=T e, (2.114)
where Q = 27v, and v is the neutron star spin frequency (Shapiro and Teukolsky, 1983,
p-471).

2.2 Neutron star structure

To understand how mountains form in a neutron star, the composition and structure
must first be understood. Neutron stars are composed primarily of neutrons. As the
density increases, from the neutron stars surface towards the core, the composition also
varies, creating layers of structure. A neutron star is comprised of a liquid ocean, solid

crust and superfluid core as depicted in Fig. 2.2.1.

From the surface, going deeper into the star, ocean material increases in density and
begins to crystallise to form a crust. The crust is made up of two sub-layers: an outer and
inner crust. The outer crust consists of nuclei in a lattice, on a background of relativistic
degenerate electrons. In addition to this, the inner crust has free neutrons and lies on a

superfluid core (Shapiro and Teukolsky, 1983, p.251).
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10"'g cm ?

2x10"g cm?

5x10™°g cm?
Envelope

Quter Crust (100m)
free electrons, lattice of neutron-rich nuclei

Inner Crust (1km)
superfluid neutrons, vortices, vortex pinning, nuclear

Outer Core (3-4km)
superfluid neutrons and vorticies, superconducting

Deep Core (5-6km)
Hyperens and/or quarks?

Figure 2.2.1: Cartoon of the internal structure and composition of a neutron star.

In accreting neutron star systems, matter that falls onto the surface of the star is buried
under newly accreted material. As this matter is buried, it undergoes a series of nuclear
reactions, including electron capture. These processes are density sensitive and create
layers of elements of different compositions.

At sufficiently high temperatures, such as an accreted neutron star crust where T ~
10® K, these reactions become more sensitive to temperature. Bildsten (1998) suggests
that if temperature asymmetries exist in the crust, electron captures that usually occur
deeper in the crust, will begin to take place closer to the neutron stars surface, where
the crust is hotter. If the temperature gradients exist, density variations will develop
correspondingly.

If these density fluctuations are sufficiently large, a quadrupole moment can develop,
which if misaligned from the axis of rotation, will generate gravitational waves that pro-
duce a spin-down torque which may balance with the angular momentum spin-up
torque from accretion, preventing the stars spin frequency from increasing. A repre-
sentation of this effect is shown in Fig. 2.2.2.

2.2.1 Neutron star crust composition

The composition of an accreted neutron star crust is complex. The crust is composed
of transition layers where electron capture processes occur. This section details the
equation of state of an accreted neutron star crust as calculated by Haensel and Zdunik
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HOT SPOT
COOL CRUST HOT CRUST
outer crust outer crust Mountain
(pl1<p2) (p1<p2)

. ; Region electron

inner crust inner crust )
(p2<p3) (2<p3) capture occurs

core core

Figure 2.2.2: A cartoon depiction of how accreted matter undergoes compression and density changes
as it moves deeper inside the crust. In the cool crust, matter undergoes compression and electron capture
reactions begin to occur forming regions of denser matter. When the crust is hot, the electron capture
reactions begin to occur at lower densities, forming regions of denser matter closer to the neutron star
surface. If temperature asymmetries exist, variations in the lateral density distributions arise. These density
asymmetries can lead to a mass quadrupole moment forming in the radial direction, perpendicular to the
axis of rotation, coming out of the page (Ushomirsky et al., 2000).

(1990a) and Haensel and Zdunik (1990b).

This is a simplified model which assumes an initial composition of *°Fe, the presence
of a single species at any given depth, along with f— and neutron equilibrium. This
results in a stepwise reduction in Z for nuclei via electron capture reactions, as density
increases. More complex models exist that allow for the presence of multiple species
(Gupta et al., 2007), (Gupta et al., 2008), and a full reaction network (Schatz et al., 2014).
These more complex models find the neutron reactions reduce to lower Z via electron
capture cascades or nuclear Urca cycles, instead of the stepwise process of this simpler
model of Haensel and Zdunik (1990b) and Haensel and Zdunik (1990a). We selected to
use this model for our calculations to enable a comparison of results of our work with
that of Ushomirsky et al. (2000) as shown in later chapters.

Haensel and Zdunik (1990b) follow the evolution of accreted matter as it undergoes
compression due to increasing pressure. As the pressure increases, electron capture
reactions begin to occur, resulting in a systematic decrease in proton number Z. As Z
decreases, the Coulomb barrier is lowered and the separation between nuclei decreases,
enabling pycnonuclear reactions to begin to occur. Haensel and Zdunik (1990b) pro-
duced a table detailing the non-equilibrium processes that occur in both the inner and
outer crust, which is reproduced in figure 2.2.3. On average, 1 MeV of the total energy

from accretion is deposited into the matter, the rest is radiated away by neutrinos.

Haensel and Zdunik (1990b) expand the equation of state data shown in figure 2.2.3 in
Haensel and Zdunik (1990a). The equation of state given in Haensel and Zdunik (1990a)
is for the density interval ~ 108 g cm™3 < p <~ 10'3 g cm™3. The lower limit of this
density range arises from the minimum density of the processed accreted matter, just
below the bottom of the helium layer. The upper limit arises as the equation of state

becomes very similar to that of a cold catalysed crust, also the validity of the model used
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. Non-equilibrium processes in the outer crus
Table 1. Non-equilib th t t
P P Reaction Aplp total heat deposited heat
(dyn cm™3) (g em™%) ( MeV /nucleon) (MeV/nucleon)
7.235 10% 1.494 10% 5Fe —5 Cr — 2e~ + 21, 0.08 0.04 0.01
9.569 10°7  1.114 101° 560r =5 Tj — 2~ + 2u, 0.09 0.04 0.01
1.152 10**  7.848 10" 6T 5% Ca— 2e~ 4 2u, 0.10 0.05 0.01
4.747 107" 2.486 10" 55Ca =% Ar = 2~ 4 2u, 0.11 0.05 0.01
1.361 103 6.110 10** %Ar -5 8 4 4n—2e~ + 2w, 0.12 0.06 0.05
Table 2. Non-equilibrium processes in the inner crust
P P reactions X, Apfp deposited heat
{dyn cm™?) (g em™3) (MeV/nucleen)
1.980 10  9.075 10" 525 48 G L 6n—2¢e" + 2w, 0.07 0.13 0.09
2.253 100  1.131 1012 468 40 Mg 4 6n — 2¢~ + 20, 0.18 0.14 0.10
2,637 10 1.455 1012 OMg —3 Ne + 6n — 2¢~ + 2,
HNe 4+ Ne % Ca 0.29 017 0.47
2,771 10°%  1.766 10! %%Ca —%2 Ar 4+ 6n— 2~ + 2w, 0.39 0.08 0.05
3.216 10° 2,134 10" ©2Ar -5 S 4 6n—2e~ + 2w, 045 0.09 0.05
3.825 10°° 2634 10'? %65 %08 { 6n—2e~ + 2w, 0.50 0.09 0.06
4.699 10 3,338 10'?  %0§i —* Mg 4 6n — 2¢~ + 20, 0.55 0.09 0.07
6.043 10%  4.379 10'* ‘Mg —3 Ne + 8n — 2~ + 2v,
Ne +3 Ne =™ Ca
T2Ca —% Ar+6n— 2" +2v, 061 0.14 0.28
7.23310%0 5.839 10 G6Ar 805 L 6n— 2 420, 070 0.04 0.02
9.238 10%°  7.041 1012 89§ 54 Gi 4 6n—2e~ + 20, 0.73 0.04 0.02
1.228 10°  8.980 10'?  *Si —*®* Mg+ 6n—2¢~ +2v, 0.76 0.04 0.03

Figure 2.2.3: Table of equation of state data for an accreted neutron star crust reproduced from Haensel

and Zdunik (1990b).
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by Haensel and Zdunik (1990a) becomes questionable at high densities ~ 10'* g cm—3.
This equation of state data is shown in table 2.2.4, which includes a list of the nuclides
present in the crust of an accreting neutron star. In the third, fourth and fifth columns
of table 2.2.4 the maximum pressure Py,,x, mass density pmax and baryon density 7y, max.

are given for which the nuclide is present.

Table 2. Composition of the crust of an accreting neutron star

Z A Pz Pmazx Np,max He Xa AP/p
(dynecm~%) (g cm™3) (cm™3)  MeV (%)

26 56 7.23510%°  1.49410° 8.994103% 459 0.00 8.2
24 56 9.569 107 1.114510' 6.70110% 8.69 0.00 8.9
22 56 1.15210%° 7.848 10°© 4.708 103 16.15 0.00 9.8
20 56 4.74710%°  2.496 10"  1.494 10% 22.99 0.00 10.9
18 56 1.361 10%°  6.110 10" 3.651 10 29.89 0.00 12.1
16 52 1.98010%° 9.075 10'' 5.418 10 32.78 0.07 13.1
14 46 2.25310%  1.131 10'? 6.748 10 33.73 0.18 144
12 40 2.63710%° 1.45510'2 8.68210% 3485 0.29 16.0
20 68 2.77110%°  1.766 10'2 1.054 10 34.98 0.39 8.3
18 62 3.21610%° 2,134 10'? 1.27310% 3598 045 8.6
16 56 3.82510% 2,634 10'? 1.57110% 37.10 0.50 9.0
14 50 4.699 10%  3.338 10'2 1.990 10%® 38.40 0.55 9.3
12 44 6.044 10%°  4.379 10'2 2.610 10 39.92 0.61 13.8
18 66 7.23310%° 5.66510'? 3.37710% 39.52 0.70 4.4
16 60 9.238510%° 7.041 10 4.196 10% 40.85 0.73 4.3
14 54 1.228 103"  8.980 10" 5.34910% 42.37 0.76 4.0
12 48 1.60210% 1.127 10'® 6.71210% 4341 079 35
24 96 1.61310%  1.137 103 6.769 10% 4355 0.79 1.5
22 88 1.816 10%!  1.253 10'3 7.464 10% 43.69 0.80

Figure 2.2.4: Composition of the crust of an accreting neutron star reproduced from Haensel and Zdunik
(1990a).

Understanding the composition of an accreted neutron star crust enables a realistic
model of the thermal profile of the crust to be constructed. The data from tables 2.2.3
and 2.2.4 will be used for a crust of varying density. In the simple case of a constant
density star, the average energy generation rate from electron capture in the crust is
calculated from the total energy released per unit time €;ta1 as

€total = p— (2.2.1)

where M is the total accretion rate per unit time, 7y, is the mass of a baryon, M /my, is the
number of accreted nucleons per unit time and E,, is the total heat energy deposited
per nucleon. From table 2.2.4, the total heat energy deposited into the accreted crust is
1.33 MeV.
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2.3 Temperature asymmetries in accreting neutron stars

In 1998, Bildsten proposed that accreting neutron stars could grow mountains if tem-
perature asymmetries developed in the crust. In this section, we summarise the origi-
nal back-of-the-envelope argument by Bildsten (1998) that demonstrated the viability of
this mechanism. The mass quadrupole moment produced by a single electron capture
layer is calculated. A back-of-the-envelope estimate of whether this mass asymmetry is
sufficiently large to produce gravitational waves that balance the spin-up torque from

accretion, is then conducted following the analysis of Bildsten (1998).

2.3.1 Quadrupole moment generated by electron captures

The crust undergoes compression as matter is accreted onto the neutron star. This com-
pression process continually increases the electron Fermi energy Ey, until the energy
requirement for electron capture to occur is exceeded, initiating electron capture re-
actions. From the Fermi energy distribution, the pressure in the outer crust created by
relativistic degenerate electrons was calculated by Bildsten (1998) to be

Er \*
Ep) = 1.42 x 10% I e I 2.3.1
p(Er) B T\ 30Mev (239
Hydrostatic equilibrium is written as p = —gm where m is the mass per unit area above

the point considered and g is the local acceleration due to gravity. Using only electron
degeneracy pressure (as neutron degeneracy pressure is negligible at low densities), the
mass above a given spherical surface of the crust as a function of the Fermi energy M.,
is determined from hydrostatic equilibrium and equation (2.3.1) as

4T R?
Mcr(EF): pa
g
R: Er \*
~5x 1079 Mg —9 [ —— 2.3.2
X M4 (30MeV> ’ 232)

where R is the neutron star radius, using the thin crust approximation g = GM/R?, Rg
is the radius in units of 1 x 10%cm, My 4 = 1.4 Mg, G is the gravitational constant and M
is the mass of the neutron star.

The electron capture process causes denser layers to form. These reactions also have
a temperature dependence. In the regions where the crust is hotter, regions of higher
density form closer to the surface, creating transverse pressure gradients. This would
lead to flow if the matter below these dense regions was liquid. For Ty < 10, where
Ty is temperature in units of 1 x 10® K, the matter is solid at these depths, as would be
calculated by the well known formula for the crystallisation of ionic lattices (Shapiro and
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Teukolsky, 1983, p.87). These pressure gradients are balanced by a small shear stress with
modulus, i =~ 10~2p. Perturbing the Fermi energy in equation (2.3.2) and introducing a
non-zero temperature to effectively allow electrons with a lower Fermi energy AEy ~
10k AT to be captured gives

AM ~ 58 x 10-T Mo AT (B Y (2.3.3)
e O, \30MeV ) .
The value 5.8 x 1077 calculated in equation 2.3.3 is an order of magnitude smaller than

the value shown in Bildsten (1998). This seems to be a typo in Bildsten's paper.

The quadrupole moment required to prevent a neutron star from spinning up, due to
the increase in angular momentum from accreted matter, is calculated for a neutron
star radiating gravitational wave energy at a rate of

dE  32GQ*Q°

— = (2.3.4)

where @ is the misaligned quadrupole moment (Shapiro and Teukolsky, 1983, p.488).
The angular moment loss rate J, is equal to the gravitational wave luminosity divided

by the neutron stars angular frequency as

1dE
w == 2.35
B Q dt (239
The angular momentum transferred to the neutron star through accretion .J, is calcu-

lated from the specific angular momentum of particles in a Keplerian orbit, in this case

the accretion rate M is

(NI

Jo~ M(GMR)2, (2.3.6)

where M is the mass of the neutron star and R is the radius of the star. The quadrupole
moment required for a critical frequency of 300Hz is calculated by equating equations
(2.3.5) and (2.3.6) in equilibrium to give

1

. 3 g

Q ~ 4.5 x 10°7 g cm? L_l 300Hz * (2.3.7)
10~ 9Mgayr Vs

The idealised moment of inertia I of a spherically symmetric, constant density, neutron
star is

I= %MRZ. (2.3.8)

For a neutron star with M = 1.4 Mg and R = 10km, the moment of inertia is calculated

to be I ~ 10%g cm?. By dividing the quadrupole moment by the moment of inertia, an
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approximation of the mass asymmetry generated by electron captures is made as

AM Q@ 10% g
— - ——~107°. 2.39

M 1 10% ( )
The result computed in equation (2.3.9) is the about an order of magnitude smaller than
the value calculated by Bildsten as shown in equation (2.3.3). This suggests that the grav-
itational waves created by the asymmetric quadrupole moment, sufficient to counteract

the spin-up torque from accretion, if a large enough temperature asymmetry exists.

2.3.2 Thermal timescales

Bildsten (1998) estimated how long it would take for heat to be conducted around the
accreted neutron star crust, to give an indication of the thermal timescales that temper-
ature asymmetries can exist for in the crust.

From the heat conduction equation, the time taken for heat to be conducted through a
distance H can be calculated. The heat conduction equation is

or K 9°T

ARy T (2.3.10)

where C}, is the specific heat capacity per unit mass. The thermal conductivity K is

written as
7r2k:]23 Tnec?

K= 2.3.11
3EFVep ( )

where kg is the Boltzmann constant, n. is electron number density and v, is the electron-

phonon scattering frequency. Using the approximations

T
tin & —, (2.3.12)
th T

PT T

57~ (2.3.13)

the thermal timescale ¢, is determined to be

N pC,H?

I7a (2.3.14)

tth

The distance H can be defined as the scale height. This is the distance through which
the pressure-density gradient changes by a factor of 2. Similarly, the time to transport
heat around the star at the same depth is

pCpR?

tth,R R K (2.3.15)
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Comparing the thermal timescales shown in equations (2.3.14) and (2.3.15), for a neutron
star with a radius of 10km and a crust 1km thick, H?/R? ~ 0.01. These timescales show
the time taken to transport heat around the crust is greater than the time taken to locally
heat it. This suggest that large temperature asymmetries exist as long as the neutron star

is actively accreting in an asymmetric way.

2.4 Composition and temperature asymmetries in accreting neu-

tron stars

Ushomirsky et al. (2000) built upon the work by Bildsten (1998) by calculating the tem-
perature asymmetries in an accreting neutron star crust, assurming some asymmetry in
either the nuclear heating rate or the composition of the crust. They investigated how
long these asymmetries would be maintained for by thermal flow throughout the crust
and core. They also investigated how large a mass quadrupole the crust could elastically

sustain.

Composition asymmetries exist due to non-axisymmetric nuclear burning in X-ray bursts.
Different elements have different charge to mass ratios giving rise to different thermal
conductivities. This variation in thermal conductivity can lead to temperature asym-
metries. Temperature asymmetries can also arise from variations in nuclear heating. In
the deep crust nuclear reactions release heat energy. The amount of energy released
depends on the elements present. In this section the treatment of Ushomirsky et al.
(2000) is adopted.

Composition variations in the crust create local fluctuations in the amount of energy

released due to nuclear reactions. This asymmetry in nuclear energy release is given as

fnuc = 56nuc7 (2.4.1)

€nuc

where ey, is the local energy deposited by nuclear reactions and an asymmetry is present
when fiuc # 0.

The burning of different atomic masses from different points on the star creates charge-

to-mass ratio (Z2/A) variations. This affects both the thermal conductivity K and neu-

trino emissivity €, of the crust and are functions of Z2/A as follows: K o (Z2/A)~1 pT™

(Schatz et al., 1999) and €, « (Z2/A)pT" (Haensel et al., 1996) where ny and n, are the

temperature sensitivity coefficients of conduction and neutrino emission respectively.

The asymmetry in conductivity due to the composition asymmetries is written as
3(2*/4)

Jeomp = W (2.4.2)
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Regions where f.omp > Oradiate neutrinos more efficiently and the thermal conductivity
decreases.

The lateral temperature variation 67" can be calculated from both f,uc and feomp. On a
spherically symmetric background, the core is approximated to an isothermal perfect
conductor. This assumption is valid as the thermal conductivity of the core is signifi-
cantly higher than the crust, and consequently 67Ttore << 6Tcrust- The conductivity per-
turbation and the neutrino emissivity perturbation equations are

0K or dey 0T

K = 7fcomp + nk? and ; = fcomp + ne?- (243)

when dp = 0.

Local changes in ¢, occur on scales smaller than the complete capture layer shifts. This
does not affect the total energy released in a capture layer, as this is dependent solely on

the local accretion rate and the total energy released per nucleon E,,. of the element.

The charge to mass ratio varies with density in the neutron star crust. Capture layers
where feomp > 0 will have larger temperature asymmetries because the thermal con-
ductivity decreases, enabling temperature gradients to exist on longer timescales. This
suggests that regions in the crust where feomp is at a maximum will produce the largest
mass quadrupole moments through electron capture.

Ushomirsky et al. (2000) incite asymmetries into the accreted neutron star crust through
asymmetric nuclear heating fy,c and composition f.omp. There is no obvious way of de-
ciding what composition asymmetries might exist in the crust. One could try modelling
an asymmetric process, following the asymmetric motion of fluid elements through the
crust. But this is a difficult calculation. We therefore decided to look at a simpler source
of asymmetry, the anisotropy in thermal conductivity due to a magnetic field, where the

necessary formalism already exists.

2.5 Elastic crust

The elasticity of the crust must be understood in order to calculate how large a mountain
the crust can support without cracking. In this section we summarise the treatment of
(Ushomirsky et al., 2000). This model is for a non-rotating neutron star. For gravitational
waves to be produced itis a requirement that the neutron star is rotating, inclusion of the
rotational effects would modify the solution of order (v /11,)? ~ 4% where v ~ 300Hz is
the neutron star spin frequency and 14, 2 1 kHz is the break up frequency of the neutron
star (Paul D. Lasky, 2015).
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The crust is modelled as an elastic solid with shear modulus p and an equation of state
that is purely a function of density p and the electron mean molecular weight y. where
p = p(p, pe). The perturbed electron mean molecular weight only has non-zero values
inside the capture layers. As the capture layers move around, due to the perturbing
temperature source, the value of p, is altered. It is this temperature dependence of .
that influences the equation state.

2.5.1 The perturbed crust

The pressure created by the downward flow of accreted matter is neglected as this is
negligible when compared to the gravitational and shear forces. The crustal displace-
ment vector is defined in terms of spherical harmonics and its radial ¢, and perpendic-
ular £, components as

£ = & (r) Y + €1 BT VY, (2.5.1)

where 7% is the radial unit vector and 8 = /(I + 1).

The stress tensor of the crust in the Newtonian limit is given by Landau et al. (1986) as

2
Tab = —p(p, Me)gab + ,U(vagb + Viéa — ggabvcfc)a (2.5.2)

where g, is the flat 3-metric, V,, is the associated derivative operator and y is the shear
modulus.

The stress tensor is perturbed to first order on a spherically symmetric background.
Eulerian perturbations are denoted with ¢ and Lagrangian are represented with A. The
Eulerian and Lagrangian perturbations relate to the scalar quantity A as

AN = 6A + €7V, A. (2.5.3)

The perturbing source terms arises from either the composition perturbation Ape /e
or temperature asymmetries 67" as detailed in section 2.4. The Lagrangian pressure per-
turbations that emerge as a result of these variations are defined as: for a smooth com-
position gradient

9p

Ap= &

Op
Opte

Ap + Alle, (2.5.4)

p

He
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for a temperature perturbation

Op Op
Ap=221 Apy 2| AT
Op Op dT

The scalar Eulerian and Lagrangian perturbations are proportional to the spherical har-
monics Y},,, due to the spherically symmetric background. The source terms can be

represented in terms of their spherical harmonics as

Ape = AU@O”)YZm(Ha ¢): (2.5.6a)
8T = §T(r)Yim (0, ). (2.5.6b)

The stress tensor is perturbed to give

57—ab = gabYldeM + eqYim [2#(@}/7" - 6r§r>] + .fab(STrJ_ + Aab2M5§L/ra (2~5~7)
where
4 4 2
0T = —O0p+ (357{7« - gﬁr/r + 3ﬁ§L/T> , (2.5.8a)
Ot = p(rép(&L/r) + BE /1), (2.5.8b)
and
€ab = Gab — f’a'ﬁb; (259&1)
Fab = B (FaVoYim + 7V aYim), (2.5.9b)
Aap = B2V VY + B fab- (2.5.9¢)

The density perturbation in the crust is derived from the momentum equation as follows

dv,

p = Vo7 — pVa®. (2.5.10)

Setting the acceleration term to zero in the momentum equation
VaTab = pvb@. (2.5.11)

Perturbing the stress-energy tensor, using the Cowling approximation (pV°§® = 0) and
equating the remaining terms gives

V% 1ap = 0pVp® = dpgrs, (2.5.12)
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where g(r) = GM,/r? is the local gravitational acceleration of the background model

and dp is the Eulerian density perturbation calculated from the continuity equation as

10
op=—-V*pa) = — 725(7%&«) - pﬁ% Yim. (2.5.13)

The Eulerian pressure perturbation dp = Ap + pgé, as shown in equation (2.5.8a) is de-
rived from equation (2.5.4) or (2.5.5) depending on the perturbing source term. Equation
(2.5.13) describes the density perturbation the elastic crust can sustain on a spherically
symmetric background. From this Ushomirsky et al. (2000) found a neutron star with
M = 1.4Mg, R = 10km could sustain a maximum quadrupole moment of Qa2 ~ 1038 g
cm?, for a breaking strain of 1072, in the crust. The quadrupole moment required to bal-
ance the spin up torque from accretion for such a star was calculated in Bildsten (1998)
to be Qa2 ~ 4.5 x 1037 gem?. This result confirms the initial back of the envelope calcu-
lation shown in equation (2.3.7) that the crust is able to elastically sustain a quadrupole
moment sufficiently large to halt accretion spin-up, by radiating gravitational wave en-
ergy, without cracking. A calculation of how large a compositional asymmetry, or tem-
perature asymmetry, can develop is clearly required. In later chapters, we will compute
how large a temperature asymmetry is obtained if an internal magnetic field makes the
thermal conductivity anisotropic.

Ushomirsky et al. (2000) find a temperature perturbation ratio 67'/T ~ 1% would gen-

erate a sufficiently large quadrupole moment of Q22 ~ 2 x 10737

per capture layer. Ap-
proximating this value over several capture layers and dividing by the moment of inertia,

a parametrised formula of the ellipticity € of the neutron star crust can written as

€=-7 ~5x10 (1% ) (2.5.14)

In later chapters, we will use this formula to provide an estimate of the mountain size
produced by the temperature asymmetries calculated from our original work. The value
of 6T /T will be taken at p = 1 x 10'2 g cm~3, as Ushomirsky et al. (2000) find the higher
density inner crust is the part that contributes the most to the quadrupole moment, with

the temperature perturbation peaking at approximately this density.

2.6 Thermoresistive instabilities

An alternative method of how temperature asymmetries may arise in a neutron star’s
crust is through thermoresistive instabilities. This idea is completely different to the
work of Bildsten (1998), and although we have chosen not to go down this path, it is
included here as an illustration of a completely different way of potentially generating

neutron star mountains.
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Thermoresistive instabilities is an effect that arises due to the magnetic field of a neutron
star. Unlike the previous considerations, for these instabilities to arise the neutron star
itself does not need to be in an accreting system. The information in this section has

been taken from Price et al. (2012) where magnetars are discussed.

Magnetars are highly magnetic neutron stars (B ~ 10'°G) (Duncan and Thompson, 1992).
Their magnetic fields are constantly evolving due to Ohmic heating, ambipolar diffusion
and Hall drift effects. Ohmic heating is the loss of electrical energy as heat due to resis-
tance. Ambipolar diffusion arises due to the motion of electrons and the magnetic field
relative to the ions present in the crust. The Hall effect is a consequence of the mag-
netic field displacing electrons such that an electric field develops perpendicular to the
direction of current flow.

The magnetic fields in magnetars have both toroidal and poloidal components. High
currents in the outer crust generate the toroidal element of the magnetic field which
leads to Ohmic heating. As the current decays, a heating layer forms, giving rise to
high surface temperatures. This process accounts for the observed trend of increas-
ing surface temperature with increasing magnetic field strength in neutron stars with
B =~ 103G (Pons and Geppert, 2007). The current decay process is determined by the
electron-phonon interactions in the outer crust at temperatures below the crustal melt-
ing temperature. The magnetic diffusivity varies with temperature. A small increase in
temperature leads to an increase in Ohmic heating, which in turn leads to an increase in

resistivity. If the thermal conductivity is low, a temperature runaway effect may occur.

2.6.1 Magnetic field evolution

From magnetohydrodynamics the ohmic decay timescale can be deduced. The magne-
tohydrodynamic equation is

p% =—Vp—pV>d + %J x B, (2.6.1)
where p is the density, v is the velocity, p is the pressure, ® is the gravitational potential, ¢
is the speed of light, J is the current density and B is the magnetic field. From Maxwell’s
equations and Ohm’s law, the magnetic field evolution can be described by the Ohmic
decay, ambipolar diffusion and Hall effect contributions as

0B J 1
:—ch(—va—i— J><B>, (2.6.2)
ot o c cnee

where o is the electrical conductivity, n. is electron number density and e is the charge
of an electron. The first term on the right hand side in equation (2.6.2) describes the

Ohmic decay in the magnetic field evolution. Using this Ohmic decay term, along with
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the timescale approximation 7 ~ %}at' the Ohmic timescale at T' ~ 108K is
Tohm = L1, (26.3)
I \2 0 -1
=3 x10° 2.6.4
. (1km> (103 cm? sl> b ( )

where L is the typical magnetic field length-scale and n = ¢?/(4n0) is the magnetic
diffusivity Price et al. (2012).

The neutron star crust is modelled as an infinite slab, with = pointing into the star as
shown in Fig. 2.6.1.

A
Z
A
X
— Surface
104g-cm 3
Atmosphere
_ Quter Boundar
10° g-cm 3 =
[ Outer Crust
11 — Inner Boundary
10 g-cm ?
Inner Crust/Core

Figure 2.6.1: Schematic diagram of the neutron star model where the shaded area represents the region
undergoing Ohmic heating reproduced from Price et al. (2012).

The thermal evolution of the outer crust is described as

T (z) _ 4mn(p,T)

c,,(p, T) ot 2

J?2+ V- [K(p, T)VT(z)] — Qu(p,T), (2.6.5)

where p is the density, ¢, is the specific heat capacity, @, is the neutrino emissivity and
K is the thermal conductivity. The first term on the right hand side of equation (2.6.5) is
the heat contribution from Ohmic heating. More specifically, the square of the electrical
current J arises from the relationship between current and electric field along with Joule

heating per unit volume as

J(z) = oE, (2.6.6)
J2

J- E="". (2.6.7)
g

The magnetic field evolution as computed from the induction equation and Ohm’s law
is
0B(x)
ot

= -V x [n(p,T)V x B(z)], (2.6.8)
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where the magnetic field is related to the current by

J(z) = iv x B(x). (2.6.9)

2.6.2 Thermal instability

Price et al. (2012) analysed the stability of the system by adding a temperature perturba-
tion
T(t) =Ty + 0Te, (2.6.10)

to the heat diffusion equation (2.6.5), where 07 is the perturbation and + is the growth
decay rate. The heat diffusion equation becomes
9*T 1 dr , 5 OK' 0Ty

= ey — Epg2 o TG0 g
Ox? K il cszO Ox Oz Ox?

0Ty 1 [0K, ,0To | 06T
} 6T—E [&C + K 3@“] e (2.6.11)

where prime indicates differentiation with respect to 7" at fixed «.

The perturbed boundary conditions were found by Price et al. (2012) by integrating through
the atmosphere for several values of the unperturbed stellar surface temperature. There

is no Ohmic heating in the atmosphere and no explicit allowances for the heat blan-
ket. This creates uniquely defined values for a given surface temperature at the outer
boundary as Ti;, and the temperature gradient as d7,},/dz. The temperature gradient is

a function of the outer boundary temperature as

dTob .
2 = (Ton)- (2.6.12)

By differentiating this equation with respect to Ty, the outer boundary condition is

. _d (dTy
[ (Ton) = T ( I ) (2.6.13)

The boundary at the crust-core interface Tj, is assumed to be an infinite heat reservoir
where §T}, = 0 (Price et al., 2012).

By numerical experiment, an instability was found. To see how 7 scales with the param-
eters of the problem Price et al. (2012) computed an approximate analytical expression.

The dominant terms in the perturbed heat equation (2.6.11) was found to be

90T 1

4
= % {cyfy - C;Tn’Jg} 5T. (2.6.14)

Using a plane wave to describe the heat flow, 6T = Aexpi(kz — wt), and setting K = 1
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an approximate expression for the instability growth rate evaluated at the heating peak
was established by (Price et al., 2012) as

Ky

o LA e ] , (2.615)

c p’p T T2

1 (4r
2

where the index p’" indicates parameters evaluated at heating peak.

Price et al. (2012) found that the instability growth rate was affected by a change in sur-
face temperature, as this alters the heating location. If the crust temperature exceeds the
melting point the system begins to stabilise as the magnetic diffusivity becomes negli-
gible and heating feedback is lost. For a fixed current density, larger values of L corre-
spond to larger magnetic fields. The instability growth rate is highly dependent on the
heating location due to the spatial variation of the thermal conductivity and magnetic
diffusivity. Instabilities are most likely to develop in regions of low thermal conductivity,
as the heat is not easily dissipated. The minimum magnetic field required to destabilise

the crust is 3 x 101°G. The instabilities arise closer to the neutron star’s surface.

An investigation into whether a similar mechanism arises in low mass X-ray binaries
would provide an alternative strategy to grow mountains. Thermoresistive instabili-
ties could provide the temperature asymmetry required to generate a mass quadrupole
moment sufficiently large to prevent a neutron star’s spin frequency from increasing.
Although the high magnetic field strength required for such an effect, as found by Price
et al. (2012) is discouraging.
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Modelling the thermal profile of a uniform density neutron star crust

From Bildsten’s initial back of the envelope calculations, a more in depth analysis was
performed by Ushomirsky et al. (2000). In the paper Ushomirsky et al. (2000) investi-
gated how large a quadrupole moment the crust could elastically sustain. The authors
found the crust could maintain a mass quadrupole moment of Q22 ~ 1.2 x 103 g cm?
before cracking. Bildsten calculated the mass quadrupole moment required, to gener-
ate gravitational waves with enough angular momentum to balance the spin-up torque
from accretion, to be Q22 ~ 4.5 x 1037g cm?. Bildsten’s mass quadrupole estimate lies
well within the bounds of the maximum quadrupole moment that can be sustained by
an accreted neutron star crust. This result suggests a deeper investigation into how large
a mass quadrupole moment can develop in a neutron star crust is required.

The work in this chapter builds on that done by Bildsten (1998) and Ushomirsky et al.
(2000). Bildsten (1998) assumed the existence of a temperature asymmetry in an ac-
creted neutron star crust. In this work, we will calculate the temperature asymmetry
induced by the presence of a magnetic field for neutron star undergoing spherical ac-
cretion. A model of the thermal profile of a neutron star crust is developed in stages. A
background model of the temperature distribution in a spherically symmetric neutron
star is developed, which is then perturbed by the addition of a magnetic field.

In an accreted neutron star crust, there are many different microphysical processes at

play. To build confidence in this model and to ensure it works accurately, a toy model is

29
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initially constructed. The problem is simplified to an accreted neutron star crust of uni-
form density. Removing the density dependence of the variable parameters, will make

the results easier to predict and determine if the model is producing reliable results.

In the first part of this chapter, a background model of a spherically symmetric, con-
stant density, accreted neutron star crust is created. Accretion provides a heat source
which deposits energy into the crust via nuclear reactions. Heat sinks arise from neu-
trino radiation and heat being conducted into and out of the crust. Using these inputs, an
ordinary differential equation (ODE) is derived from the heat equation describing how

the temperature varies within a spherically symmetric neutron star crust.

Later in the chapter, a magnetic field is inserted into the neutron star crust. The addition
of a magnetic field may enable temperature asymmetries to develop. From the litera-
ture, Yakovlev and Urpin (1980), Geppert et al. (2004), Pons and Geppert (2007), Page
et al. (2007) and Aguilera et al. (2008) show the temperature distribution in a magne-
tised neutron star crust is anisotropic. This anisotropy arises from the interaction of
electrons with the magnetic field. Electrons are the predominant heat carriers in a neu-
tron star crust. The thermal conductivity perpendicular to the direction of the magnetic
field lines is reduced as shown in equation 3.4.5 (Aguilera et al., 2008). The significance
of the effect the magnetic field has on the thermal conductivity of an accreted neutron
star crust is investigated in this chapter, to see how the magnetic field perturbs the tem-

perature distribution in an accreting neutron star crust.

The work in this chapter is for the simplified case of a uniform density crust. We se-
lect density parameters as: density p = 1 x 10'2, proton number Z = 16, mass num-
ber A = 56, mass fraction of free neutrons X = 0, and the electron chemical poten-
tial ue = 33.73MeV. These density dependent values were obtained from Haensel and
Zdunik (1990a). The outer and inner boundary of the crust are set for radii rop = 10km
and rig = 9km respectively. This model was constructed in preparation for a non-
uniform realistic equation of state calculation, which is detailed in chapter 4.

3.1 Heat flux distribution in an accreted neutron star crust

To investigate the temperature distribution in a neutron star crust a background profile
of the radial heat flux must first be developed. The thermal profile of a spherically sym-
metric neutron star crust, with heat input from electron captures arising from accreted
material, is modelled from the heat equation. The heat equation is

0

o = ~V - -F+0Q, (3.1.1)
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where p is the mass density, C), is the specific heat capacity at constant pressure, T is
temperature, F is the heat flux and @ is the net rate of production of heat per unit time.
The heat equation can be simplified by considering the static solution in terms of the
heat flux. From Fourier’s law

F=—-KVT, (3.1.2)

where K is the thermal conductivity. The divergence of the flux is computed as
V-F=-VK-VT - KV*T. (3.1.3)

How the heat varies with radius within the crust is described by exploiting the spher-
ical symmetry of the divergence of the flux (equation (3.1.3)), this can be expressed in
spherical polar coordinates as

V-F = (3.14)

7771%

AKAT i (ar
dr dr r2 dr ’

where r is the spatial coordinate in the radial direction. From equation (3.1.2), Ushomirsky
et al. (2000) write the time-independent divergence of the flux as

V-F=Q
= p (€nuc — €) , (3.1.5)

where p is the density, e,y is the local energy deposited per unit mass per unit time by
nuclear reactions and ¢, is the neutrino energy production per unit mass per unit time.

Combining equations (3.1.4) and (3.1.5), an expression for the heat distribution in the

crust, including the heat source and sink terms, can be written as

di dT L d ( 2dT>. (3.1.6)

pleme —6) == g ~Kow " &

Integrating equation (3.1.6) will produce a description of how the temperature within the

crust varies with radius.

3.1.1 Thermal conductivity

The thermal conductivity is a temperature dependent quantity that is governed by the
heat transport mechanisms present in the neutron star crust: electrons K., neutrons K,
protons K, and phonons K, (Aguilera et al.,, 2008). The scalar thermal conductivity can
be written as a linear combination of these heat transport processes as

K =K.+ Ky + K, + Kpp. (3.1.7)
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In the crust, electrons are the dominant heat transport mechanism (Aguilera et al., 2008)

and the only contribution that will be considered from now on, such that K = K.

From Yakovlev and Urpin (1980) the thermal conductivity is a function of temperature
and can be written as

K- WZk%TneT

Im*

e

(T), (3.1.8)

where kg is the Boltzmann constant, 7(T") = 1 is the relaxation time and v is the scatter-
ing frequency arising from interactions between electrons and other particles or exci-
tations. n, is the electron number density, defined as the number of electrons per unit

volume and is written as p
Ne = an(l - Xn), (3.1.9)

where Z is the proton number, A is the mass number and X, is the fraction of free
neutrons. The electron effective mass m} is derived from the mass-energy equivalence
principle to accommodate the degenerate, relativistic nature of the electrons in the crust
such that

P2\ ?
m! = <m2 + g) , (3.1.10)
C

where m is the electron rest mass, ¢ is the speed of light and pr is the Fermi momentum.

For a degenerate electron gas, the Fermi momentum is given by
pr = h(37%ne)3, (3.1.11)

where h is the reduced Planck constant (Yakovlev and Urpin, 1980). The Fermi mo-
mentum can be written in terms of density using the electron mean molecular weight

pe = A/Z. The Fermi momentum written as a function of p is

1

32p\ 3

pp = h (M”mp ) : (3.112)
elllh

where my, is the baryon mass. Combining equations (3.1.10) and (3.1.12) gives the electron

1
L1
ho(3n2p\3)"°
m* = <m2—|—2< 7”)> > : (3.113)
€™\ HeMp

1
Z\3
m’ ~9.16 x 10726 (’ﬁ) :

1
P12\ 3

— 2~ 100
Me ( A > ’

effective mass as

@

CDS*
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where

2

h (37%p\?®

m? < = < a p) . (3.1.14)
€\ HeMp

The ratio ;’1— shows how much larger m} is than m, due to relativistic effects.

3.1.2 Electron scattering frequency and relaxation time

The thermal conductivity of a neutron star crust is a function of relaxation time 7(7") = L,
arising from the interactions of electrons with other particles or excitations. In the lit-
erature, there does not appear to be standard agreement on the dominant scattering
processes that occur in an accreted neutron star crust. This gives rise to a range of re-
laxation timescales in the thermal conductivity. Bildsten (1998) uses electron-phonon
interaction as the dominant scattering frequency. Ushomirsky et al. (2000) use a lin-
ear combination of the electron-ion and electron-electron contributions for the scat-
tering frequency. More recent publications including: Geppert et al. (2004), Page et al.
(2007), Aguilera et al. (2008) and Brown and Cumming (2009) use a formalism from
Yakovlev and Urpin (1980) that characterises the solid outer crust as being dominated by
electron-phonon scattering and the inner crust as having electron-impurity scattering
as the dominant mechanisms. The formalism used here is that given by Yakovlev and

Urpin (1980), as this is the most commonly used formalism in the literature.

Following the formalism from Yakovlev and Urpin (1980) and Brown and Cumming (2009)

the scattering frequency v in the neutron star crust will be written as
V= Vep + VeQ, (3.1.15)

where v, and v.q are the electron-phonon and electron-impurity scattering frequen-
cies respectively. Electron-phonon scattering is temperature dependent as
13¢* kT
Vep =~ (3.116)
1.25 x 10'®7T; Hz.

Q

Going deeper into the crust, as the density increases, electron-impurity scattering be-
comes more important in mediating the thermal transport. Electron-impurity scattering
is a function of impurity parameter, a dimensionless number that indicates how crys-
talline Q;mp < 1 or disordered Q;mp > 1 the neutron star crust is (Pons et al., 2013). The
impurity parameter measures the distribution of nuclide charge numbers for i species

and is defined as

Qimp = n;)%l Zni(zi - <Z>)2, (3.1.17)
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where njoy, is the ion number density summed over all species. The electron-impurity
scattering is written as

4
47TC?impe Nion

Aimp.- 3.118
p%"UF imp ( )

VeQ =

where Ajpy,p ~ 1 is the coulomb logarithm (Brown and Cumming, 2009), and vr is the
Fermi velocity. Using the expression for the Fermi momentum as shown in equation in
(3.1.12) and the relation

Ne p
B L 3.119
Nio 7 " oz ( )
the electron-impurity scattering can be written as

1

. 3
Ve = 177 % 118 Qimp <p12> Hz, (3.1.20)

Z Lhe

From equation (3.1.15) the relationship between scattering frequency and relaxation time
is given by Page et al. (2007) as
1

Figure 3.1.1 is a phase-space plot of the scattering frequency. This graph shows which
scattering frequency regime dominates for different temperatures and impurity param-
eters, inside the accreted neutron star crust. For low temperatures and an impure crust
(high Qimp) impurity scattering processes dominate. At high temperatures for a pure
crust, electron-phonon scattering processes dominate. By setting the electron-phonon
and electron-impurity scattering frequencies equal to one another, along with equa-
tions (3.1.16) and (3.1.20) a parametrised formula of the temperature as a function of im-

purity parameter can be written as

1
: 3
T — 142 x 1039ime (”12> K. (3.122)

Z\ e
To generate figure 3.1.1 the density dependent values were selected from Haensel and
Zdunik (1990a) for p = 1 x 10'2gcm ™3 as Z = 14 and pi, = 33.73 MeV. In this background
model, both scattering regimes will be included, as it is unclear which scattering mech-

anism will dominate.

3.1.3 Heat source and sink terms

Heat is deposited into a neutron star crust via accretion. Some of this heat is conducted
through the crust and into the core, and some heat is radiated away by neutrinos. The
heat source and sink terms in the heat equation (3.1.6), are computed from the micro-

physical processes that take place in the crust. In this section, the energy deposited into
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Figure 3.1.1: A phase-space plot to show which scattering frequency regimes dominate for different tem-
peratures and impurity parameters for p = 1 x 10'’gcm™*, Z = 14 and p. = 33.73 MeV. Electron-phonon
scattering vep, dominates for high temperatures and low impurity parameter. Electron-impurity scattering
veq dominates at low temperatures and high impurity parameter.

the crust by nuclear reactions along with the energy radiated out of the crust from neu-
trino production is computed.

The energy from accretion will be deposited only at transition layers. In this chapter,
as we are considering a uniform density crust, the energy deposited will be smoothed
over the whole crust, neglecting the transition layers. Later in chapter 4, the transition
layers will be reinstated. The local energy generation rate, averaged over the crust, is
calculated by dividing equation (2.2.1) by the volume of the crust. The energy released
per unit volume per unit time in the crust is

3ME
Penuc = e, (3.1.23)
mb47r(Router - Rinner)

where Router and Rinper are the outer and inner radii of the crust respectively and Epye
is the total energy deposited per accreted nucleon.

The neutrino energy production rate by Haensel et al. (1996) is derived from electron v
bremsstrahlung and has value

B 87rG12;Z264C_%

6
pe = Serioes  (rBT) il

ZQ
= 3.229 x 1017P12T§IXA ergs lem ™3, (3.1.24)
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where Gy = 1.436 x 10~% ergcm? is the Fermi weak coupling constant, Z is the atomic
charge, e is the charge of an electron, C2 ~ 1.675 takes into account the generation of
electron, mu and tau neutrinos, n; is the number density of nuclei (ions), the dimension-
less parameter L ~ 1 is a slowly varying function of density, temperature and nucleus
parameters, £ is the reduced Planck constant, c is the speed of light, A is the atomic mass

and X4 is the mass fraction of nuclei with atomic mass A (Haensel et al., 1996).

Choosing parameter values for a typical point in a neutron star crust, equation (3.1.24) can
be simplified further. For A=46, Z=14 (Haensel and Zdunik, 1990a), in the middle of the
capture layer where p12 = 1and the neutrino coolingrate s pe, = 1.93 x 10 T§ ergs=! cm=3.
When considering a uniform star this expression for pe, can be re-written as a factor of

temperature multiplied by a constant by employing these approximations as
pe, = CTY, (3.1.25)

where C = 3.229 x 1017p12272XA ergs~!em ™3 which is set to C = 1.93 x 10'® erg s~}
cm~3 for a uniform density neutron star crust.

3.1.4 Boundary conditions

The neutron star crust has an outer boundary where the crust meets the infalling ac-
creted material and an inner boundary at the crust-core interface. The boundary con-
ditions used follows those given by Ushomirsky et al. (2000). The outer boundary con-
dition, at the surface of the crust, is set to the steady burning temperature of the hydro-

gen/helium layer on the surface of the star and the accretion rate as

i \2/7
Toum ~ 5.3 x 108K ( > , (3.1.26)
MEdd

where 1 is the local accretion rate per unit time, mgqq = 3.029 x 107°Mg, yr—! is the
local Eddington accretion rate (Schatz et al., 1999).

To compute a value for the inner boundary (the crust-core interface) condition
Ushomirsky et al. (2000) approximate a neutron star’s core to be a perfect conductor,
where all of the heat flux conducted into the core is radiated away as neutrinos. The neu-
trino luminosity of the core is then calculated from the modified Urca formula (Shapiro
and Teukolsky, 1983, p.321). The luminosity of the core is written as

~Fanerdm R,

inner

= Lcore (3.1.27)

M [ e\ 3 A
=5.3x10%ergs™! <M@> < r;)“) TS exp T )
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where Finner is the flux at the crust/core interface, pyyc is the nuclear density, p is the
uniform density of the star and A is the superfluid gap energy that is initially set to zero

corresponding to a neutron star with a non-superfluid core.

Using equation (3.1.2) with (3.1.27) the temperature gradient at the crust-core boundary

can be written as
dT LCOI’B

dr ~ 4nKRZ

mner

(3.1.28)

To build a thermal profile of the neutron star crust, using the outer and inner boundary
conditions detailed in equations (3.1.26) and (3.1.28) respectively, the heat equation, along

with the boundary conditions, must be solved by numerical integration.

3.1.5 Temperature distribution model

The thermal profile of a spherically symmetric, constant density, neutron star crust is
constructed from the heat equation. Heat is deposited by nuclear reactions from accre-
tion and radiated away via neutrino emission processes.

From equation (3.1.6), a second order ODE describing how the temperature varies with
radius in an accreted neutron star crust is constructed as

d*T 1 dK dT sz_Q

= —— - 3.1.29
dr? Kdr dr rdr K’ ( )

where Q = Penuc — PEu.

The thermal conductivity from equation (3.1.8) can be re-written to show the tempera-
ture dependence more explicitly by using equation (3.1.15) as

1
K=0CkT——— 3.1.30
K CepT + I/eQ7 ( )
where -
kgne
O = LBl (3.1.31)
3m
and 2y
13e B
Cep = - (3.1.32)

From this expression for the thermal conductivity, the first order derivative of the ther-
mal conductivity with respect to radius, for a constant density crust, can be written as

dK 1 dT CopT  dT
= =k

—_—  ————| . 3.1.33
dr CopT +veq dr  (CopT + veq)? dr ( )
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The second order ODE shown in equation (3.1.29) becomes

&T _ _dT

dT [1dT 1 dT 2dT  Q
dr2  dr [T dr CepT +veq

p— || — —— — —. 3.1.34
P dr rdr K ( )

A static solution of the thermal profile of a spherically symmetric, uniform density neu-
tron star crust will be computed by numerically solving the equation (3.1.34) for the outer
and inner boundary conditions, detailed in equations (3.1.26) and (3.1.28) respectively,

using the shooting method.

3.2 Numerical methods

The ODE shown in equation (3.1.29) is a boundary valued problem with the outer and
inner boundary conditions set as defined in equations (3.1.26) and (3.1.28) respectively.
Equation (3.1.34) is solved numerically using the shooting method. The shooting method
reduces a boundary value problem to an initial value problem by 'shooting’ trajectories
until one is found that satisfies the appropriate boundary condition.

The shooting method was selected to solve the ODE as it is quick and adaptive. To test
the accuracy of the results obtained using the shooting method, the ODE results will be

checked using finite difference methods and convergence testing.

The function that solves the initial value problem requires the outer boundary values of
both temperature Top and the first order temperature derivative with respect to radius
(25)op. The temperature at the outer boundary is set to a known function of accretion
rate as detailed in equation (3.1.26). The temperature derivative at the outer boundary is
not predefined. A value of (%)OB is obtained using the shooting method.

The SciPy python function scipy.optimize.brentq is used to seek the root value of the
shooting function. The trial root value is set as the outer boundary value of (% Jos. With
both the values of Top and (41)p specified, the python function scipy.integrate.odeint
is used to integrate the initial value function, which contains the second order ODE as
shown in equation 3.1.34, to determine the successive values of 7" and % into an array
for decreasing r values from Royter tO Rinner, moving from the crust to the core, the inner
boundary. The value of T at the inner boundary from this array is then compared to the
set boundary condition at the crust/core interface as shown in equation (3.1.28). If the

values match then the computation is complete.
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3.2.1 Non-dimensionalisation

The differential equation given in equation (3.1.29) will be solved using the shooting
method written in Python. To enable the computation to be accurate and effective, the

heat equation must be non-dimensionalised.

A simple method of non-dimensionalisation is to divide ¢, 7" and R in equation 3.1.29 by

a typical timescale temperature and radius respectively to produce the following rela-

tions:
T = T/Tiyp, (3.2.1)
t = t/tiyp,
P =1/Riyp,

where " indicates the non-dimensionalised parameter. Time has been included in this

calculation as it may be required in the future.

A common value of radius was selected to be the outer radius of a neutron star crust
where Ry, = Router sSuch that 0.9 <7 < 1.

A typical thermal timescale ¢y, is determined by using equation (3.1.1), the approxima-

: 27 o T T -
tions VT &~ 7z and 7 & typ to give

C,R?
tigp ~ 2 T (3.2.2)

To determine a value for Tiy, there are two different approaches that can be made. The
first is to equate the nuclear heating and the neutrino cooling terms in the heat source
as follows

Penuc = PEu, (3.2.3)

using equation (3.2.3) and the the definitions for pep,. and pe, given in equations (3.1.23)

and (3.1.24) respectively, a typical temperature value is calculated to be

1
penuc) 6
M

9
Tiypr = 1 x 10K ( -

(3.2.4)
where C'is the factor multiplying 7¢ in equation 3.1.25. A value for Tiy,1 can be calculated
by setting penue = 35.3 x 10'% cgs (for an accretion rate of M = 1 x 1079Mg yr™1), p =
1 x 10'2gcm™3, Z = 16, A = 56 and X, = 1 and inserting these values into equation
(3.2.4) as

Tiyp1 = 5.48 x 10°K. (3.2.5)
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The second method equates the thermal conduction into the core with nuclear heating

as follows
dK dT 20T 0°T
ne=—-—+K |-——+—1, 3.2.6
Pluue = "0 "y [r or + 87’2} ( )
N KT
S (3.2.7)
rearranging to give
penucR2
Tiyp2 = 7 (3.2.8)

For M = 1x10°Mg yr', T = 1 x 10 Kand R = 1 x 10% cm, typical values of the
thermal conductivity and energy released in the crust per unit time were calculated to
be K =2.5x 10" ergs~ ' cm~! K=t and pepue = 5.34 x 101 cgs, respectively. Substituting

these values into equation (3.2.8) gives
Tiyp2 = 2.13 x 10° K. (3.2.9)

Tiyp2 is one order of magnitude larger than Tiyy,;. Initially is was unclear as to which Ty,
would be the better choice. After testing the code for different outer boundary temper-
atures and accretion rates T2 was slightly better suited to numerical calculations as
the dimensionless values were an order of magnitude smaller, but either choice would
give sensible results.

Using the relations shown in equations (3.2.2) and (3.2.8), the heat equation given in
equation (3.1.29) is non-dimensionalised and written as
o7 1dKdl 20T  0*T QR

9 K dr dF For o2 T KTy,

(3.2.10)

The thermal profile of a neutron star crust will be computed by solving the following

dimensionless ODE . . . )
A>T 1dKdTl  2dI QR?

alf laKal 2al 3.2.11
d2 K di di  +dif KTy, 3210
where
Penuc R?
Tiyp = L0 (3.2.12)
Router - 17
Rinner =0.9.

using the shooting method. Using equations (3.1.30) and (3.1.33) the full non-dimensionalised
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form of equation (3.1.34) is written as

#T df [1dT L dr\] _ 24T QR (3.213)
A2~ di |Tdi CepT +rveg \ T di Pdi KTy -
The boundary conditions in dimensionless form are
o\ 7
. M
Touter =0.25 < . ) 5
MEdd
dar) Leore (3.2.14)
dit linmer 4 KRy, Tiyp Reyp

3.3 Background heat flux model results

Integrating equation (3.2.13) using numerical techniques gives the temperature distribu-

tion in an accreted neutron star crust of constant density.

A plot of how temperature varies with radius is shown in figure 3.3.1 for the free parame-
ters: accretion rate and Qinmp = 1. The temperature decreases with radius when moving
from the outer crust boundary to the inner crust/core interface for all three accretion
rates. The temperature gradient is steeper for a higher accretion rate when compared to
that of lower accretion rates, as more energy is input into the crust via nuclear reactions

per unit time.

A plot of how the flux (equation (3.1.2)) varies with radius is shown in figure 3.3.2. The
magnitude of the rate of energy flow per unit area is at a maximum at the inner boundary
and a minimum at the outer boundary. The negative sign of the flux shows the heat is

flowing inwards from both the inner and outer boundaries.

The neutrino emissivity as shown in equation (3.1.24) is a function of temperature to the
sixth power. A plot of how the neutrino cooling varies with radius in a neutron star crust
is plotted in figure 3.3.3. It can be seen that neutrino cooling is highest at larger radii. This

corresponds to the crustal temperature being at a maximum at the outer boundary.

The electron relaxation time in the thermal conductivity comprises of two terms: electron-
phonon and electron-impurity scattering frequencies, as shown in equations (3.1.16),
(3.1.18) and (3.1.21) . The electron-phonon scattering is temperature dependent and dom-
inant at high temperatures T' > 107K. How the electron-phonon scattering varies with
radius is shown in figure 3.3.4. The electron-phonon scattering frequency is approxi-
mately one order of magnitude larger than the electron-impurity scattering. This is due
to the impurity parameter employed of Qimp = 1 (Brown and Cumming, 2009), the high
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Figure 3.3.1: The temperature as a function of radius, for a uniform density neutron star crust (p = 1x10'?
g cm™?), was calculated. In this figure, how the temperature varies with radius inside the neutron star crust
is shown for different accretion rates for Qimp = 1. The green line corresponds to the fastest accretion rate
of My =1 x 10~ Mg yr~?, blue line with an accretion rate of M; = 1 x 1072 Mg yr~! and the red line with

the slowest accretion rate M; = 1 x 10719 Mg yr=*.
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Figure 3.3.2: This figure shows the heat flux distribution inside the crust for different accretions rates.The
heat flux is a function of temperature and varies with radius inside an accreted neutron star crust with
impurity parameter Qim, = 1. The green line corresponds to the fastest accretion rate of M; = 1x 10~% My,
yr~!, blue line with an accretion rate of M; = 1 x 10~° M, yr~! and the red line with the slowest accretion
rate My = 1 x 107 1M yr— 1.
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Figure 3.3.3: Neutrino cooling is a function of temperature. This figure shows how the neutrino emissiv-
ity varies with radius inside an accreted neutron star crust for different accretions rates with Qimp = 1. The
neutrino cooling rate is at a maximum at the outer radius of the star and decreases with decreasing radius
(towards the centre of the star). The green line corresponds to the fastest accretion rate of M; = 1x 10~ Mg,
yr~?!, blue line with an accretion rate of M; = 1 x 107° Mg yr~! and the red line with the slowest accretion
rate M, =1 x 107*°M, yrt.

temperature of the neutron star crust ~ 10K and the temperature dependency of the
electron-phonon scattering. This result is consistent with the discussion in section 3.1.2
and figure 3.1.1.

The results in this subsection show how the temperature is distributed in a uniform den-
sity accreted neutron star crust. The temperature sensitive neutrino cooling mechanism
isrepresented for different accretion rates. The electron-phonon and electron-impurity
scattering frequencies, that affect the thermal conductivity, are also represented. In the
next section, the validity of these results will be reviewed using numerical testing tech-

niques.

3.3.1 Numerical Testing

To check the accuracy of the ODE solver implemented and the validity of the results
produced, the numerical techniques are tested using a variety of methods. The prob-
lem being solved within this body of work is complex. As more variable parameters are
introduced, the possibility of errors arising increases. To build confidence in the rou-
tine and results, mostly in preparation for the introduction of the density dependent
parameters in the next chapter, three different numerical tests were employed.

Initially, the results were checked to see if they converge for increasing resolution. Fol-
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Figure 3.3.4: The electron-phonon scattering frequency varies with radius inside an accreted neutron
star crust for different accretions rates. The electron-phonon scattering frequency increases with increas-
ing temperature, and is at a maximum at the outer boundary. The green line corresponds to the fastest
accretion rate of M; = 1 x 10~® Mg, yr~!, blue line with an accretion rate of M; = 1 x 10~? Mg yr~! and the
red line with the slowest accretion rate M; = 1 x 107! Mg, yr~*. The magenta line represents the electron-
impurity scattering, which is a function of the impurity parameter where Qimp = 1 and is independent of
temperature.

lowing this, the self consistency of the model was inspected by confirming that the en-
ergy of the system was conserved. Upon passing these tests, a further investigation into
the accuracy of the model was carried out by approximating the derivatives using finite
differencing techniques. A more detailed description of these tests and the methods

employed are detailed in the subsections that follow.

3.3.1.1 Convergence Test

A convergence ratio Cj.s; was computed for the temperature values produced by the
ODE solver. To test for convergence, equation (3.1.34) was solved numerically for vari-
ous controlled error parameters in the numerical integrator. More specifically, the rtol
parameter in the python function scipy.integrate.odeint was varied for different toler-
ances. Reducing the rtol value should decrease the error in the calculation which in-
creases the accuracy of the calculation. The numerically computed temperature can be

written as a function of the error in the calculation as
T = Toaes + AS™, (3.3.)

where Tixact is the exact temperature value, A is a constant, n is the order of conver-
gence and 0 is a measure of the numerical error in the calculation, which in the work
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contained within this section corresponds to the rtol value used when solving the ODE.
To determine whether the ODE solutions are convergent, a value for n must be deter-

mined.

Using equation (3.3.1), the convergence ratio Cest was computed at the mid-point of the
neutron star crust, using different accuracy parameters corresponding to the rtol values
employed, using the relation

Thigh - Tlow
Thigh - Tmedium

Clest = , (3.3.2)

where Tiow, Timedium. and Thign corresponds to the error control used when calculating
the temperature. Ti,y has the largest rtol value and Ti,;g1, the lowest. The relationship
between the unknown exact value of temperature Tyt at a given radius and the error
0™ in the calculation arising from the rtol value is assumed to be

Tlow = Texact + A(S{CL)W,

Tmedium = Texact + Aégwdium’

Thigh = Texact + Aéﬁigh- (333)
The rtol values were set to: 6 : 1.5 x 107,67 4.+ 1.5 x 107! and O+ 1.5 X 10~12,

The rtol value for §)} was selected as the default value of rtol in the scipy.integrate.odeint
function in python. Combining equations (3.3.2) and (3.3.3) a value for n is determined

as
— log(ctest - 1)

10g10(2)

For first order convergence n must be positive. The higher the value of n, the better the

(3.34)

convergence. The code computes n = 1.07 suggesting the ODE solver is convergent and
to slightly better than first order.

3.3.1.2 Energy conservation self-consistency test

Testing the code to check that energy is conserved provides a simple self-consistency
check. Thisis achieved by ensuring the energy radiated out of the core by neutrinos, plus
the heat energy lost through the outer and inner boundaries via conduction, is equal to
the total heat input by accretion.

The total neutrino radiation energy emitted by v bremsstrahlung radiation per unit
time via the crust is calculated by integrating equation (3.1.24) over the crust as

Router
E, = / pe Amridr, (3.3.5)
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where Router and Rinner are the radii at the outer and inner boundaries respectively. The
total heat conducted into the core and out of the crust per unit time is calculated from

the flux (equation (3.1.2)) at the crust-core interface as

T
Ex = —K—le AT R?, (3.3.6)
T

where R is set to the inner boundary radius to calculate Fy(core) and R = Router for

Ex (crust)-

The sum of thermal energy conducted out of the crust into the core and out of the sur-

face of the crust, along with the neutrino energy radiated out of the crust as

Etotal = £y — EK(core) + EK(crust)' (3.3.7)

The total heat energy generated in the crust by accretion per unit time €t is

ME
Etotal = -, (3.3.8)

nuc

The self-consistency test is passed when Eiota) = €total. Equation (3.3.5) is solved by in-
tegrating over the volume of the crust. Each term shown in equation (3.3.7) is computed
and then summed together to determine E,. The total heat energy input via accre-
tion €qota1 is computed analytically using equation (3.3.8). A summary of these results is
shown in table 3.3.5.

Accretion Rate (Moyr™!) | Eiga(ergs ™t em™3) | eporar(ergs™! em™3) W
1x10°8 6.0714020 x 103 | 6.0714015 x 1033 | 1.00 x 107
1x107? 6.0714058 x 103* | 6.0714015 x 103* | 7.57 x 107
1x 10710 6.0714137 x 10> | 6.0714015 x 10% | 1.92 x 1076

Table 3.3.5: A table summarising the results of the self-consistency test for the computation of the ther-
mal profile in a constant density, spherically symmetric, accreted neutron star crust. A ratio of the total
energy input from accretion and the total heat energy transported out of the crust via heat conduction and
neutrino emissivity, is calculated for the accretion rates: 1 x 107%Mg, 1 x 107"Mg, 1 x 107" M. This
comparison checks that energy is conserved in the system.

In table 3.3.5, the values of the ratio of Eiyta1/€total are equal to unity to an accuracy of a
least 107, beyond this the value begins to diverge from 1. This is expected as the error
arises solving the ODE, and also from integrating to obtain E,. The order of accuracy
in these results is sufficient to conclude the energy conservation test of the system is

passed.
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3.3.1.3 Finite Difference Test

Finite difference methods provide another internal consistency check to test the ODE is
being solved correctly by the Python package odeint. From Taylor series expansions an
expression for the second derivative of a function f(z) at any point ~ can be written as

flw+h) = 2f(@) + [z —h)

o2 (3.3.9)

f'(x) =
Equation (3.3.9) is called the central finite difference stencil. This stencil is used to calcu-
late ‘f;% from the T values computed by the ODE shown in equation (3.1.29). To calculate
the second order derivative at the outer f"(z)op and inner f"(x);p boundaries, equa-
tion (3.3.9) has to be modified to ensure the values of h are consecutive and correspond
to decreasing values of r (i.e. from the outer crust to the crust/core interface) (Fornberg,
1988) such that

2f(z) — 5f(x + h) — Af (z + 2h) — f(x + 3h)

f'(@)op = 2 : (3.3.10)
: 2f(x) —5f(x —h) —4f(z —2h) — f(z — 3h)
['(@)iB = 12 :

The second order derivative of temperature with respect to radius is computed using
finite differencing methods for an accretion rate of M; = 0.5 x 10~9My yr—'. From

equations (3.3.9) and (3.3.10) % can be written as a function of temperature as

d*T _T(r+1)—2T(r) +T(r — 1)

73 (A2 : (3.3.11)
d*T _2T(r) = 5T(r+ 1) +4T(r +2) — T(r + 3)
W(router) - (AT)2 ) (3312)
&>’T, C2T(r—1) = 5T(r —2)+4T(r — 3) = T(r — 4)
W(rlnner) - (AT’)Q 9 (3313)

where r is a radial element. The values calculated from equations (3.3.11) are then com-
pared to the values of % as calculated using the ODE shown in equation (3.1.29) for
number of radial steps n = "25-E = 100. A comparison of these results are shown in
figure 3.3.6. In figure 3.3.6 shows the ODE values of Cf% correlate with the finite differ-
encing values very well.

A measure of the accuracy of the ODE values of ‘57{ can be investigated further by taking
the fractional error between the ODE values and those computed by the finite differ-
encing methods. The fractional error is calculated by dividing the difference of the two
results by a typical value of % as calculated by the ODE. This is plotted in figure 3.3.7
for Qimp = 1. Figure 3.3.7 shows a divergence from zero at higher radii values and an

error of order 10~3. This is sufficiently small to determine that the ODE has computed
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Figure 3.3.6: A test of the accuracy of the ODE solver values, d*T'/dr?, was calculated using finite differ-
encing. The values from finite differencing were then compared to the ODE solver values. A comparison
of these values calculated for an accretion rate of M; = 1 x 1073Mg yr™' and Qimp = 1 as shown in this
figure.

2
the values of Z—Z

within the required degree of accuracy for this work.

3.4 Thermal conductivity in presence of a magnetic field

The thermal conductivity has so far been considered as a scalar. In reality the situation is
far more complex. Electrons are the dominant mediators of heat in an accreted neutron
star crust. In the presence of a magnetic field, the thermal conductivity is altered due to
the interaction between the electrons and magnetic field. The significance of the effect
the magnetic field has on the thermal conductivity is described, with a view to incite a

temperature perturbation in the accreted neutron star crust.

3.4.1 Thermal conductivity tensor

In the presence of a magnetic field the thermal conductivity is written as a tensor «. The

heat flux in tensor form is
F, = =k V'T. (34.1)

The heat flux including the magnetic field contributions Fg is given by Yakovlev and
Urpin (1980) as

F=—k [VT + (wpT(T))*b- (b- VT) +wpt(T)(bx VT)], (34.2)
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Figure 3.3.7: A plot of the fractional difference between the two curves of 3.3.6.

where k) is the thermal conductivity tensor component perpendicular to the magnetic
field, bis the unit vector of the magnetic field and w7 (T') is the magnetisation parameter.
The third term on the right hand side of equation 3.4.2 is from the Hall effect. The classi-
cal electron gyrofrequency wp arises from the angular frequency of the circular motion

of an electron perpendicular to the magnetic field B. The electron gyrofrequency is

defined as
eB

* 0
mic

(34.3)

W —

where e is the charge of an electron and m/} is the effective electron mass. Following the
treatment of Aguilera et al. (2008) the electron contribution of the thermal conductivity

tensor in spherical polar coordinates is written as

by bro brgb 0 _b¢ be
B =61 | L + (weT(T))* | brg bos oy | +wT(T) | by 0 —b. ||, (344
bro bos bog by b 0

where I is the identity matrix and b,, by, b, are the components of the unit vector b in
the direction of the magnetic field, and b;; = b;b; for i, j = r, 6, ¢. It is worth noting that
there appears to be a sign discrepancy in the final term of (3.4.4) in Aguilera et al. (2008).

The thermal conductivity tensor (equation (3.4.4)) can be written in Cartesian coordi-
nates to build intuition by undergoing a change of basis by substituting r — z, 8 — v,
and ¢ — z. For amagnetic field orientated along the z-axis, such that vectors b, = b, =0,
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equation (3.4.4) becomes

1 wBT(T) 0
k=r1 | —wpT(T) 1 0 . (3.4.5)
0 0 1+ (wpT(T))?

The components of the thermal conductivity tensor can be defined in terms of the scalar
conductivity and the magnetisation parameter as follows

2 k2 Tn,
/~€|| = kKo = ?)BTT(T), (3.4.6)
Ko
= 34.7
T T (e (1)) (347)
P M' (3.4.8)

1+ (wp7(T))?

Employing the definitions from equations (3.4.6), (3.4.7) and (3.4.8) for a magnetic field

oriented along the z-axis, the conductivity tensor reduces to the form

kL kn O
k=|—-rkpn k1L 0], (3.4.9)
0 0 g

where x| is the thermal conductivity parallel to the magnetic field and x, is the so-
called Hall component (Geppert et al., 2004). Equation (3.4.9) corresponds to the thermal
conductivity tensor given by Page et al. (2007).

The thermal conductivity is influenced by the magnetic field, as can be seen in equations
(3.4.7) and (3.4.8). It would be interesting to investigate the significance of the effect the
magnetisation parameter has on the temperature distribution in the crust.

3.5 Influence of magnetic field on the perturbed heat equation

3.5.1 Impurity parameter and the magnetisation parameter

An estimate of the magnitude of the magnetisation parameter was calculated to assess
how significantly this parameter affects the thermal conductivity. For a magnetic field
B =1 x 10° G and an impurity parameter Qimp = 1, using equations (3.1.16), (3.1.18),
(3.1.21), (3.4.3) and the background temperature values, a plot of how the magnetisation
parameter varies with radius for our uniform density crust was created and is shown in
figure 3.5.1.

The magnetisation parameter is a function of impurity parameter. Using equations (3.4.3),
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Figure 3.5.1: The magnetisation parameter is a function of temperature due to electron scattering fre-
quency dependence. This figure shows how the magnetisation parameter varies with radius for B = 10°G,
Qimp = 1 different accretion rates, and is larger at smaller radii, towards the inner crust. The green line
corresponds to the fastest accretion rate of M; = 1 x 105Mg yr~!, blue line with an accretion rate of
M =1 x 107 Mg yr~! and the red line with the slowest accretion rate M; = 1 x 107 Mg yr=?.

(3.1.16), (3.1.18), and (3.1.21), this can be written explicitly as

wpT(T) = (3.5.1)

eB 13€2kBT + 47TQimpe4nion -
mic h2c phup .

For T = 108 K and Qimp = 1, the first term in the parenthesis of equation (3.5.1), the

electron-phonon scattering, dominates in this high temperature and low impurity regime.

From figure 3.5.1, wpT is at a maximum at the crust/core interface and decreases with
increasing radii, for all three accretion rates. This pattern arises because the electron re-
laxation time 7 is inversely proportional to temperature, which increases with increas-
ing radii, when electron-phonon scattering dominates. How wgT varies with radius in a
realistic crust would differ as m} would also vary with radius.

The magnetisation parameter also decreases as the accretion rate increases. This trend
arises because temperature is a function of accretion rate. The temperature of the crust
increases with accretion rate. The temperature dependence of the magnetisation pa-
rameter arises from the electron-phonon scattering, this is shown explicitly in equation

3.5.1. The temperature as a function of accretion rate is shown in figure 3.3.1.

This suggests the magnetic field may significantly affect the thermal conductivity. A
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larger magnetisation parameter implies larger temperature asymmetries may develop
in the neutron star crust. To quantify the significance of the magnetic field on the tem-

perature distribution, a more detailed analysis was conducted as described below.

The impurity parameter is a dimensionless number that indicates whether the struc-
ture of a neutron star crust is crystalline Qimp < 1 or disordered Qimp > 1 (Pons et al.,
2013). This parameter varies quite broadly in the literature as a detailed composition of
the crust is not well understood. Brown and Cumming (2009) use Qimp =~ 100 for an
accreted crust whereas Geppert et al. (2004) use Qimp = 0.1. A high impurity parameter
Qimp > 10 corresponds to an amorphous structure and a low Qin,p, to a crystalline lattice
structure. Recent modelling of transiently accreting systems suggest Qimp ~ 1 (Page and
Reddy, 2013).

The calculations from Ushomirsky et al. (2000) give an insight into the scale of the mag-
netisation parameter that is required to develop a temperature asymmetry large enough
for a mountain to grow that is sufficient to slow the spin up torque from accretion.
Ushomirsky et al. (2000) calculated a typical 67 /T ~ 10~2, for an accretion rate M =
0.57g4q, this corresponds to an ellipticity € of

69T

T (3.5.2)

Q _
~—~5Hx10
€ 7 X

where () is the mass quadrupole moment and I is the moment of inertia. From our
initial estimate of the magnetisation parameter shown in equation (3.5.1), and using the
approximation 67'/T ~ wpT, we find

wpT ~ 4 x 107°By, (3.5.3)

corresponding to an ellipticity of
€~ % ~ 2 x 10710B,, (3.5.4)

for Qimp = 1 and T' = 10® K. This suggests a magnetic field of B ~ 10'% G is required to
build a sufficiently large mountain. Lander (2013) found that a magnetic field of order
10'2G can induce magnetic mountains with an ellipticity of eg 1078 for a neutron star
with a superconducting core. We will now carry out a detailed numerical calculation,

to obtain a more accurate value for the temperature perturbation.

3.5.2 Perturbing the flux by inserting a magnetic field

Starting with the expression for heat flux in the presence of a magnetic field (equation
(3.4.2)) from Yakovlev and Urpin (1980) and the relations of the thermal conductivity ten-
sor components given in equation (3.4.7), an expression for the flux in terms of the mag-
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netisation parameter can be written as

_ K|
F =y [VT + (wpT(T))%b- (b- VT) + wpr(T)(b x VT)].  (355)

The perturbations created by the influence of the magnetic field on the thermal con-
ductivity is calculated by placing the heat flux in the presence of a magnetic field (equa-
tion (3.5.5)) on the non-magnetic spherically symmetric background heat flux (equation
(3.1.2)). To enable the magnetic field to be treated as a perturbation, we will assume
wpT < 1. This assumption is not employed in the work of Pons and Geppert (2007), as
they consider high magnetic field strength magnetars. The perturbed flux, temperature
and thermal conductivity are

F =Fy+6F, (3.5.6)
T =Ty + 6T,

KJH = Ro + 5I<L||,

where £ is a function of temperature and density. The perturbation relations shown in
equation (3.5.6) is then used to calculate the anisotropic heat flux distribution as

B (Ho + (5/<LH)
1+ (wpT(T))?
+wpr(T) [b x V(T + 6T)]}.

Fy+6F = {V(To + 6T) + (wpT(T))*[b- V(Ty + 6T)]-b  (3.57)

WhenwpT(T) is small, the Taylor series approximation [1 + (w7 (T))?] T x 1 (wpT(T))2
up to second order in wpT(7T), can be used. Expanding equation (3.5.7) up to linear order

and simplifying, the thermal flux perturbation due to the magnetic field becomes
OF = —kyg [V(ST + wBT(T)(b X VT())] — (5/43HVTO. (3.5.8)

We assume dp = 0 and deyye = 0, which amounts to assuming that p and €y, are in-
dependent of temperature and magnetic field strength. Combining these assumptions
with the expression for the divergence of the heat flux, given by Ushomirsky et al. (2000),
as shown in equation (3.1.5), an expression for the perturbed heat flux including the mag-
netic field is found to be

V - 6F = —pde,, (3.5.9)

e
¥
mkc

Using the relation & = equation (3.5.8) can be written as
§F = —ro [VOT + 0p7(T)(B x VTy)] — 8k VT, (3.5.10)

where B is the magnetic field vector. Taking the divergence of equation (3.5.10) and us-

ing equation (3.5.9) an expression for the divergence of the perturbed heat flux is written
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as

—pde, =V - (ko VT + 6k VTy) + (07(T)Vko + ko@wpVT(T)) - (B x V)
+rowpT(T) [(V x B) - VT .

(3.5.11)

The magnetic field can be decomposed into its poloidal By, and toroidal By, compo-
nents using the Mie representations (Maier, 2005; Pons and Geppert, 2007) as

B = B,y + Bior, (3.5.12)
Bpo = —V X (1 x V®), (3.5.13)
Bior = -1 x V. (3.5.14)

Using equations (3.5.12), (3.5.13) and (3.5.14), and cancelling orthogonal terms, equation
(3.5.11) becomes

—pde, =V - (KJQV(ST + (SH”VT()) + Ho(:}BT(T) [(V X (—V X (T X V(I)) —7r X V\If)) . VTQ] .
(3.5.15)

Expanding and simplifying the magnetic field terms in equation (3.5.15) enables the per-
turbed heat flux to be written as

1
—pde, = VKo - VOT + Ii()vZ(ST + V(SRH -VIy+ (5/£||V2T0 - /ﬁ:o&)BT(T) (TVZLIIIGT . VT()) ,

(3.5.16)

where

1 9/ 0 1 9
L7 sin6 o0 <Sm689> * sinZ 6 Op?’ (35.17)

is the angular piece of V2 operator on a unit sphere.

Upon expanding the magnetic field terms in equation (3.5.15) the perturbed poloidal
terms of the magnetic field cancelled. This was not an obvious result. Initially, it was
thought that the (dipolar) poloidal magnetic field would be most interesting to investi-
gate, as experimentally observed parameters of the poloidal magnetic field exist. The
perturbed heat flux equation contains only the perturbed toroidal components of the
magnetic field due to the geometry of the magnetic field, although the poloidal compo-

nents of the magnetic field may appear at order (wg7)? and above.

The perturbed heat flux shown in equation (3.5.16) can be written solely as a function of
temperature. Using equation (3.1.25), the perturbed heat losses via neutrino emissivity
can be written as

pde, = 6C.T5T, (3.5.18)
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where C. = 3.229 x 10*37/)12 %XA ergs ! cm 3.

An expression for the perturbed thermal conductivity component, that is parallel to the
magnetic field, is derived from equation 3.4.6 and can be written as a function of 67" as

R0 _ CHI/eQ(ST

5/{“ = diTéT (3.5.19)

2

From equation (3.5.19), using v = vep(T) + veq Where vep, = Cep T, the gradient of the

perturbed parallel component of the thermal conductivity tensor is

C 2Cep,0TVT
Yok = —Q (VcST — ep) : (3.5.20)
v 1%
where the constants from the above equations are defined as
_ 7r2k}23ne
" 3miveq

13¢%kp

Cep - h2C 9 (3521)

and v = v + Veq and vep, = CepT. Using equations (3.5.18), (3.5.19) and (3.5.20), the

perturbed heat flux equation is written solely as a function of temperature as

CrVe 20TCe, VT - VT
—6CT8T =g - VOT + ko V26T + —% (VcST vy - 22V Y O>
v v
CveodT ~ 1
+ Vyigv2T0 — rowpT(T) <TV2¢‘I’67~ : VTO) - (3.5.22)

From the relation 7 = C= and rearranging to make V247 the subject, equation (3.5.22)

can be re-written as a second order PDE as

v2or JSCIOT _ 2veq VOTVTy | 2veqrep ST(VTY)” _ veq STV
Ko v T() y2 T02 v TO
1
+ wpT(T) <TVi\Per : VTo) - (3.5.23)

Equation (3.5.23) can then be decomposed into spherical harmonics using the the ex-

pressions

0T = Re [5Tlm(r)yim(97 ¢)] 5
T = Re [Ty, (r)¥i (6. 6)], (35.24)
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as

d*6Ti,, 2d6Ty, 6C.TIP6Ty,, l(l+1

zl =" T : 2 )5Tlm o 2

dr r dr KQ r vy dr dr V2T
 veQdTim <2 dly  d*Ty I(1+1) v dTy

— ont(T .
vTo car T drz) wp7(T) ey

20eq 0Ty ATy | 2veqVep®Tim ( dTy ) 2
dr

(3.5.25)

Equation (3.5.25) shows the anisotropic heat flux distribution due to the magnetisation
parameter, arising from the interaction of electrons with the magnetic field, in a neu-
tron star crust. Numerically computing the solution to equation (3.5.25) will quantify the
significance of this effect.

An expression for ¥y was taken from Pons and Geppert (2007) as
Ty = c[(r — Ry)(r — R)]?, (3.5.26)

where R; and R are the inner and outer radii of the crust respectively and cis a constant
determined by the maximum value of the toroidal magnetic field. Equation (3.5.26) was
modified to include the m # 0 contributions, with the indices set as m = [ = 2, for
a quadrupole. The magnetic field is set to have a quadrupole moment to ensure any
perturbation induced by the field is quadrupolar, and therefore results in gravitational

wave emission. Equation (3.5.26) then becomes

1 /15 A
Wo9 Yoo = 61 2—[(7" — Ry)(r — R)}2 sin? 9e%?. (3.5.27)
s
An expression for equation (3.5.27) with the complex components removed, is written

as

U(r, 0, ¢) = ci ;[(r — R))(r — R)]? sin2 0 cos 2. (35.28)

From equations (3.5.14) and (3.5.28) a value for the free parameter ¢ in equation (3.5.27)
can be calculated for an [ = m = 2 toroidal magnetic field. The toroidal magnetic field
for | = m = 2 is written as

1 /15

By, = 3\ 5. [(r — R;)(r — R)]? (—sinfsin 2¢ eg + sinfcosfcos2p ey) . (3.5.29)
To obtain a typical value of ¢, values from the mid-point of the neutron star crust were
selected. A toroidal magnetic field strength value of B = 1 x 102G was chosen for
this calculation. Using equation (3.5.28) and setting § = 5, ¢ = 7, r = 9.5 x 10° cm,
R = 9x10°cm, R = 1 x 10%cm and in equation (3.5.29) and rearranging, the value for
the constant ¢ is determined as ¢ = 6.6 x 108 (10]?75(;) where B, is the value B at the
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chosen point in the middle of the crust. The results will scale linearly in B. Equation
(3.5.25) can then be written as

PoLiyy __ 2d0T | 6CTFOT  MU+1) 0 g ddTin dTy | 2eqUepdTim (dTo\’
dr2 r dr Ko r2 tm vIy dr dr V212 dr
Ve (2dTy  d*Tp 5 I(l+1) 1 /15 ,dTy
_ YeQ0lim (2050 A0 o S 200 = R — RPEL,
vy (r dr dr? wpT(T) 4V o (Cr ) ) dr
(3.5.30)

3.5.3 Perturbed Boundary Conditions

For the perturbed temperature boundary conditions Ushomirsky et al. (2000) set the
temperature perturbation at the top of the crust 073, to zero, as the thermal conduc-
tivity of the ocean is much higher than that of the crust. It is worth noting that the flux
coming out of the crust is not zero and is potentially observable. At the crust/core in-
terface 67}, Ushomirsky et al. (2000) assume the core is perfectly conducting, enabling
0Thot to be equated to zero. The advantage of this condition is that it is approximately

true for both a normal and superfluid neutron star core.

These boundary conditions will be used for the numerical integration of the second
order differential equation for the perturbed temperature, as shown in equation (3.5.30).
Integrating (3.5.30) will show how the presence of a magnetic field in a constant density

neutron star crust may induce a temperature perturbation.

3.6 Numerical computation of the perturbed heat flux

In this section, the numerical techniques that are employed to solve the second order
ODE of the perturbed heat flux, as shown in equation (3.5.30), are outlined. Solving
equation (3.5.30) will determine the temperature perturbation that arises from inserting

a magnetic field into a neutron star crust that is undergoing accretion.

Equation (3.5.25) can be written in the non-dimensionalised form using the definitions
given in equations (3.2.1) and (3.2.8) as

~ ~ ~ ~ ~ ~ ~ ~ 2
6Ty, 2d8Th, ) 6CT TG, RE 50 Tim  2veq 1 d8Ty dTy | 2veqVep 6Tim (dT0>

[ Ko v T, df df vi o2\ di
Ve 0Ty (2dTy  d®To\  1(1+1) (6Thm - Ty
- =z - T) Ty, | , 3.6.1
v T <r & )T e (3.6

~

where W,,, = cR[(F — Ri) (7 — R))2.
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ST at both the inner and outer boundaries is set to zero following the formalism given
by Ushomirsky et al. (2000).

3.6.1 Perturbed Heat Flux Results

The ODE describing how the perturbed heat flux varies in the crust with radius (equation
(3.6.1)) is solved numerically by integration methods as detailed in section 3.2. The results
of this computation are given in this section.

The magnitude of the source term from equation (3.5.30) can be quantified at different
locations in the crust by plotting this as a function of radius. This provides an interesting
insight, as the source term is independent of the perturbed temperature 67 Figure 3.6.1
shows how the source term (the last term in equation (3.5.25)) varies with radius, in the
neutron star crust, for different accretion rates, B = 10'2 Gand Qimp = 1. The magnitude
of the source term is largest towards the centre of the crust. The accretion rate influ-
ences the magnitude and sign of the source term, due to the temperature dependence
of the relaxation time 7 and the explicit occurrence of the d7'/dr factor.

1.8 le—3

16] /

1.4+ /

1.2} / \
1.0} ! N

0.8} \

Source Term

0.6 N,
0.4

02f /

-

0. _— : .
%.(} 9.2 9.4 9.6 9.8 10.0
radius (km)

Figure 3.6.1: The source term in the perturbation equation (3.5.30) is plotted as function of radius to
quantify the strength of this parameter at different locations in the neutron star crust for a magnetic field
strength for B = 10'2G and Qimp = 1. The green line corresponds to the fastest accretion rate of M; =
1 x 1078 Mg yr~!, blue line with an accretion rate of M; = 1 x 10~°Mg yr~! and the red line with the
slowest accretion rate M; = 1 x 1071° M, yr~!. The magnitude of the source term is larger towards the
centre of the crust.

A plot of how the perturbed temperature varies with radius for Qinp = 1 and magnetic
field strength B = 102G, for different accretion rates, is shown in figure 3.6.2. To obtain

the actual temperature perturbation, this radial function needs to be multiplied by the
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real part of Y23(6, ¢). At the crustal boundaries the perturbed temperature is zero. This
is due to the boundary conditions as specified in section 3.5.3. In the middle of the crust
the perturbed temperature follows from the assumed field and reaches a maximum.
It can be seen that the higher accretion rates lead to a larger temperature perturbation.
This is an expected result as the higher the accretion rate, the more energy is transferred
to the system. This result corresponds well with how the source term varies with radius
in the crust as shown in figure 3.6.1.
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Figure 3.6.2: This figure shows how the perturbed temperature varies with radius for a uniform density
accreted neutron star crust for B = 1 x 10'? G and Qimp = 1. Multiplication of this radial function by the
real part of Ya2(0¢) will recover the actual temperature perturbation. The green line corresponds to the
fastest accretion rate of M; = 1 x 10~ Mg, yr~!, blue line with an accretion rate of M; = 1 x 107° Mg, yr—!
and the red line with the slowest accretion rate M; = 1 x 10~'° M, yr='. The perturbed temperature is at
a maximum in the middle of the crust and is larger for faster accretion rates.

To enable a comparison of the ratio of 67'/T with the magnetisation parameter wgpT, the
ratio 67 /T for B = 10'2G and Qimp = 1, is plotted as a function of radius and is shown in
figure 3.6.3. Initial estimates of wpT, for the given magnetic field strength as calculated
in section 3.5.1 and shown in figure 3.5.1, suggested 6T /T ~ wpT ~ 4 x 107°By. Figure
3.6.3 shows that the perturbation is approximately one order of magnitude smaller than
this.

In figure 3.6.4 the influence of the impurity parameter on the temperature perturbation
ratio is shown for accretion rate M; = 1 x 10~2Mg, yr—!. The smaller the impurity pa-
rameter, the larger the temperature perturbation ratio. Figure 3.1.1 shows lower temper-
atures and high impurity parameter values are required for electron-impurity scattering
to become the dominant scattering mechanism in the crust. This can be seen in figure
3.6.4 as the lower impurity values Qimp ~ 0.1 — 1 do not have a significant effect on the
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Figure 3.6.3: The magnitude of the temperature perturbation, due to the magnetic field, in a neutron star
crust is shown in this figure by plotting how the ratio 67"/T varies with radius for different accretion rates,
magnetic field strength B = 10'2G and impurity parameter Qimp = 1. The green line corresponds to the
fastest accretion rate of My = 1 x 10~ Mg yr~!, blue line with an accretion rate of My =1x10"°Mg yrt
and the red line with the slowest accretion rate M; = 1 x 107 Mg, yr'.

0T /T when compared to the high values of Qin,. The overall trend of 67"/T" decreasing
as Qimp increases arises as the relaxation time 7 decreases with increasing values of Qimp,
consequently reducing the value of the magnetisation parameter wg7. The relationship

between magnetisation parameter and Qim,, is shown explicitly in equation (3.5.1).

For Qimp ~ 1 the temperature perturbation ratio, due to a magnetic field strength B =
10'2G, is of order 1073, Whilst wpT is formally the perturbation parameter, the results
for 07 /T only have a precise linear scaling with the magnetic field strength, not impurity
parameter. This is because Qimp also affects the background solution to our model. The
ellipticity e required for a sufficiently large mass quadrupole moment can be written as
a function of the temperature perturbation ratio as

- Q s (6T)T
e= 2 ~5x10 <1% , (3.6.2)

where () is the mass quadrupole moment and 7 is the moment of inertia. The tempera-
ture perturbation induced in the crust by the magnetic field for M = 102 M, yr~! and
Qimp = 1 is written as

T
% =2 x 107%B,. (3.6.3)
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The ellipticity parameter can then be written as a function of magnetic field

€= % ~1x 107 "Bq, (3.6.4)

In chapter 4, we will use a more realistic equation of state, one of varying density, to gain
a deeper insight as to the effect the magnetic field has on the thermal conductivity and

consequently the temperature distribution in an accreted neutron star crust.
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Figure 3.6.4: This figure shows the ratio §T/T varies with radius in a neutron star crust for different
impurity parameters for a magnetic field strength B = 10'G and an accretion rate of M; = 1 x 107°Mj,
yr~!. The magenta line corresponds to Qimp = 100, green line to Qimp = 10, blue line with Qimp = 1 and
the red line with the lowest impurity parameter Qimp = 0.1. The influence the impurity parameter has on
the perturbation ratio is minimal for Qimp < 1.

3.6.2 Finite difference test

The accuracy of the numerical computation of the second order perturbed temperature
equation (equation (3.5.30)) was tested using the finite difference techniques outlined in
section 3.3.1.3.

Values for d?6Tsy/dr? were obtained using two different methods. The first used the
numerical solutions of 67" and déT'/dr and substituting these back into the original ODE
(equation (3.5.30)). The second method obtained solutions by directly differentiating the
values of d0T'/dr from the numerical solutions using a finite difference stencils shown
in equations (3.3.9) and (3.3.10). The results from these two different method were then
compared as an internal check of the accuracy of the ODE solver. A plot of the finite
difference and ODE solutions is shown in figure 3.6.5. From figure 3.6.5 it can be seen
that the calculation of the second order derivative of the perturbed temperature by the
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ODE solver is in agreement with the values computed using finite difference methods.

To investigate the accuracy further, the fractional error between the d?§T5,/dr? values
computed by the ODE solver and finite differencing are shown in figure 3.6.6. In figure
3.6.6 there are small divergences from zero. This arises due to numerical errors in the
ODE solver and the order of error in the finite difference calculation. The error is ampli-
fied at the boundaries, particularly at the inner boundary. There is a significant increase
in the error at the outer boundary. The errors contained within this finite difference
test are of order 10~%. This value is sufficiently small to determine that the ODE solver

results of d20Ths /dr? are correct to the degree of accuracy required.

118_3

d? 5T/dr? (K em?)

30 9.2 9.4 9.6 9.8 10.0
Radius (km)

Figure 3.6.5: A test of the accuracy of the ODE solver values, d>§T%2 /dr?, was calculated using finite dif-
ferencing. The values from finite differencing were then compared to the ODE solver values. A comparison
of these values calculated for an accretion rate of M; = 1 x 10™5Mg, yr~'. The two calculation methods
yielded nearly identical results, with small divergences at the boundaries.
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Figure 3.6.6: A plot to determine the accuracy of the ODE solver by comparing d*§Ts2 /dr® values com-
puted by integration with those calculated using finite difference methods. The values presented here were
calculated for an accretion rate of M; = 1 x 107 Mg, yr~!. In this figure the maximum divergence from
zero, which corresponds to the error between the two methods, is &2 1072, This error is sufficiently small
to conclude the ODE solver results are accurate the degree required for these computations.
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3.6.3 Summary

The work contained within this chapter has built upon that done by Bildsten (1998) and
Ushomirsky et al. (2000), by investigating whether temperature asymmetries can de-
velop in an accreted neutron star crust. This is important as Bildsten (1998) has shown
thatif temperature asymmetries are present in a neutron star crust, then a mass quadrupole
moment could develop. The presence of a mass quadrupole moment, that is misaligned
from the axis of rotation of the neutron star, would generate gravitational waves. The
loss of angular moment by the production of gravitational waves could explain the ob-
served narrow spin frequencies of low mass X-ray binaries, as this energy loss would
balance the spin-up torque transferred by accreted material. In this chapter, a back-
ground model of the temperature distribution for a spherically symmetric, constant
density, accreted neutron star crust was constructed. A magnetic field was then intro-

duced to generate a temperature perturbation.

In the background model, the magnitude of the heat flux was found to be at a minimum
at the outer crust boundary and a maximum at the crust-core interface. This corre-
sponds to heat being deposited into the crust by accretion. In addition to this, heat is
radiated out of the crust via neutrino bremsstrahlung radiation. In the crust, it is as-
sumed that the dominant heat transport mechanism is governed by electrons, and the
thermal conductivity depends only on the interactions of electrons with phonons and

Impurities.

On this toy background model, a magnetic field was inserted into the neutron star crust.
The addition of a magnetic field induced a temperature perturbation due to the elec-
trons present in the crust, interacting with the magnetic field. Electrons are the dom-
inant heat transport mechanism in the crust. In the presence of a magnetic field, the
thermal conductivity is expected to reduce when moving perpendicular to the mag-
netic field lines. Hall effects would also arise leading to anisotropies in the thermal con-
ductivity. The thermal conductivity parallel to the field lines would be unaffected. This
variation in how easily heat is transported through the crust, when a magnetic field is

present, may lead to an uneven temperature distribution.

From back of the envelope calculations, the magnetic field was expected to generate a
temperature perturbation that is proportional to the magnetisation parameter as wg7 ~
9L ~ 4 x 107°Bg for T = 10% K and Qimp = 1. An ellipticity of ¢ ~ 1077 is expected
to be sufficiently large to induce a quadrupole moment that generates enough angular
momentum losses, via gravitational wave emission, to balance the spin up torque from

accretion. In this toy model, the temperature perturbation induced in the crust by the
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magnetic field for M = 10~2Mg yr—! and Qimp = 1 was determined as
T
— =2x107%By. (3.6.5)
T
The ellipticity € required for a sufficiently large mass quadrupole moment is
Q L (9T)T
=—~5x10 3.6.6
‘CTT 1% )’ (366
Our results corresponds to an ellipticity of
€= % ~1x 107 "Bq, (3.6.7)

We also found, that once we linearised in B, only the toroidal components of the mag-

netic field remained.

Although this value is a couple of orders of magnitude smaller than what is required, it

is worthwhile investigating this temperature perturbation method in more detail. The

next step would be to upgrade the toy model for a more realistic star that has a variable

density. This would enable a clearer depiction to be drawn as to the significance of the

effect the magnetic field has the temperature distribution in an accreted neutron star

crust.
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CHAPTER 4

Thermal profile of neutron star crust for a realistic equation of state

In this chapter, a model of the temperature distribution in a spherically symmetric, ac-
creted neutron star crust for a realistic equation of state of variable density is developed.
A magnetic field is then inserted to incite a temperature perturbation in the accreted
crust. This work builds on the work from chapter 3 by solving the heat equation for a

more realistic star, one of varying density.

In the chapter 3, it was shown that the presence of a magnetic field in a spherically
symmetric, constant density, accreted neutron star crust would induce a temperature
perturbation §T/T of 2 x 10~%By with an impurity parameter Qiy,, = 1. This pertur-
bation ratio scales linearly with magnetic field strength. For a quadrupole moment to
develop in the crust, that is sufficiently large to generate gravitational waves that balance
the spin-up angular momentum transfer from accretion, a temperature perturbation of
0T /T ~ 1% is required (Ushomirsky et al., 2000). The temperature perturbation cal-
culated in the toy, constant density model is approximately two orders of magnitude
smaller than that required to generate a sufficiently large mass quadrupole moment
for a 10!2G field. As this toy model is a simplified case, it is worth while undertaking a
more thorough investigation, for a neutron star with a realistic equation of state, to truly
quantify how large temperature asymmetries can develop in the crust of a spherically
accreting neutron star.

In this chapter a variable density neutron star with an accreted crust is constructed. Ini-

67
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tially, both the Newtonian and relativistic hydrostatic structure equations are used to
determine whether a Newtonian accreted crust is a good approximation. Next, a back-
ground thermal profile of the crust is composed, building on the work in the previous
chapter by including density dependence, which was previously set as constant. The
temperature profile is then perturbed by inserting a magnetic field. An investigation
into the significance of this perturbation on the temperature profile of the neutron star
crust is conducted.

4.1 Background hydrostatic structure

A neutron star can be constructed numerically from the hydrostatic structure equations.
This enables a description of the pressure-density relationship of a spherically symmet-
ric neutron star to be obtained. For simplicity, we will begin by considering Newtonian
gravity. The general form of the hydrostatic equilibrium equation is

VP =—pVd, (4.1.1)

where p is density, P is pressure and & is the gravitational potential. For a spherically

symmetric neutron star, the differential hydrostatic equilibrium equation is written as

dP _ Gm(r)p

_— = —— 4.1.2
dr rz2 ( )

where m(r) is the mass within radius r, which can be written in the differential form

dm(r)

= 4nr?p. (4.1.3)
dr

An expression for the pressure-density relation can be written as

1d <r2dP

S ) = —47Gp, (4.1.4)

;dr

where G is the gravitational constant.

4.11 Solving Newtonian hydrostatic structure equations

The pressure-density relation for a neutron star can be computed by solving the New-
tonian hydrostatic equilibrium equation shown in equation (4.1.4). The hydrostatic equi-

librium equation is a second order differential equation, which is best solved numeri-
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cally as a set of two first order differential equations which are

dm

_ 2
ar Amrep(r),
dpP _Gm(T)p(r)
e e (4.1.5)

The equations in (4.1.5) are solved using input values from a tabulated equation of state.
Solving the equations in this way, allows the mass and radius of a neutron star to be

calculated for the corresponding equation of state.

Equation (4.1.5) was solved using the python built-in numerical integration function scipy.in-
tegrate.ode. This integrator was selected as it allowed the integration step size to change,
subject to appropriate conditions being satisfied. The ability to vary the integration step

size was important for determining the radius of the star.

The integration routine was set to integrate the hydrostatic structure equations from the
centre of the neutron star to the surface, for incrementally increasing values of radial
position. To stop the integration from going beyond the surface of the star, a condition
was placed to ensure integration could only occur when the pressure of the star was
positive. If this condition was met, the integration values calculated were recorded. This
process was then repeated for each radial step until the positive pressure condition was
no longer satisfied. Initially the radial step size was set to 1 km. To enable the radial
surface to be resolved to a higher order of accuracy, an additional routine was employed

for when the positive pressure condition was not met.

If the integration stopped, due to the pressure becoming negative, the integration val-
ues were reset to the values obtained from the last successful iteration of the integra-
tion routine. The radial step size was then reduced by 50%, and the integration routine
recommenced. This process then continues until the pressure becomes negative and

the desired accuracy has been attained.

4111 Newtonian hydrostatic structure results

Initially, the Newtonian hydrostatic structure equations were solved using the SLy equa-
tion state, which describes both the solid crust and the liquid core of neutron stars in
a physically consistent manner, and the FPS tabulated equation of state data for a cold
catalysed neutron star from Haensel and Potekhin (2004a), in preparation for solving
the Tolman-Oppenheimer-Volkoff equation. A plot of the equation of state data was
created to show the pressure-density relation for each equation of state, this is shown
in411.

The hydrostatic structure equations shown in equation (4.1.4) were solved to determine
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Figure 4.1.1: A plot of pressure versus density for both SLy (red line) and FPS (blue line) equation of state
data (Haensel and Potekhin, 2004a). There is a fractional difference between each of the equation of state
values of pressure of order ~ 107

the final mass and radius of a neutron star with central density p. = 1.5 x 101°g cm~3 for
both the SLy and FPS tabulated equation of state data. These plots are shown in figure
4.1.2. For both equations of state, the final radius of the star is approximately 18 km. This
is much larger than expected, as neutron stars are typically expected to have a radius of
the order 10 km. The two equations of state also produced very high mass stars, with

total masses of about 4M¢ and 6, much greater than expected.

An exploration of the central density parameter space was undertaken to investigate
the influence the initial conditions have on the final solution. Graphical representations
of how the radius and mass of a star varies for different initial central density values
are shown in figures 4.1.3 and 4.1.4 respectively. From these figures it can be seen that a
lower central density generates neutron stars with smaller radii and lower masses when
compared to a higher central density value. A sensible initial value of central density
p ~ 10°g cm~3, produces a star with radius 7 ~ 15km and mass m = 2.5M,.

The values obtained from both equations of state are considerably larger than the ex-
pected values of » ~ 10 km and m =~ 1.4 Mg. The stars produced are considerably
larger in radius resulting in a lower density with a slight increase in central density. This
suggests approximating the neutron stars to be in the Newtonian limit is not accurate.
An investigation into the suitability of the Newtonian approximation can be conducted
by comparing these results to those obtained in the relativistic regime, using the Tol-
man-Oppenheimer-Volkoff (TOV) hydrostatic structure equations.
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Figure 4.1.2: A plot of P(r), m(r) and p(r) as a function of radius for a star with central density p =
1.5 x 10*® g cm ™ and total mass 4M¢, and 6Mg, for the FPS (blue line) and SLy (red line) equations of state

data respectively solved in Newtonian gravity (Haensel and Potekhin, 2004a).
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Figure 4.1.3: This figure shows the range of neutron star radii as calculated for different central densities
in Newtonian gravity. The FPS equation of state data is represented in blue, SLy data in red.
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Figure 4.1.4: This figure shows the range of neutron star masses as calculated for different central densi-
ties in Newtonian gravity. The FPS equation of state data is represented in blue, SLy data in red.
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4.1.2 Solving the relativistic hydrostatic structure equations

A relativistic description of the pressure-density relation for a static spherically sym-
metric star can be obtained from the Einstein equations.

The metric for a static, spherically symmetric spacetime is
ds? = —e’Mdt? + M dr? + 12(d6? + sin 0 dg?), (4.1.6)

where v(r) and A(r) are functions that vary only with r (Hartle, 2003, p. 520). The neu-
tron star is approximated to a perfect fluid with stress-energy tensor

7% = (p + p)uu” + g*’p, (4.17)

where u® = (e7%/2,0,0,0) is the four-velocity. In the static weak field limit v(r) —
2®(r)/c?, where ®(r) is the Newtonian gravitational potential inside the star. From the
Einstein equations and using the definition

oA — 1 2Gm(r)

4.1.
rez (4.1.8)
the equations of structure for spherical relativistic stars are
dm/(r) 2
= 4 <A
I mrep(r), (4.1.92)
-1
dp(r) Gm(r)  4nr3Gp(r) r
o =~ [p(r) +p(r)] ( p ) (4.1.9b)
dV(?“) 1 dp(r)
=- 4.1.
dr p(r) +p(r) dr’ (4190

where m(r) is the mass inside the circumferential radius r and e is the energy per unit
volume. These are known as the Tolman-Oppenheimer-Volkoff (TOV) equations (Op-
penheimer and Volkoff, 1939).

The TOV equations were solved using the SLy tabulated equation of state data (Haensel
and Potekhin, 2004a) to solve for both the neutron star crust and core. A second hybrid
data set was created to produce a neutron star with an SLy core and an accreted crust.
The accreted crustal equation of state data was taken from Haensel and Zdunik (1990a).
The hybrid data is comprised of SLy data for the density ranges 1.462 x 103 gem ™3 <
peore < 6.749 x 101° gecm ™3 with accreted data appended onto the SLy core data for the
density range 3.207 x 10" gem™3 < peust < 1.462 x 1013 gem=3. These density ranges
were selected to ensure the full data set of the accreted crust tabulated data from Haensel
and Zdunik (1990a) was used. A plot of the pressure-density relation for the hybrid data
is shown in figure 4.1.5. The greatest variation in the two models occurs at higher densi-
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ties. Figure 4.1.6 highlights these differences by zooming in on the gradient for relevant

density range.
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Figure 4.1.5: A graphical representation of the p(p), SLy data in red and hybrid data in blue (SLy core
with accreted crust) as calculated from the tabulated equation of state data (Haensel and Potekhin, 2004a)
(Haensel and Zdunik, 1990a).

The TOV equations were solved using the same numerical integration methods as used
to solve the Newtonian hydrostatic structure equations described in section 4.1.1.1. The
SLy and hybrid data was solved for three different cases; i) SLy data solved using TOV
equations, ii) Hybrid data solved using TOV equations and iii) Hybrid data solved us-
ing TOV equations for the core and Newtonian hydrostatic equations for the accreted
crust, all for a central density of p = 1.5 x 101°g cm™3. These three different methods of
solving the equation of state data were employed to enable comparisons to be drawn
between: a relativistic star consisting of cold catalysed matter with that of an accreted
crust and a neutron star with a relativistic accreted crust with a Newtonian accreted
crust. From this comparison, we will be able to determine if solving the accreted crust
equation of state data using the Newtonian hydrostatic structure equations is a good
approximation to make. We would prefer to use the model for a neutron star with a
Newtonian accreted crust, as this is the simpler case, making it easier to incorporate ad-
ditional physics, specifically a magnetic field later in this chapter. In the future, it would
be nice to build on this model to account for relativistic effects, although this is currently

beyond the scope of this work.

Figure 4.1.7 shows the p(r), m(r) and p(r) relations for each of these three cases. In figure
4.1.7 it is quite difficult to resolve by eye the variation that arises in each case. Figure 4.1.8
shows the data for each of the three cases for the accreted crustal radii only, to show
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Figure 4.1.6: Same as figure 4.1.5 over a narrower density range to highlight differences in the two models.

more clearly how the data diverges for the different models.

From figure 4.1.8 it can be seen that case iii) for an accreted crust solved in Newtonian
gravity, shown as the blue curve, yields a neutron star with a larger radius when com-
pared to case i) for the non-accreted crust in relativistic gravity. The differences between
case i) and ii), for an accreted crust solved in relativistic gravity, is small. The cases i) and
i) produce a neutron star of ~ 1.847M¢ and a radius of ~ 11.1km, whereas case iii)

produces a star with radius Ar ~ 300 m larger.

The Newtonian approximation produces a neutron star with more mass AM ~ 0.0004
Mg and a larger radius Ar ~ 300 m than when solving in the relativistic limit. These
differences are sufficiently small that we will, in the remainder of this thesis, use this star
i.e. with relativistic gravity in the core and Newtonian gravity in the accreted crust. This
suggests that using the Newtonian hydrostatic equations to solve for the accreted crust
on a TOV core is a suitable approximation, whereas using the Newtonian hydrostatic
equations to solve for the whole neutron star (core and crust) as shown in section 4.1.1.1,

is not a good approximation.

Ushomirsky et al. (2000) compute a crust from the Newtonian hydrostatic structure
equations to have a thickness of 1.1 km and a mass of 0.06 M. The hybrid equation
of state data solved for a TOV core and Newtonian crust yields a crust with thickness
1.45 km and mass 0.09 Mg, for a crust/core boundary density of p = 2 x 10 g cm™3.
This result is a little thicker and more massive than that calculated by Ushomirsky et al.

(2000).
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Figure 4.1.7: A graphical representation of the p(r), m(r) and p(r) for case ;) TOV SLy data in red, case ii)
TOV hybrid data (SLy core with accreted crust) in green and case ii) TOV SLy core and Newtonian accreted
crust in blue, calculated using the tabulated equation of state data (Haensel and Potekhin, 2004a) (Haensel
and Zdunik, 1990a). The results presented here are difficult to distinguish by eye. The results for the crustal
densities only are presented in figure 4.1.8, where a more meaningful comparison can be made.
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As an additional check on our stellar structure calculations, we also considered results
shown in Haensel and Zdunik (1990a). Specifically, in Haensel and Zdunik (1990a) a plot
of density and radius is provided and shown in figure 4.1.10. This figure shows the den-
sity profile of an accreted neutron star crust and a standard neutron star built out of cold
catalysed matter, as described by the BPS model. This model was recreated by solving
the FPS equation of state data using the TOV ODE solver detailed in this work. This en-
ables a comparison of the accuracy of this model to be drawn and is shown in figure 4.1.9.
It was possible to use the FPS data in place of the BPS data, as the FPS equation of state
data is a modern improvement to the BPS equation of state data (Haensel and Potekhin,
2004b). The results from this calculation, along with figure 3 from Haensel and Zdunik
(1990a) is shown in figure 4.1.10. Although the equation of state data is slightly different
in the two models, the shape of the two graphs correspond well with each other. In
both models, the accreted neutron star crust is slightly larger than that of the cold catal-
ysed matter crust. The most substantial difference in the two models is the radius of the
neutron stars produced, where the neutron star from this model is 1km smaller.

To sum up, using the accreted crust information from Ushomirsky et al. (2000) and
Haensel and Zdunik (1990a) to make a comparison with the model produced by solving
the TOV and Newtonian equations of state in this work, suggests solving for the accreted
crust in the Newtonian approximation on a relativistic neutron star core, is a suitable as-
sumption to make.
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Figure 4.1.9: A plot of how the density varies with

radius for a cold catalysed FPS equation of state . ] .
neutron star crust (blue line) and an accreted crust Figure 4.110: The density profile of an accreted

(green line). In both cases the mass of the neutron neutron star crust (solid line) and a cold catalysed
staris M = 1.4M, crust described by the BPS equation of state model

(dashed line), for a neutron star with mass M =
1.4Mg. This image is figure 3 in Haensel and Zdunik
(1990a).
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4.2 Density dependent variables

The hydrostatic structure equations given in section 4.1 are used to build a neutron star
with an SLy core, solved in relativistic gravity using the TOV equations, with an accreted

crust which is solved in Newtonian gravity.

In an accreted neutron star crust, many of the physical parameters are a function of po-
sition. When moving from the crust towards the centre of the star, the pressure and
density monotonically increase. As the radius decreases, neutrons start dripping out of
nuclei. Electron capture and pycnonuclear reactions occur at different densities giving
rise to changes in composition. Haensel and Zdunik (1990a) have researched the evolu-
tion of matter in an accreting neutron star crust and produced tabulated values detailing
how the composition changes with density. This table also includes the amount of heat
deposited into the crust from nuclear reactions as well as the mass fraction of free neu-
trons X,,. Table 4.2.1 shows these values along with an additional column containing the
radial values corresponding to the listed densities. These radial values were computed
by solving for a neutron star with a TOV core (constructed from the SLy equation of state
data) with an accreted Newtonian crust using hydrostatic equations as detailed in sec-
tion 4.1. From the values listed in table 4.2.1 the density dependent variables of the crust

are computed as a function of position.

Prax Pmax r Z A He Xn
(dyncm™2) (gcm™3)  (km) (MeV)

7.24e+26 149%e+09 11599 26 56 0.00 0.01
9.57e+27 11le+10 11498 24 56 0.00 0.01
1.15e+29 785e+10 11.335 22 56 0.00 0.01
4.75e+29 2.50e+11 11210 20 56 0.00 0.01
1.36e+30 6.11e+11 11.098 18 56 0.00 0.05
1.98e+30 9.08e+11 11058 16 52 007 0.09
2.25e+30 113e+12 11044 14 46 018 O0.10
2.64e+30 l46e+12 11029 12 40 029 047
2.77e+30 1.77e+12 11.023 20 68 039 0.05
3.22e+30 213e+12 11013 18 62 045 0.05
3.82e+30 2.63e+12 11.001 16 56 050 0.06
4.70e+30  3.34e+12 10986 14 50 055 0.07
6.04e+30 4.38e+12 10969 12 44 061 0.28
7.23e+30 5.66e+12 10956 18 66 0.70 0.02
9.24e+30 704e+12 10941 16 60 073 0.02
1.23e+31 8.98e+12 10925 14 54 076 0.03
1.60e+31 1.13e+13 10913 12 48 0.79 o1
1.61e+31 1.14e+13 10912 24 96 0.79 0.01
1.82e+31 1.25e+13 10.903 22 88 0.80 0.00

Table 4.2.1: Table of the composition of an accreted neutron star crust listed according to the maximum
density pmax and pressure Ppax. These values were taken from Haensel and Zdunik (1990a), except for the
values in the radial column.
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The values of proton number Z, mass number A, electron chemical potential . and
the mass fraction of free neutrons X, listed in table 4.2.1 are given for the correspond-
ing maximum density, pressure and radius at which the nuclides are present. Initially, a
function was created in python to output the mass number A, proton number Z and
mass fraction of free neutrons X, for any density value. This was important as the
nuclear composition varies with density in discrete steps which corresponds to differ-
ent electron capture layers. These composition parameters are plotted as a function of
density using the python function which determines these values for any given density
(using the tabulated data), and then checked against the tabulated values directly from
Haensel and Zdunik (1990a) in figure 4.2.2.

From the density dependent parameters Z, A and X,, the density dependent variables

can be computed. Initially the baryon number density is written as

ny = - (4.2.1)

my,
where my, is the baryon mass. From this, the electron number density n, is determined
as

Ne = nb% (1-Xy,). (4.2.2)

The ion number density nio, is calculated by dividing the electron number density by
the proton number as

(4.2.3)

Nion =

Te
7

A general expression for the Fermi momentum (Yakovlev and Urpin, 1980) is written as

W=

pr = h (37°ne) (4.2.4)

The electron chemical potential is then calculated from the relativistic mass-energy
equivalence principle as
1
fe = (mgc4 + p%c2) 2, (4.2.5)

where me is the electron rest mass and c is the speed of light.

The effective electron mass m is equal to the electron chemical potential divided by

c~2 and written as

o (2 P (4.2.6)
Mme = me+c2 . L.

An expression for the Fermi velocity is derived from the non-relativistic expression for
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Figure 4.2.2: This figure shows how the mass number A, proton number Z and mass fraction of free
neutrons X, varies with density in an accreted neutron star crust. The red values are taken directly from
4.2.1and the values shown in blue were obtained by a function written in python which extracts A, Z and X,
from the data set for any given density value that is within the data range. The two curves in each plot should
agree exactly.
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1
gy 1
Fermi energy Er = ymoc? where vy = ( — %5) ®as

2\ 13
vp = [02 (1 - ( EFQ) )] . (4.2.7)
mopc

These accreted crust density dependent variables are plotted as a function of radius and

shown in figures 4.2.3 and 4.2 4.
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Figure 4.2.3: A plot to show how the density ) .
dependent parameters ny, 1. and nio, vary as a Figure 4.2.4: A plot to show how the density de-

function of radius inside the neutron star crust. pendent parameters pr, 1 and vr vary as a function
All variables are given in cgs units. of radius inside the neutron star crust. All variables

are given in cgs units.

The density dependent variables of an accreted neutron star crust can now be used
to calculate the thermal conductivity. The thermal conductivity used in this chapter
follows the formalism used in chapter 3 which is written as

B 7T2k]23ne(p)T

K(p,T) = 3ma(p) (p,T), (4.2.8)

where kg is the Boltzmann constant, ne is electron number density and m; is the elec-
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tron effective mass (Yakovlev and Urpin, 1980). 7 is the relaxation time. The thermal
conductivity in the crust is governed by electron-phonon scattering v,, and electron-
impurity veq scattering (Brown and Cumming, 2009), where the total scattering fre-

quency is v = vep + veq. Electron-phonon scattering is written as

_ 13e*kpT

Z/ep - hQC Y (429)

where e is the charge of an electron and % is the reduced Planck constant. Electron-

impurity scattering is written as

47TQimp(p)e4nion(p)
= Aimp, 4.2.10
VeQ p%vF p ( )
where
Qimp(p) = nign” Z ni(Z; — (Z))?, (4.2.11)

is the impurity parameter, Ay ~ 1 is the coulomb logarithm, njo, = % is the ion num-

ber density, pr the Fermi momentum and vr the Fermi velocity.

The thermal conductivity shown in equation (4.2.8) can be rewritten by collecting den-

sity dependent and temperature dependent terms as

1

K(p,T)=fx(p)T =——, 4.2.12)
CCpT + VeQ
where
7r2k123ne
fK(P) = Tmz’
13e2kp
Cep = e (4.2.13)

The variables f, v.q and K (7") can be computed as a function of radius if the tempera-
ture is known, using the tabulated values from Haensel and Zdunik (1990a) directly, en-
suring the discrete nature of the density jumps, caused by sharp composition changes in
the electron capture layers, is retained. Alternatively these functions can be computed
as smoothly varying functions of radius by interpolating between the different density
values contained with the tabulated data set. This results in a slight loss of physical in-
formation about the crust. For accuracy, we will use the variable values as calculated
directly by Haensel and Zdunik (1990a), retaining the discrete density jumps, for calcu-
lations in our model.
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4.3 Background Thermal Profile

The background thermal profile of a spherically symmetric accreted neutron star crust
of varying density is modelled from the heat equation. Following the treatment given in
chapter 3 and accounting for the density dependent variables, the heat flux for a spher-

ically symmetric neutron star crust is written as
F=-KVT, 431

where K is the scalar thermal conductivity. Following the treatment of Ushomirsky et al.

(2000), the divergence of the flux can be written as
V- -F=0Q, 4.3.2)
where the net rate of change of heat per unit time () is written as

Q = p(enuc - 61/)7 (4.3.3)

where pey,c is nuclear heating and pe, is neutrino cooling.

An expression for the second order derivative of temperature with respect to radius is
obtained by combining equations (4.3.1) and (4.3) and rearranging to give

T 1 dK(p,T)dT 2dT Q

dr2  K(p,T) dr dr rdr K(p,T)

(4.3.4)

Using equation (4.2.12) the differential equation shown in (4.3.4) can be written as

PT  ffdT ueQ1<dT>2_qudT_ ar  Q

— = — 2— — — 4.3.5
dr?2  fx dr v T \ dr v dr dr K’ ( )

where the prime denotes a derivative w.r.t. r.

Alternatively, a thermal profile of the accreted crust can be constructed by solving a
pair of coupled first order differential equations. An expression for the temperature
derivative with respect to radius can be determined from equation 4.3.1, by exploiting

the spherically symmetry to consider only the radial components as

dT F;
—_ = . 4.3.6
dr K ( )
From equation (4.3), the derivative of the flux with respect to radius is
dF, 2 .
t=_"F+Q. (4.3.7)
dr T
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This results in two simpler appearing equations without the requirement to find the
derivatives of some of the density dependent variables.

Initially it was unclear which would be the best method to employ. In the previous
chapter, when calculating the thermal profile of the neutron star crust, the first method
shown here, of solving a second order differential equation, was employed. It was thought
that this method would be sufficient to use for a star with a realistic equation of state.
Upon further investigation, due to the discrete nature of the density dependent func-
tions, this may not be the best method, as the derivatives of these functions don't con-
verge. To overcome this, interpolation techniques can be used to smooth out the capture
layers, although this method would lead to a loss of information of some of the under-
lying physics in the crust. Solving a pair of coupled first order differential equations
negates the requirement to differentiate the density dependent variables. This enables
a temperature profile of the neutron star crust of varying density to be constructed nu-
merically without convergence issues, or the loss of physical information through the
use of interpolation. The work contained within this chapter will use the coupled first
order differential equations (4.3.6) and (4.3.7) to construct a background model of the
temperature distribution within the accreted neutron star crust. The next step is to solve
these equations numerically to build a temperature profile of an accreted neutron star
crust for a realistic equation of state, using a small radial step size to ensure the sharp

steps in density are resolved.

4.3.1 Heat Source

The net rate of change of heat per unit time is given as

Q = p(enuc - 61/), (4.3.8)

where peyy. is the heat source term arising from the heat deposited in the crust by nu-
clear reactions and pe, is the heat sink term arising from neutrino bremsstrahlung radi-
ation.

Through accretion, mass is transferred to the neutron star surface. This matter then un-
dergoes compression as more accreted material falls on top. This compression causes
the accreted to matter to then undergo density changes. As the material moves deeper
into the crust, electron capture reactions begin to occur. These reactions take place at
constant pressure and deposit heat into the crust (Haensel and Zdunik, 1990b). The heat
deposited in MeV per nucleon at different densities is shown in table 4.2.1.

In table 4.2.1 the quantity of heat deposited in the crust is given at a specific density for a
given composition. In reality, the heat is deposited in capture layers with a finite volume
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than spans over a range of densities. To determine how the heat is deposited over the
whole capture layer, a choice has to be made on the best way to treat the heat deposition
based on the tabulated values. Ushomirsky et al. (2000) integrate the electron capture
rates over each capture layer. As the work contained within this chapter is solving for
the static heat equation, employing this method is unnecessary at this stage. Brown
(1999) distributes the heat deposited per baryon €,,. = 1MeV over the region where py-
cnonuclear reactions occur. This approach of smearing the heat deposited over a large
region of the crust is less accurate than is desired for this work. We instead decided to
smear the heat deposited in each capture layer, over the relevant layer of fixed com-
position. Setting the capture layer outer boundary as the radius corresponding to the
density where the heat is deposited and smearing down to the inner boundary, i.e the
next density at which heat is deposited in the crust. It is worth noting that Ushomirsky
etal. (2000) insert an addition ad hoc capture layer into the bottom of crust to extend the
Haensel and Zdunik (1990a) crustal equation of state data to larger densities, and study
the quadrupole moment induced by this layer as a function of its position. It is unclear
how much heat would be deposited into this additional capture, so we have decided not
to include this in our work.

The heat deposited in each electron capture layer per unit volume per unit time @), is
a function of accretion rate. An approximate way of writing down the heat released in

each capture layer is by smearing the heat deposited over whole shells as

Do — Mepye
nuc — 4 3
3Mp (Touter

(4.3.9)

M
- Tignner)

where M is the accretion rate, enyc is the heat deposited per nucleon by the relevant
nuclear reaction, my, is the mass of a baryon and router and rinner are the outer and inner

radii of each layer of fixed composition respectively.

The neutrino cooling employed in this section is the same as that used in the 3 and is

written as )
Z
pe, = 3.229 x 1017p12T,§ZXAergs_lcm_3, (4.3.10)

where X, = 1 — X, is the mass fraction contained within nuclei.

4.3.2 Boundary Conditions

The outer boundary is set to the interface where the crust meets the accreted mate-
rial. Following the method used in chapter 3, and the boundary conditions given by
Ushomirsky et al. (2000), the outer boundary temperature is set as a function of ac-

cretion rate and the steady burning temperature of the hydrogen/helium layer on the
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surface of the star as

2

m \7

Tos = 5.3 x 108K () , (4.3.11)
MEdd

where 1 is the local accretion rate per unit time, and rigq4q is the Eddington accretion

rate. We do not allow 7 to vary from point to point, but will relax this restriction in

chapter 5. The outer boundary radius and density is set as

ro = 11.599km, (4.3.12)
pos = 1.49 x 10%g cm ™3, (4.3.13)

To determine the inner boundary condition for a neutron star with a normal core, the
core is assumed to be a perfect conductor. By making this assumption, all the flux that
is conducted into the core is radiated out as neutrinos. The modified Urca formula is
then used to set the flux value at the crust/core interface. The core luminosity, and
consequently the flux is a function of temperature, enabling the inner boundary value
of temperature to also be determined. From the energy conservation formula the flux

at the inner boundary can be written as

LCOI'B
_ i
4m Rip

g = (4.3.14)

where the luminosity of the core due to the modified Urca formula is

1
(M nuc \ A
Lcore =53 x 1039erg s 1 (%) <ppuc) T98 exp <_M> . (4315)

The inner boundary condition is satisfied when the numerically computed flux is equal

to the value of the flux shown in equation (4.3.14). It is worth noting the luminosity of the
core shown here is for a constant density neutron star. This is the formula employed by
Ushomirsky et al. (2000) and by us, in this work, to enable a comparison of the back-

ground model results to be made between the two models.

For a normal core A = 0. For a superfluid core we assume A > kpT such that Loy is
essentially zero. This condition is implemented by setting the flux at the inner boundary
as

Fip =0, (4.3.16)

as superfluidity suppresses the core neutrino emissions (Ushomirsky et al., 2000).
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The inner boundary radius and density is set as

rig = 10.903km, (4.3.17)
pig = 1.25 x 103g cm 3. (4.3.18)

4.4 Numerical Methods

The numerical methods employed to obtain solutions for the background flux and tem-
perature distributions in the crust, are similar to those used in 3. To build a background
thermal profile of an accreted neutron star crust, the two coupled first order differential
equations (4.3.6) and (4.3.7) are solved using the shooting method. The ODEs are bound-
ary valued problems with the boundary conditions as shown in equations (4.3.11) and
(4.3.14). This boundary valued problem can be reduced to an initial value problem using

the shooting method.

In the case of the work here, the value of the flux at the outer boundary is determined
by shooting trajectories until the predefined inner flux boundary condition (equation
(4.3.14) is satisfied. The python built in function scipy.optimize.brentq is then used to
find the root value of the shooting function. This root value is then set as the flux outer

boundary value Fop.

With the two outer boundary values of each of the coupled ODEs known, the python
integration function scipy.integrate.odeint was then used to solve the two coupled first
order differential equations by integrating over the radius of crust r from the crust outer
boundary to the crust/core interface.

441 Non-dimensionalisation

The coupled differential equations (4.3.6) and (4.3.7) are solved using numerical integra-
tion. To ensure the calculations are as accurate as possible, the differential equations are
non-dimensionalised. Three typical values are chosen for T, r and K, which are used to
construct a typical value for the flux. The equations are then non-dimensionalised by

dividing through by these typical values as

A T
jpp— 4.4
Cthle
”
P = , 44.2)
Rtyp
k=K (4.4.3)
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where "~ indicates the non-dimensionalised quantity, and values for Ry, Kiyp and Tiyp
were chosen in section 3.21as Ry, = 1 x 106 km, K = 2.5 x 10! erg s7! K7! and
Tiyp = 2.13 x 109 K.

From equation 4.3.1 a value for Fiy,, can be chosen as
(4.4.4)

where a value of Fiy,, is determined to be =5.33 x 10%? ergs™!.

Using the relations shown in equation (4.4.1), the differential equations d7'/dr and dF /dr

shown in equations (4.3.6) and (4.3.7) respectively, can be written in dimensionless form

as
dT F
= ——K 44.5
d7 K typs ( )
dF F . R
= 2= P 446
dr 7 +@ Fiyp ( )
The boundary conditions in dimensionless form are then
~ —6 . 2
Top = 2.87 x 107907, 4.4.7)
and for a neutron star with a normal core
n Leore Kivp T
Fig = —%typ (4.4.8)
dm R

These dimensionless equations (4.4.5, 4.4.6) will be solved via numerical integration by
employing the shooting method, to build the thermal profile of an accreted neutron star

crust of varying density.

4.5 Background Model Results

Athermal profile of an accreted neutron star crust of variable density was produced. The
two coupled first order differential equations (4.3.6) and (4.3.7) were solved numerically
to provide solutions of both the flux and temperature of the crust for both a normal and

superfluid core for the boundary conditions detailed in section 4.3.2.

The temperature distributions in the crust for a normal and superfluid core are shown in

figures4.5.1and 4.5.2, respectively, for different accretion rates. For the neutron star with
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a normal core, the temperature is at a maximum at the outer boundary and decreases
with decreasing radius. Conversely in the case of a superfluid core, the temperature
is at a maximum at the crust/core interface. This corresponds to the suppression of
neutrino emission in the core, resulting in heat losses via thermal conduction at the
outer boundary and neutrino bremsstrahlung emissions in the crust only. These plots
both show a faster accretion rate gives rise to a hotter crust. This is expected as the
nuclear heating rate of the crust is directly proportional to the accretion rate. We find
for a superfluid core T =~ 1 x 10° K, inputting this value into the exponential term in
equation 4.3.15 gives exp (—kBAT) ~ 1076, for A = 1 MeV. This confirms setting Fig = 0

for a superfluid core is accurate to a good approximation.
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Figure 4.5.2: A plot to show how the temperature
varies as a function of radius in an accreted neutron
star crust for a superfluid core with different accre-

Figure 4.5.1: A plot to show how the temperature
varies as a function of radius in an accreted neutron
star crust for a normal core with different accretion

rates and Qimp = 1. The red line represents M = tion rates and_légimp = _11. The red l%ne represents

1 x 107" Mg yr~', the blue line M = 1 x 10~" Mg M79: 1 x }(1) ](‘f%yr ' thf blue line A fsl x

yr—ly and the green line M = 1 x 10~M,, yr_14 1071M@ yr~ -, and the green line M =1 x 107° Mg
yro-.

A plot of how the flux varies with radius in the crust is shown for a normal core in figure
4.5.3 and a superfluid core in figure 4.5.4. In both figures, features can be seen at small
radii, closer to the neutron star core. The majority of the heat deposited into the crust
via nuclear heating, occurs at these smaller radii. At » < 11km, large step like features
appear in the flux in both the normal and superfluid core. These steps correspond to
where the pycnonuclear reactions occur in the crust. In the case of the superfluid core,
the gradient of the flux fluctuates between positive and negative values. Local minima
occur at radial points on the crust corresponding to where the pycnonuclear reactions
occur. As neutrino emissions from the core is suppressed, the deposited heat is con-
ducted outwards from the point of origin through the crust, resulting in these trough
like features. For higher accretion rates, more heat is deposited into the crust, resulting
in an increase in the magnitude of these local minima. In the case of the normal core,
heat is able to pass from the crust into the core, resulting in a net flow of flux into the

core.
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Figure 4.5.3: A plot of how the flux varies with ra-
dius in an accreted neutron star crust with a nor-
mal core for different accretion rates. The red line
represents M = 1 x 107'°Mg yr~', the blue line
M = 1 x 107°Mg yr~', and the green line M =
1x 1078 Mg yr~ 1.
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Figure 4.5.4: A plot of how the flux varies with
radius in an accreted neutron star crust with a su-
perfluid core for different accretion rates. The red
line represents M = 1 x 107'°Mg yr~!, the blue
line M = 1 x 107°Mg yr—!, and the green line
M =1x10"3Mg yr~*.

The net heat deposited into the crust per unit time is shown in figures 4.5.5 and 4.5.6 for
a normal and superfluid core respectively. The step-like nature of the plot arises from
the density dependent nuclear reactions depositing heat in the electron capture layers

combined with neutrino cooling and thermal conduction, radiating the heat out of the

crust.
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Figure 4.5.5: A graph to show the net heat de-
posited per unit time in an accreted neutron star
crust for a normal core with different accretion rates
and Qimp = 1. The red line represents M = 1 x
107 Mg yr~!, the blue line M = 1 x 107 Mg, yr— !,

and the green line M = 1 x 10~ Mg yr~*.
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Figure 4.5.6: A graph to show the net heat de-
posited per unit time in an accreted neutron star
crust with a superfluid core for different accretion
rates and Qimp = 1. The red line represents M =
1 x 107°M¢ yr=?, the blue line M = 1 x 1072 M

yr~!, and the green line M = 1 x 10~ % Mg yr~*.

Figure 4.5.7 shows how the thermal conductivity varies with radius inside the crust. This
plot shows step-like features, which correspond to the sharp composition changes in
crust, arising from the density dependent electron capture reactions and pycnonuclear
reactions. More sharp features can be seen at lower radius values corresponding to the

region where most of the heat from nuclear reactions is deposited into the crust.
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Figure 4.5.7: A graph to show how the thermal conductivity varies as a function of radius in an accreted
neutron star crust for Qimp = 1and M = 1 x 107° Mg,

The thermal conductivity is dependent on electron-phonon v, and electron-impurity
veq scattering. Each of these scattering frequencies is plotted as a function of radius for
three different accretion rates and an impurity parameter Qimp = 1 in figure 4.5.8 for
a normal core star and 4.5.9 for a superfluid core star. Electron-phonon scattering is
temperature dependent, whereas electron-impurity scattering is a function of both po-
sition and impurity parameter, but independent of temperature. At high temperatures
(T ~ 108 K) and low impurity parameter, electron-phonon scattering dominates. Step-
wise features can be seen at low radii in the v,q plot, again this arises from the sharp

composition changes that occur in the accreted neutron star crust.

4.5.1 Comparison with results in the literature

To investigate the accuracy of the results produced within this work, they were com-
pared to the results of Ushomirsky et al. (2000) and Brown (1999) who considered simi-

lar, but non-identical models.

As described in section 4.1.2, the model created by Ushomirsky et al. (2000) consists of a
Newtonian crust 1.1 km thick, with a mass of 0.06 M, whereas our model has a Newto-
nian crust 1.45 km thick with a mass of 0.09M,. The background temperature, flux and
pe for a normal core are plotted as a function of pressure, and shown in figure 4.5.10, to
enable a comparison to be drawn with the results produced by Ushomirsky et al. (2000)
which are shown in figure 4.5.11. In figure 4.5.10 the temperature decreases when mov-
ing from the outer boundary of the crust towards the core. Whereas in the Ushomirsky
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Figure 4.5.8: A graph to show the how electron-
impurity (shown as the magenta curve), electron-
phonon scattering vary as a function of radius in an
accreted neutron star crust with a normal core for
Qimp = 1. The red line represents ve, for M = 1 x
10719 M yr=?, the blue line vep, for M = 1x107° M,
yr~!, and the green line ve, for M = 1 x 1075Mp,
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et al. (2000) results, the temperature increases with increasing pressure until P ~ 1
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Figure 4.5.9: A graph to show the how electron-
impurity (shown as the magenta curve) electron-
phonon scattering vary as a function of radius in an
accreted neutron star crust with a superfluid core
for Qimp = 1. The red line represents ve,, for M = 1x
10719 M, yr=?, the blue line vey, for M = 1x107° M,
yr~!, and the green line v, for M = 1 x 1078 M,
yr‘l.

030

erg cm~ when the temperature begins to decrease. The flux results of each model
appear fairly similar. One notable difference is the flux at the outer boundary in figure
4.5.10 is negative and Ushomirsky et al. (2000) have a positive outer boundary flux value.
Both cases show a steep decline in the flux at P ~ 103" erg cm~3, with step-like features
appearing in the plots at higher pressures, corresponding to the region where most of
the heat is deposited into the crust from nuclear reactions. The plots of pe are quite
different in the two models, particularly in the case pepyc. The difference in how pepye
varies with pressure may arise from a difference in treatment of how heat is deposited
into the capture layers. In our model, the heat is smeared over an entire shell of con-
stant A, and Z, whereas Ushomirsky et al. (2000) inject the heat over the narrow capture
layers. How the neutrino cooling varies with pressure in the two models is quite similar,
except the magnitude of pe, is approximately one order of magnitude larger at higher
pressures in the Ushomirsky et al. (2000) model, when compared to our work. This is
due to the slightly higher temperatures obtained by Ushomirsky et al. (2000), and the
very steep temperature dependence of the neutrino cooling rate (v, o 7).

The results for an accreted neutron star crust with a superfluid core are shown in figure
4.512 alongside the results calculated by Ushomirsky et al. (2000) as shown in figure
4.5.13. When the pressure exceeds P ~ 10%° erg cm~3 the temperature model from
this work appears to plateau, whilst the (Ushomirsky et al., 2000) temperature profile
begins to decrease. The flux profile from each model differs quite significantly. Our
model produces a positive flux, whereas the flux calculated by Ushomirsky et al. (2000)

is positive at the outer boundary and starts to rapidly decrease at P ~ 103 erg cm™—3.
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The way the heat is deposited into the crust via nuclear reactions is quite different in
the two models, as was the case in the normal core neutron star results. The neutrino

cooling, however, appears to be in good agreement.

A further comparison can be made between the work produced here, as shown in figure
4.5.14, and that of Brown (1999) shown in figure 4.5.15. The results produced by our model
have been rescaled as a function of log(p/MeV fm~3), where 1 MeV fm—3 = 1.6 x 1033 dyn
cm™2,

Brown (1999) constructed a neutron star in relativistic gravity only, whereas the work
contained within this chapter has a Newtonian crust on a relativistic core. These differ-
ent approaches will lead to discrepancies in the results from the two models. Both mod-
els use the same data from Haensel and Zdunik (1990a) as shown in table 4.2.1. Brown
(1999) deposits the heat from nuclear reactions into the crust by smoothing the heat per
baryon (1 MeV) over a pressure interval Ap = 3.4 x 1072 MeV fm =3 —8.7 x 10~ MeV fm 3,
whereas we resolve the heat deposited into each shell of constant A and Z. The inner
boundary conditions of each model are also different. Brown (1999) integrates from the
centre of the star to the star’s surface. In our model we only integrate over the crust set-
ting the outer and inner boundaries to the top of the crust and the crust/core interface
respectively. Brown (1999) presents results for two cases: electron-phonon scattering
regime dominates thermal transport in the crust and for when electron-ion scattering
dominates. In our work, we set Qi = 0 to ensure electron-phonon scattering is the
dominant regime, and Qimp = 100 for when electron-ion scattering dominates. It is un-
clear from the literature what value of Qimy, is used by Brown (1999) for the electron-ion
scattering regime.

The temperature distribution for a superfluid core is shown in the top graph of figure
4.5.14 and the corresponding result from Brown (1999) is shown in the top panel of 4.5.15.
Both models produce a positive temperature gradient, where the temperature at the
outer boundary is at a minimum. When electron-phonon scattering dominates, a hotter

crust is produced.

For a normal core neutron star (bottom plot of figure 4.5.14), the temperature decreases
when moving from the top of the crust towards the core, for both scattering regimes.
The electron-ion scattering regime results in a hotter crust when compared to when
the electron-phonon scattering dominates. The corresponding plot from Brown (1999),
shown in the bottom of graph of figure 4.5.15, shows a similar trend for the temperature
distribution when electron-phonon scattering dominates. In the case when electron-
ion scattering dominates Brown (1999) obtains a positive temperature gradient. This
general trend corresponds well with that shown in the bottom graph of figure 4.5.14. The
temperature distribution in figure 4.5.15 spans a broader pressure range than the tem-
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perature distribution produced in this work (figure 4.5.14). This difference arises from

the choice of computational domain employed.

We see that our results agree in rough form with those of Ushomirsky et al. (2000)
and Brown (1999). The main difference lies in the shape of the plot of T" verses r in
Ushomirsky et al. (2000), and in the plot of T verses r in Brown (1999) for the normal
core, electron-ion dominated thermal conductivity. These differences may be due to
differences in where exactly the nuclear heating is deposited. In any case, we now pro-

ceed to carry out numerical tests of our results, to check their internal consistency.

4.5.2 Numerical testing
4.5.2.1 Inner Boundary Value

The simplest test that can be performed is that of the inner boundary condition. For a
normal core, the core is assumed to be a perfect conductor, where all of the heat that is
conducted into the core is radiated out via neutrinos. This assumption relates the heat
flux to the luminosity of the core as

L(F) = _Enner47rR2

inner*

(4.5.1)

Using the modified Urca formula (Shapiro and Teukolsky, 1983), the core luminosity can

also be written as a function of temperature as

MY pane\ VP A
_ 39 1 nuc 8 -
L(T)=5.3x 10" erg s (M@> ( P ) 1§ exp ( k‘BT> . (4.5.2)

A self-consistency check of the numerical integration can then be conducted by equat-
ing equations (4.5.1) and (4.5.2) as

L(F) = L(T). (4.5.3)

The inner boundary values of F'and T, obtained by numerically solving equations (4.3.7)
and (4.3.6) respectively, are then input into equations (4.5.1) and (4.5.2) and checked for
self consistency using equation (4.5.3). The results from this test are presented in table
4.5.16. The fractional error between the two luminosity values for each accretion rate is
of order 107° —107°. This shows the numerical integration is performing to an excellent
degree of accuracy.
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M L(F) L(T) Fractional Error
Mpyr=t) (ergs™'cm™?) (ergs~tcm™?)
1x10710  —1.939078 x 103*  —1.93909 x 103* 7.71 x 1076
1x1079 —1.574406 x 10%® —1.574403 x 103° 1.70 x 1076
1x1078  —1.067480 x 103> —1.067458 x 103° 2.12 x 107°

Table 4.5.16: Table to show the core luminosity as calculated as a function of flux and compared with the
parameter as calculated as a function of temperature using the values computed via the shooting function.
The final column shows the error arising from these two different methods of calculation for a normal core.

4.5.2.2 Energy Conservation

Following the formalism used in 3.3.1.2, an energy conservation test is conducted. The
energy radiated away by neutrino bremsstrahlung emission E,, (equation 3.3.5), is summed
with the energy conducted into the core and out of the surface of the crust Ex o) and
Ex (crust), @s evaluated at the relevant radial point using equation (3.3.6), to give the total
energy Fiotal. Ftotal is then equated to the total energy deposited into the crust €;ota) (as

shown in equation (3.3.8)). The energy conservation test is passed when the equation

Etotal = EK(crust) - EK(core) + By, (4.5.4)

is satisfied. A summary of the energy conservation test results are shown in 4.5.17 for a

normal and 4.5.18 for a superfluid core.

M Eiotal €total Fractional Error
Mg yr=t) (ergstcm™3) (ergs™!'cm™3)
1x10710 880516 x 10% 8.80452 x 1033 7.34 x 107°
1x1072 8.80518 x 10%* 8.80452 x 1034 7.51 x 107°
1x1078  8.80519 x 1035 8.80452 x 103° 7.62 x 107°

Table 4.5.17: A summary of the error in the ratio of net heat input vs the net heat output for three different
accretion rates for a normal core.

Fractional Error

M Etotal €total
Mgpyr=!) (ergs'tecm™3) (ergs~tcm™3)
1x 10710 8.80508 x 1033 8.80452 x 1033 6.3 x 1077
1x1079  8.80337 x 103* 8.80452 x 1034 1.3x 1074
1x 1078  8.79809 x 1035 8.80452 x 103° 7.2 x 1074

Table 4.5.18: A summary of the error in the ratio of net heat input vs the net heat output for three different
accretion rates for a superfluid core.

The results presented in table 4.5.17 shows the energy conservation test for anormal core
has a fractional error of order 107°, and a superfluid core (table 4.5.18) has a fractional
error of order 107% —1075. The error in both cases is sufficiently small to determine that

energy has been conserved.
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4.5.2.3 Convergence Testing

Convergence tests were performed for both the temperature and flux values as calcu-
lated by the ODE solver. The methods employed follow those outlined in 3.3.1.1.

In 3.3.1.1, the accuracy parameter of the built-in python function scipy.integrate.odeint
was varied as the controlled error parameter. In this section, the number of steps in the
numerical integration has been varied instead. Each resolution was defined by number

of radial steps N of which the integration was calculated over for each case. 6 = &,
" dium = 5 and & = N. The results from this convergence test are shown in table
4.5.19.
M Nflux Ttemperature
(Mg yr —1)

1x10719  1.00437  1.00220
1x1072  1.00437 1.00216
1x1078  1.00437  1.00218

Table 4.5.19: Table of results of the converge test for both the flux and temperature values computed by
numerical integration.

4.5.2.4 Finite Differencing

To check the accuracy of the ODE solver a finite difference test was performed. The
methodology used here is similar to that detailed in section 3.3.1.3, except in this instance
the finite difference stencils used are for first order differential equations and is written
as

Py = LEFI I3

The outer and inner boundaries require modified stencils to ensure each value of h se-

(4.5.5)

lected is consecutive and corresponds to a decreasing value of r. The stencils for the
finite difference boundary values are

(4.5.6)

A comparison of £ between the values calculated by finite differencing and those di-
rectly from equation (4.3.7) using the results of the integration, is shown in figure 4.5.20.
The fractional error of these plots is shown in figure 4.5.21.

A comparison of the finite difference values of fTT

- with the values calculated directly
from equation (4.3.6) is shown in figure 4.5.22. The fractional error of these plots is
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Figure 4.5.20: A plot of dF'/dr calculated by finite differencing (red line) and from equation (4.3.7) (blue
dashed line).
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Figure 4.5.21: The fractional difference between the finite difference and ODE results shown in figure
4.5.20 for dF/dr.
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shown in figure 4.5.23.
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Figure 4.5.22: A plot of dT'/dr calculated by finite differencing (red line) and from equation (4.3.6) (blue
dashed line).

In figures 4.5.20 and 4.5.22, the plots appear to match up well. Taking a closer look at the
fractional difference of each of these plots in figures 4.5.21 and 4.5.23, sharp spikes can be
seen. This arises from the step-wise nature of the sharp composition changes that occur
in the crust. The fractional error for ‘fi—f is of order 102. This error is quite large, but only
occurs at very limited ranges in r. For large ranges in r, the finite difference test is passed
satisfactorily. The fractional error arising from 4L is of order 10~%. This is sufficiently
small to satisfy the finite difference test for this equation has passed satisfactorily.

The finite difference test results for a superfluid core are passed to the same degree of
accuracy as the normal core.



4.5. Background Model Results 103

1.4 lB—l

1.2}
LO}
0.8}
0.6}

0.4

5 TPERSEN W

Fractional Error

-0.2

e T mi1 12 13 114 115 16

radius (km)
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4.6 Perturbed Thermal Profile

In this section, a magnetic field will be inserted into the neutron star crust to induce a
temperature perturbation. The methodology used will be identical to that in chapter 3
except with a realistic crust of varying density. The scalar thermal conductivity is re-
placed with the tensor quantity «, to accommodate for the anisotropy induced by the

magnetic field.

The perturbed flux can be written in spherical harmonics as

0F =Y Upmn#Yim + Vi VY. 4.6.1)

Ilm

From 3.5.2 the perturbed flux is shown to be written as a function of thermal conduc-
tivity, temperature and the source term, which contains the magnetic field component
as

OF = —ro [VOT + wpT(B x VT)] — 65 VT, (4.6.2)

where Jx|| shown in equation (4.2.12) can be written as the derivative of thermal con-

ductivity with respect to temperature multiplied by the perturbed temperature as

(5:%” 7(5T = fk(ST VeQ

= R (4.6.3)

The divergence of the perturbed flux gives the perturbed net rate of change of heat per

unit time as

V- 0F =6Q = %mmnm. (4.6.4)

We assume there isn't a perturbation in the nuclear heating, only in neutrino cooling as
shown in equation (3.5.18). The divergence of the perturbed flux (4.6.4) can be written as

V- 0F = —pde, = —6C.T°5T 1, Yim, (4.6.5)

where pdenye = 0 and C, = 3.229 x 10_37p12%XAerg s~ lem—3.

From equation (4.6.1), the divergence of the flux can also be written in spherical har-

monics as
I(1+1)

o VimYim- (4.6.6)

dUpm, 2
VOF = = " Yim + Ut Yim —
Ilm

One of the coupled first order differential equations is derived by combining equations
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(4.6.5) and (4.6.6) and rearranging to give

dUpm,
dr

2 I(1+1
= " U + (:Q)VZm — 6C T 6Ty (4.6.7)

The second coupled first order differential equation is obtained by equating equations
(4.6.1) with (4.6.2), along with the expression for the toroidal magnetic field By, = —7 X
V¥ Pons and Geppert (2007), expanding and simplifying to give

OF =

dko dT A6 Ty,
o 751—2m'f'}/lm — ko |: l

dT
—— rY; T, —opTW¥ — Y, . “4.6.
T dr Y + (5 im — @WBTY T >VJ_ lm] (4.6.8)

dr

Using equations (4.6.1) and (4.6.8) an expression for the first order temperature derivative

with respect to radius is written as

déTim, 1 (dkodT
(e ) 46.9
dr /@0<de7“ bm + Ui > ( )
and an expression for V},, is obtained as
dT
Vlm = KO <(:}B7'\I]lm7”d — 5Tlm> . (4.6.10)
T

A thermal profile of an accreted neutron star crust that is perturbed by the presence of
a toroidal magnetic field is built by solving the coupled first order differential equations
(4.6.7) and (4.6.9), with V},,, given by equation (4.6.10).

4.6.1 Perturbed Boundary Conditions

For both a normal and superfluid core star, the perturbed boundary conditions follow
the same treatment as those used in 3.5.3 as

Mo =611 = 0. (4.6.11)

4.6.2 Magnetisation Parameter

An initial estimate of the influence the magnetisation parameter may have on the tem-
perature distribution can be obtained by using the results from the spherically symmet-
ric background model along with the equation for the magnetisation parameter

eB

*
mic

WRT = T (4.6.12)
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Figure 4.6.1 shows how the magnetisation parameter varies with radius for B = 1 x 10°G.
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Figure 4.6.1: A graph to show how the magnetisation parameter varies with radius in a star with a normal
core for a magnetic field B = 1 x 10°G, Qimp = 1 and three different accretion rates. The red line represents
M =1 x10""Mg yr~!, the blue line M =1 x 107° Mg yr™', and the green line M = 1 x 107¥ Mg yr .

A comparison of figure 4.6.1 can be made with figure 3.5.1 from the constant density
model. Both show a magnetisation parameter of order 10~ for B = 1 x 10° G. In figure
4.6.1 step-like features can be seen, which arise from the composition changes at dif-
ferent densities. In the constant density model wpT decreases with increasing radii due
to 7 being inversely proportional to temperature. In this model with a realistic equa-
tion of state wp7 increases with increasing radii. These differences in the magnetisation
parameter gradient is predominantly governed by the density dependence of 7.

4.7 Numerical Methods

The numerical methods employed to solve the first order coupled ODEs (4.6.7) and (4.6.9)
are identical as those outlined in section 4.4. The shooting method is used to determine
the outer boundary value of Uj,,. The coupled differential equations are numerically

integrated as a function of radius.

471 Non-dimensionalisation

To enable the numerical integration to solve the differential equations as accurately as

possible, it is best to non-dimensionalise the equations. Using the definitions given in
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equations (4.4.1) along with the additional relation
7 (4.7.)

the differential equations shown in (4.6.7) and (4.6.9) can be written in dimensionless

form as )
d 2. I(l+1 R
7 S ( +2 ) Vim — 6CT°6T—22 (4.7.2)
d?" T T Ftprtyp typ
dsT 1 (drodT . -
N R A K . 473
dr Ko (dT g o+ u “yp> 473

Equations (4.7.2) and (4.7.3) were solved using the shooting method in Python where the
perturbed temperature at the outer and inner boundaries is set as 7o = §7ig = 0, for

both a normal and superfluid core.

4.8 Perturbed Model Results

The coupled ODEs describing how the heat flux and temperature vary in an accreted
neutron star crust as shown in equations (4.6.7) and (4.6.9) respectively, were solved us-
ing the dimensionless forms of the equations as shown in (4.7.2) and (4.7.3), using the nu-
merical techniques outlined in section 4.4. The results of this calculation are presented
in this section.

The source term, from the last term in equation (4.6.8) is shown as a function of radius
for both a normal and superfluid core, shown in figures 4.8.1 and 4.8.2 respectively, for
three different accretion rates. At lower radii, spikes appear in the curves of both plots.
These features arise from heat being deposited into the crust via pycnonuclear reactions.
These spikes become more prominent with increasing accretion rates. The relation of
the source term with temperature is complicated. An understanding of which scattering
regime dominates in the crust for each accretion rate can be obtained from figures 4.5.8
for a normal core and 4.5.9 for a superfluid core. These figures show electron-phonon
scattering as the dominant regime, due to the high crustal temperatures. Looking at
equation (4.6.10), the source term scales as

dT

T (vep(T) + Ve (Qimp)) 2. (4.8.1)

When electron-phonon scattering dominates, this can be approximated to ~ 44, which
makes it difficult to predict how the source term scales with accretion rate for both a
normal and superfluid core star.
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Figure 4.8.1: A graph to show how the source term
in equation (4.6.8) varies with radius for a normal
core, B = 1 x 10"*G, Qimp = 1 and three differ-
ent accretion rates. The red line represents M =
1 x 107*°M¢, yr~!, the blue line M = 1 x 107° M,

yr—!, and the green line M =1 x 10~ M, yr—*.
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Figure 4.8.2: A graph to show how the source
term in equation (4.6.8) varies with radius for a su-
perfluid core, B = 1x10'2G, Qimp = 1 and three dif-
ferent accretion rates. The red line represents M =
1 x 1071°M¢, yr~!, the blue line M = 1 x 107° M

yr~!, and the green line M =1 x 10~ %My yr—*.

The source term was also plotted as a function of impurity parameter, at the mid-point
of the crust, for both a normal and superfluid core for three different accretion rates, the
results are shown in figures 4.8.3 and 4.8.4 respectively. In both cases, the magnitude of

the source term is at a maximum when the impurity parameter is small Qinp ~ 1, and

decreases as the Qin,, increases. This pattern arises as the relaxation time 7 becomes

smaller as the crust becomes more impure. Again, it is difficult to predict the scaling with

accretion rate due to the complex relationship of the source term with temperature.
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Figure 4.8.3: A graph to show how the source term
in equation (4.6.8) varies with Qimp at the mid point
of the crust for a normal core, B = 1 x 10'*G and
three different accretion rates. The red line repre-
sents M = 1 x 107** M, yr~!, the blue line M = 1 x
107°Mg yr~!, and the green line M = 1 x 10™% M,
yr’l.
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Figure 4.8.4: A graph to show how the source
term in equation (4.6.8) varies with Qimp at the mid
point of the crust for a superfluid core, B = 1x 102G
and three different accretion rates. The red line
represents M = 1 x 107'°M yr™*, the blue line
M = 1x 10°Mg yr~!, and the green line M =
1x 1078 Mg yr~ 1.

The perturbed temperature as a function of radius is shown in figure 4.8.5 for a normal
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core and figure 4.8.6 for a superfluid core. For both a normal and superfluid core star, the
temperature perturbation shows a clear peak at lower radii values. In the normal core
star the magnitude of §T increases with higher accretion rates, whereas in the superfluid

core case 61" decreases with higher accretion rates. The perturbed temperature does

not inherit noticeable jumps from the source term, as integrating over the source terms

smooths the gradient.
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Figure 4.8.5: The perturbed temperature distribu-
tion, generated by the presence of a magnetic field
of B =1 x 10'%G, with a normal core and Qimp = 1.
The red line represents M = 1 x 107 ** Mg yr!, the
blue line M = 1 x 107° M yr~!, and the green line
M=1x10"8Mgyr—*.
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Figure 4.8.6: The perturbed temperature distribu-
tion, generated by the presence of a magnetic field of
B =1 x 10"?G, with a superfluid core and Qimp = 1.
The red line represents M = 1 x 107'° Mg, yr=?, the
blue line M = 1 x 10" Mg yr~!, and the green line
M=1x10"3Mg yr ..

The perturbed radial flux Uy, as a function of radius is shown in figure 4.8.7 for a normal
fluid core and figure 4.8.8 for a superfluid core. The magnitude of the perturbed flux is
at a maximum at the inner boundary for both a normal and superfluid core star.

11e20

U, (ergs~! cm?)

11.2
I (km)

11.3 11.4 11.5

Figure 4.8.7: This figure shows how the heat flux
in an accreted, magnetically perturbed neutron star
crust varies as a function of radius for a normal core,

= 1 x 102G and Qimp = 1. The red line repre-
sents M = 1 x 107*° Mg, yr~*, the blue line M = 1 x
107°Mg yr~!, and the green line M = 1 x 10~5 M,
yr’l.
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Figure 4.8.8: This figure shows how the heat flux
in an accreted, magnetically perturbed neutron star
crust varies as a function of radius for a superfluid
core, B = 1 x 10"?G and Qimp = 1. The red line
represents M = 1 x 107'°Mg, yr~!, the blue line
M =1 x10""Mg yr~!, and the green line M = 1 x
1073 Mg yr— .
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A corresponding plot of 67'/T is shown in figures 4.8.9 and 4.8.10 for a normal and su-
perfluid core respectively. Figure 4.8.9 shows a larger temperature perturbation ratio
for higher accretion rates for a normal core star, and a smaller 67"/T for higher accre-
tion rates for a superfluid core star. In both core cases the perturbed temperature ratio
is of order ~ 1072, which corresponds to approximately 6T /T ~ 0.1% for B = 1012 G.
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Figure 4.8.10: The magnitude of the temperature
perturbation induced by the presence of a magnetic
field of strength B = 1 x 10'2G, with a superfluid
core and Qimp = 1. The red line represents M =
1 x 107'°M yr~!, the blue line M =1x10""Mg
yr—!, and the green line M =1 x 10~ Mg yr~!

Figure 4.8.9: The magnitude of the temperature
perturbation induced by the presence of a magnetic
field of strength B = 1 x 10'*G, with a normal core
and Qimp = 1. The red line represents M = 1 x
1071°Mg yr~!, the blue line M = 1 x 107" Mg yr*,
and the green line M =1 x 1078 Mg yr .

The corresponding plots of perturbed temperature as a function of density is shown for
a normal and superfluid in figures 4.8.11 and 4.8.12 respectively. The perturbation ratio
is also shown as a function of density in figures 4.8.13 for a normal core and 4.8.14 for a

superfluid core.

The thermal conductivity and magnetisation parameter are both sensitive to the purity
of the composition of the crust. The perturbed temperature ratio 67'/7" was calculated
for different impurity parameters, to investigate the influence the composition of the
crust has on this ratio. The accretion rate was set to M = 1 x 10~2M, yr~!, and a mag-
netic field of B = 1 x 10'2G, to generate a plot of §T'/T for different impurity parameters
and is shown for a normal core in figure 4.8.15 and superfluid core in figure 4.8.16.

In both the normal and superfluid core plots, the smaller impurity parameters Qimp < 10
have little influence on the temperature perturbation ratio. This is because electron-
phonon scattering is the dominant regime. When the impurity parameter is large Qimp <
10, we see for both a normal and superfluid core star, a larger impurity parameter gen-
erates a a larger 67'/T. This may be because the value of 7 decreases as v,q increases,

resulting in a lower thermal conductivity, impeding the flow of heat through in the crust.
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Figure 4.8.11: The perturbed temperature distri-
bution, generated by the presence of a magnetic
field of B = 1 x 10'2G, with a normal core and
Qimp = 1 as a function of p. The red line repre-
sents M = 1 x 107 *° Mg, yr~*, the blue line M = 1 x
1079 Mg yr™!, and the green line M=1x10"%Mgy
yr’l.
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Figure 4.8.13: The magnitude of the temperature
perturbation induced by the presence of a magnetic
field of strength B = 1 x 102G, with a normal core
and Qimp = 1 as a function of p. The red line repre-
sents M = 1 x 1079 Mg, yr=!, the blue line M = 1 x
107° Mg yr~!, and the green line M = 1 x 10™%Mp,
yr‘l‘
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Figure 4.8.12: The perturbed temperature distri-
bution, generated by the presence of a magnetic
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Figure 4.8.14: The magnitude of the temperature
perturbation induced by the presence of a magnetic
field of strength B = 1 x 10'?G, with a superfluid
core and Qimp = 1 as a function of p. The red line
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M =1 x10""Mg yr~!, and the green line M = 1 x
1078 Mg yr 1.
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Figure 4.8.15: A graph to show how the magnitude
of the temperature perturbation varies with impu-
rity parameter as a function of radius for a normal
core. The accretion rate was set to M = 1 x 107" Mg,
yr~!, a magnetic field of B = 1 x 10'*G. The red
line represents Qimp = 0.1, the blue dashed line
Qimp = 1, the green line Qimp = 10 and yellow line
Qimp = 100.

4.8.1 Numerical Testing

4.8.11 Convergence Testing
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Figure 4.8.16: A graph to show how the magnitude
of the temperature perturbation varies with impu-
rity parameter as a function of radius for a superfluid
core. The accretion rate was set to M = 1 x 107? M
yr~', a magnetic field of B = 1 x 10'?G. The red
line represents Qimp = 0.1, the blue dashed line
Qimp = 1, the green line Qimp = 10 and yellow line
Qimp = 100.

The results from the perturbed neutron star crust numerical calculations were tested

for convergence using the same methods as those shown in section 4.5.2.2. The results

of this test are shown in table 4.8.17.

M Nflux Ntemperature
(Mg yr!)
1x10719 1.00437  1.00220
1x1077 1.00437  1.00216
1x10~% 1.00437  1.00218

Table 4.8.17: Summary of the converge test values obtained for both the perturbed temperature and flux
for each accretion rate.

Table 4.8.17 shows the value for n for both the flux and temperature convergence test is
positive for each accretion rate. This confirms the numerical calculations are conver-

gent.

4.8.1.2 Finite Differencing

The accuracy of the ODE solver was tested using finite difference methods, as outlined in
section 4.5.2.4. dUy,, /dr was calculated by finite differencing and the results compared

to those obtained by using equation (4.6.7) directly. A comparison of these results is
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shown in 4.8.18. The fractional error of this comparison is shown in figure 4.8.19.

The values of dUj,,, /dr calculated using the two different techniques appear to agree well
as shown in figure 4.8.18. Upon closer inspection, using the fractional error plot shown
in 4.8.19, spikes appear showing deviations from the agreement of the two results. The
larger spikes occur at points in the crust where step-wise features are seen in figure
4.8.18. These spikes lead to a fractional error of order 1072. This error is acceptable as
it only this large over small ranges in r. Away from the spikes the error is of order 1074,

which is within a suitable accuracy required of these calculations.
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Figure 4.8.18: A comparison of dU,, /dr as calculated by finite differencing (red line) and directly from
equation (4.6.7) (blue line) for an accretion rate of M = 1x10~? M, yr~!, withanormal coreand B = 1x10'?
G.

A finite difference test was also conducted for déT'/dr. Figure 4.8.20 shows a compar-
ison of values for ddT'/dr as calculated by finite differencing and equation 4.6.9. These
two methods of calculation appear to correspond well. To investigate the validity of the
results further, the fractional error of these values was calculated and is shown in figure
4.8.21. Similarly to the dUy,,, /dr case, spikes are present and correspond to the step-wise
features that occur in d67T'/dr. These spikes are of order 1072, which is suitably low for
the accuracy required of these calculations. The finite difference test was passed for

both cases.

The finite difference tests were also conducted for a star with a superfluid core, and
were found to have the same order of accuracy as the normal core finite difference test

results presented here.
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Figure 4.8.19: The fractional error between the two plots shown in figure 4.8.18.
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Figure 4.8.20: A comparison of d§T'/dr as calculated by finite differencing (red line) and directly from
equation (4.6.7) (blue line) for an accretion rate of M = 1x10~° M, yr~!, withanormal coreand B = 1x10"?
G.
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4.9 Shallow crustal heating

In recent years, studies of cooling X-ray transiently accreting neutron stars have shown
that cooling curves cannot be reproduced without the presence of a shallow heating

3 an additional heat source of

source in the crust. At low densities p ~ 108 — 10'°g cm~
~ 1—10 MeV is required (Deibel et al., 2015), (Waterhouse et al., 2016), (Parikh et al., 2017).
To investigate the effects of shallow crustal heating on our model we input 6 MeV into the
density range 10°—10'° g cm~3. From our crustal equation of state data (as shown in table
4.2.1) 2 MeV was input at regions of uniform volume between two density transitions for
r = 11.599km, 11.498km, and 11.335km. Lower densities were not included as our data
set does extend to densities below 10%g cm~3. The results with shallow heating included
in our model are presented below, alongside the results produced in the absence of
shallow heating to enable the reader to easily draw comparisons between the two data

sets.

4.9.1 Background thermal profile with shallow crustal heating

The results presented in this subsection have been obtained by solving our background
model for a spherically symmetric accreted neutron star crust for three different accre-
tionrates M = 1 x 10~ 0Mg yr—!, M =1 x 10 °Mg yr—',and M = 1 x 10~8 M yr—' and

for an impurity parameter Qipyp = 1.

The background temperature profile of the crust in the presence of shallow heating is
shown in figure 4.9.2, and without in figure 4.9.1 for a normal core star. There is a signifi-
cant difference in the shape of the curve for the two models. In the case where shallow
heating is present, we see an increase in temperature from the outer boundary when
moving inwards through the crust to towards the core, peaking where shallow heating
occurs. Higher accretion rates produce a hotter crust, which corresponds to more heat
deposited into the crust via accretion. Overall, the background temperature is slightly

hotter (less than one order of magnitude) when shallow heating is present.

The background flux in the absence of shallow heating is shown in figure 4.9.3 and in
the presence of shallow heating in figure 4.9.4 for a normal core star. The curves in the
shallow heating case has much steeper gradients throughout the crust. When shallow
heating isn't present, we see the flux plateaus at higher radii then steeply decreases at
low radii where pycnonuclear reactions begin to occur in the crust. The presence of

shallow heating increases the background flux by less than one order of magnitude.

The background temperature results for a superfluid core star are shown in the presence
of shallow heating and without shallow heating in figures 4.9.6 and 4.9.5 respectively. For
accretion rate M = 1 x 1078M, yr~!, a peak can clearly be seen at higher radii where
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Figure 4.9.1: This figure shows how the temper-
ature in an accreted neutron star crust varies as a
function of radius for a normal core, B = 1 x 10*2G
and Qimp = 1. The red line represents M = 1 x
1071 Mg yr~!, the blue line M = 1 x 107° Mg, yr~ !,
and the green line M =1 x 10~ Mg yr—'.
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Figure 4.9.3: This figure shows how the heat flux in
an accreted neutron star crust varies as a function of
radius for a normal core, B = 1 x 10'2G and Qimp =
1. The red line represents M = 1 x 107** Mg yr—*,
the blue line M = 1 x 107°Mg yr~?, and the green
line M =1 x 1078 M, yr— 1.

Figure 4.9.2: This figure shows how the temper-
ature in an accreted neutron star crust varies as a
function of radius for a normal core in the pres-
ence of crustal shallow heating, B = 1 x 10'2G and
Qimp = 1. The red line represents M = 1x 107 *° M,
yr~!, the blue line M = 1 x 107°M yr~', and the
green line M =1 x 1078 M, yr— .
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Figure 4.9.4: This figure shows how the heat flux
in an accreted neutron star crust varies as a function
of radius for a normal core in the presence of crustal
shallow heating, B = 1 x 10'*G and Qimp = 1. The
red line represents M = 1 x 107'° M yr~', the blue
line M =1 x 107° Mg, yr~!, and the green line M =
1 x1078Mg yr~ 1.
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shallow heating occurs in figure 4.9.6. For lower accretion rates, the presence of shallow
heating has less influence on the background temperature and the results are similar to
those when shallow heating is not present. A star with a superfluid core restricts the flow
of flux to the core, causing the temperature to build up in the crust. Only at significantly
high accretion rates M > 1 x 10~8M yr~!, do we see the effects of shallow heating. The
presence of shallow heating in the crust for a superfluid core produces a slightly hotter
crust than when shallow heating isn't present.
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Figure 4.9.5: This figure shows how the temper- Figure 4.9.6: This figure shows how the temper-
ature in an accreted neutron star crust varies as a ature in an accreted neutron star crust varies as a
function of radius for a superfluid core, B = 1 x function of radius for a superfluid core in the pres-
102G and Qimp = 1. The red line represents M = ence of crustal shallow heating, B = 1 x 10'*G and
1 x 107'°M¢ yr~!, the blue line M =1x10""Mg Qimp = 1. The redline represents M =1x10"""Mg

yr~!, and the green line M =1 x 10~ M, yr~*. yr~!, the blue line M = 1 x 107°Mg yr~', and the
1

green line M =1 x 1078Mg yr .
The background flux for a superfluid core with and without shallow heating is shown
in figures 4.9.8 and 4.9.7 respectively. When shallow heating is present the flux is an or-
der of magnitude larger than without. The distribution of flux in the crust differs quite
significantly to the case without shallow crustal heating. The flux has a broader more
negative curve when shallow heating is present, compared to a more consistently pos-
itive flux until the region of the crust where the pycnonuclear reactions begin to occur
at lower radii.

4.9.2 Perturbed thermal profile with shallow crustal heating

The perturbed temperature in the presence of shallow heating for a normal core star is
shown in figure 4.9.10 and without shallow heating in figure 4.9.9. The magnitude of §T°
is approximately 4 times larger in the presence of shallow heating when compared to
the case without shallow crustal heating.

The perturbed flux for a normal core is shown with and without shallow heating in fig-
ures 4.9.12 and 4.9.11 respectively. In the presence of shallow heating Uy, is an order of
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Figure 4.9.7: This figure shows how the heat flux
in an accreted neutron star crust varies as a function
of radius for a superfluid core, B = 1 x 10'*G and
Qimp = 1. The red line represents M = 1x 107 *° M,
yr—!, the blue line M = 1 x 107 Mg yr~', and the
green line M =1 x 1078 Mg yr~?
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Figure 4.9.9: This figure shows how the perturbed
temperature in an accreted, magnetically perturbed
neutron star crust varies as a function of radius for
anormal core, B = 1 x 10'G and Qimp = 1. The
red line represents M = 1 x 107 Mg yr~?, the blue
line M =1 x 107°M¢ yr~', and the green line M =
1x 1078 Mg yr.
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Figure 4.9.8: This figure shows how the heat flux
in an accreted neutron star crust varies as a func-
tion of radius for a superfluid core in the presence of
crustal shallow heating, B = 1x 102G and Qimp = 1.
The red line represents M = 1 x 107! Mg yr~!, the
blue line M = 1 x 10~°Mg yr~', and the green line
M=1x10"3Mg yr—t.
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Figure 4.9.10: This figure shows how the per-
turbed temperature in an accreted, magnetically
perturbed neutron star crust varies as a function of
radius for a normal core in the presence of crustal
shallow heating, B = 1 x 102G and Qimp = 1. The
red line represents M = 1 x 107'°Mg yr=?, the
blue line M = 1 x 107" Mg yr~!, and the green line
M=1x10"3Mg yr '
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magnitude larger than the case without shallow heating. Overall the flux distribution in
the accreted crust is similar in both cases, with a positive flux spanning a broader range
of radii when shallow heating is present.
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Figure 4.9.11: This figure shows how the per- Figure 4.9.12: This figure shows how the per-
turbed heat flux in an accreted, magnetically per- turgej heat flux in an accre’Fed, ma§net1§ally }f)er—
turbed neutron star crust varies as a function of ra- tUrP€d neutron star crust varies as a function of ra-
dius for a normal core, B = 1 x 10'2G and Qimp = 1. dius for a normal core in the presence of crustal
The red line represents M=1x 1071905 yr’l, the shang heating, B =1x 10"*G anfiloQimP :711~ The
blue line M = 1 x 10~ M, yr~!, and the green line red line represents M9 =1 ><110 Mg yr™", the
M=1x10"Mgyr— blue line M =1 x 107" Mg yr~, and the green line
e M=1x10"8Mgyr .

The most interesting result can be seen in the graphs of §7'/T for a normal core star,
shown in figures 4.9.13 without shallow heating and 4.9.14 with shallow heating. When
shallow heating is present, accretion rate M = 1 x 10~? M, yr—! produces a larger tem-
perature perturbation than M = 1 x 10~8Mg, yr—, it is unclear as to why shallow heat-
ing produces such a high §7'/T for accretion rate M = 1 x 10~9M, yr~! and not the
other accretion rates. The overall temperature perturbation ratio produced when shal-
low heating is included in our model, is approximately twice as large as when this heat-
ing mechanism is excluded.

The perturbed temperature for a superfluid core star is shown without shallow heating
in figure 4.9.15 and with shallow heating in figure 4.9.16. In the presence of shallow heat-
ing, the magnitude of 47 is comparable for the lower accretion rates (M < 1 x 10~9Mj,
yr—1). The highest accretion rate M = 1 x 10~3M, yr~!, produces the largest magnitude
of 6T with a a broader curve that peaks at smaller radii when compared to the lower ac-

cretion rates. The temperature perturbation is of the same order of magnitude for both
cases.

For the superfluid core star, the perturbed flux with shallow crustal heating is shown
in figure 4.9.18, and without crustal heating in figure 4.9.17. The perturbed flux curves
when shallow heating is present are quite different to those in the absence of shallow

heating. Small peaks in Uy, can be seen at lower radii for the higher accretion rates
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Figure 4.9.13: This figure shows how 67 /T in an
accreted, magnetically perturbed neutron star crust
varies as a function of radius for a normal core, B =
1x10"2G and Qimp = 1. Thered line represents M =
1 x 107'°M¢ yr~!, the blue line M =1x10""Mg

yr~!, and the green line M =1 x 10~ M, yr~*.

0.2 166

0.0

-0.2

-0.8

s 1.6

11.0 11.1 11.2 11.3

T {km)

Figure 4.9.15: This figure shows how the per-
turbed temperature in an accreted, magnetically
perturbed neutron star crust varies as a function of
radius for a superfluid core, B = 1 x 10'%G and
Qimp = 1. Thered line represents M = 1x 10~ ° My,
yr~1, the blue line M = 1 x 107°M¢ yr~', and the

green line M =1 x 1075 M, yr— 1.
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Figure 4.9.14: This figure shows how §T/T in an
accreted, magnetically perturbed neutron star crust
varies as a function of radius for a normal core in the
presence of crustal shallow heating, B = 1 x 10'2G
and Qimp = 1. The red line represents M = 1 x
10719 Mg yr~!, the blue line M = 1 x 107" Mg yr—?,

and the green line M =1 x 1078 Mg yr~*.
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Figure 4.9.16: This figure shows how the per-
turbed temperature in an accreted, magnetically
perturbed neutron star crust varies as a function of
radius for a superfluid core in the presence of crustal
shallow heating, B = 1 x 102G and Qimp = 1. The
red line represents M = 1 x 107'°Mg yr~!, the
blue line M = 1 x 10~° M, yr~!, and the green line
M =1x10"3Mg yr .
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M > 1 x 1079 My yr—!, which aren't present when shallow heating isn't included.
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Figure 4.9.17: This figure shows how the per-
turbed flux in an accreted, magnetically perturbed
neutron star crust varies as a function of radius for
a superfluid core, B = 1 x 10"?G and Qimp = 1.
The red line represents M = 1 x 107'° Mg, yr~?, the
blue line M = 1 x 1077 Mg yr~ !, and the green line
M=1x10"3Mg yr*.
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Figure 4.9.18: This figure shows how the per-
turbed flux in an accreted, magnetically perturbed
neutron star crust varies as a function of radius for
a superfluid core in the presence of crustal shallow
heating, B = 1 x 102G and Qimp = 1. The red
line represents M = 1 x 107'°Mg yr~', the blue
line M = 1 x 107°Mg yr~!, and the green line
M =1x10"3Mg yr '

The ratio 07'/T for shallow crustal heating for a superfluid core star is shown in figure
4.9.20 and without in figure 4.9.19. The magnitude of §7'/T" is approximately half the size

when shallow crustal heating is present.
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Figure 4.9.19: This figure shows how 67/T in an
accreted, magnetically perturbed neutron star crust
varies as a function of radius for a superfluid core,
B =1 x 10"G and Qimp = 1. The red line repre-
sents M = 1x 10719Mg yr~?, the blue line M = 1 x
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Figure 4.9.20: This figure shows how 67/T in an
accreted, magnetically perturbed neutron star crust
varies as a function of radius for a superfluid core
in the presence of crustal shallow heating, B = 1 x
10'%2G and Qimp = 1. The red line represents M =
1 x 107 1M yr~!, the blue line M = 1 x 107" M
yr~!, and the green line M = 1 x 10~ 8 Mg yr~*
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410 Summary and discussion

In chapter 3, a temperature perturbation ratio of §7/T ~ 2 x 107°Bg was calculated
for a constant density star with a normal fluid core giving rise to an ellipticity of ¢ ~
2 x 107" Bg for M =1 x 107" Mg, yr~" and Qimp = 1.

In this chapter, the thermal profile of a realistic, spherically symmetric, accreted neu-
tron star crust was constructed for both a normal and superfluid core. The crust was
calculated from the Newtonian hydrostatic structure equations on a relativistic core
which was computed using the TOV equations. Using accreted crust equation of state
data from Haensel and Zdunik (1990a), density dependent variables were calculated as
a function of position in the crust.

A background thermal profile was calculated from the heat equation in the steady state.
Nuclear heating from accretion provided a heat source, and neutrino cooling a heat sink.
This background model was then perturbed by the insertion of a toroidal magnetic field.
The magnetic field influences how heat is transported around the crust, by interacting
with electrons, the dominant heat carriers, resulting in a temperature perturbation.

From Ushomirsky et al. (2000), the ellipticity induced can be written as a function of
0T /T as

e~ — 25X 107" —, (4.10.1)

where @ is the mass quadrupole moment and I is the moment of inertia. The value of
8T /T selected at p = 1 x 10'2g cm~3, as Ushomirsky et al. (2000) find that the higher
density inner crust is the part that contributes most to the quadrupole moment. From
figure 4.8.13, for a normal core star, we find

oT
— ~1x1073Byo, (4.10.2)
T
and from figure 4.8.14, for a superfluid core star, as
0T
T 2 x 10™*Bys. (4.10.3)

Combining these parametrised equations for the perturbed temperature ratio with equa-
tion 4.10.1 and rescaling for B = 10° G, we find in the case of a normal fluid core, the
magnetic field induced an ellipticity

e~ 5x 1071%By, (4.10.4)

and for a superfluid core
e~ 1x1071?By (4.10.5)
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for M =1 x 1079Mg yr=!, p = 10"g cm™3, Qimp = 1 and p = 10'2 g cm~2. These el-
lipticity values suggest a surprisingly large internal magnetic field would have to exist in
accreting neutron stars for this model of mountain growth to viably exist. The ellipticity
obtained from Ushomirsky et al. (2000), as shown in equation (4.10.1), is approximately
independent of accretion rate. For simplicity, values of §7'/T the intermediate accre-
tion rate (M = 1 x 10~9M, yr—') were selected. The ellipticity scales linearly with the
temperature perturbation ratio. Ushomirsky et al. (2000) show a temperature pertur-
bation ratio of order ~ 1% is required to generate a mass quadrupole moment that is
sufficiently large to produce gravitational wave energy losses that balance the spin-up
torque from accretion. The parameter space was explored by varying the accretion rate
and impurity parameter in the model. Higher accretion rates were found to induce a
larger temperature perturbation ratio in the normal case, and a lower temperature per-
turbation ratio in the superfluid core case. From figures 4.8.15 and 4.8.16, a higher Qimy,
representing an impure crust resulted in a higher magnitude §7'/T for both a normal and
superfluid core star, as a higher value of Qi results in a smaller 7 effectively reducing

the thermal conductivity, impeding heat transport in the crust.

The effect of crustal shallow heating was also investigated with our model. The tem-
perature perturbation ratio and ellipticity calculated by our model in the presence of
shallow heating for a normal core star was found to be
or
— =2x10"°B
T X 95
ex~1x10"1By,

and for a superfluid core as

oT
— =36x10"°B
T X 9,

e~ 1.8 x 107 3By.

Overall, in both the normal and superfluid core cases, the presence of the shallow crustal
heating did not alter the magnitude of the temperature perturbation induced by the
presence of the magnetic field.

In the literature, it has been shown that the magnetic field of a neutron star can induce
ellipticities through the development of ‘'magnetic mountains. These mountains dif-
fer from the work produced here, as a temperature asymmetry is not required. As a
magnetic field is present in both cases, thermal and magnetic mountains, it would be
interesting to compare the magnitude of ellipticities induced by each mechanism. Cut-
ler (2002) showed for a normal core where the toroidal magnetic field By < 103G, the
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ellipticity generated for a 1.4 Mg star and 10km radius was

2
B ¢ <Bf >
and for a star with a superconducting core
< By >
eg = —1.6 x 1076 ( 1015tG ) : (4.10.7)

where < ... > is the volume averaged over the neutron star interior, and it was assumed
the toroidal component of the magnetic field is stronger than the poloidal component.
In more recent work, Lander (2013) found the ellipticity induced by magnetic mountains
for a neutron star with a superconducting core to have an ellipticity a couple of orders

of magnitude smaller than previous calculations as

B H,
eg =3.1x 1078 << ¢ >> << >> , (4.10.8)

102G 105G

where H., is the lower critical field for superconductivity. The ellipticity induced by ther-
mal mountains, as calculated within this work, is a factor of a few smaller (~ 1072By5)
than the calculations of Lander (2013). It is interesting that the two ellipticity-generating

mechanisms produce rather similar results, despite their very different input physics.

The magnetic field of a neutron star decays ohmically on a timescale

dro L2
TOhm = 2 (4.10.9)

where o is the electrical conductivity which is a function of the relaxation time as

2 .
o= (T Qimp) (4.10.10)
mg

and L is a characteristic length scale. The Ohmic timescale can be written in the parametrised
form as (Pons and Geppert, 2018)

o L? 6
TOhm — 4.4 (W) H 10 years. (41011)

The ohmic timescale is short compared to the lifetime of a LMXB. This indicates the mag-
netic field may have decayed away unless there a mechanism that continues to generate
the field.

It would be interesting to build on this work by exploring other sources of tempera-
ture asymmetries that could arise within this model. Some examples of such sources of

asymmetries may arise from non-spherical accretion, or the presence of temperature
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asymmetries on the crustal surface i.e. pulsars. We explore the first of these possibilities

in the next chapter.
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CHAPTER B

Temperature asymmetry on surface of an accreted neutron star crust

In this chapter, we will build on the work of chapter 4 by investigating other sources
of where temperature perturbations may arise within our model. Looking at the key
equations of the model, the flux

F=-KVT, (5.0.1)

and the divergence of the flux
V- F=Q= p(€nue — €1), (5.0.2)

possible sources of temperature perturbations could arise from the rate of change of
heat per unit time @, as well as the perturbed temperature at the crustal boundaries,
which were previously set to zero in chapters 3 and 4.

In this chapter, non-spherical accretion is introduced. This could incite a perturbation
in the rate of change of heat per unit time, resulting in a perturbation in the pe,u. compo-
nent. Another possible temperature perturbation could arise from the dependence of
neutrino cooling on the magnetic field. In this work, only neutrino bremsstrahlung cool-
ing in the crust has been considered, as this is the dominant cooling mechanism. From
the literature, Haensel et al. (1996) do not include the magnetic field in their Bremsstrahlung
neutrino cooling calculations and Chamel and Haensel (2008) state the effect of the
magnetic field on Bremsstrahlung neutrino cooling has not been calculated. For these

reasons, any possible perturbation on pe, will not be considered further.

129
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In this chapter, we investigate how a temperature asymmetry on the surface of the crust,

arising from non-spherical accretion, influences the thermal profile of the star’s crust.

Using the model from chapter 4, a temperature perturbation is induced by hand at the
crustal outer boundary. The model is then solved numerically without a a magnetic field
present, so the influence on the temperature distribution in the crust, arising solely from
the boundary temperature perturbation, can be seen. Later, the model is solved with the
perturbed outer boundary temperature in the presence of a magnetic field, to enable
the cumulative effects of both of these perturbation mechanisms on the temperature
distribution, in the accreted neutron star crust, to be seen.

51 Non-spherical accretion

Atemperature asymmetry can arise in an accreted neutron star crust if accretion is non-
spherical. For non-spherical accretion to occur, the accreted matter interacts with the
external magnetic field, channelling the accreted matter onto the neutron star via the
polar caps.

In chapter 4, the thermal profile of an accreted neutron star crust was calculated for
spherical accretion. This model can be adjusted to include non-spherical accretion by
introducing a non-zero-value for the perturbed outer boundary condition 67¢p.

In chapters 3 and 4, the temperature at the outer boundary of the crust was set as a
function of the local accretion rate, following the formalism used by Ushomirsky et al.
(2000) as

m 7
TOB = Tburn < s > 5 (511)
MEdd

where Ty = 5.3 x 108K is the thermally stable burning temperature of hydrogen and
helium in the upper atmosphere for high accretion rates M > 10~8M yr—! (Schatz
et al., 1999). For weakly magnetised neutron stars (B << 10''G) with lower accretion
rates (M < 1078M yr—!) the nuclear burning is thermally unstable, resulting in the
production of energetic type I X-ray bursts. When accretion is non-spherical, the local
accretion rate at the magnetic poles is usually high enough for stable hydrogen/helium
burning to occur. The temperature sensitive helium burning governs the average nu-
clear mass of the ashes, which is dependent on the local accretion rate.

The external magnetic field may channel the flow of accreted matter, giving rise to a

non-zero . The perturbed outer boundary temperature can be written as a function
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of the perturbed local accretion rate as

ot

9 . — on
5TOB = ?Tburn ( .m > . mn . (512)
MEdd MEdd

The perturbed local accretion rate d72 can be written as a function of a dimensionless
free parameter a as
om =a <m >, (5.1.3)

where < 7 > is the surfaced averaged accretion rate.
The expression for the perturbed outer boundary temperature shown in equation (5.1.2),

will be employed as a modified boundary condition in the perturbed model outlined in

chapter 4, for a realistic accreted neutron star crust.

Introducing spherical harmonics, we can write

d1 =Re Y (1) Y. (5.1.4)

Im

Setting the indices as | = m = 2, for a quadrupole for gravitational wave production,
equation (5.1.4) becomes
om = Re[a22Y22<m>]. (5.1.5)

Using equations (5.1.1), (5.1.2) and (5.1.5), an expression for 47 at the outer boundary can
be written in spherical harmonics as

2
6TOB = ?TOBRQ[OJQQYQQ]. (5.1.6)
agg and Yao can be expressed as a function of phase factor for angle A¢ as

Qg = |2 |6’_i2A¢a

Ya2(0, ) = Yao(6,0)e2?, (5.1.7)

combining these expressions with equation (5.1.6) and taking the real parts, the per-

turbed outer boundary temperature is then written as
2
5TOB = ?TOB|0422|Y22(9, O) COS[2(¢) - A¢)] (5.1.8)

From equation (5.1.8), A¢ represents the location of the hot-spot relative to the symme-
try axis ¢ = 0 of the internal toroidal magnetic field. For real positive ag2: A¢ = 0 and

for real negative ago: Agp = 7.

The perturbation ratio 67'/T scales linearly with «. Initially we set & = 0.01 and B = 0 G.
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Later we introduce an internal magnetic field B # 0 G, at which point the relative sizes

of B and a will become important.

5.2 Thermal profile of an accreted neutron star crust in the pres-

ence of a magnetic field

The background thermal profile of an accreted neutron star crust is constructed in spher-
ical symmetry for a realistic equation of state using the same formalism as in chapter 4.
On this background model, a temperature perturbation was incited by two different

methods: insertion of a magnetic field and non-spherical accretion.

In section 4.6, a magnetic field was inserted into the crust and two coupled first order
differential equations, for the perturbed flux Uy,,, and temperature §7},,, shown in equa-
tions (4.3.7) and (4.3.6) respectively, were solved for a magnetic field B = 1 x 102 G and
the boundary conditions 67op = 67ig = 0. In the work presented here, we are building
on this model by solving for an accreted neutron star crust that has existing temperature
asymmetries present, which arise from non-spherical accretion. The existence of these
temperature asymmetries is implemented into the model by introducing a non-zero
dTog. The coupled ODEs shown in equations (4.3.7) and (4.3.6) are solved for magnetic
field strength B = 0G, for both a normal and superfluid core, using equation (5.1.6) with
the outer boundary condition set as

2
dTop = »TopRelazYa)]. (5.2.1)
The inner boundary condition for a normal core is set as
0T = 0, (5.2.2)

and for a superfluid core
Ui = 0. (5.2.3)

The numerical methods used to solve equations (4.3.7) and (4.3.6) are the same as those

detailed in sections 4.4 and 4.7.

5.3 Thermal profile results for non-spherical accretion

In this section, the results obtained for solving the coupled ODEs for temperature and
flux, as shown in equations (4.3.7) and (4.3.6), for the boundary conditions shown in sec-
tion 5.2 are presented for B = 0G in subsection 5.3.1, for both a normal and superfluid

core and for both an internal field and a surface asymmetry in section 5.3.2.
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5.3.1 Non-spherical accretion in the absence of a magnetic field

The results presented in this subsection are for the free parameters a = 0.01 and B = 0G.

The perturbed temperature profile as a function of radius for a = 0.01 is shown for a
normal and superfluid core in figures 5.3.1 and 5.3.2 respectively. The perturbed tem-
perature is at a maximum at the outer boundary, and a minimum at the inner boundary,
for both a normal and superfluid core. This is a result of the inner boundary condition
of §T1g = 0. Both stars produce identical temperature distributions, with a temperature
perturbation of order 10°K, with a larger 4T for higher accretion rates.

25 leb 2.5 le6
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Figure 5.3.1: A plotofhow the perturbed tempera- Figure 5.3.2: A plot of how the perturbed tem-

ture varies with radius for Qimp = 1, B = 0Ganda = perature varies with radius for Qimp = 1, B = 0G
0.01 for a normal core. The red line represents M = and a = 0.01, for a superfluid core. The red line
1 x 107*°M¢ yr~!, the blue line M = 1 x 107°M represents M = 1 x 107'°Mg yr~, the blue line
yr~!, and the green line M = 1 x 1078 Mg yr ™. M = 1x 107°Mg yr~!, and the green line M =

1x 1078 Mg yr— .

A plot of how the perturbed flux varies with radius in an accreted neutron star crust is
shown for a normal and superfluid core in figures 5.3.3 and 5.3.4 respectively. For both
a normal and superfluid core star the magnitude of the perturbed flux decreases almost
linearly with radius when moving from the crust-core boundary towards the surface of
the crust. The magnitude of the flux is the same for both a normal and superfluid core
star.

The ratio 67" /T is shown as a function of radius in figures 5.3.5 and 5.3.6 for a normal and
superfluid core respectively. For both stars, 07"/T decreases in magnitude when moving
from the top of the crust towards the crust core boundary. The temperature perturba-
tion in both the normal and superfluid core cases are of order §T'/T ~ 10~3. The results
produced here show that the type of core a neutron star has does not significantly affect
the thermal profile of an accreted crust when a significant temperature asymmetry ex-
ists on the surface of the crust. For a normal core star a higher accretion rate produces
a larger 07 /T. In the case of the superfluid core star, the relation between accretion
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Figure 5.3.3: A plot of how the perturbed flux
varies with radius for Qimp = 1, B = 0G and a =
0.01, for a normal core. The red line represents M =
1 x 107'°M¢ yr™!, the blue line M =1x10""Mg

yr~!, and the green line M =1 x 1078 M, yr~ 1.
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Figure 5.3.4: A plot of how the perturbed flux
varies with radius for Qimp = 1, B = 0G and a =
0.01, for a superfluid core. The red line represents
M = 1 x 107*°M yr~!, the blue line M = 1 x
107°My yr~!, and the green line M = 1 x 1075 M
yr‘l.

rate and perturbation ratio is more complex. Accretion rates M =1 x 10710 yr—t

and M = 1 x 10-8M, yr—! produce a larger 7/T, when compared to accretion rate

M=1x10""Mg yr—1.
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Figure 5.3.5: A plot of how the perturbed temper-
ature ratio varies with radius for Qimp = 1, B = 0G
and a = 0.01, for a normal core. The red line repre-
sents M = 1x 10719 Mg yr~?, the blue line M = 1 x
107°Mg yr~!, and the green line M = 1 x 10~%Mj,
yr’l.

3.0 le—3

2.5

2.0

15

STIT

10

0.5

0.0

b9

11.0 111 11.2 11.3

r (km)

11.4 11.5 11.6

Figure 5.3.6: A plot of how the perturbed temper-
ature ratio varies with radius for Qimp = 1, B = 0G
and a = 0.01, for a superfluid core. The red line
represents M = 1 x 107'°M, yr~!, the blue line
M = 1x 107°Mg yr~', and the green line M =
1x 1078 Mg yr .

The corresponding plots of perturbed temperature as a function of density is shown for

a normal and superfluid in figures 5.3.7 and 5.3.8 respectively. The perturbed tempera-

ture gradients as a function of density, for the normal core and superfluid core stars, are

identical stars. The perturbation ratio is also shown as a function of density in figures

5.3.9 for a normal core and 5.3.10 for a superfluid core.
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Figure 5.3.7: A plot of how the perturbed temper-
ature varies with density for Qimp = 1, B = 0G and
a = 0.01, for a normal core. The red line represents
M = 1x107"°Mg yr~?, the blue line M = 1 x
107°Mpg yr~!, and the green line M = 1 x 10™%Mp,
yr‘l‘
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Figure 5.3.9: A plot of how the perturbed tem-
perature ratio varies with density for Qimp = 1,
B = 0G and a = 0.01, for a normal core. The
red line represents M = 1 x 107*°My yr~?!, the
blue line M = 1 x 1072 M, yr!, and the green line
M=1x10"%Mg yr 1.
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Figure 5.3.8: A plot of how the perturbed tem-
perature varies with density for Qimp = 1, B = 0G
and a = 0.01, for a superfluid core. The red line
represents M = 1 x 107'°Mg yr~!, the blue line
M = 1 x 107°Mg yr~!, and the green line M =
1x1078Mg yr~ 1.
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Figure 5.3.10: A plot of how the perturbed tem-
perature ratio varies with density for Qimp = 1,
B = 0G and a = 0.01, for a superfluid core. The
red line represents M = 1 x 107'°Mg yr~!, the
blue line M = 1 x 107" Mg yr~!, and the green line
M=1x10"% Mg yr ..
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5.3.2 Combining the two temperature perturbation mechanisms

In this original work, two methods are used to invoke a temperature perturbation in the
accreted crust of a neutron star: the presence of an internal magnetic field, and non-
spherical accretion.

To gain an insight into how the temperature perturbation ratio scales with « and the
internal magnetic field B, a scaling formula was constructed from the values of 67'/T.
For consistency, the value of 67 /T was selected at p = 1 x 102 g cm ™3 as Ushomirsky
et al. (2000) find that the higher density inner crust is the part that contributes most to
the quadrupole moment, and for an accretion rate of M = 1 x 10~ Mg yr—!'. For a
normal core star, ellipticity scales with « as

e~5x10%, (5.3.1)

and for a superfluid core as
e~ 3x10 %, (5.3.2)

where a = 1. Using these ellipticity values, the relation between o and B can be found,
such that the two quadrupole generating mechanisms are equally effective, by combin-
ing these formulae with the magnetic field scaling equations shown in 4.10.2 and 4.10.3.
As the temperature perturbation scales linearly with both o and B, the internal magnetic

field can be written as a function of «a for a normal star as
B =1 x 10, (5.3.3)
and for a superfluid core star as

B =3x10%a. (5.3.4)

To gain an insight into the influence each perturbation mechanism has on the model, a
phase-space plot of magnetic field against a was calculated for 67/T at p = 1 x 10'%g
cm 3 for an accretion rate of M = 1 x 10-9 Mg, yr~!, this is shown in figure 5.3.11 for a
normal core and 5.3.12 for a superfluid core. For strong magnetic fields B> 102G, and
small values for o < 0.1, the magnetic field begins to become the dominant quadrupole
generating mechanism. From figures 5.3.11 and 5.3.12, it can be seen for a ~ 0.01 is
approximately as effective as B = 101G (normal core) and B = 10'%G (superfluid core)

at generating a temperature asymmetry in the accreted crust.

An investigation into the effects of B # 0 and a # 0 was conducted on 7" and 67'/T for
both a normal and superfluid core. Although the results produced here are guaranteed
to be a simple linear sum of the separate results, it is still interesting to see what the plots
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Figure 5.3.11: A phase space plot of magnetic
field and the free parameter « for a normal core, to
demonstrate which perturbation mechanism dom-
inates for different values of B and a.
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Figure 5.3.12: A phase space plot of magnetic field
and the free parameter « for a superfluid core, to
demonstrate which perturbation mechanism dom-
inates for different values of B and .

look like. In each star core case, the value of the free parameter a was set as a = 0.01,
and the value of B was determined using equations 5.3.3 and 5.3.4, to ensure contribu-
tions from both perturbation mechanisms were invoked. For a normal core the internal
magnetic field was set as B = 6.5 x 10!! and for a superfluid core as B = 5.2 x 10'2. The
perturbed temperature and 67" /7 was then computed for both stars for Qimp = 1 and
accretionrates M = 1x 10~ Mgy yr—', M = 1x 10" Mg yr'and M = 1 x 10~ M yr—.
The results for a normal core are presented in figures 5.3.13 and 5.3.14, and a superfluid
core in 5.3.15 and 5.3.16.

For a normal core star, a comparison can be drawn between the results for 67" and
0T /T when both the magnetic field and non-spherical accretion perturbation gener-
ating mechanisms are present with the perturbation induced by the only the internal
magnetic field as shown in figures 4.8.5 and 4.8.9 respectively, as well as the perturba-
tion induced when only non-spherical accretion is present, as shown in figures 5.3.1and
5.3.2 respectively. In each temperature perturbation mechanism case, the magnitude of
8T is of the same order of ~ 10 K and §T/T ~ 10~3. The shape of the curves produced
when both perturbation mechanisms are present differ from the independent mecha-
nism cases, showing how the temperature profile of the accreted crust changes due to
the temperature perturbation mechanism.

In the superfluid core case, the shape of the curve for 67" (shown in figure 5.3.15) is quite
different in shape to that produced when only the non-spherical accretion perturbation
mechanism is present as shown in figure 5.3.2, where contributions from both pertur-
bation mechanisms can be seen. The magnitude of 67" produced is the same for all three
perturbation mechanism cases of ~ 10% K. For §T'/T shape of the curve produced when
both perturbation mechanisms are present (shown in figure 5.3.16) is similar to the §7°

curve and quite different to the cases when only the internal magnetic field is the per-
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Figure 5.3.13: A plot of how 67 varies with radius
fora =0.01, B = 6.5x 10 G, Qimp = 1 foranormal
core star. The red line represents M = 1 x 107'° M
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Figure 5.3.14: A plot of how §T'/T varies with ra-
dius for @ = 0.01, B = 6.5 x 10'* G, Qimp = 1 for
a normal core star. The red line represents M =
1 x 107 Mg yr~?, the blue line M = 1 x 1072 Mg,

yr~!, the blue line M = 1 x 107?Mg yr~*, and the :
green line M =1 x 1073 Mg yr—*. yr~!, and the green line M =1 x 1078 Mg yr™*.

turbation mechanism as shown in figure 4.8.10 and the case where only non-spherical
accretion is present as shown in figure 5.3.6. The magnitude of §7'/T produce by all

three perturbation mechanism cases is of the same order as ~ 1073,
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Figure 5.3.15: A plot of how 6T varies with radius
fora = 0.01, B = 5.2 x 10 G, Qimp = 1fora
superfluid core star. The red line represents M =
1 x 107 Mg yr~!, the blue line M = 1 x 107" M

yr~!, and the green line M = 1 x 1078 Mg yr—*.

Figure 5.3.16: A plot of how §T/T varies with ra-
dius for @ = 0.01, B = 5.2 x 10'* G, Qimp = 1 for
a superfluid core star. The red line represents M =

1 x 107°Mg yr~!, the blue line M =1x10""Mg
1

yr—!, and the green line M =1 x 10~ 8 Mg, yr— 1.

5.4 Summary

In this chapter, a temperature asymmetry was introduced onto the surface of the crust.
One way in which this could happen is if accreted matter is channelled onto the neutron
star surface via the magnetic field lines. This produces hot spots on the polar caps.

A spherically symmetric background thermal profile was modelled, for a realistic equa-
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tion of state, using the same methods as detailed in section 4.3. From this, a temperature
perturbation in the crust was incited, for instance as might be caused by non-spherical
accretion. The temperature perturbation was modelled using the same methods out-
lined in section 4.6 with no internal magnetic field. Non-spherical accretion was intro-
duced into this model by adjusting the perturbed outer boundary temperature to be a
function of the perturbed local accretion rate §rin = a(r). The temperature perturba-
tion for this model was calculated by solving for two different neutron stars: one with a
normal core and one with a superfluid core.

The temperature perturbation ratio generated by non-spherical accretion for p = 10'2
gem ™3, M = 1x 107 Mg yr~!, Qimp = 1 B = 0G, from figures 5.3.9 and 5.3.10 for a
normal and superfluid core star respectively, was found to be

oT

— = 0.001¢,

T normal “
oT
il — 0.006q,
T superfluid «

where o = 1. This corresponds to an ellipticity generated for a normal core of
e~5x 10", (5.4.1)

and for a superfluid core
e~ 3 x 10 %a. (5.4.2)

The ellipticity produced by non-spherical accretion is a few orders of magnitude larger
than that produced by the internal magnetic field field alone. Ushomirsky et al. (2000)
show a temperature perturbation ratio of order ~ 1% is required to generate a mass
quadrupole moment that is sufficiently large to produce gravitational wave energy losses
that balance the spin-up torque from accretion. This suggests that if a neutron star is ac-
creting in an asymmetric way, and is able to generate a temperature asymmetry of order
unity, then a sufficiently large mountain may develop in the crust. This is unlikely as an

asymmetry of this magnitude has not been observed in the surface flux.
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CHAPTER O

Thesis discussion and summary

Work by Bildsten (1998) and Ushomirsky et al. (2000) has shown that if temperature
asymmetries exist in an accreted neutron star crust, then these stars are able to develop
a time-varying mass quadrupole resulting in the production of gravitational waves. Bild-

037g cm? is sufficiently

sten (1998) calculated a mass quadrupole moment of @ ~ 4.5 x 1
large to generate energy losses via gravitational wave radiation, that balances the spin-
up torque from accretion. This physical process provides a possible explanation of the

observed narrow spin frequencies of LMXBs.

Bildsten (1998) proposes a mass quadrupole moment of this magnitude may develop in
an accreted crust via electron capture reactions if temperature asymmetries are present.
Electron capture reactions are sensitive to both density and temperature. In hotter re-
gions of the crust, electron capture occurs at lower densities, closer to the surface of the
star, than cooler regions. An anisotropic temperature distribution gives rise to lateral

density variations, resulting in the formation of mountains.

Ushomirsky et al. (2000) calculated the maximum crust quadrupole moment the crust
could sustain before cracking as @ ~ 10%® g cm~3. This is approximately a factor of
two larger than the mass quadrupole moment required, as calculated by Bildsten (1998).
Ushomirsky et al. (2000) find a temperature perturbation ratio 67'/T ~ 1% would gen-

erate a quadrupole moment of @ ~ 2 x 10_65% per capture layer. Approximating this

141
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result over a several capture layers generates an ellipticity of

oT
~5x1076=. 6.0.1
€ X T ( )

In this work, we calculated the temperature asymmetry induced by the presence of a
magnetic field in an accreted neutron star crust. The presence of a magnetic field causes
anisotropies in the thermal conductivity to form, which leads to the development of a

temperature gradient in the crust.

In chapter 3, we constructed a toy model of an accreted crust of constant density. The
background thermal profile of the crust was constructed by solving the heat equation
for a static, spherically symmetric star. Heat was deposited into the crust via nuclear re-
actions from accreted material, and neutrino Bremsstrahlung emission generated heat
losses from the crust. The total heat deposited into the crust was 1 MeV. Heat transport
in the crust is mediated by electrons, more specifically electron-phonon and electron-
impurity scattering processes governed the thermal conductivity. On this background
model, amagnetic field was inserted, consequently taking the thermal conductivity from
a scalar quantity to a tensor quantity, due to the electron interactions with the magnetic
field. The temperature perturbation ratio induced in an accreted crust of constant den-

sity, by the presence of a magnetic field, was found to be
o7
— ~ 2 x 107%Bq, (6.0.2)
T
corresponding to an ellipticity of
e~1x10"By, (6.0.3)

for Qimp = 1and M = 1 x 1079 M, yr—'. We began with this simplified case, to pro-
vide an initial estimate of the temperature perturbation induced by a magnetic field, to
determine if a more thorough examination is required. Although this value produced
here is a few orders of magnitude smaller than the temperature perturbation required
to produce a sufficiently large mountain, we felt it was still worth while investigating this

temperature perturbation mechanism in more detail.

In chapter 4, we developed our toy model from chapter 3 to include a realistic equation
of state. A star of varying density was constructed by solving the relativistic hydrostatic
structure equations for the core, and Newtonian gravity for the crust. For the accreted
crust, we used the equation of state data from Haensel and Zdunik (1990a). From this
data, heat from nuclear reactions was deposited into shells of constant A and Z, with a
total heat deposited of 1.33 MeV per nucleon. The heat equation was solved numerically
for a background spherically symmetric neutron star for two cases: a star with a normal

core and a star with a superfluid core. A magnetic field was then inserted into this back-
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ground model to induce a temperature perturbation. From this model, at p = 1 x 10'2,
Qimp = land M =1 x 1079 Mg, yr—!, a temperature perturbation ratio for a normal core
star was found to be

6T /T ~ 1 x 107 5By, (6.0.4)

and for a superfluid core star as
6T /T ~ 2 x 10~ "By. (6.0.5)

These temperature perturbation values correspond to inducing an ellipticity in the crust
for a normal core star of
e ~5x10712By, (6.0.6)

and for a superfluid core star as
e ~1x107"By (6.0.7)

The ellipticity calculated in this model, for a normal core star with a realistic equation of
state, is an order of magnitude smaller than the value calculated in the toy model from
chapter 3. This suggests the density dependent parameters play an important role in
the thermal transport of an accreted neutron star crust. The accretion rate also plays
an important role in our model as the temperature of the crust at the outer boundary
is a function of accretion rate. For a normal core star we find a higher accretion rate
produces a larger 67 and 67'/T in the crust. In the case of a superfluid core star we find
the opposite. A higher accretion rate gives rise to a 67" and 67" /T of a smaller magnitude.
This arises from the relationship of the source term with temperature which scales as
~ 149 when electron-phonon scattering dominates. This relation makes it difficult to
predict how the source term, and ultimately 67" and 67'/T scale with accretion rate in

the accreted crust.

In chapter 4 we also investigated the effects shallow crustal heating has on the perturbed
temperature. We found shallow heating did affect the perturbed temperature distribu-
tion in the accreted crust for both a normal and superfluid core. The temperature per-
turbation ratio and ellipticity calculated by our model in the presence of shallow heating

for a normal core star was found to be

oT
— =2x107%B
T X 9,

e~ 1x 10_11]39,
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and for a superfluid core as

oT
— =36x10"°B
T X 9,

e~ 1.8 x 107 13B,.

The overall magnitude of §7'/T and consequently ¢, was not altered by this mechanism.
This result most likely arises because the magnitude of our source term is largest at den-

sities higher than the region where shallow crustal heating occurs.

In chapter 5, we extended our model to include non-spherical accretion resulting in an
existing temperature perturbation on the surface of the accreted crust. We considered
this for two cases: as an isolated temperature asymmetry and along with the tempera-
ture asymmetry in the presence of an internal magnetic field. We introduced the free
parameter « to perturb the local accretion rate. Positive real values of a correspond to a
hot spot occurring at A¢ = 0 and negative real values of « occurring at A¢ = 7 /2, where
Ag is the location of the of the hot spot relative to the axis of symmetry ¢ = 0. We find
the temperature perturbation ratio induced in the absence of an internal magnetic field
atp =1x10"2gcm ™3, Qimp = 1, = 1 and accretionrate M = 1x10~% M, yr—! produces
for a normal core §T/T ~ 1.5 x 1072« and for a superfluid core 6T /T ~ 2.6 x 10~ 2q.
The corresponding ellipticity generated for a normal core is

e~5x10"", (6.0.8)

and for a superfluid core as
e~3x10 % (6.0.9)

The temperature perturbation ratios and ellipticities induced by non-spherical accre-
tion for &« = 1 is are orders of magnitude larger than that generated by the internal
magnetic field of B = 1 x 10? G from chapter 4, although a temperature asymmetry ex-
isting on the surface of the crust of order unity is unlikely. As both the magnetic field
induced perturbation and non-spherical accretion temperature perturbation scale lin-
early in both B and «, the relation of the dividing line between stars where the internal
field-induced temperature asymmetry is comparable to the surface-induced tempera-
ture asymmetry can be written for a normal core star as

B =1 x 10"%q, (6.0.10)

and a superfluid core star
B =3x 10"a. (6.0.11)

In conclusion, we find it is unlikely for a LMXB to develop a temperature asymme-
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try, induced by the internal magnetic field, that is sufficiently large to generate a mass
quadrupole moment that produces energy losses via gravitational wave radiation to bal-
ance the spin-up torque from accretion. To generate the required mass quadrupole mo-
ment, a normal core neutron star would require an internal magnetic field of strength
B ~ 10'* G and a superfluid core star requires a magnetic field of B ~ 5 x 103 G. If a
neutron star is accreting in an asymmetric way, and is able to generate a temperature
asymmetry of order ~ 0.1 — 1, then a sufficiently large mountain may develop in the
crust.
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