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Abstract—A sparse channel state information (CSI) estimation
model is proposed for reducing the pilot overhead of orthogo-
nal time frequency space (OTFS) modulation aided multiple-
input multiple-output (MIMO) systems. Explicitly, the pilots
are directly transmitted over the time-frequency (TF)-domain
grid for estimating the delay-Doppler (DD)-domain CSI that
leads to a reduction of the pilot overhead, training duration
and pre-processing complexity. Furthermore, it completely avoids
placing multiple DD-domain guard intervals corresponding to
each transmit antenna within the same OTFS frame, while
keeping the training duration flexible, hence increasing the
bandwidth efficiency. A unique benefit of the proposed CSI
estimation model is that it can efficiently handle fractional
Dopplers also. The resultant DD-domain CSI becomes simul-
taneously row and group (RG)-sparse. To exploit this compelling
property, an orthogonal matching pursuit (OMP)-based RG-
OMP technique is developed, conveniently complemented by an
enhanced Bayesian learning (BL)-based RG-BL framework, both
of which substantially outperform the state-of-the-art methods.
Furthermore, low-complexity linear detectors are designed for
the ensuing data detection phase, which directly employ the
estimated DD-domain sparse CSI, without assuming any further
knowledge concerning the number of dominant multipath com-
ponents. Finally, simulation results are provided to demonstrate
performance improvement of the proposed BL-based schemes
over the OMP and the state-of-the-art schemes.

Index Terms—OTFS, delay-Doppler domain channel, simul-
taneous sparsity, fractional Doppler, channel estimation, high-
mobility

I. INTRODUCTION

Next generation wireless technologies are envisioned to
support high data rates in scenarios where the relative mobile
velocities can be up to 400-500 km/h for high-speed trains
(HSTs) [1], [2], vehicle to vehicle and to everything (V2V
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and V2X) [3], [4]. Communications become even more chal-
lenging for air-plane users, since their speeds are in the range
of 800-1000 km/h [5]. The 4G and 5G cellular systems have
adopted orthogonal frequency division multiplexing (OFDM)
modulation as their waveform, which requires doubling the
pilot overhead every time the Doppler-frequency is doubled.
It is widely recognized that high mobility renders the wide-
band wireless channel time as well as frequency-selecive, i.e.
doubly-selective [6]–[9]. As a result, multipath propagation
exhibiting a high delay-spread leads to inter-symbol interfer-
ence (ISI) [8], [10], whereas the high mobile velocity leads to
significant inter-carrier interference (ICI) owing to the large
Doppler-shift [6], [11]. Thus, given the continuously evolving
and diverse range of use cases and applications, it becomes
imperative to explore novel modulation, coding and multiple
access (MA) techniques that are resilient both to the delay-
and to the Doppler-shifts introduced by the wireless channel.

To this end, a novel delay-Doppler (DD)-domain modulation
technique, originally proposed by Hadani et al. in [7], [12],
[13], termed orthogonal time frequency space (OTFS), has
gained significant popularity. As the terminology implies,
the resultant basis functions of OTFS are orthogonal in the
time-frequency (TF)-domain, which has been shown to out-
perform conventional multicarrier modulation techniques in
high-Doppler channels. An important aspect of the OTFS
theory is that it incorporates the key principle of DD-domain
representation of the wireless channel [6], [12], [14], which
leads to a significant reduction in the channel’s dimensionality,
to a value that is typically equal to the number of dominant
reflectors (∼ 10 − 15), thus potentially yielding the sparsest
representation of the channel [6]. The conventional TF-domain
representation of the multipath wireless channel is time-
varying at a rate inversely proportional to the coherence-time
[10], which in turn depends on the mobile node’s relative
velocity and on the carrier’s frequency [6], [10]. This phe-
nomenon renders closed-loop channel estimation difficult to
achieve. By contrast, the equivalent DD-domain representation
of the wireless channel is nearly time-invariant across the
entire bandwidth over a much longer observation duration,
since the velocity and distance remain approximately constant
for at least a few milliseconds. Together, the sparsity and slow
variability of the DD-domain channel state information (CSI)
facilitate its reliable estimation, which can be carried out at
a potentially reduced pilot overhead [6], [15], [16], in com-
parison to conventional OFDM-style TF-domain procedures.
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Recently, OTFS has also been explored for non-orthogonal
multiple access (NOMA) systems in [17]–[19], which are
highly suitable to support massive connectivity in the next
generation wireless systems. However, these advantages to-
gether with the improved end-to-end BER performance of the
OTFS-based transceiver require accurate DD-domain CSI at
the receiver for reliable detection. Hence, CSI estimation plays
a central role in realizing the potential gains promised by the
OTFS systems [15], [16], [20]–[23]. A brief review of the
existing contributions is presented next in this context.

A. Review of Existing Contributions on OTFS CSI Estimation

Early contributions [7], [24] proposed impulse-based CSI
estimation schemes for single-input single-output (SISO)
OTFS systems. As described in [6], [12], [14], considering
perfect biorthogonal transmit-receive (Tx-Rx) pulse shaping
filters, the end-to-end DD-domain input-output relationship is
given by the 2D-circular convolution between the transmit
DD-domain signal and the DD-domain channel. Hence, the
transmission of a training-impulse followed by thresholding
yields an estimate of the DD-domain channel impulse response
(CIR) [6]. This principle is extended to CSI estimation in
multiple-input multiple-output (MIMO) OTFS systems in [20].
Here, the training-impulses corresponding to the different
transmit antennas (TAs) are placed sufficiently apart obeying
suitable DD-domain guards in order to separate their CIRs at
the receiver. Thus, a key drawback of the proposed MIMO
OTFS CSI estimation scheme therein is that it requires an
entire OTFS frame for pilot transmission, which significantly
reduces the spectral efficiency.

The authors of [16] propose embedded pilot (EP)-based CSI
estimation schemes for SISO, MIMO as well as multiuser
(MU) MIMO OTFS systems. Here, the DD-domain pilots, as
well as the data and guard symbols are appropriately arranged
in order to avoid interference between data and pilots at
the receiver, followed by the thresholding method for CSI
estimation. The key novelty of the proposed technique is that
both CSI estimation and data detection are achieved within the
same OTFS-frame. In a related contribution [25], Murali and
Chockalingam consider pseudo-random noise (PN)-based pilot
sequences in the DD-domain to estimate the CIR of a SISO
OTFS system. A key drawback of all the training-impulse
and embedded-pilot techniques reviewed above is that they
typically require a higher pilot signal-to-noise ratio, thereby
leading to an increase in the PAPR of the system. Furthermore,
the performance of these schemes also depends to a great
extent on the choice of a suitable threshold, which has to be
empirically tuned for the best performance.

Alternatively, the innovative contributions [15], [21], [23],
[26], [27] exploit the DD-domain sparsity of the wireless
channel by conceiving an interesting formulation of the DD-
domain CSI estimation model as a sparse signal recovery
problem. These schemes have demonstrated superior CSI esti-
mation performance in comparison to the previously discussed
training impulse and embedded pilot techniques, since they
leverage the sparsity of the underlying DD-domain channel.
Shen et al. [15] develop the downlink CSI estimation model

for a massive MIMO OTFS system. Since the number of
dominant reflectors in such a channel is typically very small,
the massive MIMO OTFS channel exhibits 3D sparsity along
the delay, Doppler and angular domains. Finally, a novel 3D-
simultaneous orthogonal matching pursuit (3D-SOMP)-based
technique is proposed in [15] to solve the resultant sparse
CSI estimation problem, which extracts the 3D support of
each multipath component in the delay, Doppler and angular
dimensions. As a further development, the authors of [23]
consider the uplink of an OTFS-based MA and model the
DD-domain CSI estimation paradigm as a sparse signal re-
covery problem. The authors then suitably adapt the OMP
and modified subspace pursuit (MSP) algorithms for sparse
CSI estimation. To this end, Zhao et al. [21], proposed a
novel pilot pattern, characterized by the absence of a DD-
domain-guard band between the pilots and data. This pilot-
data frame structure is successfully exploited in their work
to formulate a sparse channel estimation problem for SISO
OTFS systems. Another recent contribution [27] formulates
a sparse signal recovery problem for estimating the original
DD domain channel of the SISO OTFS system and employs
the sparse Bayesian learning (SBL) framework. Initially, a 1D
off-grid sparse signal recovery problem has been formulated
based on a sampling grid defined in the DD-domain, which
jointly estimates the delay and Doppler shifts. Subsequently,
its low complexity version based on a 2D off-grid sparse
signal recovery problem has been formulated for decoupling
the estimation of the delay and Doppler shifts.

While good progress has been achieved by the contributions
reviewed above, a few shortcomings remain. Prominently,
almost all of the existing treatises employ a DD-domain-
guard for pilot placement, which leads to a reduction of the
resultant spectral efficiency. This problem becomes even more
challenging in a MIMO OTFS system due to the multiple
DD-guards that are required corresponding to different TAs.
Hence, to the best of our knowledge, there is a paucity
of research on the development of DD-domain sparse CSI
estimation schemes for point-to-point MIMO OTFS systems.
Furthermore, techniques for DD-domain sparse CSI estimation
using a practical rectangular pulse is rarely seen. It is also a
common practice for the subsequent data detection procedure
to consider the non-linear iterative message passing (MP)
detector [14] or its low complexity version, i.e., the variational
Bayes (VB) detector [28]. In this context, zero-forcing (ZF) or
minimum mean squared error (MMSE)-based linear detectors
can be an attractive choice in these systems. Finally, it is
also desirable to develop a framework which can efficiently
estimate the fractional Dopplers. These gaps in the existing
research motivate us to develop novel DD-domain sparse CSI
estimation schemes for MIMO OTFS systems that are capable
of overcoming the shortcomings of the existing schemes in the
literature. The novel contributions of this paper are itemized
next and are also boldly contrasted to those of the existing
literature in Table-I. An overview of OTFS as well as various
challenges and research opportunities have been discussed in
a recent survey [29].
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TABLE I
SUMMARY OF LITERATURE SURVEY ON OTFS CHANNEL ESTIMATION (R: REQUIRED, NR: NOT REQUIRED)

[22] [20] [15] [16] [21] [23] [26] [27] Proposed
MIMO ✓ ✓ ✓
DD-domain sparsity ✓ ✓ ✓ ✓ ✓ ✓
Simultaneous row-group Sparsity ✓
Practical pulse shape ✓ ✓ ✓ ✓ ✓
Linear detector ✓ ✓
Flexible pilot overhead ✓ ✓ ✓
Fractional Dopplers ✓ ✓
Delay-Doppler-angular channel ✓
Requirement of DD-guards R R R R NR NR NR NR NR

B. Contributions of the Paper

1) By considering arbitrary Tx-Rx pulse shapes and frac-
tional Dopplers, this paper first derives an end-to-end
input-output model for MIMO OTFS systems. Based
on this, a novel sparse channel estimation model is
proposed, in which the pilots are transmitted in the TF-
domain for reducing the pilot overhead, training duration
and its pre-processing complexity. A key contribution of
the proposed sparse channel estimation model is that it
can efficiently estimate the fractional Dopplers.

2) Interestingly, it is also demonstrated that the DD-domain
CSI of the MIMO OTFS system exhibits simultaneous
row-group (RG)-sparsity. Another significant advantage
of the proposed channel estimation model is that it
completely avoids having multiple DD-domain-guards
between the pilots and data symbols within the same
OTFS frame, while facilitating a flexible pilot duration,
hence increasing the spectral efficiency.

3) Initially, the conventional LS and MMSE schemes are
developed for estimating the DD-domain CSI. Subse-
quently, novel RG-OMP and RG-BL techniques are
derived for exploiting the simultaneous RG-sparsity of
the MIMO OTFS DD-domain CSI.

4) For data detection, low-complexity linear detectors are
derived, which directly employ the DD-domain CSI ob-
tained from the sparse estimation schemes proposed, and
do not require any knowledge concerning the number of
dominant multipath components.

C. Organization of the Work

Section-II derives the MIMO OTFS system model, followed
by the proposed sparse channel estimation model in Section-
III. The RG-OMP based scheme is developed toward the end
of Section-III, while Section-IV develops the proposed RG-
BL framework. This is followed by our simulation results in
Section-V and Section-VI concludes the paper.

D. Notation

Boldface lower case and upper case letters denote column
vectors and matrices, respectively. The indices of the vectors
and matrices elements start from 0. The vector equivalent
of the matrix A is denoted by vec(A), which is formed

by stacking the columns to form a single column vector.
Similarly, vec−1(a) denotes the corresponding inverse vector-
ization operation to provide the original matrix. A well-known
property of the vec (·) operator, given by vec (ABC) =(
CT ⊗A

)
vec (B), is used in the paper, where ⊗ denotes

the Kronecker product of two matrices.

II. OTFS SYSTEM MODEL

Consider an OTFS system having the frame duration of
Tf = NT and bandwidth of B = M∆f , where T (seconds)
denotes the symbol duration and ∆f (Hz) represents the sub-
carrier spacing, such that T∆f = 1. The quantities N and M
represent the number of symbols along the time and frequency
axes in the corresponding TF-grid, denoted by ΛTF. OTFS is a
2D modulation technique, which places the information sym-
bols in an equivalent DD-domain grid, denoted by ΛDD, where
the delay and Doppler axes are sampled at integer multiples
of ∆τ = 1

B and ∆ν = 1
Tf

, respectively, as demonstrated in
Fig. 1(a). Thus, the DD-domain grid can be represented as
ΛDD =

{
(l∆τ, k∆ν)

}
l,k

=
{(

l
M∆f ,

k
NT

)}
l,k

, where the

delay index l and Doppler index k obey l = 0, 1, · · · ,M − 1
and k = 0, 1, · · · , N−1. Similarly, the corresponding TF-grid
is given by ΛTF =

{
(m∆f, nT )

}
m,n

, where the subcarrier
index m follows m = 0, 1, · · · ,M − 1, whereas the symbol
time index n obeys n = 0, 1, · · · , N−1. The signal processing
operations of an OTFS system are described next.

A. OTFS Modulation

Let XDD ∈ CM×N denote a matrix of information symbols,
where XDD(l, k) represents the symbol placed at delay index
l and Doppler index k. The transmitter first maps these
DD-domain symbols to the TF-domain by using the inverse
symplectic finite Fourier transmform (ISFFT) as follows

XTF(m,n) =
1√
NM

M−1∑
l=0

N−1∑
k=0

XDD(l, k)e
j2π(nk

N −ml
M ), (1)

where the matrix XTF ∈ CM×N denotes a TF-domain symbol
matrix whose (m,n)th element, denoted by XTF(m,n), rep-
resents the symbol to be transmitted over the mth subcarrier
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(a) (b)

Fig. 1. (a) Relationship between various parameters of the DD-domain and TF-domain grids; (b) Architecture of the OTFS transceiver.

in the nth symbol duration. The matrix form of (1) can be
equivalently written as

XTF = FMXDDF
H
N , (2)

where FN ∈ CN×N represents the discrete Fourier trans-
form (DFT) matrix, whose (i, j)th element is described as
FN (i, j) = 1√

N
e−j2π ij

N . Subsequently, any multicarrier mod-
ulation technique, such as OFDM, maps the 2D symbol
sequence of the matrix XTF to a 1D sequence in the time-
domain. Let ptx(t) denote the transmit pulse of duration T ,
which is repeated N -times in the OTFS frame duration Tf .
The time-domain signal s(t) is obtained by performing the
Heisenberg transform of the symbols XTF(m,n) placed over
the TF-grid ΛTF , which is given by

s(t) =

M−1∑
m=0

N−1∑
n=0

XTF(m,n)ptx(t− nT )ej2πm∆f(t−nT ). (3)

Upon sampling the transmit signal s(t) at the Nyquist rate
M
T , i.e. at the sampling interval T

M , the qth transmit sample
s(q), 0 ≤ q ≤ MN − 1, is given by s(q) = s(t)|t= qT

M
. The

MN -samples of the transmit signal s(t) in the form of a
vector, denoted by s ∈ CMN×1, can be formulated as follows.
Let Ptx ∈ CM×M denotes a diagonal matrix, whose diagonal
entries contain the M -samples of the transmit pulse ptx(t), i.e.,

Ptx = diag
{
ptx

(
pT
M

)}M−1

p=0
. Thus, the transmit signal matrix

S ∈ CM×N can be obtained as

S = PtxF
H
MXTF = PtxXDDF

H
N , (4)

where (4) follows upon substituting XTF from (2). Thus, the
vector s can be formulated as

s = vec (S) =
(
FH

N ⊗Ptx
)
xDD, (5)

where xDD = vec (XDD). Finally, prior to transmission, similar
to OFDM, a cyclic prefix (CP) of length L is appended to s
in order to remove the inter-frame interference at the receiver.
The various steps in the modulation process described above
are shown schematically in Fig. 1(b).

B. DD-domain Wireless Channel Model

Let h(τ, ν) denote the DD-domain representation of the
wireless channel, which is a 2D function of the delay variable

τ and Doppler variable ν. Since typically there are only a
few dominant reflectors that constitute a wireless channel, it
can be parameterized by only a small number of elements
[6], [12], [14], which correspond to the delay- and Doppler-
shifts introduced by those dominant reflectors. Let τi and νi
represent the delay- and Doppler-shifts, whereas hi denotes
the complex path gain introduced by the ith reflector. The
DD-domain wireless channel can be formulated as [6], [14]

h(τ, ν) =

Lp∑
i=1

hiδ(τ − τi)δ(ν − νi), (6)

where Lp denotes the number of dominant reflectors/ mul-
tipath components and δ(·) represents the Dirac-delta func-
tion. The Doppler-shift νi associated with the ith multipath
component can be expressed as νi = ki

NT , where ki can be
decomposed as ki = round(ki) + κνi

. Here, the quantity κνi
,

with |κνi
| < 1

2 , represents fractional-Doppler. On the other
hand, as described in [10], [14], [16], one does not have
to consider fractional delays, since for a typical wideband
system the delay resolution ∆τ = 1

M∆f is small enough for
considering the delay-shift τi as τi = li

M∆f , where li is an
integer. Furthermore, we also have kmax = max (ki) << N
and lmax = max (li) << M , for a typical ‘under-spread’
wireless channel [14], [16], [30]. The signal r(t) at the output
of the wireless channel obeys

r(t) =

∫ ∫
h(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + w(t), (7)

where w(t) denotes the AWGN of average power σ2. Sub-
stituting h(τ, ν) from (6) into the above equation, we obtain
r(t) =

∑Lp

i=1 his(t−τi)e
j2πνi(t−τi)+w(t), whose pth sample

r(p) = r(t)|t= pT
M

is given by

r(p) =

Lp∑
i=1

his(p− li)e
j2π

ki(p−li)

MN + w(p), (8)

where w(p) = w(t)|t= pT
M

. Furthermore, by removing the
initial L-samples that correspond to the cyclic prefix, the
received samples r(p), 0 ≤ p ≤ MN − 1, obey

r(p) =

Lp∑
i=1

hie
j2π

ki(p−li)

MN s
(
[p− li]MN

)
+ w(p), (9)
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where [·]MN denotes the modulo-MN operation.
Let Π ∈ CMN×MN denote a standard permutation matrix

and ∆i ∈ CMN×MN represent a diagonal matrix, which is
defined as{
diag

{
1, ωi, · · · , ωMN−li−1

i , ω−li
i , · · · , ω−1

i

}
, if li ̸= 0,

diag
{
1, ωi, · · · , ωMN−1

i

}
, for li = 0,

where ωi = ej2π
ki

MN . Furthermore, let r ∈ CMN×1 and w ∈
CMN×1 comprise the MN -samples of the received signal r(t)
and the noise process w(t), given as

r = [r(0), r(1), · · · , r(MN − 1)]
T
,

w = [w(0), w(1), · · · , w(MN − 1)]
T
. (10)

Employing these notations, and using the relationship given in
(9), the received signal vector r can be expressed as

r = Hs+w, (11)

where the matrix H ∈ CMN×MN is obtained as

H =

Lp∑
i=1

hi (Π)
li ∆i . (12)

C. OTFS Demodulator

As shown in Fig. 1(b), the received signal r(t) is processed
by a filter matched to the receiver pulse prx(t) of duration T ,
which is repeated N -times, as

Y (f, t) =

∫
p∗rx(t

′ − t)r(t′)e−j2πf(t′−t)dt′. (13)

The output of the matched filter is sampled at integer multiples
of the symbol duration T and subcarrier spacing ∆f :

YTF(m,n) = Y (f, t)|f=m∆f,t=nT

=

∫
p∗rx(t

′ − nT )r(t′)e−j2πm∆f(t′−nT )dt′, (14)

where YTF ∈ CM×N denotes the TF-demodulated symbol
matrix, whose (m,n)th element denotes the symbol corre-
sponding to the mth subcarrier and nth symbol duration. This
is referred to as the discrete Wigner transform [12], [14].
Let the received sample matrix R ∈ CM×N be defined as
R = vec−1(r). The TF-symbol matrix YTF is given by

YTF = FMPrxR. (15)

Finally, the demodulated DD-domain OTFS signal YDD ∈
CM×N can be obtained by the SFFT of the TF-domain
demodulated signal YTF as

YDD(l, k) =
1√
NM

M−1∑
m=0

N−1∑
n=0

YTF(m,n)e−j2π(nk
N −ml

M ).

(16)
The above equation can be compactly written as YDD =
FH

MYTFFN = PrxRFN . Its equivalent vector yDD =
vec (YDD) = (FN ⊗Prx) r, where upon substituting r from
(11) and s from (5), the end-to-end DD-domain input-output
model of the SISO OTFS system is obtained as

yDD = HDDxDD + vDD, (17)

where HDD = (FN ⊗Prx)H
(
FH

N ⊗Ptx
)
∈ CMN×MN and

vDD = (FN ⊗Prx)w ∈ CMN×1. Finally, the covariance
matrix Rv,DD = E

[
vDDv

H
DD

]
∈ CMN×MN of the noise obeys

Rv,DD = σ2
[
IN ⊗

(
PrxP

H
rx

) ]
.

D. MIMO OTFS System Model
Consider now a MIMO OTFS system having Nt TAs and

Nr receive antennas (RAs). The DD-domain wireless channel
hr,t(τ, ν), 1 ≤ r ≤ Nr, 1 ≤ t ≤ Nt, between the r-th RA and
t-th TA, is given by

hr,t(τ, ν) =

Lp∑
i=1

hi,r,tδ(τ − τi)δ(ν − νi), (18)

where hi,r,t denotes the complex baseband channel coefficient
corresponding to the ith reflector. Let XDD,t ∈ CM×N denote
the DD-domain symbol matrix to be transmitted from the t-th
TA and let YDD,r ∈ CM×N represent the received symbol
matrix at the r-th RA. Similar to the previous subsections, the
input-output model at the r-th RA is given by

yDD,r =

Nt∑
t=1

HDD,r,txDD,t + vDD,r, (19)

where yDD,r = vec(YDD,r) ∈ CMN×1, xDD,t = vec(XDD,t) ∈
CMN×1 and

HDD,r,t =

Lp∑
i=1

hi,r,t (FN ⊗Prx)Πi∆i

(
FH

N ⊗Ptx
)
. (20)

The quantity vDD,r ∈ CMN×1 is given by vDD,r =
(FN ⊗Prx)wr, where wr ∈ CMN×1 is comprised of the
noise samples at the r-th RA. Stacking the received ob-
servation vectors yDD,r for 1 ≤ r ≤ Nr, as ȳDD =[
yT

DD,1,y
T
DD,2, · · · ,yT

DD,Nr

]T ∈ CMNNr×1, the end-to-end
input-output model of the MIMO OTFS system is given by

ȳDD = H̄DDx̄DD + v̄DD, (21)

where x̄DD =
[
xT

DD,1,x
T
DD,2, · · · ,xT

DD,Nt

]T ∈ CMNNt×1 rep-
resents the stacked vector of the transmit DD-domain symbols
of all the TAs and v̄DD =

[
vT

DD,1,v
T
DD,2, · · · ,vT

DD,Nr

]T ∈
CMNNr×1 denotes the stacked noise vectors at the re-
ceiver. The DD-domain MIMO OTFS channel matrix H̄DD ∈
CMNNr×MNNt is given by

H̄DD =


HDD,1,1 HDD,1,2 · · · HDD,1,Nt

HDD,2,1 HDD,2,2 · · · HDD,2,Nt

...
...

. . .
...

HDD,Nr,1 HDD,Nr,2 · · · HDD,Nr,Nt

 .

(22)

Finally, given the DD-domain CIR of the wireless channel, one
can construct the matrix H̄DD, which can then be employed
for data detection. To this end, considering the information
symbols having an average power of unity, the MMSE-based
linear detector is formulated as

x̄MMSE
DD =

(
H̄H

DDR̄
−1
v,DDH̄DD + IMNNt

)−1
H̄H

DDR̄
−1
v,DDȳDD,

(23)
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where R̄v,DD = E
[
v̄DDv̄

H
DD

]
∈ CMNNr×MNNr denotes the

covariance matrix of the noise v̄DD, which obeys R̄v,DD =
(INr ⊗Rv,DD). Therefore, as mentioned earlier, CSI estima-
tion plays a key role in deriving the benefits of the OTFS
system, which forms the focus of the subsequent section.

III. SPARSE CHANNEL ESTIMATION MODEL FOR MIMO
OTFS SYSTEMS

Let the integer taps Mτ and Nν denote the maximum
delay- and Doppler-spread of the channel, which obey lmax <
Mτ << M and kmax < Nν << N , for a typical under-spread
channel. For sparse representation, one can now consider a
2-dimensional DD-domain grid of size Gτ on the delay-axis
and Gν on the Doppler axis. As described in the previous
section, since one does not have to consider fractional-delays,
it is sufficient to set Gτ = Mτ and use the delay grid
points on the integer-delay taps. Thus, the ith delay-grid point,
0 ≤ i ≤ Mτ , represents a delay of τi = i

M∆f seconds. On
the other hand, in order to capture fractional-Dopplers, one has
to set Gν >> Nν , as illustrated in Fig. 2(a), where the jth
Doppler-grid point, 0 ≤ j ≤ Gν , corresponds to a Doppler-
shift of νj = jNν

GνNT Hz. Note that the integer-Doppler tap

corresponding to νj is
[
round

(
jNν

Gν

)]
, whereas the fractional-

Doppler is given by
[
jNν

Gν
− round

(
jNν

Gν

)]
.

Let hj
i,r,t denotes the path gain associated with the ith delay-

tap and jth Doppler-tap between the r-th RA and t-th TA. The
sparse representation of the DD-domain channel hr,t(τ, ν) of
(18) can be formulated as

hr,t(τ, ν) =

Mτ∑
i=0

Gν∑
j=0

hj
i,r,tδ(τ − τi)δ(ν − νj). (24)

Note that since there are only a few dominant re-
flectors in the wireless channel, only a few coefficients
Lp

(
<< [(Mτ + 1) (Gν + 1)]

)
are non-zero among the[

(Mτ + 1) (Gν + 1)
]

coefficients hj
i,r,t. These coefficients

signify the path gains of the non-zero DD-domain indices (i, j)
of the dominant reflectors between the r-th RA and t-th TA.

Let XTF,P,t ∈ CM×Np denote the transmit pilot symbol
matrix placed on the TF-grid at the t-th TA, as shown in
Fig. 2(b), where Np denotes the number of pilot symbols
placed along the time-axis. Thus, according to (4), the matrix
SP,t ∈ CM×Np comprised of the time-domain pilot samples
is obtained as SP,t = PtxF

H
MXTF,P,t. Furthermore, upon

employing a procedure similar to (7)-(9), the time-domain pilot
signal rP,r ∈ CMNp×1, after the removal of the CP at the r-th
RA is given by

rP,r =

Nt∑
t=1

H̄r,tsP,t +wP,r, (25)

where sP,t = vec (SP,t) ∈ CMNp×1 and wP,r ∈ CMNp×1

represents the noise vector. The matrix H̄r,t ∈ CMNp×MNp

can be formulated as

H̄r,t =

Mτ∑
i=0

Gν∑
j=0

hj
i,r,t

(
Π̄
)i
∆̄i,j , (26)

where Π̄ denotes a permutation matrix of size MNp×MNp,
whereas ∆̄i,j ∈ CMNp×MNp represents a diagonal matrix,
defined asdiag

{
1, ω̄j , · · · , ω̄

MNp−i−1
j , ω̄−i

j , · · · , ω̄−1
j

}
, if i ̸= 0,

diag
{
1, ω̄j , · · · , ω̄

MNp−1
j

}
, for i = 0,

where ω̄k = ej2π
kNν

GνMN . Now, let the received pilot sample
matrix RP,r ∈ CM×Np be arranged as RP,r = vec−1(rP,r).
Using this notation, the demodulated TF-domain pilot output
matrix YTF,P,r ∈ CM×Np at the r-th RA is given similar
to (15) as YTF,P,r = FMPrxRP,r. The equivalent vectorized
form is expressed as

yTF,P,r = vec(YTF,P,r) =
[
INp ⊗ (FMPrx)

]
rP,r. (27)

In the above, upon substituting rP,r from (25), the quantity
yTF,P,r can be written as

yTF,P,r=

Nt∑
t=1

(
INp⊗FMPrx

)
H̄r,t

(
INp⊗PtxF

H
M

)
xTF,P,t + vr,

where we have xTF,P,t = vec(XTF,P,t) ∈ CMNp×1 and
vr =

(
INp

⊗ FMPrx
)
wP,r ∈ CMNp×1. In the above, the

noise covariance Rv = E
[
vrv

H
r

]
∈ CMNp×MNp obeys

Rv = σ2
[
INp ⊗

(
FMPrxP

H
rx F

H
M

) ]
. Substituting H̄r,t into

the above, the pilot output yTF,P,r can be expressed as

yTF,P,r =

Nt∑
t=1

Ωthr,t + vr. (28)

In the above model, the dictionary matrix Ωt ∈
CMNp×[(Mτ+1)(Gν+1)] is given by

Ωt =

[
ω0

0,t,ω
1
0,t, · · · ,ω

Gν
0,t , · · · ,ω0

Mτ ,t,ω
1
Mτ ,t, · · · ,ω

Gν

Mτ ,t

]
,

(29)

where the quantity ωj
i,t ∈ CMNp×1 obeys

ωj
i,t =

(
INp ⊗ FMPrx

) (
Π̄
)i
∆̄i,j

(
INp ⊗PtxF

H
M

)
xTF,P,t,

and the vector hr,t ∈ C[(Mτ+1)(Gν+1)]×1 is defined as[
h0
0,r,t, h

1
0,r,t, · · · , h

Gν
0,r,t, · · · , h0

Mτ ,r,t, h
1
Mτ ,r,t, · · · , h

Gν

Mτ ,r,t

]T
.

(30)

The expression in (28) can now be rewritten as

yTF,P,r = Ω̃hr + vr, (31)

where the dictionary matrix Ω̃ ∈ CMNp×[(Mτ+1)(Gν+1)Nt]

and the stacked CSI vector hr ∈ C[(Mτ+1)(Gν+1)Nt]×1 are
given by

Ω̃ =
[
Ω1,Ω2, · · · ,ΩNt

]
, hr =

[
hT
r,1,h

T
r,2, · · · ,hT

r,Nt

]T
.

(32)

Furthermore, upon concatenating the pilot outputs yTF,P,r,
for 1 ≤ r ≤ Nr, the resultant multiple measurement vector
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(a) (b)

Fig. 2. (a) Fractional-Doppler grid; (b) Training frame structure of the proposed channel estimation procedure with Np << N .

(MMV)-based sparse channel estimation model is obtained as

ỸTF,P =
[
yTF,P,1,yTF,P,2, · · · ,yTF,P,Nr

]
∈ CMNp×Nr

= Ω̃H̃+ Ṽ, (33)

where the effective channel H̃ ∈ C[(Mτ+1)(Gν+1)Nt]×Nr and
noise Ṽ ∈ CMNp×Nr are given by

H̃ =
[
h1,h2, · · · ,hNr

]
, Ṽ =

[
v1,v2, · · · ,vNr

]
. (34)

For (33), the conventional MMSE estimate ĤMMSE ∈
C[(Mτ+1)(Gν+1)Nt]×Nr is given by

ĤMMSE =
(
Ω̃HR−1

v Ω̃+ R̃−1
h

)−1

Ω̃HR−1
v ỸTF,P , (35)

where R̃h ∈ C[(Mτ+1)(Gν+1)Nt]×[(Mτ+1)(Gν+1)Nt] denotes
the covariance matrix of the channel vector hr. Since the
true channel covariance is not known, the matrix R̃h is set
to I[(Mτ+1)(Gν+1)Nt] for the conventional sparsity-agnostic
MMSE estimator. On the other hand, as described after (24),
typically, only Lp out of [(Mτ + 1) (Gν + 1)] elements of the
vector hr,t are non-zero. Hence, the DD-domain CSI matrix
H̃, which in turn is comprised of hr,t, 1 ≤ r ≤ Nr, 1 ≤
t ≤ Nt, is sparse in nature. It is important to note that
the conventional LS and MMSE channel estimation schemes,
although appealingly simple, they fail to exploit the sparse
nature of the CSI H̃ arising due to limited number of multipath
components, which is a unique characteristic of the wireless
channel representation in the DD-domain. Leveraging this
aspect can lead to a significant improvement in the quality of
the CSI estimate obtained. Hence, the next subsection develops
an RG-OMP-based sparse channel estimation framework to
exploit the sparsity.

To this end, let us now first describe the sparse struc-
ture inherent in the MIMO CSI matrix H̃. To simplify
the notation, let the total grid-size G be defined as G =
[(Mτ + 1) (Gν + 1)]. Note that the DD-domain CSI hr,t is
sparse, and more importantly, from the channel model of (24),
the delay and Doppler shifts corresponding to the multipath
components do not change for the TA and RA indices. This
implies that the vectors hr,t, 1 ≤ r ≤ Nr, 1 ≤ t ≤ Nt, share
an identical sparsity profile. It follows from (32) that the vector

Fig. 3. Group-sparse and simultaneous row-group sparse struc-
tures of the DD-domain MIMO OTFS channel, where G =
[(Mτ + 1) (Gν + 1)].

hr, which stacks hr,t for 1 ≤ t ≤ Nt, exhibits a group-sparse
structure, since the ith group, 0 ≤ i ≤ G − 1, denoted by

the set
{
hr

(
[(t− 1)G] + i

)}Nt

t=1

, becomes either all zero or

all non-zero, as described in Fig. 3. Furthermore, from (34),
and as also depicted in Fig. 3, the ith group of rows denoted
by the row indices

{
[(t− 1)G] + i

}Nt

t=1
, becomes either all

zero or all non-zero. Thus, the DD-domain CSI matrix H̃ is
simultaneously row- and group-sparse in nature, i.e., there are
only a few, typically Lp

(
<< G

)
groups, each having Nt

rows, which are non-zero.
We now develop an OMP-based sparse channel estimation

framework for exploiting this RG sparsity. The proposed RG-
OMP scheme is described in Algorithm-1. The key steps
that differ here from the conventional OMP technique are as
follows. In each iteration, Step-2, 3 and 4 determine the group-
index j that is maximally correlated to the previous residue
Ri−1. Subsequently, Step-5 selects all the Nt indices of the
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Algorithm 1 RG-OMP-based sparse channel estimation in
MIMO OTFS systems

Input: Dictionary matrix Ω̃, observation matrix ỸTF,P and
stopping parameter ϵt
Initialization: I = [ ], residue R−1 = 0MNp×Nr

, R0 =

ỸTF,P , ĤRG-OMP = 0GNt×Nr
, Ω̃

I
= [ ] and set counter i = 0

while
(∣∣∥ Ri−1 ∥2F − ∥ Ri ∥2F

∣∣ ≥ ϵt
)

do
1) i = i+ 1

2) Ψ = Ω̃
H
Ri−1

3) φ = diag
(
ΨΨH

)
4) j = arg max

k=0,1,...,G−1

∑Nt

t=1 φ [(t− 1)G+ k]

5) J =
{
[(t− 1)G] + j

}Nt

t=1
6) I = I ∪ J
7) Ω̃

I
= Ω̃(:, I)

8) Ĥi =
(
Ω̃

I)†
ỸTF,P

9) Ri = ỸTF,P − Ω̃
I
Ĥi

end while
ĤRG-OMP (I, :) = Ĥi

Output: ĤRG-OMP

group chosen. Thus, it can be observed that in each iteration,
the RG-OMP algorithm selects the Nt columns of the matrix
Ω̃, which correspond to a group, thus yielding a row-group
sparse estimate and in turn, performance improvement over
the conventional OMP that selects only one column of the
dictionary matrix in each iteration. However, the proposed
RG-OMP scheme also suffers from the drawbacks of OMP,
namely: error propagation and sensitivity to the choice of
dictionary matrix and stopping threshold. Therefore, to over-
come these drawbacks, the next section develops an enhanced
RG-sparse BL (RG-BL) framework for CSI estimation in the
MIMO OTFS system.

IV. RG-BL BASED SPARSE CHANNEL ESTIMATION IN
MIMO OTFS SYSTEMS

The proposed RG-BL framework is based on the Bayesian
principle, which begins by assigning the following parameter-
ized Gaussian prior to the DD-domain channel hr,t [31]:

f(hr,t;Γ) =

G−1∏
i=0

1

(πγi)
exp

(
− |hr,t(i)|2

γi

)
. (36)

Here, the quantity γi, 0 ≤ i ≤ G−1, denotes the hyperparam-
eter and the matrix Γ = diag

{
γi
}G−1

i=0
∈ RG×G represents

the hyperparameter matrix. Note that the a priori covariance
Rh of the vector hr,t obeys Rh = Γ, which is unknown to
start with. Since the sparsity profile of hr,t is identical for
1 ≤ r ≤ Nr, 1 ≤ t ≤ Nt, the prior corresponding to the
MIMO CSI matrix H̃ is given by

f
(
H̃;Γ

)
=

Nr∏
r=1

Nt∏
t=1

G−1∏
i=0

1

(πγi)
exp

(
− |hr,t(i)|2

γi

)
. (37)

Note that to exploit the RG-sparsity, the hyperparameter γi
is assigned to all the elements of the ith row-group, indexed

by the row indices
{
[(t−1)G]+ i

}Nt

t=1
, which simultaneously

become either all zero or all non-zero. Thus, for estimating the
[GNt×Nr]-element matrix H̃, the proposed RG-BL technique
employs only G hyperparameters, which is rendered possible
via exploiting its special RG-sparse structure. Furthermore,
the a priori covariance matrix R̃h of the vector hr follows
R̃h = (INt

⊗ Γ). The MMSE estimate M ∈ CGNt×Nr and
its error covariance matrix Σ̃ ∈ CGNt×GNt of the CSI H̃
using (35) can be evaluated as [32]

M=Σ̃Ω̃HR−1
v ỸTF,P , Σ̃=

[
Ω̃HR−1

v Ω̃+
(
INt

⊗Γ−1
) ]−1

.

(38)

Thus, the MMSE estimate M necessitates the estimation of
the hyperparameter matrix Γ. Moreover, it can be observed
from (37) that all the components of the ith group tend to
zero, as the associated hyperparameter γi → 0 [31].

To this end, it is desirable to select the matrix Γ̂ that
maximizes the log-Bayesian evidence log

[
f
(
ỸTF,P ;Γ

)]
,

which evaluates to log
[
f
(
ỸTF,P ;Γ

)]
= c1 −

Nr log
[
det
(
Σ̃y

)]
−
∑Nr

r=1 y
H
TF,P,r

(
Σ̃y

)−1

yTF,P,r, where

Σ̃y = Rv + Ω̃ (INt ⊗ Γ) Ω̃H ∈ CMNp×MNp denotes the
covariance matrix of the received pilot vector yTF,P,r and
the constant c1 = −MNpNr log(π). Since this log-Bayesian
evidence maximization with respect to the hyperparameter
matrix Γ is a non-concave problem [31], the resultant
optimization problem becomes intractable. In such a scenario,
the expectation-maximization (EM) method is an ideal tool for
maximizing the cost function in each iteration. Additionally,
the EM procedure guarantees convergence to a local optimum
[32]. Therefore, the proposed RG-BL framework employs
the EM technique for DD-domain sparse CSI estimation in
MIMO OTFS systems. The key steps of this procedure are
derived next. Let the complete information set be constructed

as
{
ỸTF,P , H̃

}
. Let Γ̂(j−1) = diag

{
γ̂
(j−1)
i

}G−1

i=0
∈ RG×G

denote the estimate of Γ in the (j − 1)st EM-iteration. The
procedure to update the estimate Γ̂(j) in the jth EM-iteration
is described in Theorem-1 presented next.

Theorem 1. Given γ̂
(j−1)
i , 0 ≤ i ≤ G−1, the hyperparameter

update γ̂
(j)
i in the jth EM iteration, which maximizes the

conditional-expectation of the log-likelihood function of the
complete information set

{
ỸTF,P , H̃

}
, denoted by

L
(
Γ|Γ̂(j−1)

)
= EH̃|ỸTF,P ;Γ̂(j−1)

{
log
[
f
(
ỸTF,P , H̃;Γ

)]}
,

(39)

is given by

γ̂
(j)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

∣∣∣M(j)
[
(t− 1)Nt + i, r − 1

]∣∣∣2
+

1

Nt

Nt∑
t=1

Σ̃(j)
[
(t− 1)Nt + i, (t− 1)Nt + i

]
, (40)

where the quantities M(j) = Σ̃(j)Ω̃HR−1
v ỸTF,P and Σ̃(j) =
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Algorithm 2 RG-BL based sparse channel estimation in
MIMO OTFS systems

Input: Observation matrix ỸTF,P , dictionary matrix Ω̃, noise
covariance matrix Rv , stopping parameters ϵ and Nmax

Initialization: γ̂i
(0) = 1,∀ 0 ≤ i ≤ G − 1, Γ̂(0) = IG,

Γ̂(−1) = 0, set counter j = 0

while

(∥∥∥∥Γ̂(j)
− Γ̂

(j−1)
∥∥∥∥2
F

≥ ϵ and j < Nmax

)
do

1) j = j + 1
2) E-step: Compute the a posteriori covariance and mean

M(j) = Σ̃(j)Ω̃HR−1
v ỸTF,P ,

Σ̃(j) =

[
Ω̃HR−1

v Ω̃+

(
INt ⊗

(
Γ̂(j−1)

)−1
)]−1

3) M-step: Compute the hyperparameter estimates
for i = 0, 1, · · · , G− 1 do

γ̂
(j)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

∣∣∣M(j)
[
(t− 1)Nt + i, r − 1

]∣∣∣2
+

1

Nt

Nt∑
t=1

Σ̃(j)
[
(t− 1)Nt + i, (t− 1)Nt + i

]
end for

end while
Output: ĤRG-BL = M(j)

[
Ω̃HR−1

v Ω̃+

(
INt ⊗

(
Γ̂(j−1)

)−1
)]−1

.

Proof. Proof is given in Appendix-A

The EM procedure described above is iterated for a max-
imum of Nmax iterations or until ∥ Γ̂

(j)
− Γ̂

(j−1)
∥2F≤ ϵ,

whichever is achieved earlier, where the stopping parameters ϵ
and Nmax are suitably chosen. Upon convergence, the RG-BL-
based estimate ĤRG-BL of the DD-domain RG-sparse CSI H̃
is obtained as the converged a-posteriori mean, i.e., ĤRG-BL =
M(j), whose resultant estimation uncertainty is characterized
by its error covariance matrix Σ̃(j). Subsequently, the estimate
ĤRG-BL is used to obtain the estimate of the matrix H̄DD that
can be employed in the linear detector of Eq. (23). Note that
in this work, although we do not consider the CSI estimation
uncertainty, the resultant NMSE and BER, as illustrated in
Section-V, are very close to their respective performance
benchmarks. This justifies the efficacy of the proposed CSI
estimation schemes.

The estimate ĤDD can be obtained as follows. First, using
the relationships given in (32) and (34), the estimate of the
element hj

i,r,t of the vector hr,t of (30) is obtained as

ĥj
i,r,t = ĤRG-BL [i(Gν + 1) + j + (t− 1)G, r − 1] .

Next, the estimate ĥj
i,r,t is used for constructing the estimate

of the matrix HDD,r,t of (20) as

ĤDD,r,t=(FN⊗Prx)

Mτ∑
i=0

Gν∑
j=0

ĥj
i,r,t

(
Π̄
)i
∆̄i,j

(FH
N⊗Ptx

)
.

(41)

Finally, employing (22), the estimate of the CSI H̄DD can
be constructed using the estimates of its component matrices
HDD,r,t derived above. Thus, it can be clearly observed that
in contrast to the existing contributions, such as [6], [14], our
framework proposed for the DD-domain CSI estimation and
the subsequent data detection does not require any knowledge
of the number of dominant multipath components, which ren-
ders it eminently suitable for practical MIMO OTFS systems.

A. Delay-Doppler-Angular (DDA)-domain Channel Model

One can also employ an angular-domain geometric channel
model [10] for the MIMO OTFS systems formulated as:

H(τ, ν) =

Lp∑
i=1

Hiδ(τ − τi)δ(ν − νi),

where the MIMO channel tap Hi ∈ CNr×Nt is expressed
in terms of the angle-of-arrival (AoA) θi and angle-of-
departure (AoD) ϕi of the ith multipath component as Hi =
αiar (θi)a

H
t (ϕi). In the model above, αi represents the

complex-valued path gain, and ar (θi) ∈ CNr×1 and at (ϕi) ∈
CNt×1 signify the receive and transmit array response vectors,
respectively, which are defined as

ar (θi) =
[
1, e−j 2π

λ dr cos(θi), · · · , e−j 2π
λ dr(Nr−1) cos(θi)

]
,

at (ϕi) =
[
1, e−j 2π

λ dt cos(ϕi), · · · , e−j 2π
λ dt(Nt−1) cos(ϕi)

]
,

where λ denotes the wavelength, and dr and dt represent the
receive and transmit antenna spacings, respectively. Employing
the angular-domain channel model above, the quantity hi,r,t

of Eq. (18), which represents the channel coefficient for the
ith multipath component between the r-th RA and t-th TA, is
expressed as hi,r,t = Hi(r, t). Since the MIMO OTFS system
model and channel estimation schemes developed in Section-II
and Section-III, respectively, consider a general scenario, the
above angular domain channel model has been employed in
our simulations in Section-V for illustrating the performance
of the proposed approaches.

B. Computational Complexities

The key results of our complexity analysis are summarized
below. The computational complexity order of the RG-BL
technique may be shown to be O

(
G3N3

t

)
, which arises due to

the matrix inversion of size-[GNt ×GNt]. On the other hand,
the worst-case complexity order of the RG-OMP scheme is
seen to be O

(
M3N3

p

)
, which arises due to the intermediate LS

estimate required in each iteration. Finally, the computational
cost of the conventional EP-based [16] CSI estimator is seen to
be on the the order of O (NMτNt), since it does not involve
any matrix multiplication/ inversion operations. However, as
discussed later in our simulation results, the performance of
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TABLE II
SIMULATION PARAMETERS OF SYSTEM-I

Parameter Value
Carrier frequency (GHz) 4
Subcarrier spacing (KHz) (∆f) 15
# of symbols along delay-axis (M) 32
# of symbols along Doppler-axis (N) 32
# of pilots along time-axis (Np) 8
# of samples in CP (L) 16
# of dominant reflectors (Lp) 5
Max. delay-spread (Mτ ) 16
Max. Doppler-spread (Nν) 8
Doppler-grid size Gν 8
Pulse-shape Rectangular

TABLE III
DD-PROFILE OF THE WIRELESS CHANNEL OF SYSTEM-I

Path-index(i) 1 2 3 4 5

τi (µs) 2.08 4.16 6.24 8.32 10.41
νi (Hz) 0 470 940 1410 1880
Speed (Km/h) 0 126.9 253.8 380.7 507.6

the EP-based technique is significantly poor in comparison to
our proposed techniques and its pilot overhead is also very
high. Due to lack of space, the detailed derivations of the
computational complexities of our various schemes have been
relegated to our technical report [33].

V. SIMULATION RESULTS

This section demonstrates the performance of the proposed
BL-based scheme and compares it to that of the OMP [34] and
FOCUSS [35] based sparse signal recovery techniques as well
as to the state-of-the-art EP-based scheme of [16] for the DD-
domain CSI estimation of the OTFS systems in terms of the

normalized MSE (NMSE), defined as NMSE =
∥ĤDD−H̄DD∥2

F

∥H̄DD∥2

F

and pilot overhead. Note that for a fair comparison, the pilot
power of each impulse in the EP-based scheme is set as
the total power of the MNp pilot symbols of our proposed
scheme. This is followed by illustrating the bit-error-rate
(BER) performance of the linear MMSE detectors designed
using the available CSI estimates. For the BL-based approach,
the stopping parameters ϵ and Nmax are set to 10−6 and
50, respectively. The SNR in decibels (dB) is defined as
10 log10

(
1
σ2

)
. Table-II and Table-III show the detailed system

and channel parameters of a sub-6 GHz band channel in a
high mobility scenario, termed as System-I, whereas Table-IV
and Table-V summarize the same for a high-frequency mil-
limeter wave band channel, termed as System-II, in the low-
and average-mobility scenarios considered in our simulations,
unless specified otherwise.

Fig. 4(a) and 4(b) compare the NMSE performance of the
proposed BL-based scheme to that of the other competing
approaches for the SISO OTFS System-I and System-II mod-
els, respectively. From the figure, we can readily observe

TABLE IV
SIMULATION PARAMETERS OF SYSTEM-II

Parameter Value
Carrier frequency (GHz) 28
Subcarrier spacing (KHz) (∆f) 78.125
# of symbols along delay-axis (M) 128
# of symbols along Doppler-axis (N) 128
# of pilots along time-axis (Np) 16
# of samples in CP (L) 32
# of dominant reflectors (Lp) 5
Max. delay-spread (Mτ ) 32
Max. Doppler-spread (Nν) 16
Doppler-grid size Gν 16
Pulse-shape Rectangular

TABLE V
DD-PROFILE OF THE WIRELESS CHANNEL OF SYSTEM-II

Path-index(i) 1 2 3 4 5

τi (µs) 0.3 1 1.7 2.4 3.1
νi (Hz) 0 610 1220 2440 3660
Speed (Km/h) 0 23.5 47 94 141

a significant NMSE improvement of the proposed RG-BL
scheme in comparison to the MMSE, MFOCUSS, EP and
RG-OMP approaches. Since the conventional MMSE and EP-
based schemes do not exploit sparsity of the DD-domain
CSI, they yield a poor NMSE. The poor performance of the
RG-OMP can be attributed to its sensitivity to the stopping
parameter as well as to the dictionary matrix, whereas the same
for the FOCUSS arises due to its convergence deficiencies
and sensitivity to the regularization parameter [31]. Thus,
the performance of the competing sparse recovery algorithms,
such as the RG-OMP and MFOCUSS, is not as robust as that
of the BL-based approach.

Fig. 5(a) compares the NMSE of the proposed and existing
sparse CSI estimation schemes for the setting of Nt = 2 and
Nr ∈ {2, 4} in the MIMO OTFS System-II. Observe from the
Fig. 5(a) that the proposed RG-BL and RG-OMP techniques,
specifically designed for MIMO OTFS CSI estimation, out-
perform the conventional OMP [34], BL [31] and EP-based
techniques. This is owing to the fact that the RG-BL and RG-
OMP techniques exploit both the row and group-sparsity of the
DD-domain CSI H̃, whereas the conventional BL and OMP
techniques exploit only the sparsity. This demonstrates the ro-
bust performance of the RG-BL. Furthermore, its performance
is seen to improve upon increasing the number of RAs Nr, a
fact which is justified by the availability of more pilot outputs
in ỸTF,P and exploiting the row sparsity. By contrast, the
performance of the BL, OMP and EP-based schemes remain
unchanged upon increasing the number of RAs Nr. This is
attributed to the fact the BL and OMP do not exploit the
row-sparsity of the DD-domain CSI H̃, whereas the EP-based
scheme is unable to leverage the common support of the DD-
domain CSI across all the TA-RA pairs.

The robust performance of the proposed RG-BL technique



11

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

-35

-30

-25

-20

-15

-10

-5

0

N
M

S
E

 (
d

B
)

MMSE

MFOCUSS

EP

RG-OMP

RG-BL

(a)

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

-30

-25

-20

-15

-10

-5

0

N
M

S
E

 (
d

B
)

MMSE

MFOCUSS

EP

RG-OMP

RG-BL

(b)

Fig. 4. NMSE versus SNR performance of the SISO OTFS for (a) System-I; (b) System-II.

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

 (
d

B
)

OMP (N
r
 = 2, 4)

BL (N
r
 = 2, 4)

EP (N
r
 = 2, 4)

RG-OMP (N
r
 = 2)

RG-BL (N
r
 = 2)

RG-OMP (N
r
 = 4)

RG-BL (N
r
 = 4)

(a)

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

 (
d

B
)

BL (N
t
 = 4)

BL (N
t
 = 2)

EP (N
t
 = 2)

RG-OMP (N
t
 = 2)

RG-BL (N
t
 = 2)

RG-OMP (N
t
 = 4)

RG-BL (N
t
 = 4)

(b)

Fig. 5. NMSE versus SNR performance of the MIMO OTFS for (a) System-II with Nt = 2, Nr ∈ {2, 4}; (b) System-I with Nr = 2, Nt ∈ {2, 4}.

is further demonstrated by considering a challenging scenario,
where Nt > Nr. Fig. 5(b) compares the NMSE performance
of the various sparse CSI estimation schemes for MIMO OTFS
System-I having Nr = 2 and Nt ∈ {2, 4}. Here, the CSI
estimation becomes challenging for Nt = 4, since using
the estimation model of (33), one has to infer GNtNr =
1224 channel coefficients from only MNpNr = 512 pilot
outputs, resulting in a heavily ‘under-determined’ or ‘ill-
posed’ estimation problem. It can be readily observed that
in this scenario, the NMSE of the OMP- and FOCUSS-
based schemes degrades significantly, whereas the proposed

RG-BL technique continues to perform best. The significant
performance improvement of the proposed RG-BL technique
is attributed to the fact that as shown in (37), it assigns only G
distinct hyperparameters to characterize the a priori pdf of the
[GNt ×Nr]-element matrix H̃. Thus, the RG-BL scheme has
to estimate much fewer hyperparameters, namely only G, from
the [MNp ×Nr]-element pilot output matrix ỸTF,P , yielding
an enhanced estimate of the hyperparameters, and in turn of
the CSI matrix H̃.

Finally, Fig. 6(a) portrays the BER achieved using the linear
MMSE detectors derived from all the contending sparse recov-
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ery schemes. For this, the estimate of the matrix H̄DD has been
constructed from its equivalent DD-domain CSI estimates,
like ĤRG-OMP or ĤRG-BL, using the procedure described right
before Section-IV-A. Observe from Fig. 6(a) that owing to
its improved estimation accuracy, the BER achieved using
the detectors derived from the BL-based channel estimates is
markedly better than that of its OMP and FOCUSS coun-
terparts. Moreover, the proposed RG-BL technique is also
seen to approach the BER of a hypothetical receiver having
perfect CSI (PCSI), which demonstrates its enhanced ability
of channel recovery.

Coming now to the required pilot overhead, note that for
the proposed CSI estimation framework, MNp symbols are
pilots in a block of M(N + Np) symbols. This leads to
the normalized pilot overhead of ρ =

Np

N+Np
. On the other

hand, the pilot overhead for the state-of-the-art EP-based
technique [16] is given by ρEP ≈ (NtMτ+Mτ+Nt)(2Nν+1)

MN for
integer-Doppler scenario, and it is even higher for fractional-
Doppler case. Table-VI compares the pilot overhead of the
proposed CSI estimation framework to the EP-based scheme.
It can be readily observed that our proposed sparse CSI
estimation framework has a significantly low pilot overhead in
comparison to the EP-based scheme. At the same time, from
the NMSE plots of Fig. 4 and 5, one can observe a significantly
improved NMSE of the proposed RG-BL scheme in compar-
ison to the EP-based method considering an identical total
pilot power. The high pilot overhead of the EP-based scheme
is attributed to the fact that it requires multiple DD-domain
guards around the pilot symbols of each TA, and hence, its
pilot overhead increases upon increasing Nt. However, our
proposed CSI estimation framework completely avoids this
by providing a common overlapping pilot duration for all the
TAs. Interestingly, for the OTFS System-I, the pilot overhead
of the EP-based scheme is significantly high even for Nt = 1,
and it becomes quite impractical for Nt = 2 and beyond. On
the other hand, to a large extent, the pilot overhead remains
constant for the proposed channel estimation framework upon
increasing the number of TAs, thereby making it practically
appealing for large-scale antenna scenarios.

Another unique aspect of the proposed channel estimation
model is that the pilot symbols Np can be flexibly adjusted
to strike a suitable estimation accuracy versus pilot overhead
trade-off. In Fig. 6(b), the NMSE performance of the various
competing sparse CSI estimation frameworks is compared by
varying the pilot overhead. The SNR for this simulation is
set to 4 dB. It can be observed that the NMSE performance
improves upon increasing the pilot overhead ρ, a direct con-
sequence of the fact that the number of pilot measurements
MNpNr, which is essentially the number of elements in the
matrix ỸTF,P , increases upon increasing Np. Moreover, it is
also observed that the NMSE of the RG-BL technique with
ρ = 0.2 is lower than that of the RG-OMP with ρ = 0.33.
Hence, for a desired level of estimation accuracy, the RG-
BL scheme can lead to a significantly reduced pilot overhead.
Thus, the improved CSI estimation performance, reduced pilot
overhead along with low-complexity linear detectors requiring
no prior knowledge of the number of dominant reflectors make

the proposed RG-BL scheme ideally suited for implementation
in practical MIMO OTFS systems.

Fig. 7(a) and 7(b) illustrate the NMSE and BER per-
formance, respectively, of the proposed schemes consider-
ing fractional Dopplers. For these simulations, the fractional
Doppler κνi

for each multipath component has been uniformly
generated in the range

(
− 1

2 ,
1
2

)
. As described in Section-III, in

order to handle this scenario, the Doppler grid-size Gν is set
much higher than the maximum integer-Doppler tap Nν . The
performance of the proposed schemes is also benchmarked
against the integer-Doppler case. It can be readily observed
that for the fractional-Doppler scenario, the performance of
the proposed schemes is degraded slightly compared to the
integer-Doppler scenario, but it is still very close to that of
their integer-Doppler counterparts. This performance degra-
dation is due to the fact that the true Doppler shifts ki of
all the multipath components differ from the Doppler-grid
points that are used to construct the dictionary matrix Ω̃.
As expected, the performance of the proposed techniques
improves upon increasing the Doppler grid-size Gν , since it
enhances the resolution of the grid. Furthermore, even in this
scenario, the RG-BL technique continues to perform best. This
demonstrates that the proposed channel estimation model and
schemes are eminently suitable for practical OTFS systems.

Fig. 8(a) and 8(b) demonstrate the NMSE and BER, re-
spectively, of the proposed schemes considering a discrete
prolate spheroidal (DPS) [30], [36] waveform for the transmit
pulse-shape ptx(t), which has a significantly reduced out-of-
band power in comparison to the rectangular waveform. Note
that for a rectangular waveform, all the time-domain transmit
symbols are scaled identically. On the other hand, due to the
structure of the DPS pulse-shape, the symbols lying on both
the edges of the pulse duration T are scaled down significantly,
which degrades the resultant NMSE and BER performance.
Furthermore, it can be observed that the BER performance
for the DPS waveform degrades significantly even for perfect
CSI knowledge. However, the degradation in NMSE is not
significant, which makes the proposed channel estimation
frameworks suitable for all kinds of practical pulse-shapes.

VI. CONCLUSIONS

This paper proposed a novel simultaneous row- and
group-sparse channel estimation model considering fractional
Dopplers and arbitrary Tx-Rx pulse shapes for MIMO OTFS
systems, wherein the TF-domain pilots are transmitted to
estimate the DD-domain CSI of the underlying wireless chan-
nel. In this context, both the novel RG-OMP, as well as the
enhanced RG-BL frameworks were developed, which exploit
the DD-domain RG-sparsity for improved CSI estimation.
The proposed CSI estimation framework significantly reduces
the pilot overhead, training duration and pilot pre-processing
complexity, while completely eliminating the need for placing
multiple DD-domain guards between the pilot and data sym-
bols corresponding to each TA within the same OTFS frame.
Additionally, it has a flexible training duration and it can also
efficiently handle fractional-Doppler scenarios. All of these
attributes of the proposed framework lead to increased spectral
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Fig. 6. (a) BER versus SNR performance of the MIMO OTFS System-I with Nt = Nr = 2; (b) NMSE versus pilot overhead ρ for the SISO OTFS
System-I.

TABLE VI
PILOT OVERHEAD COMPARISON IN THE FORM (ρ, ρEP), WHERE ρ AND ρEP DENOTE THE PILOT OVERHEAD OF THE PROPOSED AND EP-BASED SCHEMES,

RESPECTIVELY, AND ‘NA’ REPRESENTS ‘NOT APPLICABLE’

Number of TAs (Nt) 1 2 3 4

System-I (0.2, 0.54) (0.2, 0.83) (0.2,NA) (0.2,NA)
System-II (0.11, 0.13) (0.11, 0.197) (0.11, 0.26) (0.11, 0.33)
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Fig. 7. (a) NMSE versus SNR and (b) BER versus SNR performance, with integer and fractional Dopplers.
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Fig. 8. (a) NMSE versus SNR and (b) BER versus SNR performance, with rectangular and DPS pulse shapes.

efficiency. Furthermore, low-complexity linear detectors are
also derived for the data detection phase, which directly
employ the sparse CSI estimated by the proposed schemes,
without requiring any further knowledge of the number of
dominant multipath components of the channel. Our simu-
lation results demonstrated the performance benefits of the
proposed schemes over the conventional MMSE scheme as
well as over other state-of-the-art sparse recovery schemes.

APPENDIX A
PROOF OF THEOREM-1

The expectation-step (E-step) evaluates L
(
Γ|Γ̂(j−1)

)
as

E
{
log
[
f
(
ỸTF,P |H̃

)]}
+ E

{
log
[
f
(
H̃;Γ

)]}
. (42)

Subsequently, the maximization-step (M-step) maximizes
L
(
Γ|Γ̂(j−1)

)
with respect to Γ as

Γ̂
(j)

= argmax
Γ

E
{
log
[
f
(
H̃;Γ

)]}
, (43)

since the first term within the E
{
·
}

in (42) is independent of
Γ. Upon substituting log

[
f
(
H̃;Γ

)]
from (37), and ignoring

the terms that do not depend on Γ, one obtains

Γ̂
(j)

≡ argmax
Γ

G−1∑
i=0

[
−NrNt log(γi)−

Nr,Nt∑
r=1,t=1

E
{
|hr,t(i)|2

}
γi

]
.

Differentiating the objective function with respect to γi and
setting it equal to zero yields the estimates γ̂

(j)
i as

γ̂
(j)
i =

1

NrNt

Nr∑
r=1

Nt∑
t=1

EH̃|ỸTF,P ;Γ̂(j−1)

{
|hr,t(i)|2

}
. (44)

In order to evaluate the conditional expectation
EH̃|ỸTF,P ;Γ̂(j−1)

{
·
}

, one can employ the a posteriori

pdf f
(
H̃|ỸTF,P ; Γ̂

(j−1)
)

of H̃, which is evaluated as [32]

f
(
H̃|ỸTF,P ; Γ̂

(j−1)
)
= CN

(
M(j), Σ̃(j)

)
. (45)

In the above expression, the a posteriori covariance matrix
Σ̃(j) ∈ CGNt×GNt is obtained by setting Γ = Γ̂(j−1) in
the expression of the MMSE error covariance Σ̃ of (38),
whereas the a posteriori mean M(j) ∈ CGNt×Nr is obtained
by substituting Σ̃ = Σ̃(j) into the expression of M of (38).
Thus, the conditional expectation in (44) obeys

E
{
|hr,t(i)|2

}
=
∣∣∣M(j)

[
(t− 1)Nt + i, r − 1

]∣∣∣2
+ Σ̃(j)

[
(t− 1)Nt + i, (t− 1)Nt + i

]
,

which upon substituting into (44), yields the desired hyperpa-
rameter update of (40).
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