1	Arginine induced Streptococcus gordonii biofilm detachment using a novel rotating-
2	disc rheometry method
3	Supplemental Information
4	
5	Erin S. Gloag, Daniel J. Wozniak, Kevin L. Wolf, James G. Masters, Carlo Amorin Daep,
6	Paul Stoodley
7	
8	Supplemental Figures
9	$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
10	Supplemental Figure 1: Repeated analysis does not lead to further biofilm removal.
11	Untreated S. gordonii biofilms were analyzed by adapted rotating-disc rheometry. After the
12	initial measurement (black) the assay was repeated (grey) to determine if remaining attached
13	biofilm could be removed with subsequent analysis. Repeated analysis revealed no changes
14	in torque, and the curve reached the same final point as the initial analysis. This indicates that
15	no additional biofilm removal was detected with repeated analysis. Data presented as mean
16	± SD, N = 4.
17	
18	
19	
20	
21	
22	

23

24 Supplementary Figure 2: Data processing. (A) The torque and angular velocity data were 25 exported from TRIOS v5 software. To visualize the changes in torque with angular velocity 26 more clearly the data was linearized by (B) plotting the square root of the torque against 27 angular velocity. (C) The running slope of 5 consecutive data points of the linearized curve was determined. That is, the slope of data points 1 - 5, 2 - 6, 3 - 7 etc. was determined and 28 29 plotted against the angular velocity. This analysis emphasized where changes in torque, which 30 correlate to detachment events, were occurring which are now visualized as sharp peaks. (D) 31 From this transformed data, the start of the curve had a sharp rise that was consistent across all data sets. To therefore focus on the linearized portion, data from 20 - 300 rad s⁻¹ was 32 33 represented.

34

Supplemental Figure 3: Adapted rotating-disc measurements of untreated and amino
acid treated S. gordonii biofilms. Torque – displacement curves of untreated and glycine-,
lysine-, arginine-treated (labelled) 7 day S. gordonii biofilms. Data is presented as mean ±
95% confidence interval. 4 biological replicates were performed, with 2 biofilms analyzed for
each replicate (total N = 8).

Supplementary Figure 4: Transformed linearized analysis of untreated and amino acid
treated S. gordonii biofilms. Curves of (A) untreated S. gordonii biofilms and biofilms treated
with (B) glycine, (C) lysine, and (D) arginine. Data are expressed as mean ± 95% confidence
interval. 4 biological replicates were performed, with 2 biofilms analyzed for each replicate
(total N = 8).

61 Supplementary Tables

62 Supplementary Table 1: Growth and testing conditions of biofilms with a remaining

63 layer after exposure to shear stress

InocutarinModelTimeMethodRangeModelTimeMethodRangeSaliva-coated hydroxyapatite dics (12.7 mm diameter)Static 24-well plate67 or 115 hShear-induced biofilm mechanical strength tester (s-BMST) modelled on CDC reactorAngular velocity flow of 0 - 115 rad×s ⁻¹ (estimated shear stress of 0 - 1.785Untreated river waterUltrafiltration membranes (18.75 cm² surface area)Membrane fouling simulator25 dPeristaltic pumpHydraulic shear stresses ranging from 0 - 2.6 Pa. Exposure time of 5 min at 0.2 Pa increments Set point range of -2 - 9 V which were the instrument	IndectationModelTimeMethodRangeRegS. mutansSaliva-coated hydroxyapatite dics (12.7 mm diameter)Static 24-well plate67 or 115 hShear-induced biofilm mechanical strength tester (s-BMST) modelled on CDC reactorAngular velocity flow of 0 - 115 rad×s ⁻¹ (estimated shear stress of 0 - 1.78522Ultrafiltration membranes (18.75 cm ² surface area)Membrane fouling simulator25 dPeristaltic pumpAngular velocity flow of 0 - 115 rad×s ⁻¹ (estimated shear stress of 0 - 1.78522Drinking tap waterGlass coupons (0.9 methy)Rotating disc reactor4, 8, 12 wAtomic force microscopyAtomic force microscopy range of 5 - 300 kPa24	Incoulum	Substratum	Biofilm growth		Shear stress		Rof
S. mutans Saliva-coated hydroxyapatite dics (12.7 mm diameter) Static 24-well plate 67 or 115 h Shear-induced biofilm mechanical strength tester (s-BMST) modelled on CDC reactor Angular velocity flow of 0 – 115 rad×s ⁻¹ (estimated shear stress of 0 – 1.785 Untreated river water Ultrafiltration membranes (18.75 fouling cm ² surface area) Membrane simulator 25 d Peristaltic pump Hydraulic shear stresses ranging from 0 – 2.6 Pa. Exposure time of 5 min at 0.2 Pa increments Set point range of -2 - 9 V which were the instrument	S. mutansSaliva-coated hydroxyapatite dics (12.7 mm diameter)Static 24-well plate67 or 115 hShear-induced biofilm mechanical strength tester (s-BMST) modelled on CDC reactorAngular velocity flow of 0 – 115 rad×s ⁻¹ (estimated shear stress of 0 – 1.78522Ultrafiltration membranes (18.75 cm² surface area)Membrane fouling simulator67 or 115 hPeristaltic pumpN m²²) Hydraulic shear stresses ranging from 0 – 2.6 Pa. Exposure time of 5 min at 0.2 Pa increments Set point range of -2 - 9 V which were the instrument limitations. This corresponded to a mechanical shear stress range of 5 - 300 kPa24	moculum		Model	Time	Method	Method Range	
Ultrafiltration Membrane river water Ultrafiltration Membrane river water Glass coupops (0.9) Ultrafiltration Membrane simulator Membrane Simulator Peristaltic pump Hydraulic shear stresses ranging from 0 – 2.6 Pa. Exposure time of 5 min at 0.2 Pa increments Set point range of -2 - 9 V which were the instrument	Untreated iver water Ultrafiltration membranes (18.75 cm ² surface area) Membrane fouling simulator 25 d Peristaltic pump Hydraulic shear stresses ranging from 0 – 2.6 Pa. Exposure time of 5 min at 0.2 Pa increments Set point range of -2 - 9 V which were the instrument limitations. This corresponded to a mechanical shear stresses range of 5 - 300 kPa 23	S. mutans	Saliva-coated hydroxyapatite dics (12.7 mm diameter)	Static 24-well plate	67 or 115 h	Shear-induced biofilm mechanical strength tester (s-BMST) modelled on CDC reactor	Angular velocity flow of $0 - 115 \text{ rad} \times \text{s}^{-1}$ (estimated shear stress of $0 - 1.785$ N m ⁻²)	22
Class coupons (0.9 which were the instrument	Glass coupons (0.9 Drinking tap water depth) Glass coupons (0.9 reactor Rotating disc reactor 4, 8, 12 w 4, 8, 12 w Atomic force microscopy depth) Glass coupons (0.9 reactor Corresponded to a mechanical shear stress range of 5 - 300 kPa	Untreated river water	Ultrafiltration membranes (18.75 cm ² surface area)	Membrane fouling simulator	25 d	Peristaltic pump	Hydraulic shear stresses ranging from $0 - 2.6$ Pa. Exposure time of 5 min at 0.2 Pa increments	23
Drinking tap cm radius, 0.1 cm reactor Rotating disc 4, 8, 12 w Atomic force microscopy depth limitations. This corresponded to a mechanical shear stress range of 5 - 300 kPa		Drinking tap vater	Glass coupons (0.9 cm radius, 0.1 cm depth)	Rotating disc reactor	4, 8, 12 w	Atomic force microscopy	Set point range of -2 - 9 V which were the instrument limitations. This corresponded to a mechanical shear stress range of 5 - 300 kPa	24

81 Supplementary Movies

Supplemental Movie 1: Adapted rotating-disc rheometry measurement. Left panel is a recording of the rheometry measurement for an untreated 5 d *S. gordonii* biofilm. Right panel indicates the corresponding torque – angular velocity data collection. Individual frames from the time lapse depicting separate biofilm detachment events are displayed in Fig 2. Time stamp is indicated in the top left hand corner (min : s). Playback rate is at 15 fps. Movie S1 is available through Dryad [https://doi.org/10.5061/dryad.p8cz8w9q2].

88

Supplemental Movie 2: Transformed data collection. Left panel is the same recording depicted in movie S1. Right panel depicts the corresponding torque – angular velocity data that has been linearized and transformed to emphasis the changes in torque. Individual frames from the time lapse depicting separate biofilm detachment events are displayed in Fig 2. Time stamp is indicated in the top left hand corner (min : s). Playback rate is at 15 fps. Movie S2 is available through Dryad [https://doi.org/10.5061/dryad.p8cz8w9q2].