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1 Introduction

Sliding Grids (SG) and Overset Grids (OG) are two CFD methods for discretizing the domain with
several sub-grids, with the potential of: 1) simplifying the mesh generation process; 2) increase their
individual quality; 3) improve accuracy of unsteady simulations with moving objects. Their fundamental
difference lies on the sub-grid placement, fitted into each other (SG) or overlapped (OG), which ends up
impacting the information transfer mechanism that couples them. During the last few years, both methods
have been specially useful in many areas, including the simulation of offshore wind turbines, where a
Sliding Grid might be used to accommodate the motion of the rotor and an Overset Grid to capture the
overall movement of the platform with the ocean waves (Tran and Kim, 2018). However, very few studies
exist comparing SG with OG, despite their versatility and interchangeability in various situations. Even
within the available literature, as (Francois et al., 2011), they mostly focus on practical test cases, with
no Code Verification (Eça and Hoekstra, 2013) performed. Therefore, a detailed analysis is necessary,
where the flow analytical solution is known, so that discretization errors can be evaluated in isolation.
For that an inedit wind turbine flow manufactured solution is designed and used, taking advantage of the
Method of Manufactured Solutions (Roache, 2019) to produce an arbitrarily complex flow with a known
analytical solution. With it, Code Verification can be performed, to assess and compare the impact of
SG and OG in typical wind turbine flow conditions. Based on this work, some more light can be shed
on possible improvements and good practices for industrial uses, potentially extendable to other CFD
solvers with similar capabilities.

2 ReFRESCO

ReFRESCO (Vaz et al., 2009) is a CFD solver based on a finite-volume discretization with cell-centered
collocated variables and unstructured grids, capable of handling hanging nodes. It solves the unsteady,
multi-phase and incompressible RANS equations, in addition to turbulence models and volume-fraction
transport equations for each phase. Moreover, it has the capability to simulate moving objects through the
use of Sliding Grids and more recently the Overset Grids method (Lemaire et al., 2021). These methods
depend on the interpolation schemes implemented, with a considerable number of options available in
the solver. Some of them include Inverse Distance (1st order), Nearest Cell Gradient (2nd order) and
Least Squares (n-th order with a n − 1th degree polynomial) (Lemaire et al., 2021).

3 Sliding Grids Method

The Sliding Grids method uses several sub-grids to discretize the domain (Rai, 1985). Despite being
individually generated, they have a certain degree of dependence, since they need to fit into each other
to cover the entire domain. Therefore, the sub-grids communicate between each other through the inter-
faces, which might slide relative to one another in the case they are animated. Considering this, they are
inherently limited to simple movements, including unidirectional translation or rotation over cylindrical
or conical surfaces of revolution.

A key aspect of the implementation of this method is the information transfer between each sub-grid
through the interface. Several methods exist in the literature, but in ReFRESCO the one implemented is
based on Halo Cells (Ramírez et al., 2015). In the Halo Cell method the new cell center is projected from
a given parent boundary cell at the interface to the other contiguous sub-grid. The properties of the flow
at the halo cell center are interpolated from a stencil of surrounding cells in the sub-grid to which it was
projected to, based on the selected interpolation scheme. These will act as Dirichlet boundary conditions,



closing the respective system of equations and coupling the sub-grids. In ReFRESCO the halo cells are
determined on-the-fly, being by default projected over the line connecting the parent cell center and the
respective face center. Therefore, no eccentricity exists between both. Moreover, the halo cell is defined
to have the same size as the parent cell.

4 Overset Grids Method

The Overset Grids method (Benek et al., 1986) also uses several sub-grids to discretize the domain.
However, since they are overlapped, they don’t need to fit into each other, potentially easing the grid
generation process and allowing virtually any type of movement because of that same characteristic.
Nevertheless, they are known to be numerically more expensive and also more complex to implement
than the Sliding Grids method (Francois et al., 2011).

This method uses the Domain Connectivity Information (DCI), which assigns to each cell in the
domain one of three possible status: In, Fringe or Hole Cell. In Cells are regular, active cells in the
domain. Hole Cells are the ones that are ignored by the solver, since they are substituted by cells of other
sub-grid that is overlapping that region or because they are just outside the domain. Finally, Fringe cells
are placed in between the two other types of cells, receiving the interpolated information and coupling
the different sub-grids.

5 Wind Turbine MMS Test Case

The wind turbine flow solution was created based on the Method of Manufactured Solutions (MMS).
A CFD simulation of an Actuator Disk was used as reference to model the velocity and pressure fields,
which in turn had as inputs the reference operating conditions of the NREL 5MW (Jonkman et al., 2009)
wind turbine: free-stream flow velocity, V0, of 11.4 m/s, rotor angular speed, ω, of 1.2698 rad/s and
respective values of thrust and torque. The z axis represents the flow direction, perpendicular to the rotor
disk.

After extensive testing, Equation (1) was obtained, providing a Vz field with reasonable features and
a power net flux, Pnet , over the selected domain of around 5.008 MW (harvested). This process included
tunning the values of the blending functions in the axial and radial directions, Equations (3) and (4),
respectively, where Ra is the radius of the wind turbine, 63 meters. In order to respect the continuity
equation, the integral of Equation (2) was solved using the algebraic toolbox Sympy, obtaining the radial
velocity distribution Vr. While the tangential component Vθ did not contribute to mass conservation, it
was not considered to simplify the solution process.

Vz(r, z) = V0 − 0.2715 · V0 · γz(z, 0.7, 4.0) · γr(r, 1.2)

+ 0.2000 · V0 · γz(z, 0.7, 4.0) · γr(r, 2.5)

− 0.1000 · V0 · γz(z,−2.0, 1.0) · γr(r, 3.0)
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As for the pressure field, p, the strategy adopted was based on the Bernoulli’s Principle, presented in

Equation (6). Assuming that the total pressure H is constant along a streamline, a reasonable approxima-
tion given the flow characteristics, all flow regions will have the same value as the free-stream flow, H0,
with p0 equal to 0 Pa. The only exception will be in the wake, since energy was extracted from the flow
by the turbine. Based on dimensional analysis, Equation (5) was obtained to estimate that drop in total
pressure, obtaining Hwake with previously known quantities. Afterwards, the two total pressure values
obtained, H0 and Hwake, were blended in a similar fashion to Vz, allowing for a pressure field equation to
be obtained through Equation (6).

Hwake = H0 +
Pnet

Qdisk
(5) p(r, z) = H(r, z) −

1
2
ρV(r, z)2 (6)

H(r, z) = (H0 · (1 − γz(z, 0.0, 4.0)) + Hwake · γz(z, 0.0, 4.0)) · γr(r, 1.2)) + H0 · (1 − γr(r, 1.2)) (7)

Having created a set of equations describing the velocity and pressure fields in the domain, pyMMS



(Lemaire, 2021) was used to obtain the source terms that forced them to become the exact solutions of the
Navier-Stokes equations. These source terms are in turn provided to the flow solver, which eventually
outputs a simulation with errors that can be easily assessed by comparison with the known analytical
solution provided initially - thefore enabling Code Verification. A slice of the obtained velocity and
pressure fields are presented in Figure 1.
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Fig. 1: Exact solution fields of Wind Turbine MMS, based on Actuator Disk solution with NREL 5MW
characteristics. Slice over rz plane, in cylindrical coordinates.

While solution realism is not essential to a MMS (Roache, 2019), it was still sought during the
creation process. Nevertheless, issues with the stability of MMS that did not respect continuity severely
limited the flow features that could be recreated. Therefore the present MMS represents a compromise,
which can have some critics established: (1) the wake has no swirl, Vθ = 0; (2) the wake has no expansion;
(3) the flow starts decelerating too early upstream of the turbine, which leads to premature radial velocity
component. In the end the authors acknowledge the limitations of the current MMS, but hope to further
improve it in the future after identifying and solving the stability issues stated. Yet, it is considered that
the current version is already suitable to perform Code Verification.

Fig. 2: Typical SG grid setup.
Slice over yz (or rz) plane of
Hole subgrid (gray), fitted with
Rotor subgrid (red). G1 refine-
ment. Cylinder grid is identical
to Hole, but without space to fit
Rotor.

Grid Refin. (hi)
Size Cell Count (Ni)

Cylinder Cylinder Rotor Hole
G1 2.49 100 x 50 x 50 203 600 512 204 144
G2 1.66 150 x 75 x 75 682 350 1680 682 839
G3 1.25 200 x 100 x 100 1 604 000 3840 1 603 700
G4 1.00 250 x 125 x 125 3 125 250 7520 3 123 035

Table 1: Sub-grid refinements description. Baseline:
Cylinder grid only. Sliding Grids: Hole mesh fitted with
Rotor grid. Overset Grids: Cylinder and Rotor grids over-
lapped.

To discretize the domain, three main types of grids had to be created. The first is a simple, Cylinder
grid with mostly cubic cells, which is used as a benchmark, since it is a single mesh. This grid will also



be used in OG, together with a second sub-grid, Rotor, overlapped in the region of the wind turbine,
which can rotate. Finally, for the SG, the Rotor sub-grid will also be used, but the Cylinder one is
substituted with another that has a hole in the middle, so that they can fit into each other. All grids are
unstructured, created using Hexpress, aiming at geometric similarity through all refinements, resulting in
a set of systematically refined grids necessary to perform Code Verification. Moreover, they do not have
hanging nodes. Their characteristics are presented in Figure 2 and Table 1.

The boundary conditions (BC) were defined as follows: a Dirichlet BC for the inlet and a Neumann
BC for the other exterior surfaces, all based on the analytical solution of the MMS. Regarding the adopted
numerical setup, for the discretization of the convection fluxes a 2nd order, limited, QUICK scheme was
selected. For the time discretization the 2nd order Implicit Three Time Level is used, with a default
angular rotation per time step of 8 degrees (maximum CFL is 0.25 in grid G4, with a time step of 0.11 s).
The iterative residuals are reduced up until all L∞ norms are below 10−6 at each time step, which yield
iterative errors negligible for all flow quantities after an iterative study was performed. Finally, for both
SG and OG the default interpolation scheme used is the Least Squares with a second degree polynomial
function, which is a third order accurate scheme (LS3).

6 Results

6.1 Baseline
The first simulation used a single grid for the entirety of the domain, serving as a benchmark when SG
and OG methods are introduced. Overall, at least second order of accuracy was obtained for pressure and
radial velocity components (Vx and Vy). However, for the axial velocity, Vz, reduced order of accuracy
occured (p = 1.37). Due to a yet unknown source, high errors concentrated at the outlet of the domain,
degrading the overall velocity error order. Hence, focus will be given to the L2 error norms throughout
this work to assess the impact of the SG and OG, instead of L∞, which are dominated by these outlet
errors. Nevertheless, no significant impact is expected on the conclusions of the present paper.

6.2 Time Step
One of the parameters tested was the influence of the time step. Assuming that the rotor has a fixed
angular speed during operation (ω = 1.2698 rad/s), the time step is determined in order for the rotor to
advance a pre-determined amount of degrees. The values tested ranged from 6 to 24 degrees per time
step (6 to 24 ◦/∆t). The movement of the rotor leads to unsteadiness of the results, which need to be aver-
aged. To quantify the respective statistical uncertainty the TST method is used (Brouwer et al., 2015), as
implemented in the software pyTST (Lemaire and Klapwijk, 2021). In this particular case that quantity
was always kept at least two orders of magnitude lower than the obtained mean by taking into account
the last four rotations of the rotor in the simulation.

The grid refinement plots of Vx error for different time steps are presented in Figures 3a and 3b, for
SG and OG, respectively. Based on the methodology of Code Verification (Eça and Hoekstra, 2013), a
linear regression was used to estimate the order of convergence, p, presented in Figure 3c.
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Fig. 3: Time Step sensitivity study: 6 to 24 degrees of rotation per timestep. Analysed quantity: Vx error.

It can be concluded that the order of convergence of Vx is degraged with coarser time steps when



SG are used, whereas OG appears to be more robust in preserving it. Analyzing the error curves, neither
of the methods seem to be introducing a significant source of error. In fact, the slight error reduction
perceived in some grids when compared to the Baseline case is likely related to the reduced amount of
cells of the latter. Moreover, the OG results match the Baseline for G1 and G2: this is due to the lack of
Fringe cells in the domain, given that these meshes are too coarse, therefore errors from the rotor are not
transmitted to the rest of the domain. Besides, this consideration is behind a slight overprediction of the
order of convergence in Figure 3c for OG.

Overall, as finer grids are used with SG, the convergence decreases if coarse time steps are adopted.
On the other hand, OG is pratically not influenced by that. Regarding other flow quantities, Vy presented
the exact same results, since the flow is axyssimetric. As for pressure and axial velocity, no significant
differences were found in both methods.

6.3 Interpolation Scheme

The other parameter tested was related to the interpolation schemes to couple the sub-grids. The default
time step is constant, 8 ◦/∆t. Besides the Least Squares with a second order polynomial (LS3), the default
scheme used until this point, Nearest Cell Gradient (NCG2) and Inverse Distance (ID1) were also tested.
Note that the algorithm in the acronym denotes the accuracy order of the method. In Figure 6 the error
distribution of Vz in the rotor region are presented for the three interpolation schemes (ID1, NCG2 and
LS3) for both SG and OG methods. It can be assessed that ID1, a first order method, is introducing

(a) ID1 - SG. (b) NCG2 - SG. (c) LS3 - SG.

(d) ID1 - OG. (e) NCG2 - OG. (f) LS3 - OG.

Fig. 4: Error distribution of axial velocity, Vz, nearby the rotor region in log scale. Slice over yz plane.
Black line encloses rotor region. Top row: Sliding Grids. Bottom row: Overset Grids.
the highest amount of errors. These are in turn convected downstream, since this flow is convection
dominated. On the other hand, only slight differences can be perceived between the error distribution
of NCG2 and LS3, with the second order method introducing a less smooth distribution. Comparing
the results between SG and OG, the error wake is wider in the first method, since SG always transfers
information at the interface. As for OG that transfer depends on the Fringe cells locations, which in this
case are more packed inside the rotor region.

Mass conservation was also investigated, since both SG and OG do not respect it in the intergrid
communication process. It is quantified with the absolute value of the sum of mass fluxes going in and
out of the domain, with the respective history over the last four rotations presented in Figure 5.
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Fig. 6: Pressure errors (L2 norm) with grid refinement and
different interpolation schemes.

Overall, the mass imbalance introduced is minimal: less than 0.03%. Also, the difference between
that value using either SG and OG is also small, except for NCG2. However, it is important to point out
the differences between each interpolation scheme. While no clear trend exists regarding higher order
schemes and lower mean value of mass imbalance (vide ID1 vs. NCG2 with SG), the same cannot be
said concerning the oscillations. In fact, the higher the order of accuracy of the scheme, the smaller the
oscillations. Bear in mind that oscillations in mass imbalance translate into pressure fluctuations, since
both quantities are coupled in the pressure correction equation in incompressible flows. These pressure
fluctuations are in turn translated to force oscilations. Therefore, while a constant mass imbalance might
not be important to the solution accuracy, having oscillations in pressure might have a negative impact
when accoustics or forces are under analysis. In fact, Figure 6 reflects this same consideration: ID1 has
the highest pressure errors, with SG not being in the assymptotic range and OG errors stagnating in finer
grids. On the other hand, NCG2 and LS3 are able to have similar error tends in terms of pressure for both
methods, keeping it low and preserving the order of convergence.
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