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Abstract—We investigate a multi-pair two-way decode-and-
forward relaying aided massive multiple-input multiple-output
antenna system under Rician fading channels, in which multiple
pairs of users exchange information through a relay station
having multiple antennas. Imperfect channel state information is
considered in the context of maximum-ratio processing. Closed-
form expressions are derived for approximating the sum spectral
efficiency (SE) of the system. Moreover, we obtain the power-
scaling laws at the users and the relay station to satisfy a certain
SE requirement in three typical scenarios. Finally, simulations
validate the accuracy of the derived results.

Index Terms—Massive MIMO, rician fading channels, decode-
and-forward, two-way relaying, power-scaling law.

I. INTRODUCTION

Driven by the dramatically increasing tele-traffic require-
ments, massive multiple-input multiple-output (MIMO) tech-
niques have been extensively studied [1], where the users
exchange their information via a base station (BS) equipped
with hundreds of antennas. Compared with traditional systems,
massive MIMO systems substantially increase the spectral
efficiency (SE) and energy efficiency (EE) owing to their
reduced transmit power [2]. Hence, massive MIMO techniques
play an important role in the current/next-generation networks.

The integration of massive MIMO applications with relay
protocols can increase the network capacity and extend the
coverage [3]. The power scaling laws of a one-way (OW)
relay network were studied [4]. However, OW relaying has
the drawback of low SE, which may potentially be doubled by
two-way (TW) relaying protocols. Explicitly, in TW relaying
systems, multiple user pairs communicate with each other in a
unique bidirectional channel [5]. Thus, mult-pair TW relaying
systems have been developed to further improve the SE by
adopting maximum-ratio (MR) processing at the relay.
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Generally, two main relaying protocols are widely used:
amplify-and-forward (AF) and decode-and-forward (DF). DF
relays decode the received signals before forwarding the re-
encoded signals from a lower distance, which avoids inter-
ference and noise amplification [6]. Additionally, DF TW
relaying is capable of performing independent precoding and
power allocation in each communication direction [7]. In
practice, massive MIMO systems generally operate in line-
of-sight (LOS) propagation conditions [8], and Rician fading
accurately models both LOS and diffuse scattered components
[9]–[11]. Despite this, there are a paucity of analytical con-
tributions under Rician fading channels for massive MIMO
aided TW relaying system with imperfect CSI.

II. SYSTEM MODEL

We first study a multi-pair TW massive MIMO half-duplex
DF relaying system that has N pairs of users each employing
a single antenna and an M -antenna relay (TR) under imperfect
CSI. The users at both ends are denoted by UA,i and UB,i,
for i = 1, ..., N . Additionally, none of the communicating
users has direct LOS links and can only exchange information
through the TW relay. The relay operates in time-division-
duplex (TDD) mode. We assume the reciprocity of the chan-
nels, and denote the uplink (UL) and downlink (DL) channels
between UX,i and TR by hXR,i and hTXR,i, respectively,
where X = A,B and i = 1, . . . , N . Additionally, the
channel matrix is formed as HXR = [hXR,1, ..., hXR,N ],
X = A,B. Then, the channel vector hXR,i is expressed as
hXR,i = gXR,i

√
βXR,i, where gXR,i represents the fast-

fading element, while βXR,i is the path-loss coefficient. We
assume that all the channels obey Rician distribution, and they
are expressed as [9]

gXR,i=

√
KXR,i

KXR,i+1
ḡXR,i+

√
1

KXR,i+1
g̃XR,i, X∈{A,B} , (1)

where ḡXR,i denotes the LOS part representing the deter-
ministic component, g̃XR,i denotes the scattered part rep-
resenting the random component, and KXR,i is the Rician
K-factor. Perfect CSI is challenging to obtain for all the
antennas. We use the MMSE estimator at TR to estimate
HAR and HBR [9], where we have hAR,i = ĥAR,i + eAR,i
and hBR,i = ĥBR,i + eBR,i; ĥAR,i and ĥBR,i are the ith
columns of the estimated matrices ĤAR and ĤBR; eAR,i and
eBR,i are the ith columns of the estimation error matrices
EAR and EBR, respectively. ĤXR and EXR (X = A or
B) are independent. Based on the assumption of the worst-
case uncorrelated Gaussian noise, we can respectively obtain
the variance of the estimation error vector elements eAR,i
and eBR,i as σ2

AR,i =
βAR,i

(1+τppβAR,i)(KAR,i+1) and σ2
BR,i =



2

βBR,i
(1+τppβBR,i)(KBR,i+1) , where τ denotes the channel training
interval and pp is the transmit power of each pilot symbol.

The data transmission process is composed of two separate
phases. First, all N user pairs (UA,i, UB,i) simultaneously
transmit their signals,

(√
pA,ixA,i,

√
pB,ixB,i

)
, to TR in the

UL phase. Thus, the UL signal received at TR is expressed as

yr =

N∑
i=1

(√
pA,ihAR,ixA,i +

√
pB,ihBR,ixB,i

)
+ nR, (2)

where pA,i and pB,i are the UL transmit powers of UA,i
and UB,i, respectively. The variables xA,i and xB,i respec-
tively denote the signals transmitted by UA,i and UB,i with
E{|xA,i|2} = E{|xB,i|2} = 1, where E {·} represents the
expectation operator. The vector nR ∼ CN

(
0, σ2

rIN
)

is the
additive white Gaussian noise (AWGN) at TR. The UL signal
received at TR is decoded by multiplying it with the linear
processing matrix Fu, yielding

Zr = Fuyr, (3)

where we have Fu =
[
ĤAR, ĤBR

]H
. From (2) and (3), we

can derive the received signal of the ith pair of users after
linear processing [7].

By contrast, in the DL phase, the signals received from all
the users are decoded at the relay before transmission, while
Fd is the linear precoding matrix which is applicable for the
decoded signal x. Therefore, the DL signal transmitted from
the relay TR is given by

yt = ρFdx, (4)

where x =
[
xTA,x

T
B

]T
, Fd =

[
ĤBR, ĤAR

]∗
, and ρ is

adjusted for satisfying the transmit power constraint at the
relay, i.e., E

{
‖yt‖2

}
= pr and ρ=

√
pr

E{‖Fd‖2} .

Finally, the signals are forwarded to their respective destina-
tions by the relay and the DL signal received at UX,i (X=A
or B) is given by

zX,i = hTXR,iyt + nX,i, (5)
where nX,i ∼ CN

(
0, σ2

X,i

)
is the AWGN at UX,i.

III. SPECTRAL EFFICIENCY ANALYSIS

In this section, we investigate the SE of the TW half-duplex
DF relaying system when imperfect CSI is considered at TR.
The achievable sum SE of the system is defined as

R =

N∑
i=1

Ri (6)

where Ri is the SE of the ith user pair, and it is defined as
Ri = min (R1,i, R2,i) (7)

In (7), R1,i is the SE of the ith user pair in the UL phase and
R2,i is the SE of the ith user pair in the DL phase. Without loss
of generality, we will derive its closed-form approximations
for the ith user pair.

1) As is in practical cases, the relay uses the estimated
channel for signal detection. Then, for the imperfect CSI case,
R1,i is obtained as

R1,i = λE
{

log2

(
1 +

Ai +Bi
Ci +Di + Ei

)}
, (8)

where we have λ = T−τ
2T , while Ai and Bi represent the signals

which UA,i and UB,i want to receive. Furthermore, Ci, Di and

Ei represent the estimation error, the inter-user interference
and the compound noise, respectively. The expressions of these
five terms are given by

Ai = pA,i

(∣∣ĥHAR,iĥAR,i∣∣2 +
∣∣ĥHBR,iĥAR,i∣∣2) , (9)

Bi = pB,i

(∣∣ĥHAR,iĥBR,i∣∣2 +
∣∣ĥHBR,iĥBR,i∣∣2) , (10)

Ci = pA,i

(∣∣ĥHAR,ieAR,i∣∣2 +
∣∣ĥHBR,ieAR,i∣∣2)

+pB,i

(∣∣ĥHAR,ieBR,i∣∣2 +
∣∣ĥHBR,ieBR,i∣∣2) , (11)

Di =
∑
j 6=i

pA,j

(∣∣ĥHAR,ihAR,j∣∣2 +
∣∣ĥHBR,ihAR,j∣∣2)

+
∑
j 6=i

pB,j

(∣∣ĥHAR,ihBR,j∣∣2 +
∣∣ĥHBR,ihBR,j∣∣2), (12)

Ei =
∥∥ĥAR,i∥∥2

+
∥∥ĥBR,i∥∥2

. (13)

Furthermore, the SE of the link UX,i → TR (X=A or B)
is given by

RXR,i = λE
{

log2

(
1 +

Xi

Ci +Di + Ei

)}
. (14)

In the DL phase, we can express the signals processed at
UX,i, (X=A or B), after partial SIC according to (21) in [7].

The SE of the link TR → UX,i can be expressed as

RRX,i = λlog2

(
1 + SINRRX,i

)
, (15)

where X∈{A,B} and SINRRX,i defined in (16) (at the bottom
of the next page) is the corresponding SINR of UX,i. In (16),{
X̄
}

= {A,B} \{X}. Thus, R2,i is defined as

R2,i = min
(
RAR,i, RRB,i

)
+ min

(
RBR,i, RRA,i

)
. (17)

2) In the following theorem, the closed-form approximation
of Ri under imperfect CSI is formulated.

Theorem 1: In the imperfect CSI scenario, when the num-
berof the relay antennas, M , tends to infinity, the SE of the
ith user pair employing MRC receivers is approximated as

R̃i = min
(
R̃1,i, R̃2,i

)
, (18)

where
R̃1,i = λlog2

(
1 +

MpA,iω
2
AR,i +MpB,iω

2
BR,i

(ωAR,i + ωBR,i) qi +Qi

)
, (19)

R̃2,i = min
(
R̃AR,i, R̃RB,i

)
+ min

(
R̃BR,i, R̃RA,i

)
, (20)

with

R̃XR,i = λlog2

(
1 +

MpX,iω
2
XR,i

(ωAR,i + ωBR,i) qi +Qi

)
, (21)

R̃RX,i = λlog2

(
1 +

Mprω
2
XR,i

N∑
j=1

(ωAR,j + ωBR,j + Zij)

)
, (22)

Qi=

N∑
j 6=i

(pA,j(ξAR,ij+ξBR,ij)+pB,j(χAR,ij+χBR,ij)), (23)

Zij = pr(ζAR,ij + ζBR,ij), (24)

and X∈{A,B}, ωXR,i =
βXR,i

KXR,i+1 (KXR,i + ηXR,i), ηXR,i =
τpppβXR,i

1+τpppβXR,i
, qi = pA,iσ

2
AR,i+pB,iσ

2
BR,i+1. The terms ξAR,ij

and χAR,ij in (23) are respectively defined by (25) and (26)
at the bottom of the next page, while ζXR,ij in (24) is defined
by (27) at the bottom of the next page.
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Proof: See Appendix A.
Theorem 1 presents the approximate expression of the SE

for the ith user pair under imperfect CSI. When βAR,i,
βBR,i, KAR,i, KBR,i, σA,i and σB,i are kept fixed, the SE
is determined by the number of the user pairs N , the number
of the relay antennas M and the transmit power pA,i, pB,i
and pr. For fixed pA,i, pB,i, pr and pp, we can see that R̃1,i

and R̃2,i increase unboundedly in both the UL and DL phases
as the number of relay antennas increases. Furthermore, in
following Section IV, we will use Theorem 1 to investigate
how the powers can be scaled down when the number of the
relay antennas increases infinitely. It can be found that the
sum SEs will converge to the upper limits for three typical
cases, as M → ∞. Additionally, the simulation in Section
V verifies that the SE of the ith user pair increases with the
Rician K-factor.

IV. POWER-SCALING LAWS

In this section, we quantify the power-scaling laws explic-
itly, we analyze how the powers can be scaled down upon
increasing M , while maintaining a certain SE. Additionally,
the transmit power of all users is set to be the same, i.e., pX,i
= pu, X∈{A,B}.

We have pu = Eu
Mα , pr = Er

Mε , and pp =
Ep
Mγ , while Eu,

Er and Ep are all constants, α > 0, ε > 0, and γ > 0. Then,
it can be obtained from Theorem 1 that as M →∞, we have
ηXR,i −→ 0, Qi −→ 0, Zij −→ 0, qi −→ 1. Thus, as M → ∞,
R̃i defined by (18) in Theorem 1 converges according to

R̃i
M→∞−−−−→ min

(
R̄1,i, R̄2,i

)
, R̄i, (28)

where
R̄1,i = λlog2

(
1 +

Eu
Mα−1

ψ2
AR,i + ψ2

BR,i

ψAR,i + ψBR,i

)
, (29)

R̄2,i = min
(
R̄AR,i, R̄RB,i

)
+ min

(
R̄BR,i, R̄RA,i

)
, (30)

with
R̄XR,i = λlog2

(
1 +

Eu
Mα−1

ψ2
XR,i

ψAR,i + ψBR,i

)
, (31)

R̄RX,i = λlog2

(
1 +

Er
Mε−1

ψ2
XR,i

N∑
j=1

(ψAR,i + ψBR,i)

)
, (32)

ψXR,i =
βXR,iKXR,i

KXR,i + 1
. (33)

We observe that the asymptotic SEs of the ith user pair are
closely related to the values of α and ε. Moreover, we find
that Ri is independent of γ when M becomes large. Next, we
analyze the effect of α and ε on the SE.

• When α > 1 or ε > 1, Ri converge to zero. When pu or
pr is reduced excessively, the asymptotic SEs will tend
to zero.

• When 0 < α < 1 and 0 < ε < 1, Ri grow without
limit. This suggests that pu and pr can be reduced more
drastically to obtain fixed SEs.

• When α = 1, 0 < ε ≤ 1 or ε = 1, 0 < α ≤ 1, Ri
converge to a positive limit. We now study how much
pu or pr or both can be scaled down, while maintaining
a certain SE. We focus on three cases: 1) Case I: α =
ε = 1; 2) Case II: α = 1, and 0 < ε < 1; 3) Case III:
0 < α < 1 and ε = 1.

A. Case I: α = ε = 1.

For fixed Eu, Er and Ep, by substituting α = 1 and ε = 1
into (29) - (32), as M →∞, we can simplify the SE in (29)
- (32) as

R̄1,i = λlog2

(
1 +

Eu
(
ψ2
AR,i + ψ2

BR,i

)
ψAR,i + ψBR,i

)
, (34)

R̄2,i = min
(
R̄AR,i, R̄RB,i

)
+ min

(
R̄BR,i, R̄RA,i

)
, (35)

with
R̄XR,i = λlog2

(
1 +

Euψ
2
XR,i

ψAR,i + ψBR,i

)
, (36)

R̄RX,i = λlog2

(
1 +

Erψ
2
XR,i

N∑
j=1

(ψAR,j + ψBR,j)

)
. (37)

Based on (34) - (37), the limit of Ri also increases with Eu
and Er, and decreases with N .

B. Case II: α = 1, and 0 < ε < 1.

For fixed Eu, Er and Ep, substituting α = 1 and 0 < ε < 1
into (28) - (32), we can obtain that R̃i converges to R̄1,i given
by (34), i.e., R̃i → R̄1,i, as M →∞.

We find that the asymptotic SE of Ri is decided by the UL
phase, which increases with Eu, while Er has no effect on the
asymptotic SE. Furthermore, as M increases, the SE of each
user will become lower in the UL than that of the DL phase.

C. Case III: 0 < α < 1 and ε = 1.

For fixed Eu, Er and Ep, by substituting 0 < α < 1 and
ε = 1 into (28) - (32), R̃i converges to R̄2,i given by (38) (at
the bottom of the next page), i.e., R̃i → R̄2,i, when M →∞.

The asymptotic SE of Ri increases with Er, while Eu has
no effect on the asymptotic SE. Furthermore, as M tends to
infinity, the SE of each user in the DL phase will be lower
than that of the UL phase.

SINRRX,i =

∣∣E{hTXR,iĥ∗XR,i}∣∣2
V ar

{
hTXR,iĥ

∗
XR,i

}
+ V ar

{
hTXR,iĥ

∗
X̄R,i

}
+
∑
j 6=i

(
E
{∣∣hTXR,iĥ∗BR,j∣∣2}+ E

{∣∣hTXR,iĥ∗AR,j∣∣2})+ 1
ρ2

(16)

ξXR,ij =
βXR,iβAR,j

(KXR,i + 1) (KAR,j + 1)
×
(
KXR,i + ηXR,i
1 + τpppβAR,j

+KAR,jηXR,i +KXR,iηAR,j + ηXR,iηAR,j

)
(25)

χXR,ij =
βXR,iβBR,j

(KXR,i + 1) (KBR,j + 1)
×
(
KXR,i + ηXR,i
1 + τpppβBR,j

+KBR,jηXR,i +KXR,iηBR,j + ηXR,iηBR,j

)
(26)

ζXR,ij =
βAR,iβXR,j

(KXR,j + 1) (KAR,i + 1)

(
KXR,j+ηXR,j
1+τpppβAR,i

+KAR,iηXR,j+KXR,jηAR,i+ ηXR,jηAR,i

)
(27)
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Fig. 1: Sum SEs versus M for pu = Eu, pr = Er, and pp =
Ep
Mγ .
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Fig. 2: Sum SEs versus M for pu = Eu
Mα , pr = Er

Mε , pp =
Ep
Mγ ,

α ≤ 1, and ε ≤ 1.

V. NUMERICAL RESULTS

In this section, we verify the main results of this letter by
numerical results. The length of the coherence time is set to T
= 196 symbols. For simplicity, we assume that Eu = Ep = 10
dB, Er = 20 dB, βAR,i = βBR,i = 1. Furthermore, each
Rician K-factor is set to the same value.

Numerical results are provided for the sum SE with
KXR,i = 5 dB for all i and N = 2 or 5 in Fig. 1 - Fig.
3. In Fig. 1, the exact expressions and the approximations are
compared. It is observed that the pairs of curves match well
for N = 2 and 5. The sum SE increases with M , as expected.
Furthermore, when N = 5, the sum SE is almost twice as high
as that for N = 2. This indicates that the sum SE increases
with N . Additionally, when pu and pr are unchanged, the
transmit power pp of the pilot symbol is cut down, we find
that the sum SE is independent of the choice of γ, when M
becomes large.

In Fig. 2 and Fig. 3, the corresponding sum SEs and upper
limits are presented when pu and pr are scaled down. Explic-
itly, Fig. 2 investigates three cases using different settings of
α and ε. In line with Case I-III of Section IV, the sum SEs
saturate as M tends to infinity in all three circumstances. We
observe that α = 1, ε = 1 and α = 1, ε = 0.2 achieve the
same sum SE, because it is decided by the UL phase. Fig.
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α > 1, or ε > 1.
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2 also illustrates the corresponding upper limits R̄i defined
in (28) for the sum SEs. It can be observed that the sum SEs
converge to the corresponding upper limits with the increasing
M for these three different cases. Fig. 3 studies three different
scenarios, i.e., 1) α > 1, and ε > 0, 2) α > 0, and ε > 1,
3) α > 1, and ε > 1. As expected, the sum SEs converge to
zero as M grows. The reduction of the sum SEs is faster for
larger scaling parameters for different N .

Fig. 4 depicts the sum SE versus the Rician K-factor.
Herein, we set N = 5, pu = Eu

M , pr = Er
M , and pp =

Ep
M . We

compare the sum SEs when KXR,i = 3, 5, 10 dB. It is clear
that the approximations match well with the exact expressions
in all scenarios. The sum SE increases with M , as expected.
As the Rician K-factor grows, the sum SE increases.

VI. CONCLUSIONS

We studied a multi-pair TW DF relay system using a
massive MIMO scheme at the relay, upon adopting a MR
receiver. Furthermore we derived the exact expressions and
approximations of the SE over Rician fading channels for
an imperfect CSI scenario. Finally, we quantified the trade-
off between the SE, pu and pr. Additionally, the sum SE of
the imperfect CSI scenario increases, as the Rician K-factor
grows.

R̃i →R̄2,i = λlog2

(
1 + Erψ

2
AR,i

/ N∑
j=1

(ψAR,j + ψBR,j)
)

+ λlog2

(
1 + Erψ

2
BR,i

/ N∑
j=1

(ψAR,j + ψBR,j)
)

(38)
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APPENDIX A
PROOF OF THEOREM 1

From (8), by using Lemma 1 of [9], R1,i in (8) can be
approximated as

R1,i≈ λlog2

(
1+

E {Ai}+ E {Bi}
E {Ci}+ E {Di}+ E {Ei}

)
∆
= R̃1,i. (39)

Then, we will calculate the terms E {Ai}, E {Bi}, E {Ci},
E {Di} and E {Ei} .

By using Lemma 5 of [9] and retaining the dominant
components, we can approximate E {Ai}, E {Bi} and E {Ci}
respectively as

E {Ai} ≈M2ω2
AR,i, E {Bi} ≈M2ω2

BR,i. (40)

E {Ci}=M (ωAR,i+ωBR,i)
(
pA,iσ

2
AR,i+pB,iσ

2
BR,i

)
. (41)

From (12), E {Di} can be written as

E {Di}=
∑
j 6=i

pA,j

(
E
(∣∣ĥHAR,ihAR,j∣∣2)+E

(∣∣ĥHBR,ihAR,j∣∣2))
+
∑
j 6=i

pB,j

(
E
(∣∣ĥHAR,ihBR,j∣∣2)+E(∣∣ĥHBR,ihBR,j∣∣2)). (42)

The term E
{∣∣ĥHAR,ihAR,j∣∣2} can be expanded as

E
{∣∣ĥHAR,ihAR,j∣∣2}=E

{∣∣ĥHAR,iĥAR,j∣∣2}+E{∣∣ĥHAR,ieAR,j∣∣2}
+ E
{̂
hAR,iĥ

H
AR,jĥ

H
AR,ieAR,j

}
+E
{̂
hHAR,iĥAR,jĥAR,ie

H
AR,j

}
.(43)

According to Lemma 5 of [9], an approximation of
E
{∣∣ĥHAR,ihAR,j∣∣2} can be obtained as

E
{∣∣∣ĥHAR,ihAR,j∣∣∣2} ≈MξAR,ij . (44)

Similarly, we can calculate the approximate expres-
sions of the remaining three terms E

{∣∣ĥHBR,ihAR,j∣∣2},

E
{∣∣ĥHAR,ihBR,j∣∣2} and E

{∣∣ĥHBR,ihBR,j∣∣2}. Then, the ap-
proximate expression of E {Di} can be obtained.

From (13), by using Lemma 5 of [9], we can calculate
E {Ei} as

E {Ei} = E
{∥∥ĥAR,i∥∥2}

+ E
{∥∥ĥBR,i∥∥2}

= M(ωAR,i + ωBR,i). (45)

By substituting the above results into (8) and (14), we can
respectively approximate R1,i and RAR,i as R̃1,i in (19) and
R̃AR,i in (21) with X = A. Then, we use a similar method
to obtain the approximation of RBR,i as R̃BR,i in (21) with
X = B. Thus, RXR,i in (14) can be approximated as R̃XR,i
in (21).

Moreover, to calculate RRX,i in (15), we will first caculate
RRA,i. The term E

{
hTAR,iĥ

∗
AR,i

}
is given by

E
{
hTAR,iĥ

∗
AR,i

}
= MωAR,i. (46)

Then, we derive the term V ar
{
hTAR,iĥ

∗
AR,i

}
as

V ar
{
hTAR,iĥ

∗
AR,i

}
=
Mβ2

AR,i

[
2KAR,iηAR,i + η2

AR,i +
KAR,i+ηAR,i
1+τpppβAR,i

]
(KAR,i + 1)

2 . (47)

Similar to (47), the term V ar
{
hTAR,iĥ

∗
RB,i

}
can be ex-

pressed as

V ar
{
hTAR,iĥ

∗
BR,i

}
≈MξBR,ii. (48)

Then, we derive the term∑
j 6=i

(
E
{∣∣hTAR,iĥ∗BR,j∣∣2}+ E

{∣∣hTAR,iĥ∗AR,j∣∣2}) similarly.

For j 6= i, we can obtain

E
{∣∣hTAR,iĥ∗BR,j∣∣2} ≈MξBR,ij , (49)

E
{∣∣hTAR,iĥ∗AR,j∣∣2} ≈MξAR,ij . (50)

Finally, the term ρ can be expressed as

ρ =

√√√√pr/
(
M

N∑
j=1

(ωAR,j+ωBR,j)
)
. (51)

Substituting (46)-(51) into (15) and (16), we can obtain
R̃RA,i as (22) with X = A. Then, RRB,i can be approximated
by (22) with X = B by using a similar method. Thus,
RRX,i in (15) can be approximated as R̃RX,i in (22). Then,
by substituting (21) and (22) into (20), we can obtain the
expression of R̃2,i.

Given the expressions of R̃1,i and R̃2,i, we complete the
proof.
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