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Spin–orbit coupling (SOC) is generally understood as a highly localized interaction within each
atom, whereby core electrons holding large J splittings transfer the SOC to the valence electrons
of the same atom, while their direct impact on neighbor valence orbitals is usually small. Seivane
and Ferrer [Phys. Rev. Lett. 99, 183401 (2007)] proposed an approach within a tight-binding type
ab initio framework assuming that the transfer of SOC from core to valence orbitals only takes
place when both are on the same atom, leading to the so-called on–site approximation, which then
has been successfully applied to a variety of systems. In this work we thoroughly test its general
validity by confronting SOC related properties such as spin splittings, spin textures or magnetic
anisotropies calculated under the on–site approximation versus the more general approach where
all the contributions to the SOC, including three–center integrals, are explicitly included. After
considering a variety of systems with different dimensionalities, all presenting a strong SOC, we
conclude that although the on–site approximation often provides accurate results, it breaks down in
some systems where 5d electrons are close to the Fermi level due to their strong SOC and moderately
large spatial extension. Furthermore, there are a few examples where subtle inaccuracies lead to
qualitatively wrong conclusions, the most clear case being the doping of the topological surface state
in Bi2Se3(0001). Finally, magnetic anisotropy energies calculated under this approximation tend to
be underestimated.

I. INTRODUCTION

The spin–orbit coupling (SOC) is a relativistic ef-
fect that arises from the interaction between the in-
trinsic magnetic moment of the electron and the mag-
netic field seen in its orbital motion around the nu-
cleus1,2. The SOC is of paramount importance in nu-
merous active research areas such as spin textures3,
topological insulators4, spin Hall effects5,6, magnetic
anisotropy energies (MAEs)7–11, Dzyaloshinskii–Moriya
interactions12–14 and spin–orbit transfer torques15,16,
among others. In fact, a new field known as spin–
orbitronics has emerged in the last years aiming to
achieve efficient mechanisms for spin injection accumula-
tion and manipulation17 with potential use in ultra low
power memories and computing and signal processing de-
vices.

Along with the advent of this plethora of SOC–related
phenomena, most codes based on Density Functional
Theory (DFT) had accomplished the implementation
of spin–orbit interactions under different levels of ap-
proximation and accuracy. The main drawback in fully
self–consistent calculations including SOC is the large
increase of the computational cost caused by the spin
mixing, whereby an (N × N) system transforms into a

(2N × 2N) one, where N stands for the total number
of basis orbitals. Therefore, accurate all–electron DFT
calculations using a fully-relativistic (FR) Hamiltonian
in the Schrödinger equation are currently restricted to
small systems involving at most a few tens of atoms18.
The replacement of core electrons by pseudopotentials
(PPs)19,20 has become a standard approximation21–24 in
order to significantly reduce N , making calculations for
large systems more tractable. Although traditionally
most PP–based formalisms exploited only the scalar–
relativistic (SR) part of the PPs generated from all–
electron FR atomic calculations, Hemstreet et al showed
almost thirty years ago how the SOC part could be in-
corporated into the electronic Hamiltonian in an effi-
cient way25 –in previous works we have referred to it
as the fully–relativistic pseudo–potential formalism (FR–
PP)26. In essence, within the FR–PP, the angular part
of the PP of a given atom k, V psk , is expressed in the
|j = l ± 1

2 ,mj〉 basis and the SOC felt by the valence
states solely arises from their interaction with the SO
part of these PPs which induces spin mixing via non–
vanishing 〈µ, σ|V sok |ν, σ′〉 matrix elements, where µ and
ν index the elements of the basis set (plane waves, atomic
orbitals, wavelets, ...) and σ = ↑, ↓. In the context of cal-
culations using atomic orbitals as basis sets, where the
orbitals are centered on the atoms and are the product
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of a radial function times a spherical harmonic that de-
scribes the angular part (so-called Linear Combination
of Atomic Orbitals or LCAO approaches), the orbitals
µ and ν may belong to different atoms than k, the only
requirement being that their overlaps with V sok are not
null. In order to avoid the calculation of these three–
center integrals, the PPs are typically expressed in their
fully non–local form27. The FR–PP formalism has been
successfully implemented and is currently actively used
under both plane wave24 and LCAO3,21,29,30 DFT codes.

Within the LCAO framework, a further simplification
named as the on-site approximation was introduced by
Seivane and Ferrer31 whereby only the 〈µ|V sok |ν〉 matrix
elements with |µ〉 and |ν〉 belonging to the same atom k
as V sok are considered, while the rest of inter-atomic hop-
ping terms are discarded. The justification relies on the
short–ranged character of the radial part of the spin–
orbit pseudo–potential. The approximation leads to a
one–center radial integral while the angular integrals can
be analytically solved for the non–vanishing elements.
The on-site approximation has been applied to a number
of systems, ranging from the SOC induced valence band
splittings of semi–conductors to the MAEs of metallic
nanoparticles31,32.

However, no thorough study of the accuracy of the on-
site approximation has yet been performed. Although
deviations from the full FR–PP approach are expected
to be small, hopping terms can add up to produce effects
comparable to those of the on-site terms36, and therefore
it is important to assess the range of validity of the on-
site approximation. The implications are also relevant
when considering tight binding (TB) models including
SOC33,34. For instance, under the on-site approxima-
tion, one would expect that the SOC only affects on–site

energies with corrections of the form εSO,σσ
′

l,m,m′ , whereas
the off-site contributions would additionally lead to SOC

dependent transfer integrals, tSO,σσ
′

lm,l′m′ .
In this work we present a detailed analysis of the ac-

curacy of the on-site approximation considering several
systems with different dimensionalities (from 0–D to 3–
D), all of them presenting a strong SOC. We address
SOC related properties such as MAEs, Rashba splittings,
spin textures and (topological) surface states. All calcu-
lations have been performed with the SIESTA21 LCAO
code, which in its recent versions37 features both the full
FR-PP and the on-site approximation. We employ the
same calculation parameters for each system in order to
ensure that any differences can be solely ascribed to the
neglect of off–site terms in the on-site approximation.

The paper is structured as follows. In section II we de-
scribe briefly the theoretical formula behind the FR-PP
formalism and the on-site approximation, as well as some
general remarks concerning the actual implementation in
SIESTA. In sections III and IV we present the different
SOC systems considered, showing the excellent accuracy
of the on-site approximation in most of the cases, but also
emphasizing the few failures that we have found. Finally,
section V summarizes the main conclusions of this work.

II. THEORY

Within a PP-DFT formalism, the Kohn-Sham Hamil-
tonian may be expressed as:

ĤKS = T̂ + V̂ ps + V̂ H + V̂ XC (1)

being T̂ the kinetic energy operator, V̂ ps the PP con-
tribution and V̂ H and V̂ XC the Hartree and exchange–
correlation potentials, respectively. V̂ XC and the SO
part of V̂ ps (V̂ SO) are the only spin–dependent opera-
tors that couple both spin components.

Kleinman20 showed how the norm–conserving PP for-
malism could be extended to include all relativistic cor-
rections up to order α2, where α is the fine structure
constant, by constructing J–dependent PPs from the all–
electron solutions of the major component of the Dirac
equation for isolated atoms:

V̂ ps =
∑
lJ

V pslJ (r)
+J∑

mJ=−J
|lJmJ〉〈lJmJ | (2)

with J = l ± 1/2.
If an LCAO basis set is employed, {|µ〉}, then the ma-

trix elements of the V̂ ps operator take the form:

V psµν =
∑
k

〈µ|V̂ psk |ν〉 (3)

where we have introduced the subindex k indicating the
atom to which each V̂ ps belongs. The main problem with
expression (2) is that it has a semi-local character, in the
sense that it is local in the radial part and non-local in the
angular part25 and, hence, it requires the computation-
ally expensive evaluation of three-center integrals since
the AOs |µ〉 and |ν〉 need not be located at the k-site.

After taking the following J-weighted sum and differ-
ence:

V SRl (r) =
1

2l + 1

[
(l + 1)VlJ+(r) + VlJ−(r)

]
(4)

V SOl (r) =
2

2l + 1

[
VlJ+(r)− VlJ−(r)

]
(5)

(where J± = l ± 1/2), equation (2) may be rewritten in
terms of a scalar-relativistic (SR) and a spin-orbit con-
tribution as:

V̂ ps = V̂ SR + V̂ SO =∑
lm

|l,m〉
[
V SRl (r) + V SOl (r)L · S

]
〈l,m| (6)

It is common practice in scalar-relativistic DFT calcu-
lations to transform the SR part into a local plus a sum of
fully non-local operators following Kleinman–Bylander27:

V̂ SR = V local(r) +
∑
lm

|vl; lm〉〈vl; lm| (7)

so that only two-center integrals, 〈µ|vl; lm〉, are now in-
volved.
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A. The Fully-Relativistic Pseudo-Potential
formalism

Hemstreet et al25 deduced fully non-local forms for
the SR and SO pseudo-potential operators. Inspired by
their work, alternative albeit equivalent expressions were
deduced by Cuadrado et al26; here, the full V̂ ps opera-
tor is transformed into a Kleinman-Bylander form in the
{|lJmj〉} basis:

V ps = V local(r) +
∑
lJmJ

|vlJ ; lJmJ〉〈vlJ ; lJmJ | (8)

thus only requiring two-center integrals between projec-
tors and basis orbitals, 〈µ|vlJ ; lJmJ〉. Although the ma-
trix elements of V ps are sufficient to solve the problem,
and the decomposition in SR and SO terms is not neces-
sary, these terms can nevertheless be obtained if needed
for further analysis. By computing at the same time the
V̂ SRµν matrix elements via eq. (7) with the same choice of

V local(r) as in (8), it is straightforward to extract the SO
contribution from the difference: V SOµν = V psµν − V SRµν .

This FR-PP method takes into account all interactions
〈µ|V̂ psk |ν〉 between the PP at site k and all neighboring
AOs and provides a rigorous account of SOC within the
context of the underlying pseudo-potential and LCAO
approximations.

B. The on–site approximation

In the on–site approximation developed by Seivane and
Ferrer31, the standard expression (7) for the SR part is

retained, while V̂ SO is approximated as a fully local op-
erator by only considering intra-atomic matrix elements;
that is, 〈µ|V̂ psk |ν〉 terms where both |µ〉 and |ν〉 belong to
atom k, and neglecting all others. The justification lies
on the fact that the V SOl (r) potentials are short-ranged.

C. General remarks about the implementation of
SOC in SIESTA

Both the full FR-PP formalism and the on-site ap-
proximation have been implemented in SIESTA37 as sep-
arate modules. Nevertheless, we have tested both imple-
mentations by removing in the full FR-PP routine any
SOC interactions involving orbitals not belonging to the
same site as the PP, yielding results indistinguishable
from those obtained with the on-site specific routine.

We also note that SIESTA, as well as most common
LCAO codes, employs the spherical harmonics Ylm(r̂) in
their real form, obtained as a linear combination of com-
plex spherical harmonics. Therefore, the Clebsch-Gordan
coefficients involved in the angular 〈lm|lJmJ〉 integrals
require a further unitary transformation26,31.

Once the Hamiltonian including the SOC part has been
solved self-consistently, the spin-orbit contribution to the

energy is given by:

ESO = Tr
[
ρ̂V̂ SO

]
=
∑
µν

∑
σσ′

ρσσ
′

µν V
SO,σ′σ
νµ (9)

Although the imaginary part of the diagonal spin boxes
of the density matrix, Im{ρσσ′

µν }, do not contribute to
the magnetic moment m(r), they cannot be neglected
since they do contribute to the SOC energy, ESO, and
therefore to the total energy.

Due to the small contribution of ESO to the total en-
ergy, the level of precision required to perform an accu-
rate fully-relativistic self-consistent calculation is quite
demanding. This is specially true for the calculation
of MAEs, where energy differences between two spin-
quantization axis are typically in the meV (and sub-
meV) range. In such calculations, the tolerance in the
self-consistent criteria (either related to the Hamiltonian,
density matrix or both), the k-point sampling or the size
of the real space grid (Mesh Cutoff) must be carefully
converged for each specific system to ensure accurate re-
sults. In addition, and as shown in Ref.[26], inclusion of
non–linear core corrections38 in the PPs with rather small
matching radius is in general quite relevant to achieve
accurate MAE values. This, in turn, requires finer real
space grids.

Last, we mention that in SIESTA it is possible to either
construct the fully-relativistic Kleinman-Bylander pro-
jectors from PPs in semilocal form, or directly read them
from appropriately generated PSML files, as provided by
the Pseudo–Dojo project39,40.

D. Details of the calculation parameters

In all SIESTA calculations to be shown in the
next sections we employed the GGA41 for the XC
functional, and fully relativistic PPs including non–
linear core corrections. Specifically, we used core
radii of 1.15Å, 1.52Å, 2.01Å for Bi(6s26p36d0), 1.19Å,
1.44Å, 0.66Å for Au(6s16p05d10) and Pt(6s16p05d9),
1.49Å, 1.52Å, 1.25Å for W(6s26p05d4), 0.84Å, 1.05Å,
1.57Å for Te(5s25p45d0), and 1.06Å, 1.31Å, 0.31Å for
Fe(4s24p03d6), respectively. For the basis set of the
atoms’ valence electrons we used strictly localized nu-
merical AOs generated according to the double–ζ po-
larized (DZP) scheme with confinement energies ranging
between 100 − 200 meV42. The electronic temperature
–kT in the Fermi–Dirac distribution– was set to small
values between 1 − 25 meV. Real–space integrals were
computed over three–dimensional grids with a resolution
of 1500−2000 Ry. The Brillouin zone sampling typically
involved between 100− 2500 k-points.

The convergence tolerance in the self-consistent loop
for the density matrix was set to 10−6 or to 1 meV if the
Hamiltonians were mixed instead. The geometric opti-
misations were performed using the conjugate gradient
method until forces on atoms were less than 0.02 eV/Å.
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FIG. 1. (Color online) (a) Electronic band structure of iso-
lated hexagonal Te chain. Black solid curves represent the
bands obtained by means of the full FR-PP method and blue
ones using the on-site approximation. (b) and (c) Schematic
side views of the chain from two different directions.

The optimisations have been performed at the SR level
–that is, without SOC.

Selected results have been compared with calculations
done with the VASP code, which is commonly used for
SOC calculations43. We have used the same XC func-
tional41 and geometries as in SIESTA. Plane-wave energy
cutoffs were taken between 250−400 eV, with additional
tests up to 1000 eV.

Furthermore, in order to achieve a precise description
of the surface states in several sytems, we considered
true semi–infinite surfaces via Green’s function match-
ing technique as implemented in the GREEN code44,45

and its interface to SIESTA. In these cases, instead of the
usual band structure, we calculated k-resolved surface
projected density of states maps, PDOS(k,E), which al-
low to resolve the bulk gap regions unambiguously. High
resolution maps were computed employing energy- and
k-grids of 2 meV and 0.003 Å−1, respectively, while the
imaginary part entering the Green’s function, which de-
termines the broadening of the surface states, was set to
2 meV.

III. ELECTRONIC BAND STRUCTURES

A. Isolated helical Te chain

The first case we consider is a helical isolated chain of
tellurium atoms which was recently studied by Han et
al46. This one–dimensional system was shown to be dy-
namically stable and to present a giant Rashba split-
ting46. Figure 1 displays the 1D band structure for our
optimized geometry which coincides with that of Ref.46.

M M
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M K M
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KK
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FIG. 2. (Color online) (a–c) PDOS(k,E) maps projected on
the layers close to the edge of a semi–infinite Bi(111) bilayer
calculated over the entire Brillouin Zone without including
SOC (a), and including SOC with the full FR-PP formal-
ism (b), and using the on-site approximation (c). The inset
shows top and side views of the system with the arrows in-
dicating the semi–infinite direction. The spin texture, in the
form of Sy/z(k,E) maps, is shown in (d) and (f) for the full
FR-PP calculation, and in (e) and (g) for the on-site approxi-
mation. In (d–g) white/black tones indicate positive/negative
Sy/z values, while gray background corresponds to Sy/z = 0
areas

.

In the figure we simultaneously present the bands calcu-
lated with the full FR-PP method and the on-site ap-
proximation. The agreement between the two (as well as
with those reported in Ref. [46] is excellent, with devi-
ations of just a few tens of meV. Larger differences are
only found for an empty band just below +2 eV. Notice
in particular how the giant Rashba splitting of the high-
est occupied band is perfectly reproduced, both in terms
of the spin splitting in energy as well as the k-shift.

B. Zig-zag surface at a Bi bilayer

Our next system is a semi-infinite 2D material con-
sisting of a truncated Bi(111) bilayer exposing a zig–zag
edge. The structure is constructed by first building a 22-
atoms thick ribbon with the atoms initially at the posi-
tions of the ideal infinite 2D bilayer (a=4.60 Å). We then
optimize the positions of the six atoms closest to the edge
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of the ribbon, leaving the rest fixed. The most promi-
nent feature in the relaxed structure is a large ∼ 0.6 Å
inward shift of the atoms at the edge towards the inner
ones in order to strengthen their bonds, which is also ac-
companied by an increase in the buckling between them
from 1.68 Å to 2.0 Å. Next, and as shown in Figure 2, we
have modeled the bilayer edge with a semi–infinite geom-
etry after matching via Green’s function techniques the
ribbon containing the relaxed edge to an semi–infinite
bulk–like bilayer (see section II D for further details).

In Figure 2(a) we present the electronic structure
around the Fermi level projected on the surface atoms
for a calculation without SOC. A spin degenerate edge
state runs across the band gap of the entire BZ crossing
the Fermi level four times, in good accordance with the
similar calculation of Ref. 47. In panel (b) we present
the analogous calculation including SOC at the full FR-
PP level. The topologically trivial edge state now ap-
pears spin–split while the gap is removed. Indeed, at
the equilibrium lattice constant, the bulk 2D Bi(111) bi-
layer is at the turning point towards a topological state,
as it becomes metallic as the gap closes when SOC is
included (not shown). This is at contrast with the 1D
nano–ribbon case; for instance, Li et al47 found a size-
able gap for a 73 Å wide zig–zag nano–ribbon which we
ascribe to the interaction between the two edges, still
present even for such a wide nano–ribbon. Upon com-
parison with the on-site calculation, shown in panel (c),
we again find a perfect agreement with only very subtle
differences; for instance, the upper edge state inside the
conduction band cone (resonance) is clearly more intense.

Surface projected spin textures are presented in pan-
els (d,f) and (e,g), for the full FR-PP and on-site cases,
respectively –the Sx component is omitted since, due to
mirror–symmetry, it vanishes. Remarkably, we find that
the on-site approximation accurately reproduces this rich
spin texture, presenting inversions of the Sy component
at the correct k–locations for the edge states.

C. WS2 monolayer: range of the basis orbitals

We illustrate the influence of the localization of the ba-
sis set on the performance of FR-PP and on–site approx-
imation by calculating the band structure of a monolayer
of a transition metal dichalcogenide, WS2 (figure 3). As
for surfaces, it is known that the extension of the elec-
tronic wavefunctions in monolayers towards the vacuum
requires longer atomic orbitals to give accurate results.35

Longer orbitals means larger interactions with neighbour
orbitals, and larger off-site terms in the SO operator.
We use two alternative basis: one set is automatically
generated by SIESTA using different values of the confine-
ment energy (PAO.EnergyShift between 230 and 14 meV,
which results in maximum cutoff radii between 3.52 and
4.76Å, respectively); the second basis was carefully tuned
for the on–site approximation by Roldán et al28. While
for relatively short basis both the on-site (top panels)

and the FR-PP formalism (red dashed lines in lower
panels) give essentially indistinguishable bandstructures,
substantial differences are evident for the longer orbital
basis. In particular, a band with p-type character crosses
from high energies down below the Fermi level as the or-
bital cutoff radii increases, erroneously driving the sys-
tem metallic with the on–site description. Mulliken pop-
ulation analysis shows that there is non-negligible overlap
between W neighbouring atoms. As the basis radial func-
tion increases, this approximation forces an internal re-
distribution of charges between 6s and 6p orbitals, which
also involves 3s and 3p orbitals of near S atoms. Note
that this does not affect the S3p–W5d hybridization that
is responsible for the SO-splitting of the valence band at
K. This illustrates that for the on–site approximation to
be valid, the range of localization of the support orbitals
must comply with the conditions of negligible, or small,
off-site contributions.

D. Bi2Se3(0001) surface

In this sub–section we consider the Bi2Se3 dichalco-
genide as it stands as a paradigmatic topological 3D in-
sulator, given its large gap. In order to retrieve the topo-
logical surface states (TSS) we have employed a (0001)
oriented slab containing up to six quintuple layers (QLs),
since for this thickness the interaction between the TSSs
at each side of the slab is known to be negligible29. We
do not model the surface as a semi–infinite system since
we will compare the SIESTA–derived electronic structure
with that obtained with the VASP plane–wave code22 for
the same slab geometry. The comparison between the
band structures calculated with VASP (green lines) and
SIESTA using the full FR-PP formulation (black) and the
on-site approximation (blue) is displayed in Figure 4(a).
If we focus on the TSSs crossing the band gap between
–0.1 and 0.35 eV, one immediately observes a very good
match between VASP and our FR-PP results, with the
Dirac point where the upper and lower cones meet lo-
cated precisely at the Fermi level due to charge neutrality
requirements. The on-site approximation also reproduces
the TSSs, but with the Dirac point located clearly below
the valence band maximum (at around −80 meV) and,
hence, not pinned any more at the Fermi level. Although
in general a deviation of several tens of meV does not
seem too relevant –for instance, similar differences can
be seen in the valence band at Γ between the plane-wave
and FR-PP cases –in this particular case it has funda-
mental consequences as the on-site approximation would
erroneously predict an n-type doped TSS.

E. (111) surfaces of 5d metals

In this subsection we examine the capability of the
on-site approximation to correctly describe the surface
states (SSs) hosted by several (111) surfaces of heavy 5d
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FIG. 3. Electronic band structure for a WS2 monolayer within on–site approximation (top, solid color-coded lines) and FR-PP
formalism (bottom, red dashed-lines). Different panels correspond to different basis’ range, obtained from localization energies
determined by SIESTA’s PAO.EnergyShift (in meV). The smaller the EnergyShift, the longer the cutoff radii for the atomic
orbitals. Better basis are usually obtained with longer orbitals. The color code at the top right is used to represent the weigthed
projections on W 6p orbitals for the on–site approximation, and reveals the character of the band that induces the metalization
of the system (black, corresponds to small contribution on W 6p, and yellow to maximum contribution). The gray thick lines in
the background for top and bottom panels, show the results for an optimized (fixed) basis set28 under the on–site description.

fcc–metals, namely: Au, Ir and Pt. For all of them we
have again modeled the surfaces as semi–infinite systems
first determining the relaxed surface interlayer spacings
via geometry optimizations of 10–11 layers thick (1×1)
slabs.

Figure 5 shows the k–resolved DOS projected on the
first layers of the Au(111) surface around the Γ point,
with panels (a) and (b) corresponding to the full FR-PP
formalism and the on-site approximation, respectively.
The well known Shockley sp surface state48 is clearly
visible in both maps as two Rashba split parabolas cross-
ing the gap region. At first sight, the main difference is
the onset of the SS, which appears 0.1 eV towards larger
binding energies in the on-site case. Otherwise, the split-
ting and dispersion of the SSs are very similar between
the two formalisms. However, a closer look into the spec-
tra via energy dispersion curves (EDCs) brings in further
discrepancies. In the top panel of Fig. 5(c) we present
EDCs extracted for the k–point marked by an arrow in

panels (a) and (b), as well as that obtained for a calcu-
lation without SOC (green line). The effect of the SOC
is to shift the SS to lower energies and induce a spin–
splitting which for this k–point is around 50 meV (for
reference, the splitting at the dashed vertical line in the
figure is around 100 meV, which is in agreement with
previous theoretical and experimental estimations49,50).
Under the on-site approximation the shift is ∼109 meV
larger, while the splitting is only marginally larger. On
the other hand and as expected from symmetry argu-
ments, the helical (Rashba) character of the SS spin tex-
ture is not disrupted by the on-site approximation. This
is seen at the bottom of Fig. 5(c), where the in–plane tan-
gential component of the spin (Sx) takes opposite values
at each branch while the radial in–plane component van-
ishes and the out–of–plane is negligible (the latter two
not shown).

Figure 6 shows analogous surface PDOS(k,E) maps as
in Figs. 5(a–b) but for the Pt(111) and Ir(111) surfaces –
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FIG. 4. (Color online) (a) Electronic bands structure for 6
QLs Bi2Se3 slab. Three different curves are depicted and
represent the SIESTA results with the on-site approximation
(blue) and the full FR-PP calculation (black) and VASP cal-
culations (green). (b) Schematic side view of the 6 QLs Bi2Se3
slab unit cell. Pink spheres represent Bi atoms whilst green
ones the Se species. For clarification, dashed black lines sep-
arate each QL.

panels (a–b) and (c–d), respectively. At contrast with the
noble metal Au case, here the 5d bands cross the Fermi
level while, apart from a 0.6 eV shift, their full FR-PP
band structures show very similar features among them.
In particular, both present a ∼1.4 eV gap in a narrow k-
region around the high–symmetry K point which hosts
two pairs of spin-split SSs indicated by the blue arrows
in panels (a) and (c); one is very close to the top edge of
the gap (located at −0.7 eV in Pt and −0.15 eV in Ir)
and has a very small spin splitting, and the other near
the bottom (around −1.7 in Pt and −1.4 eV in Ir show-
ing a large 0.2−0.3 eV spin splitting. The corresponding
electronic structures obtained under the on-site approxi-
mation, shown in the right panels (b) and (d), also repro-
duce this gap, but clearly shifted towards higher energies
with respect to the FR-PP counterparts. In the case of
Ir(111) this shift is as large as 0.6 eV, so that the upper
SS lies above the Fermi level (becomes empty) while the
lower one falls into the continuum of bulk bands (becomes
a resonance), thus yielding a highly inaccurate picture of
the electronic structure. For Pt(111) the shift is reduced
to 0.25 eV but, still, we regard the quality of the on-site
bands as rather poor.

F. Bulk GeTe

We end this section considering a bulk 3D system with
a broken space inversion symmetry, so that spin degen-

FIG. 5. (Color online) PDOS(k,E) map projected on the
first three layers of a semi–infinite Au(111) surface calculated
under the (a) full FR-PP formulation and, (b) the on-site
approximation. (c) Top: EDC plots extracted at the k-point
ky = 0.03 Å−1 which corresponds to the minimum of the
parabolic band, and is highlighted with an arrow in (a) and
(b). Also shown by the green line the EDC for a calculation
without SOC. Bottom: y-component of the spin polarization
density, Sy, for the full FR-PP formulation and the on-site
approximation.

FIG. 6. (a–b) PDOS(k,E) maps projected on the surface
planes of a Pt(111) semi–infinite surface calculated under the
full FR-PP formulation and the on-site approximation, re-
spectively. (c–d) Same as (a–b) but for the Ir(111) surface.
Small blue arrows in (a) and (c) indicate surface states cross-
ing the K point.
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FIG. 7. (Color online) Electronic bands structure of bulk
GeTe. Similarly to the plots of previous figures, blue and
black solid lines represent the SIESTA results with the on-site
approximation and the full FR-PP calculation, respectively.
The inset shows the schematic crystal structure of distorted
GeTe with the polar axis along [111] direction.

eracy can be removed due to the SOC interaction51.

We have chosen as model system the monochalcogenide
GeTe insulator as it is known to exhibit a large Rashba ef-
fect52. GeTe stabilizes in a ferroelectric rhombohedrally
distorted rocksalt structure with space group R3m. Fig-
ure 7 shows the energy dispersion of the valence and con-
duction bands around the Fermi level. This time the on-
site bands (blue lines) yield an almost perfect agreement
with the full FR-PP case (dark), accurately reproducing
the strong Rashba splitting for both bands at the Z–
point, while small deviations appear only in the valence
band as one moves towards the A–point.

IV. MAGNETIC ANISOTROPY ENERGIES

MAE is defined as the difference in total energy be-
tween the easy and hard magnetisation axes of a system.
In this section we address the capability of the on-site ap-
proximation to obtain MAEs close to those derived from
the full FR-PP approach. We note that reproducing en-
ergy differences at the meV (or even sub-meV) level is,
in general, a more stringent test than the comparison
between band structures.

A. Pt dimer

We first analyze the MAE for the Pt dimer. We have
optimized the bond distance obtaining a value of 2.27
Å. The dimer was located along the X–axis and two SC
calculation along X and Z spin quantization axis were
performed for the on-site approximation and the full FR-
PP formulation. The energy differences, Ex−Ez, were of
206 meV and 200 meV, respectively. Both calculations
give similar values of the MAEs and predict the easy axis
along the bond axis as previously reported by Seivane and
Ferrer31.

B. FePt–L10 bulk alloy

The binary FePt–L10 alloy is formed by alternating
planes of Fe and Pt with square lattice geometry (see
figure 8–left), leading to a structure with sligtly different
in-plane, a, and out-of-plane, c, lattice constants. As a
result of the lattice parameters optimization we obtained
a=3.92Å and c/a=0.96.

The upper part of Table I shows the energy difference
between the solutions with magnetization along the X
and Z directions, ∆Ex−z = Ex−Ez using SIESTA , VASP,
a full–potential (FP) version of the linear–muffin–tin or-
bital (LMTO) method53 and the work of Khan et al54

in which they obtained the MAE by means of SPRKKR
and WIEN2K (PBE-GGA). The on-site approximation
underestimates the MAEs by 15% with respect to the full
FR-PP values, which coincide with those obtained with
FP–LMTO and just 5% smaller than those obtained with
VASP. Part of the discrepancies between our results and
the ones obtained by Khan et al54 could be due to slightly
different lattice constants used in the calculations.

We have also calculated the MMs and orbital mag-
netic moments (OMs) of Fe and Pt atoms in the al-
loy. Both SOC implementations give similar values of

X

N = 55totFePt - L10

c
Pt

PtFe

FeX

Y
Y

Z Z

FIG. 8. (Color online) (Left) Schematic picture of the FePt–
L10 bulk unit cell and its characteristic lattice values: a and c.
Notice that the in–plane diagonal of the unit cell corresponds
to the lattice constant whilst the edge is a/

√
2. (Right) L10

cuboctahedral 55 NP structure. Superimposed yellow solid
lines show two kinds of surfaces (square and triangle). Carte-
sian frame X, Y and Z, is represented by three black lines.
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MMFe=3.2µB and MMPt=0.2µB . In agreement, VASP
provides 3.03µB and 0.31 µB for Fe and Pt, respectively.
The OMs are depicted in the table I.

C. FePt–L10 cuboctahedral nanoparticle

Next, we have considered a non–periodic system con-
sisting of a cuboctahedral FePt nanoparticle (NP) com-
posed of 55 atoms following a L10 stacking. This
kind of NP belongs to the so–called magic cluster
sizes where the total number of atoms follows the re-
lation Ntot=(10n3+15n2+11n+3)/3, where n represents
the number of geometrical closed shells which, in our
case, is n=2 (see right panel in Figure 8). The to-
tal number of atoms for each species is then given
by NM=(5n3+6n2+4n)/3 for the magnetic (M), and
NNM=(5n3+9n2+7n+3)/3 for the nonmagnetic (NM)
species, i.e., NM=24 and NNM=31. The initial struc-
ture of the NP was built using the FePt–L10 bulk ex-
perimental values53 (3.86 Å and 0.98, respectively), and
the geometry was subsequently fully relaxed. The square
box where the NP was simulated had 25 Å of side avoid-
ing the neighboring interaction with replicas in adjacent
cells.

Due to the cuboctahedral shape of the NP we have cal-
culated the total energy along three different spin quanti-
zation axes defined by the spherical angles (θ, φ), namely:
(0◦, 0◦), (90◦, 0◦) and (90◦, 45◦). In the following, we
will label these directions as z, x and xy, respectively,
and the energy difference as: ∆Ex−z = Ex − Ez and
∆Exy−z = Exy−Ez. The calculated values are shown in
the table I for the on-site approximation and the full FR-
PP, as well as for VASP. All predict correctly the easy
axis of the NP that lies out–of–plane (0◦, 0◦). Comparing
the largest energy difference we observe that, whilst the
full FR-PP MAE is ∆Exy−z=37.2 meV, on-site predicts
a smaller value by around 30% (25.8 meV) and VASP a
25% larger value (50.0 meV). As in the case of the bulk
material, we conclude that on-site approach underesti-
mates the MAE values of this kind of cuboctahedral NP.

We have also obtained the magnetic moments (MMs)
of each of the Fe and Pt atoms of the NP for the case
in which the magnetisation is along z. We summarise
their behaviour taking into account whether the atoms
are in the core or at the surface. Whereas the MMs of
the core atoms of both Fe and Pt species present similar
values and alignment, Fe atoms at the surface present
small tilts along x or y directions within the range of
0.1–0.4µB in the full FP-PP calculation and between 0.04
and 0.27µB for the on-site approximation. The induced
MMs of surface Pt atoms present similar dispersion for
both formalisms between 0.2 and 0.4µB along Z direc-
tion without tilt. In both SOC formalisms, the average
values are MMFe=3.4µB/at and MMPt=0.38µB/at. In
VASP the average values of the MMs are 3.3µB/at and
0.5µB/at for Fe and Pt, respectively. The tilts along x
and y direction ranges between 0.0–0.45µB .

V. CONCLUSIONS

We have performed an in-depth study on the accuracy
of the so called on-site approximation for the inclusion
of SOC in electronic structure calculations within the
DFT–PP formalism. Within a TB spirit, this approxima-
tion assumes that all the SOC transferred to the valence
electrons occurs within each ion –i.e. equivalent to the
renormalization of the on-site energies together with the
inclusion of intra–atomic SOC matrix elements– whereas
in a more general framework SOC matrix elements be-
tween two orbitals centered at different atoms pick up
contributions from neighboring atoms via three–center
integrals –the full FR-PP formulation.

We have considered a variety of systems with differ-
ent dimensionalities, all of them presenting strong SOC–
related effects. In most cases the on-site approximation
yielded good agreement with the more general full FR-
PP formalism, but there were (a few) exceptions. One
of them is an erroneous location of the Dirac point of
the TSS at the Bi2Se3 (0001) surface, as it ends up be-
low the top of the valence band and, hence, becomes
n–doped. Although the magnitude of this energy devia-
tion falls within the error bars associated to DFT itself,
we emphasize that it originates solely from the neglect
of inter–atomic SOC interactions as the band structures
for both approaches have been computed under the same
calculation parameters.

A larger and systematic error was however found for
5d transition metals, for which the on-site band struc-
tures showed giant energy shifts –specially in the case of
Ir(111)– leading to an imprecise description of the pro-
jected gaps or the off-.sets of surface states. By noting
that most of the systems where the on-site approximation
worked correctly involved states of p character around
the Fermi level, we may conclude that it breaks down for
systems involving 5d–5d interaction. In fact, this is not
a surprising result, as these states present a large SOC
but are also spatially quite extended, so that their con-
tribution to three–center integrals of the 〈µ|V sok |ν〉 type,
with the AOs residing at different sites than k, is not
negligible. This could also be the reason why the on-
site approximation shows more sensitivity to the basis
set, giving worse results when the radial extension of the
basis orbitals is increased, as dramatically illustrated for
the WS2 monolayer.

We have also calculated the MAEs for a Pt dimer, a
FePt–L10 cuboctahedral NP composed of 55 atoms and
for FePt–L10 bulk comparing the SIESTA MAEs versus
those derived with VASP for the last two systems. Al-
though the on-site approximation predicts correctly the
easy magnetization axis, the MAE values are for both
systems underestimated compared with the full FR-PP
formalism and VASP. MAE values for the Pt dimer are
similar for both formulations.

Finally, we note that, in DFT-PP calculations, the
time consumed in the construction of the SOC Hamil-
tonian, including all the integrals for the off-site matrix
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TABLE I. Energy difference (in meV) and orbital magnetic moments (in µB) between different magnetization orientations
for the FePt–L10 bulk alloy and the Fe24Pt31 NP obtained using the on-site approximation and the FR-PP formulation as
implemented in SIESTA, compared to VASP, FP-LMTO, SPRKKR and WIEN2K(PBE-GGA).

System Method ∆Ex−z ∆Exy−z µ
(M||z)
orb (Fe) µ

(M||x)
orb (Fe) µ

(M||z)
orb (Pt) µ

(M||x)
orb (Pt)

Bulk FePt–L10

on-site 1.7 – 0.103 0.095 0.088 0.115

FR-PP 2.0 – 0.096 0.093 0.097 0.105

VASP 2.13 – 0.069 0.068 0.058 0.071

FP-LMTO53 4.0 – 0.070 0.070 0.050 0.060

SPRKKR54 3.04 – 0.065 0.062 0.044 0.042

WIEN2K54 2.73 – 0.065 0.062 0.060 0.054

Fe24Pt31 NP
on-site 25.1 25.8 0.081 0.075 0.137 0.173

FR-PP 34.0 37.2 0.072 0.068 0.132 0.170

VASP 47.4 50.0 0.051 0.042 0.094 0.125

elements, represents a very small fraction of the total in
a self–consistent calculation. Hence, the computational
gain in using the on-site approximation is negligible and
does not seem to justify its use as it is susceptible to some
inaccuracies. We conclude that it is advisable to employ
the full FR-PP approach with no approximations.
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F. Römer, A. Warland, B. Krumme, K. Fauth, S. Sun,
P. Entel, M. Farle and H. Wende, Nat. Commun. 2, 528
(2011).

9 R. Cuadrado, Timothy J. Klemmer and R. W. Chantrell,
Appl. Phys. Lett. 105, 152406 (2014).

10 R. Cuadrado, Kai Liu, Timothy J. Klemmer and R. W.
Chantrell, Appl. Phys. Lett. 108, 123102 (2016)

11 Thomas Bose, Ramón Cuadrado, Richard F. L. Evans, Ro-
man V. Chepulskii, Dmytro Apalkov Roy W. Chantrell, J.
Phys.: Condens. Matter 28, 156003 (2016)

12 I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
13 T. Moriya, Phys. Rev. 120, 91 (1960).
14 H. Yan, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev,

Phys. Rev. Lett. 115, 267210 (2017).
15 S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, Nature

Nanotechnology 11, 621 (2016).
16 Yabin Fan, Pramey Upadhyaya, Xufeng Kou, Murong

Lang, So Takei, Zhenxing Wang, Jianshi Tang, Liang He,
Li-Te Chang, Mohammad Montazeri, Guoqiang Yu, Wan-
jun Jiang, Tianxiao Nie, Robert N Schwartz, Yaroslav
Tserkovnyak and Kang L Wang, Nat. Mat. 13, 699-704
(2014).

17 P. Gambardella, I. M. Miron, Philos. Trans. R. Soc. Lon-
don, Ser. A 369, 3175 (2011).

18 http://www.flapw.de



11
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35 S. Garćıa-Gil, A. Garćıa, N.Lorente, and P. Ordejón, Phys.
Rev. B, 79, 075441 (2009).

36 K. Kurita and T. Koretsune, Phys. Rev. B 102, 045109
(2020)
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Chulkov, F. J. Garćıa de Abajo and J. E. Ortega Phys.
Rev. B 66, 245419 (2002)

51 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
52 D. Di Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv.

Mat. 25, 509 (2013).
53 I. Galanakis, M. Alouani, and H. Dreysse, Phys. Rev. B,

62, 6475, (2000).
54 Saleem Ayaz Khan, Peter Blaha, Hubert Ebert, Jan Miná
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