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Abstract 

Background: Genome‑wide association studies (GWAS) have identified multiple common breast cancer suscepti‑
bility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these 
variants relate with other tumor features and intrinsic molecular subtypes is unclear.

Methods: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 
breast cancer variants identified in previous GWAS, we used novel two‑stage polytomous logistic regression models 
to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic‑like subtypes.

Results: Eighty‑five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most 
commonly ER and grade, followed by PR and HER2. Models for intrinsic‑like subtypes found nearly all of these variants 
(83 of 85) associated at p < 0.05 with risk for at least one luminal‑like subtype, and approximately half (41 of 85) of the 
variants were associated with risk of at least one non‑luminal subtype, including 32 variants associated with triple‑
negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were 
associated with risk of luminal A‑like and TN subtypes in opposite directions.

Conclusion: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer sus‑
ceptibility variants and can inform investigations of subtype‑specific risk prediction.

Keywords: Breast cancer, Etiologic heterogeneity, Genetic predisposition, Common breast cancer susceptibility 
variants
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Introduction
Breast cancer represents a heterogenous group of diseases 
with different molecular and clinical features[1]. Clini-
cal assessment of estrogen receptor (ER), progesterone 
receptor (PR), human epidermal growth factor receptor 
2 (HER2) and histological grade are routinely determined 
to inform treatment strategies and prognostication[2]. 
Combined, these tumor features define five intrinsic-
like subtypes (i.e., luminal A-like, luminal B–like/HER2-
negative, luminal B-like/HER2-positive, HER2-positive/
non-luminal, and triple negative) that are correlated with 
intrinsic subtypes defined by gene expression panels[2, 3]. 
Most known breast cancer risk or protective factors are 
related to luminal or hormone receptor (ER or PR) posi-
tive tumors, whereas less is known about the etiology of 
triple-negative (TN) tumors, an aggressive subtype[4, 5].

Breast cancer genome-wide association studies 
(GWAS) have identified over 170 common susceptibility 
variants, most of them single nucleotide polymorphisms 
(SNPs), of which many are differentially associated with 
ER-positive than ER-negative disease[6–8]. These include 
20 variants that primarily predispose to ER-negative or 
TN disease[7, 8]. However, few studies have evaluated 

variant associations with other tumor features, or simul-
taneously studied multiple, correlated tumor markers 
to identify source(s) of etiologic heterogeneity[7, 9–13]. 
We recently developed a two-stage polytomous logistic 
regression method that efficiently characterizes etiologic 
heterogeneity while accounting for tumor marker corre-
lations and missing tumor data[14, 15]. This method can 
help describe complex relationships between susceptibil-
ity variants and multiple tumor features, helping to clar-
ify breast cancer subtype etiologies and increasing the 
power to generate more accurate risk estimates between 
susceptibility variants and less common subtypes. We 
recently demonstrated the power of this method in a 
GWAS to identify novel breast cancer susceptibility 
accounting for tumor heterogeneity[15].

In this report, we sought to expand our understanding 
of etiologic heterogeneity among breast cancer subtypes, 
by applying the two-stage polytomous logistic regression 
methodology to a large study population from the Breast 
Cancer Association Consortium (BCAC) for detailed 
characterization of risk associations with 173 breast can-
cer risk variants identified by GWAS[6, 7] by tumor sub-
types defined by ER, PR, HER2 and tumor grade.
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Methods
Study population and genotyping
The study population and genotyping are described in 
previous publications[6, 7] and in the Additional file  3: 
Methods. We included invasive cases and controls from 
81 BCAC studies with genotyping data from two Illumina 
genome-wide custom arrays, the iCOGS and OncoArray 
(106,571 cases (OncoArray: 71,788; iCOGS: 34,783) and 
95,762 controls (OncoArray: 58,134; iCOGS: 37,628); 
Additional file  1: Table  S1). All subjects in the study 
population were female and of European ancestry, with 
European ancestry determined by ancestry informative 
GWAS markers as previously described [6]. We evaluated 
173 breast cancer risk variants that were identified in or 
replicated by prior BCAC analyses to be associated with 
breast cancer risk at a p-value threshold p < 5.0 ×  10–8 
[6, 7]. Most of these variants (n = 153) were identified 
because of their association with risk of overall breast 
cancer, and a small number of variants (n = 20) were 
identified because of their association specific to ER-neg-
ative breast cancer (Additional file 1: Table S2). These 173 
variants have not previously been simultaneously investi-
gated for evidence of tumor heterogeneity with multiple 
tumor markers[6, 7, 15, 16]. Genotypes for the variants 
marking the 173 susceptibility loci were determined by 
genotyping with the iCOGS and the OncoArray arrays 
and imputation to the 1000 Genomes Project (Phase 3) 
reference panel.

Statistical analysis
An overview of the analytic strategy is shown in Fig. 1 and 
a detailed discussion of the statistical methods, including 
the two-stage polytomous logistic regression, are pro-
vided in the Additional file 3: Methods and elsewhere[14, 
15]. Briefly, we used two-stage polytomous regression 
models that allow modelling of genetic association of 
breast cancer accounting for underlying heterogeneity in 
associations by combinations of multiple tumor markers 
using a parsimonious decomposition of subtype-specific 
case–control odds-ratio parameters in terms of marker-
specific case-case odd-ratio parameters[14, 15]. We 
introduced further parsimony by using mixed-effect for-
mulation of the model that allows ER-specific case-case 
parameters to be treated as fixed and similar parameters 
for other markers (PR, HER2 and grade (as an ordinal 
variable)) as random. We used an expectation–maxi-
mization (EM) algorithm[17] for parameter estimation 
under this model to account for missing data in tumor 
characteristics.

Our primary aim was to identify which of 173 known 
breast cancer susceptibility variants showed heterog-
enous risk associations by ER-, PR- and HER2-status and 
tumor grade. This was tested using a global heterogeneity 

test by ER, PR, HER2 and/or grade, with a mixed-effect 
two-stage polytomous model (model 1), fitted separately 
for each variant. The global null hypothesis was that there 
was no difference in risk of breast cancer associated with 
the variant genotype across any of the tumor features 
being evaluated. We accounted for multiple testing (173 
tests, one for each of variant) of the global heterogene-
ity test using a false discovery rate (FDR) < 5% under the 
Benjamini–Hochberg procedure[18].

For the variants showing evidence of global heteroge-
neity after FDR adjustment, we further evaluated which 
of the tumor features contributed to the heterogeneity 
by fitting a fixed-effects two-stage model (model 2) that 
simultaneously tested for associations with each tumor 
feature (this model was fitted for each variant separately). 
We used a threshold of p < 0.05 for marker-specific tumor 
heterogeneity tests to describe which specific tumor 
marker(s) contributed to the observed heterogeneity, 
adjusting for the other tumor markers in the model. This 
p-value threshold was used only for descriptive purposes, 
as the primary hypotheses were tested using the FDR-
adjusted global test for heterogeneity described above.

We conducted additional analyses to explore evidence 
of heterogeneity. We fitted a fixed-effect two-stage model 
(model 3) to estimate case–control odd ratios (ORs) and 
95% confidence intervals (CI) between the variants and 
five intrinsic-like subtypes defined by combinations of 
ER, PR, HER2 and grade: (1) luminal A-like (ER + and/
or PR + , HER2-, grade 1 or 2); (2) luminal B-like/HER2-
negative (ER + and/or PR + , HER2-, grade 3); (3) lumi-
nal B-like/HER2-positive (ER + and/or PR + , HER2 +); 
(4) HER2-positive/non-luminal (ER- and PR-, HER2 +), 
and (5) TN (ER-, PR-, HER2-). We also fitted a fixed-
effect two-stage model to estimate case–control ORs and 
95% confidence intervals (CI) with tumor grade (model 
4; defined ordinally as grade 1, grade 2, and grade 3) for 
the variants associated at p < 0.05 only with grade in case-
case comparisons from model 2.

To help describe sources of heterogeneity from dif-
ferent tumor characteristics in models 2 and 3, we per-
formed cluster analyses based on Euclidean distance 
calculated from the absolute z-statistics that were 
estimated by the individual marker-specific tumor 
heterogeneity tests (model 2) and the case–control 
associations with risk of intrinsic-like subtypes (model 
3). The clusters were used only for presentation pur-
poses and were not intended to suggest strictly defined 
categories, nor are they intended to suggest the vari-
ants are associated with tumor markers through simi-
lar biological mechanisms. Clustering was performed 
in R using the function Heatmap as implemented 
by the package “Complex Heatmap” version 3.1[19]. 
Additional details for calculating Euclidean distance 
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using absolute z-statistics are provided in Additional 
file 3: Methods.

We performed sensitivity analyses, in which we esti-
mated the ORs and 95% CI between the variants and 
the intrinsic-like subtypes by implementing a standard 
polytomous model that defined the intrinsic-like sub-
types using only the available tumor markers data (not 
using the EM algorithm to account for missing data in 
tumor markers). For all analyses we analyzed OncoAr-
ray and iCOGS array data separately, adjusting for the 
first 10 principal components for ancestry-informative 
variants, and then meta-analyzed the results.

Results
The mean (SD) ages at diagnosis (cases) and enroll-
ment (controls) were 56.6 (12.2) and 56.4 (12.2) years, 
respectively. Among cases with information on the cor-
responding tumor marker, 81% were ER-positive, 68% 

PR-positive, 83% HER2-negative and 69% grade 1 or 
2 (Table 1; see Additional file 1: Table S1 for details by 
study). Additional file 1: Table S3 shows the correlation 
between the tumor markers. ER was positively corre-
lated with PR (r = 0.61) and inversely correlated with 
HER2 (r = -0.16) and grade (r = -0.39). The most com-
mon intrinsic-like subtype was luminal A-like (54%), 
followed by TN (14%), luminal B-like/HER2-negative 
(13%), Luminal B-like/HER2-positive (13%) and HER2-
positive/non-luminal (6%; Table  1). These frequencies 
varied across BCAC studies due to the studies being 
diverse in both design and country of origin (Additional 
file 1: Table S1). Notably, there is little population-based 
data on the frequencies of intrinsic-like subtypes [20, 
21]. The overall frequencies in our study population are 
generally similar to those reported by SEER for non-
Hispanic white females and the Scottish cancer registry 
[20, 21]; however, given the diverse sources of our data 

Fig. 1 Overview of the analytic strategy and results from the investigation of 173 known breast cancer susceptibility variants for evidence of 
heterogeneity of effect according to the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), 
and grade. aWe evaluated 173 breast cancer risk variants identified in or replicated by prior BCAC GWAS [6, 7], see Methods and Additional file 3: 
Methods sections for more details. bModel 1 (primary analyses): Mixed‑effect two‑stage polytomous model (ER as fixed‑effect, and PR, HER2 and 
grade as random‑effects) for global heterogeneity tests (i.e. case‑case comparisons from stage 2 of the two‑stage model) between each individual 
risk variant and any of the tumor features (separate models were fit for each variant). cModel 2: Fixed‑effect two‑stage polytomous model for 
marker‑specific tumor heterogeneity tests (i.e. case‑case comparisons from stage 2 of the two‑stage model) between each individual variant and 
each of the tumor features (ER, PR, HER2, and grade), mutually adjusted for each other (separate models were fit for each variant). dModel 3: Fixed 
effect two‑stage polytomous model for risk associations with intrinsic‑like subtypes (i.e. case–control comparisons from stage 1 of the two‑stage 
model): luminal A‑like, luminal B‑like/HER2‑negative, luminal B‑like/HER2‑positive, HER2‑positive/non‑luminal, and triple negative. eModel 4: Fixed 
effect two‑stage polytomous model for risk associations with tumor grade (i.e. case–control comparisons from stage 1 of the two‑stage model) for 
the 12 variants associated at p < 0.05 only with grade in case‑case comparisons (from model 2): grade 1, grade 2, and grade 3
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they are not directly comparable to country specific 
cancer registries.

Figure 1 shows an overview of the analytic strategy and 
results from three main analyses performed separately 
for each variant: 1) global test for heterogeneity by all 
tumor markers (model 1; primary hypothesis), 2) marker-
specific tumor test for heterogeneity for each marker, 
adjusting for the others (model 2), and 3) estimation of 
case–control ORs (95%CIs) by intrinsic-like subtypes 
(model 3) and by grade (model 4).

Global test for heterogeneity by tumor markers (primary 
hypothesis)
Mixed-effects two-stage models (model 1) were fitted for 
each of the 173 variants separately and included terms for 
ER, PR, HER2 and grade to test for global heterogeneity 
by any of the tumor features (case-case comparison). This 
model identified 85 of 173 (49.1%) variants with evidence 
of heterogeneity by at least one tumor feature (FDR < 5%; 
Figs. 1, 2; Additional file 1: Fig. S1).

Marker‑specific tumor test for heterogeneity for each 
marker, adjusting for other markers
Fixed-effects two-stage models (model 2) were used to 
test which of the correlated tumor markers was respon-
sible for the observed global heterogeneity (case-case 
comparison). Figure 2 and Additional file 1: Fig. S1 show 
results of these analyses clustered by case-case z-values 
of associations between susceptibility variants and each 
tumor marker for the 173 variants. For the 85 variants 
with observed global heterogeneity, these analyses iden-
tified ER and grade as the two features that most often 

contributed to the observed heterogeneity (45 and 33 
variants had marker-specific p < 0.05 for ER and grade, 
respectively), and 29 variants were associated with more 
than one tumor feature (Figs.  1, 2, Additional file  1: 
Fig. S1). Eighteen of these 85 variants showed no associa-
tions with any individual tumor marker at p < 0.05 (Fig. 2, 
Additional file  1: Fig.  S1). Twenty-one variants were 
associated at p < 0.05 only with ER, 12 variants only with 
grade, 4 variants only with PR and one variant only with 
HER2 (Fig. 2, Additional file 1: Fig. S1, see footnotes).

Estimation of case–control ORs (95%CIs) by intrinsic‑like 
subtypes (model 3)
Fixed-effects two-stage models for intrinsic-like subtypes 
(model 3) were fitted for each of the 85 variants with evi-
dence of global heterogeneity to estimate ORs (95% CIs) 
for risk associations with each subtype (case–control com-
parisons). Additional file  1: Fig.  S2 shows a summary of 
these analyses for the 85 variants, clustered by case–con-
trol z-value of association between susceptibility variants 
and breast cancer intrinsic-like subtypes, and Additional 
file 2: Fig. S3 shows forest plots for associations with risk 
by tumor subtypes. Nearly all (83 of 85) variants were 
associated with risk (p < 0.05) for at least one luminal-like 
subtype, and approximately half (41 of 85) of the variants 
were associated with risk of at least one non-luminal sub-
type, including 32 variants that were associated with TN 
disease (Fig. 1, Additional file 1: Fig. S2 footnote ‘h’). Ten 
variants were associated with risk of all subtypes (Fig.  1, 
Additional file  1: Fig.  S2 footnote ‘j’). Below we describe 
examples of groups of variants associated with different 
patterns of associations with intrinsic subtypes (Fig. 3 a-d).

HER2

PR

ER

Grade

Fig. 2 Heatmap of the z‑values from the fixed‑effects two‑stage polytomous model for marker‑specific heterogeneity tests (case‑case comparison 
from model 2) for association between each of the 173 breast cancer susceptibility variants and estrogen receptor (ER), progesterone receptor 
(PR), human epidermal growth factor receptor 2 (HER2) or grade, adjusting for principal components and each tumor marker. Columns represent 
individual variants. For more detailed information on the context of figure see Additional file 1: Fig. S1
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Two variants in linkage disequilibrium (LD,  r2 = 0.73) 
at 10q26.13 (rs2981578 and rs35054928) and 16q12.1-
rs4784227 had the strongest evidence of association with 
risk of luminal-like subtypes (Fig.  3a, Additional file  1: 
Fig.  S2). The two variants at 10q26.13 showed no evi-
dence of associations with TN subtypes, and a weaker 
association with HER2-positive/non-luminal subtype. In 
contrast, 16q12.1-rs4784227 was strongly associated with 
risk for all luminal-like subtypes and, weaker so, with 
risk of HER2-positive/non-luminal and TN subtypes 
(Figs. 3a, Additional file 1: Fig. S2).

Three variants 19p13.11-rs67397200, 5p15.33-
rs10069690 and 1q32.11-rs4245739 showed the strongest 
evidence of associations with risk of TN disease. All three 

of these variants showed weaker or no evidence of associ-
ations with risk of the other subtypes (Fig. 3b, Additional 
file 1: Fig. S2).

Two variants in low LD  (r2 = 0.17) at 6q25, rs9397437 
and rs3757322, and a third variant in 6q25, rs2747652, 
which was not in LD  (r2 < 0.01) with rs9397437 or 
rs3757322, showed strong evidence of being associ-
ated with risk of all subtypes. rs9397437 and rs3757322 
were most strongly associated with risk of TN disease. 
rs2747652 was most strongly associated with risk of 
HER2-positive subtypes (Figs.  3c, Additional file  1: 
Fig. S2).

Five variants were associated with risk of lumi-
nal A-like disease in an opposite direction to their 

Luminal A-like Luminal B-like/HER2-negative               luminal B-like/HER2-positive HER2-positive/non-luminal Triple-Negative

Variant Intrinsic-like subtypesd
Predicted 

target genec Intrinsic-like subtypesdVariant
Predicted 

target genec

Odds ratio and 95% CI Odds ratio and 95% CI

(a)

(c)

(b)

(d)

Fig. 3 Results from fixed‑effects two‑stage polytomous models for risk  associationsa with intrinsic‑like subtypes (model 3) for variants with 
evidence of heterogeneity by tumor markers in the two‑stage model (model1)b; panels show examples of variants a most strongly associated 
with luminal‑like subtypes, b most strongly associated with TN subtypes, c associated with all subtypes with varying strengths of association, and 
d associated with luminal A‑like and TN subtypes in different directions. See Additional file 1: Fig. S2 for more details
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association with risk of TN disease. 1q32.1-rs6678914, 
2p23.2-rs4577244, and 19p13.11-rs67397200 had 
weaker evidence of associations with risk of luminal 
A-like disease compared to associations with risk of 
TN disease, and 10p12.31-rs7072776 and 22q12.1-
rs17879961 (I157T) had stronger evidence of an asso-
ciation with risk of luminal A-like disease compared to 
their association with risk of TN disease (Fig. 3d, Addi-
tional file 1: Fig. S2, for rs67397200 see Fig. 3b).

Estimation of case–control ORs (95%CIs) by tumor grade 
(model 4)
Case–control associations by tumor grade for the 12 var-
iants that were observed associated at p < 0.05 only with 
grade in case-case comparisons are shown in Additional 
file  2: Fig.  S4. 13q13.1-rs11571833, 1p22.3-rs17426269 

and 11q24.3-rs11820646 showed stronger evidence for 
predisposing to risk of high-grade subtypes, and the 
remaining variants showed stronger evidence for predis-
posing to risk of low-grade subtypes.

When limiting analyses to cases with intrinsic-like sub-
types defined only by available tumor marker data, results 
from case–control analyses were similar, but less precise 
than results from the two-stage polytomous regression 
model using the EM algorithm to account for missing 
tumor marker data (Additional file 1: Table S4).

Discussion
This study demonstrates the extent and complexity of 
genetic etiologic heterogeneity among 173 breast can-
cer risk variants by multiple tumor characteristics, using 
novel methodology in the largest and the most com-
prehensive investigation conducted to date. We found 
compelling evidence that about half of the investigated 
breast cancer susceptibility loci (85 of 173 variants) pre-
dispose to tumors with different characteristics. We iden-
tified tumor grade, along with confirming ER status, as 
important determinants of etiologic heterogeneity. Asso-
ciations with individual tumor features translated into 
differential associations with the risk of intrinsic-like sub-
types defined by their combinations.

Many of the variants with evidence of global hetero-
geneity predisposed to risk of multiple subtypes, but 
with different magnitudes. For example, three vari-
ants identified in early GWAS for overall breast cancer, 
FGFR2 (rs35054928 and rs2981578)[22, 23] and 8q24.21 
(rs13281615)[22], were associated with luminal-like 
and HER2-positive/non-luminal subtypes, but not with 
TN disease. rs4784227 located near TOX3[22, 24] and 
rs62355902 located in a MAP3K1[22] regulatory ele-
ment, were associated with risk of all five subtypes. Of 
the five variants found associated in opposite direc-
tions with luminal A-like and TN disease, we previously 
reported rs6678914 and rs4577244 to have opposite 
effects between ER-negative and ER-positive tumors[7]. 
rs17879961 (I157T), a likely causal[16] missense variant 
located in a CHEK2 functional domain that reduces or 
abolishes substrate binding[25], was previously reported 
to have opposite directions of effects on lung adeno-
carcinoma and lung squamous cell carcinoma and for 
lung cancer between smokers and non-smokers[26, 27]. 
Moreover, the risk association of rs17879961 has been 
reported to vary across tissue locations/cell-types, as this 
variant has been associated with a higher risk of pancre-
atic ductal adenocarcinoma [28], chronic lymphocytic 
leukemia [29], and colorectal cancer [30], and also associ-
ated with a lower risk of aerodigestive squamous cell car-
cinoma [31] and ovarian cancer [32]. To our knowledge 

Table 1 Distribution of estrogen receptor (ER), progesterone 
receptor (PR), human epidermal growth factor receptor 2 
(HER2), and grade and the intrinsic‑like subtypes among cases 
of invasive breast cancer in studies from the Breast Cancer 
Consortium Association

Luminal A-like (ER + and/or PR + , HER2-, grade 1 & 2); Luminal B-like/HER2-
negative (ER + and/or PR + , HER2-, grade 3); Luminal B-like/HER2-positive 
(ER + and/or PR + , HER2 +); HER2-positive/non-luminal (ER- and PR-, HER2 +), 
and triple-negative (ER-, PR-, HER2-)

Tumor marker N (%)

ER

 Negative 16,900 (19%)

 Positive 70,030 (81%)

 Unknown 19,641

PR

 Negative 24,283 (32%)

 Positive 51,603 (68%)

 Unknown 30,685

HER2

 Negative 47,693 (83%)

 Positive 9,529 (17%)

 Unknown 49,349

Grade

 1 15,583 (20%)

 2 37,568 (49%)

 3 24,382 (31%)

 Unknown 29,038

Intrinsic‑like subtypes

 Luminal A‑like 27,510 (54%)

 Luminal B‑like/HER2‑negative 6,804 (13%)

 Luminal B‑like/HER2‑positive 6,511 (13%)

 HER2‑positive/non‑luminal 2,797 (6%)

 Triple‑negative 7,178 (14%)

 Unknown 55,771
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rs67397200 and rs7072776 have not previously been 
shown to be associated with subtypes in opposite direc-
tions. In a prior breast cancer GWAS that applied the 
two-stage polytomous model for risk variant discovery 
we also identified five variants that were associated with 
risk of luminal A-like and TN disease in opposite direc-
tions [15]. Overall, these findings suggest that the same 
biological pathway has opposite effects on the suscepti-
bility to different tumor types. This interpretation is sup-
ported by functional characterization of rs36115365, a 
variant on 5p15.33 which was found to have similar cis-
regulatory effects on TERT in multiple cancers cell lines 
from different cancers, but was associated with a higher 
risk of pancreatic and testicular cancer and a lower risk of 
lung cancer [33]. Alternatively, a causal variant may dif-
ferently influence cis-gene regulation and/or alter differ-
ent biological pathways depending on the cell or tissue of 
origin [34]. Further studies of these variants are required 
to clarify the biological mechanisms for these apparent 
cross-over effects.

In prior ER-negative GWAS, we identified 20 vari-
ants that predispose to ER-negative disease, of which 
five variants were only or most strongly associated with 
risk of TN disease (rs4245739, rs10069690, rs74911261, 
rs11374964, and rs67397200)[7, 8]. We confirmed these 
five variants to be most strongly associated with TN 
disease. The remaining previously identified 15 variants 
all showed associations with risk of non-luminal sub-
types, especially TN disease, and for all but four variants 
(rs17350191, rs200648189, rs6569648, and rs322144) evi-
dence of global heterogeneity was observed.

Little is known regarding PR and HER2 as sources of 
etiologic heterogeneity independent of ER status. Of the 
four variants that showed evidence of heterogeneity only 
according to PR, rs10759243[6, 35], rs11199914[36] and 
rs72749841[6] were previously found primarily associ-
ated with risk of ER-positive disease, and rs10816625 
was found to be associated with risk of ER-positive/PR-
positive tumors, but not other ER/PR combinations[12]. 
rs10995201 was the only variant found in case-case 
comparisons to be solely associated with HER2 status, 
although the evidence was not strong, requiring fur-
ther confirmation. Previously, rs10995201 showed no 
evidence of being associated with ER status[37]. Most 
variants associated with PR or HER2, had not been 
investigated for PR or HER2 heterogeneity while adjust-
ing for ER[9–13]. We previously reported rs10941679 
to be associated with PR-status, independent of ER, and 
also with grade[10]. We also found suggestive evidence 
of PR-specific heterogeneity for 16q12-rs3803662[13], 
which is in high LD  (r2 = 0.78) with rs4784227 (TOX3), 
a variant strongly associated with PR status. Our find-
ings for rs2747652 are also consistent with a prior BCAC 

fine-mapping analysis across the ESR1 locus, which 
found rs2747652 to be associated with risk of the HER2-
positive/non-luminal subtype and high grade independ-
ent of ER[9]. rs2747652 overlaps an enhancer region 
and is associated with reduced ESR1 and CCDC170 
expression[9].

Histologic grade is a composite of multiple tumor char-
acteristics including mitotic count, nuclear pleomor-
phism, and degree of tubule or gland formation, therefore 
susceptibility variants associated with tumor grade 
could affect multiple biological pathways [38]. Evidence 
from comparisons of tumor morphology and genomic 
and molecular alterations suggest that tumor grade is 
likely a ‘stable’ tumor feature and does not progress from 
low- to high-grade [39–42], thus the variants associated 
with grade are likely not associated with grade progres-
sion. Among the 12 variants identified with evidence of 
heterogeneity by grade only, rs17426269, rs11820646, 
and rs11571833 were found to be most strongly associ-
ated with risk of grade 3 disease. rs11571833 lies in the 
BRCA2 coding region and produces a truncated form 
of the protein[43] and has been shown to be associated 
with both risk of TN disease and risk of serous ovarian 
tumors, both of which tend to be high-grade[44]. To 
our knowledge, rs17426269 and rs11820646 have not 
been investigated in relation to grade heterogeneity. The 
remaining 9 variants were all more strongly associated 
with grade 1 or grade 2 disease. Six of these variants were 
previously reported to be associated primarily with ER-
positive disease[6, 36, 45, 46], highlighting the impor-
tance of accounting for multiple tumor characteristics to 
better illuminate heterogeneity sources.

We identified 18 variants with evidence of global het-
erogeneity (FDR < 5%), but no significant (marker-specific 
p < 0.05) associations with any of the individual tumor 
characteristic(s). This is likely explained by the fact that 
the test for association with specific tumor markers using 
fixed-effects models are less powerful than mixed-effects 
models used to test the primary hypothesis of global het-
erogeneity by any tumor marker[14].

To help describe and visualize the strength of the evi-
dence for common heterogeneity patterns, we performed 
clustered analyses of z-values for tumor marker-specific 
heterogeneity tests and case–control associations with 
risk of intrinsic-like subtypes. Because they are based on 
z-values, these clusters reflect differences in sample size 
and statistical power to detect associations between vari-
ants and specific tumor subtypes. Thus, clusters should 
not be interpreted as strictly defined categories.

A major strength of our study is our large sample size 
of over 100,000 breast cancer cases with tumor marker 
information, and a similar number of controls, mak-
ing this the largest, most comprehensive breast cancer 
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heterogeneity investigation. Our application of the two-
stage polytomous logistic regression enabled adjusting 
for multiple, correlated tumor markers and accounting 
for missing tumor marker data. This is a more powerful 
and efficient modeling strategy for identifying heteroge-
neity sources among highly correlated tumor markers, 
compared with standard polytomous logistic regres-
sion[14, 15]. In simulated and real data analyses, we have 
demonstrated that in the presence of heterogenous asso-
ciations across subtypes, the two-stage model is more 
powerful than polytomous logistic regression for detect-
ing heterogeneity. Moreover, we have demonstrated that 
in the presence of correlated markers, the two-stage 
model, incorporating all markers simultaneously, has 
much better ability to distinguish the true source(s) of 
heterogeneity compared to testing for heterogeneity by 
analysis of one marker at a time[14, 15]. In prior analyses, 
we showed that the two-stage polytomous regression is a 
powerful approach to identify susceptibility variants that 
display tumor heterogeneity[15]. Notably, in this prior 
investigation we excluded the genomic regions in which 
the 173 variants that were investigated in this work are 
located[15].

Our study also has some limitations. First, many 
breast cancer cases from studies included in this report 
had missing information on one or more tumor char-
acteristics. ER tumor status data was available for 81% 
of cases, but missing data for the other tumor markers 
ranged from 27 to 46%. To address this limitation, we 
implemented an EM algorithm that allowed a powerful 
analysis to incorporate cases with missing tumor charac-
teristics under the assumption that tumor characteristics 
are missing at random (MAR), i.e., the underlying reason 
for missing data may depend on observed tumor mark-
ers or/and covariate values, but not on the missing val-
ues themselves[47]. If this assumption is violated it can 
lead to an inflated type-one error[14]. However, in the 
context of genetic association testing, the missingness 
mechanism would also need to be related to the genetic 
variants under study, which is unlikely. The 88 variants 
that did not meet the p-value threshold for significant 
heterogeneity in the global test, are likely to represent a 
combination of variants that are associated with risk of 
all investigated tumor subtypes with similar effects and 
variants for which we lacked power to detect evidence of 
global heterogeneity due to weak effect sizes or uncom-
mon allele frequencies. In addition, our study focused on 
investigating ER, PR, HER2, and grade as heterogeneity 
sources; future studies with more detailed tumor charac-
terization could reveal additional etiologic heterogeneity 
sources.

Conclusion
Our findings provide insights into the complex etiologic 
heterogeneity patterns of common breast cancer suscep-
tibility loci. These findings may inform future studies, 
such as fine-mapping and functional analyses to iden-
tify the underlying causal variants, clarifying biological 
mechanisms that drive genetic predisposition to breast 
cancer subtypes. Moreover, these analyses provide pre-
cise estimates of relative risk for different intrinsic-like 
subtypes that could improve the discriminatory accuracy 
of subtype-specific polygenic risk scores [48].
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