
The University of Southampton

Faculty of Social Sciences

Mathematical Sciences

Vehicle Routing and Scheduling with Synchronisation,

Time Windows and Skill Levels with Applications in

Lifeboat Maintenance

Ruth Walton

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

July 2021

ii

University of Southampton

Abstract

Faculty of Social Sciences

Mathematical Sciences

Doctor of Philosophy

Vehicle Routing and Scheduling with Synchronisation, Time Windows and

Skill Levels with Applications in Lifeboat Maintenance

by Ruth Walton

The Vehicle Routing Problem (VRP) is one of the most widely studied problems in Op-

erational Research, due both to its complexity and vast number of possible variations

and applications. In this thesis we present one such variation of the VRP with syn-

chronisation, time windows and skill levels, designed for the application in the routing

of lifeboat maintenance technicians in the Royal National Lifeboat Institution (RNLI),

the largest coastal lifesaving charity in the UK. These technicians work in one of several

geographical divisions and complete a mixture of planned work, known up to six months

in advance, and unplanned work in response to equipment fault and failure which may

need to be completed within as little as 48 hours. The objective is to produce routes of

minimum cost for these technicians such that all jobs are completed within their respec-

tive time window by a technician (or pair of technicians) with the appropriate skill level,

and where jobs are completed by two technicians their routes are synchronised to enable

them to work together on a job with minimal time spent waiting. The contributing

costs include travel, nights away for technicians working far from home and the costs

incurred through lateness of jobs.

We formulate an integer program and propose a matheuristic algorithm, comprised of

Lagrangian relaxation, brancn and bound and a local search heuristic, to solve the

formulation at a divisional level across one or two weeks. We are able to prove that the

iii

subgradient method used with Lagrangian relaxation achieves a good lower bound after

just one iteration, which provides an initial solution on which to base the local search

heuristic used to find further improvements. We show that this approach achieves usable

solutions within a number of minutes, a time which is sufficient for such a method to

be implemented by those responsible for technician planning at the RNLI. Such short

computation times also allow for the inclusion of unplanned jobs at short notice, as the

problem can be resolved with the remaining jobs in a planning period to produce new

routes.

iv

Contents

Statement of Authorship xiii

Acknowledgements xv

1 Introduction 1

2 Literature Review 5

2.1 Vehicle Routing Problem . 5

2.1.1 Vehicle Flow Formulation . 6

2.1.2 Set Partitioning Formulation . 8

2.1.3 Vehicle Routing Problem with Time Windows 10

2.1.4 Vehicle Routing Problem with Skill Levels 13

2.1.5 Vehicle Routing Problem with Team Building and Synchronisation 16

2.2 Solution Methods . 20

2.2.1 Exact Algorithms . 20

2.2.2 Heuristics and Matheuristics . 22

2.3 Other Relevant Literature . 24

2.3.1 Scheduling Problem . 24

2.3.2 Knapsack Problem . 26

2.3.3 Objective Function Weighting . 27

2.4 Paper Comparison Table . 28

3 Problem Description 35

4 Routing and Scheduling Formulation 43

v

4.1 Definitions . 43

4.1.1 Terminology . 43

4.1.2 Sets . 44

4.1.3 Decision Variables . 45

4.1.4 Parameters . 47

4.2 Assumptions . 48

4.3 Preprocessing . 49

4.3.1 Reference for Notation . 53

4.4 Problem Formulation . 55

4.4.1 Objective Function . 55

4.4.2 Constraints . 56

4.4.3 Full Formulation . 73

4.5 Formulation Reduction . 78

5 Methodology 81

5.1 Lagrangian Relaxation . 81

5.2 Subgradient Method . 84

5.2.1 Step Size Selection . 85

5.2.2 Behaviour of Subgradient . 88

5.3 Heuristic . 94

5.4 Hierarchical Approach . 100

5.5 Implementation . 106

6 Data 109

6.1 Job Data . 109

6.2 Instance Generation . 111

6.2.1 Node Locations . 113

6.2.2 Job Information . 114

6.2.3 Technician Information . 116

6.3 Objective Function Weighting . 117

7 Results 121

vi

7.1 Identifying Constraints to Dualise . 121

7.1.1 Initial Results . 121

7.1.2 Full Problem Size . 123

7.2 Subgradient Results . 127

7.2.1 Step Size δ = π(ZUB−ZLB)∑m
i=1G

2
i

. 127

7.2.2 Iteration Based Step Sizes . 129

7.2.3 Subgradient Normalisation . 132

7.2.4 First Iteration Method . 135

7.3 Heuristic Results . 137

7.4 Full Solution Process . 143

8 Conclusion and Further Work 147

8.1 Conclusion . 147

8.2 Further Work . 149

A Appendices 151

A.1 Job Data . 151

A.2 Heuristic Results . 154

Bibliography 166

vii

viii

List of Figures

3.1 Map of RNLI Divisions and Stations . 36

4.1 Examples for cases of equation (4.16b) 62

4.2 Examples for cases of equation (4.17b) 65

5.1 Comparison of step size values . 88

5.2 Count and Value of Non Zero Multipliers in the Subgradient Method -

λ0 = U(0,1)
10 . 90

5.3 Schedule result directly from Subgradient method 101

5.4 Schedule solution directly after applying algorithm 1 to achieve feasibility

(some jobs not visible at the end of tours) 101

5.5 Schedule solution directly after first stage of algorithm 2, keeping all jobs

with their original technician . 102

5.6 Schedule solution directly after second stage of algorithm 2, moving late

jobs to different technicians . 102

5.7 Example bipartite graphs . 105

6.1 Number of Jobs and Job Hours by Type 110

6.2 Number of jobs created per month (‘ 0’ indicates that jobs with zero

duration have been ignored) . 112

6.3 Approximate representation of node distributions 113

6.4 Tree of Decision Criteria . 118

7.1 Plot for instance size |C| = 4, |H| = 2, |J | = 8, |K| = 4, |W | = 2, |S| =

2, |L| = 2 . 130

ix

7.2 Comparison of subgradient step size . 131

7.3 Comparison of subgradient normalisation by step size 133

7.4 Time to find initial infeasible solution across varying problem sizes . . . 136

7.5 Infeasible result from Subgradient method 138

7.6 Schedule solution after making schedule feasible 138

7.7 Schedule solution after second stage of heuristic, keeping all jobs with

their original technician . 139

7.8 Schedule solution after third stage of heuristic moving late lobs to different

technicians . 139

7.9 Average Objective Value and Maximum Completion Time across first

three stages of Heuristic . 140

7.10 Average Improvement of Objective Value and Maximum Completion Time

during Heuristic . 141

7.11 Time taken for heuristic method across varying problem sizes 142

7.12 Time taken for full solution process across varying problem sizes 143

7.13 Predicted solution time for increased problem sizes 145

x

List of Tables

2.1 Table of VRP and Scheduling Extensions 29

2.2 Definitions of column headings seen in table 2.1 32

4.1 Table of terminology in the problem . 44

4.5 Calculation of parameters in the preprocessing stage 49

4.6 Calculation of sets in the preprocessing stage 50

4.7 Definition of decision variables . 52

4.8 Reference table for notation . 53

4.9 Alternative Constraint Forms . 77

6.1 Table showing arguments of Data Generation function 112

7.1 Computational details for section 7.1.1 122

7.2 Average time to reach optimality with individual constraints removed . 122

7.3 Computational details for section 7.1.2 124

7.4 Average time for subgradient iterations by dualised constraint 124

7.5 Average iteration time of subgradient algorithm with double dualised

constraints . 125

7.6 Objective values of problem instances based on dualised constraint . . . 126

7.7 Initial results for Beasley step size . 128

7.8 Magnitude of violation for multiple instances across 100 iterations . . . 129

7.9 Number of iterations required to reach objective within 1 of first iteration 132

7.10 Computational details for section 7.2.4 135

7.11 Computational details for section 7.3 . 136

xi

7.12 Average time for each part of the solution method 143

7.13 Coefficients of line equations for computation time 145

A.1 % of jobs/work hours by job type . 151

A.2 Number of jobs by priority . 151

A.3 Work hours jobs by priority . 152

A.4 Descriptive Statistics of Jobs (all units in hours). Numbers in brackets

indicate figures for when durations of value 0 are ignored. 152

A.5 Number of jobs created per month . 153

xii

Statement of Authorship

I, Ruth Walton, declare that the thesis entitled “Vehicle Routing and Scheduling with

Synchronisation, Time Windows and Skill Levels with Applications in Lifeboat Mainte-

nance” and the work presented in it are my own and have been generated by me as the

result of my own original research.

I confirm that:

1. This work was done wholly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

July 5, 2021

xiii

xiv

Acknowledgements

This thesis has been made possible due to the support of many people, probably too

many to list here but I shall try nonetheless. All of these people believed in me and my

ability to finish this work, even when I did not believe this myself.

First and foremost I would like to thank Oli, who has been the best and most supportive

partner I could hope for, and has put up with countless evenings and weekends of thesis

writing. I promise it is nearly over. Next to my family, in particular my parents, whose

love and support throughout my life have doubtless lead me down the path on which I

now find myself, for which I will always be grateful.

The journey of completing this PhD has also been made possible by many friends. Hattie

Hall, the other half of my double act and the best flatmate I could have hoped for for

many years, and Thomas Wilson for providing an ever dependable listening ear and voice

of reason, and for his cracking sense of humour. I am also grateful for the wonderful

office and departmental friendships which made being in the office fun, even on the

bad days: Martina Testori, Simos Zachariades, Márton Benedek, Laura Murray, Karl

Steinborn-Busse, Lily Clements, Naomi Andrew, Daniel Čerńın and so many others.

My academic journey would have been impossible without the input of so many Aca-

demics over the years. Most notable of course is the support of my Supervisors Stefano

Coniglio and Jörg Fliege who have guided me to becoming the researcher I am today,

and have always shown more belief in me than I could manage. I would also like to give

particular thanks to Christine Currie for her support which helped more than she might

realise.

I would like to thank all those at the RNLI who took time to assist me with the under-

standing of the problem required to complete this work. I also acknowledge the use of

the IRIDIS High Performance Computing Facility, and associated support services at

the University of Southampton, in the completion of this work.

xv

xvi

Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is one of the most widely researched area of Op-

erational Research, with tens of thousands of new works on the VRP and its variation

published each year1. The applications of this research are widely varied, and cover

problems in the private, public and third sectors. In third sector applications such as

charities, optimisation of processes is an increasingly important task as such organi-

sations often have limited financial resources or rely on donations, so ensuring this is

spent as efficiently as possible in all areas of the organisation’s operations is key to

maximising what can be achieved with the resources available. This can include Vehi-

cle Routing type problems for organisations which operate large logistics networks, one

such organisation being the Royal National Lifeboat Institution (RNLI) which will be

the application considered in this work.

The RNLI is a British charity founded by Sir William Henry in 1824. Although it

started as a small organisation, the RNLI is now the largest lifesaving charity active

around the coast of the UK; it operates over 340 lifeboats across 242 lifeboat stations

and since its inception has been responsible for saving more than 140,000 lives. They

receive no funding from the UK government, so are entirely reliant on donations to keep

these essential services active. They have also more recently expanded their operations

to include a Flood Response service, and a Lifeguard service on over 200 beaches around

1Google Scholar results for ‘Vehicle Routing’: 2020 - 30,500; 2019 - 29,400; 2018 - 31,500; 2017 -
31,500

1

the UK during the summer months. The lifeboats currently in service range from small

Inshore Lifeboats to much larger All-Weather Lifeboats, all of which along with life

guarding and flood response equipment must be maintained by a network of in house

System Technicians (ST). It is the routing and scheduling of these STs which is the

focus of this work.

These technicians are divided up in to geographical divisions, and within their division

Technicians travel to the required locations to carry out the work. Most of these jobs

are known as planned or preventative maintenance, which are known up to six months

in advance, but a proportion (30-40%) of work carried out is unplanned, or corrective

maintenance. These represent repairs or breakdowns which must be incorporated in

to the schedule of planned work, sometimes with only 24-48 hours notice. Given a set

of technicians and a set of jobs, the objective is to determine an optimal route and

schedule for these STs so that all jobs are completed within the given planning horizon,

including the corrective maintenance which may become known with little notice before

its deadline.

There are many additional elements to this problem which would ideally be included,

and part of the problem at hand is to establish how these can be implemented in a

mathematical formulation, and which can be included in the problem whilst maintaining

feasibility, and the ability to achieve a solution in a reasonable time. One key element

is the ability for emergent work to be able to be incorporated in to existing schedules,

ensuring it is completed within its specified time frame. In addition to this, all jobs

(both corrective and preventative) have time windows for completion, and some are

also subject to precedence constraints. Technicians are skilled in different areas (and

sometimes at different levels), and a technician must have the appropriate skills in order

to complete a job. In the case where no technician is trained in all the required skills to

complete a job, then two technicians are required for this job, and the respective routes

of these technicians must be synchronised. Some jobs do not require two technicians to

be completed but are still able to be completed by two technicians simultaneously; in

such cases it is assumed that the completion times for such jobs will be halved when

there are two technicians working on the job.

2

The solution method presented in this thesis is a matheuristic, combining Lagrangian

relaxation and branch and bound with a local search heuristic to achieve a solution.

The formulation solved exactly in the first phase is a Lagrangian relaxation of the full

formulation, and as such any solutions are not feasible for the full formulation. It does

however provide a starting solution for the local search procedure, the first aim of which

is to make the solution feasible for the original problem and then implements local

searches over a number of iterations to improve the solution.

The possible benefits to the RNLI from Operational Research are not limited to the

work described in this thesis. At present the supplies needed for this maintenance work

are distributed all over the UK from a single warehouse on the south coast by a fleet

of in house delivery trucks; in a related piece of work Coniglio et al. [2017] identify the

possibility for savings to be made for the RNLI with the introduction of an additional

warehouse. Although such a warehouse would incur running costs, it was found that the

potential savings of reducing the distance travelled by delivery trucks would be sufficient

to offset these additional costs. There are numerous other ways in which Operation

Research could benefit the RNLI, as with many other third sector organisations, but

they will not be presented in this work.

This thesis will be structured as follows: Chapter 2 will provide a literature review

of the existing work relevant to this problem from the areas of vehicle routing and

scheduling, as well as the solution methods used for these. Chapter 3 provides a in depth

description of the problem within the context of the application being considered. This

is followed by a full MILP formulation of the problem in chapter 4, and then chapter 5

gives a detailed explanation of the approaches used, both exact and heuristic which are

ultimately combined to form a bespoke matheuristic for this problem. Chapter 6 will

introduce that data relating to this problem that is known, as well as the procedures used

to fabricate test data used in all the experimentation carried out, the results of which

are presented in chapter 7. Finally chapter 8 will summarise the work presented in this

thesis, and make any recommendation for further research surrounding this problem.

3

4

Chapter 2

Literature Review

2.1 Vehicle Routing Problem

There has been a lot of research surrounding the vehicle routing and problem, in part

due to the large number of possible applications, but also due to the complexity of

the problem. This literature review will provide a summary and comparison of those

which are relevant to the problem of System Technician scheduling within the RNLI.

The following notation will be used throughout this literature review, unless specified

otherwise: N indicates the set of all nodes of the network, where N = J ∪ {0}, 0 is

the depot, and J the set of jobs to be completed; AN is the set of all arcs (i, j) in the

network, for i, j ∈ N , and AJ is the set of all arcs between jobs, {(i, j)|i, j ∈ J}.

The Vehicle Routing Problem (VRP) itself was first outlined in Dantzig and Ramser

[1959], (although referred to as the Truck Dispatching Problem in this case), and is

defined as a generalisation of the Travelling Salesman Problem (TSP). With a certain

delivery requirement qi ∈ R+ at each point i ∈ J in the network, if Q, the capacity

of the delivery vehicle, is greater than the total item demand (i.e. if Q ≥
∑

i∈J qi),

then the problem at hand is simply the TSP, where a single route is to be determined.

Therefore, generalising to the case with the set K of vehicles of equal capacity Q, where

Q and K satisfy the inequalities

5

Q >max
i∈J
{qi} (2.1)

Q <
∑
i∈J

qi (2.2)

Q|K| ≥
∑
i∈J

qi (2.3)

we have the VRP, in which the aim is to determine the shortest route for each vehicle

in K so that demand at all points i ∈ J is satisfied. Since this, numerous different

extensions to the VRP have been considered, at varying length, in an attempt to create

a formulation which better captures the complexities of such real life problems. An

extensive review of the early work in the Vehicle Routing and Scheduling Problems can

be seen in Bodin et al. [1983], and Vidal et al. [2019] provides a comprehensive review

of the latest developments in extensions to the VRP family of problems.

2.1.1 Vehicle Flow Formulation

Of the work surrounding the VRP, most approaches fall in to one of two main areas:

vehicle flow formulations, which will be discussed in this section, and set partitioning

formulations, which will be discussed further in 2.1.2.

The vehicle flow family of formulations make use of two-index binary variables xij to

indicate whether the arc (i, j) is part of the solution (i.e. node j is visited immediately

after node i). The full formulation of the problem, as presented by Toth and Vigo [2002],

is as follows:

min
∑

(i,j)∈A

cijxij (2.4a)

s.t.
∑

i∈J,i6=j
xij = 1 ∀j ∈ J (2.4b)

∑
j∈J,i6=j

xij = 1 ∀i ∈ J (2.4c)

6

∑
j∈J

x0j ≤ |K| (2.4d)

∑
j∈J

x0j =
∑
i∈J

xi0 (2.4e)

∑
i∈S

∑
j∈S

xij ≤ |S| − r(S) ∀S ⊂ J, |S| ≥ 2 (2.4f)

xij ∈ {0, 1} ∀(i, j) ∈ AN (2.4g)

where cij is the length of arc (i, j), |K| is the number of available vehicles, and r(S) is

the minimum number of vehicles required to serve the subset of nodes S. (2.4b) and

(2.4c) ensure that each job has exactly one resource arriving to and departing from it,

(2.4d) and (2.4e) ensure that the same number of routes depart from and arrive at the

depot, which cannot exceed |K|, the number of available resources, and (2.4f) are the

subtour elimination or capacity constraints. Grötschel and Padberg [1975] prove this

form of subtour elimination constraint to be facets of the polytope defined by (2.4b)

and (2.4c), meaning it provides a strong lower bound to the linear relaxation, but this

comes at a cost: the number of constraints in this formulation is O(2n), which results

in a formulation that is very computationally demanding. An alternative formulation

of subtour elimination constraints is proposed in Miller et al. [1960]: these make use

of a new set of continuous variables ui ∈ R+ which indicate the accumulated demand

already distributed by the vehicle when it arrives at node i ∈ J .

uj ≥ ui + qj −Q(1− xij) ∀(i, j) ∈ AJ (2.5)

qi ≤ ui ≤ Q ∀i ∈ J (2.6)

Replacing (2.4f) with (2.5) and (2.6) gives a new formulation of the VRP. The advantage

of this, known as the MTZ formulation, is that it has O(n2) variables and constraints,

but its linear relaxation generally produces a weak lower bound on the integer solution,

as described in Desrochers and Laporte [1991]. Bektaş and Gouveia [2014] also present

a generalisation of the MTZ constraints (and their alternatives proposed by Desrochers

7

and Laporte) which they demonstrate offer marginal computational improvements.

2.1.2 Set Partitioning Formulation

The other main type of formulation that has been applied to the VRP is the set par-

titioning model, first proposed by Balinski and Quandt [1964]. Considering Ω, the set

of all possible routes in the network, the aim is to establish which routes to include in

the final solution so that each job is visited exactly once (thus forming a two-subset

partition of the original network). This is achieved with binary variables λr, for r ∈ Ω

which take value 1 if route r ∈ Ω is included in the solution, and 0 otherwise. The cost

of each route must be predetermined, and is represented by cr, and the coefficient air

is equal to 1 if job i is visited on route r, and 0 otherwise. Thus, the set partitioning

VRP formulation can be written as follows:

min
∑
r∈Ω

crλr (2.7)

s.t.
∑
r∈Ω

airλr = 1 ∀i ∈ J (2.8)

∑
r∈Ω

λr ≤ |K| (2.9)

λr ∈ {0, 1} ∀r ∈ Ω (2.10)

In this formulation, (2.8) requires that each job i ∈ J is included in exactly one route in

the solution, and (2.9) limits the number of routes to |K|, where K is the set of available

vehicles. One obvious advantage of this formulation is the fact that it implicitly deals

with any complex objective functions or route feasibility constraints; any complexities

within these are addressed in the definition of c and Ω, without affecting the linearity

of the final formulation, or requiring the use of additional constraints. In addition,

Bramel and Simchi-Levi [1997] note that set covering formulations of the VRP provide

a strong lower bound on the linear relaxation, but as with the original vehicle flow

formulation in equation (2.4), this comes at a cost in terms of the number of variables

8

in the problem. Even with additional constraints surrounding the feasibility of routes,

the number of variables in this formulation grows exponentially with |N |, making the

problem prohibitively large.

In attempt to tackle this, some methods exist to reduce the number of variables in the

problem. Of the routes in the set Ω, Balinski and Quandt define the route d to be

dominated if there exists a subset of routes S ⊂ Ω for which the following constraints

are satisfied:

∑
r∈S

air = aid ∀i ∈ J (2.11)

∑
r∈S

cr ≤ cd (2.12)

Here, (2.11) states that the routes in the subset S must include exactly those jobs which

are in route d, and (2.12) states that the combined cost of the routes in subset S is less

than the cost of d. When such routes exist, they clearly need not be considered in the

formulation, and as such these can be removed to reduce the dimension of the problem.

However, the presence of dominated routes depends on the definition of c and Ω, with no

guarantee as to the size of the reduction that it will allow, so such methods should not

be relied upon to reduce the above formulation to a more computationally feasible size.

To tackle the infeasibly large set of routes Ω, many authors use a column generation

technique to systematically add new routes to the set Ω throughout the solution of the

MILP. These solution methods will be discussed further in section 2.2.1.

Both the vehicle flow and set partitioning formulations are used widely in the VRP

literature; the choice of formulation does affect the solution methods which can be used,

as as such most authors present only one formulation. Table 2.1 captures the formulation

used by each of the authors cited in this section (if a formulation is presented). From

this point, all formulations presented will be in the vehicle flow format.

9

2.1.3 Vehicle Routing Problem with Time Windows

One of the earliest widely studied extensions of the VRP is the Vehicle Routing Problem

with Time Windows (VRPTW), sometimes referred to as the Time Constrained VRP

(TCVRP). This considers the standard VRP described above, with the added constraint

that each job must be visited within a predetermined time window. Some of the earliest

work on integrating time windows in to the routing problem can be seen in Baker [1983],

although they consider a single vehicle variation of the problem, which can be seen as

the Time Constrained TSP. Solomon [1987] and Kolen et al. [1987] go on to generalise

this to the multi-vehicle VRPTW, which forms the basis of much subsequent work in

this area.

Given a set of jobs J , each job i ∈ J has an associated time window [ai, bi] within which

it must be completed, and an expected duration pi. Given a maximum route duration

T , the intuitive constraints on ai and bi are ai + pi ≤ bi ≤ T for all i ∈ J . Defining a

new set of continuous variables, ti, which represent the start time of job i, we have the

following time window constraints, based on those seen in Xu and Chiu [2001]:

ai ≤ ti ≤ bi − qi ∀i ∈ J (2.13)

ti + pi + cij ≤ tj +M(1− xij) ∀(i, j) ∈ AJ (2.14)

c0j ≤ tj +M(1− x0j) (2.15)

ti + pi + ci0 ≤ T +M(1− xi0) (2.16)

with M arbitrarily large. (2.13) requires that job i is started and finished within the

specified time window, and (2.14)-(2.16) ensure the correct time sequence of jobs, as well

as travel to and from the depot node. The consideration of time in the above constraints

removes the need for subtour elimination constraints, as it does not allow individual jobs

to be revisited. As such, (2.13)-(2.16) can be used in conjunction with the vehicle flow

formulation described in equation (2.4), replacing the subtour eliminiation constraints

(2.4f) to provide a full formulation of the VRPTW. Such formulations of the VRPTW

10

have been used by Xu and Chiu [2001], Bredström and Rönnqvist [2008], Azi et al. [2010]

and Kovacs et al. [2012], although time windows are not the only additional constraints

considered in these cases.

Alternatively, it is possible to formulate the VRPTW as a set partition model. As

highlighted previously, in such formulations additional constraints on route feasibility

do not affect the final MILP, but instead the definition of Ω, the set of all possible

routes. A number of different approaches to this have been used: Bramel and Simchi-

Levi [1997] use a column generation technique, in combination with a discretisation

of customer locations and parameters, in order to categorise customers in to one of a

fixed number of groups. They note that to reduce the computation time of the column

generation step, they allow subtours within routes, although this affects the tightness

of the lower bound. Due to the size of their problem instance, Eveborn et al. [2006] use

total enumeration of the possible routes, but they allow infeasible routes to reduce the

number of constraints to consider when defining Ω. Unlike Bramel and Simchi-Levi, the

routes they consider must satisfy the basic VRP constraints, but they are not required to

satisfy the additional constraints imposed by the authors; instead, penalties are used in

the calculation of cr to penalise those routes which violate the constraints, with varying

severity depending on the constraint(s) in question.

Further work including time windows sees the inclusion of a number of other additional

extensions to the original problem, all of which deal with the multi-vehicle approach.

Most notably, we see a number of pieces of work which combine time windows with

the notion of heterogeneous skill levels of resources (the full definition and discussion of

which can be found in 2.1.4). These works include: Begur et al. [1997] develop a decision

support tool for the scheduling and routing of nurses, which also considers constraints

on the allowable time between return visits to customers (although no MILP formula-

tion is presented); Weigel and Cao [1999] develop a tool which also allows for multiple

routes, and pre-specified precedence constraints between jobs, as well as resource over-

time (again, no formulation is given); Xu and Chiu [2001] include job priority, using

a binary definition of skill level as part of the job weighting to discourage the assign-

ment of jobs to technicians without the required skills; Eveborn et al. [2006] consider

11

the problem with team building and synchronisation (discussed further in 2.1.5), which

occurs when jobs require more than one resource to be completed; Kovacs et al. [2012]

also include team building in their formulation, as well as the possibility of outsourcing

jobs to external resources; Pillac et al. [2013] consider the multi-skill VRPTW with

tools and spare part requirements at each job. Although similar to the notion of skill

requirements, considering the tools and spare parts is a generalisation of this as the

availability of such items fluctuates over time, subject to usage and restocking. As such,

skill requirements of jobs can be seen as a special case of this in which availability is

constant.

Of those works which consider the VRPTW with homogeneous skill levels across re-

sources, we also observe a wide range of additional constraints: Bredström and Rönnqvist

[2008] include precedence relationships of jobs, and synchronisation of resources in cases

where jobs require multiple resources; Bostel et al. [2008] develop a multi-period formu-

lation, which produces a solution over multiple planning horizons, with the consideration

of unplanned jobs which may arrive after scheduling has been completed; in Azi et al.

[2010] and Azi et al. [2014] Azi et al. allow for multiple routes, also known as multiple

use of vehicles (the VRP with multiple routes is knows as VRPM), in which each re-

source is not restricted to performing only one route per day. Zhang et al. [2019] present

the VRPTW under uncetainty, where a riskiness index, a function of the probability of

infeasibility and the magnitude of constraint violation, is used as a criteria for decision

making.

Shelbourne et al. [2017] present the VRP with Release and Due Dates (VRPRDD),

which has a very similar structure to the VRPTW, the key difference being that a

vehicle cannot leave the depot until all the release dates for its contents have passed;

this is more relevant in cases where the VRP is considered for the purposes of delivering

goods rather than providing services. In another piece of work most relevant to delivery

of goods, Reil et al. [2018] consider several variations of the VRPTW with backhauls,

with varying constraints on linehaul and backhaul order, and whether customers solely

require linehaul or backhaul service, or both simultaneously. Bulhões et al. [2018] present

a relaxation of the VRPTW in the form of the VRP with Service Levels (VRP-SL).

12

In this case, rather than hard time windows which must be satisfied for each job, the

constraint is a service level agreement which stipulates a minimum number or proportion

of on-time deliveries across all service requests.

2.1.4 Vehicle Routing Problem with Skill Levels

One of the most commonly considered extensions is the inclusion of heterogeneous re-

sources in the VRP, often referred to as resources with varying skill levels. The extent

to which they are incorporated in to the formulation varies between authors, but the

basic premise is that each resource has a prespecified set of skills, and each job has a

required skill level that a resource must meet in order to be assigned to the job. The

vehicle flow formulation of the VRP does not explicitly assign resources to routes; the

homogeneity of resources means these can be assigned post optimisation, as they have

no impact on the objective function value. As such, adaptations of this formulation

are required to successfully include the varying skill levels of technicians. The explicit

inclusion of skill levels in the VRP formulation is first seen in Cappanera et al. [2011];

many others previous to this talk about the need to consider such skill differences, but

Cappanera et al. are the first to implement it. Moving away from the VRP, work has

been done to incorporate varying skill levels in to the job scheduling problem, most

notably in Cordeau et al. [2010] and Fırat and Hurkens [2012], and there is potential

for overlap between these two areas.

Considering the previously defined set of vehicles K, we extend the set of binary vari-

ables used in the VF formulation to xijk, which indicates that arc (i, j) is traversed

by technician k ∈ K. In addition, we define sk ∈ R+ to be the skill level of techni-

cian k, and ri ∈ R+ the skill level requirement of job i (we note that skill levels are

conventionally considered as a discrete set in Z+, but this is not a requirement of the

formulation). For ease of comprehension, we define the set Kij = {k|sk ≥ max{ri, rj}},

the set of technicians which meet the skill requirements of both jobs i and j. In the

Skill VRP presented in Cappanera et al. [2011], they use a two-index flow variable yij

to represent the amount of demand remaining on the route after j (where each job is

assumed to have demand 1). They also consider uncapacitated vehicles, so generalising

13

their formulation to a case with demand qj at job j and vehicle capacity Q, we reach

the following formulation:

min
∑

(i,j)∈A

∑
k∈Kij

cijkxijk (2.17a)

s.t.
∑

i∈J,i6=j

∑
k∈Kij

xijk = 1 ∀j ∈ J (2.17b)

∑
j∈J,i6=j

∑
k∈Kij

xijk = 1 ∀i ∈ J (2.17c)

∑
j∈J

y0j =
∑
j∈J

qj (2.17d)

∑
i∈J

yij −
∑
h∈J

yjh = qj ∀j ∈ J (2.17e)

yij ≤ Q
∑
k∈Kij

xijk ∀(i, j) ∈ AN (2.17f)

xijk ∈ {0, 1} ∀(i, j) ∈ AN , k ∈ Kij (2.17g)

yij ≥ 0 ∀(i, j) ∈ AN (2.17h)

As with the previous VF formulation, (2.17b)-(2.17c) ensure that exactly one technician

arrives at and departs from each job. (2.17d) requires that the flow leaving the depot is

exactly equal to the total demand in the network (different from the first VF formulation

due to the alternative definition of the flow variables), and (2.17e)-(2.17f) are the subtour

elimination constraints.

In their formulation, Cappanera et al. account for varying skill levels among resources,

but they are still restricted to a single skill domain. The ability to consider multiple skill

levels within a set of skill domains has been included in job scheduling problems (see

Cordeau et al. [2010] and Fırat and Hurkens [2012]), and although this is not directly

linked to the VRP, there are similarities which could be carried across. Cordeau et al.

define a skill matrix for each technician, and a requirement matrix for each job, which

take the following form:

14

sldk =

 1 if technician k is trained to level l in skill domain d

0 otherwise

rldi = the number of technicians required by job i at level l in skill domain s

These skill levels are cumulative, so sldk ≤ sl
′d
k and rldi ≤ rl

′d
i for all l < l′, meaning a

technician is trained at all levels below its maximum in each domain, and similarly for

job requirements. An example of such matrices for a problem with 4 skill domains and

3 skill levels can be seen below:

sk =


1 0 1 1

0 0 1 1

0 0 1 0

 ri =


2 0 1 1

2 0 0 1

1 0 0 1


Here we can see that technician k is trained to level 1 in skill area 1, level 3 in area 3

and level 2 in area 4. Job i requires two technicians in area 1, one of whom is trained

to level 2 and one to level 3, one technician at level 1 in area 3, and one at level 3 in

area 4. Requirements across different areas may be fulfilled by one single technician,

provided they reach the required level in each area. If no such technician exists, then

multiple may be sent to the job, but this is only required explicitly in cases like area 1

shown above.

These requirements for multiple technicians mean consideration must be given to how

the schedules of multiple resources can be matched to allow for parallel completion. This

can be solved using synchronisation, where technicians’ routes coincide at a particular

point to allow for join job completion, or team building, where technicians are sorted in

to teams and travel together for the duration of the planning period. Further discussion

around the implementation of these in the VRP can be seen in section 2.1.5.

The approaches to skill levels described up to this point represent hard constraints,

meaning an under-qualified technician being assigned to a job represents infeasibility.

Xu and Chiu [2001] instead use soft constraints on skill levels, in which assignments

15

of under-qualified technicians have a zero weighting factor in the objective function,

meaning they are undesirable in a maximisation problem, but still represent a feasible

solution. Although Xu and Chiu use binary skill levels across multiple areas (a technician

is either trained or not in a particular area), this could easily be generalised to a problem

with multiple skill levels.

Although presented differently, another similar problem to this is the Truck and Trailer

Routing problem (TTRP), initially presented by Chao [2002]. This is a special case of

the VRP in which the available resources consist of a number of trucks t and trailers r

(where r ≤ t), and customers can either be served by a complete vehicle (a truck pulling

a trailer) or just a truck. Three types of routes are considered: those completed in full

by just a truck, those completed in full by a complete vehicle, or mixed routes consisting

of a main tour by a complete vehicle, with subtours completed by just a truck along

the way. We refer to the first two cases as pure routes, and the latter as a mixed route.

Although traditionally considered for applications in which the physical access to jobs

limits the ability of a complete vehicle to serve the respective customers, formulations

such as these could also be adapted for the VRP with skill levels. In the case of multiple

skill domains with no overlap in the skill set of resources (i.e. no resource is able to serve

multiple types of jobs), the remaining problem is a special case of the TTRP described

above with only pure routes, as there are no resources capable of carrying out a mixed

route with both types of jobs. In cases with a single skill area with multiple levels, the

TTRP resources can be viewed as two levels of the same skill. As such, the same three

types of routes described for TTRP could be used for the VRP, with relxation on the

order of truck and complete vehicle jobs in mixed routes.

2.1.5 Vehicle Routing Problem with Team Building and Synchronisa-

tion

In variations of the VRP, team building refers to instances in which technicians are

grouped and travel together for the duration of the planning period, and synchronisation

is when individuals (or different teams) meet in a specified location to carry out work

together, but do not travel together. Whilst both approaches are useful in instances

16

where some jobs require multiple resources to be completed, the former is more suited

to instances where the majority of jobs are of this type, otherwise resources in a team

could spend unnecessary time being idle at jobs that do not require multiple resources.

Conversely, synchronisation is most appropriate in cases where the proportion of jobs

which require multiple resources is smaller, so these resources are free to follow their

own routes once finished working together.

A basic formulation of the VRP with Synchronisation is as follows, based on the Vehicle-

Flow fomulation seen in section 2.1.1. In order to consider sunchronised jobs in this

formulation, such jobs have been split in to two dummy jobs which represent the same

demand, and their start times are set to be equal.

min
∑
k∈K

∑
(i,j)∈A

cijxijk (2.18a)

s.t.
∑
i∈J

xijk =
∑
h∈J

xjhk ∀j ∈ J, k ∈ K (2.18b)

∑
j∈J

x0jk = 1 ∀k ∈ K (2.18c)

∑
j∈J

x0jk =
∑
i∈J

xi0k ∀k ∈ K (2.18d)

∑
k∈K

uik =
∑
k∈K

ujk ∀(i, j) ∈ PSY NC (2.18e)

uik + (δi + cij)xijk ≤ ujk +M(1− xijk) ∀(i, j) ∈ AJ , k ∈ K (2.18f)

xijk ∈ {0, 1} ∀(i, j) ∈ AN , k ∈ K (2.18g)

ujk ∈ R ∀j ∈ J, k ∈ K (2.18h)

where the binary variables xijk take value 1 if vehicle k travels along arc (i, j), and the

continuous variable ujk represents the start time of vehicle k at job j. cij represents

the travel time for arc (i, j), δj the duration of job j, and PSY NC the set of pairs of

jobs (i, j) which need to be synchronised. Constraint (2.18b) ensure that the same

resources arrive and depart each job, and (2.18c) and (2.18d) ensure this is exactly once

17

per technician at the base node. (2.18e) fixes the start time of synchronised jobs to be

the same, and (2.18f) maintains the correct sequence of jobs completed by each vehicle

k, eliminating the need for tradition subtour elimination constraints. Very little work

exists on considering the VRP with Synchronisation and without any other extensions,

and as such this formulation has been adapted from the VRPTW with Synchronisation

presented in Afifi et al. [2016].

Most commonly synchronisation is combined with time windows, one of the most widely

researched extensions of the VRP. Bredström and Rönnqvist [2008] propose a heuristic

for solving the VRP with time windows, synchronisation and job precedence, with which

they found that changes in the proportion of jobs requiring synchronisation does not

have a notable impact on the ability to find a feasible solution to the problem, provided

the number of available resources is increased accordingly. Afifi et al. [2016] consider

the VRP with time windows and synchronisation, and propose a Simulated Anneal-

ing algorithm with local search which compares competitively with existing methods

in the literature. Similarly, Liu et al. [2019] consider the same extensions of the VRP,

and present an Adaptive Large Neighbourhood Search approach. Eveborn et al. [2006]

present a VRP with time windows, synchronisation and skill levels and apply it to the

problem of staff planning for home care, although synchronisation is handled by fixing

the start times of such jobs before solving, eliminating the need for synchronisation con-

straints. For more discussion of the finer details around diferent types of synchonisation

within the VRP, the reader is directed to Drexl [2012] who provides a comprehensive

survey of VRPs with synchronisation.

Based on the work presented in Kovacs et al. [2012], the formulation for the VRP with

Team Building is as follows:

min
∑
t∈T

∑
(i,j)∈A

cijxijt (2.19a)

s.t.
∑
i∈J

xijt =
∑
h∈J

xjht ∀j ∈ J, t ∈ T (2.19b)

18

∑
j∈J

x0jt = 1 ∀t ∈ T (2.19c)

∑
j∈J

x0jt =
∑
i∈J

xi0t ∀t ∈ T (2.19d)

uit + (δi + cij)xijt ≤ ujt +M(1− xijt) ∀(i, j) ∈ AJ , t ∈ T (2.19e)∑
t∈T

zkt ≤ 1 ∀k ∈ K (2.19f)

qjyjt ≤
∑
k∈K

zkt ∀j ∈ J, t ∈ T (2.19g)

xijt ∈ {0, 1} ∀(i, j) ∈ AN , t ∈ T (2.19h)

yjt ∈ {0, 1} ∀j ∈ J, t ∈ T (2.19i)

zkt ∈ {0, 1} ∀k ∈ K, t ∈ T (2.19j)

ujt ∈ R ∀j ∈ J, t ∈ T (2.19k)

with decision variables:

xijt =

 1 team t traverses arc (i, j)

0 otherwise

yjt =

 1 team t is assigned to job j

0 otherwise

zkt =

 1 technician k is assigned to team t

0 otherwise

ujt = the start time of team t at job j

cij and δj are as defined in (2.18), and qj is the minimum number of technicians required

for job j. As in (2.18), (2.19b)-(2.19d) ensure the correct number of teams leaving and

departing all nodes including the base, and (2.19e) maintains the correct sequence of

jobs completed by each team t. (2.19f) and (2.19g) are the Team Building constraints,

which ensure each technician is assigned to at most one team, and the minimum number

of technicians is met for job j by the assigned team.

Like synchronisation, there is limited literature around team building, and most of the

19

existing work is focused on the Scheduling problem rather than the VRP. Bellenguez

and Néron [2004] consier a Scheduling problem with both skill areas and skill levels, in

which team building can be used to meet the skill requirement of jobs. Cordeau et al.

[2010] and Fırat and Hurkens [2012] both present their solutions to the 2007 ROADEF

Challenge, which are scheduling problems with skill levels, precedence, team building

and outsourcing. Although these are not VRP problems, the constraints used for team

building can be adapted for use with the VRP. Kovacs et al. [2012] is the only known

publication which explicitly incorporates team building in to the VRP formulation; it

is considered in conjunction with time windows and skill levels, and an Adaptive Large

Neighbourhood Search algorithm is presented which achieves high quality solutions in

short computation times.

2.2 Solution Methods

As one of the most studied problems in Operational Research, it is unsurprising that

the VRP has been solved using a variety of different methods since its introduction by

Dantzig and Ramser. These methods can be separated in to three distinct categories:

exact algorithms, heuristics (including metaheuristics) and the group of hybrid exact

and heuristic methods known as matheuristics. All three have been widely used to solve

the VRP, and in this section I will provide an overview of some of the key algorithms

from each area.

2.2.1 Exact Algorithms

For integer programming problems, the most commonly used exact solution methods

are Branch and Bound (BB) based algorithms, first introduced by Land and Doig [1960],

Cutting Planes (CP) from the work of Gomory [1960], and Column Generation (CG)

from Dantzig and Wolfe [1960]. Two of these, BB and CP, were combined by Laporte

et al. [1985] to form the Branch and Cut algorithm (BC), after Laporte et al. [1984]

found that using Cutting Planes alone was not sufficient to solve instances above 60

nodes of the distance constrained VRP. Similarly Desrosiers et al. [1984] combined BB

20

and CG to create the Branch and Price algorithm (BP), and these methods now form

the foundation of most of the exact algorithms studied in the literature for Integer

Programming, and more specifically the VRP.

Branch and Price algorithms use the tree based structure of Branch and Bound, but

use Column Generation to solve the subproblems at each node rather than the tradi-

tional LP solvers like the simplex method. The use of Column Generation requires the

VRP formulation in question to be written as a set-partition problem, as described in

section 2.1.2. At the root node, a restricted version of the Master Problem is solved,

with only a subset of possible routes Ω′ ⊂ Ω. At each subsequent node, the Pricing

Problem is solved, which aims to find any routes r ∈ Ω \Ω′ with negative reduced costs

cr, or to prove that no such routes exist. If a suitable route r is found, this column is

added to the restricted master problem, and this is reoptimised. When no such routes

can be found, branching takes place if the integrality constraints of the original problem

are not satisfied, and column generation using the pricing problem is completed at the

next node. The exact branching strategies used vary between authors, and are often

dependent on the exact variation of the VRP being considered. Dell’Amico et al. [2006]

consider the VRP with simultaneous distribution and collection and test three different

branching strategies for the BP algorithm, concluding that a mixed approach works best,

depending on the structure of the routes in the latest solution. Azi et al. [2010] consider

the VRPTW with multiple use of vehicles, with a hierarchical branching strategy: first

they branch on the number of vehicles in the solution k if k is non-integer; if this is not

possible they branch on a customer whose value (the sum of all routes they included in)

is non-integer; failing both of these they branch on an arc that has fractional flow. The

latter branching technique is also used by Gutiérrez-Jarpa et al. [2010] for the VRPTW

with deliveries and selective pickups.

In terms of performance, Branch and Price methods have been found to be capable

of handling VRP problems and variations of a reasonable size. Gutiérrez-Jarpa et al.

[2010] found their method consistently solved instances with 25 nodes and sometimes up

to 50, with the slowest taking approximately 25 minutes and most much quicker than

this. Similarly Dell’Amico et al. [2006] fount that their BP method worked well for the

21

given variation of the VRP, with most instances of up to 40 nodes solving in less than 20

minutes, although some took up to four hours. Azi et al. [2010] reported mixed results

with problems of 25 and 40 nodes, with some taking a matter of minutes to solve, and

others taking several hours, with a maximum of over 7 hours.

An extension of the Branch and Price family of algorithms is Branch Price and Cut

algorithms (BPC): these follow the same steps as the BP described above, but with the

addition of cutting planes at each node to strengthen the linear relaxations.

2.2.2 Heuristics and Matheuristics

In recent years, a large proportion of work around the VRP has been dedicated to

the development and adaptation of heuristic methods for variants of the VRP. These

represent some of the state of the art methods, and can be used on instances too large

or complex to be solved exactly in a reasonable time. This section will provide a brief

overview of the latest heuristic methods presented in the literature, and will then move

on to the more specific area of matheuristics.

Continuous advancements in computing technology have created a rapidly changing

landscape of heuristic methods, with the latest algorithms able to run on computers

that would not have been possible just a number of years ago. Laporte et al. [2000] and

Cordeau et al. [2002] provide a concise overview of the earlier state of the art heuristic

methods, but more recent techniques will be the focus of this review as these are the

most relevant to the problem studied in this work, and the computational power that is

now readily available. Koç et al. [2015] present a hybrid evolutionary algorithm for the

VRP with time windows and a heterogeneous fleet (similar to the concept of skill levels

introduced in section 2.1.4). This particular evolutionary algorithm combines a number

of different existing metaheuristic techniques, including the traditional savings algorithm

by Clarke and Wright [1964] and an Adaptive Large Neighbourhood Search (ALNS) to

achieve competitive solution times across benchmark problem instances. Afifi et al.

[2016] and Liu et al. [2019] both propose heuristic approaches for the VRP with time

windows and synchronised visits, the former using Simulated Annealing (SA) and the

22

latter another ALNS approach. Both report computational results which indicate the

ability to outperform existing approaches on a number of benchmark instances. Another

variant of the VRP which is a focus for new heuristic methods is the two-echelon VRP

(2EVRP), in which a problem is considered in two levels: an upper level in which one

depot serves a number of intermediate distribution facilities, and a lower level in which

customers are each served from one of these intermediate facilities. Breunig et al. [2016]

proppose a Large Neighbourhood Search heuristic for this problem, reporting the best

known solution for 95% of benchmark 2EVRP problems tested. Belgin et al. [2018]

extend the 2EVRP to include simultaneous pickup and delivery, and combine variable

neighbourhood descent and local search as a proposed solution method.

A number of people have also made use of Matheuristic methods to tackle the VRP and

related problems. There is no fixed structure required of such algorithms, they simply

describe the broad family of algorithms which include elements of both mathematical

programming techniques and heuristic methods to achieve a solution.

Villegas et al. [2013] present a matheuristic to solve the Truck and Trailer Routing

Problem (TTRP), presented in section 2.1.4, a special case of the VRP which jobs

can be visited either by a complete vehicle (truck and trailer) or just a truck. They

present a two stage approach, beginning with a Greedy Randomised Adaptive Search

Procedure (GRASP) and Iterated Local Search (ILS); the former is used to construct

tours for the TTRP, and the latter to find improvements to these tours. Stage two is a

set partitioning problem (as introduced in section 2.1.2), where the set Ω is taken from

the routes found in the first stage. Kramer et al. [2015] also present a matheuristic

which makes use of a set partitioning formulation, in this case to solve the Pollution

Routing Problem. The routes of the set Ω are found using an ILS procedure, combined

with a speed optimisation algorithm (SOA) to optimise speeds on the routes found.

Unlike Villegas et al. however, the method presented by Kramer et al. loops between

the heuristic ILS-SOA stage and the SP formulation until given stopping conditions are

met, whereas the algorithm presented by Villegas et al. performs each step only once,

with no return to previous stages in order to find further improvements.

Archetti et al. [2017] present a matheuristic for the Multivehicle Inventory Routing

23

Problem (MIRP), which comprises three stages: first they relax some routing require-

ments on the full formulation (the exact formulation used is dependent on the number

of jobs in the problem), this is solved until a feasible solution to the MIPR is found

or can be induced using a given procedure. In the event that this approach does not

achieve a feasible solution, a failsafe heuristic is provided to ensure feasible solution is

found as a starting point for the second phase. The second phase uses a tabu search to

find improved solutions which are permitted to violate some constraints, with feasibility

being recovered using one of two given procedures. Finally the last phase uses informa-

tion collected in the tabu search to focus on the most promising parts of the solution

space, using another MILP formulation to solve the problem for the final time. Chitsaz

et al. [2019] present an approach which decomposes the full Assembly, Production and

Inventory Routing Problem in to three subproblems, each being solved separately with

different methods and then combining to form a solution to the full problem. The first

is a special case of the lot sizing problem to determine the set up schedule; this step is

performed only once at the beginning of the procedure. The second and third subprob-

lems, used to choose node visits and shipment quantities and then to solve a series of

separate VRPs respectively, are then repeated until a given stopping condition is met.

Although they do not represent all the matheuristic methods applied to the VRP and

related problems, those presented here still make use of a variety of different techniques.

Each matheuristic is tailored to the problem for which it is designed, and therefore they

would not be easily adapted to other problems, but they do provide several examples of

the broadness of matheuristic techniques, and how they can successfully be implemented

to routing related problems.

2.3 Other Relevant Literature

2.3.1 Scheduling Problem

The work presented in this thesis also bears a resemblance to the family of scheduling

problems, another widely studied area of Operational Research. Some example works

24

such as Bellenguez and Néron [2004], Cordeau et al. [2010] and Fırat and Hurkens [2012]

have already been introduced in section 2.1.5, as these scheduling problems tackle the

problem of team-building which is also relevant to the VRP. There are also a number of

other works which include extensions to the simple scheduling problem, and these too

are similar to the VRP extensions considered in this work.

The earliest work in scheduling problems, such as Bowman [1959] and Manne [1960],

present a MILP formulation for the problem of scheduling consecutive jobs on multiple

machines. Much like the VRP, the range of different scheduling problems and extensions

tackled since these early publications is vast; a handful of these extensions will be

highlighted here, although the reader is referred to the cited work for more specific

details and problem formulations.

Bellenguez-Morineau and Néron [2007] and Bhulai et al. [2008] both present scheduling

problems that handle skill levels and variable duration, the latter commonly used in

service industries such as call centres where call duration can vary hugely. Bellenguez-

Morineau and Néron also include precedence and synchronisation, although the work is

theoretical so no proposed application is presented alongside the proposed Branch and

Bound method. Caramia and Giordani [2009] and Avramidis et al. [2010] also tackle

scheduling problem with skill levels, although in both of these cases a heuristic solution

method is proposed as opposed to the exact methods used by Bellenguez-Morineau and

Néron and Bhulai et al. The work presented by Cordeau et al. [2010] and Fırat and

Hurkens [2012] are similar in their extensions as they were both proposed solutions to

the 2007 ROADEF challenge. These works consider the scheduling problem with skill

levels, precedence, team building, job priority and outsourcing, with Cordeau et al.

proposing an adaptive large neighbourhood search method, and Fırat and Hurkens a

two-stage exact solution method. A breakdown of all of the works mentioned here can

be seen alongside their VRP counterparts in the table 2.1.

25

2.3.2 Knapsack Problem

Another approach considered (although not tested) in this work is a hierarchical ap-

proach to decompose large problem instances in to smaller problems which can then

be solved with the main VRP formulation and matheuristic approach. This relates

to the family of Knapsack Problems (KP), of which Kellerer et al. [2004] provides a

comprehensive overview. Of relevance in this work are the Multidimensional Knap-

sack Problem (d-KP) and the Multiple Knapsack Problem (MKP). The d-KP considers

multiple resource or capacity constraints on a single knapsack, with the following basic

formulation:

max

n∑
j=1

pjxj (2.20)

s. t.
n∑
j=1

wijxj ≤ ci ∀i ∈ {1, . . . , d} (2.21)

xj ∈ {0, 1} ∀j ∈ {1, . . . , n} (2.22)

Where xj is a binary variable to indicate whether item j is included in the knapsack,

pj is the objective wight of item j, wij is the weight of item j in constraint i, and ci

the capacity of constraint i. This allows for the consideration of multiple constraints,

such as weight and space for a traditional knapsack problem, or any other combination

of required capacity or resource constraints in an alternative application. The Multiple

Knapsack Problem (MKP) generalises the original KP across multiple knapsacks m of

different capacity, with the following basic formulation:

max

m∑
k=1

n∑
j=1

pjxjk (2.23)

s. t.

n∑
j=1

wjxjk ≤ bk ∀k ∈ {1, . . . ,m} (2.24)

∑
xjk ≤ 1 ∀j ∈ {1, . . . , n} (2.25)

26

xjk ∈ {0, 1} ∀j ∈ {1, . . . , n},∀k ∈ {1, . . . ,m} (2.26)

Where xjk is a binary variable to indicate whether item j is included in knapsack k, pj is

the objective wight of item j, wj is the weight of item j, and bk the capacity of knapsack

k. These two formulation can also be easily combined to create a multidimensional

multiple knapsack problem if required. Puchinger et al. [2010] and Lust and Teghem

[2012] provide a survey and comparison of solution methods for these two problems

resprctively, including exact, heuristic and matheuristic approaches. Due to the fact

that Knapsack Problems form only a small part of this work, they are not presented

in more detail here, but the reader is referred to Kellerer et al. [2004] for an overview

of many knapsack problem extensions and previous methods, as well as the two survey

papers mentioned prevously.

2.3.3 Objective Function Weighting

One challenge of many problems in which there are several distinct objectives is to com-

bine these in a way that they can be represented in a single objective function. One

research area that can aid with this is Multiple Criteria Decision Making (MCDM),

which provides methods that can help in determining the relative importance of dif-

ferent criteria within a decision that needs to be made. Within the context of the

VRP, such methods can be used to determine objective function weightings that reflect

these importances. Wallenius et al. [2008] provide an overview of a variety of different

MCDM techniques, including Analytic Hierarchy Process (AHP) which is the focus of

this section.

AHP, as described by Ishizaka and Nemery [2013], seeks to arrange a multiple criteria

decision into a hierarchical structure, where different decision areas are broken down

in to sub-criteria. Decision makers are then required to perform a pairwise comparison

of all distinct pairs of sub-criteria, from which an overall importance ranking can be

generated. Weber et al. [1988] state the importance of maintaining a balanced structure

within the hierarchy to ensure results that are as fair as possible, as large imbalances

27

between the number of sub-criteria in each group can affect the overall weighting of

that group. Methods such as these are by no means perfect, with possible issues such as

cyclical priority order, but despite this Wallenius et al. [2008] identify AHP as one of the

most widely used techniques in this area. No more MCDM methods will be presented

here, and a full explanation of how this approach could be applied to the current work

is provided in section 6.3.

2.4 Paper Comparison Table

Table 2.1 provides a visual overview of the works that have been mentioned throughout

this literature review, and table 2.2 provides a definition of each category in the com-

parison table. It is worth noting here that it is not practical to include all extensions

of the VRP considered in the works mentioned here, as the table would quickly become

very large. Instead only those extensions relevant to this work have been included in

this summary, for a more detailed description of cited works please see section 2.1.

28

Table 2.1: Table of VRP and Scheduling Extensions

R
o
u
ti

n
g

S
ch

ed
u
li
n
g

V
eh

ic
le

F
lo

w
F

o
rm

u
la

ti
o
n

S
et

P
a
rt

it
io

n
F

o
rm

u
la

ti
o
n

H
eu

ri
st

ic

E
x
a
ct

S
k
il
l

L
ev

el
s

T
im

e
w

in
d
ow

s

M
u
lt

ip
le

R
es

o
u
rc

es

M
u
lt

ip
le

R
o
u
te

s

P
re

ce
d
en

ce

T
ea

m
-b

u
il
d
in

g

V
a
ri

a
b
le

d
u
ra

ti
o
n

M
u
lt

i-
p

er
io

d

J
o
b

se
le

ct
io

n

T
im

e
b

et
w

ee
n

re
tu

rn
v
is

it
s

P
ri

o
ri

ty
o
f

jo
b
s

O
u
ts

o
u
rc

in
g

S
y
n
ch

ro
n
is

a
ti

o
n

O
v
er

ti
m

e

U
n
p
la

n
n
ed

w
o
rk

O
p

en
en

d
p

o
in

t

S
a
m

e
re

so
u
rc

e
o
n

re
tu

rn
v
is

it
s

T
o
o
ls

a
n
d

sp
a
re

p
a
rt

s

Dantzig and Ramser [1959] x x x x

Foster and Ryan [1976] x x x x x x

Baker [1983] x x x x

Kolen et al. [1987] x x x x

Solomon [1987] x x x x

Taillard et al. [1996] x x x x

Begur et al. [1997] x x x x x x x

Bramel and Simchi-Levi [1997] x x x x

Tsang and Voudouris [1997] x x x x x

Weigel and Cao [1999] x x x x x x x x

Xu and Chiu [2001] x x x x x x x x x

Blakeley et al. [2003] x x x x x x

Bellenguez and Néron [2004] x x x x x

Eveborn et al. [2006] x x x x x x x x x

Continued on next page

29

Table of VRP and Scheduling Extensions

R
o
u
ti

n
g

S
ch

ed
u
li
n
g

V
eh

ic
le

F
lo

w
F

o
rm

u
la

ti
o
n

S
et

P
a
rt

it
io

n
F

o
rm

u
la

ti
o
n

H
eu

ri
st

ic

E
x
a
ct

S
k
il
l

L
ev

el
s

T
im

e
w

in
d
ow

s

M
u
lt

ip
le

R
es

o
u
rc

es

M
u
lt

ip
le

R
o
u
te

s

P
re

ce
d
en

ce

T
ea

m
-b

u
il
d
in

g

V
a
ri

a
b
le

d
u
ra

ti
o
n

M
u
lt

i-
p

er
io

d

J
o
b

se
le

ct
io

n

T
im

e
b

et
w

ee
n

re
tu

rn
v
is

it
s

P
ri

o
ri

ty
o
f

jo
b
s

O
u
ts

o
u
rc

in
g

S
y
n
ch

ro
n
is

a
ti

o
n

O
v
er

ti
m

e

U
n
p
la

n
n
ed

w
o
rk

O
p

en
en

d
p

o
in

t

S
a
m

e
re

so
u
rc

e
o
n

re
tu

rn
v
is

it
s

T
o
o
ls

a
n
d

sp
a
re

p
a
rt

s

Alvarenga et al. [2007] x x x x x

Bellenguez-Morineau and Néron [2007] x x x x x x x

Bhulai et al. [2008] x x x x x

Bredström and Rönnqvist [2008] x x x x x x x

Bostel et al. [2008] x x x x x x

Caramia and Giordani [2009] x x x x x

Avramidis et al. [2010] x x x x

Azi et al. [2010] x x x x x x x

Cordeau et al. [2010] x x x x x x x x x

Cappanera et al. [2011] x x x x x

Fırat and Hurkens [2012] x x x x x x x x

Kovacs et al. [2012] x x x x x x x x

Pillac et al. [2013] x x x x x x

Villegas et al. [2013] x x x x x x

Continued on next page

30

Table of VRP and Scheduling Extensions

R
o
u
ti

n
g

S
ch

ed
u
li
n
g

V
eh

ic
le

F
lo

w
F

o
rm

u
la

ti
o
n

S
et

P
a
rt

it
io

n
F

o
rm

u
la

ti
o
n

H
eu

ri
st

ic

E
x
a
ct

S
k
il
l

L
ev

el
s

T
im

e
w

in
d
ow

s

M
u
lt

ip
le

R
es

o
u
rc

es

M
u
lt

ip
le

R
o
u
te

s

P
re

ce
d
en

ce

T
ea

m
-b

u
il
d
in

g

V
a
ri

a
b
le

d
u
ra

ti
o
n

M
u
lt

i-
p

er
io

d

J
o
b

se
le

ct
io

n

T
im

e
b

et
w

ee
n

re
tu

rn
v
is

it
s

P
ri

o
ri

ty
o
f

jo
b
s

O
u
ts

o
u
rc

in
g

S
y
n
ch

ro
n
is

a
ti

o
n

O
v
er

ti
m

e

U
n
p
la

n
n
ed

w
o
rk

O
p

en
en

d
p

o
in

t

S
a
m

e
re

so
u
rc

e
o
n

re
tu

rn
v
is

it
s

T
o
o
ls

a
n
d

sp
a
re

p
a
rt

s

Azi et al. [2014] x x x x x x

Afifi et al. [2016] x x x x x x

Lalla-Ruiz et al. [2016] x x x x x x x

Archetti et al. [2017] x x x x

Xie et al. [2017] x x x x x

Shelbourne et al. [2017] x x x x x

Reil et al. [2018] x x x x x

Bulhões et al. [2018] x x x x x

Louveaux and Salazar-González [2018] x x x x x x

Ticha et al. [2019] x x x

Liu et al. [2019] x x x x x x

Zhang et al. [2019] x x x x x x x

Pessoa et al. [2020] x x x x

31

Table Definitions

Table 2.2: Definitions of column headings seen in table 2.1

Category Definition

Routing Considers travel time between jobs

Scheduling No travel time, purely job scheduling

Vehicle Flow Formulation

These are vehicle routing formulations which

use the vehicle flow approach described in 2.1.1

(greyed out cells indicate those for which formu-

lations were not given)

Set Partition Formulation

These are vehicle routing formulations which

use the set partition approach described in 2.1.2

(greyed out cells indicate those for which formu-

lations were not given)

Heuristic
Formulations which have been solved using

heuristic methods

Exact
Formulations which have been solved using ex-

act methods

Skill Levels

Formulations which have been solved using ex-

act methods (both pre-existing solvers such as

CPLEX and methods developed foe the specific

problem)

Time windows Visits to jobs must be in a certain time window

Multiple resources
Multiple resources being scheduled/routed (e.g.

technicians/vehicles)

Multiple routes

Multiple trips in a single planning period (i.e.

returning to base and starting a new route).

Sometimes referred to as multiple use of vehi-

cles.

32

Precedence
Jobs must be completed before/after certain

other jobs

Team-building

Jobs require multiple resources, and resources

are grouped and work/travel together for the

planning period (e.g. day)

Variable duration
Time to complete job is dependent on resource

skill level

Multi-period

Multiple planning periods output with each so-

lution (e.g. week long planning period, solve for

multiple weeks)

Job selection
Not all jobs can be completed, so which jobs to

complete must be selected

Time between return visits
Time between visits is restricted (either by LB

or UB)

Priority of jobs
Jobs have a priority level, and the objective

function favours high priority jobs

Outsourcing Jobs can be outsourced to external resource

Synchronisation
Resources must meet up and synchronise work

in certain locations

Overtime Possibility of resources being assigned overtime

Unplanned work
Makes allowances for the presence of unknown,

last minute jobs to be included in the schedule

Open end point Route does not have to finish at the start point

Same resource on return visits
Where possible, customers are assigned to the

same resource for continuity

Tools and spare parts

Jobs have requirements for tools and parts, and

each resource has an availability of each. Unlike

skill levels, these availabilities can fluctuate with

time (usage and restocking)

33

34

Chapter 3

Problem Description

The RNLI currently operates with a divisional structure, which can be seen in fig. 3.1.

There are five divisions (although some are divided again for the purposes of scheduling

technicians), and each of these has a dedicated team of System Technicians (STs), and

a Divisional Maintenance Manager (DMM) who is responsible for all the maintenance

work that goes on throughout their respective division. It is the work schedules of these

STs that are the focus of this scheduling and routing work. Each division consists of

approximately ten STs, each of whom carries out on average between one and ten jobs

per week. In March 2017, I went to the RNLI DMM’s quarterly meeting in Kinsale,

Ireland. The aims of this meeting were twofold: to introduce the DMMs to the work

that I am doing, and how this ties in with the problem of ST scheduling, and also to gain

their input in to the problem. Although they do not have the technical understanding

of the methods used, their experience and insight in to the business are invaluable in

terms if creating a model which can be applied in this case.

Here we give an in depth explanation of the problem, including all the requirements

that have been identified as a result of meetings with the RNLI. Where necessary,

information is given about the specific working practices of the RNLI, and how this

ties in to these requirements. All information in this chapter regarding the policies

and current operations of the RNLI have been obtained through meetings with Jan

Wyglendacz, Principal Maintenance Manager, and DMMs. These requirements are

35

Figure 3.1: Map of RNLI Divisions and Stations

36

outlined below.

Working hours

The expected work and travel time in each day should not exceed the length of a working

day for each technician. In the case of the RNLI, STs are contracted to work 37 hours

per week, which includes all travel time between jobs, including the beginning and end

of the day. This is divided up as 7.5 hours per day Monday-Thursday, and 7 hours on

Friday. In the case where an ST is more than 1.5 hours away from their base location

at the end of the day, they are expected to stay away for that night. The exception to

travel time being included in the work schedule is the use of any overnight ferries (used

for some islands in Scotland).

These working hours are flexible in that they operate flexitime and TOIL policies, but

the long run total should still fall within the contracted amount for that period. In reality

technicians are often required to work overtime in order to complete all their assigned

jobs. If overtime is to be considered explicitly in a problem formulation, it could be

modelled with either linear or non-linear constraints, depending on the weighting that

such overtime should bear in a final solution.

Daily driving limit

Technicians should not exceed 400 miles driving in any given day. In reality, this is very

unlikely, so may not need to be excluded explicitly as a constraint.

Start location

Each technician should start and end their working week in their respective base location.

Some STs are contracted from home, and start and end all their routes there, whilst

others are contracted from their RNLI Divisional Base (although they may still start

their routes from home instead). For the purposes of this problem, we can assume that

37

all STs will start their week at the contracted base, and any extra time to get there is

considered commuting time.

Deadlines

Each job should be completed by its respective deadline. Planned work comes with a

deadline date, with the aim to be completed within 30 days either side of this date. Ex-

ceptions to this include jobs which are restricted by external legislation, such as MOTs.

Emergent or unplanned work is assigned a priority level form one of the following four

priority categories: immediate (24 hours); 2-7 days; 8-30 days; next visit (twice/year).

The RNLI operates a policy that no lifeboat should be out of service for more than 48

hours (otherwise a relief lifeboat will be brought in). Any such emergent jobs which fall

in to this category must be completed within 48 hours. Such jobs should be given the

the priority immediate, which falls within the 48 hours specified by this policy.

Job duration

There is no guarantee that all jobs are shorter than the planning period: many jobs

extend over multiple days, and some (particularly unplanned work) may require as much

as 5 or more days, with 2 technicians (so > 10 technician days). Expected duration of

planned work is output as part of the job list. Duration of emergent work is input by

DMMs as jobs come in. Although it is not necessarily the case, expected job duration

is calculated independently of the skill level of the assigned technician.

Precedence

For any job with precedence relationships, these must be completed in the correct order

by the same technician. Precedence relationships in the current problem relate mostly

to the requirement to pick up certain parts/equipment from another location in order

to complete a job. In this instance, it is intuitive that these jobs must be completed by

38

the same technician, where the process of picking up equipment can be viewed as a ‘job’

with negligible completion time.

It is possible that precedence relationships may exist within individual stations, but

these are not necessarily required to be completed by the same technician. It is highly

unlikely that there will exist precedence relationships between actual jobs on different

stations (as opposed to dummy jobs representing the collection of equipment), as stations

operate independently.

Skill requirements

The skill requirements of each job must be met by the technician(s) assigned to it.

There are jobs which require more than one technician, especially among unplanned

work. There are also instances in which jobs only require one technician, but two may

be assigned, in which case the expected total duration is halved (i.e. the total technician

time is constant).

Team Building and Synchronisation

Team building should be carried out where required, e.g. for jobs which require multi-

ple technicians. STs are quite often grouped to travel together: sometimes this is for

the purposes of meeting multiple technician requirements, or sometimes to avoid lone

working for extended periods (resulting in two technicians being sent to a location in

which only one can complete the work). This happens more in locations where distances

between jobs are greater, e.g. Scotland.

Synchronisation may also be used in cases where multiple STs are required for one job,

but will not travel their whole routes together. In some cases, STs will discover the need

for additional assistance whilst carrying out a job, and this must be covered by another

ST travelling to join them, but this cannot be planned for, and is therefore difficult to

capture in the formulation.

39

Nights away

Technicians are assumed to stay away if their time/distance to base is greater than 1.5

hours. They may spend a maximum of four nights away in a row (Monday-Friday), and

they must start and end each week in their base location. In reality, some technicians

choose to drive home despite being further away than the 1.5 hour threshold, but as

this is against company policy, this time is not counted as part of their working hours.

Training

Time should be allowed for STs to complete necessary training, and also in some cases to

spend time training others. ST training can be viewed as a job which must be completed

by a particular technician, and therefore should be relatively straightforward to include

in the formulation. Training others may include apprentices, but they will always travel

with another ST to jobs, and therefore should not be viewed as an ST which can be

scheduled independently.

Objective Function

The following were highlighted as aspects that should be included in the objective func-

tion. As the intention is to use a single objective function, these will need to be combined

in to a single function. To achieve this, work will be carried out to determine weightings

for each of the distinct elements; this work is described in more detail in section 6.3.

◦ Cost of travel: ψτij for all arcs (i, j) in the final solution

◦ Nights away: if τjhk > δ, where j ∈ J is the last job in the day for technician k,

then the technician is assumed to stay away from home for that night, at cost φ

◦ Lateness: if the completion time of a job is greater than its deadline fj , then some

penalty is incurred

◦ Return visits: precedence relationships mean that one location may need to be

visited multiple times in one trip, but these should be minimised. There is cur-

40

rently a lot of inefficiency in this area, often stemming from problems such as

incorrect delivery of parts. It is very difficult to capture circumstances such as

this in a model of this type; occurrences like this would be dealt with as they

emerge by the STs and DMM responsible. In terms of considering return visits

within planned work, it may not be necessary to include this explicitly in the ob-

jective function. If distance is being considered, then multiple visits to the same

location will be unlikely due to the associated increase in travel. In the case where

a solution does require a return visit to a particular place, it will be because that

represents a good (and potentially optimal) solution for the given set of jobs.

◦ Overtime: They do operate a paid overtime policy, and this should be minimised.

Flexitime and TOIL are sometimes used to balance overtime.

41

42

Chapter 4

Routing and Scheduling

Formulation

In this chapter, we present a full formulation for the Routing and Scheduling problem

described in chapter 3. This is something that could be used either in conjuction with the

hierarchical approach, described in section 5.4, or as a stand alone formulation, provided

the instance size is computationally feasible. Before introducing the formulation, details

are given about the notation used, as well as a description of some preprocessing that

can take place before the formulation is solved.

4.1 Definitions

4.1.1 Terminology

Table 4.1 provides definitions of all the terminology that will be used for this problem

throughout the rest of this work.

43

Node
This refers to any node in the network, which could be a job or a

depot node.

Job
This refers specifically to a job node. Note: all jobs are represented by

different nodes, even if they are in the same location. The travel time
within these groups of nodes will be zero.

Depot
This refers to a node which is a start/end location for one or more

technicians.

Technician
These are the people performing the tasks (they replace the notion of

vehicle from the VRP).

Skill Domain These are the different areas that technicians can be trained in.

Skill Level
These represent the level to which technicians are trained. The same

set of skill levels are used for all skill domains.

Table 4.1: Table of terminology in the problem

4.1.2 Sets

Below is the table of sets in the full formulation. Those marked with a ∗ are calculated

from the data that is provided, and thus do not need to be present in the dataset that

is provided as input. The calculation of these sets is outlined in section 4.3.

∗ V = set of all nodes in the problem

J = set of all job nodes

H = set of all depot nodes

K = set of all technicians

∗ K =
set of permissible pairs (j, k) such that k can do job j (either

alone or in a pair)

∗ K′ =
set of permissible triples (j, k, k′) such that k and k′ together

can do job j

S = set of all skill domains

L = set of all skill levels

∗ T = set of hours of full planning period

∗ Tw = set of hours in week w

∗ Twd = set of hours in day d, where d is in week w

W = set of all weeks in full planning period

D = set of days in each week, {1, . . . , 5}

∗ I = the set of allowable tuples (i, j, k, t) for the decision variable xtijk

44

∗ Ī = the set of allowable tuples (i, j, k, t) for the decision variable x̄tijk
∗ F = the set of allowable tuples (j, k, w)

∗ F ′ = the set of allowable tuples (j, k, w, d)

∗ G = the set of allowable tuples (j, k, t)

∗ sets which are calculated in preprocessing

In addition, we define the following notation for dealing with subsets of indices in sets

which are made up of tuples:

Definition 4.1.1. Let A be a family of sets, {A1, . . . , An}, and let ∆ =
∏n
i=1Ai, i.e., the

set of tuples (a1, . . . , an), where ai ∈ Ai for all i. let B = {B1, . . . , Bm} ⊂ {A1, . . . , An}.

We define the set ∆(B) as follows:

∆(B) =
n−m∏
i=1

(A \B)i (4.1)

In other words, ∆(B) is the set of tuples in ∆, with the elements from B removed.

Example 4.1.2. Let A = (w, x, y, z) ⊂ R3, then A(x,z) = {(w, y) | (w, x, y, z) ∈ A}

This notation is introduced to improve the readability and clarity of the final problem

formulation.

4.1.3 Decision Variables

xtijk =

{
1 technician k leaves job i travelling to job j at time t

0 otherwise

x̄tijk =

{
1 technician k arrives at job j travelling from job i at time t

0 otherwise

ytjk =

{
1 technician k is at job j at time t (working, not idle)

0 otherwise

45

uj = start time of job j

zj =

{
1 job j has two technicians assigned to it

0 otherwise

λwdjk =

{
1 technician k stays away from home at job j in week w, day d

0 otherwise

σwdjk = hours of job j completed by technician k on week w, day d

ρwdjk =
{

1 job j performed by technician k is split in week w, from day d to d+ 1

0 otherwise

pjkk′ =

{
1 job j is completed by k and k′ as a pair

0 otherwise

εj =
{

1 job j is finished past it’s finish time fj , but within allowable lateness

0 otherwise

It is important to note that not all of these variables need to be defined for all possible

combinations of their indices; they can instead just be defined for those combinations

which are feasible given the problem constraints, therefore reducing the problem size.

The full details of which variables can be reduced and the sets across which they are

defined is outlined in section 4.3.

46

4.1.4 Parameters

Below is the table of parameters in the full formulation. Those marked with a ∗ are

calculated from the data that is provided, and thus do not need to be present in the

dataset that is provided as input. The calculation of these parameters is outlined in

section 4.3.

δjn =
duration of job j with n technicians assigned to it, in hours,
n ∈ {1, 2}
n.b. – for notational purposes, the value δ̄j = maxn∈{1,2}{δjn},

and δj = minn∈{1,2}{δjn|δjn > 0}

∗ ηtjn =
number of nights that job j will be split over when started at

hour t in a day (t ∈ {1, . . . , 7}) with n technicians

n.b. – for notational purposes, the value η̄tj = maxn∈{1,2}{ηtjn},
and ηt

j
= minn∈{1,2}{ηtjn|ηtjn > 0}

[ej , fj] = time window of job j, ej < fj

cj = allowable lateness of a job

[αj , βj] =
number of technicians required/allowed for job j

(αj , βj ∈ {1, 2}, αj ≤ βj)
τij = travel time from node i to j

vksl =

{
1 techinican k is qualified in skill area s to level l

0 otherwise

rjsl =

{
1 job j requires skill area s to level l

0 otherwise

∗ qjk =

{
1 technician k is qualified to do job j

0 otherwise

∗ q̄jkk′ =

{
1 technician k and k′ combined are qualified to do job j

0 otherwise

n.b. – these can be calculated from vksl and rjsl:
qjk = 1 if vksl ≥ rjsl ∀s ∈ S, l ∈ L
q̄jkk′ = 1 if vksl + vk′sl ≥ rjsl ∀s ∈ S, l ∈ L

47

Ωd =
number of hours in day d in any given week (a given day d in

each week is assumed to be the same, i.e. Ωd is not dependent on
w)

Ω = number of hours in working week

ωk = weekly working capacity of technician k, in hours

ωdk =
working capacity of technician k on day d in each week, in hours

(a given day d in each week is assumed to be the same, i.e. ωdk is
not dependent on w)

hk = base node of technician k

πkh = technician k has base node h

γ =
the maximum travel distance to base before someone must stay

away for the night

∗ µjk =
{

1 technician k must stay away from home if they end a day at job j

0 otherwise

n.b. – this can be calculated from τjhk : µjk = 1 if τjhk > γ

∗ t̄wd = the first hour in week w, day d

∗ twd = the last hour in week w, day d

∗ wt = the week that time t falls in

∗ dt = the day of the week that time t falls in, d ∈ D

ψ = cost per hour of travel

φ = cost per night away

γ = equivalent cost of lateness

θm = the weighting of the m-th term in the objective function

∗ parameters which are calculated in preprocessing

4.2 Assumptions

The following assumptions are used in the formulation presented below. Whilst they do

not all align completely to the full RNLI problem, they are necessary for the problem

48

to be solved using the methods outlined in this thesis.

◦ Travel times and job durations are fixed.

◦ No jobs are split over weeks. This is not necessarily true for the RNLI problem,

but it is used in the formulation as it currently stands.

◦ Travel time from job to home is not included in work time - if this is greater than

1.5 hours, they must stay away. If this is less than 1.5 hours, they are assumed to

travel to/from home outside of work hours each day.

◦ Technicians always start and end their route at their base node.

4.3 Preprocessing

Before the full problem formulation is generated for any given dataset, a certain amount

of calculations and preprocessing are carried out beforehand, both for ease of notation

and to reduce the problem size. In sections 4.1.2 and 4.1.4, the parameters and sets

marked with a ∗ are those which are calculated during this stage, and the calculation of

these is outlined in tables 4.5 and 4.6 respectively.

Table 4.5: Calculation of parameters in the preprocessing stage

Parameter Calculation of Parameter

ηtjn


dt+δjn − dt ∈ {1, ..., |D| − 1} dt+δjn ≥ dt

0 otherwise

n.b. This parameter takes value 0 when the start time t of a job j

means it can be finished before the end of the day, so no overnight

stays are required.

qjk


1 vksl ≥ rjsl ∀s ∈ S, l ∈ L

0 otherwise

qjkk′


1 vksl + vk′sl ≥ rjsl ∀s ∈ S, l ∈ L

0 otherwise

49

µjk


1 τjhk ≥ γ

0 otherwise

wt

⌈
t

Ω

⌉
dt min{d | t mod Ω >

∑d−1
i=1 Ωd}

Table 4.6: Calculation of sets in the preprocessing stage

Set Definition of Set

V J ∪H

K {(j, k) | vksl ≥ rjsl ∀s ∈ S, l ∈ L} ⊂ J ×K

K′ {(j, k, k′) | vksl + vk′sl ≥ rjsl ∀s ∈ S, l ∈ L} ⊂ J ×K ×K

T {1, . . . ,Ω|W |}

Tw {(w − 1)Ω + 1, . . . , wΩ}

Twd

{
(w − 1)Ω +

(∑d−1
j=1 Ωj

)
+ 1, . . . , (w − 1)Ω +

(∑d
j=1 Ωj

)}

I

{(i, j, k, t)} ⊆ V × V ×K × T which satisfy the following conditions:

◦ i 6= j

◦ qik = 1 or
∑

k′∈K q̄ikk′ ≥ 1 or i = hk

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1 or j = hk

◦ t+ τij ∈ [ej , fj − δj]

◦ t ≥ ei + δi

◦ dt+τij + η̄
t+τij
j ≤ 5

◦ dt ≤ dt+τij
n.b. – This is the feasible set of indices for the variable xtijk

50

Ī

{(i, j, k, t)} ⊆ V × V ×K × T which satisfy the following conditions:

◦ i 6= j

◦ qik = 1 or
∑

k′∈K q̄ikk′ ≥ 1 or i = hk

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1 or j = hk

◦ t ∈ [ej , fj − δj]

◦ t− τij ≥ ei + δi

◦ dt + η̄tj ≤ 5

◦ dt−τij ≤ dt

n.b. – This is the feasible set of indices for the variable x̄tijk

F

{(j, k, w)} ⊆ J ×K ×W which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ w ∈ [wej , wfj]

F ′

{(j, k, w, d)} ⊆ J ×K ×W ×D which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ w ∈ [wej , wfj]

◦ if w = wej then d ≥ dej
◦ if w = wfj then d ≤ dfj

G

{(j, k, t)} ⊆ J ×K × T which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ t ∈ [ej , fj]

Definition of Decision Variables

In order to reduce the number of decision variables in the full formulation, it is possible

to only define each set of variables for feasible combinations of their indices. These are

outlined in table 4.7. As a result of this, we must ensure that summations and constraints

are only performed or defined across allowable combinations of indices, which means the

sets across which variables are defined must also be preprocessed. They are outlined in

table 4.7.

51

Table 4.7: Definition of decision variables

Variable Indices for which variable is defined

xtijk

defined for all tuples (i, j, k, t) which satisfy the following conditions:

◦ i 6= j

◦ qik = 1 or
∑

k′∈K q̄ikk′ ≥ 1 or i = hk

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1 or j = hk

◦ t+ τij ∈ [ej , fj − δj]

◦ t ≥ ei + δj

◦ dt+τij + η̄
t+τij
j ≤ 5

◦ dt ≤ dt+τij

x̄tijk

defined for all tuples (i, j, k, t) which satisfy the following conditions:

◦ i 6= j

◦ qik = 1 or
∑

k′∈K q̄ikk′ ≥ 1 or i = hk

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1 or j = hk

◦ t ∈ [ej , fj − δj]

◦ t− τij ≥ ei + δj

◦ dt + η̄tj ≤ 5

◦ dt−τij ≤ dt

ytjk

defined for all triples (j, k, t) which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ t ∈ [ej , fj]

uj defined for all j ∈ J

zj defined for all j ∈ J

λwdjk

defined for all tuples (j, k, w, d) which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ w ∈ [wej , wfj]

◦ if w = wej then d ≥ dej
◦ if w = wfj then d ≤ dfj
◦ µjk = 1

52

σwdjk

defined for all tuples (j, k, w, d) which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ w ∈ [wej , wfj]

◦ if w = wej then d ≥ dej
◦ if w = wfj then d ≤ dfj

ρwdjk

defined for all tuples (j, k, w, d) which satisfy the following conditions:

◦ qjk = 1 or
∑

k′∈K q̄jkk′ ≥ 1

◦ w ∈ [wej , wfj]

◦ if w = wej then d ≥ dej
◦ if w = wfj then d ≤ dfj
◦ d 6= 5

pjkk′
defined for all triples (j, k, k′) which satisfy the following condition:

◦ qjkk′ = 1

εj defined for all j ∈ J

The use of this level of preprocessing will also determine whether certain constraints

need to be included in the formulation, as they are included implicitly in the definition

of sets and decision variables. Such constraints will be identified as such in the following

section.

4.3.1 Reference for Notation

Table 4.8 provides a reference for meaning of any single letter or character used in this

formulations described in this section. It does not identify which subscripts are present

for particular decision variables, but is instead intended as a quick reference. Detailed

descriptions of all the sets, decision variables and parameters in the problem can be

found in sections 4.1.2 to 4.1.4 respectively.

Table 4.8: Reference table for notation

53

Let-
ter

Use
Let-
ter

Use
Let-
ter

Use

A a α no. of techs LB

B b β no. of techs UB

C c
allowable

lateness
parameter

γ
night away

distance

D
days in each

week
d day index δ duration

E e
time window

LB
ε lateness d.v.

F
feasible tuples

(j, k) by
week/day

f
time window

UB
ζ

G
feasible tuples

(j, k) by hour
g η

no. of nights for
job

H
depot/base

nodes
h

depot/base
node parameter

θ
objective

function
weightings

I i job index ι

J job nodes j job index κ

K technicians k technician index λ nights away d.v.

L skill levels l skill levels index µ
night away

indicator

M big M m
index for

weighting of o.f.
ν

N n
number of

technicians index
ξ

O o o –

P p pair d.v. π
base node

binary parameter

Q q
technician

qualification
ρ split job d.v.

R r
job skill

requirements
σ

split job
duration

S skill domains s
skill domain

index
τ travel time

T
hours in

planning period
t hours index υ

54

U u start time d.v. φ
cost of

overnight stay

V
all nodes in

problem
v

technician skill
levels

χ

W
weeks in

planning period
w week index ψ cost of travel

X x leave/arrive d.v. ω work capacity

Y y jobs d.v. Ω hours/week

Z z
two technicians

d.v.

4.4 Problem Formulation

4.4.1 Objective Function

There are several aspects of this problem that the RNLI would like to be included in

an objective function, which can be seen in chapter 3. The objective function in its full

state is as follows: Minimise the following Objective Function:

θ1ψ

 ∑
(i,j,k,t)∈I

τijx
t
ijk

+ (4.2a)

θ2φ

 ∑
(j,k,w,d)∈F ′

λwdjk

+ (4.2b)

θ3γ

∑
j∈J

εj (uj + (1− zj)δj1 + zjδj2 − fj)

 (4.2c)

(4.2a) represents the cost of travel, by multiplying the variable for departure on arcs

by its respective duration, and then by a scalar to calculate the associated cost. (4.2b)

is the cost of nights away, which are simply summed and multiplied by the cost of a

single night away. (4.2c) introduces the ‘cost’ of lateness, which is a lot harder to define.

This term is non-linear due to the fact that we want to be able to penalise a job not

55

just by whether it is late, but by how much. To maintain a linear formulation we have

replaced 4.2c with the simpler term θ3γ
(∑

j∈J εj

)
, which simply counts the number of

jobs that are late, regardless of the time. It would also be possible to add a job-based

weighting here to prioritise the on time completion of particular jobs if required. The

purpose of having two scalar values in each term of the objective function (e.g. Θ1ψ) is

to allow these values to be set at different levels within the stakeholder use process. For

example, the baseline cost of travel (ψ) would be set centrally by the RNLI, and the

weighting apportioned to this part of the objective (Θ1) would be set at a divisional level

by end users depending on the specific requirements of that division. The weighting of

the objective function is discussed further in section 6.3.

The other elements discussed as needing to be incorporated in to the objective are return

visits and overtime. These have not been included at present because the formulation

assumes that no overtime is used (so in reality overtime would occur when jobs overrun),

and return visits, if they represent an inefficient use of resources, will be minimised

implicitly through the formulation anyway.

4.4.2 Constraints

The following are the constraints for the full formulation of the Vehicle Routing Problem

with Synchronisation, Time Windows ad Skill Levels. We will introduce and explain each

constraint (or group of constraints, where relevant) individually. The full formulation

of the problem can be found in section 4.4.3.

Number of technicians per job

∑
(i,k,t)∈I(j)

xtijk ≥ αj ∀j ∈ J (4.3)

∑
(i,k,t)∈I(j)

xtijk ≤ βj ∀j ∈ J (4.4)

Constraints ?? ensure that, for each job, the number of technicians arriving to the job

56

is within the allowable range for that job, [αj , βj], where αj , βj ∈ [1, 2], therefore in the

case where αj = βj , these constraints will become binding on
∑

(i,t)∈I(j,k) x
t
ijk. These

constraints are only defined for job nodes, J , as opposed to all nodes in the problem,

V = J ∪H, because the parameters αj , βj are not defined for nodes in H. The matter

of ensuring that the same number of technicians also leave each job is dealt with in the

conservation of flow constraints, equation (4.5).

Conservation of flow

∑
(i,t)∈I(j,k)

xtijk =
∑

i∈V,t∈T |
(j,i,k,t)∈I

xtjik ∀j ∈ V, k ∈ K (4.5)

Equation (4.5) ensures the conservation of flow in and out of nodes. We note that, unlike

equations (4.3) and (4.4) this is defined for all nodes in the network, rather than just

job nodes, as we need to ensure that the number of technicians that arrive and depart

each node is balanced at all nodes, including bases. The constraint to limit the number

of technicians arriving and leaving each base is equation (4.6).

Returning to base

∑
j∈J,t∈T |
(j,k,t)∈G

xthkjk = 1 ∀k ∈ K (4.6)

Equation (4.6) ensures that each technician leaves their base node exactly once per

week, and by extension, they also only return once (as equation (4.5) conserves flow in

and out of all nodes). This is necessary because the constraints that ensure the correct

timing for consecutive are only defined for nodes in J . As a result of this, placing no

constraint on the flow in and out of base nodes could result in any given technician k

being assigned to two jobs i and j at the same time, as returning to base between jobs

would deactivate the constraint which ensures that travel to job j is started only once

57

technician k has completed job i.

If preprocessing (as described in section 4.3) is not used, an additional constraint is

required:

∑
j∈J,t∈T

xthkjk = 0 ∀(h, k) ∈ H ×K | hk 6= h (4.7)

Equation (4.7) ensures that technicians can only depart from their own base node, as it is

implied implicitly in preprocessing so removal of this requires this additional constraint.

Completion of arcs

xtijk = x̄
t+τij
ijk ∀(i, j, k, t) ∈ I (4.8)

Equation (4.8) ensures that, for a departure on an arc (i, j) at time t, denoted by

variable xtijk, the corresponding arrival at j happens at time t + τij (represented by

variable x
t+τij
ijk).

Jobs with two technicians

∑
(i,k,t)∈I(j)

xtijk = zj + 1 ∀j ∈ J (4.9)

Equation (4.9) ensures that the total number of technicians arriving at a given job j

is equal to the number of technicians assigned to that job. This constraint only works

for cases in which each job may be performed by one or two technicians, as with the

problem presented in this work. In other cases it would be necessary to adjust this

constraint, as well as others, to allow for jobs to be completed by a larger number of

technicians.

58

∑
(k,k′)∈K(j)

pjkk′ = 2zj ∀j ∈ J (4.10)

pjkk′ = pjk′k ∀j ∈ J, k, k′ ∈ K|k < k′ (4.11)

Equation (4.10) ensures that, if a job j is performed by a pair of technicians, there

are exactly two corresponding pjkk′ variables which take value one. Furthermore, equa-

tion (4.11) ensures the symmetry of this variable; the combination of these two con-

straints means that the pair assigned to this job is made up of only two technicians. It

is necessary for pjkk′ to be defined for both permutations of k and k′ because of how it

is used in other constraints; these constraints will always refer to the first k index, and

as such it needs to be defined for all other feasible k′ indices.

∑
k′∈K(j,k)

pjkk′ ≤
∑

(i,t)∈I(j,k)

xtijk ∀j ∈ J, k ∈ K (4.12)

Equation (4.12) means that a technician can only be assigned to a job as part of a pair

if they travel to that job, at any time, and from any other node in the network.

Skill levels

∑
i∈J,t∈T

xtijk ≤ qjk(1− zj) +

(∑
k′∈K

qjkk′

)
zj ∀(j, k) ∈ K (4.13)

Equation (4.13) ensures that only technicians with the appropriate skills for a job can be

assigned to that job. This constraint only needs to be included if preprocessing is not

used in the definition of sets and decision variables (see section 4.3 for more information).

59

Time windows

uj ≥ ej ∀j ∈ J (4.14)

uj + δj2zj + δj1(1− zj) ≤ fj + cjεj ∀j ∈ J (4.15)

Equation (4.14) requires the start time of each job to be at least the beginning of the

time window for that job. Similarly, equation (4.15) means the start time, plus the

duration of the job dependent on how many technicians complete the job, is at most

the end of the time window. The term cjεj transforms this constraint in to a soft one,

in that time windows may be exceeded, but they will be subject to some penalty in the

objective function. To make the time window binding for any (or all) jobs, it is simply

required to set the relevant cj = 0.

Start time

The equations below represent three different forms of the same constraint

uj ≥ tx̄tijk ∀(i, j, k, t) ∈ Ī (4.16a)

uj ≥ t

 ∑
(i,k)∈Ī(j,t)

x̄tijk

 ∀j ∈ J, t ∈ T (4.16b)

uj ≥ t

 ∑
(i,k)∈Ī(j,t)

x̄tijk − zj

 ∀j ∈ J, t ∈ T (4.16c)

In particular, (4.16a) is the correct constraint to ensure that the start time of a job

is after the arrival of the technician (or technicians) that are completing the job, and

equations (4.16b) and (4.16c) represent two alternative forms of this. The difference

between them is how they handle the case in which two technicians are working on the

same job (i.e. zj = 1): if we had a guarantee that both technicians would arrive at

exactly the same time, we could use equation (4.16c), as zj = 1 would counter the fact

60

that
∑

(i,k)∈Ī(j,t) x
t
ijk = 2, therefore maintaining a lower bound of t on uj . However, this

is not the case, which could lead to this equation becoming an arbitrary lower bound

uj ≥ 0 (if
∑

(i,k)∈Ī(j,t) x
t
ijk = zj = 1). The alternative forms of equation (4.16a) are con-

sidered here because of the computational differences associated with such formulations;

Wolsey [1998] shows that any formulation will always be stronger than its relaxation(s),

and the comparative computational performance of these alternative forms against the

original formulation is of interest, particularly in cases where the size of the problem is

prohibitively large.

The possible cases of (4.16b) are outlined below:

1.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 0 (nobody arrives at job j at time t): uj ≥ 0

2.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 1 (exactly one technician arrives at job j at time t): uj ≥ t

3.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 2 (exactly two technicians arrive at job j at time t)

(a) t > |T |
2 : infeasible due to (4.15)

(b) t ≤ |T |
2 : : uj ≥ 2t - this is higher than the required lower bound,

which should be uj ≥ t. In this case, this constraint imposes too

high a bound when compared to the original constraint.

The possible forms of (4.16c) are outlined in the following cases:

1.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 0 (nobody arrives at job j at time t)

(a) zj = 0: uj ≥ 0

(b) zj = 1: uj ≥ −t⇒ superseded by non-negativity of variables

2.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 1 (exactly one technician arrives at job j at time t)

(a) zj = 0: uj ≥ t

(b) zj = 1: uj ≥ 0 - not a sufficient lower bound, it should be uj ≥ t. In

this case this constraint is weaker than the original constraint.

3.
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 2 (exactly two technicians arrive at job j at time t)

(a) zj = 0: infeasible due to (4.9)

61

t = 0 5 10

travel (i1, j)

travel (i2, j)

work on job j

work on job j

(a) Equation (4.16b), case 2: example of offset arrival times (uj ≥ t, t = 3, 4)

t = 0 5 10

travel (i1, j)

travel (i2, j)
idle time

work on job j

work on job j

(b) Equation (4.16b), case 3(b): example of equal arrival times (uj ≥ 2t, t = 3)

Figure 4.1: Examples for cases of equation (4.16b)

(b) zj = 1: uj ≥ t

Here we see that (4.16b) does not behave as desired for cases where
∑

(i,k)∈Ī(j,t) x̄
t
ijk = 2

(case 3(b)), with some values of t resulting in an infeasible constraint, and others plac-

ing an unnecessarily high lower bound on uj of 2t, double the arrival time of the two

technicians. From this, we see that, by the definition of Valid Inequalities given in

Nemhauser and Wolsey [1999], (4.16b) is not a valid inequality for all solutions of this

problem. However, if we consider a solution in which the arrival of multiple technicians

is always offset by an hour (at least), this will never fall in to case 3, hence for this

subset of equations, the inequality would therefore be valid. See fig. 4.1 for a diagram of

cases 2 and 3(b) of this equation. If this constraint were used, an additional constraint

to prohibit the simultaneous arrival of technicians in any location could be included

to ensure the validity of (4.16b). Conversely, (4.16c) imposes to loose a lower bound

on
∑

(i,k)∈Ī(j,t) x̄
t
ijk in case 2(b), and hence we see that neither alternative form is cor-

rect in all cases. These alternative forms should be considered in cases where the full

formulation is prohibitively large, especially in instances where reoptimisation happens

regularly and as such computation times need to be kept to a minimum. In the case of

the RNLI example, it was not necessary to use these alternative forms, but they have

been included for the reader’s reference.

62

Finish time

Similarly to the contraints in start time seen above, here we see three different forms of

the constraint of job finish time

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)xtjhk ∀(j, h, k, t) ∈ I

(4.17a)

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)

 ∑
i∈V,k∈K |
(j,i,k,t)∈I

xtjik

 ∀j ∈ J, t ∈ T

(4.17b)

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)

 ∑
i∈V,k∈K |
(j,i,k,t)∈I

xtjik − zj

 ∀j ∈ J, t ∈ T

(4.17c)

WhereM1 = |T | for all combinations of (j, h, k, t). Equations (4.16a), (4.17b) and (4.17c)

all ensure that a job is completed before the relevant technician(s) depart, with equa-

tions (4.17b) and (4.17c) representing alternative forms of (4.16a). Again, the difference

between these alternative forms lies in how they handle jobs which are performed by

two technicians.

The possible forms of (4.17b) are outlined in the following cases:

1.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 0 (nobody leaves job j at time t):

(a) zj = 0: uj + δj1 ≤ |T |

(b) zj = 1: uj + δj2 ≤ |T |

2.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 1 (exactly one technician leaves job j at time t):

(a) zj = 0: uj + δj1 ≤ t

(b) zj = 1: uj + δj2 ≤ t

63

3.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 2 (exactly two technicians leave job j at time t):

(a) zj = 0: infeasible due to (4.9)

(b) zj = 1:

i. t <
|T |+ej+δj2

2 : infeasible due to (4.14)

ii. t ≥ |T |+ej+δj2
2 : uj + δj2 ≤ 2t− |T |

t ≤ |T | (by definition)⇒ 2t−|T | ≤ t⇒ idle time detween job completion

and technician departure of at least |T |−t - this places a tighter upper

bound than required, it should be uj + δj2 ≤ t

The possible forms of (4.17c) are outlined in the following cases:

1.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 0 (nobody leaves job j at time t):

(a) zj = 0: uj + δj1 ≤ |T |

(b) zj = 1: uj + δj2 ≤ 2|T | − t

2.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 1 (exactly one technician leaves job j at time t):

(a) zj = 0: uj + δj1 ≤ t

(b) zj = 1: uj + δj2 ≤ |T | - not a sufficient upper bound, should be

uj + δj2 ≤ t

3.
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik = 2 (exactly two technicians leave job j at time t):

(a) zj = 0: infeasible due to (4.15)

(b) zj = 1: uj + δj2 ≤ t

Similarly to (4.16), we see that (4.17b) is not correct for cases in which
∑

i∈V,k∈K |
(j,i,k,t)∈I

xtjik =

2, by either causing infeasibility or a tighter than required upper bound on the left hand

side, from which we can conclude that this is not a valid constraint for the solution space.

Similarly to the start time constraints, further constraining the feasible set to not include

those solutions which fall in case 3(b)ii of (4.17b) would guarantee its validity. Two of

the cases for equation (4.17b) can be seen in fig. 4.2, which illustrates the difference in

64

t = 0 5 10 15 20

travel (i1, j)

travel (i2, j)

work on job j

work on job j

travel (j, i3)

travel (j, i4)

(a) Equation (4.17b), case 2: example of offset departure times (uj + δj2 ≤ t, t = 8, 9)

t = 0 5 10 15 20

travel (i1, j)

travel (i2, j)

work on job j

work on job j

travel (j, i3)

travel (j, i4)
idle time

(b) Equation (4.17b), case 3(b)ii: example of equal departure times (uj + δj2 ≤ 2t− |T |, t = 14)

Figure 4.2: Examples for cases of equation (4.17b)

idle time for equal and offset departure times. As with the previous constraints on start

time, these alternative forms should be considered if savings in computation time are

required.

Tracking variables y sum to duration

∑
(k,t)∈G(j)

ytjk =δj1(1− zj) + 2δj2zj ∀j ∈ J (4.18a)

∑
t∈G(j,k)

ytjk =δj1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′


+ δj2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K (4.18b)

As the variable ytjk indicates that technician k is working on job j at a given time t,

equation (4.18a) ensures that, for each job, the total number of hours worked is equal

to the duration of the job (given that idle time in a location is not identified by this

variable). Similarly, equation (4.18b) places the same constraint on the total of the ytjk

variables, but in this case for individual technicians, rather than in total.

Summing equation (4.18b) across k ∈ K, we obtain the following equation:

65

∑
(k,t)∈G(j)

ytjk = δj1

 ∑
(i,k,t)∈I(j)

xtijk −
∑

(k,k′)∈K(j)

pjkk′

+ δj2
∑

(k,k′)∈K(j)

pjkk′ ∀j ∈ J

(4.19)

Substituting equations (4.9) and (4.10) in to (4.19), the resulting equation is identical

to (4.18a). From this, we know that (4.18a) is an alternative form of (4.18b), so it is

not necessary to include both constraints in the same formulation.

Hours per technician variables σ sum to duration

∑
(k,w,d)∈F ′

(j)

σwdjk = δj1(1− zj) + 2δj2zj ∀j ∈ J

(4.20a)

∑
(w,d)∈F ′

(j,k)

σwdjk = δj1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ δj2
∑

k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.20b)

Equations (4.20a) and (4.20b) perform the same task as equations (4.18a) and (4.18b),

but in this case for the variable σwdjk . As with the previous constraints, we can easily

show that equation (4.20a) is an alternative form of (4.20b), so once again, it is not

necessary to include both constraints in any one formulation.

It is also worth noting that, as the RHS of (4.18b) and (4.20b) (and (4.18a) and (4.20a))

are identical, and it would therefore be possible to replace either (4.18b) or (4.20b) with

the following constraint:

∑
t∈G(j,k)

ytjk =
∑

(w,d)∈F ′
(j,k)

σwdjk ∀j ∈ J, k ∈ K (4.21)

66

or if the relaxed constraints (4.18a) and (4.20a) are being used, then either can be

replaced with:

∑
(k,t)∈G(j)

ytjk =
∑

(k,w,d)∈F ′
(j)

σwdjk ∀j ∈ J (4.22)

Hours per technician with two technicians

σwdjk − σwdjk′ ≤ max
i=k,k′

{ωdi }(1− pjkk′) ∀(j, k, w, d), (j, k′, w, d) ∈ F ′ | q̄j,k,k′ = 1 (4.23)

σwdjk′ − σwdjk ≤ max
i=k,k′

{ωdi }(1− pjkk′) ∀(j, k, w, d), (j, k′, w, d) ∈ F ′ | q̄j,k,k′ = 1 (4.24)

Equations (4.23) and (4.24) ensure that, for any pair of technicians that are working on

the same job, they must work the same number of hours each day. For combinations of

(j, k, k′) for which pjkk′ = 0 (i.e. the pair of technicians k and k′ are not working together

on job j), these constraints simply limit the difference between the variables σwdjk and σwdjk′

to at most the length of that working day. Although there is some similarity between

these constraints and (4.20b), these are still required, as (4.20b) does not consider the

daily working amount of each technician, but instead considers their total working time

spent on any given job.

Order of jobs

As with equations (4.16) and (4.17), here we consider two different forms of the following

constraint, with differences on the right hand side of the inequality, and the handling of

jobs that are performed by two technicians.

ui + δi1(1− zi) + δi2zi + τij ≤ uj +M2

(
1− xtijk

)
∀(i, j, k, t) ∈ I | i, j ∈ J

(4.25a)

67

ui + δi1(1− zi) + δi2zi + τij ≤ uj +M2

1−

 ∑
(k,t)∈I(i,j)

xtijk

 ∀i, j ∈ J

(4.25b)

ui + δi1(1− zi) + δi2zi + τij ≤ uj +M2

1−

 ∑
(k,t)∈I(i,j)

xtijk − zj

 ∀i, j ∈ J

(4.25c)

Where M2 = |T |. Equations (4.25a) to (4.25c) require that the start time of a given

job j is at least greater than the start time of its predecessor i, plus the time taken

to perform job i, and the time to travel from i to j. As with previous constraints, we

can see that equations (4.25b) and (4.25c) are alternative forms of (4.25a). To assess

which one is most suitable for the given problem, each constraint is broken in to cases

as follows:

For equation (4.25b):

1.
∑

(k,t)∈I(i,j) x
t
ijk = 0 (nobody travels from i to j, at any time)

(a) zj = 0: ui + δj1 + τij ≤ uj + |T | ⇒ weaker than non-negativity of variables

(b) zj = 1: ui + δj2 + τij ≤ uj + |T | ⇒ weaker than non-negativity of variables

2.
∑

(k,t)∈I(i,j) x
t
ijk = 1 (exactly one technician travels form i to j during the full

planning period)

(a) zj = 0: ui + δj1 + τij ≤ uj

(b) zj = 1: ui + δj2 + τij ≤ uj

3.
∑

(k,t)∈I(i,j) x
t
ijk = 2 (exactly two technicians travel form i to j during the full

planning period)

(a) zj = 0: infeasible due to (4.9)

(b) zj = 1: ui + δj2 + τij ≤ uj − |T | - infeasible due to (4.17) (as uj ≤ |T |)

and for (4.25c):

68

1.
∑

(k,t)∈I(i,j) x
t
ijk = 0 (nobody travels from i to j, at any time)

(a) zj = 0: ui + δj1 + τij ≤ uj + |T | ⇒ superseded by non-negativity of variables

(b) zj = 1: ui+ δj2 + τij ≤ uj + 2|T | ⇒ superseded by non-negativity of variables

2.
∑

(k,t)∈I(i,j) x
t
ijk = 1 (exactly one technician travels form i to j during the full

planning period)

(a) zj = 0: ui + δj1 + τij ≤ uj

(b) zj = 1: ui + δj2 + τij ≤ uj + |T |

places a lower bound on uj that is less than or equal to zero, as ui+δj1(1−zj)+

δj2zj+τij ≤ |T |. Not as tight as the required constraint, ui+δj1 +τij ≤

uj

3.
∑

(k,t)∈I(i,j) x
t
ijk = 2 (exactly two technicians travel form i to j during the full

planning period)

(a) zj = 0: infeasible due to (4.9)

(b) zj = 1: ui + δj1(1− zj) + δj2zj + τij ≤ uj

From this we see that (4.25b) is infeasible for all all cases where
∑

(k,t)∈I(i,j) x
t
ijk = 2,

which means solutions in which two technicians travel together form one node to another

would not be feasible. On the other hand, we see that (4.25c) does not impose as tight

a constraint as desired for this problem when
∑

(k,t)∈I(i,j) x
t
ijk = zj = 1. As the latter

does not pose unnecessary infeasibility on some cases of the problem, we conclude that

(4.25c) is the preferred alternative form in this case, if one is to be used at all. As with

the constraints on start and finish time, these alternative forms should be considered

in instances where computation time needs to be reduced. Due to the solution method

and size of the examples solved in this thesis, these alternative forms were not required

in this case but are included for the reader’s reference.

69

Daily working capacity

∑
(i,j,t)∈I(k)
t∈Twd

τijx
t
ijk +

∑
(j∈F ′

(k,w,d)

σwdjk +
∑

j∈J,t∈Twd |
(j,k,t)∈G

τjhkx
t
jhkk
≤ ωdk ∀k ∈ K,w ∈W,d ∈ D

(4.26)

Equation (4.26) constrains the daily working and travelling time of each technician to be

at most their working capacity for that day. At present, we assume that any travelling

to and from the base not at the beginning or end of the week is not included in this time

(i.e., for technicians not staying away from home, their time to travel home each night

is not included in their daily working hours). If it were to be included, the duration of

a job would also be dependant on the technician, as well as the number of technicians

performing the job. As such, complications arise in dealing with a job that is performed

by two technicians, one of whom is required to stay away from home, and the other is

not, as they will have different completion times for the same job. It is for this reason

that travel time to or from their base node has been excluded from the daily working

hours.

Nights away bounds

∑
(w,d)∈F ′

(j,k)

λwdjk ≥ η1
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η1
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K|µjk = 1

(4.27)

∑
(w,d)∈F ′

(j,k)

λwdjk ≤ η7
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η7
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K|µjk = 1

(4.28)

Equations (4.27) and (4.28) constrain the total number of nights spent away at a par-

ticular job to be between the minimum and maximum number of nights over which the

job can be split. The cases for these constraints are as follows:

70

1.
∑

(i,t)∈I(j,k) x
t
ijk = 0 (technician k does not perform job j)

(a)
∑

k′∈K(j,k)
pjkk′ = 0:

∑
(w,d)∈F ′

(j,k)
λwdjk ≥ 0,

∑
(w,d)∈F ′

(j,k)
λwdjk ≤ 0

(b)
∑

k′∈K(j,k)
pjkk′ = 1: infeasible due to (4.12)

2.
∑

(i,t)∈I(j,k) x
t
ijk = 1 (technician k performs job j)

(a)
∑

k′∈K(j,k)
pjkk′ = 0:

∑
(w,d)∈F ′

(j,k)
λwdjk ≥ η1

j1,
∑

(w,d)∈F ′
(j,k)

λwdjk ≤ η7
j1

(b)
∑

k′∈K(j,k)
pjkk′ = 1:

∑
(w,d)∈F ′

(j,k)
λwdjk ≥ η1

j2,
∑

(w,d)∈F ′
(j,k)

λwdjk ≤ η7
j2

As these constraints (and also the variables λwdjk) are only defined for j, k such that µjk =

1 (i.e. technician k must stay away from home if working on job j), no consideration of

this is included in the constraints themselves.

Job split bounds

∑
(w,d)∈F ′

(j,k)

ρwdjk ≥ η1
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η1
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.29)

∑
(w,d)∈F ′

(j,k)

ρwdjk ≤ η7
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η7
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.30)

Similarly to equations (4.27) and (4.28), these constraints ensure that the number of

nights over which a job is split (regardless of whether the technician stays away from

home) is within the range (η1
jn, η

7
jn). These constraints are only required if the vari-

ables ρwdjk are included, and in such a case can be removed without affecting any other

constraints in the formulation. The cases of these constraints are as follows:

1.
∑

(i,t)∈I(j,k) x
t
ijk = 0 (technician k does not perform job j)

(a)
∑

k′∈K(j,k)
pjkk′ = 0:

∑
(w,d)∈F ′

(j,k)
ρwdjk ≥ 0,

∑
(w,d)∈F ′

(j,k)
ρwdjk ≤ 0

(b)
∑

k′∈K(j,k)
pjkk′ = 1: infeasible due to (4.12)

71

2.
∑

(i,t)∈I(j,k) x
t
ijk = 1 (technician k performs job j)

(a)
∑

k′∈K(j,k)
pjkk′ = 0:

∑
(w,d)∈F ′

(j,k)
ρwdjk ≥ η1

j1,
∑

(w,d)∈F ′
(j,k)

ρwdjk ≤ η7
j1

(b)
∑

k′∈K(j,k)
pjkk′ = 1:

∑
(w,d)∈F ′

(j,k)
ρwdjk ≥ η1

j2,
∑

(w,d)∈F ′
(j,k)

ρwdjk ≤ η7
j2

equation (4.29)-equation (4.30): the total number of nights that each job is split over is

equal to the number of nights given by ηtjn

Consecutive variables

t+δ̄j∑
t′=t

yt
′
jk ≥ δ̄j

∑
i∈Ī(j,k,t)

x̄tijk −
(
δ̄j − δj2

)
zj ∀(j, k, t) ∈ G (4.31)

dt+η̄tj∑
d=dt

σwtd
jk ≥ δ̄j

∑
i∈Ī(j,k,t)

x̄tijk −
(
δ̄j − δj2

)
zj ∀(j, k, t) ∈ G (4.32)

dt+η̄tj∑
d=dt

ρwtd
jk ≥ η̄

t
j

∑
i∈Ī(j,k,t)

x̄tijk −
(
η̄tj − ηtj2

)
zj ∀(j, k, t) ∈ G (4.33)

Equations (4.31) to (4.33) ensure that, if a technician k arrives at job j at time t, then

the subsequent ytjk, σ
wd
jk and ρwdjk variables are equal to one for the duration of the job.

To check the accurancy of these constraints, we again consider the following cases:

1.
∑

i∈Ī(j,k,t) x̄
t
ijk = 0 (technician k does not arrive at job j at time t)

(a) zj = 0:
∑t+δ̄j

t′=t y
t′
jk ≥ 0∑dt+η̄tj

d=dt
σwtd
jk ≥ 0∑dt+η̄tj

d=dt
ρwtd
jk ≥ 0

(b) zj = 1:
∑t+δ̄j

t′=t y
t′
jk ≥ δ̄j − δj2∑dt+η̄tj

d=dt
σwtd
jk ≥ δ̄j − δj2∑dt+η̄tj

d=dt
ρwtd
jk ≥ η̄tj − ηtj2 ⇒ as we know that δj2 ≤ δ̄j and ηtj2 ≤ η̄tj , these are

either a negative or zero lower bound on the LHS

2.
∑

i∈Ī(j,k,t) x̄
t
ijk = 1 (technician k arrives at job j at time t)

72

(a) zj = 0:
∑t+δ̄j

t′=t y
t′
jk ≥ δ̄j = δj1∑dt+η̄tj

d=dt
σwtd
jk ≥ δ̄j = δj1∑dt+η̄tj

d=dt
ρwtd
jk ≥ δ̄j = δj1

(b) zj = 1:

i. αj = 1:
∑t+δj1

t′=t yt
′
jk ≥ δj2∑dt+ηtj1

d=dt
σwtd
jk ≥ δj2∑dt+ηtj1

d=dt
ρwtd
jk ≥ δj2 ⇒ these are weaker than the required constraints

ii. αj = 2:
∑t+δj2

t′=t yt
′
jk ≥ δj2∑dt+ηtj2

d=dt
σwtd
jk ≥ δj2∑dt+ηtj2

d=dt
ρwtd
jk ≥ δj2

Here we further consider case 2(b)i: if αj = 1 (i.e. job j has a minimum number of

technicians 1), then δ̄j = δj1 ≥ δj2 and η̄tj = ηtj1 ≥ ηtj2, as the job duration (and therefore

the number of nights over which it is split) is assumed to go down when it is performed

by two instead of one technicians. In this case, these constraints will provide a weaker

that required bound, as they are summing the variables across more days than the job

takes to complete. Ideally we need to develop a linear way of making the sum across

technician hours dependent on the number of technicians completing the job.

4.4.3 Full Formulation

As discussed previously, there are some decision variables which are not essential to

the formulation, but can instead be included or excluded based on the requirements of

the objective function or any additional constraints which are added in to the problem.

Those which must be included in any basic formulation are xtijk, x̄
t
ijk, zj , pjkk′ , uj , εj and

σwdjk . The full formulation presented directly below includes only these variables, and

following that we present the constraints that should be added for any of the additional

optional variables. Where alternative forms have been proposed for some constraints,

the original and correct constraints are presented in the full formulation, and those

which can be swapped for alternative forms will be highlighted after the full formulation

has been presented.

73

Minimise the Objective Function:

θ1ψ

 ∑
(i,j,k,t)∈I

τijx
t
ijk

+ (4.34a)

θ2φ

 ∑
(j,k,w,d)∈F ′

λwdjk

+ (4.34b)

θ3γ

∑
j∈J

εj (uj + (1− zj)δj1 + zjδj2 − fj)

 (4.34c)

Subject to the following constraints:

∑
(i,k,t)∈I(j)

xtijk ≥ αj ∀j ∈ J (4.35)

∑
(i,k,t)∈I(j)

xtijk ≤ βj ∀j ∈ J (4.36)

∑
(i,t)∈I(j,k)

xtijk =
∑

h∈V,t∈T |
(j,i,k,t)∈I

xtjik ∀j ∈ V, k ∈ K (4.37)

∑
j∈J,t∈Tw |
(j,k,t)∈G

xthkjk = 1 ∀k ∈ K,w ∈W (4.38)

xtijk = x̄
t+τij
ijk ∀(i, j, k, t) ∈ I (4.39)∑

(i,k,t)∈I(j)

xtijk = zj + 1 ∀j ∈ J (4.40)

∑
(k,k′)∈K(j)

pjkk′ = 2zj ∀j ∈ J (4.41)

pjkk′ = pjk′k ∀j ∈ J, k, k′ ∈ K|k < k′ (4.42)∑
k′∈K(j,k)

pjkk′ ≤
∑

(i,t)∈I(j,k)

xtijk ∀j ∈ J, k ∈ K (4.43)

uj ≥ ej ∀j ∈ J (4.44)

uj + δj2zj + δj1(1− zj) ≤ fj + cjεj ∀j ∈ J (4.45)

74

uj ≥ tx̄tijk ∀(i, j, k, t) ∈ Ī (4.46)

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)xtjik ∀(i, j, k, t) ∈ I (4.47)

∑
(w,d)∈F ′

(j,k)

σwdjk = δj1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ δj2
∑

k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.48)

σwdjk − σwdjk′ ≤ max
i=k,k′

{ωdi }(1− pjkk′) ∀(j, k, w, d), (j, k′, w, d) ∈ F ′

| q̄j,k,k′ = 1

(4.49)

σwdjk′ − σwdjk ≤ max
i=k,k′

{ωdi }(1− pjkk′) ∀(j, k, w, d), (j, k′, w, d) ∈ F ′

| q̄j,k,k′ = 1

(4.50)

ui + δj1(1− zj) + δj2zj + τij ≤ uj +M2

(
1− xtijk

)
∀(i, j, k, t) ∈ I

(4.51)

∑
(i,j,t)∈I(k)
t∈Twd

τijx
t
ijk +

∑
(j∈F ′

(k,w,d)

σwdjk +
∑

j∈J,t∈Twd |
(j,k,t)∈G

τjhkx
t
jhkk
≤ ωdk ∀k ∈ K,w ∈W,d ∈ D

(4.52)

dt+η̄tj∑
d=dt

σwtd
jk ≥ δ̄j

∑
i∈Ī(j,k,t)

x̄tijk −
(
δ̄j − δj2

)
zj ∀(j, k, t) ∈ G

(4.53)

If the variable ytjk is to be used, the following constraints should be included:

75

∑
t∈G(j,k)

ytjk = δj1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ δj2
∑

k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.54)

t+δ̄j∑
t′=t

yt
′
jk ≥ δ̄j

∑
i∈Ī(j,k,t)

x̄tijk −
(
δ̄j − δj2

)
zj ∀(j, k, t) ∈ G

(4.55)

If the variable λwdjk is to be used, the following constraints should be included:

∑
(w,d)∈F ′

(j,k)

λwdjk ≥ η1
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η1
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

|µjk = 1

(4.56)

∑
(w,d)∈F ′

(j,k)

λwdjk ≤ η7
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η7
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

|µjk = 1

(4.57)

If the variable ρwdjk is to be used, the following constraints should be included:

∑
(w,d)∈F ′

(j,k)

ρwdjk ≥ η1
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η1
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.58)

∑
(w,d)∈F ′

(j,k)

ρwdjk ≤ η7
j1

 ∑
(i,t)∈I(j,k)

xtijk −
∑

k′∈K(j,k)

pjkk′

+ η7
j2

∑
k′∈K(j,k)

pjkk′ ∀j ∈ J, k ∈ K

(4.59)

76

dt+η̄tj∑
d=dt

ρwtd
jk ≥ η̄

t
j

∑
i∈Ī(j,k,t)

x̄tijk −
(
η̄tj − ηtj2

)
zj ∀(j, k, t) ∈ G

(4.60)

If preprocessing described in section 4.3 is not used, the following constraints should be

included:

∑
i∈J,t∈T

xtijk ≤ qjk(1− zj) +

(∑
k′∈K

qjkk′

)
zj ∀(j, k) ∈ K (4.61)

∑
j∈J,t∈T

xthkjk = 0 ∀(h, k) ∈ H ×K | hk 6= h (4.62)

In addition, the alternative forms given in table 4.9 can be used if required.

Table 4.9: Alternative Constraint Forms

Constraint Alternative Form(s)

(4.46) (4.16b), (4.16c)

(4.47) (4.17b), (4.17c)

(4.48) (4.20a)

(4.51) (4.25c)

(4.54) (4.18a)

In the case of the RNLI problem, the variables ytjk and ρwdjk are not required as we do not

need to consider the location of technicians at a given time t (indicated by ytjk), or the

number of nights over which jobs are split (ρwdjk). However, the variable λwdjk is necessary

to satisfy the requirement that the number of nights spent away from home is included

as part of the objective function. Therefore, the variables λwdjk and equations (4.56)

and (4.57) are included in the final formulation. The preprocessing of decision variables

and sets described in section 4.3 was not used in the experiments presented in this thesis,

as it was decided removing these restrictions would allow CPLEX to make use of it’s own

preprocessing techniques without additional restrictions imposed from the beginning. As

such constraints (4.61) and (4.62) are required in the final formulation. In a case where

77

computation time needs to be further reduced or state of the art solvers such as CPLEX

are not available, it is advisable to carry out testing of this preprocessing, but that was

not needed in this case.

Unfortunately, not all of the requirements outlined in chapter 3 have been included in

this formulation. Including them all explicitly would have created an even more complex

formulation, so the decision was taken to exclude some in order to create a formulation

which could still be solved in a reasonable time using appropriate techniques. The

requirements stated in chapter 3 that are not included explicitly in this formulation are

daily driving limit, training and precedence. The omission of the first two of these does

not have to great an impact on the usability of the formulation within the RNLI: as

stated previously, the daily driving limit is so high that it is very rare that anyone would

reach this limit, as it would not leave any significant time to do any maintenance work so

it is only in rare cases that this might be an issue. With regards to training, these can be

included as jobs for which only those needing the training have the required skills, and as

such no additional constraints are needed to leave empty time in a schedule in the event

that a technician requires training. The final omitted requirement is precedence, which

was chosen to be excluded as it was deemed less important than the other requirements

discussed with the problem stakeholders, and not something that occurs frequently.

4.5 Formulation Reduction

Through the initial stages of computational testing with this formulation it became

apparent that even with some requirements removed the formulation still could not be

solved in reasonable time, or in some cases could not be solved at all. Through testing

it was discovered that the removal of (4.53) from the formulation resulted in a problem

that could be solved with much greater success: when testing ten instances of a small

problem, feasibility was restored to those instances which had previously been infeasible,

and some which had previously reached the time limit imposed on the solvers (one hour)

were solved. Removal of this constraint would create infeasibility in the σwdjk variables, so

the decision was taken to remove these variables from the formulation, and all associated

78

constraints. As a result, (4.48), (4.49), (4.50), (4.52), (4.53) were all removed from the

formulation along with the σwdjk variables. In addition constraint (4.39), which is a direct

equality between variables xtijk and x̄
t+τij
ijk can be removed by substitution. Based on

the fact that the x̄ variables are used less in the full formulation, these were chosen to

be removed, although this is just a matter of convenience and the same result would

be achieved in either case. Therefore, altering the indices of x̄ gives us the following

equivalence for substitution:

x̄tijk = x
t−τij
ijk (4.63)

This can be substituted in to equation (4.46) to achieve the following new constraint:

uj ≥ tx
t−τij
ijk ∀(i, j, k, t) ∈ I (4.64)

(4.65)

These represent all the changes that were made to the formulation before the final stages

of testing and implementation.

79

80

Chapter 5

Methodology

In this chapter we present the full methodology used to solve the problem formulated in

chapter 4. This begins with Lagrangian relaxation and the subgradient method, includ-

ing testing of which constraints to dualise and algorithm performance. This is followed

by the local search heuristic, for which the subgradient method provides the initial so-

lution, and which forms the second part of the overall matheuristic approach. We also

present an approach which can be used to create a hierarchical problem structure, but

this is purely theoretical and does not form part of the computational testing carried

out. This approach would be useful in cases where the full problem is too large to

be solved in reasonable time by the matheuristic method presented in this work, and

therefore a hierarchical structure could break the full problem down in to subproblems

of a suitable size for the matheuristic method which can then be solved individually, for

example splitting the planning horizon or creating further geographical divisions.

5.1 Lagrangian Relaxation

Lagrangian relaxation is commonly used method in Operational Research for obtaining

a lower bound of a combinatorial optimisation problem. In the case of linear or integer

programming, this can be achieved by assigning multipliers to a selection of the problem

constraints and dualising them in the objective function, as outlined by Held et al. [1974].

81

We consider an integer programming problem in standard form:

min cTx (5.1a)

s.t. Ax ≥ b (5.1b)

Dx ≥ e (5.1c)

x ∈ Z (5.1d)

where Dx ≥ e are the constraints to be dualised. Taking a vector of multipliers λ, the

problem is reformulated in to the Lagrangian relaxation

min cTx+ λ(e−Dx) (5.2a)

s.t. Ax ≥ b (5.2b)

x ∈ Z (5.2c)

The associated Lagrangian Dual is therefore

max
λ≥0

{
min
x∈Z

cTx+ λ(e−Dx) | Ax ≥ b
}

(5.3)

It is easy to prove that a solution to this problem, known as the Lagrangian Lower

Bound Problem (LLBP), provides a lower bound to the original problem: let x̄ be a

feasible solution to the full problem (5.1). We know that e −Dx̄ < 0 due to (5.1c), so

it follows that:

cT x̄+ λ(e−Dx) ≤ cT x̄

and hence for any solution x̄, the objective value of the LLBP is a lower bound to the

objective value of the original problem.

82

The performance of any algorithm to solve this LLBP is hugely dependent on the se-

lection of constraints to be dualised, as the removal of each set of constraints has a

different impact of the problem structure, and therefore how quickly it can be solved

with traditional solvers. In order to determine which constraints to dualise for the given

problem, each set of constraints were removed in turn, and the problem solved on the

same eight instances in order to compare solution time. The full results of these tests

and introduction of the instances used can be found in section 7.1.1. Even though these

were only tested on a small instance of the problem, there were two sets of constraints

which stood out as having the greatest reduction on computation time:

uj ≥ tx
t−τij
ijk ∀(i, j, k, t) ∈ Ī (5.4)

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)xtjhk ∀(j, h, k, t) ∈ I (5.5)

These ensure that the arrival and departure times of a job respectively happen before

and after the job has been completed. Further testing of these revealed that the best

solution times on larger instances of the problem result from both constraints being

dualised simultaneously, the full results of which can be seen in section 7.1.2.

Combining these two, the new objective function of the Lagrangian dual problem is

Z + λ(tx
t−τij
ijk − uj) + µ(uj + δj2zj + δj1(1− zj)− (M1 + (t−M1)xtjhk)) (5.6)

Where Z is the original objective function. The formulation is as presented in chapter 4,

but without the constraints (5.4) and (5.5); the full formulation will not be presented

again here due to its size.

83

5.2 Subgradient Method

The subgradient method is one frequently used for the solution of the Lagrangian Lower

Bound Problem (LLBP), outlined in section 5.1. Below is the subgradient method as

stated by Beasley [1996]:

1. Let π be a user defined ‘step-size’ parameter. Recommended value 0 ≤ π ≤ 2.

2. Initialise ZUB, for example using some heuristic for the original problem.

3. Initialise ZLB = −∞

4. Set λi, the initial values for the Lagrange multipliers

5. Solve LLBP with the current set of multipliers λi, to achieve solution Xj , with

objective value Z∗

6. Calculate subgradients for the current solution:

Gi = bi −
n∑
j=1

aijXj , i = 1, . . .m

7. Calculate step size δ for the current solution:

δ =
π(ZUB − ZLB)∑m

i=1G
2
i

8. Update λi for the current solution:

λi = max(0, λi + δGi), i = 1, . . . ,m

9. Update ZLB = max(ZLB, Z
∗)

10. Repeat from step 5 until termination condition(s) are met

Termination conditions:

◦ ZUB = ZLB

◦ π ≤ 0.005

84

Beasley [1996] also made a recommendation based on their observations: to avoid getting

stuck in a local minima, it is recommended to update π = π
2 if ZLB has not improved

in a fixed number of iterations N (N = 30 recommended).

One drawback to this particular variation of the subgradient method is the need for an

upper bound on Z when calculating the lagrangian multipliers: such a method is likely

being used because of the complexity of solving the problem in full, and as such even

finding an upper bound to the objective value may be computationally demanding. For

the problem described in this work, the upper bound will be determined by setting the

CPLEX MIP solution limit to 1 when solving the full problem, in other words taking

the first integer solution found. The performance of this method will then be compared

with other step sizes in order to determine which is best suited to the given problem.

The full list of step sizes to be considered will be outlined in the next section.

5.2.1 Step Size Selection

In the literature relating to subgradient methods, there are a number of different step

sizes that are used in order to achieve the best results for a given problem. In this section

I will outline the necessary conditions of a step size calculation to guarantee convergence,

as well as the the different step sizes that were considered for this particular problem,

and evaluate their suitability from a theoretical standpoint. The full results produced

by the different step sizes, and an in depth comparison between them, is presented in

section 7.2.

Brännlund [1995] outline two conditions on the calculation of the step size hk, either of

which is sufficient to guarantee convergence of the subgradient method. These conditions

are:

1. hk = γk(f(xk)−f∗)
||gk||2

, where 0 < δ ≤ γk ≤ 2− δ and f∗ is the known optimal value

2. hk > 0, limk→∞ hk = 0 and
∑∞

h=0 hk =∞

This does not guarantee that step sizes which do not satisfy either of these conditions

will not converge when used with the subgradient method on a particular problem, just

85

that it is not guaranteed to converge in all cases.

The first step size considered is that outlined by Beasley [1996], and introduced in

section 5.2. The step size δ is calculated as follows:

δ =
π(ZUB − ZLB)∑m

i=1G
2
i

(5.7)

where π is a fixed step size parameter such that 0 < π < 2, ZUB is a previously calculated

upper bound to the lagrangian dual, and Gi are the subgradient values. This stepsize

satisfies the first of the conditions stated by Brännlund, so it is guaranteed to converge

with an appropriate selection of π.One drawback of this step size which can be observed

immediately however is the need to calculate ZUB. This can be calculated in a number

of different ways, for example through the use of a simple heuristic, or terminating after

the first integer solution from a traditional sover such as CPLEX, but for large problems

this could become a very costly procedure in terms of time. Furthermore, the challenge

at hand is already to find a suitable solution method for the given problem, and as such

requiring another method for finding an upper bound within this further complicates

the matter. Nevertheless, computational experiments for this step size were carried out

in order to establish whether the time taken to find an upper bound is offset by the

performance of this step size within the subgradient method.

Further to this, a number of other calculations of step size were considered and tested for

comparative purposes. In order to assess whether it is necessary to use a step size which

requires the calculation of an upper bound, these step sizes are calculated independently

of the objective function value, and instead depend solely on the iteration number in

the subgradient method. The step sizes tested were:

δ =
1

i+ 1
(5.8)

δ =
1√
i+ 1

(5.9)

δ =ρi (5.10)

86

where i is the iteration number (beginning at 0), and 0 < ρ < 1. Of these, the first two

satisfy the second condition stated by Brännlund for guaranteed convergence, but the

third one does not. As previously stated however, this does not mean that it will not work

in this case, just that it is not guaranteed to converge, so it will still be tested alongside

the other step sizes. These all have the characteristic of decreasing in an exponential-

type curve, but even the variations between these can have a significant impact on the

performance and behaviour of the subgradient method. Whilst the behaviour of these

functions is familiar to us, fig. 5.1 helps to illustrate the differences between them, and

the resulting impact on subgradient convergence times will be presented in section 7.2.2.

In addition to these step size calculations being used on their own, two normalisations

were also tested with each variation in order to reduce the impact of subgradient vectors

with very large magnitude, the effects of which were observed in initial testing of these

step sizes. The normalisations tested were
Gj

N , where N takes the values values:

||G||1 =
∑
i

gi

||G||2 =

√∑
i

g2
i

There are also a number of other methods which can be used to improve convergence

speed of the subgradient method. Deflection techniques, as presented by Camerini

et al. [1975], uses a linear combination of the current subgradient and the previous

direction in order to counteract the ‘zig-zagging’ behaviour that is observed in some

instances. Frangioni et al. [2017] provide a comprehensive overview and testing of this

and other methods such as projection to show the performance capability of the sub-

gradient method when tuned correctly. Due to the behaviour described in section 5.2.2,

no further tuning of the subgradient was carried out in this case as the decision was

taken to proceed with a matheuristic approach, but these methods are invaluable in

cases where the subgradient is being used and needs to be correctly tuned.

The full results of the performance of these step sizes, both standard and normalised, is

87

Figure 5.1: Comparison of step size values

presented in section 7.2.2.

5.2.2 Behaviour of Subgradient

During testing of the subgradient algorithm, some unusual behaviour was observed.

When using initial multipliers λ = 0, the objective function value obtained at the first

iteration is positive and integer as is expected, but from the second iteration where some

multipliers have non-zero value, the objective function takes a very negative value (see

section 7.2 for the full results). Over the subsequent iterations it begins to climb back

towards the solution found in the first iteration, but the speed at which this happens

(and whether it reaches it before convergence) is dependent on the step size used. The

reason for this is explained in the following steps, followed by a more in depth proof.

1. Iteration 0: problem is solved with λ = 0, and achieves a positive integer val-

ued objective function z0, with solution x0. This is to be expected due to the

constraints and objective function of the problem.

2. A small number of dualised constraints are violated given solution x0. The respec-

tive multipliers λ of these constraints are increased to penalise this violation.

3. Due to the structure of the problem (i.e. wide time windows) it is very easy for jobs

88

to be shifted in time. As a result, the inner problem now benefits from introducing

a lot of slack in the previously violated constraints, leading to an overall negative

objective value.

4. The multipliers that were increased in value in iteration 0 (and now benefit the

inner problem) are reduced back to (or towards) 0 to remove this benefit. The

multipliers of newly violated constraints are increased to penalise these violations.

5. The behaviour described in 3-4 repeats between iterations. Due to the fact that a

very small proportion of constraints are violated at each iteration, there are always

easy shifts that can be made to counter this.

6. As with any subgradient method, the step size for updating λ decreases over time.

As such, the increases made to λ at each iteration become smaller, before being

removed again at the next iteration. With the passage of sufficient number of

iterations, the increases to λ become so small that the vector of multipliers tends

towards 0. As a result of this, some step sizes cause the subgradient method to

converge prematurely as the multipliers become too small to make any meaningful

steps in the solution space.

This behaviour is also observed in instances where the initial multipliers are all given

some positive value. Initially, the subgradient will return an objective with a negative

value several orders of magnitude less than the expected solution, as the inner problem

is able to benefit from a lot of slack in feasible constraints, and only a small number

are violated in each solution. Figure 5.2 shows the number of non-zero multipliers at

each iteration in the subgradient method for an instance of the problem with initial

multipliers taking a random value between 0 and 0.1. Here we observe that the number

of non zero multipliers decreases very rapidly at the beginning of the algorithm, and

very soon stabilises to a number not far above the number of violated constraints at each

iteration, confirming the idea that a number of multipliers are being decreased back to

or towards zero at each iteration. Additionally, we see in graph fig. 5.2 that the average

value of non zero-multipliers is converging towards zero, as described in point 6 of the

list above.

89

Figure 5.2: Count and Value of Non Zero Multipliers in the Subgradient Method -
λ0 = U(0,1)

10

90

To formalise this explanation, we now present a proof of the behaviour of the subgradient

method when the lagrangian multiplers take value λ = 1. Whilst this is only one case of

the subgradient method, the same logic can be applied to all multipliers with positive

value to explain the behaviour observed in the computation experiments carried out.

Proof of objective value at λ = 1

Let (i∗, k∗, t∗) ∈ J × K × T be the combination of indices for which xt
∗
i∗jk∗ = 1 for a

given value of j for which zj = 0. Then from the constraint

∑
(i,k,t)∈I(j)

xtijk = zj + 1

we can deduce that xtijk = 0 for all (i, k, t) ∈ (J ×K × T) \ (i∗, k∗, t∗), or in other words

all other x variables associated with j will take value 0. We then consider two different

cases of the following dualised constraint:

uj ≥ tx
t−τij
ijk ∀(i, j, k, t) ∈ I (5.11)

Case 1: (i, j, k, t) = (i∗, j, k∗, t∗) ⇒ uj ≥ t∗

The maximum possible value of t∗ = |T |, so for a given value of j the maximum violation

that can be achieved by this constraint is |T | − uj .

Case 2: (i, j, k, t) ∈ (J × J ×K × T) \ (i∗, j, k∗, t∗) ⇒ uj ≥ 0

This constraint holds for all valid combinations of (i, j, k, t), meaning there are (|J ||K||T |)−

1 constraints for each value of j which each have a feasibility value of uj . For any j for

which uj = 0, there will be no feasibility benefit from the constraints identified in this

case, but for any value of uj > 0, there will be a potential negative effect on the objective

function of the Lagrangian dual, and this would be the case for up to (|J ||K||T |) − 1

constraints if all their associated λ multipliers were positive. Conversely, there will only

91

ever be a maximum of one constraint which has the potential to increase the objective

function value, as identified in case 1, if its respective λ multiplier is positive. Consider-

ing the start point where λ = 1, we define LRj as the total contribution to the objective

function by the constraint (5.11) for a given value j.

LRj = t∗ − uj − ((|J ||K||T |)− 1)uj

= t∗ − |J ||K||T |uj

≤ |T | − |J ||K||T |uj

= |T |(1− |J ||K|uj)

≤ 0 ⇐⇒ uj > 0

We can see here that for uj = 0, LRj can take a positive value, but it is bounded above by

|T |. On the other hand, for positive values of uj , the overall contribution to the objective

function will be negative. Furthermore, as uj increases this negative contribution grows

significantly: if we consider the small example where |J | = 8, |K| = 4, |T | = 40, then an

increase of 1 in uj will result in a −1280 change in LRj .

It is not unreasonable for us to disregard instances in which |J | ≤ |K|, i.e. the number

of jobs is not more than the number of technicians, as these could be considered trivial.

As a result, amongst the remaining instances it is guaranteed that at least one job will

have a start time uj > 0, and in the current case of λ = 1, the feasibility benefit achieved

by such jobs will far outweigh the penalty incurred by jobs with a start time uj = 0.

Even if we consider initial values of λ such that 0 < λ < 1, the magnitude of the benefit

of having many feasible constraints will decrease but the overall effect will be the same.

Similarly, we consider two different cases of the other dualised constraint:

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)xtjik ∀(j, i, k, t) ∈ I (5.12)

Case 1: (j, i, k, t) = (j, i∗, k∗, t∗) ⇒ uj + δj1 ≤ t∗

For any given value of j, the maximum violation value for this constraint is uj + δj1, as

92

t∗ has a minimum value of 0.

Case 2: (j, i, k, t) ∈ (J × J ×K × T) \ (j, i, k∗, t∗) ⇒ uj + δj1 ≤M1

Constraints of valid combinations of (j, i, k, t) will yield a feasibility value of uj+δj1−M1.

The minimum value of M1 is |T |, as this will ensure that, for non binding constraints,

(5.12) simply states that job j must be completed within the planning horizon of the

stated problem. For any jobs which finish at the latest allowable time uj + δj1 = |T |, all

constraints from (5.12) which relate to this job will have a feasibility value of 0. For all

other values of j however, it is guaranteed that uj + δj1−M1 < 0, meaning there will be

an overall negative contribution to the objective function for constraints with multiplier

λ > 0. As with the previous constraint, if we let initial multipliers λ = 1, we define LRj

as the total contribution of the dualised constraint (5.12) to the objective function.

LRj = uj + δj1 − t∗ − ((|J ||K||T |)− 1)(uj + δj1 − |T |)

= |T | − t∗ + |J ||K||T |(uj + δj1 − |T |)

≤ |T |+ |J ||K||T |(uj + δj1 − |T |)

= |T |(1 + |J ||K|(uj + δj1 − |T |))

≤ 0 ⇐⇒ uj + δj1 − |T | < 0

Similarly to the previous dualised constraint, in cases where uj + δj1 = |T | the overall

contribution to the objective function can take positive value, but it is bounded above

by |T |. However for all other jobs, the overall contribution will be negative, and in most

cases with a much larger absolute value. Considering the same small problem as before,

i.e. |J | = 8, |K| = 4, |T | = 40, a decrease in uj+δj1−|T | by a value of 1 will change LRj

by -1280. Furthermore, disregarding the cases in which |J | ≤ |K| as with the previous

constraint, there is a guarantee that at least one job will have finish time uj + δj1 < |T |,

i.e. it will finish before the end of the planning period, and as such its feasibility will

take negative value of at most |T |(1 − |J ||K|), which will far outweigh the maximum

penalties of |T | from any other jobs.

93

The above examples do not provide definitive proof that positive Lagrangian multipliers

will always yield a negative objective function for the Lagrangian dual problem, but it

does explain why in many cases, included those considered in this work, the objective

function takes a negative value at the beginning of the subgradient method.

In all the instances and variations of the subgradient method that were tested, no in-

stances were observed in which the final objective value achieved after a fixed number of

iterations (the highest number tested was 1000) was higher than that found in iteration

0 with λ = 0. In many cases it converged back to this value, but improvements were

never found. It is possible that adjusting the step size to eliminate early convergence

and running for a higher number of iterations would yield an improvement to the ini-

tial solution found, but in this case this was deemed unnecessary. Given the need for

problems such as this to be solved in a reasonably quick time, carrying out a very high

number of iterations (with a non-negligible computation time at each iteration) could

lead to very high computation times to achieve very little gain on the initial solution

found. For this reason it was decided to use the solution found when λ = 0 and use this

as the starting point for a heuristic method to improve the solution.

5.3 Heuristic

As described in section 5.2.2, we know that the objective value obtained at the first

subgradient iteration with zero valued multipliers provides a good lower bound on the

optimal objective, but the associated solution is not guaranteed to be feasible for the full

problem as it is obtained after removing two constraints. Figure 5.3 shows an example

of what this infeasible schedule may look like, as taken from one of the instances used

for testing. It is clear that this solution is not feasible due to the overlapping of many

jobs: technician 0 for example has six separate jobs scheduled for the same time. This

overlapping of many jobs occurs as a result of the constraints which were removed for

the subgradient method. As such, the variables relating to travel (xtijk) do not align

with the order and start times of jobs in the initial solution as they are not constrained

to do so. This and all other schedules in this section are used for illustrative purposes

94

only at this stage, the full results will be discussed in depth in section chapter 7.

The process for making this solution feasible and subsequently finding improvements is

divided into multiple stages which are outlined in this section, beginning with reaching

feasibility.

Algorithm 1 Make Schedule Feasible

1: for each techncian k ∈ K do
2: Fix tour order for technician k from original solution
3: if Tour of technician k contains disjoint tours then
4: Swap nodes to join tours
5: end if
6: end for
7: for Each job j ∈ J with zj = 1 (two technicians) do
8: if j overlaps with job i for some i ∈ J with zi = 1 then
9: Find earliest start time uj = t such that j does not clash with i,∀i ∈ J, zi = 1

10: Add job j to schedule for technicians k and k′

11: end if
12: end for
13: for Each technician k ∈ K do
14: for each job j in tour of technician k, zj = 0 do
15: Add job to schedule for technician k at earliest possible time
16: if Schedule does not align with tour for technician k then
17: Correct tour
18: end if
19: Add travel between jobs to schedule
20: end for
21: end for

Algorithm 1 uses the solution output from iteration 0 of the subgradient method to

determine a feasible solution to the problem. An example of this initial solution can

be seen in fig. 5.3. It starts by constructing tours from the initial solution based on

the arcs that technicians traverse, regardless of the time at which they do this (lines

1-6). This approach is used because many jobs overlap or have start times at zero, so

attempting to construct a tour based on the initial start times of jobs would require a

lot of alteration, whereas the remaining constraints in the problem ensure all jobs are

visited, so there must exist tours (sometimes disjoint) which travel to all jobs when time

is ignored. Disjoint tours are eliminated by swapping two jobs between the tours until

each technician has a single complete tour. The next step is fixing the start times of

those jobs which are completed by two technicians, as this is where the biggest difficulty

95

lies. Moving a job within the schedule of one technician can have knock on effects

for many other technicians and jobs, as it may trigger a chain reaction of changes in

start time. Each of these jobs is fixed at the start time given in the initial solution,

or moved to the earliest possible time if this conflicts with other two technican jobs

that have already been fixed (lines 7-12). The remaining solo technician jobs are then

inserted around two technician jobs, attempting where possible to maintain the order

of a technician’s tour, but moving where necessary to avoid changing start times of jobs

with two technicians (lines 13-18). Time for travel is then inserted between all jobs,

shifting their start times later as necessary (line 19). From the initial solution, no zj

variables are changed, meaning the number of technicians assigned to each job is fixed.

At this stage, no jobs move between technicians. More testing could be done at this

stage to further improve the initial tour construction algorithm in lines 1-7, for example

using a scheduling type approach based on existing algorithms such as the one presented

by Nawaz et al. [1983].

Once the initial solution has been made feasible with algorithm 1, we are left with a

solution like that seen in fig. 5.4 (some jobs extend beyond the planning horizon and

therefore do not appear on the schedule). Here we see that whilst there are no longer

any overlapping jobs, there are still improvements to be made: there are technicians

who make multiple trips to the same location (indicated by colour), and there are jobs

which finish beyond the end of the planning period. Improvements to this solution are

achieved using the local search heuristic described in algorithm 2. This heuristic is

divided in to two distinct stages: lines 3-28 deal with improving the schedule without

moving any jobs between technicians, and lines 29-47 move jobs between technicians

in order to reduce lateness. In only considering movement of jobs within their tour

initially, we greatly reduce the number of solutions to be searched, whilst still observing

a significant improvement in the objective. Once an iteration is reached where both

stages are completed without any improvement being found then the heuristic can be

terminated, or if this does not occur then the heuristic will terminate once the maximum

number of iterations is reached. In the case of this work, the recommended value of both

m and n is 10, the reason for which will be discussed in chapter 7. A more detailed

96

Algorithm 2 Local Search Heuristic

1: Initialise best objective (z∗), max. completion time (f∗), tours (r∗) and start times
(s∗)

2: for m iterations do
3: for n iterations do
4: for Each technician k ∈ K do
5: for Each job j in rk, the tour of k do
6: for Each job h in rk, the tour of k s.t. j 6= h do
7: Move job j to the position of job h in rk
8: Calculate the earliest possible start times for jobs in rk
9: if zj = 1 then

10: Find k′, the other tech working on job j
11: Move job j in rk′ based on start time of j and jobs in rk′

12: end if
13: Calculate all new start times s (see algorithm 3)
14: Calculate new objective z and max. completion time f
15: if z < z∗ then
16: Update z∗, f∗, r∗ and s∗

17: else if z = z∗ then
18: if f < f∗ then
19: Update z∗, f∗, r∗ and s∗

20: end if
21: end if
22: end for
23: end for
24: end for
25: if there is no change in z∗, f∗, r∗ and s∗ then
26: break
27: end if
28: end for
29: if Any jobs are late f∗ > T then
30: Find L, list of all jobs which finish late
31: for each job j ∈ L do
32: for each tech k or pair of techs (k, k′) qualified to do job j do
33: Move job j to last position of rk (and rk′ if zj = 1)
34: Calculate all new start times s (see algorithm 3)
35: Calculate new objective z and max. completion time f
36: if z < z∗ then
37: Update z∗, f∗, r∗ and s∗

38: else if z = z∗ then
39: if f < f∗ then
40: Update z∗, f∗, r∗ and s∗

41: end if
42: end if
43: end for
44: end for
45: else
46: Return z∗, f∗, r∗ and s∗

47: end if
48: end for

97

description of both stages will now be given.

Stage one considers all possible movements of each job without moving it to a different

technician’s tour. Within each technician’s tour, every job is moved to the position of

each other job in the tour in terms of job order (line 7). It then calculates the earliest

possible start times for all jobs in this newly ordered tour, assuming the technician

will travel directly from job to job with no idle time (line 8). If the moved job is also

being completed by another technician, it is moved to the appropriate place in their

tour such that start times are non-decreasing (lines 9-12). These changes may have

created infeasibility with job start times, so the new earliest start times of all jobs are

recalculated using algorithm 3 (line 13), described in more detail below. With these

new tours and start times, the new objective function value is calculated and compared

to the current best, with ties being broken by earliest maximum completion time, and

then job index (lines 15-21). Repeating this for all jobs in all tours will give us the

best improvement for that iteration. The number of comparisons to be performed at

this stage is
∑

k∈K |rk|(|rk| − 1), where rk is the tour of technician k. This is at most

J(J−1) (in the case where all jobs are being completed by one technician), and is much

smaller than this in practice as jobs are distributed across a number of technicians.

This stage is repeated for a fixed number of iterations, or until no improvement in the

solution is observed (lines 25-27). An example of what a solution may look like after

this stage can be seen in fig. 5.5: we can see easily that the number of return visits to

the same location has been reduced as jobs of the same colour are much more grouped

in the schedule, and this is reflected in the objective function which has been reduced

from 128 to 63, and the maximum completion from 54 to 44. Nevertheless, there may

still be jobs which are completed outside their time window, one example of which is

job 11 in fig. 5.5.

Given that lateness is one of the three elements in the objective function, moving those

jobs which finish late to other technicians provides another possible area for improving

the objective value, which is the purpose of stage two. Considering each job which

finishes outside its time window, we consider all other technicians or pairs of technicians

who are qualified to complete this job alone or together respectively. For each alternative

98

technician assignment, we move the late job to the last place in the tour of those one

or two technicians. As in the previous stage, the earliest start times of all jobs are now

calculated, and the new technician assignment which offers the greatest improvement

is selected, breaking ties again by maximum completion time and then job index (lines

29-40). Once this has been completed for all late jobs, one full iteration of the heuristic

is complete. If at least one late job was moved to a different technician, then the process

can be started again from stage one, as there may be improvements to be made to the

new tours.

Algorithm 3 Calculating Earliest Start Times

1: for each job j in tour rk that has been changed do
2: Set start time of j to earliest possible time, sj = sj−1 + δj−1 + τj−1,j

3: end for
4: for n sufficiently large do
5: set schedule feasibility to True
6: for each tech k′ ∈ K do
7: if sj in k′ are not feasible, i.e. si + δi + τij � sj for all adjacent jobs then
8: set schedule feasibility to False
9: for each job j in tour rk′ do

10: Set start time of j to earliest possible time, sj = max(si + δi + τij , sj)
11: end for
12: end if
13: end for
14: if job feasibility is True then
15: break
16: end if
17: end for
18: for each tech k ∈ K do
19: for each job j ∈ rk do
20: for each hour t ∈ T do
21: set temp start s′j = sj − 1
22: if s′j is feasible in rk (and rk′ if zj = 1) then
23: sj = s′j
24: end if
25: end for
26: end for
27: end for

Algorithm 3 for calculating earliest possible start times of all jobs is also divided in to

two parts: lines 1-17 ensure the feasibility of all start times given any recent changes to

tours, and lines 18-27 remove any idle time that is present between jobs, allowing for

99

time spent waiting for another technician. Initially, the earliest possible start times for

the new tour are calculated, assuming the technician will travel directly from job to job

with no idle time (line 1-3). For each technician, we check the feasibility of their tour

based on the existing start times of all jobs, and updated start times for those jobs which

appear in the changed tour: if there is idle time then this is not changed as bringing

the start time of a job forward may create new infeasibility elsewhere, but if there is

overlap then all subsequent start times are pushed back to ensure they allow for job

completion and travel between each pair of jobs (lines 7-12). This is repeated, looping

through all technicians as many times as necessary until a feasible schedule has been

reached. This process of pushing back start times may introduce unnecessary idle time

between jobs, so stage two removes these gaps. Starting with the earliest jobs by start

time, each job’s start time is reduced by one hour at a time until it can no longer be

made any earlier, allowing for completion of the previous job and travel between them

(lines 18-23). This way we ensure that the jobs all have their earliest possible start time

for the given arrangement of tours. This algorithm is used as a function in both stages

of the local search heuristic 2.

Overall the full solution process for the proposed VRP formulation combines mathemat-

ical programming and heuristic methods, resulting in a matheuristic algorithm.

5.4 Hierarchical Approach

Given the possible size of a problem like this, it is also important to consider possible

reduction methods to decompose the full instance into smaller, more manageable sub-

problems. One approach for the given problem is to use a hierarchical structure, solving

first for the assignment of jobs to weeks for completion, and then solving the routing

problem within each week (and possibly geographical division) separately.

Given a set of jobs to be scheduled, each of which has an assigned division, and a set of

weeks during which all work must be completed, the task is to assign jobs to weeks so

that the weekly duration of jobs in each division does not exceed the capacity for that

division. At this stage, skill levels are ignored; we assume that the skill levels available

100

Figure 5.3: Schedule result directly from Subgradient method

Figure 5.4: Schedule solution directly after applying algorithm 1 to achieve feasibility
(some jobs not visible at the end of tours)

101

Figure 5.5: Schedule solution directly after first stage of algorithm 2, keeping all jobs
with their original technician

Figure 5.6: Schedule solution directly after second stage of algorithm 2, moving late
jobs to different technicians

102

will be the same in each week (as we are dealing with the same set of technicians), and

therefore any issues surrounding job infeasibility due to skill level will be an overarching

problem across the whole planning horizon, not just in a given week. In other words,

if no technician k possesses the correct skills to perform a particular job j in week w,

then assuming homogeneity of technicians across weeks means it will be infeasible for

all weeks in the planning period.

This can be viewed as a Generalised Assignment Problem (GAP), which can be stated

as follows: given a set M of m agents, and a set N of n jobs, each agent j ∈ M has a

capacity Cj , and for each item and agent pair (i, j), we are given a resource required to

complete the job rij and a profit pij . The objective is to find an assignment of items

to agents that provides maximum profit. For the given problem, the costs and resource

of each job are equal across all agents j ∈ M , a special case known as the Multiple

Knapsack Problem (MKP). In addition, the presence of multiple divisions means this

problem should also be treated as a Multidimensional Knapsack Problem (d-KP). Full

explanations of both the MKP and the d-KP can be found in Kellerer et al. [2004].

Combining the MKP and the d-KP, the current task of decomposing the full problem

can be formulated in two different ways: either we assign jobs in J to weeks in W (with

a parameter to determine which division a job is in), or we assign jobs in J to division-

week pairs in D ×W . The formulations for each of these approaches can be seen in

(5.13) and (5.14) respectively.

min
∑

(j,w)∈A

wxjw (5.13a)

s.t.
∑

w|(j,w)∈A

xjw = 1 ∀j ∈ J (5.13b)

∑
j)|(j,w)∈A

δjrjdxjw ≤ Hd ∀d ∈ D,w ∈W (5.13c)

xjw ∈ {0, 1} ∀j ∈ J,w ∈W (5.13d)

103

min z =
∑

(j,d,w)∈Â

wxj(d,w) (5.14a)

s.t.
∑

(d,w)|(j,d,w)∈Â

xj(d,w) = 1 ∀j ∈ J (5.14b)

∑
j|(j,d,w)∈Â

δjxj(d,w) ≤ Hd ∀(d,w) ∈ D ×W (5.14c)

xj(d,w) ∈ {0, 1} ∀j ∈ J, (d,w) ∈ D ×W (5.14d)

Where

Parameters

J = set of jobs to be completed

D = set of working divisions

W = set of weeks

rjd =


1 job j ∈ J is in division d ∈ D

0 otherwise

δj = duration of job j ∈ J

[aj , bj] = time window of job j ∈ J (aj ≤ bj , aj , bj ∈W)

Hd = the total work hours available per week in division d

104

j1

j2

j3

w1

w2

w3

(a) Bipartite graph of 2D formulation

j1

j2

j3

d1

d2

d3

w1

d1

d2

d3

w2

(b) Bipartite Graph of 3D formulation

Figure 5.7: Example bipartite graphs

Decision Variables

xjw =


1 job j ∈ J is assigned to week w ∈W

0 otherwise

xj(d,w) =


1 job j ∈ J is assigned to the division-week pair (d,w) ∈ D ×W

0 otherwise

The associated bipartite graphs of these special cases of the MKP can be seen in fig. 5.7.

If the decision variables xjw and xj(d,w) are only defined for feasible combinations of j,

d and w, it is easy to show that these formulations are identical with the presence of

parameter rjd to determine the division that each job is in.

Unplanned work can be handled as part of this approach in a number of different ways.

Taking a robust optimisation type approach, it would be possible to reduce the weekly

job capacity and in doing so ensure each week has available capacity for additional jobs.

The exact reduction in the capacity constraint would need to be determined through

analysis of the urgency and frequency of unplanned jobs. Such a method would not

105

guarantee enough time to complete all unplanned jobs that emerge, and it also may

result in idle time if no unplanned jobs are reported to fill the time. In the event that

the robust approach does not allow sufficient capacity for corrective jobs in a given

week, or if the robust approach is not being used, then the small size and simplicity of

this problem means it could be resolved at short notice to reassign jobs to weeks for

completion. This would in turn also require the affected subproblems to be re-optimised

at short notice, which reinforces the need to find a method for the problem which can

achieve a solution in a short space of time. The issue of time windows can be handled

by ensuring that the variables for a job j are only declared for weeks w which overlap

with that jobs time window; all other extensions to the VRP which are included in this

problem will be considered in the individual subproblems which are the main focus of

this work, and therefore not included at this level.

Further investigation in to this technique for problem decomposition will not be pre-

sented here; there is a wealth of existing research on extensions of the Knapsack Problem

and associated solution methods, and the reader is directed to Kellerer et al. [2004] for

a comprehensive overview of these. The focus of this work will be solving the problem

at a divisional level over short planning periods, which are small enough to be solved

independently. Such subproblems (i.e. the allocation of jobs to weeks) may be created

manually as is currently done by the RNLI, or they could be determined by solving

either of the formulations presented above. The formulation presented in chapter 4 is

independent of this hierarchical method: splitting the problem would simply aim to

reduce the size of each VRP to be solved and not the constraints being considered, and

as such the formulation can be used with or without the preceding work to divide the

problem instance.

5.5 Implementation

Initial testing with regards to which constraints to dualise was carried out in AMPL.

Due to the fact that this software requires a license, the decision was taken to transfer

all subsequent computational work to Python so it can be implemented without the

106

need for a license. Whilst testing was carried out using CPLEX to solve the initial

Lagrangian Relaxation problem, the Python package PuLP allows for formulations to

be solved with any solver, enabling the use of free solvers such as COIN-OR if required

in application.

107

108

Chapter 6

Data

We were only able to obtain a limited amount of data from the RNLI, an overview of

which is given in the first part of this chapter. This is followed by details of the methods

used to generate data for the purposes of testing, as not enough was provided from the

RNLI to carry out extensive testing.

6.1 Job Data

In total, information on 14,043 jobs over one year (excluding December) was provided;

of interest to us at this stage is the job priority (defined below), type (corrective or

preventative) and expected duration. Of these, ∼3,400 jobs are listed as having an ex-

pected duration on zero. As this data could be viewed as incomplete, all summaries and

statistics presented in this chapter have been carried out both including and excluding

these jobs.

One thing that we define here is the notion of job priority. This does not explicitly

impact on the problem formulation in terms of prioritising jobs; instead it categorises

jobs based on the time within which they need to be completed, giving us the time

window (ej , fj) described in section 4.1.4. The categories are as follows:

‘Next visit’ refers to the job being completed on the next time the station is visited by

109

Priority 1: Immediate – 24 hours

Priority 2: 2 – 7 days

Priority 3: 8 – 30 days

Priority 4: Next visit

Figure 6.1: Number of Jobs and Job Hours by Type

an ST, on the basis that stations are visited roughly twice per year. This is equivalent

to saying it has a time window of ‘Immediate – 6 months’, and can thus be scheduled

any time during the planning period.

Additionally, all jobs are categorised as either corrective or preventative: the former

are jobs which are generated at the start of the planning period (every three months),

whereas the latter are jobs which emerge as problems develop. All of these jobs are

assigned a priority level from those described above. The preventative jobs are those

which will be used as the initial input in to the problem formulation (as these are the

jobs that are known at the beginning of the planning period). The corrective jobs will

need to be incorporated in to ST routes as they emerge, or for those with lower priority

they can be added to the set of jobs to be completed over the subsequent weeks.

110

The graphs in fig. 6.1 show the number of jobs and job hours in each priority, for

each job type. From this, we can clearly see that, for all of these categories, the most

common priority is 3, that is, those jobs which must be completed within 8-30 days.

More specifically, these jobs made up 75.7% of the total number of jobs, and 80.67%

of the number of hours. In comparison, jobs with immediate priority made up only

3.37% of all jobs, and 2.77% of hours. A full breakdown of this data can be found in

appendix A.1. In addition, we consider whether there is any seasonal behaviour in the

pattern of when jobs are created: fig. 6.2 shows a plot of the number of corrective and

preventative jobs over the same year. The most notable feature of this graph is the

large number of preventative jobs generated in the first month of the year, at least three

times that of any other month. This is likely to be due to the timing of decisions for

large scale work and upgrades, meaning a large number of jobs for the coming year are

created around the same time. Of more interest for the purposes of this problem is

whether there is any seasonality in the creation of corrective jobs. With this we see an

increase in the months June to September; this is perhaps unsurprising, as the number

of calls being responded to by the RNLI is likely to be higher over the summer months

due to an increased number of people spending time on, in or near the water, and as

such is possible that more frequent use of vessels could lead to a higher rate of repair

work needing doing.

The full results when broken down by month can be seen in table A.5.

Whilst these results do not directly impact the formulation presented in chapter 4,

they will help to shape the approaches used in considering emergent jobs. This may be

implemented in very different ways for instances with high and low numbers of corrective

jobs, and having an idea of how many corrective jobs will emerge during any given period

will help to influence these decisions.

6.2 Instance Generation

In order to be able to carry out robust testing in the absence of real data, randomly

generated instances were used. The python script allows the user to specify the size

111

Figure 6.2: Number of jobs created per month (‘ 0’ indicates that jobs with zero duration
have been ignored)

of the problem and the random seed. In this way, there is no limit to the number of

files that can be generated, and they can be easily replicated if necessary by using the

same seed. The inputs of the generation function and their descriptions can be seen in

table 6.1. The only constant values between different instances are the number of hours

per week, 40, the number of days per week, 5, and the cutoff beyond which technicians

must stay away from home, 1.5 hours. The rest of the data is generated as per the

process outlined below.

Table 6.1: Table showing arguments of Data Generation function

Argument Filename Description

Code

locs C Number of job locations, i.e. lifeboat stations in this case

dpts H Number of depots or bases of technicians

jobs J Number of jobs to be completed

techs K Number of technicians available

weeks W Number of weeks in the planning period

skls S Number of distinct skill areas

lvls L Number of skill levels within each skill area

initial seed SD Initial seed for the problem randomisation

112

0 0.2 0.4 0.6 0.8 1

x

0

1

y

0 1
x

0

1

y

Distribution of job nodes Distribution of base nodes

Figure 6.3: Approximate representation of node distributions

Each instance will be saved with a generated filename: data SD0 C4 H2 J8 K4 W2 S2 L2.csv.

At several stages throughout the instance generation, the random seed is reset to en-

sure similarity between instances of different sizes. This way, increasing the size on

an instance with a fixed seed will have the effect of adding in additional jobs and/or

technicians, whilst the existing ones and their respective information remain the same.

6.2.1 Node Locations

Job Node Locations

Job locations are randomly generated on a unit square. In order to emulate the nature

of the RNLI problem, job locations should be more likely to occur around the edge

of the square. The x-coordinate is taken form a uniform distribution, and categorised

according to its value. The y-coordinate is taken from a reflected normal distribution

whose parameters are dependent on the category of the x-coordinate, meaning an x

coordinate in one of the outermost strips of the unit square will have an almost equal

distribution across the y-axis, but the strips nearer the centre will be much more likely

to generate a y-coordinate near the edge of the square. A visual approximation of this

distribution can be seen in fig. 6.3.

113

Base Node Locations

Similarly to job locations, base locations are also generated randomly on a unit square,

but in this case they should be more likely to occur nearer the centre of the square, again

to emulate the typical RNLI problem. Both the x- and y-coordinates are generated with

a normal distribution, with a visual approximation also shown in fig. 6.3.

Inter-node Distances

The distances between all nodes are calculated based on their cartesian distance in the

unit square. In order to be as similar to the RNLI problem as possible, these cartesian

distances were multiplied by 3 and rounded to the nearest integer, as the problem

considers discrete units of time, in this case hours.

6.2.2 Job Information

Job Locations

Each job in the instance is randomly assigned one of the existing job nodes using a

uniform distribution, from which it takes its own location coordinates. If there are more

jobs than job locations (which is very likely), there is guaranteed to be at least two

jobs which share a location. These jobs will have the same coordinates, and therefore a

travel time of 0 between them, but they will still be considered separate nodes for the

purposes of this problem.

Time Windows

The length of the time window for each job, given in weeks, is taken from the distribution

bU(1,min{|W |+ 1, 5})c. The maximum time window for any job is four weeks, but for

planning periods shorter than this, a lower cap on the length of time windows is imposed.

From this, the start of the time window is taken from the floor of a uniform distribution,

ensuring that it will start early enough to allow the whole job time window to fall within

114

the planning period. The finish time is simply calculated from the start time and time

window.

Number of Technicians Required

in the RNLI case, the majority of jobs can be completed by one technician, and for many

they can only be completed by one technician. Some jobs however can be completed

by two technicians, with the assumption that this will half the job duration, and some

require two to be completed. There are assumed to be no jobs which require more than

two technicians, as this is not included in the problem formulation. In order to reflect

this, the minimum number of technicians for a job takes value 1 with probability 0.8,

and 2 otherwise. If the minimum number of technicians is 2 then the maximum will

also be 2, otherwise the maximum number of technicians is 1 with probability 0.8, or 2

otherwise.

Skill Requirements

Skill requirements for a job are simply calculated using a uniform distribution. In each

skill domain, the skill requirement takes the value bU(1, |L|+ 1)c, an integer between 1

and the number of skill levels in the problem.

Job Duration

Job duration is calculated as δ = min{max{bN (6, 6)c, 1}, τ∗}, where τ∗ = Ω−2 maxi,j{τij},

the maximum duration of a job assuming a technician can travel there, complete the

job and travel back to their base within one week. This value is the duration if the job

when completed by its minimum number of technicians; if this minimum is 1, and the

maximum is 2, then the duration of the job for 2 technicians is d δ2e.

115

Lateness

The allowable lateness of jobs is stated in days, and in these instances has a maximum

value of 5 days. By generating a number p = U(0, 1), the allowable lateness value is

determined according to the value of p according to the table below:

Lateness (days)

0 ≤ p < 0.5 0

0.5 ≤ p < 0.7 1

0.7 ≤ p < 0.8 2

0.8 ≤ p < 0.9 3

0.9 ≤ p < 0.95 4

0.95 ≤ p 5

If a a job has a time window which extends to the end of the planning period, then it

will be constrained to finish on time by the formulation. Such jobs will still be assigned

a lateness, in case they are used in another longer instance, but otherwise the lateness

will be dominated by other constraints in the formulation.

6.2.3 Technician Information

Technician Base

Each technician is randomly assigned one of the available base nodes by way of a uniform

distribution, from which it takes its base coordinates.

Skills

Skill levels for technicians are generated from a normal distribution. This is then re-

stricted to be between the values of 0 and |L|, giving the following calculation for skill

level:

116

min

{
|L|,max

{
0,

⌊
N

(
|L|+ 1,

(
|L|
2

)2
)⌋}}

This means technicians are most likely to be fully trained in each skill domain, and their

probability of being any given level decreases as the level decreases.

Work Hours

In these instances, technicians are all assumed to work full time, i.e. 40 hours per week.

6.3 Objective Function Weighting

In order for the formulation and method presented in this thesis to be applied to the

RNLI, weightings for the objective function would need to be determined. One reason

behind the decision to optimise all divisions separately is that each division will be

able to provide its own objective function weightings to capture the subtle differences

between each area. An example of this would be nights away: in areas where jobs

are more spread out such as Scotland, having to stay away for a night may be almost

inevitable in some cases, so less importance might be placed on reducing these as it is

accepted that they will be necessarily. Conversely, for technicians covering a relatively

small area with short distances between stations there is a very real possibility that route

selection may determine whether or not they have to stay away, and as such reducing

these may be a higher priority.

In the absence of real data, the weightings used in the examples tested in this work were

all equal. In a case where this work is being applied and these weightings need to be

determined, there are existing methods which can be used to aid this decision, such as

the Analytic Hierarchy Process (AHP) described in Ishizaka and Nemery [2013]. Using

the AHP, the problem is arranged in to a hierarchical structure (see fig. 6.4), where

the root node (level 1) represents the decision to be made, the next level the criteria to

be considered (level 2), and below that each criteria is broken down in to two or more

117

Scheduling
Technicians

Doing Things
the Right Way

Quality Happy Tech-
nicians

Compliance

Minimise Over-
time

Minimise Travel
Time

Maximise the Fit
of Work to Skills/
Competency

Minimise Late-
ness of Work

Maximise the
Equal Spread
of Object Types
Worked On

Maximise the
Equal Spread of
Workload

Minimise Number
of Overnight Stay

Level 1

Level 2

Level 3

Figure 6.4: Tree of Decision Criteria

subdivisions (level 3). Rather that generating an overall ranking of these criteria and

sub-criteria manually, pairwise comparisons are used, as Psychologists such as Yokoyama

[1921] state that it is easier and more accurate to express preference between two options,

rather that ranking more than two options together. Collating all of these comparisons

enables an overall preference ranking to be calculated.

The structure of the decision tree is important, as Weber et al. [1988] note that a criteria

with a higher number of sub-criteria is more likely to receive a higher overall ranking. In

addition, if there are n criteria, the number of pairwise comparisons that must be made

is n(n−1)
2 , so a large number of criteria will result in a process that is time-consuming,

and may therefore be discouraging for participants. As such, effort should be directed

towards ensuring that the tree is of a reasonably small and balanced nature, to increase

the overall effectiveness of the task. AHP is traditionally used to compare a discrete

(and easily counted) set of possible outcomes according to the given criteria; whilst

the problem we are dealing with is technically discrete in the sense that it uses integer

decision variables, we are not able to consider all possible solutions as is suggested for

118

AHP. Nonetheless, this approach can still be applied to the given problem, by utilising

the process to generate criteria priorities, without then applying these to individual

decision options.

The criteria in fig. 6.4 are for the purposes of demonstration; whilst they do not neces-

sarily represent the final criteria that will be used with this process going forward, they

give an idea as to the types of criteria that are being considered in this problem. To

perform this task, Transparent Choice’s AHP software would be used [Choice], which

automates the creation of the ‘quiz’ to allow participants to compare all possible pairs,

and the calculation of criteria priorities from this. These would then be used to deter-

mine appropriate weightings to be used in the objective function. This method however

is not without flaws. It is possible that someone completing the comparison quiz could

inadvertently create a cyclic order of priority, especially in cases with a large number of

comparisons as it becomes harder to keep track of previous answers. Despite this, in a

survey of multiple criteria decision making processes, Wallenius et al. [2008] highlight

that AHP is the fastest growing method of this type in terms of number of publications.

No further methods will be presented here, but the reader is referred to the work by

Wallenius et al. for further information on alternative methods.

119

120

Chapter 7

Results

In this chapter we present the findings of this work, from initial testing through to

final computational results. First, we will discuss the results used to identify which

constraints should be dualised to form the Lagrangian dual problem, followed by the

results obtained from implementing the Subgradient algorithm with this dualisation.

The output from the Subgradient method was then used as the basis of a heuristic

algorithm, the results of which will be the final part of this chapter. Initial testing was

carried out with small problem instances in order to determine which solver should be

used for any instances of the MILP or its relaxations. CPLEX and Gurobi provided the

quickest solution times compared to other solvers, but performed equally when compared

to each other, so CPLEX was chosen for all of the work presented in this chapter.

7.1 Identifying Constraints to Dualise

7.1.1 Initial Results

An important factor in the successful implementation of the subgradient algorithm is

the selection of constraints to be dualised, as this will impact the solution time of the

resulting problem. In order to determine the best set or sets of constraints to dualise

for this problem, experiments were run with each individual set of constraints being

121

Table 7.1: Computational details for section 7.1.1

Software AMPL (20181005)

Solver CPLEX (12.5.0.0)

Computer Iridis 4

Processors 6 x 2.6GHz

Table 7.2: Average time to reach optimality with individual constraints removed

Constraint Average Time to Optimality

(4.35) 00:07:03

(4.36) 00:31:51

(4.37) 00:04:16

(4.40) 00:21:48

(4.12) 00:24:21

(4.41) 00:24:16

(4.42) 00:31:42

(4.61) 00:22:02

(4.44) 00:25:03

(4.45) 00:36:31

(4.46) 00:00:08

(4.47) 00:00:10

(4.38) 00:49:41

(4.62) 00:31:22

(4.51) 00:13:40

(4.56) 00:20:40

(4.57) 00:11:54

removed from the formulation to establish the effect on solution time. As these were

carried out in the initial phases of this work, they were calculated using AMPL. The

full computational details are listed in table 7.1. These were tested on eight instances

of size |J | = 8, |H| = 2, |K| = 4, |S| = 2, |L| = 2, |W | = 2; each of the listed constraints

was removed from each of the eight instances, and the problem solved to optimality to

record the solution time. A summary of these results can be seen in table 7.2.

We observe a wide range of solution times across the different problem formulations,

ranging between 8 seconds and almost 50 minutes. As these tests were carried out on a

122

test size dataset, we expect to observe an increase in solution times when it is used to

solve instances of a more realistic size, however the impact of removing each constraint

on the solution time is still clearly visible here. The two constraints which lead to the

greatest reduction in solution time are

uj ≥ tx
t−τij
ijk ∀(i, j, k, t) ∈ Ī (7.1)

uj + δj2zj + δj1(1− zj) ≤M1 + (t−M1)xtjhk ∀(j, h, k, t) ∈ I (7.2)

Constraint (7.1) ensures the start time of a job is not earlier than the the time at which

its technician(s) arrive, and similarly (7.2) ensures technician(s) do not leave until a

job has been completed. Whilst the removal of either of these constraints represents a

significant improvement from solving the problem in full, further testing is required to

establish whether this reduction will be sufficient when applied to problems of a bigger

size, which will be presented in the next section.

7.1.2 Full Problem Size

Having established which constraints lead to the greatest reduction in solution time

when removed, we now continue testing for these two constraints in order to determine

which should be used in the final lagrangian dual formulation. Similar to the testing

described in section 7.1.1, we tested each of the constraints separately, but this time

implementing the subgradient method over a maximum of ten iterations. In order to

test the performance of these dual problems on larger instances, the problem size was

increased to |J | = 20, |H| = 2, |K| = 10, |S| = 2, |L| = 2, |W | = 1. This size was chosen

based on the average number of technicians per division in the RNLI. The computational

details are given in table 7.3 and the results in table 7.4 show the average solution time

per iteration across six different instances.

As expected, the average solution time at this stage has inreased significantly when

compared to the previous results from a test size problem. We also observe a much

123

Table 7.3: Computational details for section 7.1.2

Software Python (3.6.8)

Package PuLP (1.6.9)

Solver CPLEX (12.5.0.0)

Computer Iridis 4

Processors 6 x 2.6GHz

Table 7.4: Average time for subgradient iterations by dualised constraint

Constraint Average Time per Subgradient Iteration

c tw arrive 0:58:18

c tw leave 0:03:40

bigger difference between the two constraints, but the times for both are higher than

is really suitable for a subgradient method: even when considering a relatively small

number of iterations, the total time to implement the full subgradient method could

become prohibitively large, especially when considering a problem which may need to

be resolved regularly as new jobs emerge. In order to further reduce the average time

required to complete one subgradient iteration, both constraints were dualised together.

Combining these two, the new objective function of the Lagrangian dual problem is

Z + λ(tx̄tijk − uj) + µ(uj + δj2zj + δj1(1− zj)− (M1 + (t−M1)xtjhk)) (7.3)

where Z is the objective function of the original problem. We then implemented the

subgradient algorithm on the new Lagranigan dual problem, across the same instances

and for a maximum of 1000 iterations, the results of which can be seen in table 7.5.

These results show a significant improvement in the average iteration time for each in-

stance when compared to the solution times for each constraint being dualised separately

(table 7.4), with an overall average of 16.12s.

Another advantage of the selection of these particular constraints for dualisation is the

impact it has on the objective function when these constraints are removed from the

124

Table 7.5: Average iteration time of subgradient algorithm with double dualised con-
straints

Instance Seed Average Iteration Time (s)

0 17.81

1 15.70

2 11.99

3 15.21

4 16.53

5 15.22

6 13.78

7 14.29

8 28.39

9 12.23

full formulation. Given an optimal solution from the subproblem with (7.1) and (7.2)

removed, the remaining constraints on the xtijk variables will ensure that all jobs still

have a technician arrive to and depart from them. In other words, if we consider the

network that represents this problem, the correct number of arcs will be traversed to

provide a complete solution, the absence of the dualised constraints simply means the

timings of travel along these arcs will not necessarily align with the start times of jobs.

When we consider the full objective function without dualised penalty terms, the only

variables present are xtijk, λ
wd
jk and σj , which refer to travel between nodes, overnight

stays and lateness respectively. As such, a solution with the correct number of arcs

will provide a strong lower bound to the travel element from the objective function of

the full problem, even if this solution violates constraints (7.1) and (7.2), as all jobs

are still being visited and the travel between them contributes to the objective value,

regardless of whether this travel aligns correctly with the start times of the jobs. On the

other hand, we do not observe the same behaviour for all constraints. We consider the

constraint which provides the next quickest average subgradient iteration when dualised

in section 7.1.1:

125

Table 7.6: Objective values of problem instances based on dualised constraint

Seed (7.4) (7.1) (7.2)

0 10 20 20

1 7 5 5

2 11 20 20

3 11 20 20

4 12 20 20

5 10 20 20

6 4 2 2

7 11 20 20

8 5 5 5

9 11 20 20

∑
(i,t)∈I(j,k)

xtijk =
∑

i∈V,t∈T |
(j,i,k,t)∈I

xtjik ∀j ∈ V, k ∈ K (7.4)

This constraint ensures that, for each technician that arrives at a given node, they must

also depart that node. By removing (7.4) from the full formulation instead of the two

constraints chosen previously, the resulting optimal solution will not necessarily traverse

the correct number of arcs to provide complete tours, possibly resulting in a worse lower

bound. This is reflected in the maximum objective values achieved by the subgradient

method when testing the dualisation of each of these constraints, as shown in table 7.6.

Here we see that for most instances the best lower bound is achieved when either (7.1)

or (7.2) are dualised.

In both of these cases the effect of the dualised constraints in the objective has been

ignored; of course in cases with non zero multipliers the objective values produced by the

lagrangian dual would be much lower than the optimal objective value due to the penalty

terms, as described in section 5.2.2, but the solution they produce will still be relevant.

In a case where no optimal solution can be found using the subgradient method, using

the solution from one of the iterations will still provide a lower bound to the optimal

solution, and this bound is more often stronger when either or both of (7.1) and (7.2) are

126

dualised as opposed to (7.4). As such, there is not only a computational speed reason to

select these constraints for dualisation, but also the fact that they will provide a good

lower bound to the full problem. The solution itself would not be optimal, but it could

provide a starting point for a heuristic to find a feasible solution.

7.2 Subgradient Results

We now present the results obtained through the testing of a number of variations of

the subgradient method, based around changes to the step size used in the calculation

of the lagrangian multipliers. As it has been shown that the best option for dualising

constraints is to use both (7.1) and (7.2), all results from this point are only for this

particular case.

7.2.1 Step Size δ = π(ZUB−ZLB)∑m
i=1G

2
i

First we consider the step size proposed by Beasley [1996] from the original subgradient

method discussed in this work, which is:

δ =
π(ZUB − ZLB)∑m

i=1G
2
i

(7.5)

where Gi = bi −
∑n

j=1 aijXj , i = 1, . . .m, in other words the violation or slack in

each constraint, and zUB is a known upper bound on the objective function of the full

problem. In this case, this upper bound was found by solving the full problem with the

CPLEX parameter ‘mip solution limit’ set to one, so CPLEX returns the first integer

solution found. The subgradient method described in section 5.2 was implemented with

this stepsize on instances of size |J | = 8, |H| = 2, |K| = 4, |S| = 2, |L| = 2, |W | = 2. The

first ten iterations based on the instance with seed 0 produced results which can be seen

in table 7.7.

We observe from the first iteration that the step sizes take a very small value, which

is down to the very high value of the denominator,
∑m

i=1G
2
i , the sum of squares of the

127

Table 7.7: Initial results for Beasley step size

Iteration Status Time (s) Violation Step Size Obj. Max.
∑m

i=1G
2
i

Count Value Obj.

0 Optimal 2.281 8 < 10−3 8 8 75413351

1 Optimal 2.565 7 < 10−3 7.999 8 80744304

2 Optimal 2.611 7 < 10−3 7.999 8 86614714

3 Optimal 2.403 7 < 10−3 7.999 8 83350692

4 Optimal 2.478 6 < 10−3 7.999 8 86621698

5 Optimal 2.308 8 < 10−3 7.999 8 80596839

6 Optimal 2.471 8 < 10−3 7.999 8 80743693

7 Optimal 2.271 8 < 10−3 7.999 8 87009880

8 Optimal 2.4 8 < 10−3 7.999 8 84973208

9 Optimal 2.338 7 < 10−3 7.999 8 84588183

subgradient vector. This inhibits the subgradient method from moving very far from

the initial multipliers λ = 0, and as a result there is very little change in the objective

function value between iterations. In order to verify that the behaviour observed is not

unique to this instance, table 7.8 shows the average magnitude of the subgradient vector

across 100 iterations from 10 different instances of the problem. For each instance this

value is extremely large, and in the same order of magnitude as the instance described

above.

The values in the column ‘Violation Count’ of table 7.7 indicate the number of violated

constraints at each iteration, and in all cases this is very small, between six and eight.

The total number of constraints is of the order |J |2|K||T | which is greater than 10,000

even in this small example, and as shown in the proof in section 5.2.2 some of these are

guaranteed to have positive slack. Given the very small number of violated constraints,

there are a large number which are guaranteed to be feasible, each by a value of up

to 2|T |. As such, summing across the squares of these values leads to a very large

denominator ||G||2. These results suggest that the step size provided by Beasley [1996] is

not suitable for the given problem, and as such alternative step sizes were also considered.

128

Table 7.8: Magnitude of violation for multiple instances across 100 iterations

Seed Average
∑m

i=1G
2
i

0 83,065,656.2

1 95,236,147.6

2 83,910,959.8

3 115,587,754.8

4 105,399,882.0

5 86,549,877.1

6 97,944,731.3

7 87,190,024.0

8 57,564,737.0

9 72,813,594.9

7.2.2 Iteration Based Step Sizes

Whilst the step size considered in section 7.2.1 depends on both the objective value

and the subgradient vector, sometimes a step size based solely on the iteration is used,

as described in section 5.2.1. One benefit of these is their simplicity to calculate; the

previous step size requires an upper bound value of the Lagrangian dual, which must

therefore be calculated in advance. Whilst this is possible, the performance of iteration

based step sizes may be sufficient to remove the need for calculating an upper bound.

Step Size δ = ρi

Section 5.2.1 introduces the iteration based step sizes included in this work, one of which

was δ = ρi, where 0 < ρ < 1 and i is the iteration number. In this case, the selection

of the value of ρ can have a dramatic impact on the performance of the subgradient

algorithm, and even its ability to converge to the correct value. In fig. 7.1 we see the

performance of the subgradient algorithm with this step size and four different values

of ρ.

These tests were carried out with λ0 = 0, so we observe the same behaviour in iteration

0 as described in section 5.2.2. As with the other step sizes, we see that the objective

value drops after the first iteration, but this drop is smaller in magnitude for smaller

129

Figure 7.1: Plot for instance size |C| = 4, |H| = 2, |J | = 8, |K| = 4, |W | = 2, |S| =
2, |L| = 2

values of ρ. Whilst a smaller drop in the objective is desirable as it is less far for the

subgradient method to climb back towards its convergence value, decreasing ρ does have

a negative effect on the performance of the algorithm.

Looking at the line relating to ρ = 0.5, we see that it converges prematurely to 3.232,

instead of 8 as happens for ρ = 0.8 and ρ = 0.9. This is not surprising when we consider

the numerical implications of selecting a relatively small ρ; in such cases the step size

will converge to 0 very quickly, meaning the subgradient can no longer find any other

solution that is a meaningful distance away, and it will thus converge before it has a

chance of reaching its optimal value. Conversely, considering very large values of ρ,

like 0.99, we observe a line which is much more erratic, as the step size is very slow to

decrease in value and the resulting subgradient method can make very large ‘steps’ in

the solution space. The key here is to achieve a balance between finding a value of ρ

which will allow quick convergence, without causing premature convergence; such values

for this case include 0.8 and 0.9, as can be seen in the graph.

130

Figure 7.2: Comparison of subgradient step size

Comparison of Step Sizes

In total, three iteration based step sizes were tested: δ = ρi, as seen in section 7.2.2, with

ρ = 0.8 and 0.9; δ = 1
i+1 and δ = 1√

i+1
, where i is counted from zero. Figure 7.2 shows

the change in objective function value for each of these step sizes over 200 subgradient

iterations, when tested on a problem of size |J | = 20, |H| = 2, |K| = 10, |S| = 2, |L| =

2, |W | = 1.

Here we see that all three step sizes follow a similar pattern, but with variation in the

speed at which they converge and their erraticism. δ = ρi, ρ = 0.8 converges to 20 in

around 40 iterations, increasing from an objective value of less than -12,000 in the second

iteration, whereas the two fractional step sizes experience the same dramatic drop at the

beginning and both tend upwards from there, but neither reach convergence in the first

200 iterations shown in the graph. From this we see clearly that the best performing

step size for this problem so far is δ = ρi, ρ = 0.8, but further work is required to try and

find greater improvements in its performance. The behaviour we observe in the second

iteration, as explained in section 5.2.2, means unnecessary time is being spent in trying

131

Table 7.9: Number of iterations required to reach objective within 1 of first iteration

δ = 1
i+1 δ = 1√

i+1
δ = ρi, ρ = 0.9 δ = ρi, ρ = 0.8

No normalisation - - 92 43

||X||2 148 - 47 23

||X||1 35 - 33 16

to return the objective value back towards positive numbers, as we know the optimal

solution must be positive due to nonnegativity of decision variables and associated costs

in the objective function.

7.2.3 Subgradient Normalisation

In order to try and reduce the magnitude of the decrease in the objective observed

in the subgradient algorithm, we tested normalisations of each of the three step sizes

compared in the previous section. As described in section 5.2.2, the first iteration of

the subgradient method (or second if we start with zero value multipliers) has a very

negative objective value. This is due to the high number of dualised constraints, and the

guarantee that at least some of these will be feasible, and as such their penalties in the

objective are cumulatively much larger than the original terms combined. As a result of

this, the number of iterations required for the subgradient method to return to positive

objective values, and therefore near to its final convergence value, is unnecessarily high.

We tested two different normalisations of the subgradient vector in combination with

each step size. The normalisations tested were
Gj

N , where N takes two different values:

||X||1 =
∑
i

xi

||X||2 =

√∑
i

x2
i

Figure 7.3 shows the objective values for each of the step sizes and their respective

normalisations across 200 iterations. It is important to note that the objective value

axes in fig. 7.3 is a log scale in order to see the behaviour of the normalised step sizes,

132

Figure 7.3: Comparison of subgradient normalisation by step size

133

so the changes are in fact larger than they appear initially. For all step sizes we see that

both normalisations perform considerably better than their standard counterparts, with

a much larger improvement for those step sizes which did not previously converge within

200 iterations (1
i+1 and 1√

i+1
). All four step sizes have a minimum objective value in

the region of −10, 000 when not normalised, but this minimum improves dramatically,

to around -100 and -10 for ||X||2 and ||X||1 normalisations respectively. As hoped, this

also has an impact on the number of iterations required to reach convergence. Table 7.9

shows the number of iterations required to reach an objective value within 1 of that

which was achieved in the first iteration.

n.b. although convergence is normally considered to have been reached when the gaps

between iterations are much smaller than 1, the integer value of all costs and weights in

the objective function in these instances means objective values of the original problem

will always be integer, so objective values from the subgradient can always be rounded

up to achieve a lower bound to the problem, hence why one is used as the minimum

difference for convergence in this case.

From fig. 7.3 we can see that all four step sizes converge much more quickly when

normalised, but table 7.9 shows that even with normalisation 1
i+1 still doesn’t achieve

convergence in 200 iterations. All the others do however, and all three perform best

with the ||X||1 normalisation, with the number of iterations ranging from 16 to 35.

Following all of this analysis to identify the best step size and normalisation, we have

the following final calculation of the lagrangian multipliers for the subgradient method:

λj,i+1 = max

(
0, λj,i + ρi

Gj∑
j Gj

)
j = 1, . . . ,m (7.6)

where λj,i is the lagrangian mutliplier for constraint j at iteration i, and ρ = 0.8.

Interestingly, of the step sizes tested this is the only one which does not satisfy either of

the conditions for guaranteed convergence stated in section 5.2.1. These results clearly

demonstrate that such conditions are not necessary for convergence to occur in some

134

cases, it simply means that this particular step size is not guaranteed to converge for all

problems. In such cases, it is recommended to try one of the other step sizes tested in

this work.

7.2.4 First Iteration Method

In this section we discuss the performance of the subgradient method in terms of the

solution time. As has been shown in section 5.2.2, the best solution for the subgradient

method is found in the first iteration, so in reality this is a test of the time taken to

solve a single instance of the MILP problem with the dualised constraints removed. This

was tested on 11 different instance sizes: |H| = 4, |K| = 10, |S| = 2, |L| = 2, |W | = 1,

with |J | varying between 20 and 40 in increments of two (even numbers considered

to increase the range of sizes tested without having to test so many instances). This

variation captures the part of the problem that is most likely to change from week to

week: in a given division, the number of technicians and their skills will remain largely

unchanged, but the number of jobs can vary greatly. The computational details of these

experiments can be seen in table 7.10.

Table 7.10: Computational details for section 7.2.4

Software Python (3.6.8)

Package PuLP (1.6.9)

Solver CPLEX (12.5.0.0)

Computer Iridis 4

Processors 6 x 2.6GHz

At this stage, two time periods were measured: the total time for the Python script to

run, and the time taken for CPLEX to solve the MILP. By consequence, the difference

between these two measurements can be considered as the time taken to perform all the

remaining actions in the script, which consist of building the model, reading the data

file and saving the solution. All timings in this section will either represent CPLEX

solution time or the combined time for all other actions. Due to the nature in which

these times were recorded, it is not possible to provide a further breakdown between

these steps. Figure 7.4 shows the average time taken for the two different stages across

135

Figure 7.4: Time to find initial infeasible solution across varying problem sizes

Table 7.11: Computational details for section 7.3

Software Python (3.7.4)

Computer 2.6GHz, 8GB RAM

Processors 2

different instance sizes.

Here we see clearly that the majority of the time across all instance sizes is not spent

on solving the problem, which has an average time of 34.76s across all instances tested,

but instead on all the other actions performed. Despite this, the full solution time for

each of these problems is still reasonable for a problem that will need to be solved on

a regular basis, but further testing would be required to ensure this still applies in a

real-life setting, in which access to high powered computers or commercial solvers may

be limited.

136

7.3 Heuristic Results

Here we present the results of the heuristic method described in section 5.3, which

includes both the phase for making the initial solution feasible, and the local search

heuristic for improving the solution. As in section 7.2.4, this method was tested on 11

different instance sizes: |H| = 4, |K| = 10, |S| = 2, |L| = 2, |W | = 1, with |J | varying

between 20 and 40 in increments of two. Each instance size was tested on 10 different

datasets, with random seeds ranging from 0 to 9, meaning a total of 110 problems were

tested to produce the following results. Computational details can be seen in table 7.11.

As the initial solution for this stage is taken from the first iteration of the subgradient

method, it is not necessarily feasible for the full problem formulation. Figure 7.5 shows

one example of what this solution looks like before any changes have been made. It is

clear that several technicians have overlapping jobs, with most jobs having a start time

of 1, both of which violate the constraints that were removed from the lagrangian dual

formulation. The improvement process from this initital solution is made up of three

distinct stages, which are as follows:

1. Make solution feasible (example in fig. 7.6)

2. Move jobs within tours (example in fig. 7.7)

3. Move late jobs between tours (example in fig. 7.8)

Figure 7.9 shows the average objective function value and maximum completion time

after these first three stages of the full heuristic method for each problem size. Stages

2 and 3 are those which make up the local search heuristic, and are repeated until no

improvement is found or the maximum number of iterations is reached; as such, fig. 7.9

only shows the change in objective for the first full iteration of the heuristic. Despite

this, we still observe a significant decrease across these three stages, particularly in the

objective value. Moreover, this improvement becomes even greater as the problem size

increases, with the average objective value halving after the first stage of the heuristic

in problems with 40 jobs. Although the maximum completion time does not experience

such dramatic improvements in these three stages, improvements are still observed, with

137

Figure 7.5: Infeasible result from Subgradient method

Figure 7.6: Schedule solution after making schedule feasible

138

Figure 7.7: Schedule solution after second stage of heuristic, keeping all jobs with their
original technician

Figure 7.8: Schedule solution after third stage of heuristic moving late lobs to different
technicians

139

Figure 7.9: Average Objective Value and Maximum Completion Time across first three
stages of Heuristic

the same trend of greater improvements for larger problem sizes.

This figure shows the first three stages of the solution process because these are the

only stages that all problems are guaranteed to pass through; in some instances no

improvement can be found after this point, whilst others continue for more iterations of

stages 2 and 3. The maximum number of iterations of stages 2 and 3 reached by any

of the instances tested was three, and the average across all instances tested is 1.57.

Similarly, the maximum number of iterations reached within stage two is four. As both

iterated parts of the heuristic meet their stopping criteria in just a handful of iterations

across all instances tested, it is recommended to use a maximum of ten iterations for

both parts, which is more than double the maximum observed in any instances tested

in this work. See appendix A.2 for the full results of the heuristic.

140

Figure 7.10: Average Improvement of Objective Value and Maximum Completion Time
during Heuristic

Considering the improvement made from the initial solution to the final objective value

and maximum completion time, fig. 7.10 shows how this improvement varies with the

number of jobs. From this we see clearly that for the objective value, the biggest improve-

ment comes in the first iteration for all problem sizes. The average improvement after

the first iteration is 34.9%, and 42.5% overall, meaning the first iteration contributes

82.1% to the overall improvement of the objective function value. The improvement in

maximum completion time is more balanced, with 10.8% coming from the first iteration,

compared to 21.7% overall.

Beyond the improvement in the objective function that can be obtained using a heuristic,

another important measure of performance is the time such heuristic methods take to

reach a solution. Figure 7.11 shows the average time taken for each instance size for

141

Figure 7.11: Time taken for heuristic method across varying problem sizes

three key parts of the heuristic process: reading results, making the solution feasible

and applying the heuristic. As with the time taken to solve the first iteration of the

subgradient method shown in section 7.2.4, here we observe a steady increase in the

overall time as the number of jobs increases, but for all problem sizes the solution

time is suitable for the intended application. It is also worth noting that the stage for

reading the solution would not be necessary if the initial solution to the MILP and the

heuristic were being performed on the same computer as part of a single process. In

this case, initial solutions were found using the University’s computing cluster because

of the computational intensity of the full subgradient method, of which this was only

one iteration. These results were then saved and transferred to a standard computer for

the heuristic stage, resulting in writing and reading of results which could be avoided if

all stages were implemented together.

142

Figure 7.12: Time taken for full solution process across varying problem sizes

7.4 Full Solution Process

Combining the solution time for the results describes in sections 7.2.4 and 7.3, we obtain

the total solution time from instance data to optimised schedule. Figure 7.12 shows the

average time across all stages instance sizes, and a summary is also provided in table 7.12.

A full table of results can be seen in appendix A.2.

When combining all stages of the full solution process, it becomes clear that the large

Table 7.12: Average time for each part of the solution method

Stage Average Time (mm:ss)

Build Model and Save Solutions 02:17.9

Subgradient First Iteration 00:34.8

Read Solutions 00:01.9

Make Solution Feasible 00:06.6

Heuristic 00:01.6

Total 03:02.7

143

majority of the time is spent in building and solving the MILP model: across all the

instance sizes an average of 94.86% of solution time was spent in these two stages. In

addition, these are the two where the most uncertainly lies, as the computing power

used would not necessarily be available in a situation where such a method was being

implemented. As such, any further work to investigate and reduce computation times

should be focussed on these stages.

We now use these results to make predictions about the total solution time for increased

problem sizes in order to gain an understanding of the scalability of the final method.

For each element of the total solution time, we produce a cubic line of best fit (found to

be the most appropriate through testing) of the form

t = c3|J |3 + c2|J |2 + c1|J |+ c0

Where t is the solution time in seconds and |J | the number of jobs in the problem

instance. These lines and their associated predictions can be seen in fig. 7.13, and

the line equations can be seen in table 7.13. The error of these predictions against the

known solution times is low, particularly for that which makes up the biggest proportion

of the time, building the model, with an error of 0.16%. The highest error is seen

when predicted the time for the heuristic, at 11.22%, but as this makes up the smallest

proportion of the total time, its contribution to the total error is still very small. Whilst

we can not be certain that the solution time for increasing problem sizes will follow

the trend identified by extrapolating from the tested sizes, it suggests that these larger

instances will still be solvable in a relatively quick time.

As these results have shown, the proposed method can solve instances up to a size of

|J | = 40, |H| = 4, |K| = 10, |S| = 2, |L| = 2, |W | = 1 in a matter of minutes. Although

this was tested on fabricated data, the size of the problem and the methods used to

generate data mean it is representative of the RNLI problem at a divisional level, and

as such we are confident that it would be able to solve such problems given real life data

in a reasonable time. These short computation times would allow the algorithm to be

rerun where necessary to incorporate unplanned jobs, with little impact on the work of

144

Figure 7.13: Predicted solution time for increased problem sizes

Table 7.13: Coefficients of line equations for computation time

c0 c1 c2 c3 Mean Abolsute
Percentage Er-
ror

Read, Build and Save Model 4.7723 0.0112 0.1414 0.0000 0.16%

Subgradient First Iteration -0.4998 0.0109 0.0351 0.0000 6.81%

Read Solution 0.6597 0.0000 0.0001 0.0000 2.92%

Make Solution Feasible 0.0000 0.0000 0.0021 0.0001 1.81%

Heuristic 0.5113 0.0000 -0.0032 0.0001 11.22%

145

those responsible for the ST’s routes.

146

Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis, we have presented the Vehicle Routing Problem with Time Windows,

Skill Levels, and Synchonisation, an extension of the traditional VRP. As with most

work published around the VRP this was completed with a particular application in

mind, in this case the maintenance of lifeboats operated by the RNLI, the UK’s largest

coastal lifesaving charity. As a prevalent part of Operational Research, the existing

literature on the VRP is very wide ranging, covering a number of different extensions

and adaptations, some of which are relevant to the full problem of technician routing in

the RNLI. Those extensions which are most relevant in this case became the focus of the

literature review, where we presented a comprehensive overview of existing publications

and the different combinations of extensions presented in each case. In addition, we

considered the dominating techniques used for VRP problems as a basis for beginning

the process of developing a solution method for the given problem.

We have proposed a matheuristic algorithm, comprised of the subgradient method,

branch and bound and a local search heuristic, designed specifically for solving the

VRP variant presented in chapter 4 which incorporates time windows, skill levels and

synchronisation of technicians, a combination of VRP variants that is not tackled in

the existing literature in this way. Through extensive testing of the Lagrangian dual

147

problem, we were able to prove that a sufficient lower bound to the full problem can be

obtained through solving just one iteration of the subgradient method, with the solution

at this stage providing a starting point for the subsequent local search heuristic. Results

from the second stage showed that the heuristic presented provides strong improvements

for all instances tested, with an average reduction in the objective value of 42.5%. This

improvement is magnified for larger problem sizes, with the largest reduction of 57% for

instances with 40 jobs.

One of the key considerations when developing this formulation and its associated

matheuristic algorithm was creating something that could be solved quickly and on

an ad-hoc basis; when considering the application in lifeboat maintenance, we have sce-

narios in which the jobs to be completed in a given week may change at short notice, and

as such those managing the technician schedules would need to be able to regenerate a

schedule for the week at short notice, and in a short amount of time. As shown in chap-

ter 7, the algorithm was tested on instances of a varying sizes (by number of jobs) and

the average solution time for the largest instances tested was just over five minutes, with

an overall average of 182.7s. With solutions times such as these, this algorithm could be

implemented into the working practices of Divisional Maintenance Managers (DMMs)

at the RNLI and it would be able to produce technician work routes and schedules in a

quick time, both at the initial planning stage or when more corrective jobs emerge.

With all of this in mind, we have addressed the original research question of this the-

sis. We have presented a formulation which captures the most important problem re-

quirements, a combination not presented in the existing literature, and developed a

matheuristic algorithm which achieves feasible solutions in a time suitable for the given

application. If implemented, this solution approach would allow DMMs at the RNLI to

free up time that has previously been spent on the task of manually scheduling techni-

cians and therefore allow this time to be spent on other vital tasks. Creating efficiencies

such as these is crucial in all organisations, but it is particularly important for an or-

ganisation which relies entirely on public donations to ensure resources are being used

in the best possible way.

148

8.2 Further Work

As is almost always the case with research such as this, although the original questions

have been answered there is more work that could be done to improve the output and

its usability within the RNLI.

From a mathematical perspective, further work on the hierarchical approach mentioned

in section 5.4 to break down the problem would create a solution method which could

take data for a much larger problem, and provide a seamless transition between assign-

ing work to weeks and optimising for those weeks individually, instead of relying on the

manual assignment of work to weeks as is the case now. By ensuring that the assignment

of jobs to weeks is also optimal (or at least optimised to some degree), we could also

expect to see improvement in the objective values of each week, although to what degree

would depend on the construction of the higher level problem. Developing a hierarchical

approach may also allow for additional constraints that were not incorporated into the

lower level formulation to be considered, such as reducing return visits to locations by

minimising the number of different job locations assigned to each week. These improve-

ments to the mathematical formulation would also be beneficial to stakeholders, as it

would further reduce the number of manual task required of them by automating an

extra stage of the decision making process.

The scope of this work was to formulate and solve the problem of ST routing in the

RNLI, which has been addressed. There is however a disparity between the current

process to use this method, and the technical knowledge of those who would be using it.

More work is required in order to make this method usable to the RNLI, in particular

the development of a user interface or integration with existing software so it can be

used by the DMMs who currently create routes and schedules for technicians.

149

150

Appendix A

Appendices

A.1 Job Data

Table A.1: % of jobs/work hours by job type

% of Jobs % of Work Hours

Corrective 34.01% 21.71%

Preventative 65.99% 78.29%

Table A.2: Number of jobs by priority

Number of Jobs

Priority 1 Priority 2 Priority 3 Priority 4

Total # % # % # % # %

Corrective 4721 447 9.47% 1315 27.85% 2541 53.82% 418 8.85%

Preventative 9322 26 0.28% 1069 11.47% 8090 86.78% 137 1.47%

All Jobs 14043 473 3.37% 2384 16.98% 10631 75.70% 555 3.95%

151

Table A.3: Work hours jobs by priority

Work Hours

Priority 1 Priority 2 Priority 3 Priority 4

Total # % # % # % # %

Corrective 13945.5 1660 11.90% 3846.55 27.58% 7172.45 51.34% 1266.5 9.08%

Preventative 50987.5 140.5 0.28% 5211.55 10.22% 45211.45 88.67% 424 0.83%

All Jobs 64933 1800.5 2.77% 9058.1 13.95% 52383.9 80.67% 1690.5 2.60%

Table A.4: Descriptive Statistics of Jobs (all units in hours). Numbers in brackets
indicate figures for when durations of value 0 are ignored.

Priority Count
Avg

Duration
St Dev of
Duration

Min
Duration

Max
Duration

Jobs
> 1 Week

1
473

(328)
3.81

(5,49)
4.93 (5.08)

0.00
(0.50)

37.00 0

2
2384

(1684)
3.80

(5.38)
6.64 (7.35)

0.00
(0.30)

80.00 16

3
10631

(8375)
4.94

(6.25)
7.19 (7.57)

0.00
(0.20)

120.00 38

4
555

(279)
3.05

(6.06)
5.57 (6.60)

0.00
(0.50)

60.00 3

All Jobs
14043

(10666)
4.62

(6.09)
7.00 (7.46)

0.00
(0.50)

120.00 57

152

Table A.5: Number of jobs created per month

Month
Cor-

rective
Preven-
tative

Total

Correc-
tive

(without
0

duration)

Preventa-
tive

(without 0
duration)

Total
(without

0
duration)

January 542 3392 3934 295 2712 3007

February 311 258 569 225 182 407

March 412 538 950 312 490 802

April 340 858 1198 270 779 1049

May 383 575 958 269 503 772

June 539 980 1519 378 745 1123

July 590 476 1066 352 335 687

August 532 384 916 314 269 583

September 474 685 1159 264 586 850

October 366 563 929 192 473 665

November 325 632 957 192 567 759

Total 4814 9341 14155 3063 7641 10704

153

A.2 Heuristic Results

The values in the Heuristic Iteration column follow the format a.b(.c), where a is the

number of the iteration for the whole heuristic process, b indicates the stage within

the heuristic (stage one being moving jobs within tours, and two moving jobs between

tours), and c is the iteration number within the first part of the heuristic. The objective

function and maximum completion time after each iteration is shown in the last two

columns.

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

1 20 26 00:13.9 01:15.6 00:00.9 00:02.1 83 44 00:00.2 0.1.1 79 43

0.2 73 40

1.1.0 73 40

1 22 26 00:16.0 01:29.0 00:01.0 00:03.0 157 55 00:00.4 0.1.1 87 51

0.2 68 40

1.1.0 68 40

1 24 26 00:18.6 01:44.6 00:01.2 00:03.0 91 45 00:00.4 0.1.2 55 39

1 26 28 00:21.3 02:01.3 00:01.4 00:04.2 88 45 00:00.6 0.1.1 76 44

0.2 72 38

1.1.0 72 38

1 28 26 00:25.2 02:22.0 00:01.6 00:04.0 76 46 00:00.2 0.1.1 74 46

0.2 58 37

1.1.0 58 36

1 30 26 00:32.1 02:43.9 00:01.8 00:05.4 133 53 00:00.6 0.1.1 70 47

0.2 56 39

1.1.0 56 39

1 32 24 00:32.6 03:01.6 00:02.0 00:06.8 184 52 00:01.8 0.1.2 100 44

Continued on next page

154

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

0.2 98 41

1.1.1 96 40

1 34 24 00:50.0 03:38.0 00:02.2 00:07.0 172 51 00:01.0 0.1.1 97 46

0.2 84 42

1.1.0 84 42

1.2 84 42

1 36 22 00:41.7 03:48.1 00:02.5 00:11.2 173 52 00:01.7 0.1.1 88 48

0.2 75 43

1.1.1 73 42

1.2 73 42

1 38 26 01:03.1 04:31.3 00:02.8 00:10.7 142 50 00:01.9 0.1.2 84 43

0.2 75 41

1.1.1 74 41

1.2 74 41

1 40 22 00:48.7 04:36.9 00:03.1 00:14.0 226 53 00:02.4 0.1.2 135 50

0.2 112 42

1.1.1 110 42

1.2 110 42

2 20 27 00:16.1 01:18.4 00:00.9 00:01.8 74 40 00:00.1 0.1.1 64 36

2 22 24 00:18.6 01:32.5 00:01.0 00:02.0 51 41 00:00.1 0.1.1 44 38

2 24 27 00:30.9 01:58.1 00:01.2 00:02.9 75 42 00:00.1 0.1.2 65 40

2 26 26 00:23.5 02:07.3 00:01.3 00:04.0 84 44 00:00.2 0.1.2 62 43

0.2 60 36

1.1.0 60 36

2 28 24 00:26.2 02:22.2 00:01.6 00:05.0 106 53 00:00.5 0.1.1 80 50

0.2 69 35

Continued on next page

155

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

1.1.1 66 35

2 30 24 00:28.2 02:40.2 00:01.8 00:07.0 185 58 00:01.3 0.1.3 113 46

0.2 98 40

1.1.0 98 40

2 32 24 00:33.0 03:06.5 00:02.0 00:06.8 176 51 00:00.5 0.1.1 87 45

0.2 82 40

1.1.0 82 40

2 34 24 00:43.5 03:35.6 00:02.2 00:09.6 194 58 00:02.1 0.1.3 126 49

0.2 102 39

1.1.0 102 39

2 36 26 00:48.5 04:00.6 00:02.5 00:08.7 169 49 00:01.7 0.1.2 110 44

0.2 101 40

1.1.0 101 40

2 38 24 00:45.9 04:19.2 00:03.0 00:13.0 152 47 00:03.6 0.1.2 111 44

0.2 96 40

1.1.1 95 41

1.2 95 41

2 40 22 00:50.5 04:45.7 00:03.1 00:14.0 242 58 00:02.6 0.1.2 169 52

0.2 112 43

1.1.1 99 43

1.2 99 43

3 20 27 00:13.0 01:14.8 00:00.9 00:02.1 84 43 00:00.3 0.1.1 71 42

0.2 68 39

1.1.0 68 39

3 22 26 00:15.8 01:28.9 00:01.0 00:02.7 125 52 00:00.4 0.1.2 71 42

0.2 68 40

Continued on next page

156

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

1.1.2 65 40

3 24 26 00:18.4 01:45.2 00:01.2 00:03.1 155 51 00:00.6 0.1.2 95 43

0.2 93 41

1.1.0 93 41

1.2 93 41

3 26 27 00:26.1 02:06.5 00:01.4 00:03.1 112 48 00:00.5 0.1.1 94 46

0.2 83 40

1.1.1 79 37

3 28 26 00:29.6 02:24.3 00:01.6 00:04.3 114 48 00:00.4 0.1.1 77 43

0.2 71 40

1.1.0 71 40

3 30 28 00:32.6 02:45.2 00:01.8 00:03.8 88 47 00:00.1 0.1.1 73 40

3 32 25 00:43.7 03:12.5 00:02.0 00:06.7 94 43 00:00.4 0.1.1 71 39

3 34 25 00:37.0 03:25.6 00:02.2 00:10.7 175 55 00:01.0 0.1.1 122 49

0.2 98 43

1.1.1 94 39

3 36 24 00:41.4 03:49.5 00:02.6 00:09.2 193 54 00:01.6 0.1.1 107 50

0.2 78 40

1.1.2 73 40

3 38 23 00:59.0 04:30.3 00:02.7 00:09.6 118 46 00:01.2 0.1.2 71 42

0.2 68 40

1.1.0 68 40

3 40 24 00:49.6 04:43.2 00:03.4 00:11.9 219 53 00:03.3 0.1.2 148 51

0.2 127 40

1.1.1 124 40

4 20 29 00:13.4 01:15.2 00:00.9 00:02.3 117 44 00:00.4 0.1.2 83 38

Continued on next page

157

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

4 22 29 00:15.4 01:29.0 00:01.0 00:02.5 148 55 00:00.4 0.1.2 95 46

0.2 87 39

1.1.1 85 39

4 24 31 00:19.7 01:46.0 00:01.2 00:03.1 138 49 00:00.7 0.1.1 92 41

0.2 87 39

1.1.1 84 38

4 26 29 00:21.7 02:02.6 00:01.3 00:04.0 126 40 00:00.5 0.1.2 94 38

4 28 31 00:29.3 02:25.6 00:01.6 00:05.8 155 48 00:00.9 0.1.2 115 41

0.2 115 41

4 30 28 00:31.8 02:44.1 00:01.7 00:06.2 196 60 00:02.4 0.1.3 113 47

0.2 107 41

1.1.0 107 41

1.2 107 41

4 32 28 00:51.1 03:20.9 00:02.0 00:06.7 196 49 00:02.5 0.1.2 136 48

0.2 117 41

1.1.0 117 41

1.2 116 41

2.1.0 116 41

2.2 116 41

4 34 28 00:35.3 03:23.1 00:02.7 00:07.9 176 48 00:01.5 0.1.1 131 45

0.2 125 40

1.1.0 125 40

4 36 30 00:39.1 03:46.2 00:02.5 00:09.9 282 55 00:03.5 0.1.2 166 50

0.2 127 40

1.1.2 120 38

4 38 29 00:42.6 04:09.9 00:02.7 00:10.6 261 52 00:02.0 0.1.2 152 47

Continued on next page

158

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

0.2 130 39

1.1.2 128 40

5 20 26 00:13.2 01:14.9 00:00.9 00:01.9 90 44 00:00.2 0.1.1 79 43

0.2 74 38

1.1.0 74 38

5 22 24 00:15.5 01:28.7 00:01.0 00:02.6 93 46 00:00.2 0.1.2 60 40

5 24 26 00:18.6 01:44.8 00:01.2 00:03.0 87 42 00:00.1 0.1.1 79 42

0.2 76 40

1.1.0 76 39

5 26 24 00:22.8 02:03.8 00:01.4 00:03.4 82 45 00:00.3 0.1.3 52 41

0.2 52 41

5 28 24 00:25.4 02:22.9 00:01.6 00:04.4 103 50 00:00.4 0.1.2 48 40

5 30 22 00:27.4 02:40.1 00:01.8 00:05.2 139 53 00:00.4 0.1.2 58 44

0.2 56 39

1.1.0 56 39

5 32 22 00:32.2 03:03.0 00:02.0 00:07.0 157 56 00:01.4 0.1.1 94 50

0.2 74 39

1.1.2 69 39

5 34 22 00:35.2 03:23.3 00:02.2 00:06.7 151 47 00:01.5 0.1.1 107 42

0.2 100 40

1.1.0 100 40

5 36 22 00:42.2 03:49.5 00:02.5 00:10.1 191 57 00:01.6 0.1.1 96 45

0.2 91 45

1.1.1 90 45

1.2 88 40

2.1.1 87 40

Continued on next page

159

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

5 38 24 01:06.2 04:35.1 00:02.7 00:09.1 158 50 00:02.4 0.1.2 123 50

0.2 105 44

1.1.0 105 44

1.2 103 39

2.1.1 101 40

6 20 22 00:13.2 01:16.1 00:00.9 00:02.0 150 56 00:00.3 0.1.2 80 50

0.2 60 35

1.1.1 57 35

6 22 24 00:15.4 01:29.7 00:01.0 00:02.8 80 42 00:00.2 0.1.1 62 37

6 24 26 00:18.9 01:45.8 00:01.2 00:03.5 90 41 00:00.2 0.1.2 77 40

6 26 25 00:28.1 02:09.6 00:01.3 00:04.0 82 44 00:00.5 0.1.2 66 44

0.2 64 42

1.1.0 64 42

1.2 64 42

6 28 26 00:27.2 02:24.7 00:01.6 00:05.2 114 49 00:00.6 0.1.2 78 43

0.2 73 40

1.1.1 71 39

6 30 26 00:33.2 02:47.8 00:01.8 00:07.1 101 43 00:00.7 0.1.1 89 43

0.2 88 40

1.1.0 88 40

6 32 24 00:36.5 03:08.3 00:02.1 00:06.7 115 50 00:00.6 0.1.1 81 44

0.2 70 38

1.1.1 67 38

6 34 24 00:41.4 03:32.6 00:02.3 00:07.5 247 58 00:01.9 0.1.3 103 45

0.2 93 40

1.1.1 92 40

Continued on next page

160

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

6 36 26 02:53.7 06:03.4 00:02.4 00:08.6 49055 3116 00:02.4 0.1.3 112 47

0.2 97 42

1.1.1 95 42

1.2 95 42

6 38 22 00:44.2 04:15.7 00:02.8 00:10.9 144 51 00:01.5 0.1.3 87 49

0.2 75 42

1.1.0 75 42

1.2 73 41

2.1.0 73 41

2.2 73 41

6 40 25 01:54.4 05:47.4 00:03.0 00:11.0 153 51 00:00.9 0.1.1 86 46

0.2 71 40

1.1.0 71 40

7 20 27 00:13.6 01:16.2 00:00.9 00:02.3 118 43 00:00.3 0.1.1 105 43

0.2 102 40

1.1.0 102 40

7 22 26 00:16.0 01:29.9 00:01.0 00:02.7 130 49 00:00.7 0.1.1 85 46

0.2 83 41

1.1.2 81 41

1.2 81 41

7 24 26 00:18.5 01:46.2 00:01.1 00:03.3 172 54 00:00.6 0.1.2 79 42

0.2 79 42

7 28 25 00:32.5 02:26.6 00:01.5 00:04.8 119 52 00:01.7 0.1.2 90 47

0.2 82 40

1.1.2 79 40

7 30 26 00:32.7 02:45.8 00:01.7 00:06.3 162 50 00:02.1 0.1.3 117 45

Continued on next page

161

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

0.2 110 43

1.1.1 109 43

1.2 109 43

7 32 24 00:35.6 03:06.9 00:02.0 00:07.0 182 50 00:01.8 0.1.2 123 46

0.2 116 42

1.1.0 116 42

1.2 116 42

7 34 22 00:36.5 03:28.3 00:02.2 00:08.9 326 71 00:03.1 0.1.3 180 58

0.2 114 42

1.1.1 108 42

1.2 108 42

7 36 25 01:03.8 04:15.4 00:02.4 00:08.8 443 73 00:09.2 0.1.3 128 54

0.2 100 43

1.1.1 96 41

1.2 95 40

2.1.0 95 40

7 38 24 00:58.2 04:29.8 00:03.2 00:11.4 275 59 00:01.7 0.1.1 144 52

0.2 110 40

1.1.0 110 40

7 40 22 00:50.3 04:44.2 00:03.1 00:14.3 81386 2106 00:09.0 0.1.2 466 78

0.2 305 56

1.1.0 305 56

1.2 305 56

8 20 24 00:14.1 01:15.0 00:00.9 00:02.0 83 39 00:00.1 0.1.2 68 37

8 22 24 00:16.5 01:29.3 00:01.1 00:02.4 138 50 00:00.6 0.1.2 69 44

0.2 61 41

Continued on next page

162

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

1.1.1 60 41

1.2 60 41

8 24 22 00:21.5 01:47.5 00:01.9 00:04.9 145 50 00:00.4 0.1.2 69 42

0.2 69 42

8 26 22 00:22.4 02:01.7 00:01.3 00:04.1 96 41 00:00.2 0.1.1 84 38

8 28 20 00:24.4 02:20.6 00:01.5 00:05.7 129 48 00:01.3 0.1.2 101 46

0.2 91 39

1.1.0 91 39

8 30 20 00:28.1 02:40.4 00:01.7 00:06.5 260 65 00:03.0 0.1.2 141 58

0.2 96 39

1.1.1 95 43

1.2 89 40

2.1.0 89 40

8 32 20 00:32.3 03:01.4 00:02.0 00:06.8 180 51 00:02.0 0.1.2 123 45

0.2 109 41

1.1.0 109 41

1.2 109 41

8 34 20 00:36.0 03:24.3 00:02.2 00:08.0 217 52 00:01.7 0.1.3 131 52

0.2 111 44

1.1.1 105 43

1.2 100 40

2.1.0 100 40

8 36 20 00:42.1 03:49.4 00:02.4 00:10.6 226 57 00:02.2 0.1.2 119 47

0.2 93 41

1.1.0 93 41

1.2 93 41

Continued on next page

163

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

8 38 20 00:44.6 04:12.1 00:02.7 00:12.6 406 66 00:09.1 0.1.4 196 57

0.2 139 49

1.1.1 137 48

1.2 135 48

2.1.0 135 48

2.2 135 48

8 40 20 00:49.3 04:38.0 00:03.6 00:15.7 429 84 00:04.7 0.1.5 135 48

0.2 116 39

1.1.0 116 39

9 20 34 00:17.7 01:18.0 00:00.9 00:01.9 128 47 00:00.3 0.1.2 101 44

0.2 100 38

1.1.0 100 38

9 22 32 00:15.6 01:27.1 00:01.0 00:02.4 222 61 00:00.6 0.1.1 161 60

0.2 124 40

1.1.1 119 40

9 24 32 02:47.2 04:11.7 00:01.2 00:02.7 163 50 00:00.5 0.1.1 121 45

0.2 105 42

1.1.0 105 42

1.2 105 42

9 26 30 00:20.2 01:58.1 00:01.4 00:03.7 311 67 00:01.1 0.1.1 133 48

0.2 114 42

1.1.0 114 42

1.2 114 42

9 28 30 00:24.2 02:17.7 00:01.6 00:04.8 202 55 00:01.8 0.1.3 103 46

0.2 101 43

1.1.0 101 43

Continued on next page

164

S
ee

d

J
o
b

s

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

O
b

je
ct

iv
e

S
u

b
g
ra

d
ie

n
t

1
st

It
er

a
ti

o
n

T
im

e

T
o
ta

l
T

im
e

R
ea

d
T

im
e

M
a
k
e

F
ea

si
b

le
T

im
e

F
ea

si
b

le
O

b
je

ct
iv

e

F
ea

si
b

le
M

a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

H
eu

ri
st

ic
T

im
e

H
eu

ri
st

ic
It

er
a
ti

o
n

It
er

a
ti

o
n

O
b

je
ct

iv
e

It
er

a
ti

o
n

M
a
x
im

u
m

C
o
m

p
le

ti
o
n

T
im

e

1.2 101 40

9 30 31 00:31.6 02:42.8 00:01.7 00:05.7 317 58 00:01.8 0.1.1 138 49

0.2 112 40

1.1.1 109 40

9 32 26 00:31.8 02:58.7 00:02.0 00:07.3 487 71 00:01.6 0.1.1 164 56

0.2 108 40

1.1.1 103 40

9 34 26 00:35.4 03:19.1 00:02.2 00:09.3 249 61 00:02.5 0.1.2 167 52

0.2 126 41

1.1.2 109 40

9 36 27 00:39.8 03:42.8 00:02.4 00:09.7 211 52 00:02.8 0.1.2 139 47

0.2 120 40

1.1.1 114 40

9 38 27 00:52.0 04:16.2 00:02.8 00:14.2 382 70 00:05.7 0.1.2 215 63

0.2 132 42

1.1.1 129 42

1.2 129 42

9 40 26 00:52.1 04:38.0 00:03.0 00:14.8 497 64 00:09.9 0.1.3 244 54

0.2 176 45

1.1.1 173 45

1.2 173 45

Continued on next page

165

166

Bibliography

Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim. Heuristic solutions for the vehicle

routing problem with time windows and synchronized visits. Optimization Letters, 10

(3):511–525, 2016.

Guilherme Bastos Alvarenga, Geraldo Robson Mateus, and G De Tomi. A genetic

and set partitioning two-phase approach for the vehicle routing problem with time

windows. Computers & Operations Research, 34(6):1561–1584, 2007.

Claudia Archetti, Natashia Boland, and M Grazia Speranza. A matheuristic for the

multivehicle inventory routing problem. INFORMS Journal on Computing, 29(3):

377–387, 2017.

Athanassios N Avramidis, Wyean Chan, Michel Gendreau, Pierre L’ecuyer, and Ornella

Pisacane. Optimizing daily agent scheduling in a multiskill call center. European

Journal of Operational Research, 200(3):822–832, 2010.

Nabila Azi, Michel Gendreau, and Jean-Yves Potvin. An exact algorithm for a vehicle

routing problem with time windows and multiple use of vehicles. European Journal

of Operational Research, 202(3):756–763, 2010.

Nabila Azi, Michel Gendreau, and Jean-Yves Potvin. An adaptive large neighborhood

search for a vehicle routing problem with multiple routes. Computers & Operations

Research, 41:167–173, 2014.

Edward K Baker. Technical note—an exact algorithm for the time-constrained traveling

salesman problem. Operations Research, 31(5):938–945, 1983.

167

Michel L Balinski and Richard E Quandt. On an integer program for a delivery problem.

Operations Research, 12(2):300–304, 1964.

John E Beasley. Advances in Linear and Integer Prgoramming. Oxforf University Press,

1996.

Sachidanand V Begur, David M Miller, and Jerry R Weaver. An integrated spatial dss

for scheduling and routing home-health-care nurses. Interfaces, 27(4):35–48, 1997.

Tolga Bektaş and Luis Gouveia. Requiem for the miller–tucker–zemlin subtour elimina-

tion constraints? European Journal of Operational Research, 236(3):820–832, 2014.

Onder Belgin, Ismail Karaoglan, and Fulya Altiparmak. Two-echelon vehicle routing

problem with simultaneous pickup and delivery: Mathematical model and heuristic

approach. Computers & Industrial Engineering, 115:1–16, 2018.

Odile Bellenguez and Emmanuel Néron. Lower bounds for the multi-skill project schedul-

ing problem with hierarchical levels of skills. In International Conference on the

Practice and Theory of Automated Timetabling, pages 229–243. Springer, 2004.

Odile Bellenguez-Morineau and Emmanuel Néron. A branch-and-bound method for

solving multi-skill project scheduling problem. RAIRO-Operations Research, 41(2):

155–170, 2007.

Sandjai Bhulai, Ger Koole, and Auke Pot. Simple methods for shift scheduling in

multiskill call centers. Manufacturing & Service Operations Management, 10(3):411–

420, 2008.

Fred Blakeley, Burçin Argüello, Buyang Cao, Wolfgang Hall, and Joseph Knolmajer.

Optimizing periodic maintenance operations for schindler elevator corporation. Inter-

faces, 33(1):67–79, 2003.

Lawrence Bodin, Bruce Golden, Arjang Assad, and Michael Ball. Routing and schedul-

ing of vehicles and crews: The state of the art. Computers & Operations Research,

10(2):63–211, 1983.

Nathalie Bostel, Pierre Dejax, Pierre Guez, and Fabien Tricoire. Multiperiod planning

168

and routing on a rolling horizon for field force optimization logistics, pages 503–525.

Springer, 2008.

Edward H Bowman. The schedule-sequencing problem. Operations Research, 7(5):621–

624, 1959.

Julien Bramel and David Simchi-Levi. On the effectiveness of set covering formulations

for the vehicle routing problem with time windows. Operations Research, 45(2):295–

301, 1997.

Ulf Brännlund. A generalized subgradient method with relaxation step. Mathematical

Programming, 71(2):207–219, 1995.

David Bredström and Mikael Rönnqvist. Combined vehicle routing and scheduling with

temporal precedence and synchronization constraints. European Journal of Opera-

tional Research, 191(1):19–31, 2008.

Ulrich Breunig, Verena Schmid, Richard F Hartl, and Thibaut Vidal. A large neigh-

bourhood based heuristic for two-echelon routing problems. Computers & Operations

Research, 76:208–225, 2016.

Teobaldo Bulhões, Minh Hoang Ha, Rafael Martinelli, and Thibaut Vidal. The vehi-

cle routing problem with service level constraints. European Journal of Operational

Research, 265(2):544–558, 2018.

Paolo M Camerini, Luigi Fratta, and Francesco Maffioli. On improving relaxation meth-

ods by modified gradient techniques. In Nondifferentiable Optimization, pages 26–34.

Springer, 1975.

Paola Cappanera, Lúıs Gouveia, and Maria Grazia Scutellà. The skill vehicle rout-

ing problem. In Network Optimization: 5th International Conference, INOC 2011,

Hamburg, Germany, June 13-16, 2011. Proceedings, pages 354–364. Springer Berlin

Heidelberg, 2011.

Massimiliano Caramia and Stefano Giordani. A new approach for scheduling indepen-

dent tasks with multiple modes. Journal of Heuristics, 15(4):313–329, 2009.

169

I-Ming Chao. A tabu search method for the truck and trailer routing problem. Com-

puters & Operations Research, 29(1):33–51, 2002.

Masoud Chitsaz, Jean-François Cordeau, and Raf Jans. A unified decomposition

matheuristic for assembly, production, and inventory routing. INFORMS Journal

on Computing, 31(1):134–152, 2019.

Transparent Choice. Transparent choice AHP software. URL https://www.

transparentchoice.com/ahp-software.

Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to a

number of delivery points. Operations research, 12(4):568–581, 1964.

Stefano Coniglio, Jörg Fliege, and Ruth Walton. Facility location with item storage and

delivery. In International Conference on Optimization and Decision Science, pages

287–294. Springer, 2017.

Jean-Francois Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, and

Frédéric Semet. A guide to vehicle routing heuristics. Journal of the Operational

Research society, 53(5):512–522, 2002.

Jean-François Cordeau, Gilbert Laporte, Federico Pasin, and Stefan Ropke. Scheduling

technicians and tasks in a telecommunications company. Journal of Scheduling, 13

(4):393–409, 2010.

George B Dantzig and John H Ramser. The truck dispatching problem. Management

science, 6(1):80–91, 1959.

George B Dantzig and Philip Wolfe. Decomposition principle for linear programs. Op-

erations research, 8(1):101–111, 1960.

Mauro Dell’Amico, Giovanni Righini, and Matteo Salani. A branch-and-price approach

to the vehicle routing problem with simultaneous distribution and collection. Trans-

portation science, 40(2):235–247, 2006.

Martin Desrochers and Gilbert Laporte. Improvements and extensions to the miller-

170

https://www.transparentchoice.com/ahp-software
https://www.transparentchoice.com/ahp-software

tucker-zemlin subtour elimination constraints. Operations Research Letters, 10(1):

27–36, 1991.

Jacques Desrosiers, François Soumis, and Martin Desrochers. Routing with time win-

dows by column generation. Networks, 14(4):545–565, 1984.

Michael Drexl. Synchronization in vehicle routing—a survey of vrps with multiple syn-

chronization constraints. Transportation Science, 46(3):297–316, 2012.

Patrik Eveborn, Patrik Flisberg, and Mikael Rönnqvist. Laps care—an operational

system for staff planning of home care. European Journal of Operational Research,

171(3):962–976, 2006.

Murat Fırat and CAJ Hurkens. An improved mip-based approach for a multi-skill

workforce scheduling problem. Journal of Scheduling, 15(3):363–380, 2012.

Brian A Foster and David M Ryan. An integer programming approach to the vehicle

scheduling problem. Journal of the Operational Research Society, 27(2):367–384, 1976.

Antonio Frangioni, Bernard Gendron, and Enrico Gorgone. On the computational effi-

ciency of subgradient methods: a case study with lagrangian bounds. Mathematical

Programming Computation, 9(4):573–604, 2017.

Ralph Gomory. An algorithm for the mixed integer problem. Technical report, RAND

CORP SANTA MONICA CA, 1960.

Martin Grötschel and Manfred W Padberg. Partial linear characterizations of the asym-

metric travelling salesman polytope. Mathematical Programming, 8(1):378–381, 1975.

Gabriel Gutiérrez-Jarpa, Guy Desaulniers, Gilbert Laporte, and Vladimir Marianov. A

branch-and-price algorithm for the vehicle routing problem with deliveries, selective

pickups and time windows. European Journal of Operational Research, 206(2):341–

349, 2010.

Michael Held, Philip Wolfe, and Harlan P Crowder. Validation of subgradient optimiza-

tion. Mathematical Programming, 6(1):62–88, 1974.

171

Alessio Ishizaka and Philippe Nemery. Multi-criteria decision analysis: methods and

software. John Wiley & Sons, 2013.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin Heidel-

berg, 2004. ISBN 9783540247777.

Çağrı Koç, Tolga Bektaş, Ola Jabali, and Gilbert Laporte. A hybrid evolutionary algo-

rithm for heterogeneous fleet vehicle routing problems with time windows. Computers

& Operations Research, 64:11–27, 2015.

Antoon WJ Kolen, AHG Rinnooy Kan, and Harry WJM Trienekens. Vehicle routing

with time windows. Operations Research, 35(2):266–273, 1987.

Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive

large neighborhood search for service technician routing and scheduling problems.

Journal of Scheduling, 15(5):579–600, 2012.

Raphael Kramer, Anand Subramanian, Thibaut Vidal, and F Cabral Lućıdio dos Anjos.

A matheuristic approach for the pollution-routing problem. European Journal of

Operational Research, 243(2):523–539, 2015.

Eduardo Lalla-Ruiz, Christopher Expósito-Izquierdo, Shervin Taheripour, and Stefan

Voß. An improved formulation for the multi-depot open vehicle routing problem. OR

Spectrum, 38(1):175–187, 2016.

AH Land and AG Doig. An automatic method for solving discrete programming prob-

lems. Econometrica, 28(3):497–520, 1960.

Gilbert Laporte, Martin Desrochers, and Yves Nobert. Two exact algorithms for the

distance-constrained vehicle routing problem. Networks, 14(1):161–172, 1984.

Gilbert Laporte, Yves Nobert, and Martin Desrochers. Optimal routing under capacity

and distance restrictions. Operations Research, 33(5):1050–1073, 1985.

Gilbert Laporte, Michel Gendreau, J-Y Potvin, and Frédéric Semet. Classical and mod-

ern heuristics for the vehicle routing problem. International transactions in operational

research, 7(4-5):285–300, 2000.

172

Ran Liu, Yangyi Tao, and Xiaolei Xie. An adaptive large neighborhood search heuristic

for the vehicle routing problem with time windows and synchronized visits. Computers

& Operations Research, 101:250–262, 2019.

François V Louveaux and Juan-José Salazar-González. Exact approach for the vehicle

routing problem with stochastic demands and preventive returns. Transportation

Science, 52(6):1463–1478, 2018.

Thibaut Lust and Jacques Teghem. The multiobjective multidimensional knapsack prob-

lem: a survey and a new approach. International Transactions in Operational Re-

search, 19(4):495–520, 2012.

Alan S Manne. On the job-shop scheduling problem. Operations Research, 8(2):219–223,

1960.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming formu-

lation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329,

1960.

Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. A heuristic algorithm for

the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

George L Nemhauser and Laurence A Wolsey. Integer and Combinatorial Optimization.

Wiley, 1999.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. A generic

exact solver for vehicle routing and related problems. Mathematical Programming,

pages 1–41, 2020.

Victor Pillac, Christelle Gueret, and Andrés L Medaglia. A parallel matheuristic for

the technician routing and scheduling problem. Optimization Letters, 7(7):1525–1535,

2013.

Jakob Puchinger, Günther R Raidl, and Ulrich Pferschy. The multidimensional knapsack

problem: Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265,

2010.

173

Sebastian Reil, Andreas Bortfeldt, and Lars Mönch. Heuristics for vehicle routing prob-

lems with backhauls, time windows, and 3d loading constraints. European Journal of

Operational Research, 266(3):877–894, 2018.

Benjamin C Shelbourne, Maria Battarra, and Chris N Potts. The vehicle routing prob-

lem with release and due dates. INFORMS Journal on Computing, 29(4):705–723,

2017.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with

time window constraints. Operations Research, 35(2):254–265, 1987.

Éric D Taillard, Gilbert Laporte, and Michel Gendreau. Vehicle routeing with multiple

use of vehicles. Journal of the Operational Research Society, 47(8):1065–1070, 1996.

Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. Multigraph mod-

eling and adaptive large neighborhood search for the vehicle routing problem with

time windows. Computers & Operations Research, 104:113–126, 2019.

Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

Edward Tsang and Chris Voudouris. Fast local search and guided local search and their

application to british telecom’s workforce scheduling problem. Operations Research

Letters, 20(3):119–127, 1997.

Thibaut Vidal, Gilbert Laporte, and Piotr Matl. A concise guide to existing and emerg-

ing vehicle routing problem variants. European Journal of Operational Research, 2019.

Juan G Villegas, Christian Prins, Caroline Prodhon, Andrés L Medaglia, and Nubia

Velasco. A matheuristic for the truck and trailer routing problem. European Journal

of Operational Research, 230(2):231–244, 2013.

Jyrki Wallenius, James S Dyer, Peter C Fishburn, Ralph E Steuer, Stanley Zionts,

and Kalyanmoy Deb. Multiple criteria decision making, multiattribute utility theory:

Recent accomplishments and what lies ahead. Management science, 54(7):1336–1349,

2008.

Martin Weber, Franz Eisenführ, and Detlof Von Winterfeldt. The effects of splitting

174

attributes on weights in multiattribute utility measurement. Management Science, 34

(4):431–445, 1988.

Don Weigel and Buyang Cao. Applying gis and or techniques to solve sears technician-

dispatching and home delivery problems. Interfaces, 29(1):112–130, 1999.

Laurence A. Wolsey. Integer Programming. Wiley, 1998.

Fulin Xie, Chris N Potts, and Tolga Bektaş. Iterated local search for workforce scheduling

and routing problems. Journal of Heuristics, pages 1–30, 2017.

Jiyang Xu and Steve Y Chiu. Effective heuristic procedures for a field technician schedul-

ing problem. Journal of Heuristics, 7(5):495–509, 2001.

M Yokoyama. The nature of the affective judgment in the method of paired comparisons.

The American Journal of Psychology, 32(3):357–369, 1921.

Yu Zhang, Roberto Baldacci, Melvyn Sim, and Jiafu Tang. Routing optimization with

time windows under uncertainty. Mathematical Programming, 175(1-2):263–305, 2019.

175

	Statement of Authorship
	Acknowledgements
	Introduction
	Literature Review
	Vehicle Routing Problem
	Vehicle Flow Formulation
	Set Partitioning Formulation
	Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with Skill Levels
	Vehicle Routing Problem with Team Building and Synchronisation

	Solution Methods
	Exact Algorithms
	Heuristics and Matheuristics

	Other Relevant Literature
	Scheduling Problem
	Knapsack Problem
	Objective Function Weighting

	Paper Comparison Table

	Problem Description
	Routing and Scheduling Formulation
	Definitions
	Terminology
	Sets
	Decision Variables
	Parameters

	Assumptions
	Preprocessing
	Reference for Notation

	Problem Formulation
	Objective Function
	Constraints
	Full Formulation

	Formulation Reduction

	Methodology
	Lagrangian Relaxation
	Subgradient Method
	Step Size Selection
	Behaviour of Subgradient

	Heuristic
	Hierarchical Approach
	Implementation

	Data
	Job Data
	Instance Generation
	Node Locations
	Job Information
	Technician Information

	Objective Function Weighting

	Results
	Identifying Constraints to Dualise
	Initial Results
	Full Problem Size

	Subgradient Results
	Step Size = (ZUB-ZLB)i=1m Gi2
	Iteration Based Step Sizes
	Subgradient Normalisation
	First Iteration Method

	Heuristic Results
	Full Solution Process

	Conclusion and Further Work
	Conclusion
	Further Work

	Appendices
	Job Data
	Heuristic Results

	Bibliography

