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Models and Copula Regression

by Suttisak Wattanawongwan

The thesis comprises three papers that contribute to the consumer credit risk literature
by studying the Exposure At Default (EAD) of credit card portfolios. Three novel EAD
modelling approaches are proposed, each tackling different practical prediction and
interpretation challenges.

The first paper distinguishes between two groups of card borrowers — those whose
balance hits the limit as they approach default time, and those who do not. We
conjecture that the level of EAD as well as its risk drivers could be significantly
different between the two groups. Hence, we propose a two-component mixture
model that conditions EAD on these two respective scenarios, using the Generalised
Additive Models for Location, Scale and Shape (GAMLSS) framework. Having fitted
our proposed model to a real-life dataset of credit card defaults, we find that the mean
and dispersion of EAD in the two respective submodels are indeed impacted by
different risk factors. More importantly, we find that the proposed model produces a

clear improvement in predictive performance.

The second paper studies the dependence between the Probability of Default (PD) and
credit card balance, and investigates how this dependence impacts EAD and, thus,
expected loss estimation. A joint model for PD and balance is introduced by applying
the bivariate Copula Generalised Additive Models for Location, Scale and Shape
framework. Using this framework, the two responses can be modelled flexibly under
the GAMLSS setting while their association can be captured by a suitable copula. The
proposed method also addresses potential sample selection bias by extending the
analysis to outstanding balance (rather than simply balance at default time, or EAD)
over a sample of both defaults and non-defaults. The proposed model is shown to
produce more accurate and sufficiently conservative expected loss estimates, at both

individual account and portfolio level.
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Most EAD modelling research thus far has focused on point estimation approaches,
whilst information on extreme quantiles, rather than the mean, can have greater
implications in practice. In order to produce conditional quantiles and interval
estimates for EAD, the third paper proposes the use of vine copula-based quantile
regression. The proposed method automatically avoids the quantile crossing and
multicollinearity problems associated with conventional quantile regression and
allows relationships between all of the variables of interest (including EAD) to be
modelled through a series of pair-copulas. The analysis shows that the proposed
model provides better point and interval EAD estimates and more accurately reflects

its actual distribution compared to other models.
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Chapter 1

Introduction

The necessity of credit risk modelling is well recognised, especially after the global
financial crisis in 2007 and 2008 and its consequences for banks and financial
institutions. Three credit risk parameters, namely Probability of Default (PD), Loss
Given Default (LGD) and Exposure At Default (EAD), are required for the calculation
of Basel II and III's regulatory capital requirement, which specifies the minimum level
of capital that banks must hold. In retail credit risk, EAD has received far less
attention than PD and LGD, although its estimation provides benefits to banks beyond
the regulatory setting. For example, economic capital, derived in part from EAD, is
required to protect the bank and its clients against severe unexpected events (Leow
and Crook, 2016). Moreover, obtaining unbiased EAD estimates is beneficial for
managing credit limits and risk-based pricing (Giirtler et al., 2018). This thesis, hence,

aims to advance the state of the art in EAD modelling.

Considering that corporate credit has thus far received the bulk of the attention in the
EAD literature (Giirtler et al., 2018), this thesis will, instead, focus on retail credit,
more specifically, credit cards. These form the largest proportion of revolving retail
credit for most Advanced Internal Ratings-Based (A-IRB) banks and contribute the
largest number of defaults (Qi, 2009). This should enable sufficiently large information

for statistical modelling.

Whilst EAD modelling is fairly straightforward for instalment loans, it is challenging
for revolving credit because the latter allows customers to draw up to some agreed
limit and repay any amount at any time (as long as the minimum payment is met). In
order to model the ensuing EAD, the Basel II and III Accords (BCBS, 2017) have
implicitly suggested predicting the Credit Conversion Factor, CCF, which is the
proportion of the undrawn amount that will be drawn at default time. Despite its
popularity, this approach has several drawbacks (Tong et al., 2016). For example, the
CCF distribution is highly bimodal and, hence, difficult to model. In light of these

downsides, alternative methods have been put forward, including modelling EAD
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directly, as a monetary amount (as opposed to a ratio). This thesis adopts the latter
strategy and focuses on EAD modelling directly, rather than targeting the CCF level.

The thesis is comprised of three papers, each proposing novel methods to tackle
different EAD modelling aspects and testing them on real-life credit card data.

In the first paper (Chapter 2), we consider two distinct groups of credit card borrowers
— those who hit the credit limit (i.e. “maxed out” their cards) prior to default and
those who did not —, and propose a two-component mixture model. We conjecture
that not just the EAD but also its risk drivers could differ substantially between the
two groups. The proposed model is developed under the Generalised Additive
Models for Location, Scale and Shape (GAMLSS) framework (Stasinopoulos et al.,
2017), which offers a flexible regression approach that does not restrict EAD to the
exponential family and allows its parameters (location, scale and shape) to be

modelled as a non-parametric function of the explanatory variables.

In the second paper (Chapter 3), we study the dependence between PD and credit
card balance, and how this impacts the EAD estimation and, hence, the expected loss.
We introduce the copula approach as a means to capture such dependence at the
individual account level, using a joint distribution with marginal GAMLSS models.
Hence, PD and EAD can be modelled flexibly and simultaneously with their

dependence structure selected from a rich variety of parametric copula functions.

In the third paper (Chapter 4), we study not only estimation for the mean, but, by
employing quantile regression, at different quantile levels of EAD, seeing that extreme
quantiles can have greater implications in practice. Thus, the whole EAD distribution
and interval estimates can be obtained. We avoid the common limitations of quantile
crossing and multicollinearity inherent to conventional quantile regression, by
introducing the recent development of vine copula-based quantile regression (Kraus
and Czado, 2017). This allows modelling the interrelationships between all variables

(including EAD) via a series of pair-copulas.

The final chapter (Chapter 5) will conclude by discussing the main contributions made
by the thesis and listing some suggestions for further research. The remaining sections
of this introduction chapter (Chapter 1) will provide further background on the Basel
regulatory credit risk framework, particularly in relation to the risk parameter of EAD.
This is then followed by an introduction to two groups of methods used in the papers,
namely the GAMLSS framework and copulas. Next, common performance measures
used to evaluate credit risk models (and employed in the subsequent papers) are
explained. An overview and the main results of the three papers are provided at the
end of the chapter.
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1.1 The Basel Accords and the Internal Ratings-Based (IRB)
approach

While banks provide several types of financial instruments and services to customers
and companies, lending is one of their key activities. In so doing, banks incur
potential losses if the borrowers they lend to fail to meet their payment obligations.
This uncertainty of repayment is what constitutes credit risk. Managing this source of
risk has drawn continued interest, both from the perspectives of management and
regulation, especially following the global financial crisis of 2007 and 2008. Therefore,
a series of statistical models have been developed in order to quantify various aspects
of credit risk. Lam (2014) proposed seven dimensions of risk quantification:
probability (what is the chance of the event to occur?), exposure (what is the total
possible loss from the event?), severity (how much loss is likely to be suffered?),
volatility (how unpredictable is the future?), time horizon (how long will the bank be
exposed to the risk?), correlation (what is the relation between individual risks?), and
capital (how much capital should the bank hold to cover unexpected loss?).

In the wake of several international bank failures, the Basel Committee on Banking
Supervision (BCBS) was founded by the central banks of ten countries, at the end of
1974, with the aim of improving financial stability and the quality of banking
supervision standards. Two important sets of guidelines on capital adequacy put
forward by the Committee are commonly known as the Basel II and Basel III Accords.
These have established the international standard for regulation (BCBS, 2017),
outlining a risk management control framework for banks. They have set out a
risk-sensitive “regulatory capital requirement” which stipulates a minimum level of
capital that banks must hold to remain solvent in the face of increased loan defaults.
The higher the credit risk faced by the bank, the more capital it must hold. The typical
cost of doing business can be seen as expected loss and can be estimated in advance.
However, realised loss is usually uncertain and may, in some time periods,
significantly exceed the expected loss. The loss under such an adverse scenario is
called “unexpected loss”, and the Basel accords require that banks hold sufficient
capital to absorb it. Figure 1.1 illustrates the concepts of realised, expected, and

unexpected loss.

Setting aside too much capital for unexpected loss protection might be suboptimal
because such resources could no longer be utilised by banks for generating profits. So,
one needs to decide what is the level of conservatism required and set the capital level
accordingly. This level of conservatism can be specified in terms of the quantile of a
loss distribution (termed Value-at-Risk, or VaR). In Figure 1.2, a VaR set to the 99%
quantile of the loss distribution would thus imply that the realised loss would exceed
that value with a probability of 0.01; or equivalently, there is a one in one hundred

years expectation of a shortfall. Unexpected losses beyond this point can lead to the
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FIGURE 1.1: Example of credit loss dynamic.

bank becoming insolvent. For credit risk, the regulators prescribe a (risk-averse) level
of 99.9%, and hence the unexpected loss (to be covered by regulatory capital) is simply
the difference between the 99.9% VaR and expected loss.
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FIGURE 1.2: Example of credit loss distribution.
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For credit risk, expected loss is defined (Apostolik et al., 2009) as the product of three
key parameters: Probability of Default (PD), i.e. the likelihood that a borrower will
default or, in other words, be unable to fulfil their repayment obligations; Exposure At
Default (EAD), i.e. the expected gross exposure at the time of default; and Loss Given
Default (LGD), i.e. the percentage of this amount that the lender would be unable to

recover.
Expected Loss (EL) = PD x LGD x EAD.

To convert this into unexpected loss, the Accords adopt a version of the so-called
Merton model. Merton (1974) proposed the idea of obligors (borrowers) defaulting if
their asset value drops below a critical threshold. This model is then extended by
assuming that obligors” assets follow a factor model with a common (systematic)
factor. This leads to:

Y; = ¢;v/1— R — XVR,

where Y; is the asset value for obligor i, €; is the idiosyncratic factor (individual risk)
for obligor i, X is the common (systematic) factor affecting all obligors, and R is the
common asset correlation between obligors. €; and X are now assumed to be standard
normally distributed and independent of each other. Provided the threshold level +;,
the probability of obligor i defaulting can be expressed as:

PD; = P(Y; < 1;), leadingto ;=& 1(PD;),

where @ is the standard normal cumulative distribution function. Therefore, the

conditional loss given the realisation X = x is:

P [Yl < ’)/Z'|X = x] X LGDZ' x EAD;

—p [ei\/l “R-XvVR< & 1(PD))|X = x] % LGD; x EAD;

&~ 1(PD;) + xvR
V1-R

_ o ¢! (PD;) + xVR
B VI—R

=Pleg < X LGDi x EAD;

x LGD; x EAD;, since €; is standard normal.

Then, the unexpected loss (UL) is calculated by subtracting the expected loss from the
99.9% VaR:

Unexpected Loss; = 99.9% VaR of loss; — EL;.

e B (1.1)
& 1(PD;) ;;?;12(0-999)\ﬁ — PD;) x LGD; x EAD;.

= @
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According to BCBS (2017), the capital requirement is expressed as a percentage of
unexpected loss and fundamentally based on Equation (1.1), with different parameter
settings and adjustments for different asset classes. For instance, for retail exposures,
minimum capital can be directly derived from Equation (1.1), with the correlation R =
0.15 for residential mortgages and R = 0.04 for revolving products. However, for
corporate exposures, further adjustments for maturity, which is the duration or
contractual period of loans, have to be made to Equation (1.1) before it can be used to

calculate the capital requirement.

1.2 The Basel risk parameters

As previously indicated, the Basel risk parameters PD, LGD, and EAD are required for
the calculation of the regulatory capital requirement. To comply with the Basel rules,
they are to be estimated for different asset classes of exposures, such as corporate,
bank or retail. Moreover, depending on the chosen approach, such estimations can be
supplied through internal or external rating systems. Under the Standardised
approach, risk weights are prescribed that may depend on external ratings assigned to
the obligor. This means loans with higher risk (as measured by the credit rating,
grading system, or type of loan) will need more capital as a proportion of exposure
size. On the other hand, the Internal Ratings-Based (IRB) approach, introduced by
Basel 11, allows banks to internally assess credit risk and develop their own statistical
models (subject to approval from the regulators). It is further sub-classified into the
Foundation-IRB (F-IRB) approach, under which only the PD can be estimated by
internal bank models, and the Advanced-IRB (A-IRB) approach, where all three
parameters can be internally estimated.

Thus, under the A-IRB approach, the ability to build more accurate models for the
three parameters has direct benefits for banks and financial organisations. One of
several advantages of employing the A-IRB method is that banks can more accurately
assess the risk profile of loans, either at the account level or the portfolio level, by
utilising their own data and appropriately chosen models. It implies that the required
capital will be more risk-sensitive. This benefits banks with large and high-quality
grade credit portfolios, because the lower capital amount required can open up other
investment opportunities; conversely, it helps ensure that riskier banks are sufficiently
capitalised.

The following subsections briefly elaborate on PD, LGD and EAD.
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1.2.1 Probability of Default

The Probability of Default defines the probability that a customer will default within a
given time period. Basel considers a one year time horizon over which such default
may occur. BCBS defines the default event as when either or both of the following

events occur:

The bank considers that the obligor is unlikely to pay its credit obligations
to the banking group in full, without recourse by the bank to actions such
as realising security (if held);

The obligor is past due more than 90 days on any material credit obligation
to the banking group. Overdrafts will be considered as being past due once
the customer has breached an advised limit or been advised of a limit
smaller than current outstandings. (BCBS, 2017, p. 93)

With the introduction of Basel II and III, focusing only on the discriminatory power of
default prediction models, i.e. the ability to accurately risk rank customers, is no
longer sufficient. One also needs strong calibration performance, i.e. being able to
produce an accurate estimated PD, as this now is an essential part of the capital
requirement calculation (Malik and Thomas, 2007). This additional emphasis on
model calibration is also extended to LGD and EAD modelling. Estimating PD can be
challenging, though, because of the scarcity of observed defaults. For example, bank
portfolios with highly rated customers may contain too few defaults to enable fitting
statistical models.

A simple and widely used model for credit scoring and PD modelling is the logistic
regression method (Thomas et al., 2017). It estimates PD by indicating whether a
borrower is likely to default over a specified period. However, the logistic approach
does not take data censoring, commonly found in practice, into account. Data is
censored when the event of interest does not occur in the observation period, making
it unknown whether that event may occur later. Survival analysis has been introduced
in order to deal with this issue. It addresses the censoring problem by applying a
survival function to censored data. Moreover, with survival analysis, we model not
only if borrowers will default (over some fixed period), but also when they are likely to
default, as it provides dynamic estimates for time-to-default. Banasik et al. (1999)
found that the Cox semi-parametric model performance is comparable to that of
traditional logistic regression, and sometimes even better. Bellotti and Crook (2009)
showed that a Cox proportional hazards (PH) model that includes time-varying
macroeconomic covariates alongside borrower-specific variables is superior in terms
of the accuracy of predicted PD. Similar findings have been reported by Malik and
Thomas (2010), who stated that the driving factors behind default are not fully
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explained by the behavioural score alone. Lastly, Tong et al. (2012) applied a mixture
cure model, which is an extension of the standard survival model, to the area of credit
scoring and compared it with the Cox PH model and logistic regression. The model
consists of two parts: an incidence model component which captures the probability
of being susceptible to default and a latency model component which predicts the
dynamic time-to-default, given that a customer is susceptible and will default at some
time point in the future. They concluded that the proposed model is competitive with
the other two and produces additional insights.

1.2.2 Loss Given Default

Following a default event, it is not always the case that the bank will lose the entire
amount of money owed, as the debt could be (partially) recovered through various
channels. For instance, with mortgage loans, banks could resort to repossessing and
selling the collateral (i.e. the property of the defaulted borrower), to gain
compensation. For example, Yang and Tkachenko (2012) defined LGD as follows:

Amount recovered

LGD = 1 — recovery rate, where recovery rate = Amount outstanding at default
Hence, LGD is the percentage of the exposure that the bank will lose after the recovery
or collection processes. The amount recovered are the aggregate discounted cashflows
obtained during the recovery period after default time. Depending on the type of
loan, it may take several years to work out this value. The resulting LGD is usually
(but not always) on the unit scale [0,1].

A key challenge of modelling LGD lies in its observed distribution. Tong et al. (2013)
stated that this can be either unimodal or bimodal, being peaked at zero (the debt is
tully recovered), and/or one (no recovery achieved). Hence, they decided not to
directly model mortgage-loan LGD as a rate, but rather estimate the incurred loss
amount via the mixed-discrete zero-adjusted gamma distribution. Their proposed
model was compared with two common methods for LGD modelling, namely an
Ordinary Least Squares (OLS) model applied to a beta transformed response variable,
and tobit regression, and gave competitive calibration performance compared to those
models. Somers and Whittaker (2007) used quantile regression to model the house
value distribution of repossessed properties, which was then used to estimate the loss
given default for mortgage loans. Modelling LGD via tobit regression has been
suggested by Bellotti and Crook (2012), in order to account for censoring issues and
complying with the regulatory [0,1] interval. However, tobit regression assumes
normality of the underlying variable. Sigrist and Stahel (2011) further extended the
work by permitting LGD to follow a gamma distribution in the tobit framework. They
also took the regular occurrence of zero LGDs into account by using a zero-inflated
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model. Leow and Mues (2012) estimated the LGD of mortgage loans via a two-stage
model comprising a repossession and haircut model component. The former
component allows one to estimate the probability that defaulted loans will go into
repossession. The latter predicts the difference between sale price following
repossession and the market valuation of the collateral property. The proposed model
was shown to outperform a typical single-stage LGD model using standard OLS
regression, in terms of the coefficient of determination and the LGD distribution

produced.

1.2.3 Exposure At Default

EAD is defined as the outstanding debt at default time, measuring the potential loss
banks would incur in the absence of any further repayments. The Basel II and III
Accords have implicitly suggested estimating the Credit Conversion Factor (CCF), i.e.
the proportion of the undrawn amount at the time of estimation that will be drawn by
the time of default, to model the EAD of revolving exposures. However, several
drawbacks were soon identified. For example, the CCF distribution is highly bimodal,
making it difficult to model. Therefore, in the literature, alternative methods have
been suggested, including predicting EAD directly (Tong et al., 2016). More detailed
insights from the EAD literature can be found in the literature review sections of each
of the papers presented in the following three chapters. In the current chapter, we will
restrict ourselves to presenting some additional background relating to EAD
modelling that is not included in those.

1.2.3.1 Scarcity of EAD studies

In the credit risk area, PD and LGD have thus far been at the centre of attention,
whereas EAD has been studied far less, either in an empirical or theoretical setting. A
systematic and extensive literature review on EAD was conducted by Giirtler et al.
(2018). They found that most studies were based on the CCF model, and that, in
general, the actual observed CCF values are between 30% to 60%. This implies that
borrowers typically do not fully draw up to their credit limit when they default. Other
modelling strategies were also found, including modelling EAD directly or targeting
other relevant EAD factors, e.g. the Loan Equivalent Factor (LEQ), i.e. the exposure at
default as a percentage of the outstanding balance at the time of estimation, or the
Exposure At Default Factor (EADF), i.e. the proportion of the limit at the estimation
time that will be drawn by the time of default. More recent developments in EAD
modelling can be found in the work by Thackham and Ma (2018), Gibilaro and
Mattarocci (2018) and Luo and Murphy (2020).
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As elaborated in Giirtler et al. (2018), the number of papers dedicated to EAD is rather
scarce, i.e. approximately 20 over the past two decades. This thesis contributes to this
small body of literature by proposing three novel approaches to EAD modelling.

1.2.3.2 Race to default

According to their empirical data, Qi (2009) found that in the so-called “race to
default”, as default time gets nearer, borrowers tend to be more active than lenders;
they tend to draw additional money (increasing the CCF), in contrast to lenders who
only very infrequently reduce the limit level or sometimes even increase it. Jacobs and
Bag (2010) also concluded that EAD could be impacted by the lender’s characteristics
and actions. For example, EAD benchmarks of large banks, who may operate an
advanced early warning system enabling them to identify deteriorating customers
and abruptly decrease their limit before they can borrow more, could be very different

from those of small banks with no such efficient detection system.

1.2.3.3 Choice of reference date

For defaulted accounts, the actual value of EAD and the default time are directly
observable. In contrast, the choice of a suitable time point for estimating the EAD or
CCF in advance is not obvious and, to some extent, subjective. It has direct
implications for the sample data, too, since realised CCFs for defaulted exposures
depend on the point in time when the prior drawn amount and limit are observed;
this time point is referred as the “reference date”. Likewise, it also determines the time
point at which the values of the explanatory variables are to be collected. Below, we
summarise three practical methods to identify the reference date, along with their

positive and negative aspects.

(1) The fixed-horizon method (Moral, 2006) uses a fixed time interval prior to default,
typically setting the reference date to one year before default time (shown in Figure 1.3
with T equal to one year). This method thus implicitly assumes that all accounts that
are susceptible to default, will default exactly at the end of the fixed one year horizon.
This method provides the benefit of greater homogeneity of the observed response
variable (EAD or CCF) but has some limitations as well. First, defaulted facilities
whose account tenure at the date of default is less than one year cannot be included in
the observation. Second, since only information at the default date, and one year prior
to that, are used, other relevant information between those two times is ignored.
Third, its assumption that default always occurs at the end of the 12 month outcome
period can lead to biased estimates (Moral, 2006).
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FIGURE 1.3: The fixed-horizon method, where t;; is the default date and t,; is the reference date.
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FIGURE 1.4: The cohort method, where t; is the default date and t,; is the reference date.

(2) The cohort method (Moral, 2006) separates the observation period into cohort
windows, typically of a one-year length, and sets the reference date to the beginning
date of each cohort (shown in Figure 1.4). This reflects a practical implementation by
considering that the default could take place at any time point in the following year. It
also grants banks the flexibility to select a suitable reference month, avoiding a period
where specific circumstances might bias the values of the variables of interest. For
example, people tend to use their credit cards more heavily during the winter holiday
period; hence, calendar years (starting from January to December) may not be the
preferred cohort windows. Similarly to the fixed-horizon method, however, the cohort
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method suffers from information loss between the reference and default time. In
addition, the realised EAD or CCF values will be less homogeneous than with the
fixed-horizon approach, due to the variable time span between reference and default
dates (Moral, 2006).

Realised CCFs : Observations

th=tel/12 |t

CCF1 ‘ o1
to=te-4/12 Lty

CCF2 — o1
t3=tg-7/12 ty

CCF3 01
t=ts-10/12 Lty

CCF4 01

Observation Period

FIGURE 1.5: The variable-horizon method, where t;; is the default date and t,; is the reference
date.

(3) The variable-horizon method (Witzany, 2011) subdivides the year before default
into several time windows with different reference dates (e.g. one to twelve months),
see Figure 1.5. Different values of the CCF are thus calculated from the same defaulted
exposure, which have to be aggregated later into a single number for EAD estimation.
Such a larger number of observations could theoretically lead to more stable and
accurate ex-post estimates (Moral, 2006). However, this also means banks need to
record a larger amount of data, up to 12 observations per account. Moreover, the

homogeneity of estimated CCFs can be questioned.

Although the variable-horizon method might be efficient for the estimation of ex-post
CCFs, it does not provide a clear reference date. This poses a problem for producing
ex-ante forecasts since the time point where the values of the input variables should be
observed is unclear. As the forecast perspective has greater implications for our EAD
framework, this suggests that the methods with an explicit reference estimation time,
such as fixed-horizon and cohort methods, are preferable.

Among the three approaches, the fixed-horizon approach seems to be the most
conservative and is likely to provide higher EAD or CCF estimates than the other
methods (Witzany, 2011). However, its implied assumption about the timing of future
default events appears less realistic than that of the cohort approach. For this reason,
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we will apply the yearly cohort method to prepare the data, and set the reference
month to 1st November of each cohort year.

1.2.3.4 PD-weighted estimation of EAD

Witzany (2011) proposed an approach to EAD modelling that involves not only
regressing EAD against its drivers but also incorporates default intensity modelling.
By separating a one-year time interval into n discrete sequences of subintervals, the
CCF can be obtained using a Probability of Default (PD)-weighted approach:

1 n
Z ﬁi x CCEF,

CCF = —
?:1 Pi i3

where CCF; is the CCF conditioned on default time being in the subinterval (¢;_1, t;]
and p; is the probability that default occurs during this interval. In order to obtain
each CCF; estimate, Witzany (2011) recommends using the corresponding fixed time
horizon. In the next chapter, we will apply a simplified version of this PD-weighted
approach, allowing us to incorporate time to default in our model, as this is shown to
have a significant effect on EAD dispersion.

1.2.3.5 EAD modelling challenges

Modelling EAD presents several challenges. First of all, empirical benchmark datasets
for EAD have been small in number, or even unavailable (Jacobs and Bag, 2010).
Moreover, the range of realised EAD levels could be very wide and its right-skewed
and heavy-tailed distribution is difficult to capture statistically (Yang and Tkachenko,
2012). Furthermore, under the A-IRB approach, internal EAD estimates by banks need
to meet specific minimum requirements stated by the Basel Accords (Hahn et al.,

2011). Some examples of the latter are as follows:

¢ For on-balance sheet items, the estimated EAD must be no less than the current

drawn amount.

¢ The estimated EAD should reflect the likelihood of additional drawings up to

and, possibly, after default occurs.

¢ EAD must be calculated in a more conservative way if a positive relationship
between default frequency and EAD is expected.

¢ Banks must provide an economic downturn estimate for EAD when EAD varies
over the economic cycle.
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¢ The methods for estimating EAD must be practical, intuitive, and reflect what
the bank believes to be EAD risk drivers. Also, at least on an annual basis, banks

need to review estimation methods, considering newly available information.

* On a daily basis, banks must possess an ability, or systematic processes, to
thoroughly monitor outstanding balance changes against the limit level. This

enables banks to prevent defaulting borrowers to further draw down money.

The proposed EAD models and data used in this thesis are equipped to cope with the
aforementioned issues. For instance, the models are built based on a real-world credit
card dataset, comprising more than sixty thousand defaults. This should contribute
sufficiently large information about the characteristics of defaulted accounts to enable
statistical modelling and avoid the data paucity problem. Moreover, EAD is estimated
by a non-parametric approach to quantile regression (see Chapter 4) or a parametric
distribution from the flexible GAMLSS framework (see Chapters 2 and 3); hence, any
non-standard characteristics of the empirical EAD distribution can be easily captured.
Furthermore, the dependence between PD and EAD is taken into account by the
copula regression method of Chapter 3, which is shown to produce more conservative
EAD and expected loss estimates than when this relationship is neglected. In addition,
we focus on building empirical EAD models using account-level covariates, to which
macroeconomic variables can be added to reflect EAD in downturn scenarios. Finally,
to help ensure that the models are intuitive, we only consider methods that allow us to
inspect the effect of each predictor on the EAD target.

1.2.3.6 Revolving credit and credit cards

As noted earlier, EAD modelling is more challenging for some types of credit than for
others. For example, the EAD for fixed-term loans, such as residential mortgages and
personal loans, can be inferred simply from the current exposure amount plus
potential subsequent interest and fees (Witzany, 2011). In contrast, the estimation of
EAD for revolving retail exposures, e.g. credit cards and overdrafts, is more
complicated, as customers are allowed to draw up to some predetermined limit and
repay any amount at any time (as long as the minimum monthly level is met). As a
result, each customer’s account balance may change substantially in the run-up to
default, and using the current balance may severely underestimate the true exposure
risk. The estimation could become even more complex when customers move to
default abruptly and draw a large amount just before default (Qi, 2009). In this thesis,
we develop EAD prediction models for retail credit card portfolios, which has
received limited attention compared to the credit risk literature on EAD modelling for
corporate customers (Giirtler et al., 2018).
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Although, to some, they may simply be a convenient means of payment, credit cards
can offer financial flexibility to borrowers who, due to a poor credit rating, do not
have access to other credit channels. As a consequence, a credit card borrower with
increasing financial difficulties and, thus, a reduced credit score could end up
defaulting with an EAD that is substantially higher than the drawn amount at the time
of capital calculation (Qi, 2009). Hence, by ignoring the PD (implied by a credit score)
when calculating EAD, credit loss might be underestimated. We will tackle this issue
later, in Chapter 3, by proposing to jointly model PD, EAD, and their dependence.

1.24 PD,LGD, vs. EAD data requirements

In summary, one can perceive PD as the frequency of losses that will occur, while
LGDxEAD can be thought of as the size of the actual loss. Within the period of
observation, the modelling of PD utilises data from both defaulted and non-defaulted
borrowers, whereas, in practice, EAD and LGD models are built using only the
accounts that defaulted. Also, where the time period for observing the outcome of
interest is concerned, PD and EAD typically imply a one-year time horizon, whereas
the work-out period for LGD could last, on average, three to five years due to the long
periods of liquidation of defaulted commitments and realisation of collaterals (Hahn
etal., 2011).

1.3 GAMLSS framework

In this section, we present background information on the Generalised Additive
Models for Location, Scale and Shape (GAMLSS) framework (Stasinopoulos et al.,
2017), under which several of our EAD models are built. We also elaborate on the
advantages it has over its predecessors: linear regression models, Generalised Linear
Models (GLMs) (Mccullagh and Nelder, 1989) and Generalised Additive Models
(GAMs) (Hastie and Tibshirani, 1986). The GAMLSS models are applied at the
account level, which means we model the relationship between the explanatory
variables of interest and the response variable and use it to estimate the future

outcome for a given account.

1.3.1 Linear regression models

A linear regression model with n data points and p explanatory variables can be

written (in matrix form) as:

Y=XB+e,
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where Y is an n x 1 response variable vector, X is a known n x p explanatory variable
matrix, B is a p x 1 vector of parameters to be estimated, and € is an n x 1 vector of the
errors, assumed to be independently identically normally distributed with zero mean
and constant variance, i.e. € ind N (0,021,) for an n x n identity matrix I,,. Hence,

ind

Y '~ N(u,0°I,), where u=XB.

The parameters, B, are fitted using the Ordinary Least Squares (OLS) method.

This model specification poses some limitations. For instance, the error terms and the
response Y might not always follow a normal distribution for real-world data. Also,
the (mean) value of the response could be related to the set of observed predictors in a
non-linear way (for example, a change in the values of X might lead to an
exponential change in Y). As well, the variance of the errors and the response may not
be constant over the predictors’ value range. An alternative approach that avoids
these limitations is the application of GLMs.

1.3.2 Generalised Linear Models

The framework of GLMs relaxes the normality assumption and allows the response to
follow one of several distributions within an exponential family (denoted here as
ExpoFamily). Also, an invertible monotonic link function, g, is introduced in order to
connect the mean parameter u to (a linear combination of) the explanatory variables.
GLMs can be defined as:

y ind ExpoFamily(6,¢), where g(u)=XB,

X is called a linear predictor, and 6 and ¢ denote the natural and scale parameters,
respectively, of the exponential family. The probability density or mass function of the

exponential family is:

y6 —b(6)

gy vl

S (10, ¢) = exp
in which a(¢), b(8) and c(y, ¢) are some known functions, and E(Y) = u = b'(#) and
Var(Y) = a($)b" (9), with b’ (8) and b (#) denoting the first and second order

derivatives of b(6), respectively. Note that the variance is no longer constant but
depends on the mean level.

GLMs assume that the functional relationship between the response and the

explanatory variables can be specified using parametric terms, leading to the
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estimation of B coefficients. However, the true relationship between the mean and the
set of explanatory variables might be more complex, so that the parametric form could
not efficiently capture it, resulting in a misspecified model. Hence, GAMs instead
suggest the use of smoothing functions to capture such relationships; their idea is to
let the data speak for itself and suggest a suitable functional form.

1.3.3 Generalised Additive Models

GAMs can be written as:

y ind ExpoFamily(u,¢), where g(u) =XB+s1(x1)+---+5p(xp),

where x1, ..., x, is a series of explanatory variables and the s(-) represent
non-parametric smoothing functions which capture any potential non-linear impact of
the predictive variables. The shape of a smooth function is fitted depending on the
actual underlying pattern in the data rather than a predetermined set of parameters.
Three classes of smoothing techniques commonly used in GAMs are local regression,
smoothing splines and regression splines (B-splines, P-splines, thin plate splines). In
this thesis, we utilise the penalised B-splines or P-splines because they automatically
optimise the trade-off between smoothness and fitness accuracy of the fitted
smoothing functions. In GAMs, the word “additive” refers to the fact that in order to
evaluate the overall effect of the explanatory variables on the response, we need to
add up their individual effects.

One of the problems utilising GAMs, though, is that the variance, skewness, and
kurtosis are kept constant for a given mean. The models do not allow one to explicitly
model the relationship between any of these three parameters and a set of explanatory
variables. Moreover, some empirical distributions may be better represented by
distributions other than those of the exponential family. One option to achieve a more
flexible model, while still keeping the benefits of GAMs, is to extend it to the GAMLSS

framework.

1.3.4 GAMLSS

The Generalised Additive Models for Location, Scale, and Shape (GAMLSS) are a
recent class of models defined as:

y ind D(p,0,v,7);

g (u) = X!+ sy (x1) + - +5p(xp);
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§7(0) = X7 +s7(x1) + - +55(xp);
§'(v) =X +s1(x1) + - +5,(xp);

§(T) = XBT +s{(x1) + -+ +55(xp),

in which D(p, o, v, T) can be chosen from a wide range of distributions that can: (1) be
highly skewed or kurtotic; (2) be discrete, continuous or mixed discrete-continuous;
(3) exhibit heterogeneity, where the values of the scale and shape parameters vary
across predictor levels. The first two parameters (u and ¢) are usually referred to as
the location and scale, while the latter two (v and 7) reflect the shape of the
distribution D. The GAMLSS framework is a semi-parametric regression framework
because the response is modelled according to a parametric distribution (D), whereas
the distributional parameters (i, o, v, T) can be fitted with non-parametric smoothing
functions.

In order to understand the main attraction of GAMLSS, Figure 2.1 and Figure 2.5 in
Rigby and Stasinopoulos (2010) show the plots of the fitted conditional distribution of
y for different values of x for a simple linear model and the GAMLSS framework,
respectively. The response distribution at each point of the linear model has a different
location (mean), but the same scale (sigma) and shape, as those are fixed. On the other
hand, the GAMLSS framework permits the response to have the same type of
distribution but with different location, scale, and shape, depending on the level of the
predictor. Therefore, GAMLSS is a flexible unifying framework for regression.
Another prominent feature is that it offers a good trade-off between predictive
accuracy and transparency; models in the GAMLSS class are able to predict the
response by means of complex non-parametric structures, but, at the same time, allow
the modeller to closely examine the relationship between the response parameters and
each of the predictors.

1.3.5 Fitting algorithm for GAMLSS models

In this subsection, we briefly describe the algorithm used to fit the GAMLSS models.
Most of the smoothing functions in the GAMLSS framework can be represented as
s(x) = Z+, where Z is a basis matrix depending on the predictor x, and 7 is the vector
of parameters to be estimated, subject to a quadratic penalty Ay G, for a known
matrix G = QT Q and the smoothing parameter A (Stasinopoulos et al., 2017).
Different smoothing terms have different formulations for Z and Q. Hence, the model
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can be rewritten as:

y ™ D(p,o,v,7)

p
gk(k) = Xk,Bk + Z Z}"yf, where k= {u,o,v,7}.
=1

The non-parametric models for parameters y, o, v, T are fitted by maximising the
penalised log likelihood (I,):

1 Dk f T ok
b=1=-5 Y  YANODGHj
k={p,ov,7}j=1

where [ is the log likelihood function,

n
= Zlogf(yilﬂi,ai,vi, T),
i=1

f(+) is the probability density function of the response distribution D, and # is the
number of observations. The parameters that need to be estimated, { ﬁk, 'y}‘ and /\;‘},
are fitted by performing the Rigby and Stasinopoulos (RS) algorithm (Stasinopoulos
et al., 2017). This fitting algorithm has been proved to be modular and consistently
stable for most of the additive terms and distributions, as long as the first and second
derivatives of the log likelihood function with respect to the distributional parameters
are available (Stasinopoulos et al., 2017).

For a given A, the RS algorithm generates the estimates of § and < through a series of
three nested iterations, the innermost procedure of which is the modified backfitting.
More details of the RS algorithm can be found in Stasinopoulos et al. (2017), which
involve implementing the Iterative Reweighted Least Squares (IRLS) method
repetitively until the global deviance has converged for all three steps. In the RS
algorithm, the smoothing terms are modelled by Penalised B-splines (Eilers and Marx,
1996) because they enable the smoothing parameter ()\9‘) selection to be performed
automatically by minimising the Akaike Information Criterion (AIC) = —2[, + 2N,
where N is the number of parameters in the model.

1.4 Bivariate Copula GAMLSS

In this section, we present background material relating to copulas and the bivariate
Copula Generalised Additive Models for Location, Scale and Shape (referred to from
here on as the CGAMLSS) framework (Marra and Radice, 2017a), used in several of
our EAD models. Under the CGAMLSS, marginal distribution parameters and their
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dependence can be estimated simultaneously, using additive predictor terms at

account level.

1.4.1 Copulas

A bivariate cumulative distribution function (CDF), Fx y(x,y), can be expressed as a
combination of two marginal cumulative distribution functions, Fx(x) and Fy(y), and
a dependence structure. The copula function is used to explain how the marginal
CDFs are connected. A bivariate copula function, Cg : I? — I, with I? = [0,1] x [0, 1]
and I = [0, 1] is defined as:

where the marginal distributions of U and V are uniform over [0,1] and 6 is a
dependence parameter, representing the interaction between the marginals U and V.
Thus, a copula function is a joint cumulative distribution function generated from
given uniform marginals. Analogously to other CDFs, it shares the common

iesof li = li =1.
properties o L Co(u,v) = 0and Hm Co(u,v)

The building block for copulas was introduced by Sklar’s theorem (Sklar, 1959). On
the one hand, the theorem asserts that there is a copula function Cy such that for a joint
distribution Fx y(x,y) and marginal CDFs Fx(x) and Fx(x),

Fxy(x,y) = Co(Fx(x), Fy(y))-

If the margins are both continuous, then the copula must be unique. Otherwise, the
copula Cy is unique on the limited domain of Ran(Fx) x Ran(Fy), where Ran is the
range. Sklar’s theorem, thus, illustrates how a copula enables a bivariate response
vector to be flexibly constructed by arbitrary marginals and allows their dependence
structure to be specified by a suitable choice of copula. On the other hand, the theorem
also states that if Cy is a copula with marginal distributions Fx and Fy, then Fx y(x,y)

must be a joint distribution.

The joint probability density function, fx y(x,y), can be subsequently derived from
the joint distribution Fx y(x, y) in terms of a copula function, as follows:
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2
fxy(xy) = Therlxy) Fg';)(;/y)

2 aC(Fx(x), Fr(y))
ay ox

_ 9 9C(Ex(x), Ay(y)) 9Fx(x)

~dy 0Fx(x) 0x

_ 2 CE@EW)
oy 9Fx(x) (1.2)
dFx(x) dy X

_ 9 oC(Fx(x), K (y)) 9Fv(y) fx(x)
9Fx(x) 9Fy () ay F

_ PC(Fx(x), Fr(y))

- TS -t

= c(Fx(x), Fy(y)) - fr(y) - fx(x),

where the copula density c(u,v) = azaCu(gz,)v) is the derivative of a copula function

C(u,v) with respect to its marginals. The joint density is, therefore, the product of the

two marginal densities and their dependence induced by the copula.

Most copula functions have one or two parameters, (0, {), reflecting the dependence
power between the margins. They are different in terms of range and ability to
measure several dependence patterns. The latter can be explained by the concept of
upper (or right) tail dependence, and lower (or left) tail dependence coefficients, Ay
and Ay, respectively (Balakrishnan and Lai, 2009):

Ay = lim P(Y > F, N (u)|X > Fyl(u));

u—1-

AL = lim P(Y < E;Nu)|X < Fxl(u)).
L= Hm P(Y < B (u)|X < Fy (1))

The higher the values of these coefficients, the more concentrated the tail dependence.
They can be written as a function of a copula function:
1-2
Ay = lim u+ Clu,u) and A; = lim M

u—1- 1—u u—0+ u

Table 1.1 summarises the range of dependence parameter(s) for each well-known
copula, together with their tail dependence structure. For example, the Gaussian and
Frank copulas represent a radial symmetry, i.e. a linear correlation. The margins
connected by these two copulas share the same level of dependence above or below
their means. The strength of dependence is strongest at the centre of the marginal
distributions, and gets relatively weak in the tails, as shown from the zero values in
the tail dependence coefficients. In contrast, the Clayton copula expresses a correlation
intensity at the left tail, whereas its middle and right tail dependencies are weak. It is,
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Copula C(u,v|6,0) Range of (6,0) Ar Au
Gaussian Dy (D1 (u), @ (v)]0) 6e[-1,1] 0 0
Frank —jlog 1+ (- e 0] pcR\{0} O 0
AMH T ey ocl-1,1 0 0
Clayton (u=?f+o070—1)"1/0 0 € (0,00) 271/6 -
Joe 1-[(1-u)?+(1-0)° fc(l,0) 0 2 —21/8

_(1 _ u)@(l _ 0)9]1/9

Gumbel exp(— [(—logu)? + (—log 0)9]1/9) 0 € [1,00) 0 2 21/8
Student-t tag (tgl(u),tgl(v)w, g) 0c[-1,1], 2t (— “@W)
¢ € (2,00)

TABLE 1.1: Commonly used copula functions with the formula specification, the range of de-

pendence parameters (0,{) and their upper, Ay, and lower, Ap, tail dependence coefficients.

P, (+,-|0) denotes the CDF of the standard bivariate normal distribution with correlation co-

efficient 6. ®(-) denotes the CDF of the standard univariate normal distribution. t;.(-,-(6,{)

denotes the CDF of the standard bivariate Student-t distribution with correlation coefficient 6

and degree of freedom {. f;(-) denotes the CDF of the standard univariate Student-t distribu-
tion.

hence, an appropriate copula for two random variables that exhibit a stronger
correlation at low values but weaker at the other areas. Figure 1.6 shows how the
dependence parameter 6 affects the dependence structure between the two margins. A
larger 0 lets the Gaussian, Gumbel, and Clayton copulas concentrate more towards
their preferences, i.e. at the middle, higher, and lower values of the margins,
respectively. Further explanation and theory of copulas can be found in Trivedi and
Zimmer (2006) and Nelsen (2006).

Since each copula’s dependence parameter(s) has (have) a different range, it is not
straightforward to compare the correlation between the margins by using 6 or {. A
more interpretable way is to use a concordance measure, such as Kendall’s Tau, T,
which universally falls in the interval [—1,1]. A positive (negative) sign and the
absolute value in size indicate how strong two variables are positively (negatively)
correlated, respectively. The Kendall’s Tau can be expressed in terms of a copula
function (Balakrishnan and Lai, 2009) as:

T= 4/01 /01 C(u,v)c(u,v)dudv — 1 = 4F [C(U, V)] — 1,
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FIGURE 1.6: Contour plots of the Gaussian copula: (a)-(c); the Gumbel copula: (d)—(f); and the
Clayton copula: (g)-(i), at different values of dependence parameter 6: (a) 8 = 0.2; (b) § = 0.7;
()0 =095 (d)0=1.1;(e) 0 =25;(f) 0 =4.8;(g) 0 =04, (h) 6 =3; (1) 6 = 9.

where ¢(u,v) is the the copula density. Table 1.2 shows the relationship between

dependence parameters and Kendall’s Tau.

Copula Link function Kendall’s Tau
Gaussian ~ tanh~!(9) 2 arcsin(0)
Frank - 1—3[1—D1(6)]
AMH tanh~1(0) 20+ (1—6)%og(1—6)] +1
Clayton log(0) 9%2
Joe log( — 1) 1+ #Ds(6)
Gumbel log(6 — 1) 1-— %
Student-t  tanh~1(9), 2 arcsin(0)
log(¢ —2)

TABLE 1.2: Commonly used copula functions with their link functions and the relationship

between the respective dependence parameters (6,{) and Kendall’s Tau. Dy (0) = % foe
and Dy(8) = [ tlog(t)(1 —t)

2(1-6)

range of the dependence parameters.

t

exp(t)—1

dt

7 dt. Link functions are provided to ensure the appropriate
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Rotated copulas (Nelsen, 2006) have been used to capture asymmetric dependence
structures which are not possible with the non-rotated versions. For example, the
90-degree Clayton copula measures a negative correlation, (rather than a positive one
as in the original 0-degree Clayton) with an emphasis on the right tail. The 90-degree
Joe copula also reflects a negative dependency, but focuses on the left tail. The
formulations of the rotated 90-degree (C*°), 180-degree (C'®?) and 270-degree (C>"?)

copulas are:

(@)
N
J
o
—~
&
<
~—
I
=
|
0O
—~
F
—_
|
<
~—

1.4.2 Copula GAMLSS

Assuming that the marginal distributions for X and Y have three parameters, namely
Wm, Om, Vm, for m = 1,2, respectively, and a copula C contains two parameters, namely
¢ and 6, then a bivariate joint distribution can be expressed as:

Fxy(x,y|8) = Cro(Fx(x|p1, 01, v1), Fy(y|p2, 02, v2)),

where & = (y1, 01, v1, pla, 02,2, C, 0) is the vector containing all distributional
parameters of the margins and copula function. The bivariate Copula Generalised
Additive Models for Location, Scale and Shape (CGAMLSS) framework (Marra and
Radice, 2017a) allows a wide range of twice differentiable parametric distributions,
with no more than three parameters, to be applied to the margins. The available
options for copulas that are extensively used are: the Ali-Mikhail-Haq (AMH),
Clayton, Frank, Gaussian, Gumbel, Joe and Student-t, listed in Table 1.2. The link
function ensures that the copula parameters lie within their possible range. The

augmented copula choices can be selected by rotating the original 0-degree copulas.

Under the CGAMLSS framework, all parameters in ¢ can be modelled as a function of
covariates z, using additive predictors with various effects, such as parametric,
non-parametric or splines. Monotonic link functions are used in order to ensure that
their parameter space is mapped to the correct range of each distributional parameter.
The CGAMLSS model specification is:

Ky, Ky

8;41(.”1) = Hu = 6” + Z 5131 (211:1)? guz(VZ) =Ny, = ,3’52 + Z ng (Z£2>?
k=1 k=1
Kal K”Z

8o (Ul) =N = :381 + Z SZI (Z?); 8m (02) = Mo, = gZ + Z SZZ (ZZ2);
k=1 k=1
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K, Ky,
8n (Vl) =T = ﬁ](;l + Z Szl (Zzl); 8v, (VZ) ﬁo + Z Sk zk
9
g()=n; = ﬁC+Zsk (z}); g0(0) =10 =5+ Y _sl(20),

where 7 is a linear predictor inversely linked to its parameter, e.g. yu = g;l (7u), g is an
appropriate monotonic link function, f is an overall intercept, and the K functions
sk(zy) are generic effects (linear, non-linear, spatial, etc.), selected depending on the
types of covariates z;. Notice that each parameter may be related to a different series
of functions as well as different covariates. Marra and Radice (2017a) showed that

each sy (zx) can be represented as:
Ji
) = Y Brjbrj (),
k=1

which is a linear combination of J; basis functions, bk]'k (zx), and coefficients to be

estimated, By;,. Equivalently, in matrix form:
sk(zx) = BrZx,

where B = (Bx1, Br1, - - -, Brj,) and design matrix Zy = (by (zx), bia(2k), - - -, big, () T
Hence, the linear predictor can be written as:

K
n=PBo+ Y BrZ
=1

Parameters to be estimated, By, are subjected to a quadratic penalty, A, B Dy By, in
order to guarantee specific desired properties of the k' function (e.g. smoothness),
where Ay is a smoothing parameter which regulates the shape of the function s and
balances the trade-off between accuracy and smoothness, and Dy, is calculated based
on the chosen basis functions. Penalty terms can be written in a more compact way as
BTDB where B = (Bo, {,.. .,ﬂIT<)T and D = diag(0,A1Dy, ..., AxkDk).

1.4.3 Fitting algorithm for the Copula GAMLSS model

In this subsection, we briefly outline the algorithm used to fit the CGAMLSS model,
i.e. the estimation process for the variable coefficients and smoothing parameters.
According to Equation (1.2), the log-likelihood function of the CGAMLSS model can

be written as:

=Y "log[cgo(Fx (x|p1i, i, vai), Fy (Y| p2i, 02, v2i) )] +
i=1
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n

Y (log fx (x|p1i, 014, v1i)] 4 log [ fy (vl i, 01, v2i)]),

i=1
where & = (B, B, Br,, Bey Bly Bu,, BL. By)T, and ¢ is a copula density. The penalised
log-likelihood, I,,(§), is considered:
Lor
1,(8) = 1(6) — 56789,
Where S — diﬂg(D;,l, Dyz, Dg’l, D‘TZ’ DVI’ DVZ’ Dg, De)
and A = (AL AT AL AL AT AT,

the overall smoothlng parameter vector. We maximise the penalised log-likelihood by

Ag, A5)T, contained in the D components, defines

following the methods from Marra and Radice (2017a) who applied the trust region
algorithm with integrated automatic multiple smoothing parameter selection. The
former is employed for the estimation of the vector §, whereas the smoothing term (A)
selection method is the one proposed by Wood (2004). Two fundamental steps are
carried out:

Step 1: At iteration a, we keep A fixed, and for given starting values “l, we maximise

1,(J) using the trust region approach, i.e.

slatll — slal 4 arg min7p(5[”]),
pillpll <Al

where

a 1 a
lp=—[l,+pTg + EPTHL]p],
and

g = g,(31") = g(s1) — s and HY = H,(6") = H(s1) -

[a]

Here, g;," and HL“ I 'are used to denote the penalised gradient vector and Hessian

matrix, respectively. The former includes gy, (J laly = a /3 9| P .
.”1 } 1

[a]y — 9L(4) . . @y _ 9%
go(0") = b, |/59:/3£{’]’ while the latter comprises H(6!" )o,h %, aﬁT ‘ﬁ gl g, gl
where 0, h = py1, 01,1, 42, 02, v2,C, 6. Note that || - || denotes the Euclidean norm and

Al the trust region radius, which will be altered over the iterations.

By assuming that the margins are twice differentiable, the estimation procedure can be
performed quickly and precisely by using the analytical score and Hessian. For each
iteration, the minimiser p is obtained by applying a quadratic approximation of —I,
constrained within the trust region centred in § 9] of radius A9, Tt is then used to
adjust the radius size for the next iteration (expanding or shrinking the trust region)

[a+1]

and decide whether the updated vector ¢ should be accepted or declined based on
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the improvement ratio ¢ (Conn et al., 2000; Nocedal and Wright, 2006):

L0y — 1, (st
(gs)Tp + 1pTHYp

If % <¢ < 3 we accept 5[‘”1], and go to the second step. If ¢ < %, we reject (5[“+”,

redefine the radius of next iteration: Al*+1 = % x Al and run Step 1 to find & [a+2]
again by the same approach. Similarly, if ¢ > 2, we reject 9+1] and redefine the
radius of next iteration: Al**1l = 2 x Al“l (Nocedal and Wright, 2006).

The trust region algorithm has been validated as a better approach for this
minimisation problem than the line search method (Radice et al., 2015). It is faster and

more stable, specifically for non-concave or nearly flat functions.

Step 2: We keep the value of the accepted parameter vector § 941 fixed, and solve the

following problem:

/\[aJrl] = arg minHM[a—H] _ A[a—&-l}M[a—H] HZ _ 1\,/1 + 2t1‘(A[a+1]),
A

where

—1
M[a+1]: _H((;[a+1})5[a+1]+ _H(a[aﬂ}) g((;[qul])/

A[a+1] _ —H(ﬂ”*”)(—H((S[””) + S)—l /_H(5[a+1]),

where tr(Al"+1) denotes the number of effective degrees of freedom of the penalised
model, and n= 8n (if a three-parameter distribution is employed for both margins
and the Student-t copula is applied), and # is the sample size. Wood (2004) showed
how to solve this problem using the performance iteration idea by Gu (1992). Step 2 is
a more convenient and less computationally intensive process since the required
gradient vector and Hessian matrix are already derived from the previous step.

The estimations for § and A in Step 1 and 2 are recursively performed until the

algorithm satisfies the stopping criterion:

1(81 1) — 1(81)]

< 1le—07,
0.1+ |1(sl+1)]

i.e. until there is no observed improvement in the objective function /(&). Note that
this criterion depends only on the parameter estimates for J, ignoring the smoothing
term A. Hence, Marra and Radice (2017a) warned that when smoothing parameters
are estimated, the algorithmic convergence is not straightforward to prove and is still

an open topic.
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The starting values for the marginal parameters ( ,B%], [3;72], ,Bl[fl], ,B([fz], ,B[V‘i], ,B[V‘;]) can be
obtained by fitting the GAMLSS univariate models for each margin, as suggested by
Marra and Radice (2017a). The resulting GAMLSS coefficient values are subsequently
used to initialise the CGAMLSS estimation process. For the copula parameters

( ,B[g}, ,Béa} ), the initial values can be selected from the empirical Kendall’s Tau between

the two responses.

In conclusion, the fitting algorithm for the CGAMLSS model proposed by Marra and
Radice (2017a) is fast, reliable and easy to implement for several marginal
distributions and copulas. The only requirement is the availability of the distributional

CDFs and PDFs, along with the derivatives with respect to their parameters.

Similar approaches to CGAMLSS are found in the work by Yee (2016) and Vatter and
Chavez-Demoulin (2015). Yee (2016) modelled distributional parameters of a bivariate
response with non-linear covariate effects using Vector Generalised Additive Models.
However, no automatic way of selecting the best smoothing parameters was
suggested, and the number of copula specifications that are available to implement, is
small. Vatter and Chavez-Demoulin (2015) estimated distributional parameters of
responses’ margin and dependence parameter(s) from a copula function separately
and independently, by utilising the two-stage technique. According to the simulation
study from Marra and Radice (2017a), this two-stage model is less efficient, though,
than the CGAMLSS model. Therefore, we propose the CGAMLSS framework as the
main approach to model PD, EAD and their dependence structure.

1.5 Performance measures in credit risk modelling

In this section, we present two types of performance metrics commonly applied in the
credit risk area: discrimination and calibration measures. Discrimination refers to the
ability to accurately risk rank customers and provide an ordinal ranking of the
response variable. Calibration considers the accuracy of the model’s predictions; that
is, how close are they to the actual values? Good risk ranking ability is required,
especially for PD, when banks are evaluating the credit risk quality of a customer.
Well-calibrated predictions are essential for expected loss or capital requirement
calculation purposes, and hence, valuable for all of the Basel risk parameters, i.e. PD,
LGD and EAD.

Several measures used in the academic literature and this thesis are described next:
the Area Under the ROC curve (AUROC) and Pearson’s correlation, which are both
measures for discrimination power; and the Hosmer-Lemeshow (HL) Test, the Brier
score, the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the
Quantile Loss (QL) function, for calibration performance. At the end, we also
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introduce the normalised quantile residuals used in the residual plots for checking the
model adequacy of GAMLSS models.

1.5.1 AUROC

The Receiver Operating Characteristic (ROC) curve depicts the discrimination ability
of a binary response variable, by considering two competing measures: sensitivity and
specificity. Sensitivity is also referred to as the “true positive” rate, and is defined as
the probability of predicting an observation as positive/success (Y; = 1) when the
actual observed value is positive/success (Y; = 1). On the other hand, specificity is the
“true negative” rate, i.e. the probability of predicting an observation as
negative/failure (Y; = 0) when the real value of the observation is negative/failure

(Y; = 0). The perfect binary model would result in a sensitivity of 100% and a
specificity of 100%.

To convert the probabilities produced by a binary model into binary predictions (that
then enable us to calculate sensitivity and specificity), we need to set a classification
rule via a cut-off point (c). If the predicted probability of an observation is higher than
¢, it is predicted as positive; otherwise, it is predicted as negative. A higher (lower)
value for c implies a smaller (larger) value of sensitivity and a higher (lower)

specificity, respectively.

<
-
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FIGURE 1.7: Example of a ROC curve; the 45-degree diagonal line represents the points where
sensitivity = 1-specificity

The ROC curve (see Figure 1.7) plots sensitivity against one minus specificity, as we let
the value of ¢ range from zero to one. This plot thus represents the intrinsic trade-off
that must be made between sensitivity (ability to detect true positives) and specificity
(avoiding false positives). A model with high discriminatory power will have a high
value of sensitivity and a low value of one minus specificity; i.e. the ROC curve will
stay near the top-left corner of the plot. Conversely, an inefficient model will have the
ROC curve near the 45-degree diagonal line. The Area Under the ROC curve
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(AUROC) thus provides a measure to quantify and compare the model’s quality,

varying from 0.5 (worst performance) to one (best performance).

1.5.2 Pearson’s correlation

Pearson’s correlation coefficient is a statistic measuring the strength of a linear
association between two series of values, in this case, predicted and actual values. It is

defined as:

~

n " — 1/ A-_
Fyg = nzl':?(yl _ zy)(fl Ay_) _, 1< <1,
\/Zz‘:1(3/z_y) Yic (@i —9)

where 7 is the sample size, y; is the actual value, with sample mean ¥, and 7; is the

predicted value, with sample mean . A positive (negative) value denotes a positive
(negative) linear correlation between the variable pair. The higher the absolute value
of Ty g, the stronger the linear association between predicted and actual values, and the

better the discrimination performance.

1.5.3 Hosmer-Lemeshow Test

The calibration power of regression models with a binary response can be appraised
by the Hosmer-Lemeshow test. For example, a logistic regression model with the

response Y and predictors X;,j = 1,..., pis given by:

Y, =
log (11—)(13(1/131)> = Bo+ B1Xri+ -+ BpXp,i

Hence, the predicted probability, p;, of success for an account i is

_exp(Bot PiXui+ o+ BpXpi)
1+ EXp(Bo + .Ble,i + e+ .BPXP,Z'),

where 8 j.] =1,...,p are parameters to be estimated.

The Hosmer-Lemeshow (HL) test divides the dataset into g groups based on the value
of predicted success probabilities (p;), ranking from the lowest to the highest
subgroups. For instance, for ¢ = 10, the first group contains the observations with the
lowest 10% predicted probabilities, followed by the second group consisting of the
observations with the next smallest 10%, and so on. Assuming the model is correct,
the number of actual accounts with a successful event should match the expected
number estimated by the predicted probabilities in each subgroup. The expected
number is calculated as the product of the average of predicted probabilities and the

number of observations in each subgroup. For example, if the first subgroup has an
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average predicted probability of 0.095 and there are 1000 accounts in this subgroup,

then we would expect 95 accounts of this first subgroup with a successful event.

HL calibration curve for g = 30 HL calibration curve for g = 40

300

Expected success
100 200 300 400 500
Expected success
200

0 50 100

HL calibration curve for g = 50 HL calibration curve for g = 60

Expected success

Expected success
50 100 150 200 250

0 50 100 150 200 250 300

0

FIGURE 1.8: The Hosmer-Lemeshow calibration curves with different numbers of subgroups
g; the 45-degree diagonal line represents the points where the observed number of successes
would equal the number of expected successes estimated from the model.

Examples of the calibration curves of the HL test for different numbers of subgroups,
g, are displayed in Figure 1.8. The closer the points are to the diagonal line, the better
the calibration performance. The choice of the number of subgroups is not uniquely
defined. If g is too small, the average predicted probabilities might not reflect the large
variation of predicted probabilities in each subgroup, and so the model might still be
miscalibrated. On the other hand, if g is too big, the number of observations in each
subgroup would be too small, and it would hence be difficult to conclude whether the
observed and expected values are different purely by chance or due to a poorly
calibrated model. Based on a simulation, Hosmer et al. (2013) suggested the use of

g > p + 1, where p is the number of covariates in the model.

In order to evaluate the calibration power of the model, the Pearson goodness-of-fit

statistic from the HL test is calculated for a partition of g groups, as follows:

where Oy; and Ey; denote, respectively, the observed and expected number of
observations with Y; = k in the /th group.

1.5.4 Brier score

The Brier score measures the accuracy of a probabilistic forecast based on the
Euclidean distance between the actual outcome and the predicted probability of that
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outcome. Low values of the Brier score are desirable, indicating more accurate
predictions. The Brier score is defined as:
n
Brier score = — Z(ﬁl — p,-)2, 0 < Brier score < 1,
n
i=1
where 7 is the sample size, p; € {0, 1} is the actual outcome, being one when success

occurs and zero otherwise, and p; is the predicted success probability of the outcome.

1.5.5 MAE, RMSE and Quantile loss function

The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are two of
the most common benchmarks used to quantify accuracy for continuous variables. In
our context, the errors refer to the difference between actual and predicted values.

MAE is the average magnitude or absolute value of the errors, and is indifferent to the

direction of errors. It is defined as:

1 n
MAE = _ Y |yi i, 0 <MAE < e,
i=1

where 7 is, again, the sample size, y; is the actual value, and 7; is the predicted value.

All individual errors have an equal weight of 1.

RMSE also measures the average magnitude of the errors, but using a quadratic rule

without again considering their direction. RMSE is defined as:

1 n
RMSE = ;|- = 10i)? < RMSE < co.
S n;(% 9i)?, 0< SE < o0
Squaring the errors penalises large errors more, and thus the RMSE is appropriate
when large mispredictions are particularly unfavourable.

MAE and RMSE apply an equal penalty to overestimation and underestimation.
However, there are scenarios where one prefers overestimated rather than
underestimated predictions, or vice versa; in such cases, the Quantile Loss (QL)
function may be more suitable. QL penalises misestimations differently depending on

the choice of a quantile level, a. The a quantile loss function is defined as:
QL(@) = ) (a=1)-(yi—9)+ Y a-(vi—1)
WAS LYyi> i

where a € (0,1). Figure 1.9 considers three different quantile loss functions. When
« = 0.25, the loss penalty for overestimation is greater. In contrast, the 0.75 quantile

loss penalises underestimation more heavily, and, hence, is a good measure for
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FIGURE 1.9: Quantile loss functions (Y-axis) for different « levels and predicted value (X-axis).
The positive and negative error values on the x-axis represent underestimation and overestima-
tion, respectively. MAE is equivalent to the 0.5 quantile loss function.

assessing the conservativeness of risk estimates. For « = 0.5, the function returns the
MAE.

1.5.6 Normalised quantile residuals

Consider a simple linear regression, defined as y; = Bo + B1X1,; + ei, where ¢; is the
error for an individual i. The raw residuals (¢;) are interpreted as the difference
between the observed and fitted values, i.e. €; = y; — J;, where §; = ,30 + ,BAl X1,;. These
raw residuals can be used to check the adequacy of a simple linear model by
inspecting whether ¢; ~ N(0,1). However, in the GAMLSS framework, where the
response variable can follow other distributions, it is more sensible to use normalised
quantile residuals. Their main advantage is that they always follow a standard normal
distribution regardless of the distribution of the response, providing that the model is

correctly specified.

Assuming that F(y|0) is the fitted cumulative distribution function with estimated
parameters 6, the fitted normalised quantile residuals are defined as (Stasinopoulos
etal., 2017):

P = @ [F(yil0)],
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where @ is the cumulative distribution function of a standard normal distribution.
Provided the model is correct, F(y|f) should follow a standard uniform distribution,
and hence 7; would follow a standard normal distribution. Hence, in order to check
the adequacy of the GAMLSS models, regardless of the distribution of the response
variable, we could simply check whether the normalised quantile residuals are

standard normal.

1.6 Partial residual plots

In the GAMLSS framework, non-parametric smooth functions or splines are
commonly used to explain the impact of an explanatory variable on a response, as this
impact cannot be explained from an estimated coefficient as with linear regression. In
this section, we explain how to interpret the partial residual plots that will be used for
the GAMLSS models in the following chapters.

In a simple regression with only one explanatory variable, e.g.
Yyi = Po+ p1Xyi +ei,

the value of y; depends on only one variable X; ;, i.e. 31 shows the effect of X; ; on y;.

However, in multiple regression, e.g.
Yi="7 +711X1i + 72X0i + 13X3i + €,

the value of y; depends not only on X; ;, but also on X, ; and X3;. Hence, 41, unlike j;,
tells us the “partial” effect of Xj; on y;, given that all the other explanatory variables

are kept constant at a specific value.

A partial residual plot (exemplified in Figure 1.10) is commonly used to identify the
nature of the relationship between the target variable and an explanatory variable.
This plots the “partial residuals” (on the y-axis) against the respective values of the
explanatory variable (on the x-axis). The partial residual for X ; is defined as the sum
of the residual (the difference between observed and fitted value) and the partial effect
of the predictor Xj, e.g. 41X for a linear model. In other words, the partial residual
accounts for the part of the response that is not described by the other terms. For a
clearer visualisation, the plot depicts a fitted line or smooth function by regressing the

predictor’s partial residuals against its own value range.

Figure 1.10 shows the estimated non-linear smooth function of the partial residuals of
time-to-default on max-out event risk, i.e. the probability that the credit card holder’s
balance will be at (or above) the credit limit. The y-axis is represented on the logit
scale, i.e. log(7%), where v denotes the probability of a max-out event, since the
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FIGURE 1.10: A partial residual plot of time-to-default (months) for max-out event risk (on logit
scale).

logistic additive model was applied. As the time-to-default changes from 5 to 2, the
partial residual decreases approximately from 0 to -2. This indicates that, after

accounting for the effects of the other explanatory variables, the odds of a max-out

v
r T—y7

86%(1 — e~2) lower than that with a longer five-month period before default.

event for a credit card account with a two-month time-to-default are

1.7 Overview of the three papers

This thesis contains a collection of three papers, each contributing to the literature on
EAD modelling for retail credit card portfolios. The proposed models avoid the
problems associated with CCF estimation by, instead, modelling EAD directly. Three
main methodologies have been employed: the GAMLSS framework, copulas and vine
copula-based quantile regression. The ultimate objective of the thesis is to improve the
predictive performance of EAD modelling and gain additional interpretation insights,

by proposing novel methods and testing them on real-life data.

In the first paper, the newly proposed model combines two ideas found in the
literature. First, the model is built under the Generalised Additive Models for
Location, Scale and Shape (GAMLSS) framework, which produces a much more
flexible fitted distribution than its antecedents: Generalised Linear Models (GLMs)
and Generalised Additive Models (GAMs). The GAMLSS framework does not restrict
EAD to the exponential family and allows for the parameters (location, scale and
shape) to be modelled as a function of the explanatory variables. Second, as the level
of EAD, as well as the risk drivers for its conditional mean and dispersion parameters,
could significantly differ between two subgroups of credit card borrowers — those
whose balance hit the limit at least once in the run-up to default, versus those who
never maxed out their card over that same outcome period —, we extend our solution

to a two-component mixture model, conditioned on these two respective scenarios.
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This new model and several benchmark models are empirically validated using a large
dataset of credit card defaults from a Hong Kong bank. In addition to identifying the
most significant explanatory variables for each model component, our analysis, based
on a series of discrimination and calibration criteria, suggests that predictive accuracy
is improved by combining the mixture component and the GAMLSS approach.

In the second paper, we introduce a novel approach for modelling PD, EAD, and their
dependence structure, simultaneously. The rationale for doing so is that previous
studies have shown that expected portfolio loss and, hence, the capital requirement
could be underestimated by ignoring the dependence between the credit risk
parameters. A joint model for PD and EAD is proposed by applying the bivariate
Copula Generalised Additive Models for Location, Scale and Shape (CGAMLSS)
framework. Using this model, a joint distribution can be flexibly constructed from two
marginal GAMLSS response variables and a suitable copula. Also, whereas most
studies have built EAD models on just the subset of defaulted accounts, this new
model explicitly addresses potential sample selection bias by extending the analysis to
outstanding balance (rather than balance at default time, or equivalently, EAD) over a
12-month period in a sample of both defaulted and non-defaulted accounts.
Therefore, this research is the first in the credit risk domain to propose and test a
flexible copula regression approach, to simultaneously model PD, card balance and
their dependence structure. To empirically validate the effectiveness of introducing
the dependence, we also construct two standalone models, for PD and balance
separately, against which we benchmark our newly proposed copula model. For a
large dataset of credit card accounts, the results reveal strong and positive dependence
between PD and balance, even after accounting for observable covariates, either in the
middle or upper tail area of the marginal distributions. Moreover, our analysis shows
that the proposed model provides more accurate and conservative expected loss
estimates, exhibiting a heavy tail that is the result of the correlation between PD and
credit card balance. In addition, we demonstrate that by, instead, ignoring such
dependence or by allowing sample selection bias, loss could be severely
underestimated, potentially leading to capital shortfalls.

In the third paper, the vine copula-based quantile regression model is proposed to
estimate conditional mean and quantiles and interval estimates for EAD. This model
addresses two key aspects of EAD modelling. First, quantile regression is applied to
produce the information on extreme risks in the right tail area, i.e. higher quantiles of
EAD, which is useful for risk management and capital calculation. Second, since
many of the input variables used in EAD models are strongly correlated with each
other (see e.g. current credit limit and balance in Tong et al. (2016) and Leow and
Crook (2016)), vine copulas — a flexible class of dependence models — are introduced
to model any multi-dimensional dependencies among those variables (including
EAD) by a suitable series of (either parametric or non-parametric) pair-copulas. The
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vine copula approach avoids two drawbacks of classical quantile regression: the
problem of quantile crossing (i.e. the crossing of regression lines of different quantile
levels, causing interpretation difficulties) and its difficulty coping with
multicollinearity. When tested on a large dataset of credit card defaults, the proposed
non-parametric model leads to better point and interval EAD estimates and more

closely reflects its actual distribution compared to other models.

1.8 Author contributions

I, Suttisak Wattanawongwan, hereby declare that I am the main author of the three
papers who conceived, developed, and implemented the work. The other authors are
part of the supervisory team who enlightened and encouraged me and essentially
improved the thesis. I also wrote the initial draft of the papers which was further

advanced by the supervisory team.
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Abstract

The Basel II and III Accords propose estimating the Credit Conversion Factor (CCF) to
model Exposure At Default (EAD) for credit cards and other forms of revolving credit.
Alternatively, recent work has suggested it may be beneficial to predict the EAD
directly, i.e. modelling the balance as a function of a series of risk drivers. In this paper,
we propose a novel approach combining two ideas proposed in the literature and test
its effectiveness using a large dataset of credit card defaults not previously used in the
EAD literature. We predict EAD by fitting a regression model using the Generalised
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Additive Models for Location, Scale and Shape (GAMLSS) framework. We conjecture
that EAD level and the risk drivers of its mean and dispersion parameters could
substantially differ between the debtors who hit the credit limit (i.e. “maxed out” their
cards) prior to default and those who did not, and thus implement a mixture model
conditioning on these two respective scenarios. In addition to identifying the most
significant explanatory variables for each model component, our analysis suggests
that predictive accuracy is improved, both by using GAMLSS (and its ability to
incorporate non-linear effects) as well as by introducing the mixture component.

2.1 Introduction

The Basel regulatory accords have set out risk-sensitive regulatory capital
requirements stipulating the minimum level of capital that banks must hold as a
function of various types of risk. Under the Advanced Internal Rating Based (A-IRB)
approach, authorised banks are permitted to use their own methods to calculate three
parameters that are central to one such source of risk — credit risk. These are:
Probability of Default (PD), Loss Given Default (LGD) and Exposure At Default
(EAD). In retail credit risk, PD and LGD have thus far received the bulk of attention by
credit risk researchers, whilst EAD has been studied far less extensively. This paper is

motivated by this fact and aims to close such gap by focusing on EAD modelling.

EAD is defined as the outstanding debt at the time of default and measures the
potential loss the bank would face in the absence of any further repayments. The
A-IRB approach requires producing suitable EAD estimates for all loans that are not
yet in default. For some types of loans, those estimates can be relatively
straightforward; for example, the EAD for term loans, such as residential mortgages
and personal loans, could be inferred simply from the current exposure amount plus
potential subsequent interest and fees (Witzany, 2011). In contrast, for revolving retail
exposures, such as credit cards and overdrafts, the estimation is more complex as
customers are allowed to draw up to a specified limit and can repay any amount at
any time (as long as the minimum level is met). As a result, each borrower’s account
balance may change substantially in the run-up to default and using the current
balance may severely underestimate the true exposure risk. For these types of credit,
the Basel Accords have suggested estimating a Credit Conversion Factor (CCF), which
is usually defined as the proportion of the undrawn amount (i.e. credit limit minus
drawn amount) that will be drawn by the time of default. This CCF should reflect the
likelihood of additional drawings between estimation and default time. From the
predicted CCE, the estimated EAD then follows as:

EAD = Current drawn amount + (CCF x Current undrawn amount).
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Even though statistical methods to estimate the CCF have been proposed, several
drawbacks were soon identified. For example, the CCF distribution is highly bimodal,
estimates must be restricted to the [0,1] range, and models may struggle to cope with
the contracting denominator when the current drawn amount is already close to the
limit. Therefore, in the literature, alternative methods have been suggested to avoid
the undesired properties of CCF models, which include predicting EAD directly (Tong
etal., 2016).

In this paper, we focus on EAD modelling for credit cards, which has received limited
attention in the literature. Most of the studies on EAD modelling have thus far
focused on corporate credit, whilst fewer address retail customers (Giirtler et al.,
2018). This is partly explained by the greater availability of public data on the
corporate sector and by the fact that the financial status and health of corporate
customers could be inspected from share and market-traded products (Leow and
Mues, 2012), enabling easier access to data. Nonetheless, credit cards make up the
largest share of revolving retail credit for most A-IRB banks and contribute the largest
number of defaults compared to other revolving line products (Qi, 2009). This should
contribute sufficiently large information about the characteristics of defaulted

accounts to enable statistical modelling.

To avoid the problems associated with CCF estimation, we choose the EAD amount
itself as the response variable. This choice, however, poses other challenges. For
example, the observed value range of realised EAD levels could be very wide and
thus difficult to capture statistically (Yang and Tkachenko, 2012). To cope with its
right-skewness, Tong et al. (2016) therefore proposed a gamma distribution for
(non-zero) EAD and built a direct EAD model under the Generalised Additive Models
for Location, Scale and Shape (GAMLSS) framework (Stasinopoulos et al., 2017),
which was shown to outperform several benchmark models (including for CCF) on a
dataset from a UK lender. In this paper, we take a similar approach but we further
extend it by distinguishing between two subgroups of credit card borrowers — those
whose balance hit the limit at least once in the run-up to default, versus those who
never maxed out their card over that same outcome period —, introducing two
mixture components to our models. The rationale for doing so is that we hypothesise
that not just the EAD but also its risk drivers (and that of its dispersion) could differ
substantially between the two groups. A similar mixture element was previously
proposed by Leow and Crook (2016), along with their panel models for card balance
(and limit), but besides us using a different modelling framework applied to
(cross-sectional) default cohort data, our approach differs from theirs in that we allow
for non-parametric terms, and nor do we assume that the balance of maxed-out

accounts has to match the limit value exactly.

To empirically validate the effectiveness of the GAMLSS model (versus OLS), the
proposed mixture approach, and its combined application, we construct a set of



Chapter 2. A Mixture Model for Credit Card Exposure at Default using the GAMLSS
42 Framework

benchmark models against which we compare the predictive performance of our
newly proposed model. All models are fitted using a large dataset of credit card
defaults from a Hong Kong lender, which has not been previously used in the EAD
literature.

To summarise, the contributions of our new model and analysis are that we: (1)
estimate EAD directly, instead of using the conventional CCF approach; (2) analyse
EAD in the hitherto underresearched area of retail credit cards; (3) apply the idea of
EAD mixture models under the GAMLSS framework and compare its performance to
a series of benchmark models; (4) identify the factors that significantly impact the
mean and dispersion of EAD, giving further insights into the risk drivers of EAD; (5)
inspect any differences in the risk drivers depending on whether the account hit the
limit prior to default.

The paper is structured as follows. In Section 2.2, the existing literature on EAD
modelling is reviewed. Section 2.3 explains the data and variables used and Section
2.4 illustrates how statistical models are constructed. The results are presented and
discussed in Section 2.5. Section 2.6 concludes.

2.2 Literature Review

In order to model the EAD of revolving exposures, the Basel II and III Accords have
implicitly suggested estimating a Credit Conversion Factor (CCF), which is the
proportion of the undrawn amount at the time of estimation (i.e. credit limit minus

current balance) that will be drawn by the time of default, i.e.:

EAD;  — Balance;
Limit; — Balance;

CCFt/T -

Balance; denotes the amount of money owed by credit card borrowers at the present
time (). Limit; is the credit limit or maximum amount that the borrowers could draw
at t. EADy ; is simply the balance at the future default time (7) estimated at the present
time (¢). Hence,

EAD; = Balance; + CCF; ; x (Limit; — Balance;).

Analysing CCFs (or other EAD proxies that incorporate current balance and limit) is
deemed important because current exposure alone does not give a reliable indication
of the final balance at default. The reason is that, as obligors are approaching default,
they may draw additional money (or, in some cases, pay back part of the balance).
Giirtler et al. (2018) found that the most relevant factors affecting CCF are time to
default and borrower risk (credit quality). Moreover, CCF values heavily depend on
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the type of product (corporate or retail), data, and empirical methodology used. In the
corporate setting, Gibilaro and Mattarocci (2018) also considered the impact of firms
having multiple banking relationships, finding that by considering the exposures as a
group rather than individually, one could enhance statistical model fit (in terms of R?)
and reduce the risk of underestimation.

CCEF distributions tend to be highly bimodal with a probability mass at zero (when
there is no change in balance) and another at one (when borrowers end up drawing
the entire limit), while showing a flat distribution in between. This causes difficulties
in modelling and predictions produced by a conventional Ordinary Least Squares
(OLS) regression model could be poor. Therefore, various techniques and models have
been put forward as better alternatives for modelling CCF, e.g., Binary logit and
Cumulative logit regression models (Brown, 2011), Beta link generalised linear models
(Jacobs, 2010), and Naive Bayesian models and single layer neural networks (Yang
and Tkachenko, 2012). Empirical evidence suggests most of these produce better
performance than OLS regression.

Even though indirect EAD models based on the CCF are commonly used, several
other drawbacks have been identified. For example, when the current drawn balance
is already close to the limit to begin with, CCF values can become very large and
unstable due to the contracting denominator (or even undefined when balance equals
limit). This is not uncommon for accounts that will eventually default. Hence,
restrictions must be imposed on CCF models (via truncation or censoring), causing
loss of potentially useful information. More well-behaved values could be equally
problematic, however. For example, Leow and Crook (2016) pointed out that a
positive value of CCF can be observed under two different circumstances: (1) when
the current balance is less than both balance at default and current limit (which is a
common occurrence for accounts going into default); or (2) when the current balance
is greater than both balance at default and current limit. Although these two cases
may result in the same positive range of CCF values, their characteristics and
implications for EAD risk are totally different. This makes the CCF estimate more
difficult to interpret. Furthermore, Taplin et al. (2007) illustrated how predicted values
greater than one also create undesirable outcomes. Firstly, they would imply that as
the balance increases, EAD (and thus the risk) will decrease, which is counter-intuitive
because larger balance should intuitively mean larger exposure. Secondly, when the
predicted CCF is greater than one and balance is greater than limit, the estimated EAD
would be smaller than both balance and limit, which is unlikely to occur. For
regulatory capital requirement purposes, the Basel Accords therefore impose
calculated CCF values to be strictly in the [0,1] range. However, in real-life datasets,
one can often see a large number of CCF observations that are either negative or
exceed one. They could be negative when EAD is less than current balance (i.e. the
debtor pays back part of the debt before defaulting), providing that balance is below
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limit. This more often happens when time to default is large and current credit
utilisation is close to one (Moral, 2006). Alternatively, in the empirical dataset
analysed by Taplin et al. (2007), 38 percent of all accounts exhibited negative CCF
values because they started off with a balance that exceeded the limit (which is
contrary to the CCF’s core idea of the balance increasing by a fraction of the undrawn
amount). Conversely, a sizable proportion of observed CCFs may be greater than one
because, in practice, the balance at default time commonly goes beyond the current
credit limit, e.g. due to interest and other charges or credit limit increases between ¢
and T (Tong et al., 2016). Imposing a ceiling on CCF would mean that no EAD

estimates could ever exceed the current limit level, which may not reflect reality.

With these obstacles in mind, Luo and Murphy (2020) avoided CCF by implementing
other EAD factors, namely EADF (EAD; . /Limit;) and AUF

((EADy — Balance;) /Limit;), when estimating EAD in the context of U.S.
construction loans. However, these measures might not offer a better alternative.
Being a ratio of EAD, the predictor effect on balance upon default cannot be directly
obtained. This poses difficulties for practitioners as the interpretation of the
relationship between predictors and EAD is important. Also, Leow and Crook (2016)
indicated that, as an account approaches default and balance, and hence EAD,
increases, lenders act differently; some increase the limit level, some reduce it. This
leads to a heterogeneity problem in a cross-sectional model. Moreover, similarly to
CCEF, the value of EADF is expected to range between zero and one. However, it is not
uncommon to perceive outstanding balances go over their limits, resulting in values
much greater than one and, therefore, the challenging choice of distribution. Hence,

similar restrictions must be imposed, either via truncation or censoring.

In light of these drawbacks, alternative approaches have been proposed that involve
modelling EAD directly, as a monetary amount (as opposed to ratio). For example,
Thackham and Ma (2018) suggested that, for large corporate revolving facilities, banks
often actively manage the borrower’s limit amount as default time approaches, and
that these changes in limit (up or down) have a large impact on EAD. Therefore, they
proposed a mixture (two-stage) model, conditioning their EAD target variable on
whether the limit is decreased or not. Hon and Bellotti (2016) did not forecast drawn
balance at default time (EAD) as such, but instead proposed models to estimate drawn
credit card balance at every time step, unconditional on a default event. They argued
that, apart from having risk management applications, the prediction of this
unconditional balance on revolving credit lines is beneficial because it provides banks
an expected profit estimate. Different models were considered, including OLS,
two-stage, mixture regression and random effects panel models. The direct EAD
model proposed by Tong et al. (2016) uses a zero-adjusted gamma (ZAGA)
distribution to capture the EAD distribution observed in a dataset of credit card
defaults, grouped per default cohort. They constructed a model in the GAMLSS
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framework, the predictive performance of which they compared against that of three
common CCF models and a utilisation change model. The results confirmed that the
direct EAD model is a competitive alternative to these benchmark models. Lastly,
another mixture model is proposed by Leow and Crook (2016). Using a portfolio of
defaulted credit card accounts and their monthly observations, they analysed
outstanding balance. Similarly to Hon and Bellotti (2016), they did so not only at the
time of default, but at any time over the entire period up to the default time. In
addition, they proposed modelling the probability that account borrowing reaches (or
exceeds) the limit level at any time period; under that scenario, they proposed
modelling the limit rather than the balance. A discrete-time repeated events survival
model and panel models with random effects were applied to estimate the former
probability and the conditional balance or limit, respectively, which were shown to
provide competitive model fit and predictive accuracy compared to conventional
models. As with other such panel models, suitable lags would have to be introduced
to make the approach suitable to EAD prediction under Basel, which generally

assumes a one-year horizon.

Regardless of the method used to model EAD, common major drivers of EAD
according to the literature are commitment limit level, current balance, credit
utilisation, credit quality, time to default, and undrawn percentage
(1—(Balance/Limit)). In this paper, we use the same variables, supplemented by
further behavioural variables derived from monthly account data, as well as a

selection of macroeconomic covariates.

Similarly to Tong et al. (2016), our newly proposed direct EAD model is built under
the Generalised Additive Models for Location, Scale and Shape (GAMLSS) framework
(Stasinopoulos et al., 2017). This framework allows selecting a distribution for the
response variable, the parameters of which (location, scale, and shape) can be
modelled as a function of explanatory variables, either parametrically or
non-parametrically. GAMLSS is much more flexible than the Generalised Linear
Model (GLM) or Generalised Additive Model (GAM) frameworks, which are
restricted to the exponential family. It potentially allows the fitted distribution to (1)
be highly skewed and kurtotic, (2) be discrete, continuous, or mixed
discrete-continuous, (3) exhibit heteroscedasticity, whereby the value of scale and
shape parameters varies across covariate levels. This is important for observed EAD
data as it typically exhibits several of these features. Moreover, the ability to model the
dispersion of EAD as a function of explanatory variables can be useful from a risk
management perspective; where the estimated EAD dispersion is large, we could thus
make the point estimate more conservative in order to deal with the greater
uncertainty. Motivated by the empirical results reported by Leow and Crook (2016),
we further extend the approach by considering that, as accounts move towards
default, the balance could either hit the limit or not. This breaks the EAD model into
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two mixture components, which could have different EAD levels and risk drivers.
Although considering similar scenarios, our approach differs from that taken by Leow
and Crook (2016) in a number of ways. First, rather than treating balance as panel
data, we apply the default cohort approach in EAD modelling and group defaults
according to 12-month calendar periods, as this facilitates producing estimates that are
conditional on default and matches the prediction horizon used for Basel. Second,
using the GAMLSS framework for all model parts offers a wider range of distributions
and, importantly, allows introducing non-linearity. Third, considering that the balance
can further vary over time and may exceed the (prior) credit limit, we do not fix the
EAD to the credit limit value conditional on a max-out event, but allow its distribution
to be explicitly modelled in this mixture component as well, thus giving further

insights into specific risk drivers of EAD for this subgroup.

Note that our proposed model is an account-level one; in other words, it is the result
of taking a bottom-up approach. More generally, the underlying parameters in credit
risk modelling can be estimated in two different ways: top-down or bottom-up (BCBS,
1999). The former approach aggregates data with similar risk profiles, e.g. with regard
to credit rating and tenure, and groups them into homogeneous pools, for which
well-calibrated credit risk parameter estimates are then provided. This method is
typically applied to consumer, credit card or other retail portfolios, due to their
volume. For example, Witzany (2011) showed how EAD could be estimated at the
aggregated pool level by the top-down approach. On the other hand, the bottom-up
approach measures credit risk at an individual (loan or account) level, considering
information on the entire set of (inhomogeneous) loans. This approach is often
adopted for corporate exposures and capital market instruments. In the consumer
credit risk literature, both of these approaches are well known and have each been
employed; however, one does not rule out the other. For example, the bottom-up
approach could aid the design of top-down models as it allows loans to be classified
into pools using individual loan data, whilst the pool-level risk parameter could
eventually be estimated from the aggregated data. Since all of the individual card
defaults are used to construct the EAD models in this paper, our method would be
primarily classified under the bottom-up approaches. Examples of other studies that,
similarly to us, utilise a bottom-up method for retail credit card modelling are Tong
et al. (2016), Hon and Bellotti (2016) and Leow and Crook (2016).

2.3 Data and variables

The original dataset provides monthly account-level data on the consumer credit
cards of a large Hong Kong bank from January 2002 to May 2007. We define EAD as
the outstanding balance at default time, taking the amount owed by the borrower
excluding any subsequent interests and additional fees; any debt incurred after
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default will not be included in the EAD calculation. We say that an account goes into
the default state when a borrower either: (1) misses or could not make the minimum
repayment amount required by banks for three months or more; (2) is declared
bankrupt; or (3) is declared charged-off, i.e. expected to be unable to return the owed
money back to the bank. In keeping with the standard practice in EAD modelling, we
extract data from the defaulted accounts only, as the estimation is conditional on
default and the balances of defaulted and non-defaulted accounts are expected to
behave differently.

We also add macroeconomic variables to the dataset because individual customers’
borrowing levels could further vary under different economic scenarios. Also, this
may help our model be more time-stable and allows us to assess the impact on EAD of
downturn scenarios, thus providing a suitable framework for stress testing required
by banks applying the A-IRB approach (Kaposty et al., 2017).

We apply the standard yearly cohort method (Moral, 2006) to prepare the data for
analysis and set the reference month where the estimation takes place on 1°
November of every year. The values of behavioural and macroeconomic covariates are
then collected a month prior to the reference month, namely in October, whereas the
response, EAD, is recorded at the occurring default time within 12 months following
1% November for each cohort year. In particular, see Figure 2.1, the balance of
defaulted accounts at each month from November 2002 to October 2003 is recorded as
an EAD value, and then combined with explanatory variables recorded in October
2002 to build a yearly dataset for the period of 2002-2003. This procedure is performed
repeatedly for the period of 2003-2004, 2004-2005, 2005-2006, and November 2006 to
May 2007. Eventually, we obtain a collection of yearly datasets ready to be aggregated
and analysed. Accounts that lack sufficient monthly records to calculate the

explanatory variables are omitted.

Yearly EAD Estimation Yearly EAD Estimation
Period 2002-2003 Period 2005-2006
Jan 02 Oct 02 Nov 02 Nov 03 Nov 04 Nov 05 Nov 06 May 07
[Ref] [Ref] [Ref] [Ref] [Ref]

Collecting Explanatory variables

FIGURE 2.1: Standard yearly cohort method applied for EAD dataset.

Further removing a small number of missing value cases (177 observations), we are
left with 74,096 defaulted accounts. This dataset is then separated into three groups:
training (60%), validation (20%), and test dataset (20%). Figure 2.2 shows the
empirical EAD distribution, which exhibits right-skewness, is heavy-tailed, and has a
small bump at 200,000 (which is a likely consequence of the bank operating a

maximum limit).
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An additional analysis of CCF is performed and demonstrated in Figure 2.3. Because
of its denominator, the histogram of observed CCF expresses a clear instability; a sheer
number of observations are out of [0,1] interval, and the possible range of countable
CCF can run freely from the largest value of 97,136 to the smallest value of -88,639 as a
result of the contracting denominator. There are 11 accounts with infinite CCF due to
its zero denominator. The irregular and unstable shape of observed CCF proves
difficulty in modelling task. Otherwise, truncation at zero and one is required in order
to comply with the regulation guidance; however, this might follow by a severe
information loss. Furthermore, Tong et al. (2016) and Leow and Crook (2016)
demonstrated in their work that a direct method of modelling EAD could effectively
provide a more accurate predictive performance (e.g. in terms of the mean absolute
error) than the conventional CCF approach. Therefore, this paper focuses on a direct
EAD modelling without the CCF formulation.
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FIGURE 2.2: Histograms of: observed exposure at default (left); observed current limit (right).
Table 2.1 lists the set of candidate explanatory variables extracted from the data, which
have previously shown correlation with EAD according to the literature or can be

reasonably expected to significantly impact EAD. Four macroeconomic variables are

considered: unemployment rate, interest rate, GDP, and CPI.

2.4 Statistical models

The following subsections outline our newly proposed model, GAMLSS.Mix, and
three benchmark models, GAMLSS, OLS.Mix and OLS.
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FIGURE 2.3: Histograms of observed Credit Conversion Factor (CCF).

24.1 GAMLSS.Mix

In our new model, we propose to estimate EAD conditionally on two mutually
exclusive scenarios that may occur in the run-up to default. Denote the EAD of
account i as EAD; (i) = EAD;. Note that reference time t and default time T are
omitted from here on for the sake of simplicity. We define a binary variable, S;, to

denote the occurrence of a “max-out” event as:

S { 1 if the balance hit the limit at any point during the outcome window;
i =

0 otherwise,

where the outcome window is the period between reference and default time.
Applying the law of conditional expectation, the expected value of EAD; is then given

by:
E(EAD;) = [P(S;=1) x E(EAD;|S; =1)] + [P(S; = 0) x E(EAD;|S; =0)]. (2.1)
Therefore, three model parts must be fitted, all of which conditional on default: first, a

model for the probability that the balance will hit the limit over the observation
period, P(S; = 1); second, a model to estimate EAD conditional on the balance hitting
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the limit, E(EAD;|S; = 1); third, a model to estimate EAD conditional on no such
max-out event occurring, E(EAD;|S; = 0).

We will refer to this newly proposed mixture model as “GAMLSS.Mix”, as it will use
the GAMLSS framework to fit each of these model parts. For each such component, we
use a separate validation set (setting aside 20% of the data) to make model selection
decisions such as variable selection. Subsequently, the final model (whose partial

residual plots will be shown) is trained after merging training and validation data.



Variable Notation Explanation

Age of account age Months since account has been opened.

Limit 1 Credit limit, i.e. maximum amount that could be drawn from card.

Balance b Current amount drawn.

Behavioural score bsco Internal score capturing current credit quality of account.

Months in arrears past 9 months no.arr9 The number of months an account has been in arrears over the nine months prior
to the reference time. A borrower is considered in arrears when they pay less than
their monthly minimum payment.

Months in arrears past 3 months no.arr3

Limit increase past 9 months limin9 Dummy variable indicating whether the limit has been increased over the past
nine months (Y/N).

Limit increase past 3 months limin3

Absolute balance change past 9 months abs.ch.b9

Absolute balance change past 3 months abs.ch.b3

Average paid percentage past 9 months paid.per9 Paid percentage is the percentage of last month’s balance paid by the borrower,
i.e. Paid Amount/Balance.

Average paid percentage past 3 months paid.per3

In arrears past 9 months arr9 Dummy variable indicating whether the account has been in arrears at least once
over the past nine months (Y/N).

In arrears past 3 months arr3

Credit utilisation cu Percentage of the limit drawn by borrower, i.e. Balance/Limit.

Full payment percentage full.pay.per Percentage of account’s months on book in which borrower has paid balance in
full, i.e. number of full payments / age of account.

Behavioural score special code bscocat Dummy variable indicating whether behavioural score recorded a “special” case.

(Non-)negative balance bcat Dummy variable indicating whether balance was negative (and thus capped).

Time to default ttd Duration in months from reference time to default time.

Unemployment rate unem HK macroeconomic variable measured at reference time.

Interest Rate int The best lending rate benchmarked by the Hong Kong Monetary Authority.

Gross domestic product gdp

Consumer price index cpi

TABLE 2.1: List of available explanatory variables. Note that, since the behavioural scores of some accounts do not have a regular value (such as 680, 720, etc.) but
codes representing “special” cases (e.g., “the account is too new to score”), we replace such special codes by the (training) mean of the regular behavioural scores
and flag this up with the help of a dummy indicator (bscocat). Likewise, negative credit card balances, which may e.g. occur when a borrower uses a credit card to
purchase a product and decides later to return it, are capped at zero, and another dummy variable (bcat) is added to distinguish between negative and true zero

balances.

S[epoui [edxnsnes g

9
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2.4.1.1 Probability of max-out event

To estimate P(S; = 1), we model the binary response variable as a non-parametric
function of the explanatory variables. More specifically, letting p; = P(S; = 1), the
max-out event probability is modelled as follows:

log < 1 f iPi) = leYi,Tt + apZ] + non-parametric terms, (2.2)
where a7 and «; are unknown vectors of parameters to be estimated, and Y;; and Z;
are (account-level) behavioural and macroeconomic covariate vectors, respectively.
The parametric coefficients a1 and a> and non-parametric smoothing terms are fitted
by performing the Rigby and Stasinopoulos (RS) algorithm based on penalised
(maximum) likelihood (Stasinopoulos et al., 2017), into which the following likelihood
function, L, is substituted:

L= Hpi" x (1— pi)l’y", (2.3)
i=1

where y; = 1 for an observation i whose balance hit the limit, and zero otherwise.
Penalised B-splines (Eilers and Marx, 1996) are chosen to fit the non-parametric terms
in Equation (2.2) because they enable smoothing parameter selection to be performed
automatically by minimising the Akaike Information Criterion, AIC = —2L? + 21,
where L7 is the penalised log-likelihood and 7i is the number of parameters in the
model.

We build three candidate models for p; by considering three different variable
selection strategies — either including all explanatory variables or using two
alternative stepwise methods (using both forward and backward selection at each
step) based on the AIC and BIC criteria. The “gamlss” package (Stasinopoulos et al.,
2017) in R (R Core Team, 2020) is used to fit these three models to all training examples
of defaults. Based on their performance on the validation set, one of the three
candidate models is then selected, following assessments of the Pearson
goodness-of-fit statistic from the Hosmer-Lemeshow test (predictive accuracy), Area
Under the Receiver Operating Characteristic curve (AUROC) (discrimination power)
and residual plots (model adequacy). Where these metrics suggest different candidate
models, one is chosen at the modeller’s discretion. Note that the residuals used in
GAMLSS are normalised quantile residuals which are expected to follow a standard
normal distribution regardless of the distribution of the response variable, provided
that the model is correctly specified.

Table 2.2 and Figure 2.4 show that while all models demonstrate a good model fit (cf.
residual plots), it is the model with full variables that performs best. Hence, we
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include all explanatory variables in the probability of max-out event model. All
variables, that is not binary, are fitted with non-parametric smoothing terms. (even
though some of them express a trend closely to linear, e.g. see the balance effect in
Figure 2.8). The binary variables, e.g. bsco and arr9 (see Table 2.1), are modelled with

linear terms.

Model Hosmer-Lemeshow test AUROC
Full variables 84.68 0.8961
Stepwise AIC 88.62 0.8960
Stepwise BIC 86.22 0.8958

TABLE 2.2: Performance measurements for probability of max-out event model, based on the
validation set.

Normal Q-Q Plot: Full variables Normal Q-Q Plot: Stepwise AIC

Semple Quantiles
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FIGURE 2.4: Residual plots for probability of max-out event model, based on the validation set.

2.4.1.2 Conditional EAD models

To produce EAD estimates that are conditional on either of the two credit balance
scenarios, we further partition the training data into two subsets. The first subset
consists of the credit card accounts whose balance hit the limit in any of the months
during the outcome window; the second subset consists of the accounts that did not.

We then proceed by fitting two separate models to these subsets.

In either of these scenarios, one can further distinguish between zero and non-zero
EAD values. Zero values may potentially occur because of several special cases or
technical default examples, such as charge-offs connected to other accounts, the
observations being rounded or truncated to zero, customers moving their outstanding

balance to other accounts, or payment delays. There are 427 accounts with zero EAD
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in our dataset. As they could have different explanatory drivers, we treat zero values
separately from non-zero EAD values by including the probability of zero EAD into
the models.

Figure 2.5 shows the empirical distribution of non-zero EADs for both subsets of
accounts, confirming that accounts that hit their limit tend to have larger EAD values.
Their shape also suggests a positively skewed distribution such as Gamma, Inverse
Gaussian, or Log Normal distribution. For each of these candidate distributions, we
evaluated the AIC/BIC and MAE/RMSE criteria for a full model (i.e. with all
explanatory variables). Based on this, as in Tong et al. (2016), the Gamma distribution
was found to give the best results.

B Hit the limit
W Never hit the limit
B Overlap

Density
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Non-zero EAD

FIGURE 2.5: Empirical distribution of non-zero EADs; red: histogram for the accounts whose
balance hit the limit, blue: histogram for the accounts that never hit the limit; purple: overlap-
ping area.

Hence, in order to model E(EAD;|S; = 0), we assume that EAD; follows a mixed
discrete-continuous Zero-Adjusted Gamma (ZAGA) distribution, shown in
Equation (2.4).

1% if (EADZ"SI' = 0) = O,
F(EAD;|S; = 0) =
(1 — 1/1') Gamma(EADi\yi, 0;,5 = 0) if (EADi’Si = 0) >0,
(2.4)
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for 0 < EAD; < co, where 0 < v; <1, 4; > 0,0; > 0, and

1 y(glfzfl)efy/(ﬁﬂ)
(o2p)t/e* T(1/0?)

Gamma(y|p, o) =

Note that the mean and variance of Gamma(y|u, o) are  and %112, respectively.
Hence,

E(EAD;|S; = 0) = (1 —vi)pi, 25)

Var(EAD;|S; = 0) = (1 —v;)p?(0? +v;). '
There are thus three parameters in the ZAGA distribution: the mean (y) and
dispersion (¢) of non-zero EAD, and the probability of zero EAD (v). Allowing the
relationship between u and its explanatory variables to be non-linear, we again model
it through non-parametric smoothing terms. Since the main focus is on y, we restrict
the relationships of o and v with their respective sets of explanatory variables to be
parametrically linear. This makes the model less computationally expensive and
easier to implement in practice. The parameters y, o, and v can thus be estimated
through the following link functions:

log(ui) = ’)’ilYf tT + 75 Zf r -+ non-parametric terms;
_ ~oyo T og70T, : _ vy T vrvT
log(ci) =Y, +73Z7"; logit(vi) = 1Yy + 7z,

where 7; and <, are unknown vectors of parameters to be estimated. We apply a log
and logit link function, respectively, in order to assure that the range of y and o
parameters are greater than zero and the range of v parameter is between zero and
one. The likelihood function, L, used in the penalised maximum likelihood estimation

is:

n

L=]]fEAD;))= J] v J] (1—vi)x Gamma(EAD;|u;, 0;). (2.6)

i=1 EAD;=0 EAD;>0

Five variable selection techniques are applied to create five submodels: using all
variables; using stepwise variable selection for y, o and v separately, with either AIC
or BIC as the model selection criterion; using stepwise with AIC/BIC by running the
parameters together (cf. stepGAICAILA() function in Stasinopoulos et al. (2017)). The
criteria used to select one of the five resulting submodels are Pearson correlation
(discrimination performance), MAE, Normalised MAE, RMSE, Normalised RMSE
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(predictive accuracy) and residual plots (model adequacy), each of which is again
evaluated on the validation set. A normalised version is produced where MAE and
RMSE are calculated for EAD/Current Limit, instead of EAD, in order to investigate
the performance of the model if the percentage of current limit (not EAD itself) at
default time is of interest. Table 2.3 and Figure 2.6 show that while all models
demonstrate a similar decent model fit (cf. residual plots), the model with the method
of stepwise AIC (run separately) gains the best performance. The chosen stepwise
approach suggests excluding the following variables: paid.per9, arr3, arr9, int and cpi
(see Table 2.1). The remaining binary variables are fitted with linear terms, whereas

those non-binary ones are modelled with non-parametric smoothing terms.

Model Correlation RMSE MAE Norm.RMSE Norm.MAE
Full variables 0.8979 22419 12653 0.3249 0.2137
Stepwise AIC (run separately) 0.8985 22414 12649 0.3247 0.2136
Stepwise BIC (run separately) 0.8971 22496 12769 0.3257 0.2146
Stepwise AIC (run together) 0.898 22415 12653 0.3247 0.2137
Stepwise BIC (run together) 0.8937 22861 12879 0.3291 0.2159

TABLE 2.3: Performance measurements for non max-out EAD model, based on the validation
set.

Normal Q-Q Plot: Full variables

Normal Q-Q Plot: Stepwise AIC (run separately)

Normal Q-Q Plot: Stepwise BIC (run separately) Normal @-Q Plot: Stepwise AIC (run together)

Sample Quantiks

Normal Q-Q Plot: Stepwise BIC (run together)

FIGURE 2.6: Residual plots for non max-out EAD model, based on the validation set.
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The procedure of modelling EAD for the second subset of accounts that hit their limit,
E(EAD;|S; = 1), is similar to its counterpart scenario. The Gamma distribution is
again selected for fitting the non-zero EAD response. Note that the best model
variations for all three model components can be found in Table 2.4.

Model Probability max-out EAD no max-out EAD max-out

GAMLSS Mix  Full variables Stepwise AIC, run sep-  Stepwise BIC, run sep-
arately for each param- arately for each param-
eter eter

GAMLSS Stepwise, with BIC, run for all model parameters together

OLS.Mix Stepwise with BIC Full variables Stepwise with AIC

OLS Full variables

TABLE 2.4: Best submodels for the newly proposed and benchmark models.

2.4.2 Benchmark models

In order to evaluate the effectiveness of our proposed model, we build another three
benchmark models against which we compare its predictive performance. Firstly,
“GAMLSS” is the EAD model under the GAMLSS framework applied to all defaulted
accounts, without applying the mixture idea. Secondly, “OLS.Mix” adds the mixture
idea to the OLS framework, applying standard OLS regression for the mixture
components and logistic regression for modelling the max-out event probability.
Thirdly, “OLS” fits a standard OLS regression model to all defaulted accounts. To
perform variable selection for OLS and OLS.Mix, we try three methods: the Least
Absolute Shrinkage and Selection Operator (LASSO), a stepwise algorithm, and fitting
a model with the full set of variables. As before, we use a validation dataset to find the

best (sub)model candidates for each benchmark approach (see Table 2.4).

2.5 Results and discussion

In this section, we present the results of our newly proposed model and the
performance comparisons with the benchmark models. In addition, we will inspect

the significant relationships between explanatory variables and response parameters.

2.5.1 Discrimination and predictive performance

The performance measurements for all models, evaluated using ten-fold cross
validation, are shown in Table 2.5. This table contains the following metrics: Pearson
correlation (discrimination performance); MAE, Normalised MAE (see section 2.4.1.2),
RMSE, Normalised RMSE (predictive accuracy); and 0.9 quantile loss (QL-90). The a
quantile loss function is defined as };,, g (&« — 1) - (yi — §i) + Lipy, >, ¢ - (¥i — 9i),
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where y; and 7; are true and predicted EAD values, respectively. Its basic idea is to
give different penalties to a misestimation based on the selected quantile. The 0.9
quantile loss penalises underestimation more heavily, and hence, is a good measure

for assessing the conservativeness of a risk estimate such as EAD.

Model Correlation RMSE MAE Norm.RMSE Norm.MAE QL-90
GAMLSS.Mix 0.937 16927 7881 0.265 0.147 4125
(0.004) (385) (137) (0.005) (0.002) (153)
0.933 17458 8136 0.273 0.151 4354
(0.004) (381) (140) (0.006) (0.002) (153)
GAMLSS 0.908 20489 8718 0.292 0.160 4457
(0.041) (4903) (268) (0.010) (0.002) (161)
0.907 20591 8757 0.293 0.161 4471
(0.041) (4882) (268) (0.010) (0.002) (158)
OLS.Mix 0.935 17152 8751 0.304 0.187 4365
(0.004) (435) (161) (0.011) (0.003) (159)
0.932 17574 8845 0.298 0.183 4532
(0.004) (434) (159) (0.009) (0.003) (154)
OLS 0.930 17810 9758 0.335 0.220 4879
(0.004) (397) (162) (0.009) (0.004) (155)
0.929 17945 9500 0.315 0.203 4750
(0.004) (394) (147) (0.007) (0.003) (146)

TABLE 2.5: Ten-fold cross validation performance measurements with standard errors inside
parentheses; using actual values of time to default (no underline) and weighted approach (with
underline).

The variable “time to default” is the number of months from the reference date (1%
November) to default date whose range is between one and twelve. It is not the
account’s age at default time. As time to default is unknown a priori and would not be
available in real data for forecasting, Table 2.5 presents two different sets of results:
one using the actual values of time to default (to enable comparison with other papers
that included this variable and as it is likely to affect dispersion); and one where they
were estimated by applying a simplified version of the PD-weighted approach by
Witzany (2011), in which, for each month ¢ (t =1, ..., 12) of each default cohort, we
observe the empirical proportion of training set defaults, PD(#;) and, from those,
derive the following point prediction for EAD of each account:

EAD = i [PD(t;) x EAD(t;)], 2.7)
ti=1

where EAD(t;) is the EAD estimate when t; months is substituted instead of the actual
time to default. The latter approach is used to verify to what extent the former
performance results remain robust if the model is applied not for explanatory (using
real values of time to default) but for prediction purposes (using the estimated values).

Examining the results, we can see that, when it comes to Pearson correlation, there is
little to separate the different models, indicating that even the simplest model (OLS)
can already discriminate well between high and low EAD risk. However, with regards
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FIGURE 2.7: Partial residual plots of behavioural score vs. estimated EAD, for OLS, OLS.Mix
and GAMLSS models.

to all other measures, there are pronounced differences between the various
approaches. Firstly, with the exception of RMSE and QL-90 for GAMLSS, the two
approaches that apply the GAMLSS framework (GAMLSS and GAMLSS.Mix)
outperform those using standard OLS regression (OLS and OLS.Mix), showing that its
features are better capable of handling the EAD distribution and its relation to the risk
drivers (e.g., any non-linearity). Secondly, when we introduce the mixture concept
into the OLS framework (OLS.Mix vs. OLS), all of the predictive accuracy measures
improve as well. This is in agreement with the results reported by Leow and Crook
(2016), who also found that adding the mixture component to their linear models
improved performance. We suggest, as a partial reason for this performance gain, that
conditioning on the occurrence of a max-out event has the beneficial effect of
introducing some non-linearity into the functional relationships between explanatory
variables and EAD. This is illustrated by the partial residual plots for the behavioural
score variable in Figure 2.7, showing us how OLS.Mix is able to approximate the
non-linear relationship between behavioural score and EAD using a concave function.
Thirdly, and perhaps most importantly, the newly proposed model, GAMLSS.Mix,
consistently outperforms all benchmark models across all predictive performance
criteria (cf. RMSE, MAE, Norm.RMSE, Norm.MAE), whilst being more conservative
in terms of the prediction errors it makes (cf. QL-90). This shows that, as
hypothesised, there is indeed added value in combining both modelling elements.
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When comparing the predictive performance without prior knowledge of time to
default (see results with underline) against that of the explanatory model application
(i.e. with knowledge of time to default), we see a small drop in performance, as to be
expected, but importantly, the performance ranking for all models remains similar and
the proposed GAMLSS.Mix model still has the best predictive power. This suggests
that our findings are robust regardless of the chosen treatment of this explanatory
variable.

2.5.2 Risk Drivers of GAMLSS.Mix model components

Unlike with a linear regression, the non-parametric smooth functions fitted by
GAMLSS.Mix cannot be explained in a simple mathematical form; that is, we cannot
gauge the impact of an explanatory variable on the response variable by just looking
at its estimated coefficient. However, we can display each effect visually with the help
of partial residual plots. These depict how one specific explanatory variable influences

the response assuming that the other covariates are fixed.
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FIGURE 2.8: Partial residual plots on logit scale for max-out event risk in the GAMLSS.Mix
model.

Figure 2.8 displays partial residual plots on a logit scale for the max-out event
probability, P(S; = 1), of GAMLSS.Mix. The shaded areas indicate the precision of the
estimates using 95% confidence intervals. In the bottom-right panel, we observe that
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higher credit utilisation (measured at reference time) makes it more likely that the
customer will max out their card in the run-up to default, especially when utilisation
already exceeds one prior to the outcome period (the latter makes the event almost
inevitable). Similarly in line with expectations, longer time to default (see bottom-left
panel) is associated with a higher probability of the balance hitting the limit. Starting
balance (top-left) and credit limit (top-right) tend to have a positive and negative
effect on the probability of a max-out event, respectively, which is again intuitive since

customers with higher balance and lower limit are closer to maxing out their card.

Figure 2.9 presents the partial residual plots, on a log scale, for the u parameter
(non-zero EAD mean) of GAMLSS.Mix, for the subset of accounts whose balance
never hit the limit (hence, conditional on S; = 0); Figure 2.10 does so for the other
subgroup (S; = 1). In both figures, we see that higher credit limit level is strongly
linked to larger EAD. This is again perfectly intuitive as customers with a higher limit
are allowed to borrow more. Note that the waviness and widening confidence band
near the upper-end of the variable range suggest some undersmoothing linked to the

relatively small number of accounts with a limit above 200,000.
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FIGURE 2.9: Partial residual plots on log scale for the mean (j) parameter of the accounts whose
balance never hit the limit in the GAMLSS.Mix model.

Similarly, EAD is also related to the current level of credit utilisation (Figure 2.9,
top-left plot) or to balance (Figure 2.10, left plot), higher values implying larger

balance at default. Interestingly, more variables appear in Figure 2.9, suggesting that
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FIGURE 2.10: Partial residual plots on log scale for the mean () parameter of the accounts
whose balance hit the limit in the GAMLSS.Mix model.

these only help to better predict accounts who stay clear of the limit. In other words, a
more complex model is needed for this mixture component than for the other. For
example, in their higher value range, behavioural score and full payment percentage
have a negative effect on the EAD of those accounts; hence, provided that they did not
hit the limit, high credit-quality borrowers who most of the time pay back their
balance in full tend to have a lower balance if they do default. Two novel insights
were encountered as well. Firstly, the partial residual plot for average paid percentage
over the past three months (see top-middle panel of Figure 2.9) suggests that those
borrowers who previously repaid a higher (partial) proportion of their balance could
still end up with a higher EAD. Secondly, customers with a negative current card
balance (who are thus owed money by the bank) may have higher EAD risk than
those with zero balance (top-right). One potential explanation may lie in that both
could be seen as indicative of greater card activity. Another may be that, as those
values are more often associated with customers who are less likely to default, there
may be hidden risks that drive them to heavily draw down before default eventually
occurs; this would concur with Barakova and Parthasarathy (2013) who reported that
higher EAD can be associated with defaults that are hard to anticipate. Note that, for
brevity and as they had a lesser impact (based on a likelihood ratio test),
macroeconomic covariates and the other behavioural variables are omitted from the

figure (results available on request).

To facilitate further comparison between the different models and the effects they
captured, Table 2.6 summarises which explanatory variables are shown to have a
strong impact on (non-zero) EAD mean (y) in the two GAMLSS.Mix component
models and the GAMLSS benchmark model and whether that impact is (mostly)
positive or negative. Likewise, it also contains the same information for the ¢
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(dispersion) and v parameters. For brevity, we omit further discussion of the last
parameter, v.

Variable Mean Dispersion Prob. of zero-EAD
EAD EADn EADt|EAD EADn EADt EAD EADn EADt
age — +

1 + + + + + +

b + + — — — —

bsco — — — + +

no.arr9 +
no.arr3 —
limin9
limin3
abs.ch.b9 + — —
abs.ch.b3 +
paid.per9
paid.per3 + + + + +
arr9
arr3
cu + — —
full.pay.per — +
bscocat (special) + +
bcat (negative) + +
ttd + + + —
unem
int —
gdp
cpi

TABLE 2.6: A set of strongly significant predictors for the EAD parameters of: the GAMLSS

benchmark model (EAD); GAMLSS.Mix no max-out (EADn); and GAMLSS.Mix max-out
(EADt).

+
+

Turning to the second parameter, dispersion, we can see in Table 2.6 that the higher is
the level of credit utilisation and /or current balance, the lower is the dispersion — in
other words, the more predictable the EAD. In contrast, the farther away from default
time (both scenarios) or the larger the limit (non-max-out scenario only), the larger the
dispersion; i.e. there is more time and scope for the balance to change and thus
become less predictable. These four effects all appear to be intuitive. Interestingly, as
for the EAD mean earlier, the list of important factors is again longer for the first
mixture component (i.e. for the accounts with no recorded max-out event). There, age
of account (i.e. time on book), the average of paid percentage over three months, and
number of months in arrears are also among the variables that are shown to affect
dispersion. Specifically, the longer the account has been on the books, the more
predictable is EAD, whereas higher values for the other two variables (which could
indicate greater monthly variation in balance) tend to imply greater variance. Also,

special behavioural scores and negative current balances imply special cases under
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which the EAD prediction for those accounts becomes more uncertain as well. As
there are all meaningful effects, there appears to be added value in explicitly
modelling the dispersion parameter (rather than assuming homoscedasticity).

2.6 Conclusions and future research

Exposure at Default (EAD) is one of the key parameters used to calculate the
regulatory capital requirements under the Advanced Internal Rating Based (A-IRB)
approach. To estimate EAD, Credit Conversion Factor (CCF) models were implicitly
suggested by the Basel Accords and have been studied in the literature, but several
drawbacks of such models can prove problematic. In this paper, we therefore mainly
focus on estimating EAD via a direct model rather than applying CCF or other related
factors.

Our newly proposed model combines two ideas formerly put forward in the
literature. First, it is built under the GAMLSS framework which produces a much
more flexible fitted distribution than the GLM and GAM frameworks. Second, as the
level of EAD as well as the risk drivers of its mean and dispersion parameters could
significantly differ depending on whether the account hit the credit limit at any point
in the run-up to default, we extend our solution to a mixture model conditioning on
these two possible scenarios. This new model, as well as several benchmark models,
are empirically validated using a large dataset of credit card defaults not previously
used in the EAD literature.

By distinguishing between these two scenarios, we indeed found differences in
preferred risk drivers for the EAD model parameters. For example, current balance
was picked over several other potential drivers for (positive) EAD mean when a
max-out event occurs, but not in the opposite scenario, whereas current limit level was
identified as being strongly linked to dispersion only under the non-max-out scenario.
Moreover, the number of factors is larger for borrowers who did not max out their
cards, suggesting that this subgroup benefits from a more complex model. Overall,
only behavioural variables appear to have a significant impact in our EAD models;
despite the data containing defaults from a recessionary period, the macroeconomic
covariates show little added predictive power over those account-level variables.
Current limit is the strongest variable that affects the mean of non-zero EAD. To
manage model uncertainty, one should focus on the current level of drawn balance
amount and (estimated) time to default as their values greatly impact EAD dispersion.

Our results show a clear performance benefit of applying GAMLSS over the OLS
framework, confirming, consistently with what Tong et al. (2016) reported for another
dataset, that there are indeed predictive accuracy gains in EAD modelling from

including non-linear effects and targeting not only the EAD mean but also dispersion.
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Similarly, when the mixture concept is introduced into the OLS framework, all
predictive accuracy measures improve as well. A new explanation we put forward for
the latter is that, by implementing the mixture idea, we allow some non-linear effects
to emerge from the combination of different linear models, thus capturing more
complex relationships between EAD and its covariates and producing better
predictions. Most of all though, we find that combining the mixture component and
the GAMLSS approach results in another predictive performance boost, as our newly
proposed model, GAMLSS.Mix, outperforms the three benchmark models on all
criteria.

In terms of potential practical benefits, a more accurate EAD model, such as that
proposed, can lead to more accurate loss estimation, which allows banks to adjust the
capital they require accordingly. Moreover, the non-linear predictor effects, shown in
the partial residual plots, reveal the impact of each behavioural variable on different
risk aspects. This can provide the bank with useful insights as it designs an early
warning system. More specifically, the insights from the “max-out” model allow the
bank to identify those borrowers who are most at risk of maxing out their credit card
(and thus present the largest exposure risk). It follows that the bank could decide to
lower their credit limit to mitigate such risk.

A potential future avenue of research is to more fully incorporate time to default in the
prediction framework, particularly since our models confirm that max-out risk and
EAD variance (dispersion) are higher the more time elapses before default. As time to
default is unknown a priori, one could use survival analysis to capture its dynamic
distribution, from which EAD can then be derived as in section 2.5.1. A follow-up
study could consider different methods to implement such a PD-weighted approach
(Witzany, 2011) and test their effectiveness when combined with the newly proposed
EAD model.
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Abstract

Previous studies have shown that the Basel regulatory capital requirement can be
underestimated by ignoring the dependencies between the Probability of Default
(PD), Loss Given Default (LGD) and Exposure At Default (EAD). In retail credit risk,
only a small number of papers have directly modelled account-level dependence
between PD and LGD, but no such work has been done yet for the relationship
between PD and EAD. To close this gap, we propose a joint model for PD and EAD,
evaluating a variety of copulas under the bivariate Copula Generalised Additive
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Models for Location, Scale and Shape framework. Using a large dataset of credit card
accounts, we explicitly model card balance of both defaulted and non-defaulted
accounts, rather than balance at default only. In addition to identifying the
dependence structure between default risk and future balance, and the key drivers in
each model component, the analysis shows that our proposed model produces a more
precise and conservative expected loss estimate compared to other models.

3.1 Introduction

Three parameters are of particular interest when quantifying the credit risk linked to
consumer lending: Probability of Default (PD), i.e. the risk that a borrower will no
longer be able to satisfy their repayment obligations; Exposure At Default (EAD), i.e.
the amount owed by the borrower when they default; and Loss Given Default (LGD),
i.e. the percentage of this amount that the lender will be unable to recover. These
parameters are used for the calculation of the risk-sensitive regulatory capital
requirement introduced by the Basel Accords. Basel’s Advanced Internal
Ratings-Based (A-IRB) approach employs an asymptotic single risk factor (ASRF)
model, as pioneered by Vasicek (2002), to translate the three parameters into the
amount of capital required for credit risk. However, this model overlooks any
dependence between PD, LGD and EAD, contrasting with a growing number of
empirical studies showing a positive relation between them. This can lead to the
underestimation of portfolio credit loss and thus capital shortfalls; hence, modelling

the interrelationship between these three risk parameters is essential.

In the retail credit risk modelling literature, the dependence between PD and LGD has
received little attention, and even less so the relationship with EAD. The latter is of
particular interest for credit cards (or other forms of revolving credit), as they allow
borrowers to draw more money in the run-up to default. We aim to close such gap by
modelling the joint distribution of credit card PD and EAD, considering their
dependence under the bivariate Copula Generalised Additive Models for Location,
Scale and Shape (CGAMLSS) framework (Marra and Radice, 2017a). This combined
flexible framework allows response variables to assume any of a wide range of
parametric distributions and their relationship to follow one of various dependence
structures selected via a copula function. Also, whereas most previous work has built
EAD models on just the subset of defaulted accounts, our approach explicitly
addresses potential sample selection bias by extending the analysis to outstanding
balance over a 12-month period in a sample of both defaulted and non-defaulted

accounts.

Our models are fitted to a large dataset of credit card accounts from a Hong Kong
lender. In our analysis, we will identify the key drivers of default risk, balance and
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their dependence. To empirically validate the effectiveness of introducing the
dependence, we also construct two standalone models, for PD and balance separately,
against which we benchmark our newly proposed copula model. Furthermore, we
will show how the proposed approach leads to better expected loss estimates at the
portfolio level.

The paper is structured as follows. Section 3.2 reviews the relevant literature. Section
3.3 explains the data and variables used, and Section 3.4 describes how the statistical
models are constructed. The results are analysed in Section 3.5. Section 3.6 concludes.

3.2 Literature review

In our discussion of the literature, we focus on four streams of work: previous work
considering the dependence between PD, LGD and EAD; copulas and their
applications to other related settings; existing EAD modelling approaches for credit
cards and potential sample selection bias resulting from them; the modelling
framework used in this paper (CGAMLSS). At the end, we will summarise how our
work advances this body of literature.

3.2.1 Dependencies between credit risk parameters

A growing number of studies have identified dependencies between PD, LGD and
EAD. Firstly, it has been found that PD and LGD tend to move in the same direction; a
higher default rate is more likely associated with a higher loss rate (Altman et al.,
2005; Caselli et al., 2008; Chava et al., 2011; Jacobs and Karagozoglu, 2011; Pykhtin,
2003). As a partial explanation, Allen and Saunders (2003), Frye (2000) and Hillebrand
(2006) noted that default and recovery rates are driven by the same macroeconomic
variables, as the value of collateral assets (which affects both parameters) depends on
the state of the economy. Secondly, a positive correlation between default risk and
EAD has been reported by Agarwal et al. (2006), Jiménez et al. (2009), Mester et al.
(2006) and Norden and Weber (2010). They suggested that borrowers who are facing
financial distress and later default tend to also draw more money from credit cards or
lines of credit than those who do not default. Inversely, Araten and Jacobs (2001) and
Jacobs (2010) found that lenders would often reduce the credit limit of corporate credit
lines if they foresee a pending default, which implicitly implies a reduction in EAD

risk for such portfolios.

By neglecting these risk dependencies, portfolio risk can be underestimated since they
are the underlying force that significantly increases tail losses. For example, Barco
(2007), Miu and Ozdemir (2006) and Rosch and Scheule (2008) ran a series of factor
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models and analysed by how much the LGD must be scaled up in order to
compensate for the absence of PD and LGD dependence in the ASRF capital formula.
They found a large mark-up is required to avoid dramatically underestimating the
capital requirement. Bade et al. (2010) and Rosch and Scheule (2014) similarly showed
that portfolio credit risk is severely underestimated if the PD and LGD are assumed
independent. By performing a series of simulations on factor models, assuming a
predetermined set of systematic factors, Kaposty et al. (2017) and Kupiec (2008) found
increased tail risk at the portfolio level when EAD is treated as dependent as well.
Using downturn estimates for LGD and EAD, proposed by the Accords as the means
to alleviate this problem (see pages 96 and 97 in BCBS (2017)), is not a satisfactory
solution according to Kaposty et al. (2017), as they found that this can still lead to
capital underestimation compared to the model in which PD, LGD and EAD are

stochastically dependent on each other.

3.2.2 Copulas and their applications to financial risk

As the preceding discussion shows, accounting for the dependence between the
different risk parameters is crucial to avoid underestimating portfolio risk; this
suggests a role for directly modelling such dependence at the account level. In the
literature (see e.g. Klein et al. (2015)), modelling two or more correlated outcomes
given a set of predictors usually relies on a particular multivariate distribution
assumption, such as a bivariate Gaussian. The latter implies that both dependent
variables must follow a normal distribution with a symmetric dependence structure.
However, in the credit risk setting, the response variables of interest may not be
Gaussian or follow the same distribution. For instance, EAD always exhibits positive
skewness, whereas LGD is bimodal and peaked at zero and one. Also, the correlation
between two risk parameters might be stronger at their higher levels, implying an

asymmetric structure.

A more flexible option for such scenarios is to construct a joint distribution via a
copula-based model. Copula functions enable a multivariate response to be jointly
constructed from parametric marginal distributions (Sklar, 1959) which are not
restricted to the standard Gaussian or exponential families. Moreover, they allow
various dependence structures for the responses via different copula specifications. A
key attraction of copulas is that the functional forms of a copula and its components
(univariate marginal CDFs) can be specified separately. It follows that one can always
construct the joint distribution from arbitrary marginal CDFs by implementing an
appropriate copula function. This contrasts to a conventional parametric specification

where a joint and marginal distributions need to be known a priori.

In finance, copulas have gained increasing popularity over the past decades
(Embrechts et al., 2003; Nelsen, 2006). In the insurance setting, Kramer et al. (2013)
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calculated the expected policy loss by jointly modelling insurance claims frequency
and claim size via a copula function. They concluded that ignoring their dependence
could lead to substantial bias in total loss estimation. Moreira (2010) proposed an
alternative approach of calculating the capital requirement, using Clayton copulas to
reflect the right tail dependence of PDs; this better explained the extreme loss in
adverse scenarios. Calabrese et al. (2019) considered the dependence between defaults
in peer-to-peer lending and those observed by credit bureaus, using copula methods
and generalised extreme value regression. They found that by connecting these two
correlated default risks, the calibration performance of the predicted peer-to-peer loan
PD is enhanced. Bade et al. (2010) studied the dependence between default time and
LGD, assuming that they are linearly correlated. Kriiger et al. (2018) further analysed
the dependence between (multi-year) time to default and LGD by means of copulas
and found that the lifetime expected credit loss under IFRS 9 increases when this

dependence is considered.

Despite ample literature showing the importance of capturing dependence between
PD, LGD and EAD, few of these papers focus on building empirical models for these
dependencies, particularly those including loan- or account-level covariates. Fewer
still have considered a realistic asymmetric dependence structure, apart from Kriiger
et al. (2018) who modelled PD-LGD dependence using copula methods. To our
knowledge, there is no such work yet for the relationship between PD and EAD. To
close this gap, we will model PD, EAD and their dependence structure, in the context

of a credit card portfolio.

3.2.3 Existing EAD models for credit cards and the problem of sample
selection bias

Credit cards have received limited attention in the credit risk literature. Much of the
work on EAD has thus far focused on corporate credit, whilst fewer studies address
retail customers (Giirtler et al., 2018). This is notwithstanding that credit cards make
up the largest share of revolving credit for most A-IRB banks and contribute the
largest number of defaults (Qi, 2009).

Previously, Tong et al. (2016), Leow and Crook (2016) and Qi (2009) modelled EAD for
consumer credit cards, applying a range of different methods. However, they did not
explicitly model the dependence between PD and EAD, nor did they explicitly
address potential sample selection bias, as the data they used was derived only from
defaulted accounts. This is a common practice to ensure that the predicted balance is
indeed conditional on default, but it also means that a much larger volume of
non-defaulted accounts, which are necessary to estimate PDs, are neglected. This
leads to a potential sample selection bias problem, since the model will be applied to
produce loss estimates for the entire portfolio. Addressing the similar problem but for
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LGD, using Moody’s Default and Recovery Database, Kriiger et al. (2018) showed that
by modelling LGD based only on defaulted accounts, the capital requirements can be

significantly underestimated.

Rather than focusing solely on balance at default time (or equivalently, EAD), we
therefore extend the analysis to outstanding balance over a 12-month period in a
sample of both defaulted and non-defaulted credit card accounts. Predicting balance
for either group is beneficial for expected profit estimation as well as risk
management, as argued by Hon and Bellotti (2016), who, similarly to us, modelled the
balance of all accounts. However, they did not explicitly identify how to meet the
Basel’s requirement of having to provide an estimate of balance conditional on
default, or how to deal with default time not being known at the time of estimation. In
contrast, our approach exploits the joint distribution between default condition and
balance and produces not only balance but also the conditional expectation of balance
given default (and hence, EAD).

3.2.4 Bivariate Copula Generalised Additive Models for Location, Scale
and Shape

We fit marginal distributions for default risk (PD) and credit card balance under the
Generalised Additive Models for Location, Scale and Shape (GAMLSS) framework
(Stasinopoulos et al., 2017), which was previously applied to EAD modelling by Tong
et al. (2016). This framework allows a response variable to assume a wide range of
parametric distributions, allowing their parameters (location, scale, and shape) to be
modelled as a function of predictors using additive terms. This flexibility means we
can select a distribution outside of the exponential family to model balance, which has
been shown to be right-skewed (Hon and Bellotti, 2016), as well as include any
non-linear variable effects into the models. Then, we bind the respective marginal
GAMLSS distributions for PD and balance via copulas, to produce a joint bivariate
response with a suitable (Gaussian or non-Gaussian) dependence structure. As a
result, conditional distributions can be derived from the joint distribution allowing us
to see how the two responses affect each other. The dependence parameter(s) of a
copula function can as well be modelled as a function of explanatory variables,
allowing one to also predict and explain the dependence between the two response
variables.

All model parameters (i.e. marginal and copula dependence parameters) are
estimated simultaneously, using a recent computational method for fitting bivariate
Copula models for the GAMLSS class (referred to from here on as the CGAMLSS
framework). Under this extended framework, response margins and copulas are
independently and flexibly selected. The coefficient estimation is achieved by
maximising a penalised likelihood function and applying the trust region algorithm
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(Marra and Radice, 2017a) along with the technique of automatically selecting
smoothing parameters. In our model, the copulas explain the joint movement between
PD and balance after controlling for covariates’ effects on marginal models. For
example, current balance may determine the level of both default probability and
future balance and thus affects their observed dependencies. Any remaining
stochastic effects that cannot be captured by such observable covariates are captured
by the copulas. To the best of our knowledge, this paper is the first to apply the
CGAMLSS framework in the credit risk area.

3.2.5 Research contributions

To summarise, the main contributions of the paper are that it: (1) shows how to avoid
potential sample selection bias in EAD modelling by incorporating both defaulted and
non-defaulted credit card accounts; (2) proposes and tests a flexible copula regression
approach, new to credit risk, to simultaneously model PD, card balance and their
dependence structure; (3) gives further insights into the drivers for each and any
remaining dependence between them; (4) demonstrates how this novel approach
produces more accurate and conservative expected loss estimates on a real-world

credit card portfolio.

3.3 Data and variables

The original dataset provides monthly account-level data relating to the consumer
credit cards of a large Hong Kong bank from January 2002 to May 2007. We specify
that an account goes into the default state when a borrower either: (1) misses or could
not make the minimum repayment amount for 90 consecutive days or more; (2) is
declared bankrupt; or (3) is declared charged-off, i.e. expected to be unable to return
the owed money back to the bank. The second response variable, balance, is the

drawn amount on the card measured at the observation point.

In keeping with the standard practice in EAD modelling, we apply the yearly cohort
method (Moral, 2006) to prepare the data, setting the reference month where the
estimation takes place to 15 November of every year. All explanatory variables are
calculated for the time period leading up to that point. Accounts that lack sufficient
monthly records are omitted. For each yearly cohort, a binary variable then indicates
whether a default event has been recorded on the account, over the cohort’s 12-month
outcome window. The value of balance is captured differently depending on this
default status. For an account that defaults within the 12-month period, it is measured
as the outstanding balance at default time, whereas for non-defaulted accounts, we
select the value from the series of observed monthly balances. To avoid potential bias
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Observed Time-to-default Cohort Nov02-Oct03
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FIGURE 3.1: Yearly empirical time-to-default distribution: November 2002 - October 2003 cohort
example.

in picking this observation time and ensure that observations from both
subpopulations are maximally comparable, we randomly select a month according to
the empirical distribution of time-to-default (i.e. duration in months from reference
time to default time) observed for defaulted accounts (see Figure 3.1, for an example
cohort period). This method is preferred over taking the balance at the end of the
12-month period, as the latter would risk artificially inflating the balance value for

non-defaulted accounts.

Our dataset contains a low number of defaults (1%) which is not uncommon in
practice, especially for banks that exhibit an overall good quality of borrowers (Pluto
and Tasche, 2011). Low default portfolios can be problematic in several ways. For
instance, a few number of defaults could impact on the model’s ability to correctly
discriminate between the two outcomes. In other words, the resulting classification
model could give different default ratio from the real-world applications (Saerens

et al., 2002). In addition, PD estimates could be underestimated and hence do not
involve a sufficient conservatism imposed by the regulation (Pluto and Tasche, 2011).
We therefore take a balanced sample of the data, reducing the proportion of defaults
from 1:99 to 50:50. The balanced sample is produced by first randomly selecting 50%
of the available defaulted accounts. Let assume that we have randomly picked x
defaults. Then, we randomly select the non-defaulted accounts for the same amount
of x. By not using all defaulted data, this procedure is to ensure that both defaults and
non-defaults would be selected without bias. In summary, there are 29,303 accounts
for both defaulted and non-defaulted accounts used in this study. To rescale the
estimated PDs, one can use the Bayes’ theorem, as described e.g. in Saerens et al.
(2002). Further study could continue to investigate how the choice of sampling affects
the model quality and the joint estimates of PD, EAD and outstanding balance.
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Variable Notation Explanation

Age of account age Months since account has been opened.

Limit 1 Credit limit, i.e. maximum amount that can be drawn
from card.

Balance b Current amount drawn.

Behavioural score bsco Internal score capturing current credit quality of ac-
count.

Average paid per- paid.per9 Paid percentage is the percentage of last month’s bal-

centage past 9 ance paid by the borrower, i.e. paid amount/balance.

months

In arrears past 9 arr9 Dummy variable indicating whether the account has

months been in arrears at least once over the past nine months
(Y/N).

Credit utilisation cu Percentage of the limit drawn by borrower, i.e. bal-
ance/limit.

Full payment per- full.pay.per Percentage of account’s months on book in which bor-

centage rower has paid balance in full, i.e. number of full pay-

ments / age of account.

TABLE 3.1: List of available explanatory variables.

Table 3.1 lists a set of explanatory variables that were shown to have a significant
relationship with default status, balance, and/or EAD according to previous literature
(see e.g. Tong et al. (2016)) and preliminary analysis. Further removing a small
number of missing value cases, we are left with 58,606 accounts. This dataset is then
separated into three groups: training (60%), validation (20%) and test set (20%).

Figure 3.2a shows the empirical distributions of balance for defaulted and
non-defaulted account observations, both of which are right-skewed and heavy-tailed.
The higher median balance for the defaults suggests that, similarly to Jiménez et al.
(2009) and Mester et al. (2006), there is a strong dependence between default status
and the level of balance. A substantial proportion of account observations have zero
balance (representing 30% of the dataset), whilst some have extremely large values.
This distribution shape is difficult to model, which could result in poor predictive
performance. We address this problem by splitting zeroes (including negative values,
which were capped at zero) and other values into two separate groups and modelling
the probability of balance being zero. To the remaining non-zero values, we then
apply the log transformation. As seen from Figure 3.2b, the non-zero log-transformed
balance remains larger on average for the defaulted accounts, but with a less
pronounced tail. The empirical rank correlation between binary default outcome and
balance (Kendall’s tau of 0.49) also shows a positive correlation between the two

responses.



Chapter 3. An Additive Copula Regression Model for Credit Card Balance and
76 Probability of Default

Mean= 12080.66 and Median= 2538.56 Mean= 46186.57 and Median= 33519.27

Frequency
Frequency

00 S0 70000 9000 110000 130000 150000 O 20000 40000 000D B00D0 100000 120000 140000 160000 180000 200000

Balance: non-defaulted accounts Balance: defaulted accounts

(a) Histograms of observed balance (one per cohort period) for non-
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(b) Density plots of observed non-zero log-transformed balance for non-
defaulted (red) and defaulted (blue) accounts.

FIGURE 3.2: Empirical distributions of balance for defaulted and non-defaulted account obser-
vations.

3.4 Statistical models

In this section, the model specifications for the standalone and copula models are
presented. First, we fit a PD model, and a second model to predict (non-zero,
transformed) balance, each under the GAMLSS framework. Their respective
coefficients are thus estimated independently of each other. Then, the best standalone
PD and balance model specifications, evaluated from the validation data, will be used
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as the margins of a bivariate copula model under the CGAMLSS framework, the
coefficients of which are estimated simultaneously.

3.4.1 Marginal specification: PD model

To estimate the probability of default, we define 7w = P[Y; = 1], where Y; denotes
default status, taking the value of one when accounts default, or zero otherwise. Logit,
Probit and Complementary log-log (Cloglog) are three candidate models for the
binary response Y;. Although the other link functions perform fairly similarly (see
Table 3.2), based on its performance on the validation set, the Logit specification is
chosen, following assessment of the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), Brier score (predictive accuracy) and Area
Under the Receiver Operating Characteristic curve (AUROC) (predictive
discrimination). Note that we report the mean Brier score and AUROC level
computed across ten different subgroups of the validation set, to ensure the results are
reliable and not overly influenced by a single data point. The residual plots in

Figure 3.3 show a good model fit for all specification options.

Link Function AIC BIC Brier score AUROC
Logit 23000.24 23368.50 0.1049 0.9224
Probit 23031.39 23369.73 0.1052 0.9221
Cloglog 2315295 23538.44 0.1058 0.9217

TABLE 3.2: Performance measurements of the candidate marginal distributions for default sta-
tus Y7, assessed on the validation dataset.

" Normal Q-Q Plot: Probit model for PD
Normal Q-Q Plot: Logit model for PD

‘Sample Quantiies
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Sample Quantiies

Theoretical Quantiles

Normal Q-Q Plot: Cloglog model for PD

‘Sample Quantiies

T T T T T
-4 -2 0 2 4

Theoretical Quantiles

FIGURE 3.3: Residual plots for PD model.
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Hence, the default probability, 7t, where 0 < 7t < 1, is modelled as follows:

log (fﬂ) = 1 = + Blage + BSan9 +55() +5(0) + Flbsco)t

s¢ (paid.per9) + s7 (cu) + s§ (full.pay.per),

where f are parametric coefficients and s(-) are non-parametric smoothing terms.
Existing literature and the authors’ previous research (see Tong et al. (2016)) suggest
that the variable age (i.e. account tenure) can be modelled with a linear effect, while
the other continuous variables are expected to assume a non-linear relationship with
logit 7r. The coefficients B and s(-) are fitted by performing the Rigby and
Stasinopoulos (RS) algorithm (Stasinopoulos et al., 2017) and implemented in the R
package gamlss (Stasinopoulos et al., 2019), based on penalised (maximum) log
likelihood, L?, into which the following likelihood function, L, is substituted:

n
L=T] /M x (1 — )Y,
i=1

where y; ; equals to one for an observation i that defaults, or zero otherwise, and 7 is
the number of observations. In the RS algorithm, the smoothing terms s(-) are
modelled by Penalised B-splines (Eilers and Marx, 1996) because they enable
smoothing parameter selection to be performed automatically by minimising the AIC
= —2L7 4+ 2N, where N is the number of parameters in the model.

3.4.2 Marginal specification: balance model

As previously described, we separately model zero and non-zero balances and
transform the latter one via the log transformation. The continuous non-zero
log-transformed balance is denoted by Y3, which takes a positive value. Gamma,
Normal, Weibull, Inverse Gaussian, Log-normal, Logistic, and Gumbel distributions
are considered as the candidates for the distribution of Y5. The criteria utilised to
identify the best model are the AIC and the BIC, Pearson correlation (discriminatory
power), and Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
(predictive accuracy), each of which is evaluated on the validation set. The latter three
measures are again computed as the mean across ten different subgroups of the
validation set. The Logistic distribution shows the best performance and is hence
selected (see Table 3.3). Figure 3.4 shows residual plots for all models. There is a
noticeable deviation in the lower area, but overall, the plots reveal a decent model fit
(except for the Gumbel distribution).

Therefore, we assume that Y, follows a Logistic distribution with CDF

1
Fy,(yalp, 0) = ———=, Y2 € (—00,00), (3.2)
14+e 7o
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Distribution AIC BIC Correlation @ RMSE MAE

Gamma 72178 42947 0.9019 17443.24 7251.53
Normal 68825 69575 0.9020 17443.34 7265.05
Weibull 57170 57762 0.9006 17680.26  7595.57
Inverse Gaussian 74694 75457 0.9020 1743091 7254.05
Log-Normal 74382 75155 0.9013 17484.37 7283.62
Logistic 47840 48550 0.9038 17131.43 7059.34
Gumbel 59233 59796 0.9015 17615.69 7609.78

TABLE 3.3: Performance measurements of the candidate marginal distributions for non-zero
transformed balance Y>, assessed on the validation dataset.

Normal Q-Q Plot: Gamma Normal Q-Q Plot: Normal Normal Q-Q Plot: Weibull

Theoretical Quantiles Theoretical Quantiles.

Normal Q-Q Plot: Inverse Gaussian Normal Q-Q Plot: Log-normal | Normal Q-Q Plot: Logistic

Normal Q-Q Plot: Gumbel

eeeeeeeeeeeeeeeeeeee

FIGURE 3.4: Residual plots for balance model.

and density

1 _n-n _ypn—2
fo(elp,0) = —- [e K ]-[1+e g } , y2 € (—o0,00),  (33)
o
where y € (—o0,00) and ¢ > 0 respectively denote the location and scale parameters
of a Logistic distribution. The mean and variance are E(Y,) = p and Var(Yz) = #,

respectively. Since the Logistic distribution can take on non-positive values, we
truncate the estimated mean to y € (0, 0). The chosen model specifications for the u

and ¢ parameters are:

u =By + plage + pharr9 + s5 (1) + s (b) + sk (bsco)+
sk (paid.per9) + sh (cu) + s (full.pay.per);
log(c) =pg, (3.4)
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where the logarithm link function for ¢ ensures its positivity. The additive smoothing

functions are estimated by penalised B-splines with the likelihood function,

L= Hsz,,- (yo,ilpi, 03).
i=1

The fitting algorithm for the copula regression (shown in the next subsection) requires
all model parameters to be computed simultaneously. Hence, introducing additional
terms in the sigma equation (especially the non-parametric smoothing terms) would
drastically increase the computational time and complicate the model. Also, since the
main focus is on the mean level, we restrict ¢ to be related to the intercept term S
only. This makes the model less computationally expensive and simpler to implement

in practice.

3.4.3 Copula specification

In this subsection, we specify how our proposed model is constructed from the two
standalone marginal models under the CGAMLSS framework. The bivariate
cumulative distribution function (CDF) of Y; and Y2, Fy, v, (¥1,y2), can be expressed as
a combination of two marginal CDFs, Fy, and Fy,, with their dependence structure

described by means of a copula (Sklar, 1959):

Fr v, (Y1,y2) = Co(Fy, (y1), Fr,(42)), (3.5)

where 6 in the copula function Cy is a (set of) dependence parameter(s) representing
the interaction between the margins. Equation (3.5) illustrates how a copula enables a
bivariate response vector to be flexibly defined by arbitrary marginals while allowing
the dependence structure to be specified by the choice of a suitable copula. If the
margins are both continuous, then the copula is unique. However, we study a mixed
binary-continuous response, so the copula can no longer be uniquely determined. To
overcome this challenge, we apply a latent variable representation for the binary
regression model component. The binary variable Y7 is assumed, without loss of
generality, to be related to the (unobserved) continuous latent variable Y] by defining
Y; = I(Y; > 0), where I(-) is an indicator function. This can be expressed as

Y] = 7 + U, where 1 is the linear predictor of Y7 specifying the success probability
(see Equation (3.1)) and U is an error term with CDF, F;;(u). Different distributions of
the error term lead to different link functions in the binary regression. More
specifically, Standard Logistic, Standard normal, and Gumbel distributions of U
respectively lead to Logit, Probit, and Complementary log-log models of 7r. Earlier,
the Logit specification was chosen for the standalone PD model, which corresponds to
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U ~ Logistic (0,1). Hence, Y;" ~ Logistic (#,,1) and

B 1
14l

Fy: (0) (3.6)

The CDFs of Y; and Y] coincide at y; = y7 = 0 since
P[Y; = 0] = P[Y; < 0] = Fy,(0) = Fy; (0) = P[Y] < 0], and therefore, a mixed
binary-continuous joint probability density function (PDF) can be written as follows:

frixa(0,y2) = P[Y1 = 0[Y2 = y2] - fr,(y2) = P[Y] < 0[Y2 = y2] - fr, (v2)
L PHYT <0} {ya < Yo <yo + €}
o lli% P[yg <Yy, < Yo + G] fY2<y2)
tim [Fy; v,(0,y2 +€) — Fy; v,(0,42)] /€
=0 [Fr(y2+e)—Fy(y2)l/e

_ I n(Oy) 1
B Folr) T2

'fY2 (y2)

ayz
= ana(yu,v)’ where u = Fy:(0) and ©v= Fy,(y2);
2
_ dCe(u,v) dv _ 0Cq(u,0) OFy,(v2) _ 0Co(u,v) o ()
dv Iy dv Iy v 2 \Y2)s

and

friv(Ly2) = fr,(y2) = frn(0,y2)

9Co(u,
= fy,(y2) - <1 — ea(:)”))> , where u = Fy:(0) and v = Fy, (y2).

In short, the joint PDF can be re-written as:

friv(W1y2) = [Fip0ly2)] - [1 = Fp(0[y2)]Y" - fr,(y2), y1 € {0,1}andys >0,
3.7)

C(Fyx (0),F
where Fy,(0ly2) := P[Y1 = 0[Y2 = y2] = W , Fy: is the CDF of Y{" in

Equation (3.6), Fy, is the CDF of Y; in Equation (3.2), and fy, is the PDF of Y in
Equation (3.3). Equation (3.7) shows how the dependence, embedded in the copula
function, is incorporated by a joint density function that is a simple product of a
conditional probability of default given a level of balance and a balance density at that
level.

Various forms of dependence between Y; and Y, can be selected through different
copulas. We consider Gaussian, Frank, Farlie-Gumbel-Morgenstern (FGM), Clayton
and Joe copulas, including their rotations, as potential candidates. Rotated copulas
(Nelsen, 2006) can be constructed from the original copula. They allow for modelling
any non-symmetric dependence structures that are not possible with the non-rotated

versions, such as negative tail dependence. As shown in Table 3.4, the Frank, Joe, and
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Copula Function AIC BIC Average Kendall’s Tau

Gaussian 107915 108979 0.2937
Frank 107881 108847 0.3540
FGM 108675 109608 0.1871
0°Clayton 108606 109590 0.2358
90°Clayton 665779 666468 -0.0016
180°Clayton 107423 108442 0.3555
0°Joe 107612 107669 0.3679
90°Joe 110124 110973 -0.00001
180°Joe 108617 109624 0.2368

TABLE 3.4: Performance measurements of the candidate copula functions, assessed on the vali-
dation dataset.

Copula Function = Brier score AUROC Correlation RMSE MAE Q90

180°Clayton 0.1077 0.9219 0.9024 17325 7386 4970
0°Joe 0.1084 0.9215 0.9015 17413 7416 5000

TABLE 3.5: Predictive accuracy measurements of 180°Clayton and Joe copula functions, as-
sessed on the validation dataset.

180°Clayton copulas are most supported by the AIC and BIC. The Frank copula
implies a structure where dependence in the tail areas is weak, but it is strong in the
middle of the marginal distributions. The Joe and rotated 180°Clayton, on the other
hand, express strong right (upper) tail dependence but relatively weak dependence in
the lower and middle area. As their properties are fundamentally different and with
no clear winner among them thus far, we decide to build copula models using both
the Frank and 180°Clayton copulas. The 180°Clayton was selected over Joe because it
gives better predictive accuracy (see Table 3.5). The Frank copula is defined as

(e—eu _ 1)(8_90 _ 1)
e ?—1 !

1
Cg(u,v):—a-log 1+ 0 € (—o0, ),

and the 180°Clayton copula is defined as
C§®(uv)=ut+v—-1+((1-uw)+1-0) =171 0c(0,0).

For both copulas, the higher the 6, the higher the dependence between the two

margins.

The estimated conditional dependence between PD and balance given predictors’
values, measured by Kendall’s Tau, T, can be expressed in terms of a copula as

T =4E[Cy(U, V)] — 1 (Balakrishnan and Lai, 2009). For each copula, the average of
this value (listed in the right-most column of Table 3.4) clearly demonstrates that PD
and balance are positively correlated; its value under the copula rotations that imply

negative dependence (i.e. 90°Clayton and 90°Joe) is nearly zero.
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Together with Equation (3.1) and Equation (3.4), this gives the following copula model
specification:

logit(rt) = By + Brage + - - - + s¢ (paid.per9) + s7 (cu) + sg (full.pay.per);
u =B+ Biage+ - - - + sk (paid.per9) + s, (cu) + sg (full.pay.per);
log(o) = BG; (3.8)
G(6) = By + s1(1) + s5(b) + s5(bsco) + sy (cu),

where G(0) = 6 for the Frank copula and G(0) = log() for the 180°Clayton copula.
Based on preliminary analyses, additive smoothing functions of a limited set of
covariates are considered for the dependence equation, G(0), to avoid
overcomplicating the model. Using the derivation of Equation (3.7), the log-likelihood

function is

n

= Y (1 —y1,i) log[Fip(0ly2i)] + y1,ilog[1 — Fipp(0ly2,i)] +log[f2(y2i)],
i=1

where § = (BI, ,B};, BL, BI)T is the vector of marginal and dependence parameters to
be estimated from Equation (3.8). This likelihood extends the Heckman correction
(Heckman, 1979) of sample selection bias to distributions other than Gaussian.
Simultaneous parameter estimation, which accommodates the interplay of two
responses, is accomplished by applying the trust region algorithm with integrated
automatic multiple smoothing parameter selection (Marra and Radice, 2017a) and
implemented in the R package GJRM (Marra and Radice, 2017b). This fitting
algorithm has been proved to be fast and unbiased and can be done in a modular way,
allowing any parametric marginal distributions or copula functions as long as their

CDFs, PDFs and derivatives with respect to their parameters are acknowledged.

3.4.4 Probability of zero balance

We denote by v the probability of account balance being zero. The modelling steps for
v are similar to those for PD, see the performance measures in Table 3.6 and Figure 3.5.
The selected Logit model specification is:

1og( v ) 5+ Blage + Brarr9 + s5(1) + s (b) + st (bsco) +

s¢(paid.per9) + sy (cu) + sg (full.pay.per).

The expectation of (zero and non-zero) balance unconditionally on default status,

denoted as UB (short for unconditional balance), can thus be evaluated as:

E[UB] = (1—v) - E[Y,). (3.9)
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Link Function AIC BIC  Brier score AUROC

Logit 12316 12715 0.0478 0.8445
Probit 12329 12729 0.0479 0.8445
Cloglog 12315 12716 0.0478 0.8444

TABLE 3.6: Performance measurements of the candidate marginal distributions for probability
of zero balance, assessed on the validation dataset.

Normal Q-Q Plot: Logit model for probability of zero balance Normal Q-Q Plot: Probit model for probability of zero balance
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FIGURE 3.5: Residual plots for probability of zero balance model.

3.5 Analyses and results

In this section, we will analyse and compare the results from the newly proposed
CGAMLSS models against those from the standalone models. Significant relationships
between the explanatory variables and the two responses, Y7 and Y>, will be inspected,
as well as those for the dependence parameter(s) of the copulas. We will also report on
the predictive ability of all models. In addition, the extent to which PD and balance
affect each other will be examined by investigating the conditional distributions from
the copula models. We conclude the section by analysing the impact of the

dependence between PD and balance on expected loss.

3.5.1 Effects of covariates

Figure 3.6 shows the effects of all model covariates on the probability of default.
Results for the parametric terms are summarised in a table, whereas for the

non-parametric smooth functions, partial residual plots depict how each explanatory
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(a) Partial residual plots on logit (b) Partial residual plots on logit
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FIGURE 3.6: Effects of explanatory variables on PD for the standalone (Ind.PD) and the Frank
(Cop.Frank) and 180°Clayton (Cop.C180) copula models.

variable influences the response assuming that the other covariates are fixed. The
shaded areas in each plot indicate the precision of the estimates using 95% confidence
intervals. Note that the waviness and widening confidence band near the lower or
upper ends of the covariate range suggest some undersmoothing linked to there being
fewer such observations. In line with expectations, credit card customers with a high
rating and credit limit are at lower risk of default. So are customers with longer
tenure, as well as those who previously paid back a higher proportion of their
monthly balance or more often repaid the balance in full. In contrast, starting balance
and credit utilisation are positively related to default risk; the more money drawn
(either in absolute terms or as a percentage of the limit), the higher the risk of default.

Also, having been in arrears recently tends to increase the likelihood of default.

Secondly, Figure 3.7 displays the effects of covariates on the mean of (non-zero)
balance. Overall, there is no significant difference in interpretation across the different
models. Limit is positively associated with future balance. This is perfectly intuitive as
customers with a higher limit are allowed to borrow more. Similarly, current levels of
credit utilisation and balance are strongly linked to the subsequent balance, higher

values implying larger future balance. Longer account tenure and prior arrears,
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(c) Partial residual plots for the
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FIGURE 3.7: Effects of explanatory variables on the mean level of (non-zero) balance for the
standalone (Ind.UB) and the Frank (Cop.Frank) and 180°Clayton (Cop.C180) copula models.

however, tend to be associated with lower balance. Two novel insights are
encountered. First, behavioural score and average paid percentage both have a
concave effect on the response, indicating that it is more often that the borrowers of
average credit quality or those who pay back between 10 to 60 percent of their
monthly balance will borrow more. However, the convex effect plot for full payment
percentage suggests that, holding other factors constant, it is those that either rarely or
most of the time pay back the owed money in full, that tend to have a higher future
balance. These non-monotonic effects demonstrate the potential benefits of

introducing non-linear effects into the models.

Next, we consider the association between the two responses. The average estimated
conditional Kendall’s tau, T, for the Frank (0.37 with 95% CI (0.33,0.42)) and
180°Clayton (0.38 with 95% CI (0.34,0.41)) copula models is positive, as expected.
However, the copula models allow us to investigate whether this positive dependence
is modified by the covariates. Figure 3.8 displays the effects of covariates on the
dependence parameter, 6. Interestingly, the dependence between default risk and
future balance is stronger for borrowers with a higher current balance or utilisation,
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FIGURE 3.8: Effects of explanatory variables on dependence parameter for the Frank and
180°Clayton copula models.

and further varies with the credit limit, for the most part decreasing. These insights
may prove useful in practice as banks could expect higher levels of borrowing from
accounts with those characteristics in the event they default; this in turn suggests
more capital is needed to cope with the stronger adverse dependency in this account
segment. Another benefit of the copula approach over building standalone models lies
in the additional finding that the dependence of PD and balance is not always
appropriately modelled by a symmetrically linear structure. Our analysis shows that
they correlate more heavily in the middle area (under Frank) or the upper tail (under
180°Clayton).

Lastly, to visually gauge the impact of a given input variable on the joint PDF of latent
variable Y] and balance, contour plots provide a helpful tool. Figure 3.9 displays a
selection of contour plots for four different covariates: limit, current balance,
behavioural score and utilisation. They help us to inspect the effect of each on three
parameters of interest, namely 7, » and Kendall’s 7, by categorising the covariate into
two groups (low vs. high value) whilst keeping the others fixed at their mean (for
continuous variables) or mode (discrete variables). For instance, under the Frank
copula, a higher current balance (see the upper right plot in Figure 3.9a) leads to a
higher PD (the cloud shifts to the right), a higher future balance (upward shift), and a
higher association (higher Kendall’s Tau). Hence, we can identify which covariates
most influence each respective parameter. Under both copula models, credit rating is
thus found to be the variable with the largest impact on PD, future balance appears
most strongly influenced by current balance, while it is credit utilisation that has the
largest effect on the conditional dependence between PD and balance.
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(b) 180°Clayton Copula Model.

FIGURE 3.9: Contour plots for the joint PDF of the latent variable Y] and (non-zero) balance for

different levels of limit (upper left), current balance (upper right), behavioural score (lower left),

and credit utilisation (lower right), where the other predictors are fixed at their mean or mode
levels. Estimated conditional dependencies, %, are listed in the upper left corner of each plot.

3.5.2 Predictive performance

The hold-out performance measurements (averaged over ten different subgroups of
the test dataset) for the point estimates from all PD and balance models are shown in
Table 3.7.

The low Brier scores and high AUROC values in the left panel indicate good
performance for all PD models. The PD estimate from the standalone model appears
to perform better than that of the copula models but the winning margin is very small.
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Model Brier score AUROC Model Correlation RMSE MAE Q90

Cop.Frank 0.1086  0.9226 Cop.Frank  0.9159  16139.89 7054.01 4668.36

Cop.C180 0.1069  0.9229 Cop.C180 0.9160 16158.19 7025.90 4709.75

Ind.PD 0.1047  0.9244 Ind.UB 09157 16171.23 7062.61 4690.56
(A) PD models. (B) Balance models.

TABLE 3.7: Performance measurements assessed on the test set.

Similarly, the discriminatory power and predictive accuracy differences for the
standalone and copula models for balance are negligible (see the right panel). The
same goes for the 0.9 quantile loss (Q90), which penalises underestimation more
heavily and, hence, is a good measure for assessing the conservativeness of a risk
estimate. Note that the o quantile loss function is defined as

Yii<gi (@ —1) - (yi = 9i) + Liyy,>g, « - (¥i — Ji), where y; and §; are true and predicted
balance values, respectively.

These results imply that the three approaches are equally competitive in terms of the
account-level point estimates that they produce for future balance; however, from a
risk perspective, the goodness-of-fit of the conditional distributions produced by each
approach may be of greater interest, as well as the copula models” ability to model
dependence between default risk and balance.

3.5.3 Conditional probability, density, and expectation

In the standalone models, the distributions of PD and balance depend on a set of
(partially shared) explanatory variables but, after accounting for those, they are
assumed independent from each other. In the copula models, however, the
distributions of the two responses are also conditionally dependent on one another. In
other words, the value for PD directly depends on the value for balance and vice
versa. To better understand the dependence captured by the copula models, we will
consider the resulting conditional default risk in each quantile of balance and, vice
versa, the distribution of expected balance for defaults versus non-defaults. Note that,
as the subsequent analysis thus assumes knowledge of the other response outcome, it
is not meant for assessing any prediction applications but to better understand the
explanatory power of the models. Following Equation (3.7), we calculate the

conditional PD for a given (non-zero) balance amount as:

PlYi = 1|V, = 1] = w — 1 - Fyp(0ly2).
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We also obtain the conditional density and conditional expectation of (non-zero)
balance given default status, as follows:

o [RpOly)] - [1 = Fyp(0ly2) ] - fr, (v2)
sz(y2|Yl - ]/1) - 2 P[Y1 :1;1] ’

EMaYs =] = [ x- fra(xly = o) d.

Hence, the conditional expectation of balance is
E[UB|Y; = y1] = (1 —v) - E[Y2]Y1 = y1], where v is the probability of balance being

zero.

Firstly, for every defaulted and non-defaulted account observation in the test set, we
consider: the actual value of (future) balance, UB; E[UB|Y;], i.e. the model estimate
conditional on the observed default outcome, according to each copula model; and the
(unconditional) E[UB]| from the standalone model. Secondly, the observations in the
test set are sorted according to UB and split into quantiles. In each quantile interval,
(9i,qi+1),i =1,...,999, we then calculate: the (actual) empirical proportion of
defaults; the mean conditional probability of default estimated by each copula model
for the interval’s midpoint, P[Y; = 1|Y2 = (g; + gi+1) /2]; and the mean estimated
(unconditional) P[Y; = 1] from the standalone model. Figure 3.10 plots these
(estimated or observed) default rates (y-axis) against each balance quantile (x-axis).

In Figure 3.10, the empirical default rate curve (Actual) shows the (non-linear)
relationship that exists between (future) balance and default risk. Despite being fitted
without taking this dependence into account explicitly, the standalone model for PD
(Ind.PD) is already capable of capturing a fair proportion of the co-movement
between PD and balance. This is due to covariates being included in both marginal
models that simultaneously influence PD and balance. For instance, in section 3.5.1,
higher levels of current balance and credit utilisation were found to increase both the
risk of default and the future balance (see Figure 3.6 and Figure 3.7). However, the
copula models have the added ability to capture any remaining stochastic dependence
that cannot be explained by those observable shared covariates. This explains why,
with the added knowledge of balance, the conditional PD curves for the two copula
models (Cop.Frank and Cop.C180) move further towards the actual default rates.

Secondly, to better understand how well the models capture the difference in balance
between defaults and non-defaults, Figure 3.11 and Figure 3.12 show the mean and
density plot, respectively, of actual and the estimated expected value of (conditional)
balance. Note that, since balance cannot take negative values, we fit the probability
density function by zero-truncated kernel density estimation with a Gaussian kernel

and weight w(x) , where & is a bandwidth and @ is the cumulative

_ 1
- 1_<I>x,h (0)
distribution function of a Gaussian distribution with mean x and standard deviation

h. The objective is to truncate the density on the negative side at zero and up-weight
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FIGURE 3.10: Average (conditional) PD given the level of balance quantile, using the locally

weighted smoothing line technique and assessed on separated test set ranging from low to high

quantiles of future balance. Small dots in the background represent the (actual) empirical pro-
portion of defaults for each quantile interval.

the data that are close to zero. From these figures, it is evident that the actual balance
of defaulted accounts tends to be higher (on average) than that of the non-defaults and
exhibits a heavy positive tail. Taking a future estimate of balance based on all accounts
and ignoring this dependence would thus lead to underestimating the balance at
default (or EAD) and, hence, underestimating the expected loss. Due to its covariates,
the standalone model for balance does, however, partially capture such differences in
balance, similarly to what was observed in the preceding analysis. Importantly, we
again see the copula models being able to capture residual dependencies by the use of
a copula function, shifting the mean model estimate for balance further up (down) for
the group of defaults (non-defaults), respectively (see Figure 3.11). Also, the estimated
balance for defaulted accounts shows a heavier tail with the copula models than with
the standalone model (see Figure 3.12); if anything, they appear to now somewhat
overestimate (rather than underestimate) the dependence between the two responses
(hence, producing a more conservative EAD estimate). Among the two copula
models, the Frank copula model gives the most conservative estimates in terms of

mean expected conditional balance given default (see Figure 3.11).
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(b) 180°Clayton Copula Model.

FIGURE 3.11: The mean of the expected value of (conditional) balance given default status,
assessed on separated defaulted and non-defaulted accounts in the test set.

3.5.4 Expected loss estimation

One of the hypothesised advantages of the proposed copula models is that they may
help avoid potential sample selection problems (associated with the standard Basel
practice of building an EAD model on just the subsample of defaulted accounts and
then applying it to estimate EAD for all accounts), whilst keeping the ability of
producing sufficiently conservative estimates. To test this, we will compare the
expected loss amounts produced by our copula models against those produced by the

aforementioned approach and the standalone models.
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(a) Frank Copula Model.
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(b) 180°Clayton Copula Model.

FIGURE 3.12: Density plots for the expected value of (conditional) balance given default status,
assessed on separated defaulted and non-defaulted accounts in the test set; the right tail area is
magnified.

Under the Basel framework, the credit loss associated with an account is seen as the
product of three risk parameters,

Lossg = Y7 - LGD - EAD, (3.10)

where Y7 is the default status (i.e. 0 or 1), LGD is the Loss Given Default and EAD is

the Exposure At Default. For the sake of simplicity, and as the paper has not included
models for LGD, we shall from here on assume LGD to be fixed at one; i.e., we do not
consider any recovery or collection process after default. Note that the analysis could
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easily be extended if such data were available.

Firstly, as is common practice in Basel models, we build another model for EAD using
only the defaulted accounts from the training set, thereby following a similar
approach to that used for fitting the standalone balance model earlier (see

subsection 3.4.2). Since the risk weight functions in the Accords do not directly
consider adverse dependencies between default and exposure (other than through the
use of downturn estimates as inputs), the Basel regulatory expected loss is

E[Lossg] = E[Y;] - 1- E[EAD] = PD - E[EAD),

where PD and EAD are modelled independently.

Secondly, for the purpose of comparison, we consider using all available data
(defaulted and non-defaulted), first assuming that Y7 and UB (balance) are
independent. Thus, under the independent standalone framework, the expected loss
would be

E[Loss;) = E[Y3]-1- E[UB] = PD - E[UB],

where PD and UB are modelled independently using the standalone models.

Thirdly, if the dependence between the two responses is instead taken into account,
the expected loss, now under the copula framework, would be

E[Lossc] = E[Y; -1-UB] = /OOO Frus(L,x) - 1-xdx (3.11)

= /Ooofn(l) - fus(x|Y1 = 1) - xdx = PD- E[UB|Y; = 1],

where PD and UB are modelled simultaneously using the copula models.

Figure 3.13 compares the estimated expected loss under these three modelling
assumptions (i.e. for the Basel, independent and copula frameworks) against the
actual values. As illustrated in Figure 3.13a, the estimation under the standalone
scheme performs better in the lower loss space whereas the predictions under the
copula framework are more accurate in the right tail area. As the right-tail area has
greater implications for loss calculations, this suggests that the copula approach may
be preferable. The same is suggested by the calibration plot in Figure 3.13b, which
shows that, taking into account the dependence between PD and balance using the
copula approaches leads to better calibrated account loss estimates where the actual
loss is higher. As Table 3.8 demonstrates, this leads to better predictive accuracy at the
account level (lower MAE) for Cop.Frank and Cop.C180, compared to the other two
methods. Furthermore, the copula models do so by providing more conservative
predictions (cf. their Q90, which is considerably lower). Note that MAE is preferable
to RMSE as a monetary loss measure since the latter returns a square unit which is

more difficult to interpret. It is also expected to see higher values of RMSE for the
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FIGURE 3.13: Loss analyses, assessed on all accounts in the test dataset.

copula models because they: (1) emphasise the dependency between PD and balance

resulting in a higher prediction for extreme losses; and thus (2) are penalised by RMSE

much more heavily than MAE due to those extreme errors. Although they are close,

out of the two copula methods, it is the Frank copula that captures stronger

dependence and hence produces the most conservative loss estimates.

Model Correlation  MAE RMSE Q90

Cop.Frank 0.8475 8075.70 21027.24 3833.61
Cop.C180 0.8475 8083.61 20956.27 3930.83
Independent 0.8476 8637.42 20903.32 5348.73
Basel 0.8501 8644.12 20603.64 4814.21

TABLE 3.8: Performance measurements (averaged over ten different subgroups of the hold-out

test set) for account-level expected loss.
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In Figure 3.13c, the loss analysis is extended to the portfolio level. When adding up
the account-level estimates to produce an estimate of total portfolio loss (for the test
set), the 180°Clayton copula model produces the best performance with a small
absolute percentage error of 1.16%, followed by the Frank copula model (which
overestimates portfolio losses by 2.14%). This is consistent with the previous results
showing a stronger dependence effect under the Frank copula. Alternatively,
calculating portfolio loss without considering the dependence (cf. Independent) or
sample selection bias (cf. Basel) prompts a substantially worse underestimation (by
10.82% and 5.17%, respectively), suggesting substantial capital shortfalls.

We conclude that the CGAMLSS approach produces more accurate and sufficiently
conservative expected loss estimates, at both the individual account level as well as
the portfolio level. This suggests that the correlation between the two standalone
model responses induced by their shared covariates alone is not sufficient to capture
the full extent of their dependence; there exist remaining stochastic dependencies
from non-recorded or unobservable factors that could only be captured by the copula

approach.

3.6 Conclusions and future research

In this paper, we have proposed a novel approach for modelling PD, balance and their
dependence structure simultaneously, by applying the CGAMLSS framework. Using
this framework, a bivariate distribution could be flexibly constructed from two
marginal GAMLSS responses and a suitable copula. This approach addresses the
potential problem of sample selection bias identified in the EAD literature, by
including both defaulted and non-defaulted account information in the modelling.
For a large dataset of credit card accounts, our analysis shows that the proposed
copula models provide more accurate and conservative expected loss estimates,
exhibiting a heavy tail that is the result of the correlation between PD and credit card
balance. In addition, we have demonstrated that by, instead, ignoring such
dependence or by allowing sample selection bias, loss could be severely

underestimated, potentially leading to capital shortfalls.

The results reveal strong and positive dependence between PD and balance, even after
accounting for observable covariates, either in the middle (under Frank) or upper tail
(under 180°Clayton) area of the marginal distributions. Accounts with higher default
likelihood tend to end up having a higher card balance; also, the distribution of future
balance shows a heavier tail for accounts that are more likely to default. In addition,
we identify a series of significant risk factors: credit rating has the largest impact on
PD, future balance is most strongly influenced by current balance, and their
co-dependence is most affected by credit utilisation.
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A future avenue of research is to extend the proposed model so that PD-LGD and
LGD-EAD dependencies are considered as well. This would provide further insights
on how the interaction between all three Basel IRB parameters could affect the
expected portfolio loss and, hence, the capital requirement. We conjecture that by
modelling PD-LGD-EAD together, with their interrelationship, a more conservative

portfolio loss estimate, with a heavier tail, could be expected.
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Abstract

To model the Exposure At Default (EAD) of revolving credit facilities, such as credit
cards, most of the research thus far has employed point estimation approaches,
focusing on the central tendency of the outcomes. However, such approaches may
have difficulties coping with the high variance of EAD datasets and their non-normal
empirical distributions, whilst information on extreme quantiles, rather than the
mean, can have greater implications in practice. Also, many of the input variables
used in EAD models are strongly correlated, which further complicates model
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building. This paper, therefore, proposes the vine copula-based quantile regression
model, an interval estimation approach, to model the entire distribution of EAD and
predict its conditional mean and quantiles. This novel methodology addresses several
drawbacks of classical quantile regression including quantile crossing and
multicollinearity and allows the multi-dimensional dependencies between all
variables in any EAD dataset to be modelled by a suitable series of (either parametric
or non-parametric) pair-copulas. Using a large dataset of credit card accounts, our
empirical analysis shows that the proposed non-parametric model provides better
point and interval EAD estimates and more accurately reflects its actual distribution

compared to other models.

4.1 Introduction

Under the Advanced Internal Ratings-Based (A-IRB) approach, the Basel Il and III
Accords allow authorised banks to use their own methods to establish risk-sensitive
capital requirements as a function of different credit risk parameters. The three key
parameters are: Probability of Default (PD), i.e. the likelihood that a borrower will
default or be unable to fulfil their repayment obligations; Exposure At Default (EAD),
i.e. the expected gross exposure of the borrower at the time of default; and Loss Given
Default (LGD), i.e. the percentage of this amount that the lender would not be able to
recover. In credit risk, PD and LGD have thus far been the main centre of attention,

whereas EAD has been studied far less. This paper focuses on the latter.

In the literature, the proposed statistical models for EAD tend to focus on producing
accurate point estimates for the central tendency of the outcomes, i.e. the conditional
mean. Unlike interval estimates, point estimates may, however, prove less useful
given the non-normality and high variance encountered in EAD data (see e.g.
Thackham and Ma (2018) and Leow and Crook (2016)). Furthermore, when estimating
potential monetary losses in risk management or the capital required to absorb them,
the most useful information lies in extreme risks in the right tail area, i.e. higher
quantiles. Therefore, to better understand the EAD distribution, it is important to
consider the estimation of EAD at different quantiles (e.g. 99% value-at-risk), rather
than solely at the mean level. In this paper, we apply two interval estimation models
to EAD modelling: linear quantile regression (Koenker and Bassett, 1978) and D-vine
copula-based quantile regression (Kraus and Czado, 2017; Schallhorn et al., 2017).

The first of these two approaches is well known and frequently used in predicting
conditional quantiles of a response variable given the values of covariates. It is robust
to outliers and heteroscedasticity and makes no assumptions about the response
distribution. However, two common pitfalls of using the method are the problem of
quantile crossing (i.e. the crossing of regression lines of different quantile levels,
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causing interpretation difficulties) and its ability to cope with correlations between the
covariates. The latter is of particular interest because many of the input variables
commonly used in EAD models are strongly correlated with each other. For instance,
Tong et al. (2016) and Leow and Crook (2016) incorporated both current credit limit
and card balance in the models, which can lead to multicollinearity problems and
interpretation issues with the estimated coefficients. In contrast, the D-vine
copula-based quantile regression approach will allow us to tackle those issues, by
modelling such dependencies between the explanatory variables through a series of

pair-copulas.

Whereas much of the credit risk literature on EAD modelling has analysed corporate
credit (Giirtler et al., 2018), our models are fitted to a large dataset of credit card
defaults, provided by a Hong Kong retail lender. For most A-IRB banks, credit cards
account for the largest number of defaults, which are often scarce in practice among
revolving line products (Qi, 2009). This enables building more advanced statistical
models based on the available default data.

In the analysis, we will identify to what extent the magnitude of predictor effects
varies for different sections of the EAD distribution, i.e. at the mean and different
quantile levels. This is useful to assess risk drivers of the tail risk of EAD. In addition
to examining the relationships between EAD and the covariates, we will also explicitly
consider correlations between the covariates themselves, by utilising vine copulas. We
will implement the proposed model using the R package vinereg (Nagler and Kraus,
2019), which provides various options of copula families including parametric and
non-parametric ones. To empirically test the effectiveness of the two proposed
quantile models in the context of EAD modelling, we benchmark them against an OLS
model. In so doing, we will show how the proposed approaches lead to better point

and interval estimates.

The rest of the paper is presented as follows. The relevant literature is reviewed under
Section 4.2, from which the main contributions of the paper are then identified.
Section 4.3 explains the data and variables used, and Section 4.4 provides a brief
description of vine copulas. Section 4.5 illustrates how the statistical models are

constructed. The results are analysed in Section 4.6. Section 4.7 concludes.

4.2 Literature review

Our review of the literature will begin by reviewing some of the existing work on
EAD modelling and then turn its attention to the methods proposed in the paper. At
the end, we will list the main contributions of our work.
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4.2.1 EAD modelling

For revolving line products including credit cards, the Basel Accords have suggested
an indirect way of calculating EAD by evaluating the Credit Conversion Factor (CCF),
i.e. the proportion of the undrawn amount that will be drawn by the time of default
(Valvonis, 2008). Despite its popularity, such approach has several drawbacks. First,
the empirical CCF distribution does not conform to several statistical distributions
and is highly bimodal. Second, its estimates must be restricted to the [0,1] range.
Third, the modelling may struggle to cope with the contracting denominator when the
current drawn amount is already close to the limit. For those reasons, alternative
methods have been put forward, which include modelling EAD directly, as a

monetary amount (as opposed to a ratio).

For example, Thackham and Ma (2018) modelled EAD directly (albeit for corporate
revolving facilities) and captured its relationship with the credit limit by considering a
three-component model, conditioning the EAD target variable on whether the limit
was lowered or not. They used Ordinary Least Squares (OLS) regression to predict the
mean level of EAD. Tong et al. (2016) applied a zero-adjusted gamma distribution
under the Generalised Additive Models for Location, Scale and Shape (GAMLSS)
framework (Stasinopoulos et al., 2017), to capture the EAD distribution observed in a
dataset of UK credit card defaults. The proposed model was shown to outperform
several benchmark models (including CCF ones) in terms of the mean level of EAD.
Hon and Bellotti (2016) forecast drawn credit card balances not only at default time
but at every time step, unconditional on a default event occurring. Different methods
were compared, including OLS, two-stage regression, and random effects panel
models. Similarly, Leow and Crook (2016) constructed a mixture model that considers
the entire time period up to default. Rather than the balance, they proposed modelling
the limit under the scenario that an account’s borrowing hits the credit limit at least
once in the race to default. None of these methods explicitly studied interval

estimates, however, although Tong et al. (2016) did model a dispersion parameter.

4.2.2 Quantile regression

The prediction of conditional quantiles of the response variable given the values of
covariates has found a variety of applications in many domains, including finance,
where it became a fundamental instrument for risk management (Kraus and Czado,
2017; Adrian and Brunnermeier, 2016; Bouyé and Salmon, 2009). Linear quantile
regression, established by Koenker and Bassett (1978), is a well-known method for
estimating the conditional quantiles. For example, in the consumer credit risk setting,

Somers and Whittaker (2007) previously used quantile regression to model the value
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distribution of repossessed properties, which was then used to produce loss given

default estimates for mortgage loans.

Modelling EAD with the use of quantile regression would be beneficial in several
respects. Firstly, it considers the entire conditional distribution of EAD, which enables
the estimation of conditional quantiles and confidence intervals, reveals any potential
heavy tails and skewness, and allows for the shape of the distribution to depend on
the covariate values. Secondly, it provides a comprehensive picture of the predictor
effects on different quantiles of the EAD distribution, not only on the mean level.
Thirdly, quantile regression is robust to outliers, which are often encountered in EAD
data. Lastly, unlike least squares regression, it does not require the assumptions of a
specific parametric distribution or constant variance for the response, making it an

attractive alternative to account for heteroscedasticity (Niemierko et al., 2019).

However, classical (linear or non-linear) quantile regression has been criticised for
several pitfalls. Kraus and Czado (2017) and Bernard and Czado (2015) highlighted
the problem of quantile crossing; this is where the regression lines of different quantile
levels (with distinctive slopes) cross each other, thus causing interpretation problems.
The method also suffers from multicollinearity, i.e. strong correlation between the
explanatory variables, making the estimated regression coefficients harder to interpret
and unstable with large variances (Bager, 2018). This issue is highly relevant to EAD
and other consumer credit data, since the variables in these settings are often
associated with each other, either directly or indirectly; for instance, banks often
actively manage the borrower’s limit amount according to their balance expenditure.
In addition, quantile regression does not acknowledge multivariate dependencies
between the variables of interest, which are needed for credit portfolio risk modelling
(Geidosch and Fischer, 2016). Conventional correlation analysis, assuming the
popular, yet restrictive, multivariate Gaussian distribution, is not appropriate to
investigate such underlying dependencies, because it cannot accommodate a
non-linear and asymmetric structure, which has proven important in financial
applications (see, e.g., Aas et al. (2009), Moreira (2010) and Geidosch and Fischer
(2016)).

4.2.3 Copulas

Copulas are a more appropriate method to model complex dependence patterns. They
allow a multivariate distribution to be jointly constructed from arbitrary univariate
distributions, using an appropriate copula function. An attractive feature of copulas is
that the functional forms of a copula and its components (marginal CDFs) can be
selected independently. This gives them a key advantage over a conventional
parametric specification (e.g. multivariate Gaussian) where the joint and marginal

distributions must be known a priori. Moreover, various dependence structures
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between individual variables can be captured by different copula specifications. For
instance, the Clayton copula reflects lower tail dependence, whilst the Gumbel copula
allows for stronger dependence in the upper tail area. The Student-t copula is both
lower- and upper-tail dependent, whereas the Gaussian copula shows no tail

preferences.

For the bivariate case, there is a rich number of practical and well-studied copulas.
However, for higher dimensions, the application of copulas is challenging. Although
multivariate Gaussian and multivariate t-copulas are widely used (Mashal and Zeevi,
2002), they cannot fully capture different dependence structures for different pairs of
variables; all pairwise relationships are forced to follow the same copula. Several
generalisations of bivariate copulas to higher-dimensional Archimedean copulas have
been put forward (Savu and Trede, 2009), but they impose undesirable constraints on
the parameter estimates (Martey and Attoh-Okine, 2019).

4.2.4 Vine copulas

Pioneered by Joe (1996) and further developed by Bedford and Cooke (2002) and Aas
et al. (2009), the vine copula overcomes such shortcomings. It is a more natural and
flexible way of formulating a high-dimensional copula based on a series of bivariate
copulas, or so-called pair-copulas. This Pair-Copula Construction (PCC) methodology
decomposes a multivariate copula density, and thus a multivariate probability density,
into a product of (conditional) bivariate copulas, where all pair-copulas can be
modelled independently from each other. It follows that a suitable bivariate copula
can be freely chosen from a broad set of options to model the different dependence
characteristics (including independence) of each variable pair, providing much greater
flexibility in modelling dependence for high-dimensional data. Through a financial
application, Aas et al. (2009) compared a vine copula containing Student copulas for
pairs of stocks with the four-dimensional Student copula. A likelihood ratio test
tavoured the pair-copula construction method over the four-dimensional Student
copula. Also, they found that the latter could lead to a large trading portfolio loss due
to its underestimation of tail dependence. In a structural credit risk model setting,
similar conclusions were drawn by Geidosch and Fischer (2016), who demonstrated
that the estimation of economic capital for credit portfolios is more accurate when
vines are employed rather than conventional copulas to model dependencies between

latent asset values.

In conclusion, the vine copula provides considerable flexibility in modelling
multivariate distributions by: (1) isolating the marginal and dependence formulations;
and (2) matching the dependence structure of each respective variable pair with the
most appropriate bivariate copula. However, this flexibility comes at a cost, in that the
pair-copula construction has no unique representation due to the substantial number
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of possible vine structures. To help organise them, Bedford and Cooke (2002) have
introduced the regular vine (R-vine) and illustrated each possible decomposition of
the bivariate copula density as a graphical tree. Two popular subclasses of R-vine
were subsequently developed: the Canonical C-vine and the Drawable D-vine (Aas
et al., 2009). They have been applied actively in financial and insurance risk
management; see, for example, Nikoloulopoulos et al. (2012) and Schirmacher and
Schirmacher (2008).

4.2.5 Vine copula-based quantile regression

This paper adopts the D-vine copula-based quantile regression model, proposed by
Kraus and Czado (2017) and Schallhorn et al. (2017), to analyse the conditional EAD
quantiles, taking into account the complex high-dimensional interrelationships among
EAD and its predictors. The correlations between the predictors themselves are also
considered, which are not commonly analysed in the literature. This interval
estimation approach addresses several drawbacks of classical quantile regression
including quantile crossing and multicollinearity problems. It also does not impose a
restrictive linearity assumption on the shape of conditional quantiles and allows for
the separation of marginal and dependence modelling. The model is fitted using a
novel algorithm developed by Kraus and Czado (2017). This sequentially fits the
D-vine structure with the aim of maximising a conditional likelihood, resulting in
automatic variable selections. Due to the model construction, the conditional quantiles
can be extracted easily from a series of estimated pair-copulas and do not cross each
other. To the best of the authors” knowledge, this paper is the first to propose the vine
copula-based quantile regression framework in any credit risk setting.

4.2.6 Research contributions

To summarise, the contributions of our research are that: (1) it is the first study to
provide interval estimates and quantile predictions for EAD based on classical linear
quantile regression and a state-of-the-art alternative — vine copula-based quantile
regression; (2) we show that, on a large real-world credit card dataset, the latter model
with non-parametric copulas performs better than the OLS linear model in terms of
the point and interval estimates, conditional quantiles, and the distributions that they
produce; (3) our results provide new insights into the predictor effects at different
quantile levels of the EAD distribution, rather than on the mean level only; (4) we
introduce the idea that complex multi-dimensional dependencies among loan-level
variables can be effectively modelled using vine copulas, which has further potential
applications to other consumer credit risk parameters such as PD and LGD.
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4.3 Data and variables

The data from which our sample is extracted consists of monthly account-level data
for the consumer credit cards of a large Hong Kong bank, recorded between January
2002 and May 2007. EAD is measured as the outstanding balance at default, excluding
any subsequent interests and additional fees. The default definition is that borrowers
either: (1) missed or could not pay the agreed minimum payment for 90 consecutive
days or more; (2) were declared bankrupt; or (3) the money they owed was charged off
by the bank. Similarly to other work on EAD, we extract only the defaulted account
data, to ensure that the predicted balance is conditional on default. To construct the
sample, we use the standard yearly cohort method (Moral, 2006) and set the reference
month to the 1% November of each year. For each such yearly default cohort, we
collect the values of the covariates a month prior to the reference month, namely in
October, whereas the response value (EAD) is the observed balance in the subsequent
month where the default occurs. Accounts that lack sufficient monthly records to

calculate the explanatory variables are omitted.

Table 4.1 lists the explanatory variables; all of these were shown to have a significant
relationship with EAD according to previous literature; see e.g. Tong et al. (2016).
After removing a small number of missing value cases, the total number of accounts
used in the analysis is 63,476. We randomly divide this dataset into an in-sample
training (80%) and out-of-sample test (20%) set. Note that there is no validation set
because the process of selecting non-parametric distributions and input variables will
be performed automatically by the fitting algorithm applied in the proposed model.

Following Van Gestel et al. (2006), outliers are handled by winsorisation, by truncating

outliers at m + 3s, where m is the median, s = leé?%/ and IQR is the interquartile
range.
Variable Notation Explanation
Age of account age Months since account has been opened.
Limit 1 Credit limit, i.e. maximum amount that can be drawn
from card.
Balance b Current amount drawn.
Behavioural score bsco Internal score capturing current credit quality of ac-
count.
Average paid per- paid.per9 Paid percentage is the percentage of last month’s bal-
centage past 9 ance paid by the borrower, i.e. paid amount/balance.
months
Credit utilisation cu Percentage of the limit drawn by borrower, i.e. bal-
ance/limit.
Full payment per- full.pay.per Percentage of account’s months on book in which bor-
centage rower has paid balance in full, i.e. number of full pay-

ments / age of account.

TABLE 4.1: List of available explanatory variables.
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Figure 4.1 presents the pairwise scatter plots of all variables (extracted from a random
sample of the full dataset for clearer visualisation), with histograms shown on the
main diagonal. This exploratory analysis points to various non-normal marginal
distributions and the presence of heteroscedasticity (see e.g. limit versus balance),
which quantile regression should be capable of handling. Moreover, several of the
bivariate relationships between predictors and EAD appear to be non-linear, and there
are pronounced correlations between the predictors themselves, with some apparent
asymmetric and tail dependencies that vary from one pair to another. This supports
the application of copulas and suggests potential benefits to applying the proposed

combined approach of vine copula-based quantile regression.
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FIGURE 4.1: Pairwise scatter plots with histogram extracted from a partial set of EAD data;
pairwise correlations are shown in the section above the main diagonal.

4.4 Vine copulas

A brief description of vine copulas is provided in this section. The joint multivariate
distribution F of X = (X, ..., X,) can be constructed by utilising Skalr’s theorem
(Sklar, 1959): for the marginal univariate distributions Fy, ..., F,, there exists a copula
function C: [0,1]7 — [0,1] such that F(xy,...,x,) = C(Fi(x1),...,Fy(xp)). The copula
approach allows the variable margins F;,j = 1,..., p, to be chosen from arbitrary
distributions and modelled independently from their dependence structure (reflected

by a chosen copula C). The copula C is unique when the corresponding cumulative
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marginal distribution functions in X are continuous. Under further regularity

conditions, the joint multivariate density of X can be written as:

=

flxr...,xp) =c(Fi(x1),..., Fp(xp)) - T [ fixi), (4.1)

i=1

where fi,..., f, are the marginal densities, and c(uy,...,u,) = %C(ul, oo, Up) s

the copula density. The p-dimensional c(uy, ..., u,) can be decomlposéd into a product
of BE—=) ( (condltlonal) bivariate copula densities, or so-called pair-copulas (Bedford
and Cooke, 2001). Following Aas et al. (2009), a D-vine Pair-Copula Construction

(PCC) with order X; — X» — ... — X, of the joint density f can be written as:

p

flxi..., xp) H (xk H H Cijli+1,... (Fijisa,...j—1 (xilxig1, -, xj1),

k= i=1 j=i+1
Fijiya,.. (x]|xz+1, . ,xj—1)|xi+1,~-,xj—1),

(4.2)
where foraset D C {1,...,p}andi,j € {1,...,p}\D, given Xp = xp, cij|D(-, ‘|xp) is
the (conditional) bivariate copula density associated with the conditional distributions
Fyp(xi|Xp = xp) and Fjp(x;|Xp = xp). A common simplifying assumption of the
pair-copulas is made here that ¢;;p does not depend on the conditioning vector Xp,
i.e. cjjp(+,|xp) = cjjp(, ). For more explanations, see Stober et al. (2013). If all
marginal distributions are uniformly distributed, the PCC is called a D-vine copula.
We exemplify a four-dimensional D-vine copula with order X; — X, — X3 — Xj:

flxy, 20, %3, x4) =f1(x1) - fa(x2) - fa(x3) - fa(xa) - cra(Fr(x1), Fa(x2)) - c23(Fa(x2), F3(x3))-

c34(F3(x3), Fa(xa)) - cagp(Frpp(x1]x2), Fapp(x3]x2))-

Co43(Fo3(x2lx3), Fyz(xa|x3)) - c1ap23(Fijaz(x1|x2, x3), Fypps (xa]x2, x3)).

(4.3)

This example clearly depicts an advantage of vine copulas, that is, each pair-copula
can be chosen independently from each other to match the dependency pattern
between the associated variable pair seen in the data. The first commonly-used class
of bivariate copulas are parametric copulas, which comprise two main families: the
elliptical copulas (e.g. Student-t and Gaussian) and the Archimedean copulas (e.g.
Frank, Gumbel, and Joe). However, parametric copulas bear the risk of being wrongly
specified and are likely to be inefficient when handling data-specific dependence
structures such as non-monotonic relationships (Dette et al., 2014). As a remedy, the
second class of non-parametric copulas has been proposed. Penalised and
non-penalised Bernstein polynomials were utilised by Kauermann and Schellhase
(2013) and Scheffer and Weif3 (2016), respectively, whilst Nagler and Czado (2016)
applied kernel estimators. We adopt the kernel weighted local likelihood technique,
based on a common transformation trick introduced in Nagler et al. (2017), to estimate

non-parametric bivariate copulas, because it has been proved (Nagler et al., 2017) to
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perform best among the aforementioned methods if there is a strong tail dependence

between the variables (which is our expected scenario for the EAD dataset).

Since the variables of interest, X;, can be assigned exchangeably, the vine copula
structures are not unique and could be represented in an abundance of combinations,
especially for high-dimensional data. To help organise them, Bedford and Cooke
(2002) depicted vine copulas through a nested sequence of trees known as dependence
trees. Figure 4.2 displays a four-dimensional D-vine structure from Equation (4.3). The
marginal densities f1, f2, f3, f4 are the nodes in the first tree T7, whereas each edge,
connected by the nodes, represents a pair-copula. The nodes for a tree Tj; are then
formed by the edges of a lower tree Tj,j = 1, ..., p — 2, and the construction of nodes
and edges for the subsequent trees is sequentially performed until the last tree T, ;.
Hence, the D-vine tree is useful for decomposing the multivariate copula into a

product of bivariate copulas because the initial tree, T;, can determine the entire

structure.
12 23 34
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FIGURE 4.2: A four-dimensional D-vine with order X; — X, — X3 — X4; each edge represents
a pair-copula.

The conditional distributions F;p (x;[xp) in Equation (4.2) can be estimated recursively

based on pair-copulas from the respective lower trees, as follows:

Fyp(xilxp) = hyp_,(Fyp_,(xilxp_,), Fyjp_, (x1]xp_,)), (4.4)

where ! € Dand D_; := D\{l}, and fori,j ¢ D and i < j, the h-functions associated

with the (conditional) bivariate copula function Cj;p are defined as

9Cyp (u,v) 9Cijp (u,0)
d

hijip(u,v) = =15 and hjp(u,v) = ———. For example, the first component

Fyj23 (x1]x2, x3) of C14)23 from Tree 3 (in Figure 4.2) can be evaluated via the h-functions
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related to Ciz2, Ci2, and Cy3 from the first two trees:

Fyps(x1]x2, x3) = hygp(Fip(x1]x2), F3p(x3x2))
= hygp(h12(F1(x1), F2(x2)), ha2 (F3(x3), F2(x2)))-

Hence, Equation (4.4) allows us to estimate the joint multivariate density, f(x1...,x,),
in Equation (4.2), from the marginal univariate distributions, Fy, ..., Fy, and
pair-copulas, C;;.

4.5 Statistical models

In this section, we explain how to predict the conditional quantile of the response
(Exposure At Default), Y ~ Fy, given the outcome of a set of p continuous covariates,
Xj~F,j=1,...,p, from either the proposed D-vine copula-based quantile regression
model or a classical linear quantile regression model. An OLS linear regression is also

specified, which will serve as a benchmark for a subsequent performance comparison.

4.5.1 D-vine copula-based quantile regression

In the D-vine copula-based quantile regression model (henceforth referred to DVQR),
the conditional « quantile, for « € (0,1), is calculated as:

Gu(X1, ..., Xp) = F;ﬁ(l,...,xp (a|xi, ..., xp), 4.5)

where F is the multivariate joint distribution of Y, X, ..., X, established from a
D-vine copula. By using Skalr’s theorem and the probability integral transform (PIT),
V = Fy(Y) and U; := F;(X;) with corresponding PIT values v := Fy(y) and

u; == Fj(xj), we obtain:

PY|X1,...,Xp(y|x1"'"xP) =P(Y <y[X1=2x1,...,Xp = xp)
:P(Fy(y) S 'U|F1(X1) = Uy,.. "FP(XP) = Llp)
:Cv‘ulw.,up (U|M], ey Mp).
That is, Cyyy,,...u, is the conditional distribution of V' given (Uy, ..., U,) associated

with the conditional distribution function of Y given (X, ..., Xp). Thus,
Equation (4.5) can be expressed as follows:

Gu(X1,...,%p) = F;I(C;‘lulwup(amh o Up))

o (4.6)
= B (Cyyy, o (@R (x1), - Fp(xp))).
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Hence, the conditional quantile can be derived by estimating the univariate
distributions Fy and F; and the (p + 1)-dimensional copula Cy y,,...u ,- This shows that
DVQR permits us to separately model the margins and their dependencies, and does
not make any restrictive assumptions on the shape of conditional quantiles. Note that
the closed form of the conditional quantile can be expressed only in a purely
continuous setting. In contrast, if there are discrete variables, we need to refer to
Schallhorn et al. (2017) and compute the conditional quantile by numerically inverting
the conditional distribution function.

The conditional quantile, shown in Equation (4.6), can be extracted analytically by
applying the recursion in Equation (4.4) and expressing Cv,u,..,u, in terms of nested

h-functions. A four-dimensional example is provided below.

Cv|u1 Uy, Us vluy, uz, u3)

hy oy (Cviu (01u1), Cyju, (u2l11)), by ju, (Cug i, (us|142), Cuyu, (H1]12)))

= hy s un,uz My, u, (v, (0, u1), o, (2, u1)), by u, (hus,u, (43, 12), by, (41, 42))),

(
= hy JUs|U1, UZ(CV\Ul,Uz (vlur, uz), Cus\ul,uz (us|uy, uz))
= hy Uz U, ua(

(

the inverted function of which is

C\;|1u] s (& |u1, 2, u3)

= hV,lLll [ Vv Uz“«h{ v u3‘u1 U, (IX, hLI3,LI1\U2 (hUS,Lb (u3/ uz), hulru2 (ulf u2)))/ hUz,U1 (Mz, ul)}/ ul]'

Since Cv|u . (alug, ..., up) is monotonically increasing with «, the problem of
..... »
different x quantile functions crossing each other is naturally eliminated (Kraus and

Czado, 2017).

We consider two submodels: parametric DVQR (P-DVQR), in which bivariate copulas
are chosen exclusively from parametric families, and non-parametric DVQR
(NP-DVQR), where bivariate copulas are estimated non-parametrically. The former
includes Gaussian, Student-t, Clayton, Gumbel, Joe, Frank, Clayton-Gumbel,
Joe-Gumbel, Joe-Clayton, Joe-Frank copulas, and their rotations (Nelsen, 2006). The

estimation of the variable distributions Fy and F; and the copula Cy u,,..u, are

performed in two steps, using a recent computational method for the DVQR proposed
by Kraus and Czado (2017) and implemented in the R package vinereg (Nagler and
Kraus, 2019). First, the marginal distributions, Fy and F;, are estimated
non-parametrically by a kernel smoothing method (Parzen, 1962). Given a sample
(x(l), s, x(”)) € R", where 7 is the number of observations, the estimator is

Fx) =1y, K(x*}f(i) ), where K(x) == [ _ k() dt with k(-) being a symmetric
probability density function and /& > 0 a bandwidth parameter developed in Duong
(2016). More specifically, the bandwidth is defined as:
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h = argmin /Oo E(F(x) — E(x))%dx,

h —0o0

i.e. it minimises the mean integrated squared error of the estimated kernel
distribution. This bandwidth selection approach provides a desirable property as it
optimally finds a trade-off between oversmoothing (more smooth fitted curve with
correspondingly less accuracy) and undersmoothing. Subsequently, the estimated Fy
and 15]- are used to transform the data from their original scale to pseudo copula data in

[0,1] scale: () := Fy(y®) and ﬁ](.i) = ?j(x](i)),]' =1,...,pi=1,...,n

In the second step, the multivariate copula Cy .. u, is fitted by a D-vine copula with
the copula data generated from the previous step. Two stages are involved:
establishing the dependence (vine) structure and drawing statistical inferences on
pair-copulas. First, the vine is constructed by fixing the response V at the initial node
in the first tree and choosing the order of other covariate variables U; with the
objective of maximising the predictive strength of the model. The order (from high to
low) of the explanatory power of a covariate is therefore reflected by its position in the
tirst tree (from left to right). An algorithm similar to a forward stepwise method is
employed. Hence, variable selection is accomplished automatically, by sequentially
adding the most influential covariate that improves the model’s fit, measured by the
conditional log-likelihood for the response given the set of covariates, i.e.

Yimilog ey, u, (o) |u§i), cee, ug) ), where Cy|u,,...u, is the copula density associated

obtained. Second, a bivariate copula selection is performed based on the Akaike
Information Criterion (AIC). Denote the ordering vector (I,...,! p)T a permutation of
(1,...,p)T demonstrating the covariate’s order in the vine tree. When a new covariate
Uy, k=2,3,...,p,is being added to the current D-vine with order

V — U, — ...~ U,_,, the AIC-optimal pair-copulas and their parameters (Genest
and Favre, 2007) are selected from different choices of bivariate copulas. This process
determines the pair-copulas between the response and the new covariate,

CV,Uzk Uiyl 73S well as those among the existing covariates and the new covariate,
Cuzl,Uzk\Uzz ,,,,, u, s CAUzerzkIUz3,-~-,Uzk,1' ce, éuzk,lfulk' To tackle a wide range of
dependencies, we consider the Gaussian (N), Student-t (t), Clayton (C), Gumbel (G),
Joe (J), Frank (F), Clayton-Gumbel (BB1), Joe-Gumbel (BB6), Joe-Clayton (BB7),
Joe-Frank (BB8) copulas, and their rotations (Nelsen, 2006), as potential parametric
choices; in addition, we consider the independence copula and a transformation
kernel technique for the non-parametric choices (Nagler et al., 2017). These estimated
pair-copulas are the basis of h-functions used to calculate év,ul,..,,up and, hence, the
conditional quantile as shown in Equation (4.6). Figure 4.3 summarises the procedures

in the estimation process.
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For a given sample of a response Y := ()/("))i:1 , and covariates

i
Xj = (xj( ))jzl,...,p,izl,...,n-

l

First Step: Estimate marginal distributions F,, and Fj j—;,_ , by a
kernel smoothing method (Parzen, 1962).

|

Transform the Qbserved to pseudo copula data: @ := F;,(y(i)) and
ﬁ]m =E(x®)forj=1,..,p, i=1,..,n

|

Second step: With the copula data (V, Uy, ..., Up)T, start the initial
node with V and introduce the covariate U, that provides the greatest
improvement to the model's fit, measured by the conditional log-
likelihood (cll). The AIC-optimal pair copulas (Genest and Favre,
2007) for each variable pair (V, U;) can be chosen either from
parametric or non-parametric choices.

Fork=2, ..., p, extend the current tree V — U — --- — U;,_ by
further adding the remaining covariate U;, corresponding to the
highest cll and fitting the needed pair-copulas. Repeat this step until
there is no improvement in cll.

FIGURE 4.3: Scheme of the DVQR estimation process.

Therefore, the proposed estimation process results in a parsimonious flexible model,
avoids multicollinearity problems, and removes the need for variable transformations
due to the relaxed assumptions on how the covariates influence the response and the
flexible distribution class for marginals. The computational time is reliably fast. For
example, the elapsed time for fitting the NP-DVQR model with 50,750 dataset is six
minutes on the high performance IRIDIS 5 compute cluster with dual 2.0 GHz Intel
Skylake processors and 192 GB of DDR4 memory. For extensive details, see Kraus and
Czado (2017).
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4.5.2 Linear quantile regression

The predicted conditional quantile derived from a linear quantile regression (referred
to as LOQR) (Koenker and Bassett, 1978) is assumed to be linear in the predictors, i.e.

s () i)y ._ 2 Da (D)
Gu(xy’, ., xp7) ﬁo(a)+2[3](uc)x] , 4.7)
=1

wherei =1,...,n. It allows each quantile to be modelled individually by separate
regressions. The unknown parameters B(a) € RP*! are estimated with the

minimisation problem

p .
i o0 = (Bole) + 3 )5,
where p, (1) = u(a —I(u < 0)) and I is an indicator function. In contrast to a
symmetrically quadratic loss function used in the OLS, here, residuals are weighted
by an asymmetric loss function p,. For upper quantile levels « € (0.5,1), positive
residuals, or equivalently underestimations, are subjected to heavier loss by the
weight & € (0.5,1) than negative residuals (overestimations) by the weight 1 — a. This
results in an unbiased, consistent, and asymptotically normally distributed estimator

for the a quantile regression (Kriiger and Rosch, 2017).

4.5.3 Linear regression

We introduce the OLS linear regression model (referred to as OLS) as a benchmark
model with the formulation

o150 0 2 vl
VX7, LX) = o+ Y BiX 4+ €, (4.8)

where the errors () are assumed to be independent of each other with mean zero and
equally constant variance ¢2. The unknown parameters 8 € R?*! are estimated with

the minimisation problem

. p .
min (y(l) — (Bo+ Eﬁjx](z)))l
]:

ﬂe]Rp‘Fl

We calculate the predicted conditional quantile by fitting a normal distribution for
estimated errors. Hence, the conditional Y!Xf), el Xr(,i) is normally distributed with
mean y(i) = BO + ):le B]-x](i) and variance ¢, and ﬁa(xii), e, x;(,i)) = Nfl(oc|y(i), 0?),
where N~ ! is the inverse normal CDF. Note that the choice of benchmarking the OLS

model for quantile regression is because it is a standard method commonly applied in
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EAD modelling literature. Moreover, the implementation of OLS allows us to inspect
the changes in predictor effects when different levels of EAD quantiles are focused
rather than its mean level.

4.6 Analyses and results

4.6.1 Parameter estimates

Variable T=0025 T1=050 7=0975 OLS
(Intercept) -720 (1059)  -14144** (879) -101834** (5113) -52840"* (1799)
Age of account -0.62 (0.87) -4.72** (0.13) 40.68"* (7.96)  -6.40"* (1.64)
Limit -0.09** (0.01) 0.35** (0.03) 1.58** (0.07) 0.32** (0.004)
Balance 1.01** (0.02) 0.71** (0.03) -0.33** (0.07) 0.78** (0.005)
Behavioural score 3.61% (1.48) 24.27** (0.53) 145" (6.96) 91.18** (2.53)
Paid percentage -1999** (572) -177 (195) 10.83 (2660) -7814** (685)
Credit utilisation -1477* (377) -1434* (785)  13802** (2161) -5367** (443)
Full payment percentage -2820** (677) -35.34 (76.78) 1861 (2082) -3469** (483)

TABLE 4.2: Parameter estimates of the linear quantile model for the 0.025, 0.50, and 0.975 quan-
tiles. Standard errors are given in parentheses by kernel estimates. Significance level is indicated
by *(5%) and **(1%). The last column represents the OLS estimates.

(Intercept) age

b bsco paid.per9

full.pay.per

FIGURE 4.4: Parameter estimates with 95% confidence intervals of the linear (red) and linear
quantile (grey) models with respective quantile levels on x-axis. Standard errors are estimated
by kernel estimates.
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In Table 4.2, we compare the parameter estimates of the linear quantile model (LQR)
for the 0.025, 0.50, and 0.975 quantiles, with the coefficients of the OLS linear model
(OLS). As observed from the table, the significance and level of the LQR estimates
strongly depend on the associated predictive quantile. For example, the effects of paid
percentage and full payment percentage are not statistically different from zero at the
0.5 and 0.975 quantiles, whereas, at the opposite end of the distribution, the EADs at
the 0.025 quantile are not significantly related to the account’s age. The full plots for
all quantiles are provided in Figure 4.4. As depicted, OLS yields a single set of
parameter estimates (for the conditional EAD mean), whereas LQR produces
estimates that depend on the quantile being considered. For instance, the effect of the
credit limit on the EAD appears negligible for the lower quantiles but very strong for
the upper ones, which is intuitive as the limit acts as an upper ceiling. Some predictors
also exhibit opposite effects; for example, utilisation rate has a positive effect on the
right EAD tail whilst its impact on the left tail is negative, suggesting that greater card
activity may widen the EAD distribution. Interestingly, most predictors, namely limit,
balance, account’s age, rating score, and credit utilisation, influence EAD more
strongly at the upper quantiles, implying that they should feature more prominently
when a more conservative EAD risk estimate (such as the 99% value-at-risk), as
opposed to a point estimate for the conditional mean, is required. In contrast, OLS is
unable to capture non-constant variable effects, leading to substantially different (and

possibly distorted) parameter estimates compared to the LQR estimates.

4.6.2 Vine copula dependence structure

In this subsection, we analyse the selection of vine structure, as well as a set of
pair-copulas and their respective estimated parameters, for the D-vine copula-based
quantile regression models. An algorithm similar to a forward variable selection is
used to determine the order of the first tree (and thus the complete structure) in
D-vine, and the best fitting pair-copula for each variable pair is identified using the

AIC criterion.

Figure 4.5 exhibits the estimated D-vine with parametric copulas (P-DVQR), where
each row represents a tree and its respective edges, with the first tree located at the
bottom. The chosen AIC-optimal pair-copulas result in the presented contour plots,
reflecting the joint PDF of the variable pair; their maximum likelihood estimates and
Kendall’s tau are shown in Table 4.3. The bottom row of Figure 4.5 shows all variables
ordered by their explanatory power, the leftmost (rightmost) variable being the
strongest (weakest) predictor, respectively. Balance thus has the strongest effect on
EAD, followed by limit, rating score, utilisation rate, full payment percentage, paid
percentage, and account’s age. The selection of the Student-t copula with a high
Kendall’s Tau of 0.75 (see top row of Table 4.3) suggests that the underlying
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FIGURE 4.5: Estimated D-vine with parametric copulas and contour plots displaying the joint
PDF of variable pairs with the first component on x-axis and the second on y-axis. The order of
the D-vine is EAD — b — 1 — bsco — cu — full.pay.per — paid.per9 — age.

dependence between EAD and balance is strongly positive and symmetric, exhibiting
both upper and lower tail dependence. That is, balance at default and current balance
are expected to move in the same direction, especially in the tails of their distributions.
Similarly, the conditional dependence between EAD and limit given balance (see the
13]4 variable pair entry of the second tree in Table 4.3) is also captured by the t copula
but with a weaker rank correlation of 0.51. Rating score shows a decent correlation
with EAD, with a mild positive upper tail dependence implied by the Joe-Frank (BBS8)
copula (see the 15|34 entry of the third tree in Table 4.3). The dependencies between
EAD and the other covariates are relatively weak. Several strongly related variable
pairs are also found among the explanatory variables themselves. Similarly to EAD
and limit earlier, balance (now prior to default) and limit are highly correlated at high
values but only mildly correlated elsewhere (see the second plot at the bottom row of
Figure 4.5). A similar dependence pattern is seen for full payment percentage versus
paid percentage (see the sixth plot at the bottom row of Figure 4.5), albeit to a lesser
degree. Credit utilisation and credit score are also strongly related, exhibiting negative
upper and lower tail dependencies (see the fourth plot at the bottom row of

Figure 4.5); hence, higher (lower) card utilisation is indicative of a lower (higher)
credit score, respectively. In summary, the majority of the selected pair-copulas are not
symmetric and exhibit a range of different tail dependence patterns, which is not
surprising for a financial dataset (see e.g. Kraus and Czado (2017)). Compared to a

conventional correlation analysis, copulas thus provide deeper insights into the
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Tree Variable Pair Copula family Rotation Parameter1 Parameter2 Tau

1 14 t 0 0.92 2.00 0.75
1 43 BB8 0 4.42 0.95 0.61
1 35 BB8 0 248 0.50 0.13
1 57 t 0 0.69 5.10 -0.48
1 78 BB8 90 1.78 0.92 -0.23
1 86 BBS8 0 1.66 0.99 0.26
1 62 BB8 270 1.92 0.74 -0.16
2 13]4 t 0 0.72 2.18 0.51
2 45|3 BB8 90 4.23 0.64 -0.36
2 37|5 BB8 90 1.06 0.99 -0.03
2 58|7 BB8 0 1.20 1.00 0.11
2 76|8 BB7 90 1.55 0.01 -0.24
2 82|6 BB7 180 1.34 0.10 0.19
3 15|34 BB8 0 1.49 0.85 0.12
3 47|53 t 0 0.66 29.56 0.46
3 38|75 BB7 180 1.06 0.11 0.08
3 56|87 t 0 0.22 9.65 0.14
3 72|68 t 0 -0.03 50.00 -0.02
4 17|534 BB1 90 0.07 1.01 -0.04
4 48|753 Joe 270 1.1 - -0.07
4 36|875 BBS8 270 2.38 0.66 -0.19
4 52|687 BB8 0 3.31 0.35 0.12
5 18|7534 BBS8 180 1.06 0.99 0.03
5 46|8753 BB8 270 2.14 0.39 -0.07
5 32|6875 BB1 180 0.08 1.09 0.12
6 16|87534 BBS8 180 1.08 0.95 0.03
6 42168753 BB8 270 1.34 0.59 -0.04
7 12|687534 BBS8 90 1.09 0.91 -0.03

TABLE 4.3: Maximum likelihood estimates and Kendall’s tau for AIC-optimal pair copulas.
The variables are (1) EAD, (2) Age of account, (3) Limit, (4) Balance, (5) Behavioural score, (6)
Average paid percentage past 9 months, (7) Credit utilisation, (8) Full payment percentage.

relationships between EAD and the other variables of interest.

Since parametric copulas could wrongly specify non-monotonic dependence
structures (which are observed in our EAD dataset, see Figure 4.1), we extend the
CGAMLSS analysis to also include non-parametric copulas. Figure 4.6 displays an
estimated D-vine with non-parametric copulas (NP-DVQR). The D-vine order of
NP-DVQR resembles that of P-DVQR with a slight difference in the order of
utilisation rate and full payment percentage. None of the pair-copulas are modelled
by the independence copula, which supports the existence of multicollinearity among
our variables of interest. For the most part, the dependence structures of the estimated
non-parametric pair-copulas are similar to their parametric counterparts. However,
they reflect more realistic characteristics of the variables, and thus avoid

misspecification. For instance, for the first two edges in the first tree, pair-copulas are
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FIGURE 4.6: Estimated D-vine with non-parametric copulas and contour plots displaying the
joint PDF of variable pairs with the first component on x-axis and the second on y-axis. The
order of the D-vine is EAD — b — 1 — bsco — full.pay.per — cu — paid.per9 — age.
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estimated so that EAD most of the time exceeds the balance prior to default (see the
tirst edge, or lower-left plot, for EAD-b) and balance tends to be smaller than the limit
(see the second edge, b-1), both of which are intuitive. In contrast, the P-DVQR results
did not yet capture that exposure tends to increase in the race to default and that

balance normally stays within the limit.

4.6.3 Effects of predictors

Figure 4.7 shows the partial effect plots for the different models, depicting how each
predictor influences the response assuming that all other covariates are fixed at their
respective mean levels. More specifically, they show the marginal effects on the
conditional mean, E(Y|Xj, ..., X;), and on the 0.025, 0.5 and 0.975 conditional
quantiles, g, (x1, ..., xp), of EAD. The conditional mean for the quantile regression
models is computed based on an average of a series of {1/11,2/11,...,10/11}

quantiles.

In the OLS (top-left panel), the effects on EAD mean are, by definition, all linear;

considering the scale on the y-axis, balance is the variable that has the largest effect.
Next, LOR (top-right panel) is able to provide deeper insights into how these effects
further vary depending on the EAD quantile of interest, showing that the impact of

limit (1), credit score (bsco), and utilisation rate (cu) on the 0.975 quantile is much
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stronger than for the lower quantiles. Interestingly, the differing slopes in the LQOR
effect plots for limit and balance suggest that whereas limit is a key driver for the 0.975
quantile, balance is the more important driver for the 0.025 quantile. Also, 95%
prediction intervals can be derived by contrasting the variable effect plots for the 0.025
and 0.975 quantiles. These suggest a much wider prediction interval and, hence,
greater variability in EAD as the credit limit increases (again, keeping other variables
constant). Conversely, paid percentage and full payment percentage, having roughly
parallel effect plots, do not appear to impact the width of the prediction interval by
much. The LOR estimates, however, are prone to quantile crossing. In the result plots

\ \ /%;?

(a) Partial effect plots in OLS. (b) Partial effect plots in LQR.
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(c) Partial effect plots in P-DVQR. (d) Partial effect plots in NP-DVQR.

FIGURE 4.7: Partial effect plots of predictors on the conditional mean and 0.025, 0.5 and 0.975
conditional quantiles of EAD.

for limit and balance, the effect lines indeed cross each other, thus causing
interpretation difficulties. For example, other things being equal, when balance
exceeds 75,000, the top-right plot appears to suggest a lower EAD value at the 0.975
quantile than at the 0.025 quantile, which is clearly counter-intuitive. The D-vine
copula models (DVQR), shown in the bottom panel of the figure, resolve this problem
by computing quantiles from Equation (4.6) so that none of the effect lines cross each
other. For example, in the effect plots for balance, the quantile order is now preserved.
Another advantage of theirs is that the assumption of linearity is lifted, permitting
conditional EAD quantiles to be non-linearly and non-monotonically related to the
covariates. For example, some non-monotonicity is now observed with regards to the
impact of the credit limit. Interestingly, the non-parametric model (NP-DVQR) is the
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only to suggest a drop-off in EAD for the subgroup of accounts that were awarded the
high credit limits at 200,000 by the bank.

4.6.4 EAD quantile distributions

Figure 4.8a compares the density plot for the actual EAD values with those for the
point estimates (conditional EAD mean) produced by each model. Since EAD cannot
take negative values, we fit the probability density function by zero-truncated kernel

density estimation with a Gaussian kernel and weight w(x) , Where h is the

1
bandwidth and & is the cumulative distribution function of a éaj;lgi(g)n distribution
with mean x and standard deviation /. The objective is to truncate the density on the
negative side at zero and up-weight the data that are close to zero. We can see that the
non-parametric DVQR provides the best fit to the empirical distribution, followed by
the parametric DVQR model. Instead, OLS and LQR misspecify and overestimate
EAD at the lower end. Hence, there is a positive gain to using the vine copula models.
In the right panel, Figure 4.8b displays the density plots for three different conditional
quantiles produced by LQR, P-DVQR and NP-DVQR. In line with expectation, the
upper quantile (0.975) predictions all exhibit a heavy tail property. Among these, LOR
produces the longest right tail, leading to the largest 97.5% value-at-risk for EAD.

oLs LQR LQR P-DVQR
]

P-DVQR NP-DVQR

(a) Density plots for the actual vs pre- (b) Density plots of predicted EAD

dicted EAD fitted by zero-truncated quantiles at 0.025, 0.5 and 0.975 quan-

weighted kernel density estimates. tile levels fitted by zero-truncated
Predicted EAD mean is used. weighted kernel density estimates.

FIGURE 4.8: Density plots of predicted EAD.

4.6.5 Model performance

In order to evaluate how competitive the models are relative to each other, we conduct
an out-of-sample predictive performance test containing 7. data points, where 1
is the sample size (20%) of the test set. We consider both the quality of the predicted
EAD quantiles, as well as that of the point and interval estimates of EAD.
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4.6.5.1 Accuracy of predicted quantiles

First, we inspect the predictive accuracy of the predicted conditional EAD quantiles at
level w € {0.01,...,0.99}. Unlike the actual values observed in the test set, true
regression quantiles remain unobserved. For that reason, Komunjer (2013) suggested
the use of average a-weighted absolute error, WAE(«), defined as:

Niest

Y oa(y® =4y,

Ntest i=1

WAE(a) =

where y() is the actual value of EAD for the i-th observation in the test set,
qgf) = du (xgi),. e xg,i)) is the predicted conditional « quantile, and
pu(tt) = u(a —I(u < 0)) is an asymmetric loss or check function. A lower WAE(«)
denotes better performance. Second, as a counterpart to the coefficient of
determination, the model fit is assessed by a goodness-of-fit measure, R!(«), proposed
by Koenker and Machado (1999):

| L ou(y? — i)

Ri(a)=1—- = .
L 0a (Y = ya)

7

where 14, is the sample size (80%) of the training set and y, is the alpha quantile of
all EAD values observed in the training set. The larger the R!(a), the better the model
fit. Haupt et al. (2011) stated that WAE(a) and R'(a) seem to be a more natural way to
evaluate the fit and predictive performance for Li-norm based estimations such as

quantile regressions rather than R? and the average absolute or squared errors.

Figure 4.9 thus depicts the performance of the conditional quantile predictions at

a € {0.01,...,0.99} for all four models. Where out-of-sample predictive accuracy is
concerned (top panel), LQR and NP-DVQR produce the lowest weighted absolute
errors and substantially outperform OLS for any quantile other than the median.
Between the two vine copula models, the non-parametric one clearly outperforms the
parametric one. A logical explanation for this lies in the presence of non-monotonic
relationships between several pairs of variables in our dataset (see e.g. EAD and
utilisation rate in Figure 4.1), which cannot be correctly modelled by a parametric
copula (Dette et al., 2014). This misspecification appears to affect the model, making it
perform even worse than the simple linear model at some of the quantiles. In
addition, due to the fact that P-DVQR models the dependence of variable pairs
through a set of parameter(s), it intrinsically imposes a particular dependence shape
which could be different from the actual one. For example, the estimated t copula
from the P-DVQR model (see the lower-left plot in Figure 4.5) exhibits a symmetrical
pattern between EAD and balance which means EAD is allowed to be smaller than the
balance, contrasting to the real observations. This parametric formulation might
deteriorate the model performance. Although being relatively close, NP-DVQR
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FIGURE 4.9: Performance measurements of the predicted conditional quantiles for OLS, LQR,
P-DVQR and NP-DVQR: weighted absolute error (top) and model fitness (bottom).

Quantile level

performs better for the middle quantile predictions, whereas LQR is superior in the

lower and upper tails. The model fitness results (bottom panel) lead to similar

conclusions. In summary, in order to gain a better model for conditional EAD quantile

estimation, one should apply a quantile regression method, specifically LQR or

NP-DVQR, rather than a conventional linear model.

4.6.5.2 Quality of point and interval estimates

To evaluate the quality of the point estimates at the mean level, we use the mean

absolute error (MAE) as the prediction score metric. In addition, several scoring rules

for probabilistic forecasts are presented to assess the interval estimates and predicted

distributions, namely the logarithmic score (LogS), the quadratic score (QS), the

interval score (IS), and the integrated Brier score (IBS). As pointed out by Chang and

Joe (2019), scoring rules such as these are more meaningful than MAE when there is

heteroscedasticity in the conditional distribution. For every observation in the test set,

the conditional expectation of EAD provides the point estimate for the MAE measure.
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To produce the interval scores, 95% prediction intervals bounded by the 0.025 and
0.975 quantile levels are taken as the interval estimates. The performance measures are
defined as follows (Gneiting and Raftery, 2007). Firstly,

1 Niest

> Iy =99,

Ntest i=1

MAE =

where (") is the predicted conditional expectation of EAD. Second, the logarithmic
and quadratic scores measure the quality of the predicted density (the latter

incorporating an L, penalty term), as follows:

Logs = - Y logfyx(yx?),
test j—q
1 Niest R . ; 00 ;
Qs = . 5 |2 fontr ) - [ oty
test ;—q —o00

where (x(i), y(i)) are the actual observations and fy|x is the predicted conditional PDF.
Third, the interval score evaluates interval forecasts rewarding narrow prediction

intervals whilst penalising observations falling outside those intervals. Specifically,

1 Niest

IS — (0 — 10y 4 g(ﬂz‘) _ )iy < 10} 4 i(ym — Iy > ﬁm}} ,

Ntest i=1
where, for a (1 — «)100% prediction interval, [!) and 71() are the predicted lower and
upper bounds at quantile levels /2 and 1 — a /2, respectively. We select & = 0.05.
Lastly, the integrated Brier score provides a performance measure for the predicted

cumulative distribution:

1 Tdest poo (i) (i) 2
IBS = Z/ [FY\X(V|X ) -y >y }] dy,

Ntest i=1Y—®

where ﬁy‘x denotes the predicted conditional CDF.

Model MAE| LogStT QSt IS| IBS|

OLS 9871 -11.34  2.19e-05 62695 7042
LOR 9322 - - 42979 -

P-DVQR 11400 -10.48 8.81e-05 45689 8677
NP-DVQR 8572 -10.04 9.85e-05 41795 6129

TABLE 4.4: Performance results for point and interval estimates as well as distributions (bold
face indicates best performance). The arrows indicate that lower values for MAE, IS and IBS,
and higher values for LogS and QS, imply better performance.

Table 4.4 summarises the performance of all models according to these metrics. Note
that, as the predictive density and cumulative distributions of the response for LQR
cannot be extracted analytically, its LogS, QS and IBS were excluded. Compared with
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OLS, we observe that LQR produces better point and interval estimates (see lower
MAE and IS, respectively). In particular, the substantial reduction in IS confirms that
the linear quantile regression model is capable of providing a much more reliable
prediction interval than the linear model. However, LQR is itself outperformed by
non-parametric DVQR, which yields even better point and interval estimates. In fact,
NP-DVQR exhibits superior performance on all five measures, so it is the preferred
method regardless of the intended model application. Again, to avoid
misspecification of the dependencies, it proves important to use non-parametric
DVQR, as P-DVQR shows poorer performance relative to NP-DVQR.
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FIGURE 4.10: Residual vs. fitted plots extracted from a sample of EAD data (for clearer visual-
isation). Black dots denote the residuals; the red and blue dots are the lower and upper bound
of the prediction intervals, respectively.

Figure 4.10 contains residual plots for all models, including the 95% model prediction
intervals plotted against fitted mean values. As shown, all quantile regression models
capture the conditional heteroscedasticity, producing a wider prediction interval as
fitted values increase. Conversely, OLS fails to reflect this, as its prediction interval
does not further widen for much of the value range. This explains why LQR and
DVQR models provide more precise prediction intervals than OLS, according to the

interval scores shown earlier in Table 4.4.
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4.7 Conclusions and future research

Using a large dataset of credit card defaults, this paper has applied linear and D-vine
copula-based quantile regression models to predict conditional quantiles of the
Exposure At Default (EAD), i.e. the card balance at default time. Exploratory data
analysis revealed that the marginal distributions of EAD and its covariates are
non-normal, have high variance and exhibit heteroscedasticity. Hence, interval
estimate models, such as quantile regression, that make no parametric distribution
assumption and do not require constant variance, are generally more suitable for
modelling such data than point estimate models such as OLS linear regression.
Quantile regression models also have the added advantage of allowing for the
variable effects to differ depending on the EAD quantile of interest. For example, our
analyses have shown that the credit limit has a substantially larger impact on higher
EAD quantiles (and thus tail risk) than on its mean or lower quantiles. Furthermore,
we observed an improvement in the predicted conditional quantiles and the point and
interval estimates for EAD when the quantile models are employed instead of the OLS
model.

Among the different quantile models tried in the paper, the D-vine copula models
have distinct advantages over the linear quantile model, as they address two problems
that may be associated with classical quantile regression: the occurrence of quantile
crossings and multicollinearity problems. Specifically, the pair-copulas fitted by the
newly proposed D-vine quantile regression also produce deeper insights into the
complex high-dimensional dependence structure between EAD and the covariates, as
well as between the covariates themselves. We thus detected several pairwise
asymmetric and tail dependencies that are overlooked by the other methods,
including, for example, pronounced tail dependence between EAD and the current
credit limit. Also, the method revealed non-linear and non-monotonic predictor
effects at several EAD quantile levels. What’s more, a predictive performance
comparison on the real-life data showed that the D-vine copula quantile regression
model with non-parametric copulas outperforms the other models, yielding better
point and interval estimates for EAD than the linear quantile model, and more closely
reflecting the actual distribution of EAD than the OLS linear model. In summary, we
conclude that non-parametric D-vine copula-based quantile regression is a highly
attractive approach when predictions of conditional quantiles and interval estimates
for EAD are required.

A future avenue of research is to model another Basel risk parameter, namely the Loss
Given Default (LGD), using vine copula-based quantile regression. Similarly to EAD
data, variables in LGD datasets are often found to be correlated through asymmetric
and non-linear structures, making conventional correlation analysis unsuitable.

Moreover, estimating the upper tail or higher quantiles of LGD is again more relevant
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for calculating unexpected losses or required capital than estimating the average
value. By utilising the proposed method to model LGD, we conjecture that point and

interval estimates can be similarly improved.






129

Chapter 5

Conclusions and future research

This three-paper thesis contributes to the consumer credit risk literature by modelling
Exposure At Default (EAD) for credit card portfolios. Three novel EAD models have
been developed and tested on real-life data to improve the predictive performance

and gain additional interpretation insights.

In the first paper, two distinct groups of card borrowers were considered: those whose
balance hits the limit in the race to default, i.e. those who “max out” their card, and
those who do not. It was hypothesised that not only the level of EAD but also its risk
drivers could differ substantially between these two groups. Hence, we proposed a
two-component mixture model that conditions EAD on these two respective scenarios,
using the GAMLSS framework. The proposed and other benchmark models were
empirically validated through a series of discrimination and calibration measures. The
results showed a clear performance benefit of combining the mixture component and
the GAMLSS framework over the OLS models. This confirms, consistently with what
Tong et al. (2016) and Leow and Crook (2016) reported for other datasets, that there
are indeed predictive accuracy gains to be had in EAD modelling from including
non-linear effects and targeting not only the EAD mean but also dispersion (cf. Tong
et al. (2016)), as well as from distinguishing between the two max-out scenarios (cf.
Leow and Crook (2016)). In terms of predictor effects, the current limit was found to
be the variable with the strongest impact on the mean of (non-zero) EAD, whereas the
current balance and (estimated) time to default strongly affect EAD dispersion.
Furthermore, the risk drivers for the borrowers from the two groups were shown to be
different. For instance, current balance was selected in the model for the max-out
group, but not the other group, whereas current limit was identified as being strongly
linked to dispersion only under the non-max-out scenario. Lastly, the max-out model
component of the mixture model provides banks with useful insights as to the
probability that a borrower will max out their credit card and the factors that
contribute to this. Such model component may have further applications in allowing
the bank to actively manage the credit limit of those who are most at risk.
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In the second paper, a novel approach was developed to model the Probability of
Default (PD), Exposure At Default (EAD), and their dependence, in a retail credit card
portfolio. The rationale for doing so was that previous studies have shown that
accounting for such dependence is important to avoid underestimating expected
portfolio loss and, hence, the capital requirement. A joint model for PD and EAD was
developed by applying the bivariate Copula Generalised Additive Models for
Location, Scale and Shape (CGAMLSS) framework — the first such application of this
framework in the credit risk setting. The research also explicitly addressed potential
sample selection bias, by not restricting the data to just the defaulted accounts (as
most EAD studies do), but extending the analysis to outstanding balance (rather than
balance at default time, or equivalently, EAD) in a larger sample of both defaulted and
non-defaulted accounts. This allows us to avoid potential misestimation of expected
loss when the models are applied to an entire portfolio of accounts, not only the
subsample of those that will default. To empirically validate the effectiveness of
introducing the dependence, the newly proposed copula model was benchmarked
against two standalone models, for PD and balance, which were separately
constructed and not considering such dependence. According to our dataset, the
analysis showed that accounts with higher default likelihood tended to end up having
a higher card balance. More specifically, a strong and positive dependence between
PD and balance was revealed, even after accounting for observable covariates, either
in the middle (Frank copula) or upper tail (180°Clayton copula) area of the marginal
distributions. The distribution of future balance also showed a heavier tail for
accounts that are more likely to default. In addition, a series of significant risk factors
was identified: credit rating provided the largest impact on PD, future balance was
most strongly influenced by current balance, and their dependence was most affected
by credit utilisation. Moreover, the proposed CGAMLSS model produced more
accurate and conservative expected loss estimates which, in agreement with previous
literature findings, are exhibiting a heavy tail that is the result of the correlation
between PD and credit card balance. Lastly, by, instead, ignoring such dependence or
by allowing sample selection bias, loss could be severely underestimated, on our
dataset, by a percentage error of 10.82% and 5.17%, respectively. This potentially leads
to substantial capital shortfalls. We found the proposed copula models to be better as
they overestimated the loss with smaller percentage errors of 1.16% (180°Clayton
copula) and 2.14% (Frank copula).

The third paper is the first to estimate conditional mean and quantiles and interval
estimates for EAD using a state-of-the-art quantile regression method — vine
copula-based quantile regression. We argued that this approach has several benefits.
First, similarly to other quantile regression methods, it provides further insights on the
right tail area of EAD distribution, i.e. higher quantiles of EAD, which is useful for risk
management and capital calculation. Second, the vine copula approach in particular

can be applied to model multi-dimensional dependencies among all variables in an
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EAD dataset, through a suitable series of (either parametric or non-parametric)
pair-copulas. In so doing, it avoids the multicollinearity problems faced by classical
quantile regression. Another benefit of the vine copula approach is that, unlike with
classical quantile regression, it guarantees that the regression lines of different quantile
levels do not cross each other, which facilitates their interpretation. Using a real-life
dataset of credit card accounts, our analysis further showed that the proposed model
with non-parametric copulas produced better predictive point and interval estimates
for EAD than conventional linear quantile model, and that it more closely reflected the
actual distribution of EAD compared to other models. In addition, the approach was
able to identify several pairwise asymmetric and tail dependencies between EAD and
the input variables, as well as between the input variables themselves, which would
otherwise be overlooked; for example, pronounced positive upper tail dependence
between EAD and the current credit limit was detected. This implies that additional
capital may be required for accounts with a higher limit, to cope with their higher tail
risk. Lastly, in our dataset, the estimated parametric copulas could not correctly model
the non-monotonic relationships between the variables, leading to worse performance

compared to when the non-parametric copulas were employed.

In summary, the GAMLSS framework has proved an attractive approach to model the
challenging distribution of EAD (or, more generally, credit card balance) because it
offers a wide range of options for parametric distributions which are not restricted to
the exponential family. Specifically, we recommend a zero-adjusted gamma
distribution when the observed EAD data contain several zero values and exhibit
positive skewness. Using this framework, non-monotonic relationships between the
response’s parameters and predictors can also be effectively modelled by
non-parametric splines. Second, the copula approach was found to perform effectively
in modelling the dependence between PD and balance and revealed their asymmetric
right tail dependence structure. Also, the estimated loss showed a heavier tail when
such dependence was considered. Based on these findings, copula regression could
provide an alternative method, for practitioners, to calculate required capital, in a
manner that is more conservative and, possibly, more accurately reflects the tail risk of
loss. Instead, in the scenario where the dependence between PD and EAD is not
modelled, the third paper allows one to produce EAD estimates that also incorporate
a larger margin of conservatism, by employing higher EAD quantiles rather than the
mean level. This conforms with the Basel regulation which requires more conservative
values for EAD when such dependence is not considered in the model. Lastly, when
we consider the predictor effects found across the three papers, the GAMLSS models
in the first paper suggested several non-monotonic relationships which could possibly
occur because of sample selection bias. However, in the second paper, where such bias
was addressed, these non-monotonic effects still persisted. In the third paper, though,
we found that more of them are now modelled as being monotonic. One possible

explanation could be that the non-monotonic effects observed by the former methods
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might be (in part) linked to multicollinearity which was alleviated by the use of vine
copulas in the third paper.

Potential avenues of future research, which follow from the work in the thesis, are as
follows. Whilst the first paper showed the benefits of adding a mixture component to
the EAD model, the second paper utilised the copula method to better capture the
dependence between PD and credit card balance. Therefore, a further extension to the
work would be to combine both methods and jointly model PD and balance,
conditioned on whether a max-out event occurs. We conjecture that the accounts
whose balance hits the limit have both a higher chance to default and also a higher
future balance level. Moreover, in so doing, we may gain additional insights on how
the predictor effects on PD, balance, and their dependence structure, may vary in each
group. Ultimately, we propose to test whether this extension could further improve
the estimation of expected loss.

Secondly, although the second paper considered both PD and EAD, and their
dependence, it ignored LGD and its relationship with the other two IRB risk
parameters. Therefore, further research could seek to model all three parameters, and
the dependencies between them. One solution may be to extend the application of the
CGAMLSS framework, used in the second paper, to a trivariate analysis. An
alternative approach may be to model PD, LGD and EAD using the D-vine copulas.
Both methods, however, share the common challenge that LGD is not observed for the

non-defaults (unlike EAD where outstanding balance could be used instead).
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