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Prediction at an unobserved location for spatial and spatial time-series data, also known as Kriging, with
complex structures is flourishing in a wide range of disciplines lately. It acts as a powerful tool capable
of revealing meaningful insights by studying, seemingly isolated, spatial information on the subjects of
interest. Despite the vast demand, methods for exploring spatial data collected at irregularly spaced sam-
pling locations remain limited to mostly parametric linear techniques owning to the multi-lateral nature
of space. We aim to provide semiparametric nonlinear alternatives to these applications.

The current linear spatial prediction methods for spatial data, conventionally are based on an assumption
that the underlying spatial data-generating process can be decomposed into two components: a determin-
istic linear trend function1 and a Gaussian stochastic process2. In practice, such an assumption may not be
reasonable as the linear-structured spatial trend function and the Gaussian stochastic process may not be
true. We hence develop new ideas in this thesis. Firstly, a nonparametric-trend universal Kriging (NTUK)
method is proposed by replacing the deterministic linear component1 with a nonparametric local linear
fitting regression function, as such the solution space of the trend function is vastly enlarged. Secondly, we
adopt a semiparametric model structure, i.e., the model averaging marginal regression approximation for
Kriging. Through a nonparametric estimation of spatial probability density functions, an affine combina-
tion of one-dimensional conditional marginal regression functions is used for approximation in Kriging.
By suggesting a K-radius averaging function to the Kriging, the stochastic process2 part which is not as-
sumed Gaussian is also predicted. A complete semiparametric spatial nonlinear prediction procedure is
thus developed.

In spatial time-series setting, we further extend our developed methods above to the prediction of the
future data at an unobserved location. We integrate the above semiparametric spatial nonlinear prediction
procedure with a semiparametric spatio-temporal nonlinear regression model, which allows the spatio-
temporal random field to be non-stationary over space (but stationary along time; for time series, say,
through differencing) while the sampling spatial grids can be irregular. Hence the proposed model uses
a two-phase framework performing firstly a spatio-temporal forecasting for a future time at the observed
locations, followed by our spatial nonlinear prediction procedure stated above.

Empirical applications to air quality data are demonstrated. The performances of the proposed models

are evaluated against those obtained from linear methods with significant improvement.

http://www.southampton.ac.uk
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Chapter 1

Introduction

The centre of this research is spatial prediction, more specifically, we develop semipara-
metric nonlinear procedures for spatial prediction with applications to non-Gaussian
data sets from irregular sampling grids. There are two main parts in this thesis, Chap-
ters 1 to 4 focus on purely spatial prediction at a single point of time while in Chapter
5 we include time dimension into consideration, that is the spatio-temporal prediction
we will be dealing with.

1.1 Background

The study of spatial analysis has been increasing rapidly in the recent decades when
spatial information is recorded and discussed more often than ever. Lately the ques-
tion of ‘how much at where’ is asked more commonly than merely the ‘how much’
question stated by Schabenberger et al. (2005). Cressie and Wikle (2011) echoed that in
order to disclose true reasons behind a problem, science should also bring the element
of spatial location into the equation and address the ‘where it occurs’ at the same time.
Briefly, spatial analysis combines variables that denote the spatial location at ’where’
the particular response was observed together with information about the attributes of
interest, then discovers the best possible relationships among them. The applications
of spatial analysis appear in a broad spectrum of fields for example in environment, cli-
mate, socio-economic, business and health sciences. Results of these kinds contribute
greatly to both large organisations, such as governments, global institutions and multi-
national corporations, and small groups like local communities, regional health, rescue
networks, etc.

1.1.1 Spatial prediction

Spatial prediction, the main focus in this thesis, is one of the most important elements
in spatial analysis. It is a process of modelling underlying spatial relationships, subse-
quently using the nearby sampled information (the input) to predict the value of the
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target variable at a new location of interest. The methods of spatial prediction vary
substantially from their origins (Schabenberger et al., 2005). Some of these methods
were developed outside the mainstream statistics, such as in geology, geography and
other subject-related areas. Some are rooted in traditional statistical areas, for instance
the linear models and response surface theory. Others were derived from time series
approaches or stochastic processes theory around which this thesis will be primarily
centred. Depending on the nature of the studied problems, applications of spatial pre-
diction commonly reflect the characterisations of their fields of study. Typical exam-
ples of these include regional flooding forecast, weather-related prediction and nature
resource exploration, which have attracted vast interests from the theoretical and ap-
plied areas of this topic.

In general, spatial prediction studies the spatial dependence among the entities of inter-
est, how can they be mathematically modelled based upon the knowledge (conditions)
anticipated from the studied problems. Commonly under the assumption of spatial
continuity, it is helpful to believe that nearby spaces share greater similarities in the
observations than those faraway have (Cressie and Wikle, 2011), this statistical charac-
terisetic of dependent data is oftern referred to as Tobler’s first law of geography (see
Miller (2004)). We consider this as a ’local effect’, distance weighting methods are of-
ten used in such spatial prediction problems. Another widely established assumption
is the stationary attributes, regarded as ’global effect’ in comparison with the former.
Assuming the underlying spatial trend is less significant or can be modelled separately,
some predefined stationary conditions will offer practical solutions to these prediction
tasks, thus autocorrelation, covariance, variogram and a collection of other statistical
methods were introduced under this belief. These two assumptions will be studied
intensively in this thesis.

1.1.2 The Kriging methods

Among methods developed in the above beliefs, Kringing has been extensively focused
since this family of methods were firstly introduced as the best linear unbiased predic-
tion (BLUP) by Matheron (1963). The name of Kriging was coined after a mining engi-
neer D. G. Krige who carried out an empirical work evaluating the contents of mineral
resources at the Witwatersrand reef complex in South Africa (Krige, 1951). Different
from the deterministic interpolation methods, such as the inverse distance weighted
(IDW) method and spline interpolation, Kriging methods take a stochastic processes
viewpoint to the prediction problems.

The statistical idea of Kriging methods is, in brief, to interpolate across the space ac-
cording to a spatial lag relationship that contains both systematic and random com-
ponents (Cressie and Wikle, 2011). More specifically, it treats the studied space as a
random field defined with certain statistical assumptions while the sampled values
together with the optimal estimation at any locations of interest are seen as a single
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realisation of an underlying spatial process together with a deterministic trend, which
can often be modelled in a linear regression form under assumptions. Due to its sta-
tistical properties, Kriging methods are capable of generating a spatial prediction sur-
face/mapping by repeating this process in the studied space. Meanwhile the variance
of the estimation methods can also be quantified. Because of these advantages, Kriging
methods are appealing for many practitioners. Software packages for calculating ba-
sic Kriging methods, i.e. linear Krigings, are widely available in R and other software
platforms for academic and commercial purposes.

Despite the convenience, these tools often do not produce accurate solutions to a prob-
lem. There are two common mistakes noticed in real cases. On the one hand, the
assumptions for a specific model are not always verified prior to the application, on
the other hand, the limited collection of linear Kriging models is merely a (often over-
simplified) mimic of the true underlying processes. Thus, mis-specifications are com-
monly observed in reality when a high level of accuracy is required.

1.1.3 Summary

Following the initial introduction, the first main task of this research is to review the
current spatial Kriging methods, referring to Chapters 1-2. We compare their model
structures, assumptions and limitations for the reasons above. In Chapters 3-4, we
will discuss the second main task by proposing two new semiparametric nonlinear
Kriging methods, sequentially reveal their theoretical properties before being applied
to empirical data for comparison. In Chapter 5 we will expand our focus into a spatio-
temporal setting to develop a spatial prediction procedure for a future time.

In Chapter 1, we start with a brief literature review of spatial prediction and one of
its principal families of methods, Kriging. The concept of Kriging and its three linear
forms are presented in Section 1.2, followed by a short introduction of some develop-
ments in nonlinear Kirging methods. In Section 1.4 we highlight the contributions to
be made in this thesis and outline the structure of this thesis in the following chap-
ters.

1.2 The Kriging method and its common linear forms

Kriging denotes a body of techniques predicting the values of a response in an identi-
fied space of interest. It was originally coined by Matheron (1963) for optimal spatial
linear prediction under the minimum mean squared error criterion. Its methodology
is embedded in the framework of stochastic mean squared prediction, closely related
to the earlier works by Norbert Wiener and Andrey Kolmogorov on their studies in
time series, see a review in Stein et al. (2006). Since then, linear Kriging and its exten-
sions such as generalised linear Kriging have been extensively developed in literature,
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see Anselin (2004), Gelfand et al. (2010) and Cressie and Wikle (2011) for some latest
reviews.

The basic aim of Kriging is to predict the value of the underlying (spatial) random field
Y = Y(s) at an arbitrary location of interest, s = s0, from the sampled observations
{Y(s1), Y(s2), ..., Y(sN)}, N is the sample size. For the reason of simplicity, we record
Y(s0) as Y0, where s belongs to a space S.

Cressie (1993) and Anselin (2004) stated that in spatial series analysis, it is customary
to decompose the random variable Y(s) into two components: i) a deterministic com-
ponents µ(s), the so-called spatial trend function, presenting the large-scale variation
which is often in relation to its location s, and ii) a stochastic process component X(s),
with E[X(s)] = 0, models the smooth small-scale fluctuations or the irregular part of
the variation. Under a linearity assumption, the spatial trend µ(s) is often modelled
as a weighted sum of known variables fl(s) for l = 0, 1, ..., L, which leads to the well-
known linear Kriging model,

Y(s) = µ(s) + X(s) =
L

∑
l=0

βl fl(s) + X(s). (1.1)

It can be further written in a matrix form as FT β + X(s), where F = ( f0(s), f1(s), ...,
fL(s))T denotes a (L + 1)-vector of the explanatory variables, β is a (L + 1)-vector of
the unknown weights of these variables. In this thesis, we use the superscript T to
represent the transpose of a vector, or more generally of a matrix.

Built upon such structure, the statistical concept of linear Kriging is centred on the as-
sumptions of distance weighting among s, the locations. Distance-related (or lag) statis-
tics are purposely used to reveal the spatial relations of responses in the space S, and
thereafter estimate the response values at a new location. Despite the commonality, var-
ious Kriging methods are derived from Model (1.1) by imposing different assumptions.
In the following sections, three widely used linear Kriging methods (simply-, ordinary-
and universal Kriging) will be briefly discussed. Further details of these methods will
be presented in Chapter 2, along with an empirical application of these methods to the
air quality data in England.

1.2.1 Three common linear Kriging methods

Simple Kriging, as its name suggests, is the simplest form of linear Kriging. It assumes
a constant spatial trend which applies to the entire space S. Furthermore, the value of
the spatial trend µ and the covariance function of the underlying spatial process are
assumed known that may be obtained from some prior knowledge of this problem.
Hence, intuitively we would like to employ this knowledge into Model (1.1) to predict
Y(s) at an arbitrary location s0, see Kerry and Oliver (2007).
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In reality, it is rare that the spatial trend µ and the covariance function C(d) of the un-
derlying process Y(s) are known, where d ⊂ R2 refers to the spatial lag between two
locations, and |d| is the L2-norm of d representing the corresponding spatial distance.
Ordinary Kriging method is therefore proposed to overcome this difficulty. Schaben-
berger et al. (2005) described it as the mostly used Kirging method in practice.

The previous simple- and ordinary Kriging models share the same assumption that a
constant spatial trend u exists in the space S. However, this condition is often violated
in real applications, for instance when the studied geographic space is large. Universal
Kriging, on the contrary, provides a practical solution under the assumption of the
existence of a varying trend µ(s). Effectively, under linearity assumptions the Y(s) in
this method is decomposed into a deterministic linear function as its spatial trend, and
a random zero-mean component X(s) (see Cressie (1993)). Based on the definition, the
universal Kriging is recognised as the most general method among these three linear
Krigings. Actually it is easy to notice that the simple- and ordinary Kriging are two
special cases of the universal Kriging.

1.2.2 Characteristics of linear Kriging methods

In the section above, we briefly explain three linear Kriging methods under the form
of Model (1.1). The reason of constructing this particular linear model originated from
the concept of best linear unbiased prediction (BLUP), which is also what the Kriging
methods are primarily known for in spatial statistics (Stein, 1999).

Firstly, we define a random field Y = Y(s) with s ∈ S ⊂ R2, where Y(s) is a random
variable for each s ∈ S. We observe this random variable at N sample points s1, ..., sN .
Let Y := (Y(s1), ..., Y(sN)) ∈ RN denote the random vector providing the random
function Y(s) evaluated at the sample locations, i.e., the random variables Y(si), i =

1, ..., N. The basic aim of Kriging is to predict the value of the random variable at a new
location of interest s0 ∈ S, based on the available sampled observations Y(s1), Y(s2), ...,
Y(sN).

The linear predictor (Kriging) of Y(s0), denoted as Y∗(s0), is defined as a linear combi-
nation of a constant λ0 ∈ R, a weight vector ω := (ω1, ..., ωN)

T ∈ RN , and the random
variable Y(s) measured at all sampled locations:

Y∗(s0) := λ0 + ωTY = λ0 +
N

∑
i=1

ωiY(si). (1.2)

A linear predictor Y∗(so) is defined as the best linear unbiased predictor (BLUP) if a) it
is unbiased, i.e., E[Y∗(s0)− Y(s0)] = 0, and b) it has the minimal prediction variance
among all linear unbiased predictors. The prediction variance is as follow,
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Var(Y∗(s0)− Y(s0)) = E[(Y∗(s0)− Y(s0))
2]︸ ︷︷ ︸

mse(Y∗(s0))

− (E[Y∗(s0)− Y(s0)])
2︸ ︷︷ ︸

bias=0

. (1.3)

Therefore, minimising the prediction variance Var(Y∗(s0)−Y(s0)) of an unbiased pre-
dictor is equivalent to minimising the mse(Y∗(s0)) of the predictor Y∗(s0). We use
this property intensively for the three linear Kirging methods above, under the Model
(1.1), to achieve the best linearly estimated value of the response at the new location
s0 ∈ S.

Despite their popularity, significant risks in using these linear models can not be over-
looked. Misspecification of explanatory variables is common in real applications when
their underlying relations with the response are not linear correlations. Nonlinear ap-
proaches may therefore be more appropriate under these circumstances. In the next
section, we will discuss some developments in nonlinear spatial methods. Even though
their broad origins, we will mainly focus on approaches from the viewpoint of spatial
processes.

1.3 Nonlinear spatial Kriging and its developments

The development of above linear Krigings requires no distribution assumptions other
than those in relation to the first two moments of the random field, stated by Schaben-
berger et al. (2005). As a result, these methods will always produce the best linear
unbiased predictor regardless of the true underlying distribution of the data. Because
of this advantage, when the observed data does not fit a Gaussian profile, alternative
solutions often start with transforming the date into a Gaussian distribution before
pursuing other methods. Log-normal and Trans-Gaussian Krigings are two commonly
used techniques in this approach, suggested by Cressie (1993).

In this research, however, we will draw attention to direct nonlinear approaches to
non-Gaussian problems. Comparing with the development of linear Kriging, seek-
ing nonlinear alternatives had a late start until the last decades in the 20th century,
Yakowitz and Szidarovszky (1985) and Moyeed and Papritz (2002) were two exam-
ples as such. The former compared the prediction and error estimations between a
kernel nonparametric regression and parametric Kriging methods, and the latter per-
formed an empirical comparison among a collection of linear and nonlinear Kriging
methods, e.g., ordinary Kriging, indicator Kriging and disjunctive kriging. Both pa-
pers later stated that neither comparisons between methods in nonlinear and its rival
linear families produced a conclusive result over performance. Our research is there-
fore aiming to explore this comparison further with an empirical study on geostatistical
data. Among the few nonlinear methods in literature, we will begin with a short intro-
duction of one strand of methods using the class of conditional expectation methods
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exampled by disjunctive Kriging (Matheron, 1963, 1976). In the second half of this sec-
tion, our review will be extended to some latest development on nonlinear approach,
i.e., nonparametric estimation of probability density function for irregular spatial data,
the in-fill and domain-expanding asymptotic approach in specific by Lu et al. (2007)
and Lu and Tjøstheim (2014).

1.3.1 Disjunctive nonlinear spatial Kriging

Disjunctive Kriging method was introduced by Matheron (1976), who described it as
an intermediate method of being more powerful than the simple linear combinations,
but less complex than the conditional expectation type of approaches. It was imposed
to make the most of the available information in estimating the indicator variables (Sch-
abenberger et al., 2005).

The concepts of disjunctive coding and simple function approximation are adopted in
this Kriging method. Let {Rk} be a partition of ℜ, i.e., Ri ∩ Rj = ∅ for i ̸= j and
∪kRk = ℜ. The indicator variables are defined as:

Ik(s) =

{
1 if Y(s) ∈ Rk,
0 otherwise.

If the number of intervals k is sufficiently large, the function g(Y(s)) can be approxi-
mated by a linear combination of these indicator functions, that is

g(Y(s0)) = g1 I1(s0) + g2 I2(s0) + ... + gk Ik(s0) + · · ·. (1.4)

With the structure as such, Ik(s0) can be estimated using indicator Kriging of the data in
the kth set {Ik(si), i = 1, ..., n} (Watson, 1977). Furthermore, to make use of all available
information, it is imposed to make another prediction of Ik(s0) using all the indicator
variables sets, {I1(si), i = 1, ..., n} , · · ·, {Ik(si), i = 1, ..., n}, · · ·. The new predictor of the
indicator variable Îk(s0) can be shown as a linear combination of all available indicator
data,

Îk(s0) = ∑
i

∑
k

λik Ik(si), (1.5)

where λik is a series of constants associated with i and k. Thus, a predictor of g(Y(s0))

is

ĝ(Y(s0)) =
n

∑
i=1

∑
k=1

gkλik Ik(si) :=
n

∑
i=1

gi(Y(si)). (1.6)
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The general model of the disjunctive Kriging predictor is obtained (Schabenberger
et al., 2005).

In contrast to the Kriging methods, which obtains the best linear approximation of
Y0 by a linear combination of observed values from only estimating the covariance
matrix of (Y0, Yi), Matheron (1976) narrated that disjunctive Kriging, however, requires
the knowledge of the two-dimensional laws of the pairs (Y0, Yi) and (Y0, Yj) for i, j ∈
N.

In essence, to determine the functions gi(Y(si)), one needs to use all the indicators’
information in Eq (1.6), which may include the estimation and modelling of covari-
ances and cross-covariances of all the indicator variables, as Schabenberger et al. (2005)
highlighted. For these reasons, in practice, disjunctive Kriging relies on models that
expand a given function in terms of other uncorrelated functions. To make the calcula-
tion feasible, this method necessitates knowledge in hermite (orthogonal) polynomials
and assumptions of Gaussian distributed sample data set. Despite modified models
developed to cope with non-Gaussian data, estimating the bivariate distribution with
marginals on different locations does not come easy, see Schabenberger et al. (2005),
Matheron (1984) and Jean-Paul and Pierre (1999).

In summary, even with its distribution-free property, in practice, disjunctive Kriging is
yet a kind of parametric method with linear Kriging applied to a continuous Gaussian
data set. Lack of software support may also be a shortcoming in applying this method.
Hence the implementation of disjunctive Kriging in real applications are usually lim-
ited. In this study, therefore, we opt not to explore this method further, instead we treat
it as a motivation to our research in density-based nonlinear Kriging methods.

1.3.2 Nonparametric estimation of probability density function for spatial
data

Another nonlinear approach of predicting methods emerges recently, aiming to ap-
ply nonparametric approaches directly to spatial prediction problems. By doing so it
will systematically avoid the drawbacks of misspecification from linear Kriging meth-
ods. Originated from time series, nonparametric estimation methods are well estab-
lished and extensively used in this one-dimensional setting, see Fan and Yao (2003),
Terasvirta et al. (2010). However when extending these methods to multi-dimensional
applications such as in spatial series, their limitations become significant.

There are several reasons for this. Lu and Tjøstheim (2014) indicated that the most im-
portant one has to be the fact that the sampling points are often irregularly positioned
in space. In time series, observed data are sampled or can be aggregated at regular time
intervals. Yet in spatial series, this may not be the case where the monitoring sites are
rarely located from an ideal regular grid due to constraints in nature.
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In time series, density estimations, e.g., marginal or joint density estimation, are the
main focused statistics in nonparametric modelling. Under certain stationary assump-
tions, for instance, one can estimates the joint density function P1(x1, x2) of consecutive
observations (Xt, Xt−1) in a time series {Xt}. A kernel estimate can be shown as fol-
lows:

p̂1(x1, x2) =
1
n

n

∑
t=1

Kh(Xt − x1)Kh(Xt−1 − x2), (1.7)

where Kh(x) = h−1K(x/h) with K and h being a defined kernel function and its band-
width respectively (Lu and Tjøstheim, 2014). To make the prediction feasible, ideally
infinite pairs of (Xt, Xt−1) are required in time series. In the case of spatial series, where
the monitoring sites are irregularly located, the estimation of joint density function be-
tween any spatial lag becomes very difficult. As such, currently the nonparametric
spatial methods are centred with regular grid applications (Gao (2007); Hallin et al.
(2001); Lu et al. (2007)). Some attempts of spatial prediction from irregular locations
were made for other problems, for example Hall and Patil (1994) suggested nonpara-
metric estimators of the autocovariance of a stationary random field and Matsuda and
Yajima (2009) proposed a frequency domain approach for irregularly spaced data by
extending the original definition of a periodogram for time series to to an irregularly
spaced data set. Yet both methods still categorise a linear spatial relationship between
spatial locations.

Lu and Tjøstheim (2014), however, proposed a nonparametric estimation of probabil-
ity density functions for irregularly observed spatial data based on a new asymptotic
framework, the so-called domain-expanding infill (DEI) asymptotics. It combines the
properties of extending the domain of the measurement locations to infinity and si-
multaneously allowing the intensity of the observation locations in a fixed domain to
increase indefinitely. As such, this method will enable the user to find the conditions
under which the density estimates are consistent and asymptotically normal. The error
limits and confidence intervals can be identified too. In literature, it may be the first
step in this direction.

In this research, we will mainly follow this path and use the properties from this frame-
work in the following chapters. Specifically, we will use some of its assumptions on
spatial processes and kernel functions to show the asymptotic properties of a new Krig-
ing method in Chapter 3. In Chapter 4 an nonlinear semiparametric regression model
will be developed on the basis of this framework.
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1.4 Outline of this thesis

In this chapter, so far we briefly reviewed some of the main methods in spatial inter-
polation, explicitly the linear Kriging methods and some further developments in non-
linear spatial prediction. We started with the introduction of three widely used linear
models and their common characteristics. Despite the simplicity, the disadvantages of
linear models are too significant. In reality, this is rarely the case that the spatial trend
fits a linear combination of the selected explanatory variables. When the nonlinearity
becomes obvious, the wrongly-fitted linear spatial trend may produce misleading re-
sults to the problem, thus one would always be encouraged to check the sampled data
before applying such methods.

In general, when the observations does not follow a Gaussian profile, we should search
for nonlinear or other nonparametric methods to model the spatial process. However,
it is noticed that the development in this area is yet satisfactory. It is indeed when the
number of unknown parameters is close or equal to the size of observations, especially
when a large number of explanatory variables is involved, the curse of dimensionality
may lead the problem to be practically unsolvable.

Another challenge lies in the spatial irregularity among sampling locations. The current
nonlinear spatial prediction methods are most likely rooted from one-dimension prob-
lems such as applications in time series where the irregularity does not apply. Whereas
in multiple-dimension problems, for instance spatial predictions, the sample locations
are not restricted to a fixed grid/lattice. As a result, the same distance between two
pairs of sample sites is hard to find even if there are a large quantity of samples, the situ-
ation can get worse when further spatial directions are added into consideration.

In this research, we will examine these restrictions and develop suitable semi- or non-
parametric spatial prediction methods where appropriate to overcome these difficul-
ties. In Section 1.4.1 we will highlight the three objectives (novelties) studied in Chap-
ters 3 - 5 of this thesis.

1.4.1 The three objectives and main contributions

After an empirical application of linear Kriging methods to air quality data in Chap-
ter 2, the first objective of our research is to propose an nonlinear regression method
for the linearly modelled spatial trend function in the current Kriging methods. By
doing so, we expect to significantly expand the solution space of the spatial trend to
accommodate non-Gaussian data sets that are widely available in practice.

The second objective lies in the stochastic residual component X(s). In linear Kriging
methods, it is yet modelled as a linear combination of all sampled values. Our inten-
tion is to utilise a semiparametric one-dimensional nonlinear approximation model by
incorporating nonparametric probability density function estimation techniques. This
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method is proposed to ease the pressure from the curse of dimensionality and capa-
ble of estimating the spatial density functions from irregularly spaced sampling loca-
tions.

The third objective of this research is to integrate our semiparametric spatial nonlin-
ear prediction method into spatio-temporal setting. Instead of an all-in-one spatio-
temporal model that is often associated with simplified assumptions, we would like to
propose a two-phase procedure performing separated spatio-temporal forecasting for
a future time and spatial prediction at the future time, respectively.

In response to these objectives, we summarise the main contributions made in this
thesis below.

For the first object, a nonparametric-trend universal Kriging (NTUK) is therefore pro-
posed in Chapter 3, to replace the parametric linear trend function by a nonparamatric
local linear fitting function estimated at each spatial location. We show that the pre-
dictor from the samples converges in probability to its equivalent from the population.
Under this approach, the solution space for the deterministic spatial trend is vastly
enlarged. In the fitting function, Kernel smoother is used to highlight the local infor-
mation.

In Chapter 4, we adopt a model averaging marginal regression approximation method
originated for time series, which employs an affine combination of one-dimensional
conditional regression functions for approximation in Kriging. Under the domain-
expanding infill (DEI) asymptotics framework, nonparametric estimation of spatial
probability density functions at irregular locations are used to estimate these regres-
sion functions mentioned above. A k-radius averaging function is later introduced to
the Kriging. By now, as the second contribution, the non-Gaussian stochastic process
is predicted. Combing the first two contributions, a complete semiparametric spatial
nonlinear Kriging is developed.

The third contribution is introduced in Chapter 5, the goal is to expand the use of the
complete semiparametric spatial nonlinear Kriging stated above into spatial time-series
prediction, i.e., to predict future observations at unobserved spatial locations. We in-
tegrate our complete spatial Kriging with a semiparametric spatio-temporal autore-
gressive partially nonlinear regression (STAR-PLR) model, which allows the spatio-
temporal random field to be non-stationary over space (but stationary along time; for
time series, say, through differencing) while the sampling spatial grids can be irregular.
Hence, we propose a two-phase framework performing a spatio-temporal forecasting
for a future time, then, as the second phase, a spatial nonlinear prediction procedure at
the future time. Under such arrangement, complex assumptions can be made at each
phase to cope with the diverse nature in real cases.
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Empirical applications to air quality data are demonstrated. The proposed models out-
perform the linear methods with significant improvement.

1.4.2 Structure of this thesis

This thesis is divided into six chapters. In Chapter 1, we give a brief literature review
on spatial prediction and introduce one of its main families of methods, Kriging. The
concept of Kriging, its three linear forms and further developments in nonlinear Kirg-
ing are discussed, which lead to the contribution list of this study mentioned above. To
begin this journey, Chapter 2 shows an empirical application of the linear spatial Krig-
ing to the air quality data set in England, which becomes the baseline of comparison in
our research.

It is then followed by Chapter 3, in which a new nonparametric-trend universal Krig-
ing is introduced. We reveal the asymptotic properties of this method and its prediction
outcome is then compared with the baseline result. In Chapter 4 we develop a semi-
parametric procedure of model averaging marginal Kriging for the de-trended process
X(s), by now a full semiparametric spatial interpolation method is proposed. In Chap-
ter 5 our focus will be expanded to the realm of spatial-temporal prediction at a future
time.

Finally, in Chapter 6, we will summarise the contributions that have been highlighted
in the previous chapters, and outline the outlooks of our research where further devel-
opments can be made.
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Chapter 2

Empirical Application of Linear
Krigings to Air Quality Data

The purpose of this chapter is twofold: present the case study that will be used through-
out this research, i.e., the measurement of air quality in England; Sections 2.2 and 2.3
introduce the details of the three linear Kriging methods, and apply them directly to
the air quality data to be the baseline for our comparison.

2.1 Air quality problem

In spatial analysis, the task of estimating response values at unobserved locations plays
an important role in many scientific disciplines. In many situations, it is impossible to
measure the interested entity at any arbitrary location due to either practical reasons
or physical constraints. One common way of solving this problem is to utilise known
observations from the surrounding areas to predict the unknown by applying suitable
statistical methods.

Among numerous applications, in this thesis we select the spatial prediction of air qual-
ity data as our case study for both its conventional and practical reasons. The problem
of poor air quality is a global threat to a sustainable development for future. The UN
(2016) 1 highlighted that air pollution is having serious adverse impacts on the quality
of life, in particular on human health, environment and economy. There are some 6.5
million people dying annually from air pollution and 92 percent of the world’s popu-
lation living in places where air pollution level exceeds the recommended limit.

The UK’s Department for Environment, Food & Rural Affairs (Defra) echoed that a
cleaner, healthier environment benefits local people and the country’s economy 2. Clean

1https://www.theguardian.com/environment/2016/may/12/air-pollution-rising-at-an-alarming-
rate-in-worlds-cities

2https://uk-air.defra.gov.uk/air-pollution/
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air is vital for people’s health and the environment, whilst polluted air can cause both
short-term and long-term negative effects on human health. Currently, the Met Office
(2017) 3 in the UK operates a 10-level (four bands) daily air quality index (DAQI) sys-
tem to characterise the level of air pollution at a local level. The Index 1 stands for the
least polluted air quality while the Index 10 indicates that the air quality reaches the
fourth band the ’Very High’ polluted air as shown in Figure 2.1. Health advice and
recommended actions are published in corresponding to each air quality band. There-
fore, to ensure correct countermeasures are in place, accurate prediction of air quality
is critical to local inhabitants.

FIGURE 2.1: The daily air quality index (DAQI) with the measured pollutants.

The UK’s regional daily air quality index (DAQI) is forecasted through a collection of
comprehensive systems developed by the NCAS, GMR and the Defra. Without go-
ing through the detailed methodology, we understand that Ozone (ug/m3) , Nitrogen
Dioxide (ug/m3), Sulphur Dioxide (ug/m3), PM 2.5 particles (ug/m3) and PM 10 parti-
cles (ug/m3) are the five chemical pollutants locally measured for computing the DAQI.
Figure 2.1 also shows the relations between the DAQI level and the concentration for
each pollutant published by Met Office (2007) 4.

3https://uk-air.defra.gov.uk/air-pollution/daqi
4http://www.metoffice.gov.uk/guide/weather/air-quality#Air-quality-index
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Currently, the Defra records air quality data from multiple automated monitoring net-
works in the UK, some of them take local readings every hour. In addition to these
networks, there are also over one hundred non-automated monitoring stations in op-
eration, sampling air quality data on a daily, weekly and monthly basis5. Despite the
large number, these monitoring stations are mainly located in cities, major towns and
by the main highways as shown in Figure 2.3. A large percentage of local areas is ac-
tually far away from their nearest station. For this reason, advanced spatial prediction
methods are critical for producing accurate air quality forecast in these areas.

2.2 Three linear Kriging methods

Before applying the linear Kriging to empirical data in Section 2.3, it is important to
expand our knowledge of the three linear Kriging methods briefly mentioned in Sec-
tion 1.2. For each method, in the following sections, we will show its detailed assump-
tions, unbiasness conditions and the Kirging predictor together with its prediction vari-
ance.

2.2.1 Simple Kriging

Simple Kriging (SK), as its name suggests, is the simplest form of linear Kriging hav-
ing a constant known mean µ by assumption for an underlying random process Y(s),
where the µ is valid for the entire space S. This spatial trend µ may be obtained from the
existing knowledge of this problem, intuitively we would like to integrate this knowl-
edge into Model (1.1) to predict the process Y(s) at a new location s0 (Kerry and Oliver,
2007).

To begin the introduction of simple Kriging, Cressie and Wikle (2011) listed its two
assumptions as follows:

1. The µ ∈ R, mean of Y = Y(s) for s ∈ S, is a known constant, i.e., E [Y(s)] =µ , ∀ s
∈S,

2. Y = Y(s) is assumed to be secondary-order stationary with a known covariance
function C (d) := Cov (Y(s), Y(s + d)) = E[Y(s)Y(s + d)] - µ2, ∀ s, s + d ∈ S.

The simple Kriging predictor YSK∗
ω (s0) of Y(s) at the prediction point s0 is defined as the

sum of the spatial mean µ and the weighted differences of the random function Y(s)
evaluated at each sample point si and the mean µ, i.e.,

YSK∗
ω (s0) := µ +

N

∑
i=1

ωi(Y(si)− µ) = µ + ωT(Y − µ1), (2.1)

5https://uk-air.defra.gov.uk/air-pollution/
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where ωi ∈ R being the weight of the corresponding residual Y(si) − µ and ω :=
(ω1, ω2, ..., ωN)

T ∈ RN , the vector containing all the weights from the N observations.
We denote 1 as the identity vector of order N, i.e., 1 := (1, ..., 1)T.

We calculate the mean prediction error for simple Kriging and get

E[YSK∗
ω (s0)− Y(s0)] = µ +

N

∑
i=1

ωiE[Y(si)− µ]− E[Y(s0)] = µ − µ = 0.

It is noticed that the predictor is unbiased so the imposing of constraints is not re-
quired in the simple Kriging model, see Wackernagel (2003). It is understood that the
construction of the predictor of simple Kriging itself spontaneously guarantees this un-
biasedness (Lichtenstern, 2013).

Furthermore, the variance of the prediction error can be measured using its mean
squared prediction error, i.e., E[(YSK∗

ω (s0)− Y(s0))2]. The calculation of the prediction
variance σ2

E(s0) for simple Kriging follows Wackernagel (2003):

σ2
E(s0) : = Var(YSK∗

ω (s0)− Y(s0)) = E[(YSK∗
ω (s0)− Y(s0))

2]

= C(0) +
N

∑
i=1

N

∑
j=1

ωiωjC(si − sj)− 2
N

∑
i=1

ωiC(si − s0)

= C(0) + ωTΣω − 2ωTc0 ≥ 0,

(2.2)

where C(0) = Cov(Y(s0), Y(s0)), Σ is a N × N symmetric covariance matrix for any two
locations si, sj ∈ S, and c0 is a N-vector with Cov(Y(si), Y(s0)) as its ith element.

By taking the derivative of the prediction variance with respect to ω, the condition for
a minimal prediction variance σ2

E is ΣωSK = c0, where ωSK := (ωSK
1 , ..., ωSK

N )T ∈ RN

denotes the vector providing the simple Kriging weights (Wackernagel, 2003). The Hes-
sian matrix satisfies the condition of a positive second-order derivative of σ2

E with re-
spect to ω. With this result, the prediction variance σ2

SK and the estimated simple Krig-
ing predictor of YSK∗

ω (s) at the location s0 shown by Cressie (1993) are as follows:

σ2
SK(s0) = C(0)− cT

0 Σ−1c0 = C(0)−
N

∑
i=1

ωSK
i C(si − s0),

ySK∗
ωSK

(s0) = µ +
N

∑
i=1

ωSK
i (Y(si)− µ) = µ + cT

0 Σ−1(y − µ1),

(2.3)

where y = (y1, ..., yN)
T, i.e., the sampled observations.
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2.2.2 Ordinary Kriging

In reality, it is rare that the mean µ and the covariance function C(d) of the underlying
spatial process Y(s) can be assumed as known variables. The method of ordinary Krig-
ing (OK) is therefore developed to get across this difficulty. Schabenberger et al. (2005)
described it as the most commonly used Kirging method in practice.

Cressie (1993) and Wackernagel (2003) proposed weaker assumptions for ordinary Krig-
ing than that for simple Kriging, they are

1. The global constant mean µ ∈ R of the random process Y(s) is unknown,

2. The observations come from an intrinsically stationary random process Y(s) with
known semivariogram function γ(d), i.e.,

γ(d) =
1
2

Var(Y(s + d)− Y(s)) =
1
2

E[(Y(s + d))− Y(s))2].

Wackernagel (2003) defined the predictor of ordinary Kriging YOK∗
ω (s0) of the value

Y(s) at the location s0 as the linear combination of Y(s) evaluated from all sample loca-
tions si, i = 1, ..., N,

YOK∗
ω (s0) :=

N

∑
i=1

ωiY(si) = ωTY , (2.4)

where Y = (Y1, ..., YN)
T and ω := (ω1, ω2, ..., ωN)

T provide the unknown weights ωi ∈
R describing the influence of each variable Y(si) for the calculation of YOK∗

ω (s0).

It is easy to show that the sum of all weighting factors ωi equals to 1, or ωT1 = 1, which
is the condition for an unbiased ordinary Kriging predictor (Wackernagel, 2003).

Under the unbiasedness condition for the ordinary Kriging, the variance of the predic-
tion error includes the semivariogram matrix, see Cressie (1993),

σ2
E(s0) : = Var(YOK∗

ω (s0)− Y(s0)) = 2
N

∑
i=1

ωiγ(si − s0)−
N

∑
i=1

N

∑
j=1

ωiωjγ(si − sj)

= 2ωTγ0 − ωTΓω = ωT(2γ0 − Γω) ≥ 0,

(2.5)

where the symmetric variogram matrix Γi,j := γ(si − sj), i, j = 1, ..., N, γ0 is a N × 1
vector whose ith element is the semivariogram γ(si − s0) of Y(s) between the observed
location si and the new location s0 (Webster and Oliver, 2007).
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Similarly, the minimal prediction variance for ordinary Kriging under the unbiasedness
condition can be obtained by taking the first and second derivatives of Eq (2.5) with
respect to ω, that is

Minimise
ω

ωT(2γ0 − Γω), subject to ωT1 = 1. (2.6)

Lagrange multiplier λ ∈ R is introduced to satisfy the unbiasedness condition (Cressie,
1993), we define a function ψ to solve this problem such that

ψ : RN × R → R,

(ω, λ) 7→ ψ(ω, λ) := 2ωTγ0 − ωTΓω − 2λ(ωT1 − 1).
(2.7)

By setting the derivatives of ψ with respect to the weight vector ω and λ as zero, we
can solve Eqs (2.6) and (2.7), and get the condition for the minimal prediction variance
as specified below

ωOK(s0) = Γ−1
[
γ0 − 1(

1TΓ−1γ0 − 1
1TΓ−11

)
]
,

λOK(s0) =
1TΓ−1γ0 − 1

1TΓ−11
.

Then we have both the unbiased minimal prediction variance σ2
OK(s0) and the ordinary

Kriging predictor of the YOK∗
ω (s) at the location s0 as follows

σ2
OK(s0) = λOK +

N

∑
i=1

ωOK
i γ(si − s0),

yOK∗
ωOK

(s0) =
N

∑
i=1

ωOK
i y(si) = ωT

OKy =
[
γ0 − 1

(1TΓ−1γ0 − 1
1TΓ−11

)
]T

Γ−1y.

(2.8)

For ordinary Kriging, the mean µ of the process Y(s) is assumed as an unknown con-
stant. However in practice, this condition may yet be true. In the next section, we will
discuss the universal Kriging with more relaxed assumptions.

2.2.3 Universal Kriging

The previous simple- and ordinary Kriging methods share a common assumption that
a constant mean u exists in the space S. In reality, this condition is often violated, for
instance when the geographic space is large. Universal Kriging (UK), on the contrary,
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provides an effective solution with the assumption of a non-constant mean. Within the
linearity setting of this method, the random field can be decomposed into a linear com-
bination of some deterministic functions (often referred as a non-stationary trend or
systematic component), and a random component as shown in model (1.1), see Cressie
and Wikle (2011).

The assumptions for universal Kriging are listed as follows (c.f. Cressie (1993), Wack-
ernagel (2003) )

1. Assume that Y(s) can be decomposed into a deterministic trend function µ(s) and
a real-valued residual random process X(s), such that

Y(s) = µ(s) + X(s). (2.9)

2. The stochastic term X(s) is supposed to be intrinsically stationary with a zero
mean, and the known semivariogram function γX(d) is called residual semivari-
ogram function of Y(s), ∀s, s + d ∈ S.

E[Y(s)] = E[µ(s)] + E[X(s)] = µ(s),

γX(d) =
1
2

Var[X(s + d)− X(d)] =
1
2

E[(X(s + d)− X(d))2].

3. Let f0, f1, ..., fL be deterministic functions, such as of the geographical coordinates
s ∈ S, with L being the number of known and selectable basic functions fl : S →
R, l = 0, 1, ..., L. It is assumed that µ(s) is a linear combination of these functions
evaluated at s, µ(s) = ∑L

l=0 al fl(s) with unknown coefficients al ∈ R\0 for all
l = 0, ..., L, with f0(s) = 1, ∀s by convention. We define F as a N × (L + 1) matrix
with its (i, l + 1) element equals to fl(si) for i = 1, ..., N and l = 0, 1, ..., L.

The universal Kriging predictor YUK∗
ω (s0) of Y(s0) at the locations of interest s0 is de-

fined as follows,

YUK∗
ω (s0) :=

N

∑
i=1

ωiY(si) = ωTY , (2.10)

where the individual weights ωi ∈ R, i = 1, ..., N corresponding to each observa-
tion of the random function Y(si) at the sample point si and ω := (ω1, ..., ωN)

T, Y =

(Y1, ..., YN)
T.

The unbiasedness condition for the universal Kriging stated by Kitanidis (1997) is
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N

∑
i=1

ωi fl(si) = fl(s0) for l = 0, ..., L ⇔ FTω = f0, (2.11)

where f0 := (1, f1(s0), ..., fL(s0))T ∈ RL+1. Matheron (1971) named it as the universality
condition.

Cressie and Wikle (2011) showed the variance of the prediction error of the universal
Kriging that contains the residual semivariogram function γX(d),

σ2
E(s0) = Var(YUK∗

ω (s0)− Y(s0)) = E[(YUK∗
ω (s0)− Y(s0))

2]

= 2
N

∑
i=1

ωiγX(si − s0)−
N

∑
i=1

N

∑
j=1

ωiωjγX(si − sj) = 2ωTγX,0 − ωTΓXω ≥ 0,
(2.12)

with symmetric residual semivariogram matrix ΓX ∈ RN×N , (ΓX)i,j := γX(si − sj), i, j =
1, ..., N and γX,0 := (γX(s1 − s0), ..., γX(sN − s0))T ∈ RN .

Similar to ordinary Kriging, Lagrange parameter vector, λ := (λ0, λ1, ..., λL)
T ∈ RL+1

providing the L + 1 Lagrange multipliers for each single condition in Eq (2.11), is used
to solve the minimal prediction variance for this universal method:

Minimise
ω

2ωTγX,0 − ωTΓXω subject to ωT F = fT
o .

Cressie (1993) provided the solution of this optimisation problem for universal Kriging,
which are

ωUK(s0) = Γ−1
X [γX,0 − F(FTΓ−1

X F)−1(FTΓ−1
X γX,0 − f0)],

λUK(s0) = (FTΓ−1
X F)−1(FTΓ−1

X γX,0 − f0).
(2.13)

Finally, by applying the above conditions, the universal Kriging variance σ2
UK and the

predictor of YUK∗
ω (s) at the location s0 are

σ2
UK(s0) =

N

∑
i=1

ωUK
i γX(si − s0) +

L

∑
l=0

λl fl(s0),

yUK∗
ωUK

(s0) =
N

∑
i=1

ωUK
i Y(si) =

[
γX,0 − F(FTΓ−1

X F)−1(FTΓ−1
X γX,0 − f0)

]T
Γ−1

X y.

(2.14)
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We conclude this section with Figure 2.2, a linear Kriging decision flowchart from the
R package gstat user’s manual 6. In summary, universal Kriging is the most general
model among the three linear Krigings introduced, and we are now ready to apply
these methods to the air quality data.

FIGURE 2.2: The decision tree for default programme action

2.3 Empirical application to air quality data

In this section, we will apply the three linear Kirging methods directly to the air quality
data in England. By using the data collected from the monitoring stations (data archives
from the Defra), we aim to compare the prediction statistics and then map the results
to show the visual differences among these three Kriging methods.

2.3.1 The air quality data set

It is noticed that the current monitoring stations are unevenly distributed in the UK.
England has the highest number of stations among the three nations in the main British
isle 7. Also by considering the very different geographical conditions between England
and the other two nations, Scotland and Wales, we choose England as the studied space
S in this research.

Among the five measured pollutants, we take Nitrogen Dioxide (NO2) to be the re-
sponse Y(s) for this study. The date 18/04/2017 was exemplarily picked as a typical
workday when it is generally believed of having a higher level of air pollution than
that a weekend has. We use the air quality data from the validated 105 monitoring
stations on that day for this research 8 9. Figure 2.3 shows the locations of the total 105
monitoring stations in England.

6http://www.gstat.org/gstat.pdf
7https://uk-air.defra.gov.uk/networks/
8All Air Quality raw data used in this report are downloaded from Defra UK, licenced under the Open

Government Licence (OGL). © Crown 2017 copyright Defra via uk-air.defra.gov.uk.
9OGL: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/
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FIGURE 2.3: Locations of the included air quality monitoring sites in England.

The R package gstat is used for performing the linear Krigings in this chapter. Briefly,
we divide the Kriging task into two steps:

1. Fitting the theoretical semivariogram from the observed data,

2. Empirical application of simple-, ordinary- and universal Krigings.

In the next section, we will demonstrate the results at both steps.

2.3.2 Fitting the theoretical semivariogram

Before applying Kriging methods, we need to estimate the required properties of the
underlying spatial process by fitting a theoretical semivariogram model from the ob-
served data. To complete this step, we will first introduce three basic parameters for a
varigram: the nugget, sill, and range defined in accordance with Matheron (1963) and
Cressie (1993).

• Nugget: If the empirical semivariogram does not start at the origin, i.e. γ(d) →
c0 > 0 as |d| → 0, then the height of the jump c0 is called the nugget, or nugget
effect, representing the value which could be caused by measurement error or
some microscale variation. Note that γ(d) = γ(−d) by definition in this research.

• Sill: The value γ(∞) := lim|d|→∞ γ(d) is called the sill.
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• Range: The distance at which the semivariogram γ(d) exceeds the sill value for
the first time.

An illustrative example for these parameters is shown in Figure 2.4.

FIGURE 2.4: Semivariogram parameters: the nugget, sill and range.

Note that in practice, the range is often defined as the distance at which the semi-
variogram reaches about 95% of its sill value, called the effective range (Wackernagel,
2003).

To show the fitting steps for a theoretical semivariogram from the samples, a detailed
procedure can be found in Section 4.2.3. It uses the least squares fitting method to
compare the matching errors from a collection of candidate models to the experimental
semivariogram generated from the sample data. Figure 2.5 shows a list of valid vari-
ogram model families often in use, see Appendix B or alternatively one can refers to the
Gstat (R package) manual. It is worthwhile to mention that as Figure 2.5 reveals that the
selection influences the prediction values, particularly when the shape of the curve near
the origin differs significantly, such as the steeper the curve near the origin, the more
influence the closest neighbours will have on the prediction. In fact, the setup of the
Cutoff Distance for the experimental semivariogram in Section 4.2.3 and the weighted
least squares options are two typical techniques offering practitioners flexible and more
accurate prediction results.

Among the common model families tested, we fit the experimental semivariogram
function using the log-transformed sample data (a typical data transformation in this
kind of applications) to an exponential fitting model, i.e., it has the smallest sum of
squared errors than the other tested models have, see Figure 2.6. The alternatives
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FIGURE 2.5: A list of commonly used semivariogram fitting models.

include nugget-effect model, bounded linear model, spherical model and Gaussian
model families. We show the covariance and semivariogram functions of the expo-
nential model below.

Let γa,b(d) denotes the semivariogram function, Ca,b(d) refers to the corresponding co-
variance function with lag d and a, b > 0 are the parameters of each model, where a
represents the range parameter and b is the sill value, we have the exponential model
as follows:

γ
exp
a,b (d) := b

(
1 − exp(−|d|

a
)
)

,

distance

se
mi

va
ria

nc
e

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200

FIGURE 2.6: The fitted theoertical exponential semivariogram for the observed data.
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Cexp
a,b (d) := b exp(−|d|

a
).

2.3.3 Empirical applications to air quality data

By assuming the fitted semivariogram function as the theoretical underlying process,
in turn we apply the three linear Krigings to the air quality data. Figures 2.7, 2.8 and 2.9
show the maps of the predicted values and prediction variances at each spatial location
by simple-, ordinary- and universal Kriging. All three prediction results confirm the
air quality problem around major cities in England such as London and Manchester;
whereas rural areas including national parks enjoy good air quality in general. The
changes of the colour contour may be used to identify the boundaries where abrupt
shifts on air quality are likely to happen. Among the three prediction maps, all Kriging
methods show similar performance with no clear dominant colour, albeit the colour
patterns are visually different. It is also noticed that the predictions in the centred area
and where the most monitoring sites are have finer changes in colour than those from
the surrounding edges, which is understandable. The results may be different when
comparing the prediction variances, yet no strong visual evidence suggests which the
best model is.

Simple kriging predictions
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[1.545,1.973]
(1.973,2.401]
(2.401,2.83]
(2.83,3.258]
(3.258,3.686]

Simple kriging variance
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FIGURE 2.7: Map of the predicted values and variances using simple Kriging.

In addition to the visual check, we compare the prediction performance from the three
linear Krigings using the cross validation criterion. Leave-one-out Cross Validation
(LOOCV), a specific form of cross validation technique, where the number of folds
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Ordinary kriging predictions
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[1.528,1.957]
(1.957,2.386]
(2.386,2.816]
(2.816,3.245]
(3.245,3.674]

Ordinary kriging variance
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FIGURE 2.8: Map of the predicted values and variances using ordinary Kriging.
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[1.481,1.924]
(1.924,2.366]
(2.366,2.809]
(2.809,3.251]
(3.251,3.694]

Universal kriging variance
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FIGURE 2.9: Map of the predicted values and variances using universal Kriging.
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equals to the number of observations in the data set, estimates how accurate a pre-
dictive model performs on real data (Seymour, 1993) . In each iteration, one sampled
data Y(sj), j ∈ [1, ..., N] is selected as the validation dataset while all the other sam-
ples: Y(s1), ..., Y(sj−1), Y(sj+1), ..., Y(sN), or simply Y(s−j), form the training dataset
for establishing the estimation model, consequently to predict the Ŷ(sj). Each sampled
location sj is used for one iteration only.

Mean squared prediction error (MSPE) as shown in Eq (2.15) calculates the mean squared
difference between the observed value Yobs(s) and its estimated value Ŷ(s) obtained
from the LOOCV. The modelling method with the smallest MSPE, as believed, has the
highest prediction accuracy.

MSPE =
1
N

N

∑
j=1

(Ŷ(sj)− Yobs(sj))
2, where i = 1, ..., N. (2.15)

Table 2.1 shows the comparison of the mean squared prediction error (MSPE) obtained
from the three Kriging methods.

TABLE 2.1: Comparison of the mean squared errors from the three linear Kriging
methods.

Kriging methods Mean Squared Prediction Error
Direct Simple Kriging 231.9582
Direct Ordinary Kriging 232.7272
Direct Universal Kriging 233.0495

Based on the results, simple Kriging performs the best among them. However, there
is no significant performance variation among these three methods on this air quality
data set, which is in line with the visual comparison shown above. This indifference
thus motivates us to develop alternative Kriging methods.





29

Chapter 3

Nonparametric-Trend Universal
Kriging Method

After the initial introduction of spatial prediction and the current linear Kriging meth-
ods, as our first contribution, in this chapter we will propose a nonparametric Kriging
method with an adaptive nonlinear function as the spatial trend component µ(s) in
model (1.1) 1.

3.1 Background

In Chapter 2, linear Kriging methods are directly applied to the air quality data for
predicting the value of the response Y(s) at a new location of interest s0 ∈ S. When
these processes are repeated at a large number of locations, consequently we obtain vi-
sual plots (maps) of the predicted results. Despite clear benefits of these methods, the
limitations of linear Kriging methods are likewise significant, which are essentially re-
sulted from the linearity assumption as well as their linear prediction models (2.1), (2.4)
and (2.10), where the predictors are defined as linear regressions of a set of variables,
explicitly the observed values at the sampled locations.

Matheron (1976) described that since the space of a linear combination is much smaller
than the space from an arbitrary measurable function, the approximation using linear
Kriging methods is restricted, which may likely lead to a significant misspecification
on the original data. Hence, by choosing a solution space larger than the linear combi-
nation space but small enough to allow the computation feasible, we hope to develop
a nonlinear method for the air quality case study. In fact, the air quality data set from
Chapter 2 indeed suggests a non-Gaussian profile as shown in Figure 3.2 later, which
may explains the undesired performance in Chapter 2.

1A talk on this method was given by the author at the 12th International Conference on Computational
and Financial Econometrics (CFE 2018), at the University of Pisa, Italy, on 14 December 2018.
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To overcome the misspecification of applying linear Kriging methods directly to non-
Gaussian data set, in this chapter, a modified predicting method, the nonparametric-
trend universal Kriging (NTUK) model, is thereby proposed by employing a non-
parametric adaptive regression function for estimating the spatial trend µ(s) and leav-
ing the de-trended stochastic term X(s) in model (1.1) for Kriging. In the following sec-
tions, we will firstly introduce this method, followed by an introduction of its asymp-
totic properties as for the estimator from the population aspect in Section 3.3. Finally,
in Section 3.4 its empirical performance is compared with those from the methods in
Chapter 2.

3.2 Methodology

We re-examine the most general linear Kriging method introduced so far, the universal
Kriging. As shown in Eq (2.9), with the linearity assumption in the air quality case
study, the spatial trend µ(s) is modelled as a linear regression of the two spatial coordi-
nates of a location, then kriges the stochastic residual terms X(s) using the variogram
function estimated from the residual data. A clear drawback of this method is to restrict
the spatial trend to a linear solution space. In this chapter, we propose to replace it with
an nonparametric regression function to model the spatial trend µ(s), by which the de-
terministic trend does not take a predetermined form but to construct it according to the
derived information from the samples. As a result, intuitively, this modified prediction
model is more suitable for a general non-Gaussian data set, where we believe the nov-
elty of this method lies, and most importantly we would like to show asymptotically
the estimator converges in probability to the true response in the population.

Within the family of nonparametric methods, the local linear regression (LLR) is chosen
for this method due to its superior accuracy over the other common method, i.e., the
local constant regression (LCR), when the sample size is moderately large (Fan and
Gijbels, 1996).

To obtain the estimated value of µ(s) using the LLR, we apply Taylor expansion of Eq
(2.9) in the neighbourhood of a new location s0 := (u0, v0), where the distance of si to
s0, ∥si − s0∥, is small. It is obtained that,

Y(si) = µ(si) + X(si) ≈ µ(s0) + µ
′
u(s0)(ui − u0) + µ

′
v(s0)(vi − v0) + X(si), (3.1)

where si = (ui, vi), ui, vi represent the spatial coordinates of the observation location
si, i = 1, ..., N. It is commonly assumed that in this type of spatial applications, the first
and second order derivatives of the underlying function µ(s) exist for the explanatory
variables ui and vi (Hallin et al., 2004). Hence, the response at the concerned location
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s0 can be estimated from the sampled information using least squares method for C as
follows:

C :=
N

∑
i=1

(
Y(si)− a0 − a1(ui − u0)− a2(vi − v0)

)2
K(

si − s0

hN
),

Minimise
(a0,a1,a2)

C,
(3.2)

where a0, a1, a2 represent µ(s0), µ
′
u(s0) and µ

′
v(s0), respectively, K(·) refers to a selected

symmetric bivariate kernel probability density function with bounded support, and
hN , or h for short, is a bandwidth that tends to 0 as N → ∞. The solution of a0 for Eq
(3.2), denoted as µ̂(s0), provides the estimated value of µ(s0) at the concerned location
s0.

By taking each si, i = 1, ..., N in turns as the s0, the above nonparametric function
produces the estimated spatial trends µ̂(si). By subtracting this trend µ̂(si) from the
original observations Y(si), we get the value of the de-trended stochastic term X̂(si), as
shown below,

X̂(si) = Y(si)− µ̂(si), (3.3)

which can be treated as the estimate of the de-trended (residual) component X(si) at si,
i = 1, ..., N.

With the same assumptions that the underlying process of X̂(s) is intrinsically station-
ary with a zero mean and its variogram function γX̂(d) is known, as introduced in
Chapter 2, the same ordinary (linear) Kriging, or simplified as OK method, can there-
fore be applied to the de-trended X̂(si) in order to get the X̂OK(s0), an ordinary Kriging
estimator of X̂(s0) at the location s0. Subsequently, by adding the X̂OK(s0) to the µ̂(s0)

from the nonparametric regression in Eq (3.2) , we get the estimated value of ŶUK(s0),
which is called the nonparametric-trend universal Kriging (NTUK) of Y(s0), the pro-
posed new method of predicting the air quality value at a new location s0 in this chap-
ter. We name it as an universal Kriging because it has a varying trend similar to that of
the linear universal Kriging. Overall, it follows the form of

ŶUK(s0) = µ̂(s0) + X̂OK(s0). (3.4)

In summary, by employing the modified nonparametric spatial trend function in the
current universal Kirging, this proposed NTUK method aims to enlarge the solution
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space of the spatial trend from its original linear form. We believe it is a more general
and convenient Kriging method specifically for non- Gaussian data sets.

3.3 Asymptotic theory

As the most important part in this chapter, we will conduct some theoretical investiga-
tions in this section concerning this proposed nonparametric-trend universal Kriging
method, and provide related asymptotic proofs where needed.

Eqs (3.2), (3.3), and (3.4) from the last section show the process of how this NTUK new
method using the sampled data to predict the response Y(s0) at a concerned location
s0. In brief, the NTUK process can be demonstrated as follows:

ŶUK(s0) = µ̂(s0) + X̂OK(s0), where X̂(s1), ..., X̂(sN)
OK
=⇒ X̂OK(s0). (3.5)

Note that, X̂OK(s0) is predicted based on the nonparametrically de-trended stationary
process X̂(si), i = 1, ..., N. In other words, from the sample point of view, by adding the
ordinary Kriging predictor with a nonparametric trend, we can estimate the response
value at the new location s0.

Following on, from the population point of view, we use Eq (3.6) to show the process of
how a theoretical universal Kriging alone predict the response ỸUK(s0) by supposing
the value of the true spatial trend µ(s0) is known, as

ỸUK(s0) = µ(s0) + X̃OK(s0), where X(s1), ..., X(sN)=⇒X̃OK(s0), (3.6)

where X(si), i = 1, ..., N stand for the true values of the residual process at the N ob-
servation sites, µ(s0) and ỸUK(s0) represent the true value of the spatial trend and the
predicted value of the response Y(s0) at a concerned location s0, respectively.

In this section, we will show that the pair of µ̂(s0) and X̂OK(s0) as shown in Eq (3.5) con-
verge (in probability) to µ(s0) and X̃OK(s0) in Eq (3.6) respectively, when the number of
the observation sites N tends to infinity. Consequently under the same conditions, the
NTUK estimator Ŷ(s0) in Eq (3.5) estimated from the sampled observations converges
to the Ỹ(s0) in Eq (3.6) represented theoretically from the true population. Hence, we
propose the following theorem,

Theorem 3.1: Assume that the above conditions hold, for s0 ∈ S, we have

ŶUK(s0)− ỸUK(s0)
p→ 0, (3.7)

as the sample size N → ∞.
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Before formally prove this theorem, we need to summarise its theoretical backgrounds
as preparation: (a) the definition of the Domain-Expanding Infill (DEI) asymptotics
framework introduced by Lu and Tjøstheim (2014) and (b) the main conditions and
assumptions of this theorem.

(a) The framework of the domain-expanding infill (DEI) asymptotics is defined as,

δN = max1≤j≤N δj,N → 0,

with δj,N = min{||si − sj|| : 1 ≤ i ≤ N, i ̸= j},
(3.8)

that is, all the distance between neighboring observations tends to 0 as N → ∞, and

∆N = min1≤j≤N ∆j,N → ∞,

with ∆j,N = max{||si − sj|| : 1 ≤ i ≤ N, i ̸= j},
(3.9)

that is, the domain at each location expands to infinity as N → ∞, where ∥·∥ is the
Euclidean norm. Conveniently, we name the δN and ∆N as the infilling distance and
expanding distance of the spatial sites, respectively. The DEI asymptotics framework is
a reconciliation of the traditional domain-fixed infill (DFI) asymptotics and the domain-
expanding (DE) asymptotics which has the benefits from both frameworks while in
many applications, it may be natural as a result of the data structure.

(b) For the sake of simplicity, the main conditions assumed for this theorem are sum-
marised on the random field {X(s) : s ∈ R2} and the kernel K(·) is used in estimation.
We divide these assumptions into four categories: (A) spatial process, (B) sampling
sites, (C) kernel function, and (D) the bandwidths.

For any collection of site S ⊂ R2 , B(S), the Borel σ-field generated by {Y(s)|s ∈ S},
and for each couple S

′
,S

′′
, let d(S

′
, S

′′
) := min{||s′ − s

′′ || | s
′ ∈ S

′
, s

′′ ∈ S
′′} be the

distance between S
′

and S
′′
, where ||s|| := (u2 + v2)1/2, for s = (u, v) ∈ R2. Finally, the

cardinality of S is denoted by Card(S) (Lu and Tjøstheim, 2014).

Assumption (A) (spatial processes):

(i) X(s), s ∈ R2 is a strictly stationary spatial process satisfying the α-mixing prop-
erty that there exists a function φ such that φ(t) ↓ 0 as t → ∞, and a function
ψ : N 2 → R+ that is symmetric and increasing in each of its two arguments such
that
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α(B(S′
),B(S′′

))

:= sup{|P(AB)− P(A)P(B)|, A ∈ B(S′
), B ∈ B(S′′

)}

≤ ψ(Card(S
′
), Card(S

′′
))φ(d(S

′
, S

′′
)),

(3.10)

for any S
′
, S

′′ ⊂ R2. Moreover, the function φ is such that

lim
t→∞

tγ
∞

∑
j=t

j2{φ(j)}κ/(2+κ) = 0, (3.11)

for some constant γ > max{1, 2κ/(2 + κ)} and some κ > 0.

(ii) Denote by f (x, y; s0) the joint density function of X(s) and X(s + s0), where s0 ̸=
(0, 0). f (x, y; s) is uniformly a continuous function of (x, y) with respect to s ∈ R2,
and it has second-order partial derivatives with respect to x, y and s, which are
continuous.

(iii) The marginal and joint probability density function for Xi and (Xi, Xj), f (x) and
fi,j(x, y) satisfy | fi,j(x, y) − f (x) f (y)| ≤ C uniformly for i ̸= j and (x, y) ∈ R2,
where C is a generic positive constant.

Assumption (B) (sampling sites):

The observation sites are located at {si, i = 1, ..., N} ⊂ R2, for which Eq (3.8) and (3.9)
hold with min1≤j≤Nδj,N/δN ⩾ c1 > 0 and max1≤j≤N∆j,N/∆N ≤ C1 < ∞ for all N, and
there exists a continuous sampling intensity function (density function) fS defined on
R2 such that:

(i) for any measurable set A ⊂ R2, N−1 ∑N
i=1 I(si ∈ A) →

∫
A fS(s)ds as N → ∞.

(ii) fS(s) is bounded and it has second derivatives which are continuous on R2.

Assumption (C) (kernel functions):

(i) the kernel function K(·) satisfies
∫

K(u)du = 1,
∫

uK(u)du = 0, and µK,2 =∫
u2K(u)du < ∞, vK =

∫
K2(u)du < ∞.

(ii) the kernel function L(·) has a bounded support such that
∫
R2 L(s)ds = 1,

∫
R2 sL(s)

ds = 0, and bµK,2 =
∫
R2 ssT L(s)ds < ∞, vL =

∫
R2 L2(s)ds < ∞.

Assumption (D) (bandwidths):

(i) As N → ∞, (1) h → 0, (2) Nδ2
Nh4 → ∞, and (3) (Nδ2

N)
(γ+2)h8 → ∞.
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Assumption (A) concerns the conditions on the spatial data-generating process which
are standard in the context of the problem under study. Assumption (B) offers the con-
ditions on the spatial sites where observations are irregularly located under the DEI
asymptotics framework. Assumption (C) specifics the conditions for the two nonpara-
metric kernels used. Assumption (D) lists the conditions on the bandwidth which will
be used later.

In the rest of this section, we will show the theoretical proofs of this theorem revealing
the asymptotic properties of this newly proposed NTUK method.

Note that in Eq (3.5), substracting the nonlinear spatial trend µ̂(si), i = 1, ..., N, from the
observations Y(si), we get the de-trended residual terms, X̂(si). By applying ordinary
Kriging on these residuals with the mild assumption that the de-trended spatial process
is intrinsically stationary, as introduced in Chapter 2, we get

X̂OK(s0) = [γX̂,0]
TΓ−1

X̂
X̂, (3.12)

where the element of the symmetric de-trended residual semivariogram matrix is (ΓX̂)i,j

:= γX̂(si − sj) =
1
2 E(X̂(si)− X̂(sj))

2, i, j = 1, ..., N and γX̂,0 := (γX̂(s1 − s0), ..., γX̂(sN −
s0))T. Here γX̂,0 is the semivariogram function of the de-trended residual process mea-
sured between the concerned location s0 and the sampled site si, i = 1, ..., N.

The benefit of an intrinsically stationary process has been described earlier, that is the
semivariogram can be represented as a function which is in relation to the distance
between each pair of locations in the space S (Cressie, 1993).

For Eq (3.6), we can write a similar equation to calculate the estimated residuals X̃OK(s0)

at any location s0 from the unknown true residuals at the sampled locations, that is

X̃OK(s0) = [γX,0]
TΓ−1

X X, (3.13)

where the element of the true residual semivariogram matrix is (ΓX)i,j := γX(si − sj) =
1
2 E(X(si)− X(sj))

2, i, j = 1, ..., N and γX,0 := (γX(s1 − s0), ..., γX(sN − s0))T. Here γX,0

is the true semivariogram function of the residual process X(s) measured between the
concerned location s0 and the sampled site si, i = 1, ..., N.

To reveal the asymptotic relations between X̂OK(s0) and X̃OK(s0), and consequently
between ŶUK(s0) and ỸUK(s0) in Eqs (3.5) , (3.6) and (3.7), we would like to study the
relations between:

(i) µ̂(s0) and µ(s0) at any location s0 ∈ S,

(ii) γX̂(si − sj) and γX(si − sj), the semivariogram functions of the detrended residual
process X̂(si) and the true residual process X(si), respectively.
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We start with the investigation on (i). To solve Eq (3.2) for all si, i = 1, ..., N, it can be
written in matrix form,

Minimise
β

(Y − Zβ)Tω(Y − Zβ), (3.14)

where Y := (Y(s1), ..., Y(sN))
T, Z ∈ R(N×3), (Z)i = (1, ui − u0, vi − v0), ω is a diagonal

matrix, whose ith diagonal element is K( si−s0
hN

), or simply Ki,0, and β = (a0, a1, a2)T.
Lastly, we denote β̂ = (â0, â1, â2)T the optimal solution of Eq (3.2); in this application,
we are interested in its first element â0, the estimator of µ(s0).

Fan and Gijbels (1996) provided the solution of β̂ for Eq (3.2) and (3.14) by weighted
least squares theory, furthermore Hallin et al. (2004) expanded the solution of Eq (3.2)
to a n-dimensional case, that is,

β̂ = (ZTωZ)−1ZTωY . (3.15)

Thus, from Eq (3.15) and Eq (3.2), we obtain

µ̂(s0)− µ(s0) = (1, 0, 0)[(ZTωZ)−1ZTω(Y − Zβ)]

= (1, 0, 0)[(
1

Nh2
N

ZTωZ)−1

︸ ︷︷ ︸
D∗

1
Nh2

N
ZTω(Y − Zβ)︸ ︷︷ ︸

D

], (3.16)

where Z, ω,Y and β are defined as above, and D∗ is a deterministic 3 × 3 symmetric
matrix related with the known locations of the monitoring sites.

To solve Eq (3.16), we explore the asymptotic solution of D. It is easy to show that D,
the second term in Eq (3.16) is defined as

D :=
1

Nh2
N

ZTω(Y − Zβ)

=


1

Nh2
N

∑N
i=1 Ki,0(µ(si) + X(si)− a0 − a1(ui − u0)− a2(vi − v0))

1
Nh2

N
∑N

i=1 Ki,0(ui − u0)(µ(si) + X(si)− a0 − a1(ui − u0)− a2(vi − v0))

1
Nh2

N
∑N

i=1 Ki,0(vi − v0)(µ(si) + X(si)− a0 − a1(ui − u0)− a2(vi − v0))

 (3.17)

Imposing the Assumption A (ii) that the spatial regression function µ(s) is twice differ-
entiable, we expand Eq (3.1) as below, with |γ| < 1,
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µ(si) =µ(s0) + hµ
′
u(s0)(

ui − u0

h
) + hµ

′
v(s0)(

vi − v0

h
)

+
h2

2

[
µ

′′
uu

(
s0 + hγ(

si − s0

h
)

)
(

ui − u0

h
)2 + 2µ

′′
uv

(
s0 + hγ(

si − s0

h
)

)
(

ui − u0

h
)(

vi − v0

h
) + µ

′′
vv

(
s0 + hγ(

si − s0

h
)

)
(

vi − v0

h
)2
]

.

(3.18)

Note that a0 = µ(s0), a1 = µ
′
u(s0) and a2 = µ

′
v(s0) as in Eq (3.2). Plugging Eq (3.18) into

Eq (3.17) , the first element of D, denoted as D11, can be shown as

D11 =
h2

2

[
1

Nh2

N

∑
i=1

K(
si − s0

h
)(

ui − u0

h
)‘µ

′′
uu(s0)︸ ︷︷ ︸

D11.a

(1 + o(1))

+
1

Nh2

N

∑
i=1

K(
si − s0

h
)(

ui − u0

h
)(

vi − v0

h
)µ

′′
uv(s0)︸ ︷︷ ︸

D11.b

(1 + o(1))

+
1

Nh2

N

∑
i=1

K(
si − s0

h
)(

vi − v0

h
)2µ

′′
vv(s0)︸ ︷︷ ︸

D11.c

(1 + o(1))
]

+
1

Nh2

N

∑
i=1

K(
si − s0

h
)X(si)︸ ︷︷ ︸

D11.d

.

(3.19)

Starting with the residual term D11.d, we take its squared form and get

E(
1

Nh2

N

∑
i=1

K(
si − s0

h
)X(si))

2 =
1

N2h4 (
N

∑
i=1

K2(
si − s0

h
)E(X2(si)))︸ ︷︷ ︸

E

+
1

N2h4

N

∑
i=1

N

∑
j=1,j ̸=i

K(
si − s0

h
)K(

sj − s0

h
)E

(
X(si)X(sj)

)
.︸ ︷︷ ︸

F

(3.20)

We adapt the Assumption B (i) of the intensity function as in Eq (3.21) to E, the first
RHS term in Eq (3.20), where fS(s) is the intensity function of the sample at location
s = (u, v). As N → ∞,
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1
N

N

∑
i=1

I(Si ∈ A) →
∫

A
fS(s)ds. (3.21)

Therefore, noting E(X2(si)) = σ2
X, we get,

E =
1

N2h4

N

∑
i=1

K2(
si − s0

h
)σ2

X =
σ2

X
Nh4

∫
K2(

s − s0

h
) fS(s)ds(1 + o(1))

=
σ2

X
Nh4

∫∫
K2(

u − u0

h
,

v − v0

h
) fS(u, v)dudv(1 + o(1))

=
σ2

X
Nh2

∫∫
K2(u

′
, v

′
) fS(hu

′
+ u0, hv

′
+ v0)du

′
dv

′
(1 + o(1))

=
σ2

X
Nh2

∫∫
K2(u, v) fS(u0) fS(v0)dudv(1 + o(1))

=
σ2

X fS(u0) fS(v0)

Nh2

∫∫
K2(u, v)dudv(1 + o(1)) = O(

1
Nh2 ),

(3.22)

with the condition N → ∞ and
∫

K2(s)ds is bounded as in Assumption D (i) and C (i),
E → 0 as N → ∞.

Unlike the straightforward proof of E, the properties of α-Mixing in Assumption A (i)
is required to prove the part F in Eq (3.20), two separate spatial locations si and sj are
involved.

We split F into two parts i) when the distance between the two locations si and sj is less
than or equals to a set distance, denoted as PN , and ii) the distance between si and sj is
greater than PN , that is,

F =
1

N2h4
N

∑
i,j:0<d(si ,sj)≤PN

K(
si − s0

h
)K(

sj − s0

h
)E(X(si)X(sj))

+
1

N2h4
N

∑
i,j:d(si ,sj)>PN

K(
si − s0

h
)K(

sj − s0

h
)E(X(si)X(sj)),

(3.23)

where the procedure of selecting a suitable PN will be specified later in this section,
following the method suggested by Lu and Tjøstheim (2014).

The proof of the asymptomatic property of Eq (3.23) is quite involved. The prepa-
ration starts from the Cauchy-Schwarz inequality in Eq (3.24), similarly the Hölder’s
inequality in Eq (3.26) with Lemma 3.1 (Eq 3.25), which is often applied in similar
cases (Ibragimov et al. (1971), Deo (1973)). We also requires the assumptions from the
α−Mixing properties in Assumption A (i) and the bandwidth conditions in Assump-
tion D (i),
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|E(XiXj)| ≤ (EX2
i )

1
2 (EX2

j )
1
2 = σ2

X. (3.24)

Lemma 3.1. Let Lr(F ) denotes the class of F -measurable random variables ξ satisfying
∥ξ∥r := (E|ξ|r) 1

r < ∞. Let U ∈ Lr(B(S)) and V ∈ Lr(B(S
′
), where B(S) and B(S′

)

denote the σ-fields generated by {Y(s) : s ∈ S} and {Y(s) : s ∈ S
′}, respectively. Then,

for any 1 ≤ r, s, t < ∞ such that γ−1 + s−1 + t−1 = 1,

|E(UV)− E(U)E(V)| ≤ C ∥ U ∥γ∥ V ∥s [α(S ,S ′
)]1/t, (3.25)

where α(S, S
′
) = sup{|P(AB)− P(A)P(B)| : A ∈ B(S), B ∈ B(S′

)}.

The Hölder’s inequality shows as,

|Cov(X, Y)| ≤ ||X||p||Y||qα
1
γ (X, Y), with

1
p
+

1
q
+

1
γ
= 1. (3.26)

Taking p = q = 2 + κ in Lemma 3.1, Eq (3.26) can be rewritten as,

|E(XiXj)| ≤ ||Xi||2+κ||Xj||2+κ α
κ

2+κ (d(Si, Sj)). (3.27)

Now we show the proof for F in Eq (3.23).

Since si ̸= sj, F follows that

F = (N2h4
N)

−1 ∑
i,j:0<d(si ,sj)≤PN

K(
si − s0

h
)K(

sj − s0

h
)E(X(si)X(sj))

+ (N2h4
N)

−1 ∑
i,j:d(si ,sj)>PN

K(
si − s0

h
)K(

sj − s0

h
)E(X(si)X(sj))

≤ C(N2h4
N)

−1 ∑
i,j:0<d(si ,sj)≤PN

K(
si − s0

h
)K(

sj − s0

h
)σ2

X

+ C(N2h4
N)

−1 ∑
i,j:d(si ,sj)>PN

K(
si − s0

h
)K(

sj − s0

h
)σ2

X,

(3.28)

where ∑i,j:0<d(si ,sj)≤PN
refers to the summation over {(i, j) : 1 ≤ i, j ≤ N, 0 ≤ d(si, sj) ≤

PN}, the cardinality of which is controlled by C(PN/δN)
2, and C is a generic finite pos-

itive constant that may differ at different places. Thus, the above Eq (3.28) contin-
ues
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F ≤ (N2h4
N)

−1CN(PN/δN)
2
∫ ∫

K(
s − so

h
)K(

s
′ − so

h
) fS(s) fS(s

′
)dsds

′

+ c(N2h4
N)

−1
∞

∑
t=PN

α(t)κ/(2+κ)
N

∑
i=1

∑
j:d(si ,sj)≤t

K(
si − s0

h
)K(

sj − s0

h
)

≤ (N2h4
N)

−1CN(PN/δN)
2O(h4)

+ c(N2h4
N)

−1
∞

∑
t=PN

α(t)
κ

2+κ N(
t

δN
)2 1

N( t
δN
)2

N

∑
i=1

∑
j:t≤d(si ,sj)≤(t+1)

K(
si − s0

h
)K(

sj − s0

h
)

≤ O(1){(PN/δN)
2N−1}+ O(1){δ2

N Nh4}−1
∞

∑
t=PN

t2α(t)κ/(2+κ)

(3.29)

Let PN be the integer part of (δ2
N Nh4)−1/γ for the γ > 0 specified in Assumption A (i),

by which the second part of Eq (3.29) tends to zero as N → ∞. Now note that

(PN/δN)
2N−1 = {δ2

N Nh4}−
2
γ (δ2

N N)−1 = ((Nδ2
N)

(γ+2)h8)−1/γ, (3.30)

which tends to zero, following Assumption D (i) (3). Combining another two assump-
tions in Assumption A (i) and D (i) (2), Eq (3.29) tends to zero when N goes to in-
finity. Therefore, from Eq (3.30) and Eq (3.22), D11.d in Eq (3.20) tends to zero as
N → ∞.

To prove the remaining terms in Eq (3.19), i.e., D11.a, D11.b and D11.c, we can firstly
simplify them as follows

D11.a =µ
′′
uu(s0)

∫∫
u2K(u, v)dudv(1 + o(1)),

D11.b =µ
′′
uv(s0)

∫∫
uvK(u, v)dudv(1 + o(1))

D11.c =µ
′′
vv(s0)

∫∫
v2K(u, v)dudv(1 + o(1)).

(3.31)

Similar to the proof of D11.d, the three elements in Eq (3.31) can be proven converging
to 0 as the sample size N tends to infinity. So as the remaining two elements D21 and
D31 in Eq (3.17). We have shown the relations between the µ̂(s0) and µ(s0) in (i), that
is

E(µ̂(s0)− µ(s0))
2 → 0, as N → ∞, (3.32)

which deduces that
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µ̂(s0)
p→ µ(s0), as N → ∞. (3.33)

We now focus on (ii). γX̂(si − sj) and γX(si − sj) are the two semivariogram functions
from the de-trended residual process X̂(Si) and the true residual process X(Si) from
the population, respectively.

Under the assumption of intrinsically stationary, by definition, the semivariogram func-
tion of the de-trended residual process can be shown as

2 γX̂(si − sj) = E(X̂(si)− X̂(sj))
2. (3.34)

Similarly, we write the semivarigram function of γX(si − sj) as

2 γX(si − sj) = E(X(si)− X(sj))
2. (3.35)

By the decomposition rule introduced in Chapter 2, we have

Y(si) = µ̂(si) + X̂(si) = µ(si) + X(si). (3.36)

Plugging Eq (3.36) into Eq (3.34), we obtain

2 γX̂(si − sj) =E((µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)2 + (X(si)− X(sj)︸ ︷︷ ︸
B

)2

+ 2(µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)(X(si)− X(sj)︸ ︷︷ ︸
B

)

=E(µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)2 + E(X(si)− X(sj)︸ ︷︷ ︸
B

)2

+ 2E(µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)(X(si)− X(sj)︸ ︷︷ ︸
B

).

(3.37)

From Eqs (3.35) and (3.37) , we obtain the difference between the two semivariograms
γX̂(si − sj) and γX(si − sj) as:
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2(γX̂(si − sj)− γX(si − sj)) = E(µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)2

+ 2E(µ(si)− µ(sj) + µ̂(sj)− µ̂(si)︸ ︷︷ ︸
A

)(X(si)− X(sj)︸ ︷︷ ︸
B

).

(3.38)

Given the result from Eq (3.33), we can conclude that the difference between two var-
iograms in Eq (3.38) tends to zero when the number of sampled locations N goes to
infinity, which is,

γX̂(si − sj)− γX(si − sj)
p→ 0, as N → ∞, (3.39)

hence there is the completion of the proof for (ii).

Applying the result in Eq (3.39) into Eqs (3.12) and (3.13), which share the same struc-
ture and elements from the two identified spatial processes. Based on their definitions,
it is understood that

• γX̂,0 = (γX̂(s0 − si), ..., γX̂(s0 − sN))
T and γX,0 = (γX(s0 − si), ..., γX(s0 −sN))

T.

With Eq (3.39), we have γX̂,0
p→ γX,0, as N → ∞.

• Similarly, ΓX̂ = (γX̂(si − sj))
p→ ΓX = (γX(si − sj)), as N → ∞.

• E(X̂i − Xi)
2 = E[(Yi)− µ̂(si)− (Yi − µ(si))]

2 = E(µ̂(si)− µ(si))
(3.33)→ 0, as N →

∞. Thus X̂ = (X̂1, ..., X̂N)
T P→ X = (X1, ..., XN)

T, as N → ∞..

Therefore, it is concluded that,

X̂OK(s0)− X̃OK(s0) = γX̂,0Γ−1
X̂

X̂ − γX,0Γ−1
X X

p→ 0, as N → ∞. (3.40)

Plugging the asymptotic results of Eqs (3.33) and (3.40) into Eqs (3.5) and (3.6), we
prove the Theorem 3.1.

3.4 Application of NTUK method to air quality data

In this section, we will apply the proposed NTUK method to the same benchmark air
quality data used in Chapter 2.
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3.4.1 Examination of the air quality data

It is well known that, in reality, observed data most likely does not strictly follow a
Gaussian profile. For this reason, it is essential to check the input data before assigning
it to a linear model. In this section, the normality of the de-trened air quality data is
firstly tested, we will then apply the nonparametric-trend universal Kriging (NTUK)
method to the de-trended data.

We use the nonparametric regression function available in the R package sm to estimate
a nonlinear spatial trend µ̂(s) by applying the local linear fitting method (Bowman and
Azzalini, 1997), the result of the estimated trend in the region of England is shown in
Figure 3.1. It appears that the spatial trend tends to be relatively stable in the centre
area which is understandable, whilst the variations around the edges of the studied
space are noticeably large.
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FIGURE 3.1: Nonparametric estimation of spatial trend µ̂(S).

A kernal density estimation of the de-trended data, subtracting the estimated spatial
trend from the observations, is shown in Figure 3.2 in which a dotted Gaussian den-
sity curve is added with the equal mean and variance from the de-trended data. It is
shown that the de-trended residual part X̂(s) does not fit the matching Gaussian dis-
tribution.

3.4.2 NTUK to air quality data and comparison

The second step of the NTUK method is to apply linear ordinary Kriging to the de-
trended residual data, despite its proven non-linearity property. We compare its pre-
diction performance with the three linear Krigings using the cross validation criterion,
more specifically the leave-one-out Cross Validation (LOOCV) technique as introduced
in Chapter 2.
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FIGURE 3.2: De-trended air quality profile Vs. a matching Gaussian curve.

Mean squared prediction error (MSPE), in Eq (3.41), calculates the mean squared differ-
ences between the observed values Yobs(Si) and their estimators Ŷ(Si) from the LOOCV
criterion,

MSPE =
1
N

N

∑
i=1

(Ŷ(Si)− Yobs(Si))
2. (3.41)

Table 3.1 shows a comparison of the mean squared prediction error results from the four
Kriging methods. We get the MSPE value from the NTUK method as 213.6436, which
is significant less than the same measurements from three linear Krigings in Chapter 2.
We conclude that the newly proposed NTUK method outperforms the group of linear
Kriging methods introduced so far on the air quality data set.

Despite the nonlinearity in the de-trended residual data, linear ordinary Kriging is still
used for the NTUK method in this chapter for the reason that there is no suitable non-
linear method available up to this point. To overcome this constraint, we will show
a novel family of semiparametric model averaging marginal Kriging methods in the

TABLE 3.1: A comparison of mean squared errors from the NTUK and three linear
Kriging methods.

Kriging Methods Mean Squared Prediction Error
Nonparametric-trend universal Kriging 213.6436
Simple Kriging (linear) 231.9582
Ordinary Kriging (linear) 232.7272
Universal Kriging (linear) 233.0495
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next chapter, aiming to introduce nonlinear models for the de-trended residual process
X(s).
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Chapter 4

Semiparametric- Model Averaging
Marginal Kriging

In Chapter 3, the linear spatial trend is replaced by a nonparametrically fitted function
µ̂(s), see Eq (4.1). However, linear Kriging methods are still employed in the NTUK
procedure for Kriging the stochastic process X(s). In this chapter, our contribution is to
compare and propose a new semiparametric Kriging model for the stochastic process
X(s) by taking some potential nonlinear features of X(s) into account, following the
initial works from Lu and Tjøstheim (2014) and Li et al. (2015).

Y(s) = µ(s) + X(s). (4.1)

4.1 Background

We assume that there are N spatial sampling locations, denoted as S
′

:= {s1, ..., sN},
in the studied space S. The sampled data of the stochastic process X̂(s) is obtained by
subtracting the predicted spatial trend data µ̂(s) from the observed values of Y(s) as
Eq (4.1). The benefit of such a decomposition is that stationarity properties and other
assumptions may thus be supposed to make prediction of this stochastic spatial process
feasible from the sampled observations. One could otherwise make no progress with
only one set of sampled data available (Bivand et al., 2008). In this section, we will
review some possible nonparametric prediction methods for this task.

From the model selection perspective, we re-examine this research work. Between two
common categories of regression models, the parametric and nonparametric models,
the linear Kriging methods introduced in Chapters 2 and 3 belong to the former within
which the response takes the form of a weighted sum of the observations of all indi-
vidual predictors. The benefits of such models are discussed intensively in Chapter 2.
However, when the described underlying process does not follow a Gaussian profile,
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i.e., the linearity assumption is violated, the disadvantages of this category of models
become significant such as higher prediction variances when extreme values exist, and
substantial misfittings around the edges of the space.

Alternative parametric methods were developed for more complex cases, often when
the number of regressors is large, for instance in time and spatial series cases, a large
number of lags can enter into the model. One common approach by the generalised
linear models (GLMs) is to test a set of candidate models, then rank their prediction re-
sults by some comparison criteria, e.g., the Akaike Information Criterion (AIC) (Akaike,
1998) and Bayesian Information Criterion (BIC) (Schwarz et al., 1978).

Recently, introducing penalisation devices into a model becomes another focus in re-
search for dimensionality reduction. Following some selection criteria, this approach
forcefully lessens the solution space by assigning zero to the weights of many noise
variables. Tibshirani (1996) proposed the least absolute shrinkage and selection opera-
tor (Lasso) by imposing the L1 penalty. Further, Lp penalty and other penalty forms on
likelihood estimation were expanded, see Fu (1998) and Fan and Li (2001). For more
insights on model averaging and covariates selection, Claeskens et al. (2008) and Fan
and Lv (2010) are two recent references of this kind.

Despite the development in parametric methods, however in temporal and spatial
modeling, the numbers of regressors and time or spatial lags may take infinite values
and restrictive assumptions are hard to make. Moreover, evidently in many research
fields involving live or dynamic systems, such as Geostatistics or Econometrics where
the data usually exist as the outcome of a stochastic process, as White (2014) claimed,
the response and regressors may exhibit nonnormality or heteroskedasticity and often
serial correlation of unknown form. When the classical assumption of linear model is
violated, however some nonparametric approaches have been proved to be more effec-
tive for owning less restrictive forms and assumptions. In this chapter, we will focus
on this category of models.

Let {X(s)} be a stationary spatial series process, we denote Xs := (X(s1), X(s2), ...,
X(sN)) as a N-dimensional random row vector representing observations at N sam-
pled locations, and X0 represents the value of the response at a new random location
s0 , i.e. X0 = X(s0), s0 ∈ S. Applying nonparametric methods, the regression function
of E(X0|Xs = xs) with xs = (x(s1), x(s2), ..., x(sN)), as Li et al. (2015) stated, can be
well estimated when the dimension N is small , i.e., N ≤ 3. When a higher dimen-
sion is involved, the result however turns to be far less reliable due to the impact of
curse of dimensionality. More detailed discussion on this phenomenon can be found
in Chapter 5. Among the recent literature on this topic (see Fan and Yao (2003); Li
and Racine (2007) ), we focus on one specific framework introduced by Li et al. (2015),
the model averaging marginal regression (MAMAR) procedure. It was introduced as
a semiparamatric multivariate regression function for time series and constructed by
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an affine combination of one-dimensional marginal regression functions, often called
the smooth functions. The asymptotic normality of this model under the condition of
having fixed number of regressors was established with a convergence rate of

√
n. In

this chapter, we aim to adopt this model structure into a spatial series setting for spatial
interpolation (Kriging).

4.2 Semiparametric- full model averaging marginal Kriging

We consider a scenario in which only one observation is available at the location s1, and
we intend to make use of its information alone for predicting the response at a random
new location s0, for s1, s0 ∈ S. Denoting a Borel measurable function g1 of X(s1) on
R, we seek the minimiser ĝ1(X(s1)) that minimises the mean squared prediction error
satisfying

Minimise
g1

E[X(s0)− g1(X(s1))]
2. (4.2)

Intuitively, the optimal solution of minimising this mean squared prediction error (MSPE),
denoted as Z(s1), can be shown using the conditional expectation on X(s1) = x(s1),

Z(s1) := g0
1(X(s1)) = E[X(s0)|X(s1) = x(s1)]. (4.3)

Now escalating the above idea to a more general N observations case, i.e., x(s1), x(s2),...,
x(sN) are observed at N spatial locations s1, s2, ..., sN ∈ S, we can update Eqs (4.2) and
(4.3) in the form of N-observations and its solution are as follows:

Minimise
G

E[X(s0)− G(X(s1), X(s2), ..., X(sN))]
2, (4.4)

G0(X) = E[X(s0)|X(s1) = x(s1), X(s2) = x(s2), ..., X(sN) = x(sN)], (4.5)

where G0(X) refers to the Borel function on RN with all the N known observations as
the condition that minimises the MSPE in Eq (4.4).

In the interest of finding a solution for this multivariate conditional expectation prob-
lem in Eqs (4.4) and (4.5), from countless possibilities, we implement the model aver-
aging marginal regression (MAMAR) method proposed by Li et al. (2015) under the
approach of additive modelling. The general idea of this method is to approximate this
conditional expectation result by a sum of some low-dimensional conditional expecta-
tions, i.e., E(X0 |X(k) = x(k)) with x(k) represents a subset of (x1, x2, ..., xN)

T with the
size of k, which can be well estimated by nonparametric methods when the dimension
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k is small (say less than 4), we can thus approximate the conditional expectation in Eq
(4.5) by

G0(X) ≈ ω0 +
K

∑
k=1

ω0
k E(X0|X(k) = x(k)), (4.6)

where ω0 is the constant trend (or mean), and the summand is an affine combination
of conditional regression functions with weight ωk ∈ R to each X(k), 1 ≤ k ≤ K ≤
N. Here each X(k) can be a subset of the random vector X. Theoretically these X(k)

have the choice of taking a combination of any elements in X, however in reality one
would not set them to be high-dimensional terms, in order to avoid the effect of curse
of dimensionality.

Li et al. (2015) described this method as an approximation of the true conditional re-
gression function. Explicitly, within the family of models in Eq (4.6), there is the true
solution to be approximated. Moreover as its name suggests, structurally this approach
can be treated as a model averaging method. By identifying ω0 := (ω0

0, ω0
1, ω0

2, ..., ω0
K)

T,
the optimal solution of Eq (4.6) can therefore be approximated.

Among all possible models by this framework, a special solution was proposed with
K = N, and X(k) = Xk, the exact k-th component in X, thereby no overlappings among
the covariates. Let m(x) := E(X0|X = x) denotes the true conditional expectation, we
transfer Eq (4.6) into the form of

m0(x) = ω0
0 +

K=N

∑
k=1

ω0
k E(X0|Xk = xk), (4.7)

where m0(x) is an approximation of m(x) := E(X0|X = x) and 1 ≤ k ≤ K = N.

In this N one-dimensional conditional marginal regression setting, Li et al. (2015) claimed
that a unique solution ω0 is generally true; subsequently with these expectation com-
ponents estimated by some nonparametric techniques, we can approximate the true
response value at the new location of interest s0. In the next section, we will follow
this context introducing a semiparametric approximation procedure for spatial Krig-
ing.

4.2.1 Approximation

Following the initial introduction, we will implement this model averaging marginal
regression (MAMAR) method to our spatial series data, i.e., the air quality residual pro-
cess X(s). The aim is to predict X(s0) from the de-trended observations of X(s1), X(s2),...,
X(sN) sampled at the N known locations. Applying the Eqs (4.4) and (4.7), we solve
the problem of minimising the mean squared prediction error of X(s0),
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Minimise
ωk , 1≤k≤N

E
[

X(s0)− ω0 −
N

∑
k=1

ωkE(X(s0)|X(sk) = x(sk))
]2

, (4.8)

where ω0
0 = 0 after the detrended step. In fact, the nonparametric detrending process

in Chapter 3 can be viewed as the answer for estimating ω0
0. The elements in the vector

ω0
k , k = 1, 2, ..., N are the approximated weights of the N one-dimensional expectation

components. To solve Eq (4.8), ideally, we wish to estimate all the coefficients in {ω0
k},

k = 1, ..., N.

Similar to the settings for linear Krigings in Chapter 2, two assumptions for the process
of X(s) and a newly identified process Z(s) are made for the new Kriging method:

1. The detrended residual process X(s) is supposed to be a strictly stationary pro-
cess, for s ∈ S, s, d1, d2, ..., dn ⊂ R2, the joint distribution of {X(s), X(s+ d1), X(s+
d2), ..., X(s + dn)} depends only on the spatial lag d, but not on its initial lo-
cation s (see Davidson (1994)). Furthermore, after removing the spatial trend
µ(s) = E(Y(s)), the global mean of X(s) is constant and centred, i.e., E[X(s)] = 0,

2. The data of Z(s) := E(X(s0)|X(s)), as defined in Eq (4.3), comes from a second-
order stationary process with a finite covariance function C(d) := Cov(Z(s),
Z(s + d)), ∀s , s + d ∈ S,

where d denotes the spatial lag between any pair of spatial locations in space S. In this
thesis, the Euclidean distance (L2−norm of d) is used as the measurement of the spatial
distance between any pair of spatial locations.

The solution of this multiple linear regression problem, as Wackernagel (2003) and Li
et al. (2015) stated, can be shown as


ω0

1

ω0
2

...
ω0

N

 =


cov(Z(s1), Z(s1)) · · · cov(Z(s1), Z(sN))

cov(Z(s2), Z(s1)) · · · cov(Z(s2), Z(sN))
...

...
...

cov(Z(sN), Z(s1)) · · · cov(Z(sN), Z(sN))


−1 

cov(Z(s1), X(s0))

cov(Z(s2), X(s0))
...

cov(Z(sN), X(s0))

 ,

(4.9)

where the process Z(sk) := E(X(s0)|Xk = x(sk)), k = 1, 2, ..., N, is supposed to be
second-order stationary. In addition to the positive semi-definiteness of the covariance
matrix in Eq (4.9), we assume it is also a non-degenerate covariance matrix, i.e., it is
strictly positive definite. This is commonly recognised in this kind of applications to
ensure a feasible inverse operation.
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We can re-form the Cov(Z(sk), X(s0)) vector as Cov(Z(sk), X(s0)− E(X(s0)|X(sk)) +

E(X(s0)|X(sk))). Based on the orthogonality condition, this covariance between the
two processes, Cov(Z(sk), X(s0)) can be further derived into cov(Z(sk), Z(sk)), which
is indeed the variance of Z(sk), the diagonal elements of the covariance matrix. Now
we have the updated equation for the weights vector ω0 as


ω0

1

ω0
2

...
ω0

N

 =


cov(Z(s1), Z(s1)) · · · cov(Z(s1), Z(sN))

cov(Z(s2), Z(s1)) · · · cov(Z(s2), Z(sN))
...

...
...

cov(Z(sN), Z(s1)) · · · cov(Z(sN), Z(sN))


−1 

Var(Z(s1))

Var(Z(s2))
...

Var(Z(sN))

 . (4.10)

With the predicted weights, the model averaging marginal Kriging prediction of X(s0)

finally takes the form of,

X̃(s0) =
K=N

∑
k=1

ω0
k E[X(s0)|Xk = x(sk)] =

K=N

∑
k=1

ω0
k Z(sk). (4.11)

We need to uncover the process Z(s) := E(X(s0)| X(s)) and its covariance matrix to
solve Eq (4.11). Since only one realisation of the detrended residual process X(s) is
available, the result may not be directly estimated due to the extreme curse of dimen-
sionality, a N-variables Versus N-observations scenario. Adopting the additive approx-
imation concept from Lu et al. (2007) and Mammen et al. (1999), in this section we will
establish a three-stage iterative procedure for this task, which are (1) the Marginal re-
gression function estimation, (2) Spatial prediction of covariance matrix, and (3) Non-
parametric kernel bandwidth selection. We name this procedure the Semiparametric-
full Model Average Marginal Kriging (SFMAMK). Here, the full refers to K = N; we
will later introduce a model with K < N, i.e., the K-radius neighbouring average based
marginal (KNAMA) Kriging, in Section 4.3.

4.2.2 Marginal regression function estimation

We start this procedure by estimating the conditional marginal function of Z(sk) :=
E(X(s0)|X(sk)), k = 1, 2, ..., N. The name marginal refers to the N one-dimensional
conditional functions in Eq (4.8).

Based on the definition, assuming a continuous conditional density function f (·) exists
in space S, the studied individual regression mean function can be shown as

E [X(s0)| Xk = xk] =
∫

u f0|k(u|xk)du, k = 1, 2, ..., N, (4.12)
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where Xk := X(sk), xk := x(sk) and f0|k(u|xk) is the conditional probability density
function of X0 given Xk = xk. Our aim is to use the de-trended residual values to
estimate this conditional density function at s0.

We approximate the integral in Eq (4.12) by a discrete form,

Ê[X(s0)|Xk = xk] ≈
N

∑
ℓ=2

uℓ f̂0|k(uℓ|xk)(uℓ − uℓ−1), k = 1, 2, ..., N, (4.13)

where the uℓs are the order statistics of the detrended values, i.e., x(sℓ)s are sorted in an
ascending order, which are u1 := min1≤k≤N{x̂i}, uN := max1≤k≤N{x̂i} and uℓ−1 < uℓ,
for ℓ = 2, ..., N.

To estimate the conditional density functions in Eq (4.13), we define

f̂0|k(u|xk) =
f̂0,k(u, xk)

f̂ (xk)
, (4.14)

where f̂ (xk) is the estimator of the marginal density function f (x) of Xk that can be
easily constructed as

f̂ (x) = N−1
N

∑
i=1

Kh(Xi − x), (4.15)

where Kh(x) = h−1K(x/h) with a kernel function K(·) on R and a bandwidth h =

hN → 0, as N → ∞.

The numerator is the estimator of a joint density function f (x, y; s0) of X(s) and X(s +
s0) that characterises the nonlinear, non-Gaussian spatial dependence, with s0 ̸= (0, 0).
Intuitively, it can be shown as

f̂ (x, y, s0) =
1
n0

∑
j,ℓ∈S0

Kh(Xj − x)Kh(Xℓ − y), (4.16)

where S0 := {(j, ℓ) : sj − sℓ = s0, j, ℓ = 1, ..., N} and n0 =♯ S0, the cardinality of the set
S0. However, as Lu and Tjøstheim (2014) pointed out in practice, this cardinality can
be very small for most spatial distances and may equals to 0. An alternative solution
has to be introduced. In this study, we adopt a modified definition stated by Lu and
Tjøstheim (2014), that is

f̂i,k(x, y) = f̂ (x, y; si − sk) =
∑N

j,ℓ=1 Lb(sj − sℓ − (si − sk))Kh(Xj − x)Kh(Xℓ − y)

∑N
j,ℓ=1 Lb(sj − sℓ − (si − sk))

, (4.17)
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where Lb(s) = b−2L(s/b) with L(·) is a kernel function on R2, and a bandwidth b =

bN → 0, as N → ∞.

The idea of introducing this spatial smoothing in Eq (4.17) is associated with the esti-
mation of nonlinear dependence of the spatial process, when the monitoring locations
are irregularly positioned which is different from the case of regularly gridded data. As
a result, information from any pairs of observations with similar distances are retained
and furthermore highlighted. Yet the estimation itself becomes more theoretical- and
compute-intensive with the complexity of selecting multiple bandwidths. In Sections
4.2.4 and 4.4, we will propose approaches for bandwidth selection.

Until now, we are able to estimate all the elements on the RHS in Eq (4.13) to obtain the
N conditional marginal functions Ê[X(s0)|Xk = xk], k = 1, 2, ..., N. In Section 4.2.3, we
will estimate the ω0 vector in Eqs (4.10) and (4.11).

4.2.3 Prediction of the spatial covariance matrix

In this section, we will show the derivation of the covariance matrix from the N esti-
mated conditional functions, Ẑ(xk). It is clear that with only one set of estimations, one
can not directly compute the required covariance matrix. Suitable stationary assump-
tions are thereby required to construct the spatial dependence in S.

The introduction of using spatial Kriging methods for this task is made intensively in
Chapters 1-2. Imposing the assumption of second-order stationary for the process Z(s),
we suppose that it has an finite covariance function whose value is only related to the
spatial lag d between any pair of geographic locations, i.e., C(d) := Cov(Z(s), Z(s+ d)),
∀s , s + d ∈ S.

The objective of this stage is to obtain the N × N covariance matrix in Eq (4.10). We
need to estimate Cov(Z(xi), Z(xj)), its (i, j) element, for i, j = 1, ..., N. By imposing
suitable stationary assumptions, we are able to estimate a covariance function Ĉ(d)
with respect to the lag d between spatial locations. Hence, the covariance matrix and
the variance vector in Eq (4.10) can be discovered. In Chapter 2, we have explained
the use of spatial variogram and covarance functions for Kriging. It is worthwhile
to mention an important proposition describing the equivalence relation between the
variogram and covariance functions (see Wackernagel (2003)).

Proposition: (Equivalence of variogram and covariance functions)

1. If Z(s) is second-order stationary, i.e., there exists a covariance function C(d) of
Z(x), then a varigram function γd can be deduced from C(d) according to the
formula below,

γ(d) = C(0)− C(d). (4.18)
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2. If Z(x) is intrinsically stationary with a bounded variogram γd, i.e., γ(∞) :=
lim|d|→∞γ(d) < ∞, which denotes the lowest upper bound of an increasing vari-
ogram function, then a covariance function c(d) can be specified as

C(d) = γ(∞)− γ(d). (4.19)

3. For a second-order stationary process Z(x), both two properties stated above
hold, and the variogram and the covariance are said to be equivalent.

Cressie (1993) stated that if Z(s) is second-order stationary and if C(d) → 0 as |d| → ∞,
then γ(d) → C(0) as |d| → ∞ due to the stationary criterion. The value C(0), or the
sill, is equal to the variance of Z(s). With this proposition, we should be able to covert
one from the other between these two spatial functions.

As a beneficial supplement to Chapter 2, we expand the brief introductions made in
Section 2.3.2 on fitting the theoretical Variogram based on the observations. There are
three main steps for gaining the fitted variogram model from the sampled data.

The first step, described as a ’useful diagnostic tool’ by Cressie (1993), is to draw the
Variogram Cloud. Wackernagel (2003) named it as a measurement of the dissimilarity
γ∗

i,j of readings between two sampled locations. It is defined as,

γ∗
i,j :=

(ẑ(si)− ẑ(sj))
2

2
, (4.20)

where ẑ(si) and ẑ(sj) are estimated values at si and sj, respectively, i, j = 1, ..., N.

Adding the stationarity assumptions, the calculation is updated depending on their
spatial lag d, that is,

γ∗(d) :=
(ẑ(si)− ẑ(si + d))2

2
. (4.21)

The numerator of Eq (4.21) ensures γ∗(d) to be symmetric with respect to d. The pre-
sentation of the variogram cloud is to plot the dissimilarity against the spatial lags.
There are a total of CN

2 entries shown on this scatter cloud providing an initial spatial
information of this underlying process Z(s). Figure (4.1) shows an illustrative example
of this cloud using our estimated ẑ(s) data.

Now we move to the second step to draw the Experimental Variogram. It is noticed
that the dissimilarities in the variogram cloud are unevenly distributed, i.e., many lags
d are not covered by the limited number of pairs of samples, also a small number of
lags have more than one calculated dissimilarities from different pairs of locations. To
overcome this challenge, Wackernagel (2003) suggested to divide all spatial distances
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Distance lag d in km
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FIGURE 4.1: An illustration of the variogram cloud drawn from the estimated ẑ(s0),
where s0 = s2

into G classes Dg, g = 1, ..., G, also known as lag intervals or bins, so ∪G
g=1Dg covers

all the distances up to the cutoff distance, which Cressie (1993) recommended to take
one-third of the maximum sampled distance, i.e., 1

3 maxi,j=1,...,N |si − sj| from the sam-
ples. The reason is that any dissimilarities after the cutoff distance may contribute little
information for modelling the process (Bivand et al., 2008).

For each distance class Dg the corresponding average dissimilarity γ̃∗(d) can therefore
be determined. The N(Dg) denotes the cardinality of the g-th distance class. As such,
we have

γ̃∗(d) :=
1

2N(Dg)
∑

N(Dg)

(z(si)− z(sj))
2, (4.22)

where N(Dg) = {(si, sj) : |si − sj| ∈ Dg for i, j = 1, ..., N} represents the set of all pairs
of locations having the distances inside the class Dg.

One practical note though, the experimental variogram varies significantly to how the
distance class is selected, so does to the choice of the cutoff value. The latter is the
maximum distance chosen in the experimental variogram, which it is normally set as a
far smaller value than the maximum distance measured on the samples. 1

Before moving to the next step, we also like to discuss another pair of important con-
cepts presented in Cressie (1993): the isotropic and anisotropic. In the isotropic case,
the distance class Dg depends only on the Euclidean distance between two locations, or

1The practitioners are strongly advised to check the default settings for these parameters when using a
spatial package in R.
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FIGURE 4.2: An illustration of the experimental variogram drawn from the estimated
ẑ(s0), where s0 = s2

explicitly the studied property that invariant in relation to a particular direction; whilst
in the anisotropic case, it has a second variable taken into account for identifying the
distance class, which is the direction of the lag d. Webster and Oliver (2007) described
that in Geostatistics when the underlying process performs differently between the hor-
izontal and vertical directions, anisotropic model is more suitable than the isotropic. In
our air quality case, we confine our attention to the former for the reason of simplicity
without introducing extra factors such as the short-term wind direction.

The last step in this stage is to fit the captured experimental variogram from a few
valid parametric covariance/variogram models, i.e. to replace the experimental vari-
ogram by a theoretical model. Among the countless possible fitting models, there are
some models recommended often chosen in applied geostatistics. A list of the common
candidates can be found in Wackernagel (2003) and Webster and Oliver (2007).

In general, there are some good signs from the empirical variogram indicating which
theoretical model families to choose from. When estimating the parameters in a likely
model, the ordinary or weighted least square fitting methods are widely applied. We
notice that in the recommended models there are only a limited number of parame-
ters left to be estimated; among them, the commonly used models are the sill, range
and nugget, which were discussed in Chapter 2. In addition to the exponential model
shown in Section 2.3.2, we add another commonly used fitting model, i.e., the spherical
model.

Let γa,b(d) denote the variogram function, Ca,b(d) the corresponding covariance func-
tion with lag d and a, b > 0 the parameters of each model, where a, b represent the
range parameter and the sill value, we have



58 Chapter 4. Semiparametric- Model Averaging Marginal Kriging

γ
sph
a,b (d) :=

{
b( 3

2
|d|
a − 1

2 (
|d|
a )3), if |d| ≤ a,

b , otherwise.

Csph
a,b (d) :=

{
b(1 − 3

2
|d|
a − 1

2 (
|d|
a )3), if |d| ≤ a,

0 , otherwise.

With the estimated range a , sill b, and often combined with the nugget, the covari-
ance matrix in Eq (4.10) can be easily computed, so does the variance vector. Subse-
quently the weight vector ω0 is uncovered for estimating the N marginal regression
functions.

4.2.4 Nonparamatric Bandwidth Selection

Combining the previous two stages, we now have a nearly complete iterative proce-
dure for the proposed full Model Averaging Marginal Kriging (SFMAMK) method.
The ’nearly’ refers to the two free parameters yet to be decided: the spatial kernel band-
widths b and h in estimating the marginal and joint probability density functions in Eqs
(4.15) and (4.17), respectively.

The purpose of introducing these spatial smoothing kernels, Kh(x) and Lb(s), is to con-
struct the nonlinear spatial dependence of the Z(s) process, in particular when the sam-
pled locations are irregularly positioned. Intuitively, in this nonlinear Kriging method,
we intend to emphasise the information extracted from the observed data, which is
closely related to Z0. The information includes two sources: one is the information
of closeness in site with spatial dependence, i.e., the data Zi whose site si is close to
s0; the other is the information of the closeness in value of spatial variable, that is the
data Zi whose value is close to Z0 even though this is unobserved. These two kernels
established will assist us in achieving these purposes.

In practice, there are various types of kernel functions to choose from, e.g., the Gaus-
sian, uniform, triangular, Epanechnikov, biweight, etc. However, it is worth mention-
ing that the selection of a specific Kernel type has no significant impact on the pre-
diction results when the sample size is large. The Epanechnikov function is the one
selected in this chapter.

One feasible solution for the selection of the optimal bandwidths is cross-validation
method, in particular, the Leave-one-out-cross-validation (LOOCV) that we have used
before. Cross-validation, also called rotation estimation, is an effective model selec-
tion technique for choosing the best candidate out of the possible models by compar-
ing some predetermined testing statistics. As its name suggested, each repetition of
this LOOCV method is executed by selecting N − 1 sampled observations, denoted as
{X−i} := (X1, ..., Xi−1, Xi+1, ..., XK), i = 1, ...N, to be the training set, leaving the only
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one sample Xi as the validation set. This iterative process runs in total N repetitions for
∀i, before the preset criteria are satisfied.

Given that in the first stage, the estimation of the marginal and joint probability den-
sity functions are strongly influenced by the choice of the bandwidths. The outcome,
the estimated marginal mean expectation Ẑ(si), effectively becomes a function of the
bandwidth variables h and b, i.e., Ẑ(s) depends on h, b > 0. In the second stage, the
characteristic of this functional relation is passed on, and remained in X̂(s) in Eq (4.11).
Applying LOOCV, one can compute the Mean Squared Prediction Error (MSPE) be-
tween the X̂(s) and X(s). At last, we have the MSPE, as defined in Eq (2.15), is the
function of (h, b), say f (h, b), h, b > 0. The selection of suitable bandwidths now effec-
tively becomes an optimisation problem of finding the minimiser of MSPE.

Unlike in a continuous case, the MSPE objective function of our full Model Averag-
ing Marginal Kriging does not have a closed-form expression, which means that the
objective function can not be summarised in an analytic solution owing mainly to the
estimation steps of the covariance matrix in the second stage, i.e.,

Minimise
h, b>0

f (h, b). (4.23)

We select the Nelder Mead method, a widely used nonlinear programming technique
(NLP), for this multivariate optimisation problem. Nelder and Mead (1965) introduced
this method for a minimisation of a function of n variables, which depends on the com-
parison of function values at the (n + 1) vertices of a general simplex, followed by the
replacement of the vertex with the highest value by another point. The simplex adapts
itself to the local landscape, and contracts on to the final minimum. Figure 4.3 shows
an illustration of how this heuristic algorithm works for a two-dimentional problem
(Ozaki et al., 2017). Overall, this method has some nice features such as capable of
working on gradient-free, non-differentiable functions, which are required in this pro-
cedure.

It is recognised that the initial choice of the bandwidths has a noticeable impact for this
type of compute-intensive tasks in general. The kernel density function estimation in
our SFMAMK procedure has no exception. Reducing the solution plane from existing
knowledge of the problem and some experimental tests will help to reduce the overall
running time of the computation.

One approach for seeking the initial point is to start with the data itself. Dehnad (1987)
proposed a normal distribution approximation of h∗, or Silverman’s rule of thumb for
a near Gaussian function,
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FIGURE 4.3: An illustration of how the Nelder Mead NLP method works in a
two-dimensional local area.

h∗ := (
4σ̂5

3N
)−

1
5 , (4.24)

where the standard deviation σ̂ and the sample size N are both from the observed data
set. Despite the easy computation, this kind of estimator has to be applied with caution.
Further adjustments on the bandwidths may be required for identifying more suitable
initial starting point.

4.2.5 Trial run of the SFMAMK method to air quality data

So far, a complete procedure is developed for approximating the residual process of
X̂(s). Specifically, we start estimating the full set of the one-dimentional marginal
regression functions Ẑ(si), for i = 1, ..., N, through the nonparametric estimation of
probability density functions for irregularly observed spatial data proposed by Lu and
Tjøstheim (2014). Then with the assumption of second-order stationarity, we fit the
estimated Ẑ(s) with a parametric covariance function to calculate the ω0 vector in Eq
(4.11) before completing this procedure. In this section, we will test this method to our
spatial air quality data.

Beginning with the estimation of marginal mean functions, to avoid the extreme re-
sponse values at which the density functions can be poorly estimated, in practice we
adapt the suggestions from Lu and Tjøstheim (2014) to focus on the estimators of the
density function at the points, (x, y) ∈ [a, A]× [a, A] , where a and A are chosen as 1%
and 99% sample quantiles of xi’s, respectively. To further simplify the computation, we
replace the µl in Eq (4.13) with a series of M = 50 response values, denoted as {xm},
m = 1, ..., M, evenly distributed within the identified range.
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Figure 4.4 shows some initial results of the estimations of the marginal mean func-
tions. The horizontal and vertical axes of the graphs represent the values of xm and
the marginal mean estimators, respectively. The graphs use doted lines to display the
estimators at two new locations, i.e., s1 on the left and s2 on the right. The estima-
tors, shown on the both sides, vary for each xi, i = 3, ..., 105, taken as the conditions.
Multiple bandwidths are tested with comparable results similar to the selected set of
(h, b) = (0.07, 8). The outcomes are approximately the same at other new locations.

FIGURE 4.4: Estimates of E(X(s0)|X(sk) = x), k = 3, 4, ..., N = 105, with
(h, b) = (0.07, 8): (a): s0 = s1, and (b): s0 = s2.

Less favourably, the result reveals a significant impact on the estimators when dissimi-
lar locations are used as the condition, furthermore this dissimilarity is observed when
s0 varies irregularly in the sampled space. Both findings make the estimation of a uni-
fied covariance function in the second step, even if the functions are from the same
model family, impossible at different new locations. The stationarity condition assur-
ing a consistent covariance function may be violated in this case, i.e., extra factors might
contribute to define the underlying covariance function other than merely the spatial
distance. Further investigation in our air quality case is thereby required to seek for an
alternative solution.
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FIGURE 4.5: Estimates of Z(sk) = E[X(s)|X(sk)] for s = sj, j = 97, 98, 101, 102, in the
four panels respectively, as a function of the distance between sj and sk, with k ̸= j,
based on their corresponding training set {s}−j. Here (h, b) = (0.07, 8) is the selected
bandwidths for the estimations.

4.3 K-radius neighbouring average based marginal Kriging

We look further into our air quality case, an interesting sign of bifurcation, linked with
the spatial distances between each pair of locations which gained our attention. Figure
4.5 illustrates a shared phenomenon that the estimates of the marginal mean functions
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are more consistent when the conditioned locations are chosen from a close distance;
conversely the estimates obtained from those far-distanced locations, say beyond a near
200 km mark, show substantial variations in the results. It is reasonably believed that
the spatial locations of the monitoring sites may contribute to this challenge.

We recall the comments made by Bivand et al. (2008) and Cressie (1993) on the cutoff
distance for the experimental variogram, that any dissimilarities after the cutoff dis-
tance may contribute little information for modelling the process, the 200 Km is indeed
near the recommended cutoff distance in our air quality case, which takes one-third of
the maximum sample distance.

The left side of Figure 4.6 shows the true locations of the air monitoring sites in Eng-
land, whereas a detailed map of UK’s metropolitan areas, posted by ESPON (2007),
is on the right. It is clear that the monitoring sites are spread sparsely in rural areas,
whereas a high density of sites are located in the main metropolitan districts. More-
over, from a nationwide point of view, the monitoring sites are also more centrally
stationed in the centre and South East of England. It is a genuine belief that, because of
many inherent relations, e.g., economic ties and geographical reasons, there are greater
similarities shared in a same region than those from cross regions. Three major sub-
national divisions, London, West Midland and North West, are highlighted in Figure
4.6. As a reference factor, the direct distance between London and Manchester is about
260 Km.

FIGURE 4.6: The left graph shows the locations of the air monitoring sites in England.
The main metropolitan areas in England are indicated in the right graph.
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We identify this bifurcate effect as a clustering problem where we intend to find our al-
ternative solution. Clustering, often called clustering analysis, is a process of grouping
similar objects together as a cluster from the other distinct samples. By the established
criteria, the outcome of this process is that some new, often useful, insights of the sub-
ject are obtained from the clusters. Clustering analysis was originated during the 1930s
and 40s from social sciences, such as in the field of anthropology by Driver and Kroe-
ber (1932) and psychology by Cattell (1943). It has since then developed and became
one of the major aproach of exploratory data analysis and statistical techniques for data
analysis, in particular, in big data and machine learning era in the 21st century.

The task of implementing a distance-related clustering in this marginal Kriging proce-
dure is to divide the full set of obtained marginal mean functions into two groups, and
keep the group estimated from the nearby conditioned locations for the next averaging
step. There are two popular methods, K-nearest neighbouring (KNN) and K-radius
neighbouring (KRN), that we opt for the latter. After all the KRN approach satisfies the
need from Figure 4.5. While by the KNN method, there is no fixed range of distance
guaranteed at each location, undesired estimates from the distances far over 200 km
may therefore be unwillingly included.

Figure 4.7 demonstrates the amendment made to the previous full- model averaging
marginal Kriging procedure in Section 4.2. After the first step of the marginal regres-
sion function estimation, we replace the spatial prediction of covariance matrix by a
K-radius neighbouring average function, in which a radius of value K will be identified
so that those estimated ẑ(s) conditioned from distances greater than K are discarded.
Hence, the majority of estimates from cross major regions are excluded in the second
step of the proposed procedure. Statistically, it is aware that there are 2385 pairs of
monitoring sites having distances less than 200 km, counting as 52.3% of the total 4560
pairs of locations in our spatial air quality data set.

To illustrate this new procedure, Eq (4.11) can be reformulated in an averaging form
of

X̃(s0) =
1
n

n

∑
i=1

E[X(s0)|Xi = x(si)] =
1
n

n

∑
i=1

Z(si), (4.25)

where {si} is a subset of S
′

satisfying ||s0 − si|| < K, and n is the cardinality of the set
{si}. It is worth mentioning that both {si} and n are location sensitive, which vary at
each new location s0.

In conclusion, combining Stage 1, the marginal regression function estimation intro-
duced in Section 4.2.2 with Stage 2, the K-radius neighbouring average (Eq (4.25)), we
now complete this new two-stage K-radius neighbouring average based marginal Krig-
ing method, or KNAMK in short.
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FIGURE 4.7: Illustration of the K-radius neighbouring average function, where the
distance parameter K is to be estimated. The star symbol signifies that both s0 and sk
are in a same major region, and the triangle indicates that s0 and sk are in different
major regions in England.

4.4 Application of KNAMK method to air quality data

Following the theoretical introduction of the K-radius neighbouring average based
marginal Kriging and its background knowledge explained, we will apply this method
to our spatial de-trended data x̂(s).

4.4.1 Examination of the de-trended data

In Section 3.4.1, we compared the de-trended air quality data with a matching Gaus-
sian profile using a nonlinear kernel density estimation by the sm function in R. Before
embarking on testing our new Kriging method, we check our de-trended observation
data x̂(s), as shown in Figure 4.8. Ideally, the data would be expected to fit the match-
ing Gaussian process, yet deviations are detected, especially around the tails as well
as an over-fitting near the mean. We will take this into account in the following sec-
tions.

4.4.2 Selection of the bandwidth and the K-radius

To perform the newly proposed two-stage KNAMK method detailed in Sections 4.2 and
4.3, there are critical parameters yet to be decided, i.e., the selection of the bandwidths
h and b, and the K-radius. An optimal set of bandwidths contribute to a balanced
estimation of probability density functions, while a suitable K-radius ensures the con-
sistency of the selected marginal estimations in the second step. The MSPE under the
cross-validation principle is used to evaluate the whole process.
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FIGURE 4.8: A comparison between the detrended air quality residual data with a
matching Gaussian profile.

Among the three parameters to be estimated, the previous knowledge on K-radius can
be adopted to set its initial value. For the bandwidths, the normal distribution approxi-
mation h∗ in Eq (4.24) is used to initiate this task, that is we set h0 = h∗, considering the
data is relatively closed to a Gaussian profile (see Figure 4.8). Meanwhile we define the
b0 = h∗, which means that both kernels are treated equally at the beginning of this pro-
cess. Instead of dedicating the entire computational tasks to an nonlinear optimisation
solver, we adopt an idea from the design of experiments (see Fisher (1936)). Applying
the concept of the orthogonal factorial design, in the initial test phase, we complete
the KNAMK process using five sets of bandwidths, i.e., (h0, b0), (2h0, 2b0), (2h0, 0.5b0),
(0.5h0, 2b0) and (0.5h0, 0.5b0). The comparison of the five calculated MSPEs shows the
likely direction of where the MSPE descends, so we re-centre the (h0, b0) along this de-
scending direction and repeat this testing routine. By a small number of iterations (
two or three rounds), we can significantly reduce this two-dimensional solution plane
of the h-b bandwidth set. Using this kind of ’long jump’ test, the potential ’local traps’
effect may be reduced which is very beneficial for tasks of this kind.

In the next step, however, we adapt the suggestion from Lu and Tjøstheim (2014) that
we can not simultaneously select optimal b and h to minimise the MSPE, as a result from
the asymptotic assumptions made for estimation of the probability density functions.
After the new initial starting point is defined, we alter the values of b and h one at a time
to calculate and further compare the MSPEs from each set. The vectorization function
in R greatly assists this intensive computational work. Furthermore, we repeat the
bandwidths selection process with multiple K-radius values until the estimated MSPE
converges.
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4.4.3 Numerical result

In this section we report the result of the K-radius neighbouring average based marginal
Kriging method applied to our benchmark data set, the UK air quality data. The pur-
pose is to illustrate that this semiparametric estimation method works reasonably well
in a spatial additive regression case. Furthermore, we use the MSPE criterion to com-
pare its result with those from the previous methods, where

MSPE =
1
N

N

∑
k=1

(Ỹ(sk)− Yobs(sk))
2, for k = 1, ..., N. (4.26)

Table 4.1 shows a comparison of the mean squared prediction error using the three
Kriging methods as titled. By taking the bandwidths (h, b) = (0.07, 8) and K-radius =
205 Km, the MSPE of KNAMK method is 189.4570. This is noticeably smaller than the
linear Kriging, while 233.0495 is the MSPE of the direct universal Kirging method. It
is also smaller than the result from the Nonparametic-trend Universal Kriging (NTUK)
method proposed in Chapter 3.

TABLE 4.1: A comparison of Mean Squared Prediction Errors from three Kriging
methods

Methods Mean Squared Prediction Error
K-radius neighbouring average marginal Kriging 189.4570
Nonparametric-Trend universal Kriging (Chapter 3) 213.6436
Direct universal Kriging (Chapter 2) 233.0495

It is understood that due to the nature of the free parameters (the two bandwidths and
the K-radius), achieving the global minimum for this specific data set is not the main
purpose of this section. Indeed, the current comparison adequately concludes that the
proposed KNAMK method meets our requirement and performs the best among all
Kriging methods introduced so far, based on our benchmark air quality data set.

Up to now, our attention has been focused solely on spatial prediction. By proposing
two nonparametric spatial interpolation models, the NTUK and KNAMK, we attempt
to overcome the confined Gaussian assumptions of the current linear Kriging meth-
ods. The aim is to provide alternative Kriging methods suitable for more general non-
Gaussian spatial data sets. In Chapter 5, we will expand our attention into the realm of
nonlinear spatio-temporal modelling and prediction.
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Chapter 5

Semiparametric Spatio-Temporal
Nonlinear Prediction

In this chapter, we will add time dimension into the current study of purely spatial pre-
diction at a single point of time. Integrating the nonlinear spatial prediction method in
Chapter 4, the contribution of Chapter 5 is to develop a staged semiparametric spatio-
temporal procedure performing future prediction (forecast) for nonlinear data at irreg-
ularly spaced sampling locations.

5.1 Introduction

So far in this research, we confined our focus on the spatial series prediction studying
likely underlying relationships between spatial-indexed information among locations
at a single point of time. In this chapter, we will expand our research to the field of
spatio-temporal prediction. The objective of this attempt is to predict the future values
of the response at any locations using spatial-indexed data sampled from the current
and past times, i.e. adding time dimension into the spatial prediction. With the addi-
tional knowledge from nearby points in time, it is believed that some time dependence
structure can be established, and subsequently applied in the prediction model for the
future. Yet proposing a sensible model structure remains a challenging task of being
adequate and still achievable for computation.

In Section 5.2, we will begin with a literature review on the history, development and
principal methodologies of time Series and further the spatio-temporal series, with
main focus on nonlinear approaches. From the review, a new two-staged SPKM proce-
dure of nonlinear semiparametric spatio-temporal prediction will be proposed in Sec-
tion 5.3. Finally in Section 5.4, we will apply this nonlinear procedure to the air quality
data and compare the result with those from some current methods in literature.
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5.2 Background knowledge

Recognising a substantial leap from the spatial series study, we believe that it is essen-
tial to expand our review on two new fields, namely the Time Series and Spatial Time
Series. Then, these three modelling families, which are distinguished by their fields of
applications, share immense similarities, comparable concepts and methods.

This section is divided into two main parts: the review of time series and the spatial
time series, respectively. The aim of this section is to elaborate the knowledge in the
past chapters and build the foundation for this new subject, which then leads to the
introduction of the class of spatio-temporal autoregressive partially (non)linear regres-
sion (STAR-PLR) models in Section 5.3.

Prior to the review, we would like to briefly compare a few important concepts that
are critical to this chapter, all of which will be mentioned repeatedly in the following
sections.

• Linear and Non-linear model: In statistical modelling, when the finite sample
data shows a linear correlation between the response and covariates, or they can
be transformed (regularised) into a near-linear relationship, the well-studied lin-
ear modelling methods would usually be appropriate due to their superiorities in
simple to implement and easy for interpretation. Despite the advantages, linear-
ity features are not commonly observed in the real world, misspecification may
occur when significant nonlinearity is presented in the data. Nonlinear modelling
methods are therefore developed to meet the situations when non-Gaussian fea-
tures exist.

• Parametric, Semiparametric and Nonparametric model: In statistical modelling,
after a model family is selected, when the form of the probability law in a family is
specified except for some finite dimensional defining parameters, such a model is
referred to as a parametric model. In contrast, if infinite parameters are included
or the form of the probability law is not all specified, such a model is called non-
parametric model (Fan and Yao, 2003). Furthermore, a model with elements of
both two forms is called semiparametric model. In general, parametric model is
a model with a global focus, in which the defining parameters are well-defined in
the studied space, whilst semi- and nonparametric models can be more flexible
in structure and locally focused, resulted from that the defining parameters can
vary as the time and location changes.

• Stationarity and Nonstationarity: Statistics is a science built upon assumptions
that help to explore the unknown from the known. In the study of stochastic
process, stationarity is a powerful assumption establishing statistical properties
of the underlying data-generating process. Explicitly, it imposes in which pat-
tern the studied process changes. Weak stationarity and strict stationarity are
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two commonly used stationarities in our research. The former defines the first
two moments of the underlying process which is sufficient in a linear modelling
case while the latter are required for nonlinear models bringing the process addi-
tional properties. Modelling nonstationarity in nonlinear data-generating process
is possible however it requires additional assumptions to support.

• Regular and Irregular sampling: Similar to the difference between discrete and
continuous data, in a sense that the regular sampling refers to a method that col-
lects data at equal time intervals (i.e., for Time Series) or from a lattice (i.e., a
regular grid in Spatial Series). In many applications, as restricted by nature, the
regular sampling may not be possible and one has to face irregularly sampled
data. Interpolation is one of the methods often used to transforms irregularly
sampled time series data, albeit it is much harder to implement in a spatial series
case when advanced computational capacity is required.

5.2.1 Time series

Time is an indefinite continued progress of existence where it is a key component that
forms the Universe around us. Recording time information together with their events
has been familiar with us since ancient times; further in the Middle Ages scientists
gradually postulated one of time’s primary properties of consistency, i.e., on the Earth,
the proceeding rate of time is constant. Despite the effort, however a scientific way of
studying a series of data points indexed in time order, now called Time Series Analysis,
did not begin until the 20th century following the study in stochastic process. Time
Series or Time Series Analysis in this research refers to a family of formalised methods
processing time-indexed data, which is denoted by {Xt}, (t = 1, ..., T). In specific,
we treat these series as random realisations of their underlying stochastic processes
for study. Overall, it comprises methods of describing the changes of the object from
a temporal prospective, and often providing forecasting capability through proposed
models for instance regression.

5.2.1.1 Linear time Series

Some of the pioneering work of this subject, i.e., the autoregressive (AR) modelling,
was initiated by scholars such as G. U. Yule and J. Walker in the 1920s and 1930s, see for
instance Slutzky (1937) and Yule (1921). It was then the works of Box and Jenkins (1970),
in which the autoregressive moving average (ARMA) model was presented, confirms
the formal introduction of linear time series models. It contains the methodology and
complete modelling procedure for individual series. The Box-Jenkins method, named
after its contributors, is regarded as the most commonly used time series method. It re-
mains as the foundation of many its derivatives ever since. The standard linear ARMA
model consists of three basic building blocks: white noise process, autoregressive(AR)
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model and moving average (MA) model. Any subset of a complete ARMA model can
be treated as an individual stochastic process with own characteristics.

The basic building block for an ARMA model, indeed for most linear time series mod-
els, is white noise (WN) process. It is defined by its first two moments. A sequence
{ϵt}, t ∈ R is a WN process if

E(ϵt) = 0, E(ϵ2
t ) = σ2 and E(ϵtϵτ) = 0, for ∀ t ̸= τ. (5.1)

Adding stronger conditions, a specific independent white noise process, when ϵt ∼
N(0, σ2) , is called Gaussian white noise process, denoted as WN(0, σ2), see Hamilton
(1994).

Autoregressive(AR) model, the second building block of an ARMA model, is often
regarded as the most popular time series model in practice for its easy implementation.
As a random process, a p-order Autoregressive Process is defined as

Xt = b1Xt−1 + · · ·+ bpXt−p + ϵt, (5.2)

where {Xt} is a time series with a length of a positive integer p , and {ϵt} ∼ WN(0, σ2)

is the unobservable component in this model. The main idea of this structure is to
define a time varying relationship specifying how the current quantity of the monitored
variable relies on its p immediate past values. As a consequence, it draws a recurrence
relation within the response series. Since p past values are involved, this model is
also called a AR(p) process, or the p-th order autoregressive process (Box and Jenkins,
1970).

For general case, Hamilton (1994) included a constant term (mean) in model Eq (5.2).
Furthermore, to assign stationarity properties to the model, certain constraints on the
weight parameters bi, i = 1, ..., p, are required.

The final building block of an AMRA model is Moving Average (MA) process. A q-
order MA process, often abbreviated as MA(q), is defined as

Xt = ϵt + a1ϵt−1 + · · ·+ aqϵt−q, (5.3)

where the {ϵt} is a WN process of length q ∈ N+, where q is a positive integer. Treating
(a1, ...aq) as linear weight factors, the MA process represents the moving average of the
selected white noise sequence. The purpose of a moving average model is to record the
impact from the past random noises to the observed value at the time t.
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Combining the three random processes in one general linear form, it forms an autore-
gressive moving average (ARMA) time series model. It takes the form of

Xt = b1Xt−1 + · · ·+ bpXt−p + ϵt + a1ϵt−1 + · · ·+ aqϵt−q. (5.4)

It is easy to notice that the ARMA(p, q) model captures both the univariate time se-
ries information from the past and the historical randomness registered by the MA
model. Actually, in the light of the Wold’s decomposition theorem (Wold, 1954), any
covariance-stationary process can be revealed as a sum of two time series: one de-
terministic and another stochastic series. These two series are mutually uncorrelated
processes. The ARMA linear model is indeed under such an arrangement and proven
to be an effective linear regression method for a stationary time series.

However in a real time series, the time-invariant properties are often violated. Gen-
erally when there are level shifts or cyclic features in the population, current ARMA
model is insufficient to capture these changes (Fan and Yao, 2003). Some common level
shifts include seasonal patterns and other long-range trend functions. Thus, an modi-
fied autoregressive integrated moving average (ARIMA) model was proposed.

For a nonstationary time series {Yt}, if its d-order difference process is a stationary
ARMA(p,q) process, we name it an ARIMA process with order p, d and q, denoted as
{Yt} ∼ARIMA(p, d, q), see Box and Jenkins (1970). The new parameter d ≥ 1 is in-
troduced as a backshift operator. The difference transformation, in effect, converts a
nonstationary time series into a stationary time series, i.e., an ARMA process, by de-
taching underlying time-variant dynamics from the original data. Therefore, ARIMA
model is a powerful generalisation of the ARMA model taking some long-range vary-
ing features into account.

5.2.1.2 Nonlinear time series

ARMA, or ARIMA alike, and other Gaussian processes are capable of performing well
in linear time series analysis. However, in situations when substantial nonlinear fea-
tures exhibit from the sampled data, nonlinear time series models may be more appro-
priate for the purpose of avoiding significant misspecification. Introducing the diverse
nature of the nonlinearity, Fan and Yao (2003) showed a list of nonlinear features, such
as nonnormality, asymmetric cycles, bimodality, nonlinear relationship between lagged
variables, variation of prediction performance over the state-space, time irreversibility,
sensitivity to initial conditions. Noticeably, many of these features may be more promi-
nent in their own developed areas, as a result, the nonlinear time series modelling
approaches vary greatly by the fields of their applications.

In fact, many parametric linear methods have their nonlinear counterparts. The widely-
used ARCH and GARCH models, closed derivatives of the ARMA/ARIMA, are good



74 Chapter 5. Semiparametric Spatio-Temporal Nonlinear Prediction

examples of catching the nonlinear volatility in studying financial time series. In au-
toregressive model, the random component, or the innovation, is defined by a second-
order stationary white noise process. Yet in economic and finance data, large instability
is most likely to occur around the peak values, and this feature is called conditional
heteroscedasticity. To model this inconsistent variance (volatility in time series), auto-
gressive conditional heteroscedastic (ARCH) was introduced by Engle (1982), which is
defined as

Xt = σtϵt, σ2
t = a0 + b1X2

t−1 + · · ·+ bqX2
t−q , (5.5)

where a0 ≥ 0, bj ≥ 0, {ϵt} ∼ IID (0, 1) and σt represents the volatility (the conditional
standard deviation). In most linear models, a white noise is adequate to represent
weak stationarity, whilst in a nonlinear case, stronger assumptions on stationarity are
required, the white noise process is thus purposely replaced by a centred independent
and identically distributed random process.

To enhance the ability of describing the persistence nature of volatility, Bollerslev (1986)
proposed a useful extension to the ARCH model, namely the generalised autogressive
conditional heteroscedastic (GARCH) model. It takes the form of

Xt = σtϵt, σ2
t = a0 + a1σ2

t−1 + · · ·+ apσ2
t−p + X2

t−q + b1X2
t−1 + · · ·+ bqX2

t−q , (5.6)

where ai ≥ 0, i = 0, 1, ..., p and bj ≥ 0, j = 1, ..., q. By adding the volatility data from
the immediate p past lags, the persistence effect can be better addressed in this new
model.

So far we have listed several well-studied time series models, which have fully devel-
oped parametric structure. However to model a nonlinear time series data, there are
indeed infinite possible forms to choose from; restricting this task to families of para-
metric models may not always produce convincing results. To overcome this difficulty,
nonparametric modelling methods have been largely developed since the 1980s, bring-
ing powerful alternatives to the classical parametric modelling approach. The main
notion of the nonparmetric is, instead of estimating the finite number of fixed parame-
ters, to let the data speak for itself with limited assumptions on model structures.

Fan and Yao (2003) showed a generic form of nonparametric time series model: the non-
parametric autoregressive conditonal heteroscedastic model (NARCH). It is defined
as

Xt = f (Xt−1, ..., Xt−p) + σ(Xt−1, ..., Xt−q) ϵt , (5.7)
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where f (·) and σ(·) are unknown functions, and {ϵt} ∼IID(0, 1). Only some quali-
tative assumptions are made in this model such as that the unknown functions f and
σ are smooth, and it allows the presence of heteroscedasticity. Despite its plain form,
this model leans more towards a theoretical construct and is less practical when the
number of covariates is large, i.e., p, q ≥ 3. The reason behind this is often described
as the curse of dimensionality, that was coined by Bellman (1961) when he studied
problems in dynamic programming. The common phenomena of this term is that in a
model when the dimensionality rises, the size of its solution space will vastly increase
so that the sampled data become sparse. In the field of nonlinear time series, Fan and
Gijbels (1996) explained that it is an essential requirement of having a certain number
of local observations in order to implement nonlinear smoothing techniques. When
performing a multivariate surface smoothing, the multi-dimensional surface expands
exponentially that one has to enlarge the neighbourhood for the required data sets,
which is in principle contradict this method itself.

In addition to the contradiction, when p, q increase, there is also a computational con-
cern in dealing with models having a large number of covariates. Taking the local linear
smoothing as an example, to define a high dimensional kernel function K and the band-
width matrix associated, one may firstly encounter difficulties in deciding whether the
smoothing settings for all covariates are same or not (see Section 4.2.3). This may rises
a practical request for a higher computing power.

Among the countless possible solutions between saturated nonparametric models (see
Eq (5.7)) and parametric models, a widely adopted effective dimensionality reduction
technique is the additive modelling (AM) method (see Hastie and Tibshirani (1990)). It
transforms this high-dimensional challenge into a problem of solving a group of low-
dimensional or univariate functions that each of them can be estimated by well estab-
lished nonparametric regression methods. Function- coefficent autoregressive (FAR)
model and additive autoregressive (AAR) model are such two examples often seen in
practice.

The function-coefficient autoregressive (FAR) model introduced by Chen and Tsay (1993)
admits the form of

Xt = f1(Xt−d)Xt−1 + · · ·+ fp(Xt−d)Xt−p + σ(Xt−d)ϵt, (5.8)

where d > 0, {ϵt} ∼IID(0, 1) and f1(·) ,· · ·, fp(·) are unknown coefficient functions. In
general, the FAR model can be treated as an extension of the thres-hold model proposed
by Tong (1990) viewing the nonlinear dynamics as a piecewise linear approximation via
partitioning a state-space into several subspaces. It allows the coefficient functions to
change gradually, therefore it is commonly used in ecological studies.
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The additive autoregressive (AAR) model is a generalised extension of the linear AR(p)
model. It is defined as

Xt = f1(X1) + · · ·+ fp(Xt−p) + ϵt, (5.9)

where ϵt ∼ IID(0, 1). The p unknown functions are set to be one-dimensional in this
model, the curse of dimensionality effect is thereby significantly reduced.

For additive modelling, after a low-dimensional model was chosen, the second step of
solving a nonlinear time series problem is to estimate the functions of the coefficients
by smoothing. Local linearisation, spline fitting and orthogonal series methods are the
three main approaches for a nonparametric modelling, see Fan and Yao (2003). We will
focus on the first method only while the spline (the piecewise linear approximation)
and the orthogonal series methods such as Fourier series and wavelets for spectral
analysis will not be covered in this research. To explain the local linearisation method,
we take the FAR model, Eq (5.8), as an example.

In the FAR model, limited qualitative properties are assumed for f1, · · ·, fp , i.e., these
functions are smooth. Each of these can therefore be locally approximated by a constant
or more generally a linear function, see Fan and Gijbels (1996); Fan and Yao (2003). It
follows as such that for a given response value x0, the coefficient functions f1,..., fp can
be approximated locally by a linear approximation, that is

f j(x) ≈ aj + bj(x − x0), (5.10)

for x ∈ x0 ± h, where the local parameters aj, bj correspond to f j(x0) and the local slope
of f j at x0, respectively. It is easy to learn that the local constant fitting is a special case
of the local linear approximation where the corresponding bj equals to zero. The h is
called a bandwidth identifying the size of the neighbourhood within which the linear
approximation holds. This leads to the approximation model:

Xt ≈ {a1 + b1(Xt−d − x0)}Xt−1 − · · · − {ap + bp(Xt−d − x0)}Xt−p + σ(x0)ϵt, (5.11)

for Xt−d ∈ x0 ± h. By adding a weighting scheme K((Xt−d − x0)/h), such as a nonneg-
ative unimodal kennel function in Eq (5.11), we can complete the model using the least
squares method by minimising the locally weighted squares as
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T

∑
t=p+1

{
Xt − [a1 + b1(Xt−d − x0)]Xt−1 − · · ·

− [ap + bp(Xt−d − x0)]Xt−p

}2
K(

Xt−d − x0

h
),

(5.12)

where the x0-dependent minimiser represents the weight for each term based on the
distance between xt−d and x0. If K has a support on [−1, 1], the weighted regression
uses the local data points in the neighbourhood Xt−d ∈ x0 ± h. Alternatively, K may not
require a bounded support as long as its distribution has thin tails away from the centre.
The range of x0, denoted as [a,b], is common to be defined as a grid containing 100 to
400 intervals on the resolution required, as suggested by Fan and Yao (2003).

We show how the local linearisation method is performed using the Kernel density es-
timation. In general, smoothing acts as a powerful building block for nonparametric
estimation in a multidimensional setting. In its early developing stage, Bartlett (1946)
recorded and later showed that smoothed periodograms improve the spectral density
estimation in time series, then smoothing techniques were widely developed in areas
such as time domain time series, state domain time series and beyond. A recent ex-
ample in literature was to use smoothing for marginal and joint probability density
function estimations in irregularly observed spatial series data, see Lu and Tjøstheim
(2014).

Kernel density estimation, an improved form out of the classical histogram method,
aims to estimate the population distribution from a sampled data set. In theory, there
are countless forms of Kernel functions to choose from, Figure 5.1 shows some common
kernel functions in use. In fact, as long as the functions are symmetric and unimodal,
the resulting kernel density estimator performs nearly the same when the bandwidth
h is optimally chosen (Fan and Yao, 2003). The Gaussian and Epanechnikov kernel are
two popular kernel functions chosen in this research.

The challenging task in Kernel density estimation is the selection of bandwidth, sim-
ilar as the selection of bin size to a histogram. When a large bandwidth h is chosen,
from missing out potential details, the outcome may include oversmoothed estimation
and a large bias. On the contrary, a small bandwidth would lead to excessive local in-
formation kept in the estimator and a high variance, consequently produces a wiggly
distribution curve. Trial and error thus is inevitable in seeking the optimal bandwidth,
denoted as hopt. Thankfully, recommended kernel selectors are available for candidate
distributions. Taking the normal reference bandwidth selector as an example, see Sil-
verman (1986); Bickel and Doksum (2015), it works for data sets ideally the Gaussian-
distributed data, the hopt can be approximated using statistics from the samples, e.g,
the size T and its variance σ shown in the last chapter. However, the recommended
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FIGURE 5.1: Five commonly used kernel functions normalised to have the same
maximum height 1, the Gaussian kernel shows a wider support to the four named
functions, see Fan and Yao (2003).

bandwidth merely acts as an initial choice of h, further fine tuning of the bandwidth is
required by applying techniques such as the Cross-Validation criterion we used in this
study.

Considering the inherent nature of modelling nonlinear time series, Fan and Yao (2003)
noted that by performing preliminary nonparmateric methods, useful insights may be
obtained prior to further parametric fitting, hence it is normal to perform a nonlinear
time series analysis using a multiple-step procedure. Furthermore, semiparameteric
models, which parametric and nonparmetric conpoments are both exhibited have been
proven to be alternative options to ease the pressure from a full saturated nonparam-
teric one.

So far in this section, we introduced some basic knowledges of time series analysis, in
particular the nonlinear time series, and highlighted how the time series was devel-
oped, its general ideas, common building blocks and techniques. For further reviews
on nonlinear time series, readers are referred to Tong (1990), Fan and Yao (2003), Gao
(2007), Douc et al. (2014), Tsay and Chen (2018) and references therein.

5.2.2 Spatial Time Series

We had separate reviews on spatial series in the first part of this dissertation, mainly in
Chapters 1 and 2 , thereby additional reviews on such a subject will be integrated with
the review of spatial time series in this section. Spatial time series analysis is a nature
evolution from time series and spatial series, where spatial-indexed information from
multiple time points are taken into account as one entity, however structurally much
complex. The necessity of such study arises from a wide range of scientific fields such as
earth and space science, economics, econometrics, public health policy, energy, natural
resources, etc, where many data sets can be characterised by both temporal and spatial
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properties. John Snow’s London Cholera prediction was indeed a spatial time series
case that can be traced back to the 1850s, see Ward (2008).

Despite the high availability of spatio-temporal data around us, it is only until the re-
cent decades, in parallel with the emergence of Big Data, statistical approaches for spa-
tial time series are flourished with the helps from modern computing techniques. Tra-
ditionally, as Cressie and Wikle (2011) suggested, deterministic approaches were pop-
ular in tackling such spatio-temporal problems. Taking physics science as an example,
phenomena evolved in space and time often follows the known laws of physics. How-
ever when uncertainty and stochastic behaviour are involved, statistical modelling ap-
proach is proven to be a more suitable solution. Likewise, similar developments are
witnessed in many other fields, as a result, we see diverse mathematical methods pro-
posed in solving non-deterministic problems in general. In brief, it shares similar phe-
nomenon as how the spatial series analysis was developed, as described in Section
1.1.1. In our research, the focus is on spatial time series with a univariate response,
and the response data is treated as one realisation of the underlying spatio-temporal
random process (or random field in a high-dimensional case).

Wikle et al. (2019), one of the latest reviews on this subject, outlined three main ob-
jectives expected from a spatial time series study: the prediction in space and time
(filtering and smoothing), inference on parameters, and forecasting in time. It cate-
gorised many statistical approaches into two groups: the descriptive modelling and
dynamic modelling. By recognising the difference between these two methods, one
may be guided to choose suitable modelling options for their problems.

The descriptive modelling refers to the approaches aiming to characterise the spatio-
temporal process in terms of its first two moments, i.e., the mean and covariance func-
tions. A typical example of this approach is the Kriging methodology originated from
the spatial analysis to reach the optimal linear prediction. It is commonly useful when
the underlying mechanisms in the studied processes are less known to the modellers.
Furthermore, this type of modelling is capable of: (1) capturing the large-scale trend
of the spatio-temporal process, and (2) fitting less defined error terms, i.e., they can be
statistically dependent in space and time. Yet its shortcomings are obvious too, since
there are only the first two moments involved, this descriptive modelling method is
limited to linear processes or less complex spatial time series.

The dynamic modelling for spatio-temporal analysis is based on the prior knowledge
of how the system (a spatial process) changes over time. Statistically, we depict this
category as a conditional approach by assuming the past is known, to model (often by
approximation) the information evolving from the past to the present, and furthermore
to the future, with helps from appropriate stationary assumptions on time and space. In
practice, flexible classes of dynamic models are often used, since not all the underlying
statistical or physical knowledge are known beforehand. One of the major challenges
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for this group of methods is to reduce the pressures from high dimensionality, espe-
cially when a high level of dependencies exists. Hence, one widely-used structure for
dimensionality reduction consists of two parts: a deterministic part of known covari-
ates with their coefficients to be estimated, and another random part of known basic
functions. Typical basic functions include polynomials, splines, wavelets and trigono-
metric functions, which are in associated with their applications.

The above two approaches cover the three main objectives of a spatial time series analy-
sis. One is able to make a choice based on the available knowledge and/or assumptions
made to the subject. We will briefly demonstrate two widely used methods: the deter-
ministic inverse distance weighting (IDW) and the stochastic multivariate regression
model.

In Chapter 1, we mentioned the IDW method for spatial prediction. In a spatial time
series setting as shown in this chapter, the weighting coefficient will be adjusted ac-
cording their spatio-temporal lag. Suppose a spatial time data set {Y(s11; t1), Y(s21; t1),
..., Y(sn11; t1), ..., Y(s1T; tT) Y(s2T; tT) ,..., Y(snT ; tT)}, where at each time tj, there are nj

samples, for j = 1, ...T. The IDW predictor Ŷ at a new location s0 and time t0 is defined
as (see, Wikle et al. (2019))

Ŷ(s0; t0) =
T

∑
j=1

nj

∑
i=1

ωij(s0; t0)Y(sij; tj), (5.13)

where

ωij(s0; t0) ≡
ω̃ij(s0; t0)

∑T
k=1 ∑nk

l=1 ω̃lk(s0; t0)
,

ω̃ij(s0; t0) =
1

d((sij; tj), (s0; t0))α
,

(5.14)

d((sij; tj), (s0; t0)) is the spatio-temporal lag between the sampled coordinates (sij, tj)

and the new location (s0, t0), and α is a positive number controlling the level of smooth-
ing. From Eq (5.14) , it is easy to read that the closer the sample point to the new coor-
dinate, the larger the weight ωij(s0; t0) becomes. Further, the α can be decided by cross
validation criterion on the mean squared prediction error (MSPE). This IDW method is
particularly useful when the so-called Tobler’s law is strongly observed.

The stochastic multivariate regression is a more common yet advanced method than the
IDW. The model consists of a random term and a trend function, including covariates
that represent the underlying spatio-temporal dependence. Taking one of the simplest
regression models as an example, we define the data set Y(s; t) observed at discrete
times {tj}, j = 1, ..., T from spatial locations {si}, i = 1, ..., n as
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Y(si; tj) = β0 + β1X1(si; tj) + ... + βpXp(si; tj) + ϵ(si; tj), (5.15)

where βk, k = 1, ..., p is the coefficient to each selected covariate Xk(si; tj), β0 is the inter-
cept, and the random error ϵ(si; tj) follows an i.i.d. N(0, σ2) for all its (si; tj) locations.
In this model, the p covariates could be spatial and temporal dependent at the same
time, and the response takes an additive form of all dependent variables. The advan-
tage of such model is clear that standard regression techniques can be easily adapted
to compute the coefficients and variances. Good candidates for the covariates include
the spatio-temporal coordinates and their low-order interactions. The ordinary least
squares (OLS) is capable of estimating of the coefficients that minimising the residual
sum of squares (RSS).

The assumption of independent random error was made in Eq (5.15), however in a real
data set, one may notice that the residual will most likely show a dependent relation-
ship indexed in time and/or space. Wikle et al. (2019) commented that the OLS param-
eter estimates and predictions are still unbiased even if one has ignored the dependence
in the error term, but the result tends to give inaccurate prediction errors.

In addition to the simple form of regression as in Eq (5.15), a generalised linear model
(GLM) or more broadly, a generalised additive model (GAM) is popular in recent litera-
ture. There are two parts in a standard GAM model, which are a systematic component
and a random component. Eq (5.16) shows the link function of the systematic compo-
nent of the GAM model expressing the transformation of the mean response in relation
to the covariates X1, ..., Xp, that is as

g(Y(s; t)) = β0 + f1(X1(s; t)) + f2(X2(s; t)) + ... + fp(Xp(s; t)), (5.16)

where the functions { fk(·)} can take a parametric, semiparametric or nonparametric
form with specified smoothing techniques. The random component of the GAM as-
sumes that observations conditioned on their respective means and sometimes scaling
parameters are independent and they come from the exponential family of distribu-
tions such as the normal (Gaussian), Possion, Binomial and Gamma distributions, see
Wikle et al. (2019).

Moreover, it is gradually common to see that a large number of covariates are included
in an initial spatio-temporal model. Among the many variable reduction techniques,
the regularisation method in which a penalty term is added to the RSS from OLS is
popular in practice, two commonly used regulation methods are the lasso (L1-norm
penalty) and ridge regression (L2-norm penalty). Some of the further discussions on
this topic are widely available in literature, e.g., Al-Sulami et al. (2019) and Zhu et al.
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(2010). The same variable reduction topic was mentioned too in Section 4.1, in the
spatial series setting.

So far, we did a brief review of the spatial time series analysis and introduced two
groups of regular approaches, mainly about their possible model structures. How-
ever dealing with a real spatio-temporal problem, there are still many critical factors
to consider. Taking Geographic Information System (GIS) as an example, which our
air quality analysis belongs to, the first question to ask may be about its data category.
Cressie (1993) showed three types of spatial data: geostatistical data, lattice data and
spatial point patterns, it further emphasised that the spatial model is very much related
to their data set, albeit some methods are shared between different data types. In this
study, we focus on only the geostatistical data since the air quality data are collected
at irregular monitoring sites, and we are interested in predicting the response value
at a new spatial location s varying continuously over the studied geographical space,
descried by a subset of R2.

Unlike the well-developed nonlinear time series analysis, the nonlinear approach in
spatial series and spatial time series has been a challenging task. Gao et al. (2006) high-
lighted that an obvious reason for this is the curse of dimensionality, which we have
discussed earlier in Section 5.2.1.2. In time series, the neighbourhood of a time point
ti is still in one-dimensional, whilst for spatial series, on a spatial grid evaluating the
condional mean given, its closest neighbours requires a four-dimensional nonparamet-
ric regression, explicitly for spatila data {Yij}, the neighbourhood of Yij is constructed
by Yi−1,j, Yi,j−1, Yi+1,j and Yi,j+1. As such, in order to perform a nonparametric local
fitting over space, it is clear that a vastly large sample size is essential. To ease such a
difficulty on dimensionality, two widely used models were observed under this circum-
stance: the additive model and semiparametric model. In addition to this obstacle, the
assumptions on regularity, linearity and stationarity (both in time and over space) of
the underlying data-generating process are critical too, by which the asymptotic theory
of a candidate model is constructed.

In the past two decades, limited theoretical attempts on nonlinear spatial data were
made so far. Lu et al. (2009) and Lu and Tjøstheim (2014) were such two examples,
where the former was extended from Fan et al. (2003) by proposing an adaptive varying-
coefficient spatio-temporal model for data observed irregularly over space and regu-
larly in time; and the latter offered a nonparametric estimation of probability density
functions over irregularly positioned spatial data for both the marginal and joint den-
sity, which we have adopted in Chapter 3. Further readings in this and related subjects
can be found in Cressie and Wikle (2011), Gao et al. (2006), Rao (2008), Sun et al. (2014),
Wikle et al. (2019), to list a few.
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On the application side, Al-Sulami et al. (2017) and Al-Sulami et al. (2019) were two re-
cent papers sharing how a family of semiparametric nonlinear regression model (STAR-
PLR) performs on irregularly located spatial time series data with applications in econo-
metrics. The proposed regression model describes the nonlinear relationship between
the response and covariates, which is location-based and both temporal-lag and spatial-
neighbouring effects are considered. It is worthwhile to mention that despite the inher-
ited extreme curse of dimensionality in a spatial time series, a computationally feasible
two-step estimation procedure was developed using the ideas from Gao et al. (2006)
and Lu et al. (2009). Because of the closed similarities to our case, we will adapt and
integrate this family of regression models to our air quality forecast.

Despite the recent advancement in nonlinear spatial time series analysis, universal so-
lutions of this approach is still lacking. Likewise there are few shelf-ready software
packages available for the practitioners because of the distinct challenges in both the
theoretical and computational aspects. The general approaches to these problems are
yet overwhelmingly dominated by parametric techniques 1, e.g, the family of Kriging
methods. Pebesma and Heuvelink (2016) commented that interpolation of spatial ran-
dom fields is a common task in geostatistics and the corresponding approaches such
as the inverse distance weighted predictions (IDW) and the Kriging procedures have
routinely been applied for many years. As such, the Kriging in spatial series was the
main benchmark method in the first part of this dissertation. It is a method of interpo-
lation by which the values of the response are modelled by a prior covariance structure
under the Gaussian assumption. Spatio-temporal Kriging is naturally an extended ver-
sion of the spatial Kriging by adding the time dimension. Mathematically, it is a study
of a Gaussian spatial time random field Y defined over a two-dimensional spatial do-
main S and a temporal domain T , hence the observed S × T locations are denoted as
(s1, t1), ..., (sn, tm) ⊂ R2 × R, the outcome of Kriging is then the values of response at
any new locations in S × T .

The process of implementing Spatio-temporal Kriging is similar to that for spatial Krig-
ing introduced in Chapters 2, 3, and 4. It begins by fitting a spatio-temporal varigram
cloud, the fitted mean squared error will determine the parameters in the theoretical
covariance model before the final Spatio-temporal Kriging. However, instead of mea-
suring the unilateral spatial distance, we will measure a combined distance in time
and over space simultaneously, i.e., the spatial temporal distance between any pair of
points (si1, tj1), (si2, tj2) is registered as ||si1 − si2|| = |d| and |tj1 − tj2| = |u|. With the
assumptions of the random field Y to be stationary and spatially isotropic for exam-
ple, a theoretical variogram can be constructed assuming the underlying covariance
function Cst only responds to the space lag d and the time lag u. To simplify this com-
plex spatio-temporal variogarm model, some basic classes of sptio-temporal covariance

1https://cran.r-project.org/web/views/SpatioTemporal.html (the SpatioTemporal CRAN task re-
view)
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functions are nominated such as separable, product-sum, metric, sum-metric and sim-
ple sum-metric model. Eq (5.17) shows that the covariance function from the separable
covariance model can be represented as the product of a spatial and temporal terms,
i.e.,

Csep(d, u) = Cs(d)Ct(u). (5.17)

More spatio-temporal covariance models can be found in Section B.2, Appendix B. Fur-
ther reading on sptio-temporal Kriging method together with examples using gstat
package in R, can be found in Pebesma et al. (2012),Pebesma and Heuvelink (2016),
Pebesma and Gräler (2021). In addition, Frazier (2017) could be a good reference ex-
plaining how various Coordinate Reference Systems (CRS) are processed in R.

With the review so far on time-, spatial- and spatial time series, we will propose a new
two-phase semiparametric nonlinear spatial-temporal forecast procedure in the next
section.

5.3 The SPKM procedure for nonlinear spatio-temporal pre-
diction

The objective of this chapter is to extend the K-radius neighbouring average based
marginal spatial Kriging (KNAMK) model, as introduced in Chapter 4, to the realm
of spatio-temporal series modelling. In this section, we will propose a computationally
feasible method of two-phase procedure performing semiparametric nonlinear spatial
time series prediction, then apply and evaluate this procedure to air quality data in
Section 5.4.

Figure 5.2 exhibits a complete diagram of this research on a spatio-temporal space.
The horizontal axis represents the time, for simplicity, we denote the present time as
t0, where the times on its left are from the past, and t0+1 is the next consecutive time
in future. Distinguishing from s being a random location on the vertical axis, we use
s1, ..., sN to present the N monitoring sites irregularly located in the space S. In the 2-D
spatial setting of this research, we denote these N known locations as si = (ui, vi) ∈
S ⊂ R2, i = 1, ..., N. It is worth mentioning that the orders of si do not indicate their
locations in S rather reflect their existence. In Figure 5.2, there are two types of symbols
used to categorise the spatio-temporal response Y(s, t), the solid dots and the circles.
A solid dot signifies that the value of the response is recorded from true measurement,
hence they can only be on the left side of the diagram up to the present time t0. A circle,
in contrast, is used to show that the exact response at that location is predicted, it can
thus be observed on all parts of the diagram.
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FIGURE 5.2: A two-phase procedure for spatio-temporal prediction in a future time.

In Chapters 2 to 4, the focus has been solely on spatial prediction at a single point of
time tsp that satisfies tsp ≤ t0. At t = tsp, we sample the values of the response Y(s, tsp)

from N known locations, and sequentially use these samples to predict the response at
a new location of interest s ∈ S, i.e., along the vertical line of t = tsp in Figure 5.2. By
implementing the KNAMK method developed in Chapter 4, nonlinear semiparametic
spatial prediction can be performed at any time on or before t0. However for the future
time t0 + 1, the same prediction task for Y(s, t0+1) at any location s cannot be directly
performed on the basis that existing knowledge of the future responses are absent.
Intuitively, a forecasting step would assist this task by predicting future responses at
the known locations from the past information, we call this Phase 1. Thus by combining
the Phase 1 with the developed KNAMK method applied at the future time t0+1 of
being Phase 2, the objective can now be fulfilled. We briefly outline this two-phase
process as follows,

• Phase 1 (spatio-temporal forecast): Using the data collected from the sampled
locations, a suitable spatio-temporal forecast method will be employed to predict
the future response values at these known locations.

• Phase 2 (spatial prediction): The results from Phase 1 are used in the unilat-
eral spatial prediction at any random locations at the future time t = t0+1. The
KNAMK method is assigned for this phase.

The purpose of this section is therefore to identify a suited spatio-temporal future pre-
diction method for the Phase 1, specifically to the air quality case, which is required to
model the data observed irregularly over space and regularly in time. Since the non-
linearity in our data was revealed earlier, most current methods such as the traditional
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space-time Autogressive-moving-Average model (STARMA) assume linearity on the
underlying data-generating process (e.g., Cressie and Wikle, 2011, pp. 449, and Wikle
et al., 2019), we may need alternative approaches in dealing with this nonlinearity prob-
lem, e.g., by semiparametric and additive models.

Gao (2007) and Lu et al. (2009) are two theoretical works as such in the literature propos-
ing nonlinear low-dimentional semiparametric regression models, and through density
estimation techniques the curse of dimensionality is effectively circumvented. In Gao
(2007), the focus was on spatial regression for lattice data. It emphasised that in a non-
linear spatial case following the spirit of conditional models, see Besag (1974), one must
live with the approximative aspect. Explicitly, semiparametric and additive models can
be seen as approximations to the required conditional mean in dealing with nonlinear
data. In the companion paper by Lu et al. (2009), the attention was extended to spatio-
temporal models for data sampled irregularly over space and regularly in time. An
adaptive varying-coefficient spatio-temporal model was proposed, which was the first
attempt to address spatio-temporal nonlinear dependence structures for possible non-
linearity and nonstationarity in the targeted data-generating process since its original
linear form was developed by Fan et al. (2003). The construction of this semiparamet-
ric model allows one-dimensional smoothing in estimating the coefficients for its vari-
ables, which include possible exogenous variables. When implementing these families
of models, both papers recommended staged approaches for estimation. The main
reasons for this are to ease the pressure from the dimensionality in a spatio-temporal
setting, and meanwhile to improve the total accuracy on estimators by applying addi-
tional spatial smoothing techniques at each stage.

Al-Sulami et al. (2017) and Al-Sulami et al. (2019) took this approach and offered a
class of location-dependent spatio-temporal autoregressive partially (non)liner regres-
sion (STAR-PLR) models with applications including an econometric case study in the
US housing market. To show the model in Al-Sulami et al. (2017) specifically, let Yt(s)
and Xt(s) denote two spatio-temporal processes at discrete time point t=1,...,T and con-
tinuous location s in a two-dimensional spatial domain S ⊂ R2, respectively. The rela-
tionship between Y and X is of interest, denoting Y the response and X the covariate
vector of dimension d, albeit d may be limited to be a small value in applications. It is
assumed that both processes are observed at regular time intervals from the N spatial
sampling locations sj = (uj, vj) ∈ S for j = 1, ..., N on an irregular spatial grid. Hence,
the data comprise {(Yt(sj), Xt(sj)) : t = 1, ..., T and j = 1, ..., N}. The STAR-PLR model
now has the form of

Yt(sj) = g(Xt(sj), sj) +
p

∑
i=1

λi(sj)Ysl
t−i(sj) +

q

∑
l=1

αl(sj)Yt−l(sj) + ϵt(sj), (5.18)
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where g(Xt(sj), sj) is a nonparametric function varying by location and describing the
relationship between the response Y and the exogenous covariates X. A spatial lagged
response variable, Ysl

t (sj) = ∑N
k=1 wjkYt(sk), is defined, where wjk is a spatial weight

for 1 ≤ j, k ≤ N such that wjj = 0 and the spatial weight matrix W = (wjk)
N
j,k=1

is assumed to be priori, the idea of which is well known in applied econometrics, see
Anselin (1988), to reflect the true underlying spatial interaction. Two temporally lagged
response variables, Ysl

t−i(sj) and Yt−l(sj) are included in the model to account for the
temporal effects. The former involves neighbouring locations to sj and the latter is sj

itself with temporal lags of i up to the pth lag and l up to the qth lag, respectively. Both
Ysl

t−i(sj) and Yt−l(sj) are in linear relation to Yt(sj) with spatially-varying autoregressive
coefficients λi(sj) and αl(sj). The innovation term ϵt(sj) is assigned to be distribution
free and also independently and identically distributed (iid) over time with a zero mean
and spatially varying variance ω2(sj). The processes Yt(sj), Ysl

t−i(sj) and Xt(sj) are as-
sumed to be stationary over time and independent of the innovation process ϵt(sj) for
any t and sj.

As the key nonparametric part of this model, the function g(xt(sj), sj) is left unde-
fined, it provides higher flexibility than a spatio-temporal linear regression. Further,
g(xt(sj), sj), the coefficients λi(sj), αl(sj) and the variance of innovation process all vary
by location, hence despite of being stationary in time, the STAR-PLR model family cap-
tures nonstationary over space.

Next, the unknown function g and the autoregressive coefficients λi(sj), αl(sj) are to be
estimated. We rewrite Eq (5.18) as

Yt(sj) = g(Xt(sj), sj) + Zt(sj)
T β(sj) + ϵt(sj), (5.19)

where Zt(sj) = (Ysl
t−1, ..., Ysl

t−p, Yt−1(sj), ..., Yt−q(sj))
T and β(sj) = (λ1(sj), ..., λp(sj), α1(sj),

..., αq(sj))
T denote the vector of spatio-temporally lagged variables and the cospon-

soring vector of autoregressive coefficients, respectively, and t = r + 1, ..., T for r =

max{p, q}.

Taking expectation conditional on the covariate in Eq (5.19) leads to

g(Xt(sj), sj) = E([Yt(sj)|Xt(sj)]− E[Zt(sj)|Xt(sj)]
T β(sj). (5.20)

which can be estimated by

ĝ(Xt(sj), sj)︸ ︷︷ ︸
g0

= Ê[Yt(sj)|Xt(sj)]︸ ︷︷ ︸
g1

− Ê[Zt(sj)|Xt(sj)]
T︸ ︷︷ ︸

g2

β̂(sj). (5.21)
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The task now is equivalent to the estimation of g0 and β̂(sj) at each location s = sj,
providing the two conditional mean g1 and g2 can be well approximated by nonlinear
methods.

Lu et al. (2009) proposed a two-step procedure for this task, which is computationally
feasible to deal with even when the quantity of spatial time series data is relatively
large, that is

• Step 1 (Time-series based estimation): For each sj, we conduct time-series based
estimation.

(i) E([Yt(sj)|Xt(sj)] and E[Zt(sj)|Xt(sj)] are estimated by a local linear regres-
sion method,

(ii) The estimators g1 and g2 from (i) are then used to estimate the unknown
vector of autoregressive coefficients, β(sj), by least square method.

• Step 2 (Spatial smoothing): The estimation results from the above step are further
improved by pooling information from neighbouring locations.

The step-by-step process of the estimation can be found in Al-Sulami et al. (2017). The
final time series based estimators for Step 1 can be reached as

β̂(s) =
{ T

∑
t=r+1

Ẑt(s)Ẑt(s)T
}T{ T

∑
t=r+1

Ẑt(s)Ŷt(s)
}

,

ĝ0(x, s) = ĝ1(x, s)− ĝ2(x, s)T β̂(s).

(5.22)

In Step 2, as the two estimators ĝ0 and β̂(sj) are obtained for all N known locations,
these information can now be pooled together for spatial smoothing at a new location
of interest s0 ∈ S (Lu et al., 2009). The spatial smoothing estimators for g(x, s0) and
β(s0), denoted as g̃(x, s0) and β̃(s0) can be shown as

g̃(x, s0) =
N

∑
j=1

ĝ(x, sj)K̃∗
h,j(s0) and β̃(s0) =

N

∑
j=1

β̂(sj)K̃∗
h,j(s0), (5.23)

where K̃∗
h,j(s0) represents a weight function on R2, associated with h = hN > 0, a spatial

kernel bandwidth in relation to the sample size N.

The asymptotic properties of this model were examined with the results showing that
the asymptotic variances of both the spatial smoothing estimators g̃(x, s0) and β̃(s0)

are of a smaller order than those of the time series based estimators ĝ(x, sj) and β̂(sj)

from Step 1. The same effect to the mean squared error (MSE) between those of β̃(s0)
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and β̂(sj) is observed under some preconditions on the smoothing bandwidth, see Al-
Sulami et al. (2017).

Finally combining this two-step, i.e., the STAR-PLR model and the KNAMK spatial pre-
diction method as Phases 1 and 2 , our newly proposed nonlinear spatio-temporal pre-
diction procedure, STAR-PLR-KNAMA is now completed, or the SPKM for short.

The summary of SPKM is as follows:

• Phase 1 (STAR-PLR): Nonlinear spatio-temporal forecast

– Step 1 (Time-series based estimation): For each sj, we conduct time-series
based estimation.

(i) E([Yt(sj)|Xt(sj)] and E[Zt(sj)|Xt(sj)] are estimated by a local linear re-
gression method,

(ii) The estimators g1 and g2 from (i) are then used to estimate the unknown
vector of autoregressive coefficients, β(sj), by least square method.

– Step 2 (Spatial smoothing): The estimation results from the above step are
further improved by pooling information from neighbouring locations.

• Phase 2 (KNAMK spatial prediction): The results from Phase 1 are then used for a
unilateral spatial prediction for any random locations at the future time t = t0+1.

We believe that the SPKM procedure is an early attempt in combining nonlinear adap-
tive semiparametric spatio-temporal regression with nonlinear marginal Kriging for a
spatial time series forecast. In the next section, we will apply and evaluate this SPKM
procedure to our air quality data.

5.4 Application of SPKM procedure to Air Quality Data

Tackling climate change and managing air quality have became ever more critical in
the 21st century, especially in some parts of the world, the situation deteriorates fast
and there are great negative impacts on their local inhabitants and future economy
prospects. Encouragingly, the United Nations and global major economies are leading
the way of shifting policies and regulations to guide a sustainable change on global
climate 2 3 4 .

2UN climate change website: https://www.un.org/en/climatechange/
3China policy and action plan on tackling climate change, 2018 annual report: www.mee.gov.cn/

ywgz/ydqhbh/qhbhlf/201811/P020181129539211385741.pdf
4UK Gov: Ways to tackle climate change: https://www.gov.uk/government/news/uk-to-go-further-

and-faster-to-tackle-climate-change
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Climate change includes global warming driven by both human emissions of green-
house gases and the resulting large-scale shifts in weather patterns. By definition, a
greenhouse gas is a gas that absorbs and emits radiant energy within the thermal in-
frared range causing the greenhouse effect 5. The primary greenhouse gases in Earth’s
atmosphere include water vapor, carbon dioxide, methane, nitrogen oxide and ozone.
Among them, a direct hazardous gas family to human recorded by the Defra UK,
the Department for Environment Food and Rural Affairs, is nitrogen oxide including
mainly nitrogen dioxide (NO2), nitric oxide (NO) and other binary compounds of oxy-
gen and nitrogen. To accurately measure and estimate local nitrogen oxide level, con-
sidering the scale of this problem is inevitably one of the key winning factors for this
ever challenging task.

Prior to Chapter 5, the focus of this research has been on spatial prediction at a single
point of time, i.e., on one spatial plane. Since time is continuous, the measurements
of air quality are too continuous along the temporal horizon, which means that spatial
time-series data are often readily available for making accurate predictions including
even future forecast. We use prediction for estimating outcome of unseen data at the
current and past time, while forecast is explicitly for making predictions for the fu-
ture.

To perform spatio-temporal forecast using the new SPKM procedure to our air qual-
ity data, we access the data archive of 82 days in the early 2017, i.e., 27/01/2017-
18/04/2017, from the Defra. The daily air quality data from 96 known monitoring
sites in England are attained, which is slightly less than the total 105 stations in the
spatial prediction case due to missing data.

In Phase 1, the spatio-temporal forecast, NO2 values at the known locations are of inter-
est, henceforth the response variable Yt(sj) at the t-th time and j-th location represents
the daily mean value of nitrogen dioxide NO2 for t = 1, ..., 82 and j = 1, ..., 96, and the
sj = (uj, vj)

T consists of the latitude and longitude of the j-th monitoring site.

The exogenous variable of interest is the daily mean value of nitric oxide NO defined
as Xt(sj) = xt−1(sj) for t = 1, ..., 82 and j = 1, ..., 96, the sj = (uj, vj)

T of Xt(sj) is the
same as that of Yt(sj). Figure 5.3 shows that strong nonlinearity exists among these
observations. Note the Xt(Sj) in Al-Sulami et al. (2017) varies only by time, whereas
in our case, it does by both time and location simultaneously. The nonlinear relations
between the values of NO2 , Yt(sj), and NO, Xt(sj), for t = 1, ..., 82 and j = 1, ..., 96, can
now be assessed by specifying a STAR-PLR model.

In Model (5.18), when specifying the spatial weights Wj,k for the spatially lagged vari-
able Ysl

t (sj) = ∑N
k=1 wjkYt(sk), a common practice in econometrics is to use the inverse

distance between the locations, that is Wj,k = 1/dj,k, where dj,k is the Euclidean distance

5https://en.wikipedia.org/wiki/Climate change
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FIGURE 5.3: The Xt(s) density plots for the first 5 locations, i.e., s = s1, ...s5.

between two monitoring sites sj and sk for j ̸= k, otherwise, Wj,j = 0 (c.f., Wilhelms-
son, 2002). It is clear that the deterministic spatial weight matrix W = (wj,k)

N
j,k=1 is

symmetric with zeros on the diagonal, and furthermore is row-standardised so that

∑N
k=1 wj,k = 1, ∀j.

We choose t = 82, i.e., 18/04/2017, as the future date in this case study, which acts as
the time t = t0+1 in Figure 5.2. Thus the Step 1 in Phase 1 of our proposed SPKM proce-
dure, effectively becomes the prediction of Yt=82(sj) from Yti(sj) and Xti(sj), where i =
1, ..., 81 and j = 1, ..., 96. The prediction performance is evaluated by the mean squared
prediction error (MSPE Phase1) between Ỹt=82(sj) and the true values of Yt=82(sj), for
j = 1, ..., 96.

To determine the orders of temporally lagged variables p and q in this phase, we take
a direct approach from the LOOCV criterion to minimise the MSPE Phase1. Table 5.1
shows that the minimiser, p̂ = q̂ = 3, has the smallest MSPE Phase1 of 138.7398* for
p, q = 1, ..., 6. So far, we have completed the Phase 1, the spatio-temporal forecast at the
96 observed locations.

TABLE 5.1: Selection of the orders of temporally lagged variables p and q.

q=1 q=2 q=3 q=4 q=5 q=6
p=1 145.6658 149.9671 148.0758 178.4326 182.0250 181.1680
p=2 149.6226 148.6551 148.7689 178.6921 181.7329 180.2127
p=3 159.8895 158.8167 138.7398* 165.5006 167.5490 168.5271
p=4 178.7669 177.0459 155.2526 151.4803 153.5513 151.9619
p=5 171.3528 169.3229 148.0613 147.1323 142.7587 144.4958
p=6 170.7553 171.5596 149.5391 148.4697 145.0092 148.0188

In Phase 2, the task of performing a unilateral nonlinear spatial prediction at the time
t = 82 will be conducted by the KNAMK procedure developed in Chapter 4, that is to
predict the values of Yt=82(s0), s0 ∈ S based on the 96 forecasted values of Ỹt=82(si), i =
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FIGURE 5.4: A variogram plot of the sum-metric model

1, ..., 96 from Phase 1. Following Sections 4.2.1 and 4.4, we achieved a MSPE Phase 1+2 of
202.3867 by the LOOCV criterion with the K-Radius = 205 Km and the two bandwidth
h, b are chosen as 0.42 and 2.4, respectively.

The selected benchmark method for comparison is the Spatio-Temporal Kriging, which
has a long development history in the field of Geostatistical modelling and interpola-
tion. Cressie (1993), Cressie and Wikle (2011) and Wikle et al. (2019) are a series of books
introducing this family of methods. Like spatial Kriging, spatio-temporal Kriging em-
ploys parametric spatial time covariance/variogram function to describe possible un-
derlying spatio-temporal dependence structures. The advantages of this concept are
its simplicity and easy to implement, but this family of methods poses strong Gaussian
assumptions on the process which may leads to misspecification.

Among Geostatistics R packages, gstat gains its popularity for being continuously de-
veloped, and together supported by the R-sig-geo online forum 6, a mailing list for dis-
cussing the development and use of R functions and packages for handling and analy-
sis of spatial and particularly geographical data, attracting a large number of users from
the academia and industry. In Gstat package, the authors reuse the spacetime classes
from the Spacetime R package for the estimation of spatio-temporal covariance/vari-
ogram models for spatio-temporal interpolation, see Pebesma et al. (2012) and Pebesma
and Heuvelink (2016).

We follow the three steps of a spatio-temporal Kriging: (1) the selection of the covari-
ance model, (2)model parameter estimation and (3) the Kriging. Among the five rec-
ommended variogram models, the sum-metric model has the minimum mean square
error (MSE). Its covariance function is a combination of spatial, temporal and a metric
model including an anisotropy parameter k as follows

6stat.ethz.ch/mailman/listinfo/r-sig-geo
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TABLE 5.2: The MSPE results and the corresponding the number of temporal lags
included in our spatio-temporal model

No. of temporal Lags having 3 6 10 20 30
MSPE 241.5 235.4 232.0 221.8 221.6

No. of temporal Lags having 40 50 60 70 80
MSPE 217.5 216.0* 217.7 218.0 217.8

Cm(d, u) = Cs(d) + Ct(u) + Cjoint

(√
d2 + (k ∗ u)2

)
, (5.24)

where d and u are the spatial and temporal lags mentioned earlier. Figure 5.4 serves
as a demonstration showing the impact on the variograms from different temporal
lags.

The last undecided parameter is the number of temporal lags to be included in this
spatio-temporal Kriging. Ten sets of spatial lags were tested with the results showing
their MSPE values in Table 5.2. The model with 50 temporal lags has the smallest MSPE.
For this reason, it is selected for the comparison in Table 5.3.

Finally, we show the MSPE values obtained from the proposed SPKM procedure and
the other three Kriging methods applied to the air quality spatial time series data for
a comparison. The results in Table 5.3 suggest the SPKM procedure has the smallest
MSPE value among the four methods. We conclude that our newly proposed STAR-
PLR + KNAMK (SPKM) procedure outperforms the other methods. The mentioned
naive Kriging in the third method takes the sample mean as the predicted outcome.

TABLE 5.3: A comparison of MSPEs from the spatio-temporal forecast methods in
this chapter, these methods are demonstrated on the air quality data.

Methods Mean Squared Prediction Error
STAR-PLR + KNAMK [SPKM] 202.3867
STAR-PLR + Linear Kriging 256.1796
STAR-PLR + Naive Kriging 267.9072
Spatio-temporal Kriging (R:Gstat) 215.9958*
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Chapter 6

Conclusion and The Outlooks of
this Research

In recent decades, scale has became one of the key attributes found in many scientific
fields and subjects, e.g., climate change, earth sciences, astronomy, renewable energy,
telecommunications, logistics and supply chain, big data, to list a few. It is where re-
cently many new research opportunities are uncovered. With the scale often described
by measured spatial information, isolated data/events could be indeed meaningful in
revealing insights that would not otherwise be possible. Since the 1980s, the study of
spatial statistics and more lately spatio-temporal statistics are flourished, Wikle et al.
(2019) stated that there has been an exponential increase in the number of papers deal-
ing with spatio-temporal data analysis, not only in statistics, but also in many other
branches of science.

Despite the vast demand, tools and techniques for spatial and spatio-temporal series
remain limited. Unlike time series analysis where nonlinear methods have been well
developed for non-Gaussian data, in spatial series, the applications can be constrained
by strong assumptions on stationarity and their sampling methods owning to the multi-
lateral of space, i.e., the curse of dimensionality effect led by spatial interactions from
multiple directions. The situation turns worse for spatio-temporal series, as a result,
development on nonparametric analysis for such data sets is still at its early stage (Al-
Sulami et al., 2017).

Our study is hereby an attempt seeking semiparametric solutions under this circum-
stance for analysis of nonlinear spatial and spatio-time series data collected from irreg-
ular spaced sampling grids. Furthermore, we apply our proposed new methods/pro-
cedures to the air quality data in England and compare their results with those obtained
from the current conventional methods.
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We divide this chapter into two sections. The first section summarises the work of this
thesis and reports the main research finding and contributions. We then outline the
outlooks of our research in Section 6.2 discussing the potential improvements that may
be considered in future work.

6.1 Summary of the contributions

Echoing Section 1.4.1, we will by turns review the progress we have made so far. All
three main contributions are evaluated with the air quality data that they outperform
the popular linear Kriging methods.

6.1.1 First contribution

The first contribution is the nonparametric-trend universal Kriging (NTUK) method
proposed in Chapter 3. In linear Kriging methods, by imposing linearity assumptions,
the spatial trend µ(s) is modelled as a linear combinations of explanatory variables. To
overcome the misspecification when dealing with nonlinear data, we purposely replace
it by a nonlinear spatial trend estimated by a nonparametric local linear regression
fitting. As opposed to a global linear function, we demonstrate by real data that this
nonparametric estimation of spatial trend at each location offers great flexibility to the
model, which allows the local information speaks for itself.

6.1.2 Second contribution

In Chapter 4, aiming to develop a nonlinear method for predicting the random resid-
ual process, we adopt a semiparametric model structure called the model averaging
marginal regression (MAMAR), which was proposed by Li et al. (2015) originally for
forecasting of time series. Through a nonparametric estimation of spatial probabil-
ity density functions, we estimate the concerned variable at a new location s0 as an
affine combination of one-dimensional conditional regression functions based on the
data. A K-radius function will then be performed by averaging the estimators condi-
tioned from those locations within a K radius to s0. Finally the result will be used as
an predicted value of the process X(s0) at this new location. We deem this semipara-
metric K-radius neighbouring average based marginal Kriging (KNAMK) procedure
as our second contribution. By combining the two contributions, we have a complete
semiparametric spatial nonlinear Kriging method (procedure), which we have shown
it performs well in spatial prediction.

6.1.3 Third contribution
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We further extend our focus from spatial prediction to the realm of spatio-temporal
forecasting in Chapter 5, which brings up the third contribution. Integrating our devel-
oped semiparametric spatial nonliear Kriging method with a semiparametric spatio-
temporal nonlinear regression model, which allows the spatio-temporal random field
to be non-stationary over space (but stationary along time; for time series, say, through
differencing) but the sampling spatial grids can be irregular. A two-phase semipara-
metric nonlinear prediction SPKM procedure is proposed to offer a spatio-temporal
forecasting for a future time at a new unobserved location.

All three main contributions are evaluated by the air quality data set, and they perform
better than the common linear methods in use today.

6.2 The outlook of this research

This research is a journey of making improvements for spatial prediction from the ex-
isting linear Kriging methods. From the three contributions made in this thesis, we
look further for areas for future research also the possible opportunities for applying
these methods.

6.2.1 Areas for future research

Among the three contributions, two direct improvements could be made as the future
research: varying smoothing parameters (bandwidths) in the estimation of the spa-
tial probability density functions in Chapter 4, and the penalised lag effects for the
semiparametric spatio-temporal nonlinear regression (Phase 1 of SPKM procedure) in
Chapter 5.

We start with the first possible improvement. In KNAMK procedure, a K-radius is
defined to penalise, or shrink, the estimated long-distanced marginal regression func-
tions to zero at a new location. Alternatively, we can achieve this by introducing vary-
ing smoothing parameters, i.e., the bandwidths in the estimation of spatial probability
density functions. In Chapter 4, Epanechnikov kernel is used for both spatial band-
widths, h ∈ R and b ∈ R2. Hence, bandwidths with a distance-related tier(tag) system
could be adopted for this purpose. Another development in literature about this topic
is the method of adaptive bandwidth choice for spatial density function (Jiang et al.,
2020), in which the bandwidth varies based on local data and therefore adaptively con-
forms with local features of the spatial data. A spatial cross-validation (SCV) choice
was proposed to facilitate this method. However, it is noticed that this method was by
far performed on spatial lattice. Significant work may be required to adopt it to the air
quality case sampled from irregular grid.

The second possible area for future research is in the spatio-temporal autoregressive
partially nonlinear regression (STAR-PLR) model, i.e., the Phase 1 Step 1 of the SPKM
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procedure in Chapter 5. In Model (5.18), a spatial lagged response variable, Ysl
t (sj) =

∑N
k=1 wjkYt(sk) is defined to model the spatial interactions among the sampling sites,

within which the spatial weight matrix W = (wjk)
N
j,k=1 is assumed to be priori, the

value of each wjk is defined by the distance between sj and sk. However, as Al-Sulami
et al. (2019) stated, this pre-specified neighbourhood structure can be subjective despite
of being a common approach in applied econometrics. A more involved model can
therefore be defined by extending model (5.18) to model (6.1) into the form of

Yt(sj) = g(Xt(sj), sj) +
p

∑
i=1

N

∑
k=1

λjk,iYt−i(sk) +
q

∑
l=1

αl(sj)Yt−l(sj) + ϵt(sj), (6.1)

where ∑
p
i=1 λi(sj)Ysl

t−i(sj), the second term on the RHS of model (5.18), is modified by
adding the parametric spatio-temporal lag interactions. A penalized procedure util-
ising adaptive Lasso was developed for the identification and estimation of such lag
interactions (Al-Sulami et al., 2019). Another model of applying adaptive lasso for spa-
tial lattice data can be found in Zhu et al. (2010).

6.2.2 Possible areas for applications

The final words of this thesis go to some thoughts on possible applications of this re-
search. The study of air quality data is a conventional choice with specific purposes,
which requires few additional efforts to introduce. However, we believe that there are
a wide range of practical applications for our proposed methods. We would like to list
two possible areas as the examples for future applications: one from the operational
research point of view, and the other from the finance and econometrics aspect.

In operational research, after the descriptive analysis about ’what is it?’, the ultimate
goal is to conduct predictive and prescriptive analysis, that answers the questions such
as ’what is likely to happen?’ and ’what should we do?’. Thus, studies on resource
allocation and energy distribution can be two good candidates for our methods.

On resource allocation, for instance when the NHS forecasts the changing number of
patients at each local area during a pandemic, or answers how the NHS and its con-
tractor arrange logistics for distributing each batch of vaccine. The proposed spatio-
temporal models in this research can be adapted for such purposes. Another example
could be for city planning or for relocation of a warehouse or a facility, where mak-
ing decisions with spatial viewpoint would be extremely useful for local councils or
business owners.

From the finance and econometrics aspect, green finance and energy pricing are two
good examples both emphasising the long-term sustainability, which is inevitably as-
sociated with time and stationary conditions. Furthermore, we also notice that spatio-
temporal analysis is used for risk control and profitability management as well.
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In summary, spatial time series analysis is the future in this data-driven era, offering
vast opportunities in the increasingly connected world today.
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Appendix A

Air Quality Data Set

Empirical applications and the evaluation of our spatial and spatio-temporal prediction
methods are executed by the statistical software R, using the air quality data from the
UK-AIR database archived by the Department for Environment Food & Rural Affairs
(Defra), the UK.

In Chapters 1 - 4, we take exemplarily the date 18/04/2017 as the single point of time
for spatial prediction. We choose the monitoring stations from Defra’s Hourly net-
works in England (see Table A.1 for an overview), where the first 35 out of the total
105 stations and their corresponding values are listed. The Easting/Northing and Lat-
itude/Longitude are two standard geographic coordinates systems used to position a
location on Earth, which are commonly used in scientific software. It is noticed that
the monitoring stations are irregularly positioned in England, as shown in Figure 2.3.
Furthermore, neither the observations nor the detrended residuals follow a Gaussian
profile, as seen in Figure A.1 and Figure 3.2.
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FIGURE A.1: A density function of the observed data on 18/04/2017 with a matching
Gaussian profile
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For the spatio-temporal forecast case in Chapter 5, we set 18/04/2017 as the future
date, and use its previous 81 temporal lags (days) as the possible training set for Phase
1 of the SPKM procedure. The number of monitoring stations is reduced from 105 to 96
due to missing data.

TABLE A.1: The first 35 monitoring stations in the spatial prediction data set for
Chapters 1 - 4.

Stations Easting Northing Latitude Longitude
Barnsley Gawber 432524 407478 53.56292 -1.510436
Bath Roadside 375455 165847 51.391127 -2.354155
Billingham 446928 523597 54.60537 -1.275039
Birkenhead Borough Road 331926 388453 53.388511 -3.025014
Birmingham A4540 Roadside 408586 286470 52.47609 -1.875024
Birmingham Acocks Green 411654 282146 52.437165 -1.829999
Blackburn Accrington Road 370242 428026 53.747751 -2.452724
Blackpool Marton 333768 434759 53.80489 -3.007175
Bournemouth 412322 93343 50.73957 -1.826744
Bradford Mayo Avenue 415931 430572 53.771245 -1.759774
Brighton Preston Park 530524 106225 50.840836 -0.147572
Bristol St Paul’s 359492 173925 51.462839 -2.584482
Bristol Temple Way 359523 173383 51.457968 -2.583975
Bury Whitefield Roadside 380637 406974 53.559029 -2.293772
Cambridge Roadside 545279 258142 52.20237 0.124456
Camden Kerbside 526633 184390 51.54421 -0.175269
Cannock A5190 Roadside 401394 309957 52.687298 -1.980821
Canterbury 616187 157319 51.27399 1.098061
Carlisle Roadside 339469 555976 54.894834 -2.945307
Charlton Mackrell 352196 128768 51.05625 -2.68345
Chatham Roadside 577437 166993 51.374264 0.54797
Chesterfield Loundsley Green 436470 372039 53.244131 -1.454946
Chesterfield Roadside 436348 370658 53.231722 -1.456944
Chilbolton Observatory 439390 139078 51.149617 -1.438228
Christchurch Barrack Road 415559 92894 50.735454 -1.780888
Coventry Allesley 430011 279376 52.411563 -1.560228
Coventry Binley Road. 434785 278978 52.407708 -1.490082
Doncaster A630 Cleveland Street 457247 402812 53.518868 -1.138073
Eastbourne 560155 103150 50.805778 0.271611
Exeter Roadside 291929 92838 50.725083 -3.532465
Glazebury 368755 396030 53.46008 -2.472056
Haringey Roadside 533894 190707 51.5993 -0.068218
Honiton 315749 99874 50.792287 -3.196702
Horley 528206 142331 51.165865 -0.167734
Hull Freetown 509482 429322 53.74878 -0.341222
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Appendix B

Parametric Variogram Models

B.1 Parametric models for spatial data

In Sections 2.3.2 and 4.2.3, the process of fitting theoretical variogram is intensively
discussed. Webster and Oliver (2007) commented that bounded models are more com-
monly in use than the unbounded variation from experience. In this section, we present
a short list of commonly used bounded, isotropic and valid variogram model families,
which can be found in Wackernagel (2003) and Webster and Oliver (2007).

Let γa,b(d) denotes the semivariogram function, Ca,b(d) the corresponding covariance
function with spatial lag d, and a, b > 0 the parameters of each model, represent the
range and sill parameters, respectively.

(i) Nugget-effect model:

γ
nug
a,b (d) :=

{
0, if |d| = 0,
b, otherwise.

Cnug
a,b (d) :=

{
b, if |d| = 0,
0, otherwise.

(ii) Bounded linear model:

γlin
a,b(d) :=

{
b( |d|a ), if |d| ≤ a,
b, otherwise.

Clin
a,b(d) :=

{
b(1 − |d|

a ), if |d| ≤ a,
0, otherwise.
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(iii) Spherical model:

γ
sph
a,b (d) :=

{
b( 3

2
|d|
a − 1

2 (
|d|
a )3), if |d| ≤ a,

b , otherwise.

Csph
a,b (d) :=

{
b(1 − 3

2
|d|
a − 1

2 (
|d|
a )3), if |d| ≤ a,

0 , otherwise.

(iv) Exponential model:

γ
exp
a,b (d) := b (1 − exp(−|d|

a
)).

Cexp
a,b (d) := b exp(−|d|

a
)).

(v) Gaussian model:

γ
gau
a,b (d) := b (1 − exp(−|d|2

a2 )).

Cgau
a,b (d) := b exp(−|d|2

a2 )).

When analysing data from real applications, often the variogram appears to be more
complex. Webster and Oliver (2007) suggested that it is common to combine some of
the basic models to achieve a better fit. The most common combination of this kind is to
add a nugget parameter c0 into another model, e.g., γ

gau
a,b,C0

(d) := c0 +γ
gau
a,b (d) represents

a modified Gaussian model with a nugget component, the sill now becomes the sum of
b and c0, where the value b is named partial sill (Cressie, 1988).

The gstat package in R is used to perform linear Kriging in this research by which the
sum of squared errors under least squares fitting method is calculated for each model
family. The results are then compared for identifying the best theoretical model.

B.2 Parametric models for spatio-temporal data

In Section 5, the focus expands to applications with spatial-time data sets. To perform
spatio-temporal interpolation using gstat R package, we list four basic model classes:
the separable, product-sum, metric and sum-metric spatio-temporal covariance func-
tions from Pebesma and Heuvelink (2016):

a) The separable covariance model assumes that the spatio-temporal covariance function
can be shown as the product of a spatial and temporal term:
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Csep(d, u) = Cs(d) + Ct(u),

where d and u represent the spatial lag and time lag respectively.

b) Extended from the above model, the product-sum covariance model takes the form
as

Cps(d, u) = kCs(d)Ct(u) + Cs(d) + Ct(u),

with k > 0.

c) Assuming identical spatial and temporal covariance functions except for spatio-
temporal anisotropy, the spatio-temporal metric covariance model employs a single co-
variance model Cjoint,

Cm(d, u) = Cjoint(
√

d2 + (k ∗ u)2),

where k is an anisotropy correction parameter.

d) Combining spatial, temporal and a metric model, the sum-metric covariance model
is

Csm(d, u) = Cs(d) + Ct(u) + Cjoint

(√
d2 + (k ∗ u)2

)
.
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