
University of Southampton

G A U S S - N E W TO N -T Y P E M E T H O D S
F O R B I L E V E L O P T I M I Z AT I O N

Andrey Tin

A thesis presented for the degree of
Doctor of Philosophy

School of Mathematical Sciences
Faculty of Social Sciences
University of Southampton

UK

November 2020

3

statement of authorship

I, Andrey Tin, declare that the thesis entitled "Gauss-Newton-type methods for bilevel optimization"
and the work presented in it are my own contribution and has not been submitted elsewhere for
the award of any other degree. I confirm that:

• this work was done wholly while in candidature for a research degree at this University;

• where I have quoted from the work of others, the source is always given;

• with the exception of such quotation, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made clear exactly
what was done by others and what I have contributed myself.

Part I of this thesis is an original work done by myself while guided by the supervisors. The
content of Parts II-IV corresponds to three papers written jointly with my supervisors; i.e., as re-
ferred to in the thesis, Part II, III, and IV represent Paper 1, Paper 2, and Paper 3, respectively. For
each of these papers, I drafted the initial version with the corresponding numerical results under
the guidance of my supervisors. The work [Paper 1] presented in Part II has been accepted for
publication with minor corrections by the journal "Computational Optimization and Applications".
For this paper, my supervisors’ Dr Alain Zemkoho and Prof Joerg Fliege provided guidance for
the drafting and advice on specific aspects to focus on for the appropriate numerical experiments.
Subsequently, they helped to improve the presentation of the manuscript before submission to the
journal.

The other two works [Paper 2, Paper 3] presented in Part III and Part IV, respectively, have not
yet been submitted for publication. But they are in the final form for submission and are planned
to be submitted within a month from submission of this thesis. Part III partly arose as a natural
improvement step from Part II as the Gauss-Newton method requires inverse calculations, which are
not possible for many practical examples. However, part of the work there was motivated by [81],
identifying classes of bilevel optimization problems that can be partially penalized thanks to the
concept of partial calmness introduced there. Dr Zemkoho provided further guidance for drafting
this paper and key aspects for experiments. He also helped in improving its presentation.

As for Part IV, it was motivated by the works [52, 84]. In [52], it was shown that bilevel problems
with linear structure are partially calm. In [84] Alain Zemkoho and Shenglong Zhou provided a
comparison of the KKT-based optimality conditions with LLVF-based optimality conditions for a
general class of bilevel problems. Since approaches studied in [84] require partial calmness assump-
tion, it seemed very logical and interesting to study similar comparison for the linear case. Alain
Zemkoho suggested what measures to choose for the comparison and advised to build a new test
set of examples based on examples from different class of problems. With this I was able to perform
the desired comparison in Part IV, as well as performing very extensive experiments in Section
3 in Part IV. All these parts are included in this thesis to maintain completeness of the research
contributions and to keep a natural flow of presentation of ideas.

Andrey Tin
November 2020

Approved by main supervisor, Dr Alain Zemkoho.

Signed: Date: 16/11/2020

5

acknowledgements

First of all, I would like to express my sincere gratitude to EPSRC (Engineering and Physical Sciences
Research Council) and Presidential Scholarship programme for making this project possible and
letting me to be part of it. Further, I would like to thank my supervisors Dr Alain Zemkoho and
Professor Jörg Fliege for the thoughtful comments, recommendations and assistance in every step
throughout the process of this work. Your insightful feedback brought my work to a higher level and
allowed me to feel comfortable throughout writing this thesis. I am also thankful to the School of
Mathematical Sciences and all its members of staff for clear guidance over these years. To conclude,
I cannot forget to thank my family and friends for all the unconditional support and understanding
over the years of working on this project.

abstract

This document is designed to provide an overview of the three papers that analyze application
of Gauss-Newton-type methods to find solutions of bilevel programming problems. [Paper 1] and
[Paper 2] consider the framework for nonlinear bilevel problems, while [Paper 3] extends the anal-
ysis to the linear class of bilevel problems. All of the papers are mainly based on the lower-level
value function (LLVF) reformulation of bilevel programming problems. With some appropriate as-
sumptions optimality conditions are stated in the context of this reformulation for nonlinear case in
[Paper 1, Paper 2] and for linear case in [Paper 3]. In [Paper 3] LLVF reformulation is compared
with Karush-Kuhn-Tucker (KKT) reformulation as the latter approach is very popular to solve lin-
ear bilevel problems (BLPs). There we also discuss which assumptions are automatically satisfied
for these reformulations for the linear class of bilevel problems. In all three works NCP-functions
are used to substitute complementarity constraints and state optimality conditions in the form of a
system of equations. Smoothing is then discussed to be the best technique to obtain differentiability
of such system. One of the main property of our framework is that introduced system is overde-
termined. As Jacobian of such system is non-square, Gauss-Newton-type methods are considered
to solve the system. In particular, [Paper 1] examines Gauss-Newton method and Newton method with
Moore-Penrose pseudo inverse in the context of bilevel optimization. Levenberg-Marquardt method
for nonlinear bilevel problems is discussed in [Paper 2] together with the detailed discussion on
the parameters choice. In [Paper 3] Levenberg-Marquardt method is analyzed for the class of linear
bilevel optimization problems. It is worth noting that these well-known methods have not yet been
studied for bilevel optimization framework. We prove that all these methods can be well-defined
for the introduced formulation of optimality conditions. In numerical part of the papers we present
the implementation results of the methods for a good number of problems, choosing different value
of penalty parameter λ on the go. The analysis has shown that all these methods perform well,
recovering known optimal solutions for most of the tested examples with very small average CPU
time required by the algorithms. This demonstrates that not only the methods are valid for the cho-
sen framework, but also that they can compete with popular methods used in bilevel optimization.
Further, results of [Paper 1] has shown that Newton method with pseudo inverse could very well
be a better option to implement in practice than Gauss-Newton method in its classic formulation.
Analysis in [Paper 2] has shown that introduced Levenberg-Marquardt algorithm is very sensitive
to the choice of the penalty parameter. The results there lead to some non-trivial suggestions on
choosing penalty parameter, which could be useful for anyone dealing with a framework of similar
nature. In numerical part of [Paper 3], it has been shown that algorithm performs slightly better
for LLVF-based approach than for KKT-based approach for the linear bilevel problems. However,
the comparison was only done for 24 linear test problems of relatively small size. We believe that
more extensive experiments would be more reliable. For this reason, we create the basis for such
comparison by transforming 50 integer examples and 124 binary examples to ordinary linear bilevel
problems. Finally, results of implementing Levenberg-Marquardt method for KKT and LLVF refor-
mulations of these problems is presented in the final section of [Paper 3].

Contents 7

contents

I Summary 9
1 Introduction 9

2 Gauss-Newton method for bilevel optimization 16

3 Levenberg-Marquardt method and penalty parameter selection in bilevel optimization 21

4 Levenberg-Marquardt method for linear bilevel optimization 26

5 Conclusion 30

II Paper 1: Gauss-Newton-type Methods for Bilevel Optimization 33
1 Introduction 33

2 Optimality conditions and equation reformulation 34

3 Gauss-Newton-type methods under strict complementarity 37

4 Smoothing Gauss-Newton method 41

5 Numerical results 48

6 Final comments 53

III Paper 2: Levenberg-Marquardt method and partial exact penalty parameter selec-
tion in bilevel optimization 54

1 Introduction 54

2 Levenberg-Marquardt method for bilevel optimization 56

3 Partial exact penalty parameter selection 62

4 Performance comparison under fixed and varying penalty parameter 69

5 Final comments 73

IV Paper 3: Levenberg-Marquardt method for linear bilevel optimization 75
1 Introduction 75

2 Levenberg-Marquardt method for linear Bilevel Optimization 77

3 Numerical study 85

4 Final comments 94

a Objective functions values for transformed integer examples 96

b Objective functions values for transformed binary examples 99

References 106

supporting materials

Supplementary materials [Supp1, Supp2, Supp3] with the detailed results of the numerical experi-
ments are available to support the last chapter of each of the papers, [Paper 1, Paper 2, Paper 3].

9

Part I.
Summary
1 introduction

This document provides a summary of the papers [Paper 1, Paper 2, Paper 3]. In all three papers
we aim to solve bilevel programming problems of the form

min
x,y

F(x,y) s.t. G(x,y) 6 0, y ∈ S(x) := arg min
y

{f(x,y) : g(x,y) 6 0}, (BP)

where F : Rn ×Rm → R, f : Rn ×Rm → R, G : Rn ×Rm → Rq and g : Rn ×Rm → Rp. This
general formulation was analyzed in [Paper 1, Paper 2], while [Paper 3] considered all functions of
(BP) to be linear. The first formulation of bilevel optimization problem draws back to Stackelberg in
his monograph on market economy in 1934 [64]. It was proposed as a model for a leader-follower
game in which two players try to minimize their individual objective functions F(x,y) and f(x,y),
respectively, subject to a series of interdependent constraints. Bilevel optimization has a variety of
applications in economics, defence, transportation, decision science, business, chemistry, engineer-
ing etc. The first mathematical model has been formulated by Bracken and McGill in 1972 [10].
Since then there has been a steady growth in investigations and applications of bilevel optimization.
Formulated as a hierarchical game, two decision makers act in this problem. The leader minimizes
his objective function subject to conditions partially composed by optimal decisions of the follower.
The selection of the leader influences the feasible set and the objective function of the follower’s
problem, whose reaction has strong impact on the leader’s payoff. The bilevel optimization prob-
lem is the leader’s problem, formulated mathematically using the graph of the solution set of the
follower’s problem. The implicit structure of the bilevel optimization problems does not allow us
to solve them directly. For each decision, x, of the upper-level decision maker, there is reaction set
for the lower-level decision maker to optimise over his decision y. It is worth noting that bilevel
optimization problems are known to be NP-hard [4, 36]. There are several ways to deal with the
complexity of the problem. Earliest solution techniques draw back to implicit function approach
and Karush-Kuhn-Tucker (KKT) reformulation. The methods based on implicit function approach
rely on the insertion of the lower-level solution function or its approximation in the upper-level
objective function; see, e.g., [17, 21] for related algorithms. Authors in [46, 47, 53, 58, 73] test global
optimisation techniques as the solution method for (BP) and [50, 75, 76] consider special case of the
problem (BP), where upper-level and lower-level constraints depend only on upper-level variable
and lower-level variable respectively. We are going to discuss a variety of solution methods in more
details below. Nevertheless, interested readers are referred to the books [3, 18] for more extensive
review of bilevel optimization and on the approaches to deal with the complexity of this area.

The problem (BP) is the most widely studied form of a bilevel optimization problem. However,
this is not the most general one. General bilevel optimization problem can be written as

min
x
F(x,y) s.t. y ∈ S(x) := arg min

y
{f(x,y) : g(x,y) 6 0}. (1.1)

This can lead to different lower-level solutions y1(x), y2(x), y3(x) etc. Clearly, if for a choice x
there is uncertainty of the choice y(x), it becomes challenging to determine optimal solution of
the problem. One way to treat general bilevel optimization problem is to write it as the following
set-valued optimization problem

min
x
F(x,S(x)) := ∪

y∈S(x)
{F(x,y)}.

If S(x) is single-valued for all x ∈ X the problem above becomes a usual optimization problem

min{F(x,S(x))|x ∈ X}

1 introduction 10

The optimality conditions and algorithms based on this approach were presented in [18], with the
main difficulty of such approach being implicit nature of the objective. As mentioned before, one
of the earliest techniques to solve bilevel optimization problems is the implicit function approach.
Such approach deals with solving the problem for a unique solution y(x), that is

min
x
F(x,y(x)).

This allows to solve bilevel optimization problems with certain properties but this approach cannot
be applied to all bilevel optimization problems.

The formulation of general bilevel optimization problem is uncertain from the view point of
scalar-objective optimization. To overcome this, two approaches are typically considered in the liter-
ature – optimistic approach and pessimistic approach. Optimistic approach assumes that there is a
cooperation between the leader (upper-level decision maker) and the follower (lower-level decision
maker). In this scenario upper-level player is able to influence lower-level decision and the problem
is then stated in the following form.

min
x

min
y∈S(x)

F(x,y). (BPo)

This way lower-level player is assumed to make the decision y ∈ S(x) that is best for the leader.
The problem (BPo) is known as optimistic bilevel optimization problem. From economics viewpoint
such problem corresponds to a situation where the follower participates in the profit of the leader.
Special case of the optimistic scenario is considered in (BP), where we minimize F with respect to
variables x and y. This could be thought of as a simplified version of the optimistic case. Since this
is the most investigated formulation in the literature, we refer to (BP) as to "bilevel optimization
problem". The overview on this problem is provided in [15]. In terms of global solutions of (BP)
and (BPo), these are equivalent. Further, local optimal solution of (BPo) is equivalent to the local
optimal solution of (BP). However, the local optimal of (BP) is not necessary a local optimal for
(BPo). It is worth noting that it is typical to have G(x) instead of G(x,y) in the literature, so having
G(x,y) in (BP) can be thought of as an approximation to this common formulation. However, it
will discussed that this has no mathematical harm to consider G(x,y), although this is not typical
scenario due to the nature of the bilevel optimization problems.

Lastly, let us consider another scenario, which is somewhat opposite to the one introduced in
(BPo). It would not always be possible for the leader to convince the follower to make choice
favourable for the leader. Hence, there is big interest in determining the bound of the damage from
the worst case scenario. This motivates stating pessimistic bilevel optimization problem as follows.

min
x

max
y∈S(x)

F(x,y). (BPp)

This scenario assumes that follower plays against the leader and always chooses decision y ∈ S(x)
which is the worst case scenario from the leader’s perspective. It is worth mentioning that (BPp)
is the special class of minimax problems. Although this class of problems has been widely investi-
gated in the literature, this formulation faces many challenges when S(x) stands for varying sets of
solutions to another optimization problem. One major difficulty to handle this problem relates to
the fact that the objective function in (BPp) is usually only upper semicontinuous, which makes it
hard to detect optimal solutions. Secondly, most of classic techniques for minimax problems cannot
be applied to pessimistic bilevel optimization problem. This is due to the fact that the corresponding
inner problem max

y∈S(x)
F(x,y(x)) violates the imposed constraint qualifications (CQs).

Several authors contributed in deriving optimality conditions for bilevel optimization, precisely
for (BP). For the case with stable lower-level problem, optimality conditions were obtained by
Dempe [16] and Outrata [56] via the implicit function approach. The first result, based on LLVF
reformulation, was due to Ye and Zhu [81]. Chen and Florian [12] was one of the first papers
to consider optimality conditions based on KKT and LLVF single-level reformulations. In general,
there are three major one-level reformulations of the bilevel problem. They are LLVF, KKT and

1 introduction 11

OPEC (optimization problem with generalized equation constraints) reformulations. For the OPEC
lower-level problem is assumed to be convex in the sense that f(x, .) and g(x, .) are convex for all
x ∈ X, then S takes the generalized equation form

S(x) = {y ∈ Rm|0 ∈ ∇yf(x,y) +NK(x)(y)},

where K(x) := {y ∈ Rm|g(x,y) 6 0} and NK(x)(y) denotes the normal cone to K(x) at y. Hence, (BP)
can be interpreted as an optimization problem with generalized equation constraint (OPEC):

min
x,y

{F(x,y)|x ∈ X, 0 ∈ ∇yf(x,y) +NK(x)(y)}.

Interested reader is referred to [54, 79] for the problem studied in this form. To avoid making this
convexity assumption and to get away from some possibly unwanted behaviour that may occur
due to using the optimal value reformulation, Ye and Zhu [82] suggested a combination of the
KKT and the optimal value reformulations in order to obtain optimality conditions for the bilevel
optimization problem. Concretely, it is assumed in [82] that the KKT conditions of the lower level
problem are satisfied without necessarily requiring the convexity of the lower level problem.

Before moving on to the approach studied in this thesis let us first discuss some of the most
popular solution methods. One of the earliest techniques to solve bilevel optimization problems
draws back to implicit function technique. As discussed earlier, this technique considers one y(x)
for each decision x. The next class of methods considers single-level reduction of bilevel optimiza-
tion problems. For instance, when the lower level problem is convex and sufficiently regular, it is
possible to replace the lower level optimization problem with its Karush-Kuhn-Tucker (KKT) condi-
tions. The KKT conditions appear as Lagrangian and complementarity constraints, and reduce the
overall bilevel optimization problem to a single-level constrained optimization problem. The other
possibility is the lower level value function (LLVF) reformulation, which also reduces bilevel opti-
mization problem to single-level problem. Next class of the solution techniques is descent methods.
A descent direction in bilevel optimization leads to decrease in upper level function value while
keeping the new point feasible. Given that a point is considered feasible only if it is lower level op-
timal, finding the descent direction can be quite challenging. Another proposed technique to solve
bilevel optimization problems is penalty function methods. In penalty function methods the bilevel
optimization problem is handled by solving a series of unconstrained optimization problems. The
unconstrained problem is generated by adding a penalty term that measures the extent of viola-
tion of the constraints. The penalty term often requires a parameter and takes the value zero for
feasible points and positive value for infeasible points. In the bilevel context penalty methods are
usually incorporated together with single-level transformation of the (BP). Another class of meth-
ods incorporates extracting gradient information of the lower-level problem. Arguments common
to sensitivity analysis in parametric nonlinear programming can provide information on the gradi-
ent and the directional derivative of the optimal solution y∗(x) of the lower-level problem. Using
∇y∗(x) or the directional derivative Dy∗(x,d), it is possible to derive optimality conditions of (BP).
Other techniques to solve bilevel optimization problems include trust region methods, evolution-
ary algorithms, branch and bound, vertex enumeration and selection function approach. Some of
them are designed to solve linear bilevel optimization problems, some of them are considered to
be heuristics. Nevertheless, interested reader is referred to [3, 18] for a detailed review of solution
methods for bilevel optimization.

We take the approach of reformulating the problem using optimality conditions. It is worth saying
that the most popular reformulation is the replacement of lower-level problem by KKT optimality
conditions. Such approach is strongly linked to MPECs (mathematical problems with equilibrium
constraints). Interested readers are referred to [1, 23, 41] and references therein, for results and
methods based on KKT transformation. The first two papers, [Paper 1, Paper 2], aimed to analyze
different type of reformulation, known as lower-level value function reformulation (LLVF). As discussed
in [23], LLVF reformulation has a link to the mentioned KKT approach. These two reformulations
were compared in [84] for the general case. We compare them for the linear class of bilevel problems
in [Paper 3]. The recent studies of LLVF-based approach for bilevel programs include [46, 47, 53, 58,

1 introduction 12

73], where authors develop global optimization techniques for (BP) based on LLVF reformulation.
Moreover, some works (e.g. [50, 75, 76]) propose algorithms computing stationary points for LLVF-
based optimality conditions in the case where the upper-level and lower-level feasible sets do not
depend on the lower-level and upper-level variable, respectively. The closest work to the approach
considered here is [31], where semi-smooth Newton method for the LLVF reformulation of bilevel
programs is studied. Nevertheless, the approach of solving LLVF-based optimality conditions for
bilevel optimization is understudied in the literature in comparison to KKT-based approach. Further,
it is more standard to introduce assumptions that lead to a square system, making it possible to
implement classic Newton method. Extra variables are sometimes introduced to make such system
square (e.g. [31]). We make assumptions that lead to a relatively simple system, which has a
disadvantage of being overdetermined. To solve overdetermined system we study Gauss-Newton-
type methods in theoretical and numerical manner. To our knowledge such approach was not
tested in the context of bilevel optimization framework. The main scope of this work is to analyze
theoretically and practically validity and effectiveness of such methods for bilevel optimization. We
further discuss Newton method with pseudo inverse as a good alternative to implementing Gauss-
Newton method in [Paper 1], give detailed overview of the penalty parameter selection in [Paper 2]
and compare LLVF-based reformulation with KKT-based reformulation for linear bilevel problems
in [Paper 3] in the context of implementing quadratic method, which has also not been studied
before.

In [Paper 1, Paper 2] in order to obtain optimality conditions for nonlinear bilevel optimization,
we are using the lower-level value function formulation of the problem (BP):

min
x,y

F(x,y) s.t. G(x,y) 6 0, g(x,y) 6 0, f(x,y) 6 ϕ(x), (1.2)

where the optimal value function is defined by

ϕ(x) := min {f(x,y) | g(x,y) 6 0 } . (1.3)

The problem with LLVF (lower-level value function) formulation is that the presence of the value
function in the problem violates classic constraint qualifications to hold. Because of this we need to
assume lower-level regularity and partial calmness condition around optimal solution to be able to
state optimality conditions. These assumptions allows us to shift the value function to the upper-
level problem as the penalty term with parameter λ as follows.

min
x,y

F(x,y) + λ(f(x,y) −ϕ(x)) s.t. G(x,y) 6 0, g(x,y) 6 0. (1.4)

Further challenge is that value function is not differentiable in the usual sense. Hence, as presented
in [Paper 1, Paper 2] we are making some appropriate assumptions to estimate subdifferential of ϕ
and state the desired optimality conditions. This is well-known approach and there is a variety of
ways to estimate subdifferential presented in the literature. Depending on the assumptions made,
the estimation of the subdifferential would be slightly different, leading to a variety of optimality
concepts. One is referred to [20, 23, 24, 81] for different estimations of subdifferential of value
function in the context of obtaining optimality conditions for bilevel programs based on lower-
level value function reformulation. In fact, due to this property different notions of stationarity
are discussed in [22, 83]. For our formulation we use assumption of convexity of the lower-level
problem and lower-level regularity at (x̄, ȳ). The common alternative assumptions include inner
semicontinuity or inner semicompactness of the optimal solution set-valued mapping S, which are
briefly discussed in [Paper 1], with the interested reader referred to [20, 23, 24] for the results. The
approach that we take leads us to the estimation of ∂ϕ introduced in [20, Theorem 4.2], where
subdifferential is estimated as

∂ϕ(x̄) ⊆
⋃

u∈Λ(x̄,ȳ)

{
∇xf(x̄, ȳ) +

p∑
i=1

ui∇xgi(x̄, ȳ)

}
, (1.5)

where Λ(x̄,y) is the set of Lagrange multipliers for lower level, when parameter is fixed at x̄. Using
the subdifferential of the value function in the form of (1.5), we use the rule of Lagrange inclusion

1 introduction 13

to define stationarity conditions, which are the conditions that should be satisfied for the point
to be an optimal solution of the value function penalty formulation of a bilevel program. The
optimality conditions are stated in Theorem 2.2 in [Paper 1] and Theorem 2.3 in [Paper 2]. Most of
the assumptions required to state optimality conditions are satisfied automatically for the class of
problems where all functions defining (BP) are linear. This brings a big advantage to the conditions
analyzed in [Paper 3]. The LLVF-based optimality conditions for the linear class of bilevel problems
are stated in Theorem 2.3 in [Paper 3], in conjunction with KKT-based optimality conditions. The
considered framework allows us to obtain system that is easy to handle. For instance, the conditions
introduced in [Paper 1, Paper 2] are easier to handle than the more general case presented in [24,
Theorem 3.5] or in [20, Theorem 3.1]. The main reason for this being that the convexity assumption
allows us to get rid of the convex hull in the generalized subdifferential ofϕ(x̄). The other advantage
of conditions in [Paper 1, Paper 2] is that, unlike the system studied in [31], our conditions do not
introduce second lower-level variable.

The main idea behind the assumptions made for our framework is that they allow us to get the
formulation of ∂ϕ as defined by (1.5). Under full convexity of the lower-level problem, the value
function ϕ is locally Lipschitz continuous around x̄. Partial calmness implies the possibility of
restating the problem by (1.4). Then we claim the following Lagrangian inclusion as in (3.25) of [20],

0 ∈ ∇F(x̄, ȳ) + λ∇f(x̄, ȳ) + (λ∂(−ϕ(x̄), 0) +∇g(x̄, ȳ)>u+∇G(x̄, ȳ)>v, (1.6)

where u ∈ R+
p and v ∈ R+

q are lower-level and upper-level Lagrange multipliers respectively.
Due to the convexity of ∂ϕ(x̄) we observe that

∂(−ϕ(x̄)) ⊂ −∂ϕ(x̄). (1.7)

With this property we can restate (1.6) as

∇F(x̄, ȳ) + λ∇f(x̄, ȳ) +∇g(x̄, ȳ)>u+∇G(x̄, ȳ)>v ∈ (λ∂(ϕ(x̄), 0). (1.8)

Substituting ∂ϕ(x̄) defined by (1.5) in (1.8) gives the system of optimality conditions considered in
[Paper 1, Paper 2] for nonlinear bilevel problems and in [Paper 3] for the linear case. Comparing
to the approach of redefining lower-level problem as KKT conditions, our conditions are easier to
handle as they do not involve third derivatives of original functions or extra variables to have square
system. To proceed with our framework, Fischer-Burmeister NCP-function is used to substitute all
complementarity constraints in the optimality conditions to get rid of inequalities. This enables us to
present optimality conditions in the following form of the single system of equations, as presented
in Section 2 in [Paper 1, Paper 2].

Υλ(z) :=



∇xF(x,y) +∇xg(x,y)>(u− λw) +∇xG(x,y)>v
∇yF(x,y) +∇yg(x,y)>(u− λw) +∇yG(x,y)>v

∇yf(x,y) +∇yg(x,y)>w√
u2 + g(x,y)2 − u+ g(x,y)√
v2 +G(x,y)2 − v+G(x,y)√
w2 + g(x,y)2 −w+ g(x,y)


= 0, (1.9)

where z := (x,y,u, v,w) with N := n+m+ 2p+ q total number of the variables in the system, and

√
u2 + g(x,y)2 − u+ g(x,y) :=


√
u21 + g1(x,y)2 − u1 + g1(x,y)

...√
u2p + gp(x,y)2 − up + gp(x,y)

 . (1.10)

√
v2 +G(x,y)2 − v+G(x,y) and

√
w2 + g(x,y)2 −w+ g(x,y) are defined as in (1.10). Similar con-

ditions are stated in [Paper 3] for the linear bilevel problems. Newton method is known to be
one of the most popular methods to solve nonlinear systems similar to (1.9). For our case classic

1 introduction 14

Newton method cannot be used as the system (1.9) is clearly overdetermined, having N+m equa-
tions and N unknowns. Overdetermined systems have non-square Jacobian, which means that we
cannot compute inverse of the Jacobian in the usual sense. Hence, we consider Gauss-Newton-
type methods that can be applied for the systems with non-square Jacobian. The methods consid-
ered are Gauss-Newton method and Newton method with Moore-Penrose pseudo inverse in [Paper 1], and
Levenberg-Marquardt method in [Paper 2, Paper 3]. Approach to implement these methods to solve
optimality conditions based on LLVF reformulation of bilevel programs has not been yet considered
in the literature. As the methods have not yet been studied in the context of bilevel optimization
framework, it could be the case that the methods considered in [Paper 1, Paper 2, Paper 3] are not
appropriate to implement for the considered problem. For instance, it could possibly be the case
that the methods are not well-defined or cannot converge in the context of solving bilevel optimiza-
tion problems, especially for the linear case. Hence, one of the main scopes of the papers was to
show that methods make sense in the context of our framework both theoretically and practically.
The well-definedness of the methods, convergence results and numerical tests are presented in all
three papers [Paper 1, Paper 2, Paper 3]. One of the most interesting properties of the considered
framework is the dependence of the introduced formulation on the penalty parameter λ. The choice
of the penalty parameter and some tests on the behaviour of λ were analyzed in [Paper 2]. This has
shown to be different to what one would expect based on the common literature discussions on the
theoretical properties of the penalty parameter. Some important advices based on the behaviour
of the algorithm with increasing λ were given in [Paper 2], which we hope will become useful for
some readers. Further observation was that the method analyzed in [Paper 2] always converges,
which was one of the reasons to consider Levenberg-Marquardt method in [Paper 3].

For the numerical tests in [Paper 1, Paper 2], we present results of extensive experiments based
on 124 nonlinear problems from BOLIB (Bilevel Optimization Library) [85]. The results are then
compared with known solutions of the problems to check if obtained stationary points are actually
optimal solutions of the problems or not. Such a number of experiments allows our work to be
a good basis for comparison with the other solution methods for bilevel optimization. Further,
this allowed us to draw conclusions on the behaviour of the algorithm for different choices of the
involved parameters. For the numerical results in [Paper 3], we base the analysis of the performance
of the method on 24 linear bilevel problems from BOLIB [85]. We further define transformation of
50 integer and 124 binary examples from [32] into classic linear bilevel programs (BLPS). We then
present the results of implementing our method for these transformed examples, hoping that this
will provide a good basis for comparison in the future. The results obtained in [Paper 1, Paper 2,
Paper 3] show that chosen algorithms perform fairly fast and recover a good amount of solutions
for the examples where optimal solutions are known. The overall picture of the work done for this
thesis is summarized in Figure 1 below.

1 introduction 15

Nonlinear bilevel
programming problems

linear bilevel
programming

Partial calmness assumption

full convexity of lower-level

Lower-level value
function (LLVF)
reformulation

Optimality conditions
Karush-Kuhn Tucker
(KKT) reformulation

Optimality conditions

Differential system
of equations (square)

Differential sys-
tem of equations
(overdetermined)

Penalty parameter λ

Techniques to choose λ

Newton-type methods
for non-square systems

Gauss-Newton
method

Levenberg-Marquardt
method

Conditions to be well-defined

Convergence

Safeguards

Semismooth
Gauss-Newton

method

Pseudo-Newton
method

Gauss-Newton
direction

Heuristic direction

NCP functions

paper 1

papers 2 and 3

paper 2

papers 2 and 3

paper 1
not studied yet

if Gauss-Newton direction is well-defined

otherwise

Figure 1: Overview diagram of the work done

The upcoming sections will be structured as follows. We are first going to look at the classic Gauss-
Newton method and Newton method with pseudo inverse in Section 2, which is based on [Paper 1].
There we will define the methods, conditions for them to be well-defined for bilevel framework and
convergence results. We will then summarize the main outcomes of the experiments. We are then
going to look at Levenberg-Marquardt method for bilevel optimization in Section 3, which is based
on [Paper 2]. We will briefly introduce the method’s nature with the link to the Gauss-Newton
method considered in [Paper 1]. We will discuss the main advantages of the Levenberg-Marquardt
method and show that it can converge for bilevel framework. This will be followed by the detailed

2 gauss-newton method for bilevel optimization 16

discussion of the choice of penalty parameter λ, as this plays the key role in the definition of optimal-
ity conditions and affects performance of the algorithm dramatically, as shown in [Paper 2]. We then
present results of implementing the method and discuss the main observations of the experiments.
Finally, we are going to look at KKT and LLVF reformulations of linear bilevel problems in Section
4, which is based on [Paper 3]. We will give the overview of optimality conditions and theoretical
advantages of the linear framework for both reformulations. We then will discuss the validity of
the implementation of Levenberg-Marquardt method to solve the systems of optimality conditions
based on KKT and LLVF reformulations. This will be followed by the discussion of convergence
results of the algorithm for linear bilevel framework. To finalize this section, reasoning behind the
numerical experiments will be given and the main outcomes of the tests will be reviewed.

2 gauss-newton method for bilevel optimization

This section refers to methodology used in [Paper 1], which is based around the methods of the
nature similar to the popular Newton method. Generally, methods of this nature are designed to
find the solution z of the system H(z) = 0 by going through iterative steps of the form

zk+1 = zk + tdk, (2.1)

where dk is the direction vector, z is a vector of the variables and t is the step size. More generally,
Newton-type methods are minimization methods, where we can consider the problem defined by
H(z) = 0 to be solved by minimizing the least squares problem i.e.

min Φ(z), where Φ(z) :=
1

2
‖H(z)‖2 . (2.2)

The methods of this nature use information about the gradient of the function to move along descent
direction towards minimizing the function Φ. Classic Newton method would compute direction in
(2.1) by dk := −∇H(zk)−1H(zk). There has been recent study testing Newton method for optimality
conditions of bilevel programming problems (see [31]) with extensive experiments. The advantage
of our system is that we do not need to introduce extra lower-level variable to make the system
square (see variable z in [31]). In our case H(z) is defined by (1.9), which has non-square Jacobian
∇Υ(zk) ∈ R(N+m)×N. For this reason we choose to analyze Gauss-Newton method to solve (1.9). The
trick that benefits Gauss-Newton method is that the product of ∇H(zk) with its transpose results in
a square matrix. The step of Gauss-Newton method, as defined in [25, 35, 55], is

dk = −(∇H(zk)>∇H(zk))−1∇H(zk)>H(zk), (2.3)

where clearly ∇H(zk)>∇H(zk) is a square matrix. For the method taking steps (2.1) it is crucial
that direction is descent. For the direction to be descent, dk should satisfy Φ(zk + tdk) < Φ(zk) for
any iteration k. It is known that unmodified Gauss-Newton algorithm has descent direction. For
our case we are dealing with the system H(z) := Υλ(z) and hence with the merit function Φλ(z) =
1
2

∥∥Υλ(z)∥∥2. Then for algorithm to be well-defined to solve (1.9) one needs matrix∇Υλ(z)>∇Υλ(z) to
be invertible, making the direction of the method to be well-defined. This becomes crucial part of the
analysis under two scenarios in Section 3 and Section 4 in [Paper 1]. These results demonstrate that
the method can be theoretically well-defined for the framework of bilevel programming problems.

The step (2.1) with t = 1 is known as a pure step. Due to the novelty of Gauss-Newton method
for bilevel programming it was decided to test pure Gauss-Newton method to solve (1.9) in [Paper 1],
alongside with pure Newton method with Moore-Penrose pseudo inverse and Matlab solver fsolve. By
analysing pure method we get the idea of how appropriate is the method to find optimal solutions
for bilevel programming problems. However, it should be noted that technique to control a step
size, known as line search, could possibly further benefit the method. Line search is designed to
choose optimal step length to avoid over-going an optimal solution in the direction dk and also to
globalize the convergence of the methods. Line search technique was out of scope of [Paper 1], but

2 gauss-newton method for bilevel optimization 17

Levenberg-Marquardt method with line search to solve (1.9) was implemented in [Paper 2] and to solve
optimality conditions for the linear case in [Paper 3]. It is worth saying that Levenberg-Marquardt
method considered in [Paper 2, Paper 3] falls under the same class of descent direction methods
and can be thought of as regularization of Gauss-Newton method, which will be discussed later.

In terms of the nature of Gauss-Newton method it is often referred to as approximation of Newton
method. The following link between Gauss-Newton and Newton method is discussed in [55, 69].
The direction of the Newton method to minimize Φ(z) := 1

2
‖H(z)‖2 can be written as

dk := −(∇H(zk)>∇H(zk) + T(zk))−1∇H(zk)H(zk),

where T(zk) :=
∑N
i=1Hi(zk)∇2Hi(zk) is the term that is omitted in the Gauss-Newton direction

(2.3). It is well known that the Gauss-Newton method converges with the same rate as New-
ton method if for an optimal point z̄, the term T(z̄) is small enough in comparison to the term
∇H(z̄)>∇H(z̄); see, e.g., [55, 69]. This became the basis of the convergence result in Theorem 3.5 in
[Paper 1]. We claim that Gauss-Newton method converges quadratically if T(z̄) = 0 and Q-Linearly
if T(z̄) is small relative to ∇H(z̄)>∇H(z̄). We note that to satisfy T(z̄) = 0 one would either need to
be able to solve the system exactly (i.e. Hi(z̄) = 0 for all i), or have very sparse Hessian ∇2Hi(z̄).
Such properties can be satisfied for small residuals problems and for the problems that are not too
nonlinear, as discussed in [69].

This is interesting to see if the method can be well-defined and converge as Gauss-Newton method
to solve (1.9) was not tested before. In fact, the method was not tested for bilevel optimization at
all, which makes the work in [Paper 1] unique. As discussed, methods of this nature can deal with
non-square systems, which motivates implementation of the method for considered optimality con-
ditions. One of the challenges of the method is that Jacobian of (1.9) needs to be defined everywhere
to be able to calculate direction dk. However, Fischer-Burmeister functions in the last lines of (1.9)
are not differentiable at (0, 0) in the usual sense, as this leads to the division 0/0. One way to deal
with this problem is by assuming that arguments of NCP-functions cannot simultaneously equal to
zero, which is known as strict complementarity assumption. This scenario was considered in Section
3 in [Paper 1]. There we have shown that non-singularity condition of ∇Υλ(z)>∇Υλ(z) may hold
theoretically ([Paper 1, Theorem 3.3]) and practically ([Paper 1, Example 3.4]). This was followed
by the convergence result of the method ([Paper 1, Theorem 3.5]). To show non-singularity condi-
tion we have shown that columns of ∇Υλ are linearly independent, which is sufficient due to the
following result.

Lemma 2.1. For an arbitrary matrix A ∈ R(N+m)×N, the matrix A>A has full rank if and only if the
columns of A are linearly independent.

It was shown in part (c) of the proof of [40, Theorem 7.2.10] that a Gram matrix, defined by
the product of the original matrix with its transpose, is of the same rank as the original matrix.
Recalling that ∇Υλ(z) ∈ R(N+m)×N, the lemma above then shows that linear independence of
the columns of ∇Υλ(z) is a sufficient condition for invertibility of ∇Υλ(z)>∇Υλ(z). We then state
linear independence of the columns of Jacobian matrix under mild assumptions in Theorem 3.3
in [Paper 1], which is the key theorem of Section 3 of [Paper 1]. This result is important as it
shows that the method can indeed be well-defined for our framework. To claim convergence of
Gauss-Newton method for bilevel optimization in Theorem 3.5 [Paper 1] we assume that ∇Υλ is
invertible for each step of the Gauss-Newton method and that elements of ∇Υλ(z) are Lipschitz
continuous. The result that well-definiteness of the Newton-type methods guarantees convergence
is used by many authors to state convergence of Gauss-Newton method (e.g. [2, 13, 49]). Some of
the authors, e.g. [63], use the geometric approach with the notion of curvature to prove convergence
of Gauss-Newton method. Another way to prove convergence is demonstrated in [28, 38], where
the majorant condition is assumed to ensure convergence. Typically, these convergence results
depend on so known Robinson condition, which implies convergence assumptions made in Theorem
3.5 in [Paper 1], meaning that convergence result discussed in [Paper 1] is at least as good as the
mentioned ones.

2 gauss-newton method for bilevel optimization 18

One of the main outcomes of Section 3 of [Paper 1] is that Gauss-Newton method can be well-
defined for the bilevel optimization framework. However, we are not guaranteed that the matrix
∇Υλ(z)>∇Υλ(z) would always be nonsingular in practice. For the case when the direction for the
Gauss-Newton method could not be calculated, we are motivated to look at the alternative method
of the similar nature, which we have chosen to be Newton method with generalized inverse. There have
been studies (e.g. [57]) on the approach of using Newton method with different notions of pseudo
inverse to calculate direction. In this paper we decided to test Newton method with Moore-Penrose
pseudo inverse as this notion of generalized inverse is not widely used in the literature in the context
of applying Newton-type methods. As stated in [39], the standard way to determine Moore-Penrose
pseudo inverse is through checking the following conditions.

Definition 1. (Pseudo inverse) Let A ∈ Rm×n be an arbitrary matrix, A+ ∈ Rn×m is the pseudo
inverse of the matrix A if it satisfies the four Moore-Penrose conditions:

1. AA+A = A (2.4)

2. A+AA+ = A+ (2.5)

3. (AA+)> = AA+ (2.6)

4. (A+A)> = A+A (2.7)

The further property states that when a real matrix A has linearly independent columns, pseudo
inverse A+ can be computed as

A+ = (A>A)−1A>. (2.8)

Such pseudo inverse can be treated as left inverse of A as A+A = (A>A)−1A>A = I. With the
standard SVD formulation (see Section 5.4.5 in [39]), pseudo inverse Σ+ ∈ Rn×m of Σ is defined by

Σ+ = diag(
1

σ1
,
1

σ2
, ...,

1

σr
, 0, ..., 0), (2.9)

where r = rank(A). Let us define U ∈ R(N+m)×(N+m) and V ∈ RN×N to be orthogonal matrices.
We can then write the pseudo inverse A+ of A by

A+ = VΣ+U>,

which satisfies (2.4)-(2.7). Clearly, ∃ ∇Υλ(z)+ such that (2.4)-(2.7) hold for Jacobian of (1.9). An
iteration of the Newton method with pseudo inverse to solve (1.9) is then stated as

zk+1 = zk −∇Υ(zk)+Υ(zk). (2.10)

We denote (2.10) as an iteration of Pseudo-Newton method. The convergence of Newton method with
generalized inverse is demonstrated in [37] where the method is discussed in the context of rank
forcing of a matrix. Making assumption that ∇Υλ(zk) has linearly independent columns and using
the property (2.8), we can write the pseudo inverse of the Jacobian of Υλ(zk) by

(∇Υλ(zk))+ = (∇Υλ(zk)>∇Υλ(zk))−1∇Υλ(zk)>.

Then Pseudo-Newton method for (1.9) would take the direction defined by

dk = −(∇Υλ(zk)>∇Υλ(zk))−1∇Υλ(zk)>Υλ(zk), (2.11)

which is exactly the Gauss-Newton iteration defined by (2.3) with H(z) := Υλ(z). Interestingly, it
turns out that whenever Gauss-Newton is well-defined the direction of Gauss-Newton and Newton
method with Moore Penrose pseudo inverse are equivalent. However, there is a number of ques-
tions regarding this equivalence. Would this hold in practice? Which computation of the direction
is faster? Would the direction based on pseudo-inverse lead to good solutions when Gauss-Newton
direction is not well-defined? To answer these questions it was decided to treat Gauss-Newton
method and Pseudo-Newton method as two separate methods in [Paper 1]. The big theoretical

2 gauss-newton method for bilevel optimization 19

advantage of Pseudo-Newton method is that it should converge to a number for all problems as
Moore-Penrose pseudo-inverse is always well-defined. It was further observed that some papers
(e.g. [38, 63]) define Gauss-Newton method to be the Newton method with Moore-Penrose pseudo
inverse, which does not seem accurate for several reasons. Firstly, the direction for the methods is
computed in a different numerical manner, i.e. the Gauss-Newton step is computed by inverting
the product of the Jacobian with its transpose, whenever Moore-Penrose pseudo inverse is normally
calculated using SVD of the matrix. Secondly, these methods only have the same direction when-
ever the Jacobian matrix has full column rank, which cannot be guaranteed in practice. For these
reasons methods are treated separately in [Paper 1] with the conjecture that the methods should
produce the same solutions when Jacobian is full rank. For the case when Gauss-Newton direction
is ill-conditioned Newton method with Moore-Penrose pseudo inverse is expected to converge to
a number, as stated in [34]. In the numerical study, the aim was to test the conjecture and see the
behaviour of both methods in terms of quality of produced solutions and computation time.

Although we have shown that the method could be well-defined and converge under reasonable
assumptions, the scenario considered in Section 3 of [Paper 1] has a big disadvantage. As discussed
in [Paper 1], strict complementarity is a strong assumption to make. For each family of Lagrange
multipliers, it leads to solving a problem for two cases, namely for {u,g(x,y)|u = 0,g(x,y) < 0} and
{u,g(x,y)|u > 0,g(x,y) = 0}; whereas in reality we have the third case {u,g(x,y)|u = 0,g(x,y) = 0}.
This approach could cause problems if the assumption does not hold in practice for any of the
iterations when using Gauss-Newton method. This has been practically verified that implementing
Gauss-Newton algorithm under this scenario would lead to divergent solutions for almost half of the
examples tested in [Paper 1]. If one wants to avoid the strict complementarity assumption, another
option to deal with differentiability is to use smoothing technique for Fischer-Burmeister function,
which is analyzed in Section 4 in [Paper 1]. The technique uses a trick of adding perturbation
2µ > 0 under the square root of Fischer-Burmeister functions in the system (1.9), where µ is a vector
of appropriate dimensions with sufficiently small positive elements. Classically, elements of µ are
defined to be a sequence µk ↓ 0, such that Υλµ(z) converges to the original system Υλ(z). In general,
a function G(z, ε) : Rn → Rm is a smoothing function for H(z) : Rn → Rm if ||H(z) −G(z, ε)|| → 0

as ε ↓ 0 (see [71]). This enables us to solve H(z) = 0 using Gauss-Newton algorithm with the step

zk+1 = zk − (∇G(zk,µk)>∇G(zk,µk))−1∇G(zk,µk)>H(zk). (2.12)

The main point of the smoothing technique is that (0, 0) falls out of the range of the approximated
Fischer-Burmeister function. As the value of µ decreases we get closer to our original Fischer-
Burmeister function. Smoothing technique is typically used to get rid of the problem with differen-
tiability of non-smooth functions. The smoothed system Υλµ was presented in Section 4 in [Paper 1].
Since all functions in the system Υλµ(z) are continuous, it is easy to see that

lim
µk→0

Υλµk(z
k) = Υλ(zk).

Then for k→∞ the sequence of solutions {zk} generated by solving the smoothed system Υλµ(z) = 0

converges to the solution z∗ for the system of equations (1.9). Hence, finding z∗ = (x∗,y∗,u∗, v∗,w∗)
satisfying Υλµk(z

∗) = 0, we get (x∗,y∗) to be a stationary point of (BP), given k is sufficiently large.
The benefit of smoothing technique is that, having differentiable system of equations, we can now
introduce the step of Gauss-Newton method for the smoothed optimality conditions Υλµ(z) as

zk+1 = zk − (∇Υλµk(z
k)>∇Υλµk(z

k))−1∇Υλµk(z
k)>Υλµ(z

k).

Clearly, the direction of the method considered in Section 4 of [Paper 1] requires invertibility of
∇Υλµ(z)>∇Υλµ(z). With the use of smoothing technique we do not need to make strict complemen-
tarity assumption. However, this assumption was also used to show that the matrix ∇Υλ(z) has full
column rank in general. For this reason, we needed some other technique to show that ∇Υλµ(z) has
full column rank to ensure non-singularity of ∇Υλµ(z)>∇Υλµ(z). Two scenarios were considered in
Section 4 in [Paper 1]. Under the first scenario we assumed that ∇2Lλ(z̄) is positive definite and

2 gauss-newton method for bilevel optimization 20

penalty parameter λ satisfies 0 < λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

. For the second scenario it was assumed that each row

of
[
∇2Lλ(z)T ∇(∇yL(z))T ∇g(x,y)T ∇G(x,y)T

]
is a nonzero vector and the diagonal elements

of the matrix ∇Υλµ(z)T∇Υλµ(z) dominate the other terms row-wise. It has been shown that the as-
sumptions made in both theorems can hold for an example of bilevel problem. Showing these two
sufficient scenarios verifies that the method can be well-defined for the introduced framework. It
is worth noting that scenarios are sufficient but not necessary, meaning that ∇Υλµ(z)>∇Υλµ(z) could
possibly be non-singular even if the introduced assumptions are not satisfied.

In terms of convergence of the smoothed version of Gauss-Newton algorithm, it is enough to
know that we satisfy Jacobian consistency property for Υλµ(z) and semi-smoothness of Υλ(z) according
to [43]. In the end of Section 4 of [Paper 1] Jacobian consistency property was discussed. This prop-
erty demonstrates that, whenever the smoothing parameter µ is getting close to zero, the Jacobian
∇Υλµ(z) converges to the generalized derivative W ∈ ∂Υλ(z). Jacobian consistency property has
been shown to hold for our framework in [Paper 1], referring to [43] for the technique. Further, as
the proof of Theorem 3.5 in [Paper 1] did not involve specifying the structure of Fischer-Burmeister
function, it could be considered to be a general convergence result of Gauss-Newton method. Hence,
same convergence result holds for the smoothed algorithm with the only difference that we ensure
differentiability by smoothing instead of assuming strict complementarity.

It is worth saying that another option to deal with non-differentiability of the Fischer-Burmeister
NCP-functions would be to introduce the generalized Jacobian of the system. This would mean that
whenever we arrive at the point where the function is not differentiable generalized derivative of
that function would be used. In this case, one would use semi-smooth Gauss-Newton method with
generalized Jacobian defined as

∇Υλ(zk) =Wk, (2.13)

where Wk ∈ ∂Υλ(zk). Under this scenario smoothing would not be required and we would be
dealing with generalized Jacobian of Υλ used whenever arguments of any of the NCP-functions are
(0, 0). This approach is the alternative approach to the assumption of strict complementarity and
smoothing technique. Although, such approach is quite popular to use for Newton method (e.g.
[72, 31], we have not analyzed it in [Paper 1] as one would need a separate convergence result for
the generalized Jacobian scenario. Otherwise, such method would be a heuristic. Hence, we stick
with a smoothing technique as the most robust and sensible way to maintain differentiability of (1.9).
It was decided to compare the method to the smoothed Pseudo-Newton method, with all discussed
properties of the latter method holding for the smoothed scenario. Smoothed Pseudo-Newton
method would then take the step (2.1) with the direction defined by dk = −∇Υµ(zk)+Υµ(zk).
For implementation built-in function pinv(Υλ) in MATLAB was used to calculate Moore-Penrose
pseudo inverse of a matrix Υλ. Before doing experiments, we could not be entirely sure if such
implementation would result in Gauss-Newton method for invertible ∇Υλ(zk)>∇Υλ(zk), and also
whether or not it would solve the problem in some way for non-invertible ∇Υλ(zk)>∇Υλ(zk). This
further motivated the comparison of two methods implemented separately.

The results of implementing Gauss-Newton method and Pseudo-Newton method to solve 124
instances of nonlinear bilevel problems from BOLIB (Bilevel Optimization Library [85]) is presented
in Section 5 of [Paper 1]. Such extensive experiments are not common in the literature and we hope
that our experiments will provide a good basis for comparison for other authors in the field. Both
methods has shown to perform very well to solve bilevel problems from the test set. However, we
still observed some divergence of Gauss-Newton method for a few examples, typically for one or
two values of λ. Sensitivity to the starting point, which was expected for the pure method, brings
another disadvantage of the method. Finally, the choice of parameter λ remains a heuristic, although
choosing several fixed values of λ of different magnitudes seemed to perform well in the sense that
solutions were recovered for majority of examples for at least one such value of λ. This motivated
using line search technique and analyzing penalty parameter λ in [Paper 2].

The comparison of the solutions to known ones demonstrated that the methods considered in
[Paper 1] are appropriate to be used for bilevel programs, recovering optimal solutions for most
of the tested problems. The numerical results verified that for the well-defined problems (without

3 levenberg-marquardt method and penalty parameter selection in bilevel optimization 21

ill conditions for Gauss-Newton direction), Gauss-Newton method and Pseudo-Newton method
produced very similar results by the means of all performance measures. Further, Pseudo-Newton
method always converged to a number, while Gauss-Newton method diverged for some values of
λ for some examples. Finally, the time taken by Pseudo-Newton algorithm was not worse than
the time used by Gauss-Newton algorithm. Studying methods separately, allowed us to build
performance profiles as the measure to compare the methods, where we have seen slightly better
performance of Pseudo-Newton method. Based on the results observed in [Paper 1], implementing
Pseudo-Newton method seems more attractive than Gauss-Newton method in its classic form. At
least this was clearly observed for the test set of 124 nonlinear bilevel problems. This suggestion is
likely to hold for other classes of the problems, as Pseudo-Newton method always converges and
is equivalent to Gauss-Newton method whenever the latter method converges. Further advantage
of Pseudo-Newton method is that it could also be used for square systems. For Square systems
with nonsingular Jacobian, Pseudo-Newton method would take exactly the Newton direction as in
this case H+(z) = H−1(z) for some H ∈ Rn×n. Similarly to our study, Pseudo-Newton method
would always converge to a number, which is possibly a reasonable solution, even when H−1 is not
well-defined.

Summarizing [Paper 1], the optimality conditions were presented and formulated as a system of
equations (1.9). The aim then was to test Gauss-Newton to solve the system as the system is overde-
termined and the method has not yet been tested in considered framework. To obtain differentia-
bility of the system two scenarios were considered, where we discussed that smoothing scenario is
a clear winner to implement in practice. Alongside with standard Gauss-Newton method, Newton
method with pseudo inverse (Pseudo-Newton method) was introduced. This was verified theoret-
ically and practically that the methods are equivalent if the Gauss-Newton method is well-defined.
In the experiments we have shown that solving introduced LLVF-based optimality conditions is a
valid approach. Gauss-Newton method and Pseudo-Newton method performed better than fsolve.
We finally discussed the advantages of implementing Pseudo-Newton method in comparison to clas-
sic Gauss-Newton method. For the further study of the topic, semi-smooth Gauss-Newton method
and Levenberg-Marquardt method could be considered as regularized versions of Gauss-Newton
method. Line search technique could also be analyzed to improve convergence and robustness of
the method.

3 levenberg-marquardt method and penalty parameter selec-
tion in bilevel optimization

In this section we are going to look at the Levenberg-Marquardt method analyzed in [Paper 2] together
with the selection of partial exact penalty parameter λ considered there. As before, we aim to solve
(BP) and to do so we consider LLVF-based optimality conditions (1.9). Similarly to Gauss-Newton
method, Levenberg-Marquardt method is typically discussed in the context of solving least squares
problem (2.2) (see e.g. [25, 55, 69]). Levenberg-Marquardt method to solve a problem H(z) = 0 falls
under the class of descent direction methods with the step defined by (2.1) and direction given by

dk = −
(
∇H(zk)>∇H(zk) +α(zk)I

)−1
∇H(zk)>H(zk). (3.1)

where α(zk) > 0 is the Levenberg-Marquardt parameter and I is the identity matrix of appropriate
dimension. Levenberg-Marquardt method could be thought of as a regularization of the Gauss-
Newton method. Remind ourselves that the direction of the Gauss-Newton method is given by (2.3)
and requires non-singularity of ∇H(zk)>∇H(zk). The benefit of the Levenberg-Marquardt method
is that adding positive term to the main diagonal of ∇H(zk)T∇H(zk) allows us to avoid the possible
problem with singularity of the matrix being inverted. The way it works is as follows. The matrix
∇H(zk)>∇H(zk) is clearly positive semidefinite as for any vector d 6= 0 of appropriate dimension
we have

dT∇H(zk)T∇H(zk)d =
∥∥∇H(zk)d∥∥2 .

3 levenberg-marquardt method and penalty parameter selection in bilevel optimization 22

Adding a positive perturbation on main diagonal ensures that such matrix becomes positive definite.
For our case we aim to solve H(z) := Υλ(z) = 0 as defined by (1.9). Given α(zk) > 0, we claim that
(∇Υλ(zk)T∇Υλ(zk) + α(zk)I) is positive definite and hence nonsingular. The obvious benefit of
Levenberg-Marquardt method is that it is more robust than Gauss-Newton method, as direction of
the method is always well-defined. However, adding perturbation results in having the additional
challenge of calculating the parameter α(zk). Further, it turns out that the choice of α(zk) affects
convergence of the method.

In some sense Levenberg-Marquardt method in [Paper 2] analyzes the extension of the Gauss-
Newton method considered in [Paper 1], with the safeguard preventing non-invertibility issue. Al-
though the method is very popular in optimization, it has not been tested to solve bilevel opti-
mization problems. This brings the novelty of such approach and follows logically to be the next
step of analysis done in [Paper 1]. To deal with differentiability of NCP-functions only smoothing
technique is considered in [Paper 2] as strict complementarity has shown to be too strong assump-
tion to often hold in practice. Levenberg-Marquardt method has been used by many authors to
solve least squares problems of different nature. For the selection of the LM parameter αk, there
are various options that have been considered in the literature; see [6, 26, 27, 44, 78]. Based on
the choice of αk various convergence results have been presented in the literature for Levenberg-
Marquardt method in the context of solving a problem H(z) = 0. For instance, authors in [25] show
quadratic convergence of the method if the Jacobian is nonsingular at the solution point and αk is
chosen with the order O(

∥∥∇H(zk)TH(zk)∥∥). Yamashita and Fukushima, [78], chose the LM param-
eter αk =

∥∥H(zk)∥∥2 and showed that under the local error bound condition the Levenberg-Marquardt
method converges quadratically to the solution set of H(z) = 0. Fan and Yuan in [27] considered the
choice αk =

∥∥H(zk)∥∥η with η ∈ (0, 2] and showed that under the same conditions, the Levenberg-
Marquardt method converges quadratically to some solution of H(z) = 0 when η ∈ [1, 2] and
super-linearly when η ∈ (0, 1). In [26] Fan and Pan combine these ideas to present more complex
choice of stepsize αk, claiming potential global convergence. Such choice of stepsize α has some
implementation sensitivity and we cannot be sure that it would behave well for our framework. For
this reason, to implement Levenberg-Marquardt method to solve (1.9) we decided to stick with the
choice αk :=

∥∥Υλ(zk)∥∥η, where η ∈ [1, 2]. The convergence followed from [27] and with the ob-
served behaviour of the method seemed to fit well for the framework. Apart from the choice of the
parameter αk, convergence of Levenberg-Marquardt requires further conditions, mainly Error Bound
condition. Error bound condition (Assumption 2 in the convergence theorem in [Paper 2]) is the stan-
dard assumption required to show convergence of Levenberg-Marquardt algorithm. Yamashita and
Fukushima, [78], discuss that error bound assumption is weaker than Jacobian non-singularity as-
sumption. As stated there, non-singularity of the Jacobian matrix implies that solution is isolated
and error bound condition holds. Remind ourselves that non-singularity of ∇Υλµ(z̄) is the condi-
tion we needed for the Gauss-Newton method to be well-defined. As (∇Υλµ(zk)T∇Υλµ(zk) +α(zk)I)
is positive definite matrix, we do not require full column rank of ∇Υλµ(z) for well-definedness
of the Levenberg-Marquardt method. This shows that Levenberg-Marquardt method converges
under weaker assumptions than Gauss-Newton method. Hence, not only Levenberg-Marquardt
direction is always well-defined, the method also requires weaker convergence assumptions than
Gauss-Newton method.

To solve (1.9) we implement Levenberg-Marquardt method with line search. In terms of the choice
of Levenberg-Marquardt parameter we use α :=

∥∥Υλµ∥∥. Although the choice α :=
∥∥Υλµ∥∥η with

η ∈ (1, 2] is widely used by many authors (e.g. [30, 44, 78]) we demonstrated that with α :=
∥∥Υλµ∥∥

(initially introduced in [45]), algorithm defined in [Paper 2] has a better performance, based on
the observed behaviour of the algorithm. The algorithm with η > 1 would typically diverge after
80-120 iterations in the context of solving 124 test problems. It is interesting as Fan and Yuan [27]
discussed that the choice αk :=

∥∥Υλµ(zk)∥∥2 has some potential implementation problems, which was
likely the case for our problem. There authors state that when the sequence is close to the solution
set, αk :=

∥∥Υλµ(zk)∥∥2 could become smaller than the machine precision and lose its role as a result.

On the other hand, when the sequence is far away from the solution set, αk :=
∥∥Υλµ(zk)∥∥2 may be

3 levenberg-marquardt method and penalty parameter selection in bilevel optimization 23

very large, making movement to the solution set to be very slow. Our work further verifies the
possibilities of such problems with αk :=

∥∥Υλ(zk)∥∥2 and brings a suggestion that in the context
of solving bilevel problems αk :=

∥∥Υλ(zk)∥∥ performs much better. The quadratic convergence for
Levenberg-Marquardt method with Armijo condition line search has been shown in [27] for any
choice of the parameter αk :=

∥∥Υλ(zk)∥∥η with η ∈ [1, 2]. Clearly, the result holds for the choice
η = 1, as presented in Section 2 in [Paper 2].

In [Paper 2] we studied parameters selection for the Levenberg-Marquardt method to fit the struc-
ture of bilevel programming problems and to solve (1.9) efficiently. This involved selecting penalty
parameter λ, smoothing parameter µ, Levenberg-Marquardt parameter α and stopping criteria. For
selection of the penalty parameter, two approaches were considered: keeping λ as fixed constant
with the test values λ ∈ {106, 105, . . . , 10−2} or varying λ as increasing sequence λk := 0.5× 1.05k,
where k is the number of iterations. The smoothing parameter µk was taken as decreasing se-
quence µk := 0.001/(1.5k), which is in line to what it should be theoretically. As discussed earlier,
Levenberg-Marquardt parameter was chosen to be αk :=

∥∥Υλ(zk)∥∥. The additional stopping criteria
was needed to ensure that algorithm is not running for too long. This is particularly important for
the case with varying λ due to the danger of ill-conditioning, which could occur if λ is too large.
Further, we observed the pattern that we recover solution earlier than algorithm stops. This appears
due to the nature of the overdetermined system. Quite often we cannot solve the system with the
precision ε = 10−5, as one would prefer. We do not know beforehand the tolerance with which
we can solve (1.9) for each example. To avoid algorithm running for too long and to prevent λ to
become too large, we impose additional stopping criterion, as defined in the end of Section 2 in
[Paper 2]. The motivation behind this stopping criteria was the observation of the typical behaviour
of the algorithm with varying λ, defined as λ := 0.5× 1.05k. The behaviour of the algorithm for
majority of the examples had the following pattern.

Figure 2: Typical behaviour of the algorithm in [Paper 2]

Typically, for our problems we would get a good solution for small value of λ, then there would
be a jump in the value of the Errork :=

∥∥Υλ(zk)∥∥ for some iteration k and we would then come
back to a good solution at some point later, clearly with the larger value of λ. Then the solution
would be retained for a good number of iterations (e.g. 200-500 iterations in Figure 2), but at some
point Error would blow up without coming back to reasonable values later on. It was discussed in
[Paper 2] that it could be the case that the system becomes ill-conditioned due to the large value
of the penalty parameter, which is known to be a possible issue with penalization methods. For
almost all of the examples we observe that after 100-150 iterations we obtain the value reasonably
close to the solution. Further, a quick check has shown that ill-conditioning issue typically takes
place after 500 iterations for majority of the problems. As discussed in [Paper 2] these observations
motivated additional stopping criteria introduced there. It is worth noting that stopping criteria
incorporated in the actual experiments in [Paper 2] worked well as a safeguard against ill behaviour.
Ill behaviour was observed to affect results for 3/124 (2.4%) of the problems with the incorporated

3 levenberg-marquardt method and penalty parameter selection in bilevel optimization 24

stopping criteria. If we relax all stopping criteria and run the algorithm for 1, 000 iterations for each
example, ill behaviour is observed for 91/124 (73.4%) problems.

The main challenge with selecting parameters for the algorithm was the choice of the penalty
parameter λ. This parameter clearly has a big impact on the system (1.9). As suggested by Lemma
2.2 in [Paper 2] large values of λ should theoretically be good to recover solutions. As opposed
to that, the authors in [33, 51, 59, 74] suggest that too large values of penalty parameter could
lead to ill-condition (so known zig-zagging issue). Hence, it becomes a tricky question what is the
best choice of the penalty parameter λ. Firstly, in Section 3 of [Paper 3] we test possibility of ill-
behaviour issue for all examples in the test set of 124 nonlinear problems from BOLIB [85]. Since we
are only increasing λ throughout iterations it is likely, but not definitely, that the explanation of the
ill behaviour is the mentioned issue of ill conditioning of the penalty functions. Ill condition refers
to one eigenvalue of the Hessian being much larger than the other eigenvalue, which affects the
curvature in the negative way for gradient methods [62]. To proceed, we reran the algorithm for all
examples for 1, 000 iterations with no stopping criteria, letting λ vary indefinitely. We then looked
at which iteration algorithm blows up and recorded the value of λ there. We Denoted the first value
of λ for which ill behaviour was observed for each example by λill. From the analysis of this, we
have seen that ill behaviour typically occurs after about 500 iterations (where λill ≈ 1010). For
34/124 of the tested problems ill-condition was not observed under the scope of 1000 iterations. As
discussed in [Paper 2], it could potentially be that the parameter λ does not get large enough after
1, 000 iterations to cause problems for these examples. It could also be that the eigenvalues of the
Hessian are not affected by large values of λ for these examples. It was observed that for more than
half of such problems key elements of the Hessian vanish due to linearity of g w.r.t. (x,y)-variables.
Finally, for most of the tested problems (72/124) ill-behaviour was observed for 109 < λ < 1011.
Algorithm has shown to behave well for the values of penalty parameter λ < 109 with only 7/124
examples demonstrating ill behaviour for such λ. This makes the choice of very large values of λ
not attractive at all. We further recommend that for our method λ 6 107 is very safe choice, which
supports the choices of fixed values of λ considered in the experiments in [Paper 2].

We then move on to discuss which magnitudes of λ seem to perform better for our method.
There we extend the choices of fixed values λ ∈ {102, 101, 100, 10−1, 10−2} considered in [Paper 1] to
fixed values λ ∈ {106, 105, 104, 103, 102, 101, 100, 10−1, 10−2, 10−3}. We further analyze the case with
varying λ defined by λ := 0.5× 1.05k, where k is the number of iterations. As discussed in [Paper 2],
such choice of λ comes from the danger that algorithm diverges for λ that grows too aggressively.
This choice has been observed to perform well for our framework, with the algorithm recovering
more than half of the optimal solutions in the test set from BOLIB [85]. The aim this part of analysis
of [Paper 2] was to link practical observations to Lemma 2.2 there. Finding inflection point λ̄ for
all examples would give the idea of what values of λ were optimal for the examples in the test
set. As the test set is quite large (containing 124 problems) this could provide a solid conjecture
on what magnitude of λ could be the best for (1.9). Attempting to find the inflection point, we
relaxed all stopping criteria defined before and have set the new one, namely to stop once we get
Error < 1.1Error∗, where Error∗ is the value of the Error obtained by the algorithm in the actual
experiments. We would then run the algorithm with varying λ for all examples in the test set with
this new stopping criterion. This way algorithm stopped once we get Error close enough to what is
suggested to be optimal by the algorithm. However, doing so, algorithm quite often stopped early
and reported small value λ for which good enough solution with Error < 1.1Error∗ was already
obtained after a few iterations. For instance, looking at Figure 2 we aimed to find the inflection
point around 180-190 iterations. Instead, we get λ̄ reported to be λ after 15 iterations. The reason for
this is that behaviour of the algorithm for the majority of the examples is similar to the one shown
in Figure 2. As can be seen in the figure, it is possible that we obtain the solution very close to
the optimal one after a few iterations. It is interesting as the theory suggests that large values of λ
should be the best choice but we observe that this is not the case for many problems.

To find the inflection point it was decided to reconsider the approach and to find λ∗, which
is obtained in the same way as λ̄ but once at least 50 iterations are made. That is we stop if
Error < 1.1Error∗ and iter > 50. As it is interesting to see for how many examples we get λ̄

3 levenberg-marquardt method and penalty parameter selection in bilevel optimization 25

different from λ∗, we decided to perform the search for both of them. When these are different
it means that behaviour shown in Figure 2 holds, i.e. solution is recovered early for small values
of λ, then blows up and comes back to the optimal value at λ∗ and is retained afterwards until
possibly ill-behaviour happens and the value blows up. Of course, we only tested the examples
where solutions were recovered, as Error∗ would not be reliable otherwise. As the result of the
comparison we then get λ̄ that stands for the first (smallest) value of λ for which optimal solution
was obtained, while λ∗ represent the actual threshold after which solution is retained for further
iterations with λ > λ∗. One of the main observations of this section is that small threshold is smaller
than large threshold (λ̄ < λ∗) for 59/72 (82%) problems. This clearly shows that for majority of the
problems, for which we recover solution with λ := 0.5× 1.05k, we obtain a good solution for small
λ as well as for large λ. This demonstrates that small λ could in principle be good for the method.
For the rest 18% of the problems we have λ̄ = λ∗, meaning that good solution was not obtained for
λ < 6 for these examples. This also means that we typically obtain a good solution for small values
of λ and for large values of λ, but not for the medium values (λ̄ < λ < λ∗). As for the observations
on the magnitudes of λ at the inflection point, for 42/72 (58.33%) examples we observed that the
large threshold λ∗ is located somewhere in between 90− 176 iterations with 40 < λ∗ < 2680, for
7/72 problems threshold is in the range 6.02 < λ∗ 6 40, and for only 4/72 problems λ∗ > 1.1× 104.
This justifies that typically λ does not need to be large.

As further observed in Section 4 of [Paper 2], we could actually argue that smaller values of λ
work better for our method not only for varying λ but also for fixed λ. Together with the fact that
we often have the behaviour as demonstrated in Figure 2, it follows that small λ could be more
attractive for the method we implement. We even get better values of Error and better solutions
for small values of λ for some examples. Hence, we draw the conclusion that small values of λ
can generate good solutions for our framework. Since it is typical to use large values of λ for other
penalization methods (e.g. in [8, 11, 59, 61]), it is interesting to see that small λ turned out to work
better for our case. This could be due to the specific nature of the method, or due to the fact that
we do not do full penalization in the usual sense, or due to the structure of the problems in the
test set. This could also possibly be the case that small values of penalty parameter could be good
for some other penalty methods and optimization problems of different nature. At least for our
framework we claim that λ needs not to be large, which is counter-intuitive to what penalization
theory suggests. This could highlight important property of partial exact penalization for bilevel
framework, as well as suggest the possibility of such behaviour for other frameworks with methods
of similar nature being implemented.

In the last part of Section 3 in [Paper 2] we look closely at the behaviour of the algorithm with
varying λ for 7 nonlinear examples from BOLIB [85] that are known to be partially calm. These are
guaranteed to be partially calm due to their structure, according to [52]. Partially calm examples fit
the theoretical structure behind the penalty approach that we take. These examples are meant to
follow the pattern of retaining solution after some threshold, i.e. for λ > λ∗. However, this turns
out not to always be the case for the tested partially calm examples from BOLIB [85]. To proceed,
we relaxed the stopping criteria and reran the algorithm with varying λ for 1000 iterations for each
of these examples. Three different scenarios were observed. In the first scenario, algorithm was
performing well, retaining the solution for the number of iteration, but then blowed up at some
point after 500 iterations and never came back to reasonable solution values. Three considered
examples follow this pattern. In the second scenario we see the zig-zagging pattern. Algorithm
blows up at some point and starts zig-zagging away from the solution after obtaining it for a
smaller value of λ. This is somewhat similar to scenario 1. However, we put this separately as
zig-zagging issue is often referred to as the danger that could be caused by ill-conditioning of a
penalty function. Such pattern is observed for two of the seven considered examples. We then
refer to ill behaviour if scenario 1 or scenario 2 was observed for some example. Finally, In the third
scenario, ill-conditioning was not observed throughout running algorithm for 1000 iterations. It
could be possible that algorithm would blow up after more iterations if we keep increasing λ. It
could also be possible that ill-condition does not occur for these example at all. Out of the examples
with the specified structure two examples follow this pattern.

4 levenberg-marquardt method for linear bilevel optimization 26

In terms of the numerical experiments, the results of implementing the algorithm with all the
specified parameters for 124 nonlinear problems from BOLIB [85] are presented in the last section
of [Paper 2]. This creates reproducible extensive experiments for a good variety of the choices of
the penalty parameter, being ten fixed values λ ∈ {106, 105, . . . , 10−3} and the option of varying
parameter λ := 0.5× 1.05k. The measures for the comparison in [Paper 2] were accuracy of upper-
level objective, lower-level feasibility, experimental order of convergence and line-search stepsize.
With these measures we clearly observed that if one could optimally choose the best value of λ for
each problem, fixing λ outperforms the approach of varying λ for the chosen framework. However,
varying λ has shown reasonably strong performance, competing with random choice of a fixed value
λ ∈ {106, 105, . . . , 10−3}. Clearly, if for some framework solutions to the problems are not known, it
could be complicated to decide which fixed value of λ was the best even after obtaining the results.
For instance, this challenge was faced in the experiments for modified examples in [Paper 3]. In this
case varying λ could very well be more attractive choice than fixing λ.

In [Paper 2] we analyzed Levenberg-Marquardt method for bilevel optimization. We observed
that the method is very sensitive to the choice of the parameters and gave suggestions that worked
well in the context of solving bilevel optimization problems. Most importantly, we provided a de-
tailed discussion on choosing the exact penalty parameter. Interestingly, we observed that penalty
parameter λ does not need to be large for the considered problem (1.9), which contradicts penal-
ization theory in some way. Based on the analysis, safeguard stopping criteria was introduced to
prevent algorithm running for too long when not necessary. In the final section of the paper, it was
shown that algorithm performs well for the test set of nonlinear problems from BOLIB [85]. We
observed that Levenberg-Marquardt method in [Paper 2] always converges and recovers majority
of the known solutions. Algorithm has also demonstrated to be very fast, with average CPU time
for all separate fixed values of λ being 0.24 seconds and average CPU time for varying λ being 0.53
seconds. Experiments also give the idea of the performance of the algorithm for different choices
of penalty parameter λ, where varying λ seems to be as good as a random fixed λ. However, if one
is able to choose the best fixed value from the tested values the approach of fixing λ outperforms
that of varying λ. For both approaches of choosing λ the method has been shown to be appropriate
for bilevel framework, and even could be competitive with the known solution methods for bilevel
optimization.

4 levenberg-marquardt method for linear bilevel optimization

In the first two papers [Paper 1, Paper 2] we have based our analysis on solving nonlinear bilevel
problems. This section summarizes the work done in [Paper 3], where this approach was extended
to linear bilevel optimization problems (BLPs). For this class of problems we are dealing with (BP),
where all functions are linear, i.e.

min
x,y

F(x,y) := c>1 x+ d
>
1 y

s.t. A1x+B1y− b1 6 0,
y ∈ S(x) := arg min

y

{
f(x,y) = c>2 x+ d

>
2 y : A2x+B2y− b2 6 0

}
,

(4.1)

where c1 ∈ Rn×1, d1 ∈ Rm×1, A1 ∈ Rq×n, B1 ∈ Rq×m, b1 ∈ Rq×1, c2 ∈ Rn×1, d2 ∈ Rm×1,
A2 ∈ Rp×n, B2 ∈ Rp×m, and b2 ∈ Rp×1. The most common methodologies to solve BLPs include
enumerative algorithms, implicit function approach, Simplex method and lower-level KKT reformu-
lation. Enumerative algorithm proceeds with enumerating extreme points of the polyhedron and
chooses the best one with respect to the upper-level objective function. However, such method is
known to be very slow as feasible set is not convex. One of the most popular approaches to solve
BLPs deals with transforming problem (4.1) into a single level problem using Karush-Kuhn-Tucker
(KKT) conditions. The approach substitutes lower-level problem by KKT conditions, transforming
bilevel problem into single-level problem. As this is one of the most popular approach and has the
link to LLVF reformulation we aim to compare LLVF-based approach to the KKT-based one. This

4 levenberg-marquardt method for linear bilevel optimization 27

was also motivated by the comparison of KKT and LLVF reformulations made in [84] for the gen-
eral case. According to [84], for a nonlinear problem it is not obvious which reformulation is more
beneficial in terms of the assumptions needed for the reformulation to be obtained. In [Paper 3]
comparison was studied for the linear class of bilevel optimization problems. What is interesting
about this class of problems is that some main assumptions needed to state optimality conditions
for both KKT and LLVF reformulations hold automatically due to linearity of (4.1). Clearly, one
does not need to assume continuity of the original functions defining (4.1). Further, full convexity
of the lower-level problem and partial calmness condition hold for this framework. In this pa-
per we study second order method introduced in [Paper 2] to solve (4.1). It is worth saying, that
second order methods are not typically studied for linear problems. We believe that Levenberg-
Marquardt method fits well for the framework of linear bilevel problems, as discussed in [Paper 3].
In [Paper 3] we have shown the theoretical simplifications arising due to the linear structure of (4.1)
for the chosen solution method. We also demonstrate that the method can converge for problem
(4.1) theoretically and practically. As observed in numerical part of the analysis in [Paper 3] the
method has shown to be very fast in comparison to the known solution methods for linear bilevel
optimization.

As in [Paper 1, Paper 2] to implement the method we require optimality conditions to be in the
form of a system of equations. Once again, we are using NCP-functions to state the system (1.9) for
the linear case, which takes the form

ΥλLLVF(z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w√

u2 + (A2x+B2y− b2)2 − u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 − v+A1x+B1y− b1√
w2 + (A2x+B2y− b2)2 −w+A2x+B2y− b2


= 0. (4.2)

Similarly, KKT-based optimality conditions with the use of NCP-function was stated as the system

ΥλKKT (z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w

−λ(A2x+B2y− b2) +B2s+ η√
u2 + (A2x+B2y− b2)2 − u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 − v+A1x+B1y− b1√

η2 +w2 −w+ η


= 0. (4.3)

It was noted that the two systems have a lot of similarities. We provide the link between the systems
in Proposition 2.4 in [Paper 3], where we present conditions under which KKT-based optimality
conditions and LLVF-based optimality conditions are equivalent in the context of linear bilevel
optimization. However, comparing them separately allows us to study if one is possibly better than
the other. The first obvious difference is that KKT-based system (4.3) is a square system, meaning
the number of equations is the same as the number of the variables, which is not the case for
LLVF-based system (4.2). To proceed, Levenberg-Marquardt method to solve (4.2) and (4.3) was
introduced in Section 2.2 of [Paper 3]. The method takes the direction as defined in (3.1). As
before, we use smoothing technique to achieve differentiability of the systems. With the method
of this nature, instead of directly solving the systems, we are dealing with the minimization of the
following least-squares problem,

Φ
λ,µ
KKT (z) =

1

2

∥∥∥Υλ,µ
KKT (z)

∥∥∥2 , Φλ,µ
LLVF(z) =

1

2

∥∥∥Υλ,µ
LLVF(z)

∥∥∥2 , (4.4)

It was further discussed that Levenberg-Marquardt method is essentially a combination of Gauss-
Newton method and gradient descent method. Clearly, Levenberg-Marquardt step (3.1) takes the
Gauss-Newton (2.3) for α(zk) → 0 and gradient descent direction for α(zk) → ∞. This is inter-
esting as gradient descent method is the first order method that is commonly used to solve linear

4 levenberg-marquardt method for linear bilevel optimization 28

problems. This means that we use combination of first order method and second order method to
solve linear bilevel problems. This makes a lot of sense as functions defining (4.1) are linear and
we have nonlinear terms in the introduced systems (4.2) and (4.3), appearing due to complemen-
tarity constraints. Similarly to [Paper 2], we define Levenberg-Marquardt method with line search
and state the convergence result from [27]. For the framework in [Paper 3] we note that Lipschitz-
continuity assumption needed for the convergence is automatically satisfied for (4.2) and (4.3). This
further benefits the framework of implementing Levenberg-Marquardt method to find stationary
points of linear bilevel problems (4.1) compared to the general case (BP). However, convergence of
the method also requires error bound condition, which becomes a little bit tricky. It is known that
error bound condition holds for piecewise linear functions according to [78]. However, due to NCP-
function present in (4.2) and (4.3), we cannot exploit this property for linear bilevel programming
problems, at least for considered reformulations. To show that condition can hold for (4.1) we aimed
to demonstrate that columns of the Jacobians ∇Υλ,µ

LLVF and ∇Υλ,µ
KKT are linearly independent under

appropriate assumptions. As already discussed in [Paper 2], according to [78] this is sufficient for
the required error bound condition to hold.

Although linear framework simplifies problem a lot, linear independence of the columns of Jaco-
bian matrices is in some sense harder to preserve due to some key terms vanishing from the Jacobian
matrices. Nevertheless, convergence results for LLVF and KKT frameworks are stated in Theorem
2.8 and Theorem 2.9 in [Paper 3] respectively. Two scenarios are considered to show full rank of the
Jacobian ∇Υλ,µ

LLVF. For ∇ΥKKT one scenario of obtaining required condition is analyzed. The first
scenario of both convergence theorems is somewhat similar. This scenario considers problems with
the number of lower-level constraints being not bigger than the number of lower-level variables.
Especially p = m is common class of problems, where the set of lower-level constraints spans the
dimension of lower-level variables. The case p < m is less common but it is still interesting that such
property of a problem allows to state convergence proof with less assumptions than more natural
scenario with p > m, which is considered in the second scenario for ∇Υλ,µ

LLVF. This scenario in
Theorem 2.8 in [Paper 3] imposes the upper bound on λ, which is interesting as this suggests that
smaller values of λ could be better for the method in terms of its convergence. This suggestion is in
line with one of the main conjectures of [Paper 2], where we discussed that algorithm performs well
with small values of λ, and also that large values of λ could cause issues for the algorithm. The first
scenario in both convergence theorems require full rank condition of the matrix B2 defined in (4.1).
Further, the following assumption is used to prove the theorems (see [Paper 3, Assumption 2.7]).

Assumption 4.1. q+ p > n+m and the matrix
[
A1 B1
A2 B2

]
is full rank.

This is the main assumption used for both convergence theorems. It is easy to see from (4.1)
that this assumption is the same as assuming that the family of the vectors {∇Gj ∪∇gj} is linearly
independent, which is very standard assumption to show that columns of Jacobian matrix are lin-
early independent for the general framework (e.g. in [84]). The assumption on the rank of B>2 in
scenario 1 in both theorems is the assumption that we made to ensure lower-level regularity holds
(see Assumption 2.2 in [Paper 3]). Nicely, for both proofs we exploited Lemma 4.2 from [Paper 1],
where we have shown that some elements of the Jacobians ∇Υλ,µ

LLVF and ∇Υλ,µ
KKT are strictly positive,

and some elements are strictly negative. To finish off the convergence discussion, we highlight that
due to similarity of the systems, convergence result shown for one system could be applied to the
other one if the systems are equivalent. For instance, if conditions described in Proposition 2.4
in [Paper 3] are fulfilled, then systems are equivalent and full rank condition shown for ∇Υλ,µ

LLVF

would imply full rank of ∇Υλ,µ
KKT and vice versa. What is further interesting about the proofs is that

the stated conditions ensuring full rank of the Jacobian matrices have not yet been studied in the
literature. The introduced conditions could be exploited for the benefit of theoretical properties of
the other methods of similar nature (e.g. Newton method or Gauss-Newton method) to solve (4.2)
and (4.3). We hope that this brings a unique impact for the linear framework of KKT-based and
LLVF-based optimality conditions for bilevel optimization.

4 levenberg-marquardt method for linear bilevel optimization 29

Once we have shown that the method can converge in theory, we move on to implementation of
the algorithm. As observed in [Paper 2] Levenberg-Marquardt algorithm for bilevel optimization
is sensitive to the choice of parameters. The choices considered there were for nonlinear case. For
[Paper 3] these were carefully reevaluated and it turns out that most of the choices in [Paper 2]
fit well for the linear framework, compared to the alternative choices. Similarly to [Paper 2], the
choices α(zk) :=

∥∥∥Υλ,µ
KKT

∥∥∥ and α(zk) :=
∥∥∥Υλ,µ
LLVF

∥∥∥ perform well for the linear framework. Smoothing

parameter is also taken as µk := 0.001/(1.5k) as in [Paper 2]. Further, the choice of penalty parameter
is almost the same with fixed values λ ∈ {105, 104, 103, 102, 101, 100, 10−1, 10−2 and varying option
λ := 0.5× 1.05k, where k is the number of iterations. The reason we drop λ ∈ {106, 10−3} considered
in [Paper 2] is because these values show exactly the same performance as λ ∈ {105, 10−2}. In
general, adjacent fixed values of λ show more or less similar performance once it gets λ > 103 or
λ < 100.

Even though the choice of parameters is similar to [Paper 2], it was observed that the typical
behaviour of the algorithm is somewhat different for the instances of linear problems considered
in [Paper 3] to nonlinear problems considered in [Paper 2]. It is observed that in the context of
algorithm with varying λ, the solution is typically found quite quickly (after 20-100 iterations) for
both fixed and varying λ. However, for the varying λ it seems to be always the case that the value of
the Error blows up at some point between 200-400 iterations as shown in Figure 3 (a) below, where
the behaviour of the algorithm with varying λ is demonstrated for Bblp_20_15_50_10_1 example.

(a) Typical behaviour of the algorithm for linear prob-
lems

(b) Implementing stopping criteria

Figure 3: Typical behaviour of the algorithm and new stopping criteria for linear bilevel problems

After blowing up, the value of the Error typically keeps growing and does not come back to
reasonable values. Interestingly, for the linear examples our algorithm with varying λ typically per-
forms as demonstrated in Figure 3 (a) above for both LLVF and KKT reformulations. As algorithm
obtains a good solution and retains it for many iterations and then blows up without getting back
to reasonable values, we aimed to provide the criteria to stop earlier. For this reason it makes sense
to set maximum number of iterations to K := 200 with additional stopping criteria

STOP if
∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ < 10−7 & iter > 5,

that is if the improvement from step to step becomes less than ε by the two orders of magnitude, OR
if the direction becomes not descent (

∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ < 0) we stop. We also impose that a
few iterations is made, i.e. iter > 5 in case one of the first iterations takes non-descent direction. The
implementation of such stopping criteria is demonstrated in 3 (b) above. It seems a good strategy
as we do not risk the value of the Error to blow up this way. Also as the solution is recovered early,
this would not harm results in any way to set K := 200. Condition on λ in the second scenario of
Theorem 2.8 in [Paper 3] also suggests that λ is not too large. This justifies stopping criteria with the
maximum number of iterations being relatively small. The behaviour of Figure 3 (a) was observed

5 conclusion 30

for most of the linear problems in the test set for both KKT-based and LLVF-based approach. Hence,
we impose the defined stopping criteria for both reformulations.

It is worth noting that usually algorithms for linear bilevel problems are tested for very small
problems. Further, it seems that literature suffers from the lack of linear bilevel test problems.
Methods are typically tested for less than 20 instances, which might not be sufficient to make valid
conclusions about an algorithm, as suggested in [7]. Hence, we decided to construct a large test set
of linear bilevel problems, using mixed integer problems from [32] as a basis. For these examples
we consider the transformation, where we drop integer constraints and replace binary constraints
with the bounds on the corresponding variables (please see supplementary materials [Supp3] for
more details). However, these examples can be considered to be new examples and hence solutions
to these are unknown. Hence, we cannot have valid performance measures of the algorithm to
compare solving (4.2) and (4.3). The transformed examples are of medium size and they play the
role of the extensive basis for the comparison for other authors in the future. We provide all details
on implementation of the method to make provided results reproducible and comparable with the
other solution methods. To our knowledge there are no works providing such an extensive results
of experiments for the linear bilevel programming problems. Importantly, algorithm introduced in
[Paper 3] always converges, which means we were able to provide values obtained by the algorithm
for each example. For the comparison purpose of KKT-based and LLVF-based approaches we use
test set of linear examples from BOLIB [85]. So far this contains 24 linear problems of small size, but
we hope that 174 transformed examples from [32] could be included in [85] in the future versions
of the library. We have already observed in [Paper 2] that solutions obtained by the algorithm with
varying λ could somewhat be reasonable for more than half of nonlinear examples. We observed
that for the linear case varying λ could be almost as good as best fixed λ. As the approach of fixing
λ has a few disadvantages, this brings an important conjecture that if one wants to use Levenberg-
Marquardt method to solve linear bilevel optimization problems, varying λ could be the best option
to consider. Further, as we mentioned in [Paper 2], varying λ is more in line with what penalization
theory suggests to do, that is to set λ as an increasing sequence. In terms of the comparison, LLVF-
based approach has shown stronger overall numerical performance than KKT one. There is a small
concern that it has slightly higher feasibility error but this could be explained by the overdetermined
nature of LLVF system (4.2), as opposed to the square system of equations (4.3) being solved for
KKT reformulation. Nevertheless, algorithm has shown slightly better performance for LLVF-based
system.

5 conclusion

In [Paper 1] we tested novel approach of implementing Gauss-Newton to solve system of LLVF-
based optimality conditions for bilevel optimization. First property being studied was differentia-
bility of the system that is required for Gauss-Newton direction to be calculated. To preserve dif-
ferentiability two scenarios were considered in the context of implementing Gauss-Newton method.
The first scenario involved assumption of strict complementarity, which was discussed to be rather
strong assumption to hold in practice. Nevertheless, the study of the framework has shown that
Gauss-Newton method could be well-defined and converge under this scenario. For the second
scenario we introduced the framework where differentiability of the system was obtained with the
use of smoothing technique. Smoothed Gauss-Newton was shown to be well-defined and converge
under this scenario. Alongside with standard Gauss-Newton method, Newton method with pseudo
inverse (Pseudo-Newton method) was discussed. This was verified theoretically and practically that
the methods are equivalent if the Gauss-Newton direction is well-defined. In the experiments both
methods were compared with MATLAB built-in solve fsolve. It has been shown that solving intro-
duced LLVF-based optimality conditions with methods of this class is a valid approach, recovering
optimal solutions for most of the tested examples from BOLIB [85]. Gauss-Newton method and
Pseudo-Newton method performed better than fsolve with all the measures considered in the nu-
merical section in [Paper 1]. We have also shown that Pseudo-Newton method is at least as good as

5 conclusion 31

Gauss-Newton method. The main difference between the methods is that Pseudo-Newton would al-
ways produce a number as an output, i.e. it would never diverge completely. Together with similar
speed of the methods, this brings a suggestion that Pseudo-Newton method could be a better choice
to implement in practice. It was also discussed that for a square system Pseudo-Newton method
would perform at least as good as the classic Newton method. For the further step, it would be
interesting to see if observed behaviour of the methods would hold for larger real-life problems. It
would also be interesting to look at the different notions of stationarity to see what optimality condi-
tions are the best for bilevel optimization. Finally, different safeguard measures could be interesting
to study to improve implementing such methods for problems that could be more challenging than
in the analyzed test set.

In [Paper 2] we introduced a lot of non-trivial choices of the parameters and specifications re-
quired for the Levenberg-Marquardt method to fit well to bilevel optimization framework. One of
the outcomes of the work is the suggestion that the choice of the Levenberg-Marquardt parameter
α(zk) :=

∥∥Υλ(zk)∥∥ performs well for introduced bilevel framework both theoretically and numer-
ically. We have further discussed the challenge of choosing the exact penalty parameter λ. Some
numerical study has been performed to understand the behaviour of the algorithm for the case of
varying penalty parameter. Interestingly, this analysis has resulted in the suggestion that penalty
parameter λ does not need to be large for the considered problem (1.9). Further disadvantage of
large values of λ was discussed to be the possibility of the ill-conditioning occurring for large val-
ues of λ. To deal with this issue additional stopping criteria was discussed as a way to provide
a safeguard for the algorithm. Although introduced stopping criteria performed very well for the
considered test set, it cannot be guaranteed that ill behaviour would be always avoided by the al-
gorithm. For anyone considering varying choice of penalty parameter, we suggest non-aggressive
choice of the sequence and safeguard measures to prevent penalty parameter growing too large.
The implementation of the algorithm on the test set of nonlinear BOLIB [85] problems has shown
that algorithm performs well for our framework for both fixed and varying λ. It is worth saying that
unlike Gauss-Newton method considered in [Paper 1], Levenberg-Marquardt method in [Paper 2]
always converges. In terms of the time algorithm was observed to be very fast, which makes it
competing with other solution methods in the field. It is further concluded that if one has a way to
choose best fixed value of λ, then fixing λ outperforms approach of varying λ. However, due to rea-
sonably strong performance of varying λ, varying λ could be better option if one does not want to
deal with the choice of different fixed values of λ. However, one should be cautious that with such
approach there is a possibility that ill-behaviour could influence the algorithm to produce solutions
that are not reasonable at all. As the further step, it would be interesting to study what leads to
the observed behaviour of the algorithm for different choice of penalty parameter λ. For instance, it
could be the case that small λ was good for examples with certain structure or that algorithm could
have some other tuning so that ill behaviour is avoided completely. It would also be interesting
to study the method for real-life problems and also to test if the suggestions on choosing penalty
parameter could be valid for other classes of problems.

In paper [Paper 3] we have considered two types of optimality conditions for linear bilevel prob-
lems (4.1). Motivation of the approach was that many assumptions needed to state optimality
conditions are satisfied automatically due to linearity of the function defining (4.1). The optimality
conditions based on KKT and LLVF reformulations were stated in the form of systems of equations
(4.3) and (4.2). It was noted that systems have a lot of similarities and it was shown that there is
strong link between the systems. In terms of theoretical properties it remained unclear which one
is better. To compare KKT-based and LLVF-based approaches, Levenberg-Marquardt method to
solve such systems was discussed. It was mentioned that Levenberg-Marquardt method is essen-
tially a combination of second order and first order method, which also motivated such method to
be studied for the framework of linear bilevel problems. Interestingly, convergence of the method
could be shown to hold under the full rank condition of Jacobian matrices ∇Υλ,µ

KKT and ∇Υλ,µ
LLVF.

We have shown that for both reformulations there are scenarios under which Jacobian of the system
being solved has full column rank. Hence, the introduced method was shown to be theoretically
appropriate to solve linear bilevel problems (4.1) in the sense of theoretical convergence. In terms

5 conclusion 32

of practical comparison, algorithm for LLVF-based approach has shown slightly better performance
than for KKT-based approach, based on testing the method for 24 linear problems from BOLIB [85].
We further present the results of implementing the algorithm for 174 transformed examples from
[32]. For these examples it was observed that large fixed values of λ, that is λ ∈ {105, 104, 103}
produce similar results among themselves. The likely explanation takes the roots in the theory of
partial calmness that was discussed in [Paper 2]. We know that theoretically there exists threshold
value λ̄ such that if the optimal solution is obtained for λ̄ it will hold for any λ > λ̄. This is likely to
be the case that similar behaviour for fixed λ > 103 due to this property. Nevertheless, this obser-
vation is somewhat similar to what was observed in the experiments for nonlinear BOLIB examples
in [Paper 1, Paper 2]. We hope that for transformed examples from [32] other authors could judge
our solutions based on the results of implementing their algorithms to the same problems. Most
importantly, quadratic method considered in [Paper 3] has not yet been tested in the context of solv-
ing linear bilevel problems. It is worth noting that method always converges and requires average
computation time of less than 1 second. Together with the good rate of recovering solutions, this
method seems to compete very well with other methodologies to solve linear bilevel optimization
problems. It would further be interesting to test if other quadratic methods could be efficient to
solve linear bilevel optimization problems, especially problems of large size.

33

Part II.
Paper 1: Gauss-Newton-type Methods for
Bilevel Optimization
This article studies Gauss-Newton-type methods for over-determined systems to find solutions to
bilevel programming problems. To proceed, we use the lower-level value function reformulation
of bilevel programs and consider necessary optimality conditions under appropriate assumptions.
First, under strict complementarity for upper- and lower-level feasibility constraints, we prove the
convergence of a Gauss-Newton-type method in computing points satisfying these optimality condi-
tions under additional tractable qualification conditions. Potential approaches to address the short-
comings of the method are then proposed, leading to alternatives such as the pseudo or smoothing
Gauss-Newton-type methods for bilevel optimization. Our numerical experiments conducted on
124 examples from the recently released Bilevel Optimization LIBrary (BOLIB) compare the perfor-
mance of our method under different scenarios and show that it is a tractable approach to solve
bilevel optimization problems with continuous variables.

1 introduction

We aim to solve the bilevel programming problem

min
x,y

F(x,y) s.t. G(x,y) 6 0, y ∈ S(x) := arg min
y

{f(x,y) : g(x,y) 6 0}, (1.1)

where F : Rn ×Rm → R, f : Rn ×Rm → R, G : Rn ×Rm → Rq, and g : Rn ×Rm → Rp. As usual,
we refer to F (resp. f) as the upper-level (resp. lower-level) objective function and G (resp. g) as the
upper-level (resp. lower-level) constraint function. Solving problem (1.1) is very difficult because of
the implicit nature of the lower-level optimal solution mapping S : Rn ⇒ Rm defined in (1.1).

There are several ways to deal with the complex nature of problem (1.1). Earliest techniques were
based the implicit function and Karush-Kuhn-Tucker (KKT) reformulations. The implicit function
approaches rely on the insertion of the lower-level solution function or its approximation in the
upper-level objective function; see, e.g., [17, 21] for related algorithms. As for the KKT reformulation,
it is strongly linked to MPECs (mathematical programs with equilibrium constraints), see, e.g., [19],
which are not necessarily easy to handle, in part due to the extra variables representing the lower-
level Lagrangian multipliers. Interested readers are referred to [1, 23, 41] and references therein,
for results and methods based on this transformation. More details on methods based on the KKT
reformulation and other approaches to deal with bilevel optimization can be found in the books
[3, 18]. In this paper, we are going to use the lower-level value function reformulation (LLVF)

min
x,y

F(x,y) s.t. G(x,y) 6 0, g(x,y) 6 0, f(x,y) 6 ϕ(x), (1.2)

where the optimal value function is defined by

ϕ(x) := inf {f(x,y) | g(x,y) 6 0 } , (1.3)

to transform problem (1.1) into a single-level optimization problem. As illustrated in [31], this
approach can provide tractable opportunities to develop second order algorithms for the bilevel
optimization problem, as it does not involve first order derivatives for the lower-level problem, as
in the context of the KKT reformulation.

There are recent studies on solution methods for bilevel programs, based on the LLVF reformu-
lation. For example, [46, 47, 53, 58, 73] develop global optimization techniques for (1.1) based on
(1.2)–(1.3). [50, 75, 76] propose algorithms computing stationary points for (1.2)–(1.3), in the case

2 optimality conditions and equation reformulation 34

where the upper-level and lower-level feasible sets do not depend on the lower-level and upper-
level variable, respectively. [31] is the first paper to propose a Newton-type method for the LLVF
reformulation for bilevel programs. Numerical results there show that the approach can be very
successful. The system of equations considered there is quadratic while our method in this paper
is based a non-quadratic overdetermined system of equations. Hence, there is a need to develop
Gauss-Newton-type techniques to capture certain classes of bilevel optimization stationarity points.

One of the main problems in solving (1.2) is that its feasible set systematically fails many con-
straint qualifications (see, e.g., [24]). To deal with this issue, we will use the partial calmness condi-
tion [81], to shift the value function constraint f(x,y) 6 ϕ(x) to the upper-level objective function,
as a penalty term with penalty parameter λ. The other major problem with the LLVF reformulation
is that ϕ is typically non-differentiable. This will be handled by using upper estimates of the sub-
differential of the function; see, e.g., [24, 20, 23, 81]. Our Gauss-Newton-type scheme proposed in
this paper is based on a relatively simple system of optimality conditions that depend on λ.

To transform these optimality conditions into a system of equations, we substitute the correspond-
ing complementarity conditions using the standard Fischer-Burmeister function [29]. To deal with
the non-differentiability of the Fischer-Burmeister function, we consider two approaches in this pa-
per. The first one is to assume strict complementarity for the constraints involved in the upper-
and lower-level feasible sets. As second option to avoid non-differentiability; here we investigate a
smoothing technique by adding a perturbation inside the Fischer-Burmeister function.

Another important aspect of the aforementioned system of equations is that it is overdetermined.
Since overdetermined systems have non-square Jacobian, we cannot use a classical Newton-type
method as in [31]; for a Newton method addressing the closely related semi-infinite programming
problem, interested readers are referred to [65, 66]. Gauss-Newton and Newton-type methods with
Moore-Penrose pseudo inverse are both introduced in Section 3. It will be shown that these methods
are well-defined for solving bilevel programs from the perspective of the LLVF reformulation (1.2).
In particular, our framework ensuring that the Gauss-Newton method for bilevel optimization is
well-defined does not require any assumption on the lower-level objective function. Links between
the two methods are then discussed and it is shown that they should perform very similarly for
most problems. However, it is expected that the Newton-type method with pseudo inverse will be
more robust, as the evidence from the numerical experiments (Section 5) confirms.

In Section 5, we present results of extensive experiments on the methods and comparisons with
the MATLAB built-in function fsolve. Considering the complicated nature of the feasible set of prob-
lem (1.1), the results from the algorithms are compared with known solutions of the problems to
check if obtained stationary points are optimal solutions of the problems or not. For 124 tested
problems (taken from the BOLIB library [85]), more than 80% are solved satisfactorily in the sense
that we recover known solutions with < 10% error, or obtain better ones by all methods with CPU
time being less than half a second. The number of recovered solutions as well as the performance
profiles and feasibility check show that Gauss-Newton and Newton method with pseudo inverse
outperform fsolve. It is worth mentioning here that it is not typical to conduct such a large number
of experiments in the bilevel optimization literature. The conjecture of the similarity of the per-
formance of the tested methods is verified numerically, also showing that Newton’s method with
pseudo inverse is indeed more robust than the classic Gauss-Newton one. However, the technique
for choosing the penalty parameter λ is still a heuristic, and the result might depend on the structure
of the corresponding problem.

2 optimality conditions and equation reformulation

Let us start with some definitions required to state the main theorem of this section. Define full
convexity of the lower-level problem as convexity of the lower-level objective function, as well as all

2 optimality conditions and equation reformulation 35

lower-level constraints, with respect to (x,y). Further on, a point (x̄, ȳ) ∈ Rn ×Rm, feasible for
lower-level problem, is said to be lower-level regular if there exists a direction d ∈ Rm such that

∇ygi(x̄, ȳ)Td < 0 for i ∈ Ig(x̄, ȳ) := {i : gi(x̄, ȳ) = 0}. (2.1)

It is clear that (2.1) corresponds to the Mangasarian-Fromowitz constraint qualification for the lower-
level constraint at the point ȳ, when the upper-level variable is fixed at x := x̄. Similarly, the point
(x̄, ȳ) ∈ Rn ×Rm satisfying the upper- and lower-level inequality constraints is upper-level regular if
there exists a direction d ∈ Rn+m such that

∇Gj(x̄, ȳ)Td < 0 for j ∈ IG(x̄, ȳ) := {j : Gj(x̄, ȳ) = 0},
∇gj(x̄, ȳ)Td < 0 for j ∈ Ig(x̄, ȳ) := {j : gj(x̄, ȳ) = 0}.

(2.2)

Finally, to describe necessary optimality conditions for problem (1.2), it is standard to use the fol-
lowing partial calmness concept [81]:

Definition 2.1. Let (x̄, ȳ) be a local optimal solution of problem (1.2). This problem is partially calm at (x̄, ȳ)
if there exists λ > 0 and a neighbourhood U of (x̄, ȳ, 0) such that

F(x,y) − F(x̄, ȳ) + λ|u| > 0, ∀(x,y,u) ∈ U : G(x,y) 6 0, g(x,y) 6 0, f(x,y) −ϕ(x) − u = 0.

According to [81, Proposition 3.3], problem (1.2)–(1.3) being partially calm at one of its local
optimal solution (x̄, ȳ) is equivalent to the existence of a parameter λ > 0 such that the point (x̄, ȳ)
is also a local optimal solution of problem

min
x,y

F(x,y) + λ(f(x,y) −ϕ(x)) s.t. G(x,y) 6 0, g(x,y) 6 0. (2.3)

Partial calmness has been the main tool to derive optimality conditions for (1.1) from the perspective
of the optimal value function; see, e.g., [20, 23, 24, 81]. It is automatically satisfied if the upper-level
feasible set is independent from y and the lower-level problem is defined by

f(x,y) := c>y and g(x,y) := A(x) +By,

whereA : Rn → Rp, c ∈ Rm, and B ∈ Rp×m. More generally, various sufficient conditions ensuring
that partial calmness holds have been studied in the literature; see [81] for the seminal work on the
subject. More recently, the paper [52] has revisited the condition, proposed a fresh perspective, and
established new dual-type sufficient conditions for partial calmness to hold.

It is clear that problem (2.3) is a penalization of (1.2) only w.r.t. the constraint f(x,y) −ϕ(x) 6 0
with penalty parameter λ. Hence, the problem is a usually labelled as a partial exact penalization
of problem (1.2)–(1.3). With this reformulation it is now reasonable to assume standard constraint
qualifications to derive optimality conditions. Based on this, we have the following result, see, e.g.,
[24, 20, 23, 81], based on a particular estimate of the subdifferential of ϕ (1.3).

Theorem 2.2. Let (x̄, ȳ) be a local optimal solution to (1.2)–(1.3), where all functions are assumed to be
differentiable, ϕ is finite around x̄ and the lower-level problem is fully convex. Further assume that the
problem is partially calm at (x̄, ȳ), the lower-level regularity is satisfied at (x̄, ȳ) and upper-level regularity
holds at x̄. Then there exist λ > 0, and Lagrange multipliers u, v, and w such that

∇F(x̄, ȳ) +∇g(x̄, ȳ)T (u− λw) +∇G(x̄, ȳ)Tv = 0, (2.4)

∇yf(x̄, ȳ) +∇yg(x̄, ȳ)Tw = 0, (2.5)

u > 0, g(x̄, ȳ) 6 0, uTg(x̄, ȳ) = 0, (2.6)

v > 0, G(x̄, ȳ) 6 0, vTG(x̄, ȳ) = 0, (2.7)

w > 0, g(x̄, ȳ) 6 0, wTg(x̄, ȳ) = 0. (2.8)

2 optimality conditions and equation reformulation 36

Remark 2.3. There are important classes of functions that satisfy the full convexity assumption
imposed on the lower-level problem in Theorem 2.2; cf. [48]. However, when it is not possible
to guarantee that this assumption is satisfied, there are at least two alternative scenarios to obtain
the same optimality conditions. The first is to replace the full convexity assumption by the inner
semicontinuity of the optimal solution set-valued mapping S (1.1). Secondly, note that a much weaker
qualification condition known as inner semicompactness can also be used here. However, under
the latter assumption, it will additionally be required to have S(x̄) = {ȳ} in order to arrive at the
optimality conditions (2.4)–(2.8). The concept of inner semicontinuity (resp. semicompactness) of S
is closely related to the lower semicontinuity (resp. upper semicontinuity) of set-valued mappings;
for more details on these notions and their ramifications on bilevel programs, see [20, 23, 24].

Remark 2.4. For the result above it is typical to assume that upper-level constraint does not depend
on lower-level y. However, it has been shown in [80] that introducing optimality conditions with
G(x,y) is mathematically valid. Due to the nature of the problem one would normally have G(x)
depending only on upper-level variable, and hence ∇yG(x,y) = 0 in (2.4). We present more general
result with G(x,y) to cover the possibility of G depending on y

Depending on the assumptions made, we can obtain optimality conditions different from the
above. The details of different stationarity concepts can be found in the references provided in
the remark above, as well as in [83]. Weaker assumptions will typically lead to more general
conditions. However, making stronger assumptions allows us to obtain systems that are easier to
handle. For instance, it is harder to deal with more general conditions introduced in [24, Theorem
3.5] or [20, Theorem 3.1] because of the presence of the convex hull in the corresponding estimate of
the subdifferential of ϕ [24, 20, 23, 81]. The other advantage of (2.4)-(2.8) is that, unlike the system
studied in [31], these conditions do not require to introduce a new lower-level variable.

The above optimality conditions involve the presence of complementarity conditions (2.6)-(2.8),
which result from inequality constraints present in (1.2)–(1.3). In order to reformulate the com-
plementarity conditions in the form of a system of equations, we are going use the concept of
NCP-functions; see, e.g., [68]. The function φ : R2 → R is said to be a NCP-function if we have

φ(a,b) = 0 ⇐⇒ a > 0, b > 0, ab = 0.

In this paper, we use φ(a,b) :=
√
a2 + b2 − a − b, known as the Fischer-Burmeister function [29].

This leads to the reformulation of the optimality conditions (2.4)–(2.8) into the system of equations:

Υλ(z) :=



∇xF(x,y) +∇xg(x,y)T (u− λw) +∇xG(x,y)Tv
∇yF(x,y) +∇yg(x,y)T (u− λw) +∇yG(x,y)Tv

∇yf(x,y) +∇yg(x,y)Tw√
u2 + g(x,y)2 − u+ g(x,y)√
v2 +G(x,y)2 − v+G(x,y)√
w2 + g(x,y)2 −w+ g(x,y)


= 0, (2.9)

where we have z := (x,y,u, v,w) and

√
u2 + g(x,y)2 − u+ g(x,y) :=


√
u21 + g1(x,y)2 − u1 + g1(x,y)

...√
u2p + gp(x,y)2 − up + gp(x,y)

 . (2.10)

√
v2 +G(x,y)2 − v+G(x,y) and

√
w2 + g(x,y)2 −w+ g(x,y) are defined as in (2.10). The super-

script λ is used to emphasize the fact that this number is a parameter and not a variable for equation
(2.9). One can easily check that this system consists of n+ 2m+p+q+p real-valued equations with
n+m+ p+ q+ p variables. Clearly, this means that (2.9) is an over-determined system and the Ja-
cobian of Υλ(z), where it exists, is a non-square matrix.

3 gauss-newton-type methods under strict complementarity 37

3 gauss-newton-type methods under strict complementarity

To solve equation (2.9), we use a Gauss-Newton-type method, as the system is over-determined.
Hence, it is necessary to compute the Jacobian of Υλ(z) (2.9). However, the function is not differen-
tiable at any point where one of the pairs

(ui, gi(x,y)), i = 1, . . . ,p, (vj, Gj(x,y)), j = 1, . . . ,q, and (wi, gi(x,y)), i = 1, . . . ,p

vanishes. To avoid this situation, we assume throughout this section that the strict complementarity
condition holds:

Assumption 3.1. The strict complementarity condition holds at (x,y,u, v,w) if (ui, gi(x,y)) 6= 0

and (wi, gi(x,y)) 6= 0 for all i = 1, . . . ,p and (vj, Gj(x,y)) 6= 0 for all j = 1, . . . ,q.

Under this assumption, the Jacobian of Υλ is well-defined everywhere and hence, the Gauss-
Newton step to solve equation (2.9) can be defined as

dk = −(∇Υλ(zk)T∇Υλ(zk))−1∇Υλ(zk)TΥλ(zk), (3.1)

provided that the involved inverse matrix exists; see, e.g., [35, 55]. This leads to the following
algorithm tailored to equation (2.9):

Algorithm 3.2. Gauss-Newton Method for Bilevel Optimization
Step 0: Choose λ > 0, ε > 0, K > 0, z0 := (x0,y0,u0, v0,w0), and set k := 0.
Step 1: If

∥∥Υλ(zk)∥∥ < ε or k > K, then stop.
Step 2: Calculate Jacobian ∇Υλ(zk) and compute the direction dk using (3.1).
Step 3: Set zk+1 := zk + dk, k := k+ 1, and go to Step 1.

In Algorithm 3.2, ε denotes the tolerance and K is the maximum number of iterations. Addition-
ally, it is possible to implement a line search technique to control the step size at each iteration, as
done in [31] for a Newton-type method. The impact of line search will be analyzed in a separate
work, as our main aim here is to study the core step (3.1) of the method. It is clear from (3.1) that
for Algorithm 3.2 to be well-defined, the matrix ∇Υλ(z)T∇Υλ(z) needs to be non-singular. In the
next subsection, we provide tractable conditions ensuring that this is possible.

3.1 Nonsingularity of ∇Υλ(z)T∇Υλ(z) and Convergence

We begin this subsection by noting that as the Jacobian ∇Υλ(z) is a (n+ 2m+ 2p+ q)× (n+m+

2p+ q) matrix with m more rows than columns, and linear independence of its columns ensures
that ∇Υλ(z)T∇Υλ(z) is non-singular. It therefore suffices for us to provide conditions guarantying
the linear independence of the columns of ∇Υλ(z).

To present the Jacobian of the system (2.9) in a compact form, let the upper-level and lower-level
Lagrangian functions be defined by

Lλ(z) := F(x,y) + g(x,y)T (u− λw) +G(x,y)Tv and L(z) := f(x,y) + g(x,y)Tw,

respectively. As we need the derivatives of these functions in the sequel, we denote the appropriate
versions of the Hessian matrices of Lλ and L, w.r.t. (x,y), by

∇2Lλ(z) :=
[
∇2xxLλ(z) ∇2yxLλ(z)
∇2xyLλ(z) ∇2yyLλ(z)

]
and ∇(∇yL(z)) :=

[
∇2xyL(z) ∇2yyL(z)

]
(3.2)

respectively. Furthermore, by denoting∇g(x,y)T :=

[
∇xg(x,y)T

∇yg(x,y)T

]
and∇G(x,y)T :=

[
∇xG(x,y)T

∇yG(x,y)T

]
,

we can easily check that the Jacobian of Υλ(z) w.r.t. z can be written as

∇Υλ(z) =


∇2Lλ(z) ∇g(x,y)T ∇G(x,y)T −λ∇g(x,y)T

∇(∇yL(z)) O O ∇yg(x,y)T

T∇g(x,y) Γ O O

A∇G(x,y) O B O

Θ∇g(x,y) O O K

 (3.3)

3 gauss-newton-type methods under strict complementarity 38

with T := diag {τ1, . . . , τp}, Γ := diag {γ1, . . . ,γp}, A := diag {α1, . . . ,αq}, B := diag {β1, . . . ,βq},
Θ := diag {θ1, . . . , θp}, and K := diag {κ1, . . . , κp}, where the pair (τj,γj), j := 1, . . . p is defined by

τj :=
gj(x,y)√

u2j + gj(x,y)2
+ 1 and γj :=

uj√
u2j + gj(x,y)2

− 1, for j = 1, . . . p. (3.4)

The pairs (αj,βj), j = 1, . . . ,q and (θj, κj), j = 1, . . . ,p are defined similarly in terms of (Gj(x,y), vj),
j = 1, . . . ,q and (gj(x,y),wj), j = 1, . . . ,p, respectively. Additionally, analogously to the lower-
level (resp. upper-level) regularity condition in (2.1) (resp. (2.2)), we will need the lower-level (resp.
upper-level) linear independence constraint qualification denoted by LLICQ (resp. ULICQ) that will
be said to hold at a point (x̄, ȳ) if the family of gradients

{∇ygi(x̄, ȳ), i ∈ Ig(x̄, ȳ)}
(
resp.

{
∇gi(x̄, ȳ), i ∈ Ig(x̄, ȳ), ∇Gj(x̄, ȳ), j ∈ IG(x̄, ȳ)

})
(3.5)

is linearly independent. Finally, to construct the second order condition necessary in the formulation
of the next result, we also need the following index sets:

ν1 := ν1(x̄, ȳ, ū) :=
{
j| ūj > 0, gj(x̄, ȳ) = 0

}
,

ν2 := ν2(x̄, ȳ, v̄) :=
{
j| v̄j > 0, Gj(x̄, ȳ) = 0

}
,

ν3 := ν3(x̄, ȳ, w̄) :=
{
j| w̄j > 0, gj(x̄, ȳ) = 0

}
.

We use these sets to introduce the following cone of feasible directions:

C(x̄, ȳ) :=

d
∣∣∣∣∣∣
∇gj(x̄, ȳ)>d = 0 for j ∈ ν1
∇Gj(x̄, ȳ)>d = 0 for j ∈ ν2
∇gj(x̄, ȳ)>d = 0 for j ∈ ν3

 .

Theorem 3.3. Let the point z̄ = (x̄, ȳ, ū, v̄, w̄) satisfy (2.9) for some λ > 0. Suppose that Assumption 3.1
holds at (x̄, ȳ, ū, v̄, w̄), while LLICQ and ULICQ are satisfied at (x̄, ȳ). Furthermore, suppose that we have

d>∇2Lλ(z̄)d > 0 for all d ∈ C(x̄, ȳ) \ {0}. (3.6)

Then, the columns of the Jacobian matrix ∇Υλ(z̄) are linearly independent.

Proof. Consider an arbitrary vector d := (d>1 ,d>2 ,d>3 ,d>4)
T such that ∇Υλ(z̄)d = 0 with the compo-

nents d1 ∈ Rn+m, d2 ∈ Rp, d3 ∈ Rq, and d4 ∈ Rp. Then we have

∇2Lλ(z̄)d1 +∇g(x̄, ȳ)Td2 +∇G(x̄, ȳ)Td3 − λ∇g(x̄, ȳ)Td4 = 0, (3.7)

T∇g(x̄, ȳ)d1 + Γd2 = 0, (3.8)

A∇G(x̄, ȳ)d1 +Bd3 = 0, (3.9)

Θ∇g(x̄, ȳ)d1 +Kd4 = 0, (3.10)

∇(∇yL(z̄))d1 +∇yg(x̄, ȳ)Td4 = 0. (3.11)

On the other hand, it obviously follows from (3.4) that

(τj − 1)
2 + (γj + 1)

2 = 1 for j = 1, . . . p. (3.12)

Hence, the indices of the pair (τ,γ) satisfying (3.12) can be partitioned into the sets

P1 := {j : τj > 0, γj < 0}, P2 := {j : τj = 0}, and P3 := {j : γj = 0}.

Similarly, define index sets Q1, Q2, and Q3 for the pair (α,β) and T1, T2, and T3 for (θ, κ). Next,
consider the following componentwise description of (3.8), (3.9), and (3.10),

τj∇gj(x̄, ȳ)Td1 + γjd2j = 0 for j = 1, ...,p, (3.13)

αj∇Gj(x̄, ȳ)Td1 +βjd3j = 0 for j = 1, ...,q, (3.14)

θj∇gj(x̄, ȳ)Td1 + κjd4j = 0 for j = 1, ...,p. (3.15)

3 gauss-newton-type methods under strict complementarity 39

For j ∈ P2, equation (3.13) becomes γjd2j = 0. Additionally, it follows from (3.12) that for j ∈ P2,
γj 6= 0. Hence d2j = 0 for j ∈ P2. For j ∈ P3, (3.13) leads to τj∇gj(x̄, ȳ)Td1 = 0, which due to the
property above translates into ∇gj(x̄, ȳ)Td1 = 0, as τj 6= 0. Finally, for j ∈ P1 equation (3.13) takes
the form ∇gj(x̄, ȳ)Td1 = −

γj
τj
d2j , where by definition of P1 we know that −γjτj > 0. Following the

same logic, we respectively have from (3.14) and (3.15) that

d3j = 0 for j ∈ Q2, ∇Gj(x̄, ȳ)Td1 = 0 for j ∈ Q3, ∇Gj(x̄, ȳ)Td1 = −
βj
αj
d3j for j ∈ Q1,

d4j = 0 for j ∈ T2, ∇gj(x̄, ȳ)Td1 = 0 for j ∈ T3, ∇gj(x̄, ȳ)Td1 = −
κj
θj
d4j for j ∈ T1,

with −
βj
αj
> 0 for j ∈ Q1 and −

κj
θj
> 0 for j ∈ T1. Multiplying (3.7) by dT1 ,

dT1∇2Lλ(z̄)d1 + dT1∇g(x̄, ȳ)Td2 + dT1∇G(x̄, ȳ)Td3 − λdT1∇g(x̄, ȳ)Td4 = 0. (3.16)

Considering the cases defined above, we know that for j ∈ P2, j ∈ Q2, and j ∈ T2, the terms
d2j ,d3j , and d4j , respectively, disappear. For j ∈ P3, j ∈ Q3, and j ∈ T3, the terms ∇gj(x̄, ȳ)Td1,
∇Gj(x̄, ȳ)Td1, and ∇gj(x̄, ȳ)Td1 also vanish. This leads to the equation (3.16) being simplified to

dT1∇2Lλ(z̄)d1 +
∑
j∈P1

(
−
γj

τj

)
d22j +

∑
j∈Q1

(
−
βj

αj

)
d23j − λ

∑
j∈T1

(
−
κj

θj

)
d24j = 0. (3.17)

One can easily check that thanks to Assumption 3.1, the sets P1, Q1, and T1 are empty. Hence, (3.17)
reduces to dT1∇2Lλ(z̄)d1 = 0. Moreover, one can easily check that ν1 ⊆ P3, ν2 ⊆ Q3, and ν3 ⊆ T3.
Hence, d1 ∈ C(x̄, ȳ) and therefore, it follows from (3.6) that d1 = 0.

We have shown that d2j = 0, d3j = 0 and d4j = 0 for j ∈ P2, j ∈ Q2 and j ∈ T2, and d1 = 0. Let us
use these results to simplify equations (3.7) and (3.11) as follows∑

j∈P3

∇gj(x̄, ȳ)Td2j +
∑
j∈Q3

∇Gj(x̄, ȳ)Td3j − λ
∑
j∈T3

∇gj(x̄, ȳ)Td4j = 0, (3.18)

∑
j∈T3

∇ygj(x̄, ȳ)Td4j = 0. (3.19)

Equation (3.19) implies that d4j = 0 for all j ∈ T3, given that T3 ⊆ Ig(x̄, ȳ) and the LLICQ holds at
(x̄, ȳ). Then (3.18) becomes ∑

j∈P3

∇gj(x̄, ȳ)Td2j +
∑
j∈Q3

∇Gj(x̄, ȳ)Td3j = 0,

which implies d2j = 0 and d3j = 0 for j ∈ P3 and j ∈ Q3, given that the ULICQ holds at (x̄, ȳ). This
completes the proof as we have shown that ∇Υλ(z̄)d = 0 only if d = 0.

Example 3.4. We consider an instance of problem (1.1) taken from the BOLIB Library [85] with

F(x,y) := (x− 3)2 + (y− 2)2,
f(x,y) := (y− 5)2,

G(x,y) :=
(
x− 8

−x

)
, g(x,y) :=

 −2x+ y− 1

x− 2y− 2

x+ 2y− 14

 .

The point z̄ = (x̄, ȳ, ū1, ū2, ū3, v̄1, v̄2, w̄1, w̄2, w̄3) = (1, 3, 4λ− 2, 0, 0, 0, 0, 4, 0, 0) satisfies equation (2.9)
for any λ > 1/2. Obviously, strict complementarity holds at this point, for λ > 1/2. and the family
of vectors {∇gj(x̄, ȳ), j ∈ Ig(x,y),∇Gj(x̄, ȳ), j ∈ IG(x,y)} is linearly independent, as Ig(x,y) = {1},
IG(x,y) = ∅. It is easy to see that ULICQ holds as ∇g1(x̄, ȳ)T = (−2, 1)T 6= 0, and LLICQ holds as
∇yg1(x̄, ȳ)T = 1 6= 0. Finally, we obviously have that ∇2Lλ(z̄) = 2e, where e is the identity matrix
of R2×2, is positive definite. In conclusion, this example shows that all assumptions of Theorem 3.3
can hold for a bilevel program and therefore the Gauss-Newton method in (3.2) is well-defined.

3 gauss-newton-type methods under strict complementarity 40

Based on the result above, we can now state the convergence theorem for our Gauss-Newton
Algorithm 3.2. To proceed, first note that by implementing the Gauss-Newton method to solve (2.9),
leads to a solution to the least-square problem

min
z
Φλ(z) :=

N+m∑
i=1

Υλi (z)
2, (3.20)

where we define N := n+m+ 2p+ q. The direction of the Newton method for problem (3.20) can
be written as

dk := −(∇Υλ(zk)T∇Υλ(zk) + T(zk))−1∇Υλ(zk)Υ(zk),

where T(zk) :=
∑N
i=1Υ

λ
i (zk)∇2Υλi (zk) is the term that is omitted in the Gauss-Newton direction

(3.1). It is well known that the Gauss-Newton method converges with the same rate as Newton
method if the term T(z̄) is small enough in comparison with the term ∇Υλ(z̄)T∇Υλ(z̄); see, e.g.,
[25, 55, 69]. This is the basis of the following convergence result of Algorithm 3.2.

Theorem 3.5. Let the assumptions in Theorem 3.3 hold at the point z̄ = (x̄, ȳ, ū, v̄, w̄) (for some λ > 0),
assumed to be a local optimal solution of problem (3.20). Also, let {zk} be a sequence of points generated
by Algorithm 3.2 and assume that it converges to z̄. Furthermore, suppose that ∇2Lλ and ∇(∇y)L are
well-defined and Lipschitz continuous in a neighbourhood of z̄. Then we have∥∥zk+1 − z̄∥∥ 6 ∥∥∥(∇Υλ(z̄)T∇Υλ(z̄))−1∥∥∥ ‖T(z̄)‖ ∥∥zk − z̄∥∥+O(‖zk − z̄‖2) . (3.21)

Proof. Start by recalling that under the assumptions of Theorem 3.3, the matrix ∇Υλ(z̄) is of full
column rank. Hence, it is positive definite. Furthermore, under the strict complementarity condition
and well-definedness of the functions ∇2Lλ and ∇(∇yL) near z̄, all components of z 7→ Υλ(z) and
z 7→ ∇Υλ(z) are differentiable near z̄. Hence, the term T(z) is well-defined near z̄. Furthermore, the
local Lipschitz continuity of ∇2Lλ and ∇(∇yL) imply that the same holds for z 7→ ∇Υλ(z)T∇Υλ(z)
and z 7→ T(z). Hence, the function z 7→ ∇Υλ(z)T∇Υλ(z) + T(z) is Lipschitz continuous around z̄.
Next, note that z 7→ ∇Υλ(z)T∇Υλ(z) is differentiable near z̄, as the same is satisfied for z 7→ ∇Υλ(z).
We also know that ∇Υλ(z)T∇Υλ(z) is non-singular for all z in some neighbourhood of z̄, under
the assumptions made in Theorem 3.3. By the inverse function theorem, the latter ensures that(
∇Υλ

)>∇Υλ is a diffeomorphism, and hence has a differentiable inverse around z̄. Thus, the
function z 7→

(
∇Υλ(z)>∇Υλ(z)

)−1 is Lipschitz continuous around the point z̄ and hence, inclusion
(3.21) follows by the application of [69, Theorem 7.2.2].

It is clear from this theorem that the Gauss-Newton method converges quadratically if T(z̄) = 0

and Q-Linearly if T(z̄) is small relative to ∇Υλ(z̄)T∇Υλ(z̄). Such properties can be satisfied for
small residuals problems and for the problems that are not too nonlinear. For problems with small
residuals we have that the components Υλi (z̄) are small for all i, which makes the term T(z̄) small.
For the problems with not too much nonlinearity the components ∇2Υλi (z̄) are small for all i, which
also results in small T(z̄). If it turns out that we can obtain an exact solution Υλ(z̄) = 0, then
T(z̄) = 0, and we have quadratic convergence. It is worth noting that in general we cannot always
have Υλi (z̄) = 0 for all i as the system is overdetermined, but minimizing the sum of the squares
of Υλi (z̄) we obtain a solution point z̄, at which

∑N+m
i=1 (Υλi (z))

2 is as small as possible. If the
problem has small residuals, then small Υλi (z̄) are naturally obtained by implementing Algorithm
3.2 as this is designed to minimize

∑N+m
i=1 Υλi (z)

2. In terms of having small components ∇2Υλi (z̄)
we observe that ∇2Υλ(z̄) will involve third derivatives of F(x,y),G(x,y), f(x,y) and g(x,y). Hence,
if the original problem is not too nonlinear, the Hessian of the system (2.9) should be small. As a
result, if there exists a solution with Υλi (z) ≈ 0 for all i or if the original problem (1.1) is not too
nonlinear, then we expect that the Gauss-Newton for Bilevel Programming converges Q-linearly.

The first drawback of Algorithm 3.2 is the requirement of strict complementarity in Assumption
3.1, to help ensure the differentiability of the function Υλ. Assumption 3.1 is rather strong; for the
test problems used for our numerical experiments in Section 5, it did not hold at the last iteration

4 smoothing gauss-newton method 41

for at least one value of λ for a total of 54 out of 124 problems considered. If one wants to avoid
the strict complementarity assumption, one option is to use smoothing technique for Fischer-Burmeister
function, to be discussed in Section 4. Before we move to this, it is worth mentioning that a second
issue faced by our Algorithm 3.2 is the requirement that the matrix ∇Υλ(z)T∇Υλ(z) is nonsingular
at each iteration. To deal with this, one option is to execute a Newton step, where the generalized
inverse of ∇Υλ(z)T∇Υλ(z), which always exists, is used. Such an approach is briefly discussed in
the next subsection.

3.2 Newton method with Moore-Penrose pseudo inverse

Indeed, one of the most challenging aspects of the Gauss-Newton step in Algorithm 3.2 is the
computation of the inverse of the matrix ∇Υλ(zk)T∇Υλ(zk), as this quantity might not exist at
some iterations. To deal with situations where the inverse of the matrix does not exist, various
concepts of generalized inverse have been used in the context of Newton’s method; see, e.g., [57] for
related details. Although we do not directly compute

(
∇Υλ(zk)T∇Υλ(zk)

)−1 in our implementation
of Algorithm 3.2 in Section 5, we would like to compare the pure Gauss-Newton-type method
presented in the previous subsection with the Newton method using the Moore-Penrose pseudo
inverse. Hence, we present the later approach here and its relationship to Algorithm 3.2.

For an arbitrary matrix A ∈ Rm×n, its Moore-Penrose pseudo inverse (see, e.g., [39]) is defined by

A+ := VΣ+U>,

where VΣ+U> represents a singular value decomposition of A, where Σ+ corresponds to the
pseudo-inverse of Σ that can be given by

Σ+ = diag
(
1

σ1
,
1

σ2
, . . . ,

1

σr
, 0, . . . , 0

)
with r = rank (A).

if A has full column rank, we have an additional property that

A+ :=
(
ATA

)−1
A>.

Based on this definition, an iteration of the Newton method with pseudo inverse for system (2.9)
can be then stated as

zk+1 = zk −∇Υ(zk)+Υ(zk). (3.22)

We are now going to refer to (3.22) as iteration of the Pseudo-Newton method. The Pseudo-Newton
method for bilevel programming can be defined in the same fashion as Algorithm 3.2 with the
difference that direction would be given by dk = −∇Υλ(zk)+Υλ(zk). Clearly, the Pseudo-Newton
method is always well-defined, unlike the Gauss-Newton method, and hence, it will produce some
result in the case when the Gauss-Newton method diverges [34]. Based on this general behaviour
and interplay between the two approaches, we will be comparing them in the numerical section.
For details on the convergence of Newton-type methods with pseudo-inverse, the interested reader
in referred to [37].

4 smoothing gauss-newton method

In this section, we relax the strict complementarity assumption, considering the fact that it often fails
for many problems as illustrated in the previous section. However, to ensure the smoothness of the
function Υλ (2.9), the Fischer-Burmeister function is replaced with the smoothing Fischer-Burmeister
function (see [42]) defined by

φµgj(x,y,u) :=
√
u2j + gj(x,y)2 + 2µ− uj + gj(x,y) for j = 1, . . . ,p, (4.1)

4 smoothing gauss-newton method 42

where the perturbation parameter µ > 0 helps to guarantee its differentiability at points (x,y,u)
satisfying uj = gj(x,y) = 0. It is well-known (see latter references) that

φµgj(x,y,u) = 0 ⇐⇒
[
uj > 0, −gj(x,y) > 0, −ujgj(x,y) = µ

]
. (4.2)

The smoothing system of optimality conditions becomes

Υλµ(z) :=



∇xF(x,y) +∇xg(x,y)T (u− λw) +∇xG(x,y)Tv
∇yF(x,y) +∇yg(x,y)T (u− λw) +∇yG(x,y)Tv

∇yf(x,y) +∇yg(x,y)Tw√
u2 + g(x,y)2 + 2µ− u+ g(x,y)√
v2 +G(x,y)2 + 2µ− v+G(x,y)√
w2 + g(x,y)2 + 2µ−w+ g(x,y)


= 0, (4.3)

following the convention in (2.10), where µ is a vector of appropriate dimensions with sufficiently
small positive elements. Under the assumption that all the functions involved in problem (1.1) are
continuously differentiable, Υλµ is also a continuously differentiable function for any λ > 0 and
µ > 0. Additionally, we can easily check that

‖Υλµ(z) −Υλ(z)‖ −→ 0 as µ ↓ 0.

Following the smoothing scheme discussed, for example, in [70], our aim is to consider a sequence
{µk} decreasing to 0 such that equation (2.9) is approximately solved:

Υλµk(z) = 0, k = 0, 1, . . .

for a fixed value of λ > 0. Hence, we consider the following algorithm for system (4.3):

Algorithm 4.1. Smoothing Gauss-Newton Method for Bilevel Optimization
Step 0: Choose λ > 0, µ0 ∈ (0, 1), z0 := (x0,y0,u0, v0,w0), ε > 0, K > 0, set k := 0.
Step 1: If

∥∥Υλ(zk)∥∥ < ε or k > K, then stop.
Step 2: Calculate Jacobian ∇Υλµk(z

k) and find the direction

dk = −(∇Υλµk(z
k)T∇Υλµk(z

k))−1∇Υλµk(z
k)TΥλ(zk). (4.4)

Step 3: Calculate zk+1 = zk + dk.
Step 4: Update µk+1 = µk+1k .
Step 5: Set k := k+ 1 and go to Step 1.

To implement Algorithm 4.1 numerically, we compute the direction by solving

∇Υλµk(z
k)T∇Υλµk(z

k)dk = −∇Υλµk(z
k)TΥλ(zk). (4.5)

The Pseudo-Newton algorithm for the smoothed optimality conditions (4.3) will be the same as
Algorithm 4.1 apart from Step 2, where the corresponding direction is given by

dk = −∇Υλµk(z
k)+Υλ(zk).

Another way to deal with the non-differentiability of the Fischer-Burmeister NCP-function is to
introduce a generalized generalized Jacobian concept for the system (2.9). A semismooth Newton-type
method for bilevel optimization following this type of approach is developed in [31]. However, we
will not consider this approach here.

Similarly to (3.4)–(3.3), we introduce the matrices Tµ, Γµ, Aµ, Bµ, Θµ, and Kµ, where for instance,
the pair (Tµ, Γµ) is defined by Tµ := diag {τ

µ
1 , .., τµp} and Γµ := diag {γ

µ
1 , ..,γµp} with

τ
µ
j :=

gj(x,y)√
u2j + gj(x,y)2 + 2µ

+ 1 and γ
µ
j :=

uj√
u2j + gj(x,y)2 + 2µ

− 1, j = 1, . . . p. (4.6)

4 smoothing gauss-newton method 43

With this notation, we can easily check that for λ > 0 and µ > 0, the Jacobian of Υλµ is

∇Υλµ(z) =


∇2Lλ(z) ∇g(x,y)T ∇G(x,y)T −λ∇g(x,y)T

∇(∇yL(z)) O O ∇yg(x,y)T

Tµ∇g(x,y) Γµ O O

Aµ∇G(x,y) O Bµ O

Θµ∇g(x,y) O O Kµ

 (4.7)

The fundamental difference between the framework here and the one in the previous section is
that for the pair (τµj ,γµj), j = 1, . . . ,p, for instance, we have the strict inequalities

(τµj − 1)2 + (γµj + 1)2 < 1, j = 1, . . . p

instead of equalities in the context of (τj,γj), j = 1, . . . ,p (3.4). The next lemma illustrates a further
difference between the new coefficients in this section and the ones in (3.4).

Lemma 4.2. For a point z := (x,y,u, v,w) such that Υλµ(z) = 0 with λ > 0 and µ > 0, it holds that

τ
µ
j > 0, γ

µ
j < 0, j = 1, . . . ,p,

α
µ
j > 0, β

µ
j < 0, j = 1, . . . ,q,

θ
µ
j > 0, κ

µ
j < 0, j = 1, . . . ,p.

Proof. We prove that τµj > 0 and γµj < 0 for j = 1, . . . ,p; the other cases can be done similarly. For
j = 1, . . . ,p, it follows from (4.2) that gj(x,y) = − µ

uj
. Hence, we can rewrite τµj and γµj as

τ
µ
j = 1−

µ

uj

√
u2j +

µ2

u2j
+ 2µ

and γ
µ
j =

uj√
u2j +

µ2

u2j
+ 2µ

− 1, (4.8)

respectively. Next, we consider the following three scenarios:

Case 1 Suppose that uj = µ. Substituting this value into (4.8), we arrive at

τ
µ
j = 1−

1

µ+ 1
> 0 and γ

µ
j =

µ

µ+ 1
− 1 < 0 as µ > 0.

Case 2 Suppose that uj = µ+ δ for some δ > 0 and substituting this in (4.8) leads to

τ
µ
j = 1−

µ

(µ+ δ)
√
(µ+ δ)2 + µ2

(µ+δ)2
+ 2µ

= 1−
1√

(µ+δ)4

µ2
+ 1+ 2

(µ+δ)2

µ

> 0,

γ
µ
j =

µ+ δ√
(µ+ δ)2 + µ2

(µ+δ)2
+ 2µ

− 1 =
1√

1+ µ2

(µ+δ)4
+ 2 µ

(µ+δ)2

− 1 < 0.

Case 3 Finally, suppose that uj = µ− δ for some δ > 0. Then substituting this in (4.8),

τ
µ
j = 1−

µ

(µ− δ)
√
(µ− δ)2 + µ2

(µ−δ)2
+ 2µ

= 1−
1√

(µ−δ)4

µ2
+ 1+ 2

(µ−δ)2

µ

> 0,

γ
µ
j =

µ− δ√
(µ− δ)2 + µ2

(µ−δ)2
+ 2µ

− 1 =
1√

1+ µ2

(µ−δ)4
+ 2 µ

(µ−δ)2

− 1 < 0.

Note that uj = µ− δ > 0 for in the third case, which can be used to ensure that µ− δ =
√
(µ− δ)2.

Next, we use this lemma to provide a condition ensuring that the matrix ∇Υλµ(z)T∇Υλµ(z) is
nonsingular. This will allow the smoothed Gauss-Newton step (4.4) to be well-defined. As in the
previous section, it suffices to show that the columns of ∇Υλµ(z̄) are linearly independent.

4 smoothing gauss-newton method 44

Theorem 4.3. For a point z̄ := (x̄, ȳ, ū, v̄, w̄) verifying (4.3) for some µ > 0 and 0 < λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

, j = 1, . . . ,p,

suppose that ∇2Lλ(z̄) is positive definite. Then, the columns of the matrix ∇Υλµ(z̄) are linearly independent.

Proof. Similarly to the proof of Theorem 3.3, ∇Υλµ(z̄)
(
d>1 ,d>2 ,d>3 ,d>4

)>
= 0 is equivalent to

∇2Lλ(z̄)d1 +∇g(x̄, ȳ)Td2 +∇G(x̄, ȳ)Td3 − λ∇g(x̄, ȳ)Td4 = 0, (4.9)

τ
µ
j ∇gj(x̄, ȳ)Td1 + γ

µ
j d2j = 0, (4.10)

α
µ
j ∇Gj(x̄, ȳ)Td1 +β

µ
j d3j = 0, (4.11)

θ
µ
j ∇gj(x̄, ȳ)Td1 + κ

µ
j d4j = 0, (4.12)

∇(∇yL(z̄))d1 +∇yg(x̄, ȳ)Td4 = 0, (4.13)

where j = 1, ...,p in (4.10) and (4.12), while j = 1, ...,q in (4.11). Thanks to Lemma 4.2, we can rewrite
equations (4.10), (4.11), and (4.12) as

∇gj(x̄, ȳ)>d1 = −
γ
µ
j

τ
µ
j

d2j , ∇Gj(x̄, ȳ)>d1 = −
β
µ
j

α
µ
j

d3j , and ∇gj(x̄, ȳ)>d1 = −
κ
µ
j

θ
µ
j

d4j , (4.14)

respectively, with −
γ
µ
j

τ
µ
j
> 0, −

β
µ
j

α
µ
j
> 0, and −

κ
µ
j

θ
µ
j
> 0. Now, let us multiply (4.9) by d>1 :

dT1∇2Lλ(z̄)d1 + d>1∇g(x̄, ȳ)>d2 + d>1∇G(x̄, ȳ)>d3 − λd>1∇g(x̄, ȳ)>d4 = 0. (4.15)

Using the results above, the equation (4.15) can be written as

dT1∇2Lλ(z̄)d1 +
p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d22j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d23j − λ

p∑
j=1

(
−
κ
µ
j

θ
µ
j

)
d24j = 0. (4.16)

Furthermore, it follows from the first and last items of (4.14) that

d4j = −
θ
µ
j

κ
µ
j

∇gj(x̄, ȳ)>d1 =
θ
µ
j γ
µ
j

κ
µ
j τ
µ
j

d2j . (4.17)

Substituting (4.17) into (4.16)

d>1∇2Lλ(z̄)d1 +
p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d22j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d23j − λ

p∑
j=1

(
−
κ
µ
j

θ
µ
j

)(
θ
µ
j γ
µ
j

κ
µ
j τ
µ
j

)2
d22j = 0. (4.18)

Rearranging this equation, we get

dT1∇2Lλ(z̄)d1 +
q∑
j=1

(
−
β
µ
j

α
µ
j

)
d23j +

p∑
j=1

(
1− λ

θ
µ
j

κ
µ
j

γ
µ
j

τ
µ
j

)(
−
γ
µ
j

τ
µ
j

)
d22j = 0. (4.19)

Then, with Lemma 4.2, and under the assumptions that ∇2Lλ(z̄) is positive definite and λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

for j = 1, . . . ,p, equation (4.19) is the sum of non-negative terms, which can only be a sum of zeros
if all components of d1,d2 and d3 are zeros. Since all components of d2 are zeros, we can look back
to (4.17) or (4.12) to deduce that d4j = 0 for j = 1, . . . p, completing the proof.

It is important to note that the assumption that λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

does not necessarily conflict with the

requirement that λ be strictly positive, as due to Lemma 4.2, we have
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j
> 0. In Subsection 5.5, a

numerical analysis of this condition is conducted. Next, we provide an example of bilevel program
where the assumptions made in the Theorem 4.3 are satisfied.

4 smoothing gauss-newton method 45

Example 4.4. Consider the instance of problem (1.1) from the BOLIB Library [85] with

F(x,y) := x2 + (y1 + y2)
2,

f(x,y) := y1,
G(x,y) := −x+ 0.5, g(x,y) :=

(
−x− y1 − y2 + 1

−y

)
.

The point z̄ = (x̄, ȳ1, ȳ2, ū1, ū2, ū3, v̄, w̄1, w̄2, w̄3) = (0.5, 0, 0.5, 1, λ, 0, 0, 0, 1, 0) satisfies equa-
tion (2.9) for any λ > 0. Strict complementarity does not hold at this point as (v̄,G(x̄, ȳ)) = (0, 0)
and (w̄1,g1(x̄, ȳ)) = (0, 0). We observe that ∇2Lλ(z̄) = 2e, where e is the identity matrix of R3×3, is

positive definite. As for the conditions λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

, j = 1, 2, 3, they hold for any value of λ such that

0 < λ < min
{

1

1− 1/(2µ+ 1)1/2
,
1− 1/(2µ+ 1)1/2

1− λ/(λ2 + 2µ)1/2
, 1
}

This is automatically the case if, for example, we set µ = 2× 10−2 and λ = 10−2.

There is at least one other way to show that ∇Υλµ(z̄)T∇Υλµ(z̄) is nonsingular. The approach is
based on the structure of the matrix, as it will be clear in the next result. To proceed, we need the
following two assumptions.

Assumption 4.5. Each row of the following matrix is a nonzero vector:[
∇2Lλ(z)T ∇(∇yL(z))T ∇g(x,y)T ∇G(x,y)T

]
.

Assumption 4.6. For λ > 0 and µ > 0, the diagonal elements of the matrix ∇Υλµ(z)T∇Υλµ(z) dom-
inate the other terms row-wise; i.e., aii >

∑N
j=1, j6=i |aij| for i = 1, . . . ,N, where aij denotes the

element in the cell (i, j) of ∇Υλµ(z)T∇Υλµ(z) for i = 1, . . . ,N and j = 1, . . . ,N.

Lemma 4.7. Let Assumption 4.5 hold at the point z := (x,y,u, v,w). Then for any λ > 0 and µ > 0, the
diagonal elements of the matrix ∇Υλµ(z)T∇Υλµ(z) are strictly positive.

Proof. Considering the Jacobian matrix in (4.7), its transpose can be written as

∇Υλµ(z)T =


∇2Lλ(z)T ∇(∇yL(z))T ∇g(x,y)TTµT ∇G(x,y)TAµT ∇g(x,y)TΘµT

∇g(x,y) O ΓµT O O

∇G(x,y) O O BµT O

−λ∇g(x,y) ∇yg(x,y) O O KµT

 .

Denote by ri, i = 1, . . . , 4, respectively, the first, second, third, and fourth row-block of this matrix.
Then the desired product can be represented as

∇Υλµ(z)T∇Υλµ(z) =


r1r

T
1 r1r

T
2 r1r

T
3 r1r

T
4

r2r
T
1 r2r

T
2 r2r

T
3 r2r

T
4

r3r
T
1 r3r

T
2 r3r

T
3 r3r

T
4

r4r
T
1 r4r

T
2 r4r

T
3 r4r

T
4

 .

Obviously, the diagonal elements of ∇Υλµ(z)T∇Υλµ(z) are the diagonal elements of r1rT1 , r2rT2 , r3rT3 ,
and r4rT4 . We can check that for j = 1, . . . ,n+m, a diagonal element of r1rT1 has the form

(r1r
T
1)jj =

∑n+m
k=1 ∇2j,kLλ(z)T∇2j,kLλ(z) +

∑m
k=1∇j(∇ykL(z))T∇j(∇ykL(z))

+
∑p
k=1∇jgk(x,y)T∇jgk(x,y)(τµk)

2 +
∑q
k=1∇Gk(x,y)T∇Gk(x,y)(αµk)

2

+
∑p
k=1∇gk(x,y)T∇gk(x,y)(θµk)

2,

where ∇j stands for the jth element of ∇ := (∇x1 , ...,∇xn ,∇y1 , ...,∇ym) and ∇2j,k corresponds to an
element in the jth row and kth column of

∇2 :=



∇x1x1 . . .∇x1xn ∇x1y1 . . .∇x1ym
...

.
...

∇xnx1 . . .∇xnxn ∇xny1 . . .∇xnym
∇y1x1 . . .∇y1xn ∇y1y1 . . .∇y1ym

...
.

...
∇ymx1 . . .∇ymxn ∇ymy1 . . .∇ymym


.

4 smoothing gauss-newton method 46

Combining Assumption 4.5 and Lemma 4.2, it is clear that (r1rT1)jj > 0 for j = 1, . . . ,n+m. Similarly,
the diagonal elements of r2rT2 , r3rT3 , and r4rT4 can respectively be written as

(r2r
T
2)jj = ∇gj(x,y)∇gj(x,y)T + (γµj)

2 for j = 1, ...,p,
(r3r

T
3)jj = ∇Gj(x,y)∇Gj(x,y)T + (βµj)

2 for j = 1, ...,q,
(r4r

T
4)jj = ∇gj(x,y)∇gj(x,y)T + (κµj)

2 for j = 1, ...,p.

Thanks to Lemma 4.2, it is also clear that these items are all strictly positive.

Theorem 4.8. Let z = (x,y,u, v,w) be a stationary point of the system (4.3) for some λ > 0 and µ > 0. If
Assumptions 4.5 and 4.6 are satisfied, then the matrix ∇Υλµ(z)T∇Υλµ(z) is nonsingular.

Proof. It is known that the matrix is positive definite if it is symmetric, its diagonal elements are
strictly positive, and diagonal elements dominate elements of the matrix in the corresponding row.
This property is the consequence of the Gershgorin circle theorem [39, page 320]. As ∇Υλµ(z)T∇Υλµ(z)
is symmetric, then combining Assumptions 4.5 and 4.6 to Lemma 4.7, we have the result.

Next, we provide an example where the assumptions required for Theorem 4.8 are satisfied.

Example 4.9. Consider the instance of problem (1.1) taken from the BOLIB Library [85] with

F(x,y) := (x− 1)2 + y2, f(x,y) := x2y, g(x,y) := y2

and no upper-level constraint. For this problem, the function Υλ (2.9) can be written as

Υλ(z) =
(
2x− 2, 2y+ 2yu− 2λyw, x2 + 2yw,

√
u2 + y4 − u+ y2,

√
w2 + y4 −w+ y2

)>
.

The first item of note about this example is that the optimal solution (x̄, ȳ) = (1, 0) does not satisfy
the optimality conditions (2.4)–(2.8), given that Υλ(x̄, ȳ, ū, w̄) 6= 0 for any values of ū and w̄. How-
ever, Algorithm 4.1 identifies the solution for λ taking the values 0.6, 0.7 or 0.8 with the smoothing
parameter set to µ = 10−11. Indeed, the convergence of the method seems to be justified as for this
problem, we can easily check that for x̄ = 1 and ȳ = 0,

∇2Lλ(z̄) = 2diag (1, 1+ ū− λw̄) , ∇(∇yL(z̄)) = (2 2w̄), ∇g(x̄, ȳ) = (0 0),

Γµ = ū√
ū2+2µ

− 1, and Kµ = w̄√
w̄2+2µ

− 1

and subsequently, we have the product

∇Υλµ(z̄)T∇Υλµ(z̄) =



8 4w̄ 0 0

4w̄ 4w̄2 + (2ū− 2λw̄)2 0 0

0 0

(
ū√
ū2+2µ

− 1

)2
0

0 0 0

(
w̄√
w̄2+2µ

− 1

)2


.

Hence, Assumption 4.5 is clearly satisfied; for Assumption 4.6 to hold, we need

8 > 4w̄, 4w̄2 + (2ū− 2λw̄)2 > 4w̄,

(
ū√

ū2 + 2µ
− 1

)2
> 0,

(
w̄√

w̄2 + 2µ
− 1

)2
> 0,

which holds for any µ > 0, λ > 0, ū > 0, and 1 < w̄ < 2.

We further note that the assumptions made in Theorem 4.3 hold for the problem in this example.
Firstly, we observe that ∇2Lλ(z̄) is positive definite if λw̄ < ū+ 1. Subsequently, we can check that
both assumptions of Theorem 4.3 are satisfied if

λ < min


ū+ 1

w̄
,

(
w̄√
w̄2+2µ

− 1

)
(

ū√
ū2+2µ

− 1

)
 with w̄ 6= 0.

4 smoothing gauss-newton method 47

For instance, choosing ū =
√
8× 10−6, w̄ = 10−6, µ = 4× 10−12, and λ < 2.25 gives the result.

To conclude this section, we would like to analyse the Jacobian consistency of Υλ. Recall that
according to [14], the Jacobian consistency property will hold for Υλ if this mapping is Lipschitz
continuous and there exists a constant ε > 0 such that for any z ∈ RN and µ ∈ R+, we have∥∥Υλµ(z) −Υλ(z)∥∥ 6 µε and lim

µ↓0
dist

(
∇Υλµ(z), ∂CΥλ(z)

)
= 0. (4.20)

Here, dist represents the standard distance between a point and a set while ∂CΥλ(z)T denotes the
C-subdifferential

∂CΥ
λ(z)T := ∂Υλ1(z)× ...× ∂ΥλN+m(z), (4.21)

commonly used in this context; see, e.g., [43]. In (4.21), N := n +m + 2p + q and ∂Υλi , i =

1, . . . ,N +m represents the subdifferential in the sense of Clarke. Note that ∂CΥλ(z)T contains
the generalized Jacobian in the sense of Clarke of the function Υλ. Roughly speaking, the Jacobian
consistency property (4.20) translates to a framework ensuring that when the smoothing parameter
µ converges to zero, the Jacobian ∇Υλµ(z) converges to an element in the C-subdifferential ∂CΥλ(z).
This property is important in determining the accuracy of the smoothing method in Algorithm 4.1.

Based on (4.21), at all points z := (x,y,u, v,w) satisfying Assumption 3.1,

∂CΥ
λ(z)T :=

{
∇Υλ(z)T

}
, (4.22)

where ∇Υλ(z) is defined by (3.3). For the case when strict complementarity does not hold, elements
of ∂CΥλ(z) have the same structure as in (3.3) with the only differences being in the terms τj, γj, αj,
βj, θj, and κj for indices j where strict complementarity does not hold. We still have ∂Υλi (z) is the
same as ∇Υλi (z) for rows i = 1, ...,n+ 2m. To determine the remaining rows, consider

Ω1 := {j : (uj,gj(x,y)) = (0, 0)},
Ω2 := {j : (vj,Gj(x,y)) = (0, 0)},
Ω3 := {j : (wj,gj(x,y)) = (0, 0)}.

Obviously τj and γj introduced in (3.4) are not well-defined for j ∈ Ω1. Similarly, the same holds for
αj and βj for j ∈ Ω2 and θj and κj for j ∈ Ω3. Following the same procedure as in [43, Proposition
2.1], we define

τk := ζk + 1, γk := ρk − 1 for some (ζk, ρk) ∈ R2 such that ‖(ζk, ρk)‖ 6 1 if k ∈ Ω1,
αk := σk + 1, βk := δk − 1 for some (σk, δk) ∈ R2 such that ‖(σk, δk)‖ 6 1 if k ∈ Ω2,
θk := ιk + 1, κk := ηk − 1 for some (ιk,ηk) ∈ R2 such that ‖(ιk,ηk)‖ 6 1 if k ∈ Ω3.

Since we do not assume strict complementarity here, then in contrast to Subsection 3.1, we have

(τj − 1)
2 + (γj + 1)

2 6 1, (αj − 1)
2 + (βj + 1)

2 6 1, (θj − 1)
2 + (κj + 1)

2 6 1.

Theorem 4.10. For λ > 0, the Jacobian consistency property holds for the approximation Υλµ of Υλ.

Proof. First of all, note that Υλ is locally Lipschitz continuous. Proceeding as in [43, Corollary 2.4],
we can easily check that we have∥∥Υλµ(z) −Υλ(z)∥∥ 6 ε√µ with ε := 2

√
2p+

√
2q.

lim
µ↓0
∇Υλµ(z) = lim

µ↓0


∇2Lλ(z) ∇g(x,y)T ∇G(x,y)T −λ∇g(x,y)T

∇(∇yL(z)) O O ∇yg(x,y)T

Tµ∇g(x,y) Γµ O O

Aµ∇G(x,y) O Bµ O

Θµ∇g(x,y) O O Kµ

 , (4.23)

5 numerical results 48

where it is easy to see that the first two rows of (4.23) are the same as the first two rows of (3.3), as
these are not involving perturbation µ. For the rest of Jacobian, we observe that

lim
µ↓0

[
τ
µ
j ∇gj(x,y), γ

µ
j , 0, 0

]
=

{(
τj∇gj(x,y) γj 0 0

)
for j /∈ Ω1(

∇gj(x,y) − 1 0 0
)

for j ∈ Ω1
(4.24)

and similarly for limµ↓0
[(
α
µ
j ∇Gj(x,y) β

µ
j 0 0

)]
and limµ↓0

[(
θ
µ
j ∇gj(x,y) κ

µ
j 0 0

)]
. This leads

to limµ↓0 dist(∇Υλµ(z),∂CΥλ(z)) = 0 as ∂CΥλ(z) has the same form in (3.3) with corresponding
adjustments to ζj, ρj,σj, δj, ιj and ηj for the cases when strict complementarity does not hold.

5 numerical results

The focus of our experiments in this section will be on the smoothing system (4.3), where we
set µ := 10−11 constant throughout all iterations. Based on this system, we test and compare the
Gauss-Newton method, the Pseudo-Newton method, and the MATLAB built-in method called fsolve
(with Levenberg-Marquardt chosen as option). The examples used for the experiments are from the
Bilevel Optimization LIBrary of Test Problems (BOLIB) [85], which contains 124 nonlinear examples.
The experiments are run in MATLAB, version R2016b, on a MACI64. Here, we present a summary
of the results obtained; more details for each example are reported in [Supp1].

For Step 0 of Algorithm 4.1 and the corresponding smoothed Pseudo-Newton algorithm, we set
the tolerance to ε := 10−5 (see Subsection 5.4 for a justification) and the maximum number of
iterations to be K := 1000. As for stopping criterion of fsolve, the tolerance is set to 10−5 as well.
For the numerical implementation we calculate the direction dk by solving (4.5) with Gaussian
elimination. Five different values of the penalty parameter are used for all the experiments; i.e.,
λ ∈ {100, 10, 1, 0.1, 0.01}, see [Supp1] for details of the values of each solution for a selection of
λ. The motivation of using different values of λ comes from the idea of not over-penalizing and
not under-penalizing deviation of lower-level objective values from the minimum, as bigger (resp.
smaller) values of λ seem to perform better for small (resp. big) values of lower-level objective.
After running the experiments for all values of λ ∈ {100, 10, 1, 0.1, 0.01}, the best one is chosen (see
Table 1 in [Supp1]), i.e. for which the best feasible solution is produced for the particular problem
by the tested algorithms. Later in this section, we present the comparison of the performance of
the algorithms for the best value of λ. The experiments have shown that the algorithms perform
much better if the starting point (x0,y0) is feasible. As a default setup, we start with x0 = 1n
and y0 = 1m. If the default starting point does not satisfy at least one constraint, we choose
a feasible starting point; see [Supp1]. Subsequently, the Lagrange multipliers are initialised at
u0 = max

{
0.01, −g(x0,y0)

}
, v0 = max {0.01, −G(x,y)}, and u0 = w0.

5.1 Performance profiles

Performance profiles are widely used to compare characteristics of different methods. In this section
we consider performance profiles, where ti,s denotes the CPU time to solve problem i by algorithm
s. If the optimal solution of problem i is known but it cannot be solved by algorithm s (i.e., upper-
level objective function error > 60%), we set ti,s :=∞. We then define the performance ratio by

ri,s :=
ti,s

min{ti,s : s ∈ S}
,

where S is the set of solvers. The performance ratio is the ratio of how algorithm s performed to
solve problem i compared to the performance of the best performed algorithm from the set S. The
performance profile can be defined as the cumulative distribution function of the performance ratio:

ρs(τ) :=

∣∣{i ∈ P : ri,s 6 τ
}∣∣

np
,

5 numerical results 49

where P is the set of problems and τ is the number measuring performance ratio. The performance
profile, ρs(τ), is counting the number of examples for which the performance ratio of the algorithm
s is better (smaller) than τ. The performance profile ρs : < → [0, 1] is a non-decreasing function,
where the value of ρs(1) shows the fraction of the problems for which solver s was the best.

Figure 4: Performance profiles of the methods for 124 problems

Comparing line-graphs of the performance profiles (cf. Figure 4), a higher position of a graph
indicates better performance of the corresponding algorithm. The value on the y-axis shows the
fraction of examples for which the performance ratio is better than T (presented on the x-axis).
Figure 4 clearly shows that the Gauss-Newton and Pseudo-Newton method perform better than
fsolve. Since the variable for the comparison was CPU time, based on the values of ρs(1), we can
claim that Gauss-Newton was the fastest algorithm for about 70% of the problems, Pseudo-Newton
for about 60% of the problems and fsolve was the quickest for about 20% of the problems. From the
graph, one can also see that Gauss-Newton and Pseudo-Newton methods have ρs(2) = 80%, while
fsolve only has the value ρs(2) = 30%, meaning that fsolve was more than twice worse than the best
algorithm for 70% of the problems. Approaching T = 6, the Gauss-Newton and Pseudo-Newton
methods obtain a performance ratio close to ρs(T) = 90%, where fsolve obtains ρs(6) ≈ 65%. This
shows that Gauss-Newton and Pseudo-Newton methods show quite similar performance in terms
of CPU time. Clearly, from the perspective of the performance profiles discussed in this subsection,
both of these algorithms clearly outperform fsolve for solving our test problems.

5.2 Feasibility check

Considering the structure of the feasible set of problem (1.2), it is critical to check whether the
points computed by our algorithms satisfy the value function constraint f(x,y) 6 ϕ(x), as it is not
explicitly included in the expression of Υλ (2.9). If the lower-level problem is convex in y and a
solution generated by our algorithms satisfies (2.5) and (2.8), then it will verify the value function
constraint. Conversely, to guaranty that a point (x,y) such that y ∈ S(x) satisfies (2.5) and (2.8), a
constraint qualification (CQ) is necessary. Note that conditions (2.5) and (2.8) are incorporated in
the stopping criterion of Algorithm 4.1. To check whether the points obtained are feasible, we first
identify the BOLIB examples, where the lower-level problem is convex w.r.t. y; see the summary of
these checks in Table 1. It turns out that a significant number of test examples have linear lower-level
constraints. For these examples, the lower-level convexity is automatically satisfied.

f(·,y) gi(·,y), i = 1, . . . ,p Total count
Convex Convex (linear) 55

Convex Convex (nonlinear) 14

Convex No constraints 5

Convex Convex (with CQ satisfied) 74

Table 1: Convexity of the lower-level functions

5 numerical results 50

There are 14 problems, where f(·,y) and gi(·,y) with i = 1, . . . ,p, are convex, but the constraints
are not all linear w.r.t. y. For these examples, the lower-level regularity (2.1) has been shown to hold
at the points computed by our algorithms. The rest of the problems have non-convex lower-level
objective or some of the lower-level constraints are non-convex. For these examples, we compare
the solutions obtained with those known from the literature. Let fA stand for f(x̄, ȳ), the lower-
level function value obtained by one of the algorithms tested at convergence, and let fK be the
known optimal value of lower-level objective function. In the graph below we plot the lower-level
relative error, (fA − fK)/(1+ |fK|) on the y-axis, against different problems. The errors are plotted
in increasing order. Note that for the 25 problems with smallest relative error the error is smaller
than 5%.

Figure 5: Lower-level optimality check for examples with a nonconvex lower-level problem

From the figure above we can see that for 30 problems the relative error of lower-level objec-
tive is negligible (< 5%) for all three methods. For almost all of the remaining 19 examples, the
Gauss-Newton and Pseudo-Newton methods obtain smaller errors than fsolve, while the Pseudo-
Newton method seems to obtain slightly smaller errors than the Gauss-Newton method for some
of the examples. We have seen that convexity and a constraint qualification hold for the lower-
level problem hold for 74 test examples. Accordingly, (2.5) and (2.8) are guarantied to hold and
hence, the corresponding points are feasible for our bilevel programs. If we allow for a feasibility
error of up to 20%, feasibility is satisfied for 113 (91.13%) problems through the Gauss-Newton and
Pseudo-Newton methods, and for 110 (88.71%) problems if we proceed with fsolve.

5.3 Accuracy of the upper-level objective function

Here, we compare the values of the upper-level objective functions at points computed by the
algorithms under study, i.e., Gauss-Newton and Pseudo-Newton algorithms and fsolve. For this
comparison, we focus our attention only on 116 BOLIB examples [85], as solutions are not known for
six of them and the Gauss-Newton algorithm diverges for NieEtal2017e, possibly due the singularity
of the matrix ∇Υλµ(z)T∇Υλµ(z); see [Supp1] for more details. To proceed, let F̄A be the value of
upper-level objective function at the point (x̄, ȳ) at which the algorithm under consideration stops,
and let F̄K the value of this function at the known best solution point reported in the literature
(see corresponding references in [85]). The comparison is shown in Figure 6, where we plot the
relative error (F̄A − F̄K)/(1+ |F̄K|) on the y− axis against examples on the x-axis. Again, the graph
is plotted in the order of increasing error. The 85 test cases with smallest error all exhibit a relative
error smaller than 5%.

5 numerical results 51

Figure 6: Comparison of upper-level objective values for examples with known solutions

From Figure 6, we can see that most of the known best values of upper-level objective functions
were recovered by all the methods, as the relative error is close to zero. For 93 of the tested problems,
the upper-level objective function error is negligible (i.e., less than 5%) for the solutions obtained by
all the three methods. For the remaining 23 examples, it is clear that the errors resulting from fsolve
are much higher than the ones from the Gauss-Newton and Pseudo-Newton methods. It is worth
noting that algorithms perform fairly well for most of the problems. With the accuracy error 6 20%
our algorithms recovered solutions for 92.31% of the problems, while fsolve recovered only 88.03%
of the solutions.

5.4 Variation of the tolerance in the stopping criterion

Let us now evaluate the performance of Algorithm 4.1 as we relax the tolerance in the stopping
criterion. Setting ε := 10−8 (as opposed to ε := 10−5 used so far) it turns out that for most of
the examples our algorithms stop at the maximum number of iterations, or when the gap between
improvement from step to step is too small.

Figure 7: Performance of the methods in terms of solving Υλµ(z) = 0

The values of ‖Υλµ(z)‖ produced by the algorithms are presented in increasing order in Figure
7. We can see that fsolve performs slightly better for 40 examples, where all algorithms achieve
||Υλµ(z)|| 6 10−8. For those examples, fsolve recovered solutions with better tolerance than the

5 numerical results 52

Gauss-Newton and Pseudo-Newton algorithms. This shows that whenever we are able to solve a
problem almost exactly, fsolve’s stopping criteria is more strict and obtains slightly better values for
the system. This can be explained by an additional stopping criteria that we use for Gauss-Newton
and Pseudo-Newton methods if the improvement between the steps of the algorithms gets too small.
Accordingly, whenever we are able to solve the system Υλµ(z) = 0 almost exactly, fsolve’s stopping
criteria is somewhat less strict and keeps iterating to produce values of ||Υλµ(z)|| that are closer to 0
than for the other two methods. The explanation could be that due to an additional stopping criteria
for the Gauss-Newton and Pseudo-Newton algorithms stop earlier once significant improvement of
the solution is not observed from step to step. If we now look at the performance of the algorithms
with tolerances between 10−8 and 10−6, the Pseudo-Newton method shows better performance
than the other algorithms and fsolve is the weakest among the three methods. This means that if
we want to solve a problem with the tolerance of 10−6 or better, the Pseudo-Newton algorithm is
more likely to recover solutions than the other two methods. The other important observation from
Figure 7 is that choosing ε := 10−5 is the most sensible tolerance for our problem set, as better
tolerance only allow about 50% of the examples to be solved (i.e., just over 60 examples as we can
see from the graph).

5.5 Checking assumption on λ

Considering the importance of the requirement that λ <
κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

for j = 1, . . . ,p in Theorem 4.3, let us

analyze its ramifications regarding the solution point generated from Algorithm 4.1 for each value
of λ ∈ {100, 10, 1, 0.1, 0.01}. To simplify the analysis, we introduce

cµ(λ) := min
j=1,...,p

κ
µ
j

θ
µ
j

τ
µ
j

γ
µ
j

.

It suffices to check that λ < cµ(λ). We set λ− cµ(λ) := 100 if the difference is undefined, and we
do not consider problems with no lower-level constraints. (Because the assumption on λ is not
necessary in Theorem 4.3 for problems with no lower-level constraint.) Let us also introduce the
notions of the best λ and optimal λ, whereby the best λ we mean the values of λ for which λ− cµ(λ)
is the smallest and by the optimal we mean the values of λ that were the best to obtain the solution
according to [Supp1]. In the figure below we present the difference λ − cµ(λ) on the y-axis and
number of the example on the x-axis, following ascending order w.r.t. the values on the y-axis.

Figure 8: Checking assumption λ < cµ(λ) for best and optimal values of λ

Clearly, condition λ < cµ(λ) holds for the values of λ− cµ(λ) lying below the x-axis. From Figure
8, we can see that the assumption holds for 42 (out of 116) problems for the optimal λ. This means
that the condition can hold for many examples. But, obviously, as it is not a necessary condition,

6 final comments 53

our Algorithm 4.1 still converges for many other problems, where the condition is not necessarily
satisfied. For the best values of λ, condition λ < cµ(λ) holds for 101 problems. Hence, showing
that for most of the examples, there is at least one value of λ ∈ {100, 10, 1, 0.1, 0.01} for which the
condition is satisfied.

6 final comments

In this paper, a class of the lower-level value function-based optimality conditions for the bilevel
optimization problems has been reformulated as a system of equations using the Fischer-Burmeister
function. We have shown that the Gauss-Newton method for such systems can be well-defined
and provide a framework for convergence. We then test the method and its smoothed version
numerically, alongside with Newton’s method with Moore-Penrose pseudo inverse. The comparison
of solutions obtained with known best ones shows that the methods are appropriate to be used for
bilevel programs, as they recover optimal solutions (when known) for most of the problems tested.

It is worth mentioning that whenever ∇Υλµ(z)T∇Υλµ(z) is non-singular throughout all iterations,
Gauss-Newton and Pseudo-Newton methods produced the same results as expected. More inter-
estingly, for the 38 test problems for which the Gauss-Newton method could not be implemented
due to singularity of the direction matrix for one or more values of λ (see [Supp1]), our conjec-
ture that the Pseudo-Newton would produce reasonable solutions for these cases was correct for 14

problems (e.g., CalamaiVicente1994c, DempeDutta2012b, and DempeFranke2011a in [Supp1]), but fails
for the remaining 24 examples (e.g., Bard1988c, Colson2002BIPA3, and DempeDutta2012a in [Supp1]).
Nevertheless, we can conclude that our proposed Pseudo-Newton method is indeed somewhat more
robust than the Gauss-Newton method. Overall, the Gauss-Newton and Pseudo-Newton methods
are more efficient at recovering solutions for BOLIB test problems [85] than the MATLAB built-in
function fsolve. We also show that our methods are better at producing feasible solutions (i.e.,
optimal points for the lower-level problem) than fsolve; cf. Subsection 5.2.

acknowledgements

The authors would like to thank the two anonymous referees for their constructive remarks that
have helped us to improve the quality of this paper. The work of the second author was supported
by the University of Southampton Presidential Scholarship and that of third author was funded by
an EPSRC grant with reference number EP/P022553/1.

54

Part III.
Paper 2: Levenberg-Marquardt method and
partial exact penalty parameter selection in
bilevel optimization
This article examines the application of smoothed Levenberg-Marquardt method to find solutions of
bilevel programming problems. To proceed, we use the lower-level value function reformulation of
bilevel programs and consider necessary optimality conditions under appropriate assumptions. In
particular, we discuss partial calmness assumption used to derive the optimality conditions. Partial
calmness is strongly linked to the exact penalization parameter for our case. This turns out to play
important role for our method. The method is analyzed for the two options of selecting penalty
parameter. First approach implements the method with several fixed values of penalty parameter.
The second approach defines penalty parameter as increasing sequence throughout iterations of
the method. We further present the algorithm with the required convergence assumptions and
parameters specifications. Numerical experiments conducted on 124 examples from the recently
released Bilevel Optimization Library (BOLIB) compare the performance of our method under two
different scenarios of selecting penalty parameter.

1 introduction

We aim to solve the bilevel programming problem

min
x,y

F(x,y) s.t. G(x,y) 6 0, y ∈ S(x) := arg min
y

{f(x,y) : g(x,y) 6 0}, (1.1)

where F : Rn ×Rm → R, f : Rn ×Rm → R, G : Rn ×Rm → Rq, and g : Rn ×Rm → Rp. As usual,
we refer to F (resp. f) as upper-level (resp. lower-level) objective function and G (resp. g) stands for
upper-level (resp. lower-level) constraint function. Solving problem (1.1) is very difficult because of
the implicit nature of the lower-level optimal solution mapping S : Rn ⇒ Rm defined in (1.1).

There are several ways to deal with the complex nature of problem (1.1). One popular technique
is to replace the lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions. Interested
readers are referred to [1, 23, 41] and references therein, for results and methods based on this
transformation. As mentioned in [Paper 1] such reformulation is strongly linked to MPECs, see,
e.g., [19], which are not necessarily easy to handle due in part to the extra variables representing the
lower-level Lagrangian multipliers. In this paper, we are going to use the lower-level value function
reformulation (LLVF)

min
x,y

F(x,y) s.t. G(x,y) 6 0, g(x,y) 6 0, f(x,y) 6 ϕ(x), (1.2)

where the optimal value function is defined by

ϕ(x) := min {f(x,y) | g(x,y) 6 0 } , (1.3)

to transform problem (1.1) into a single-level optimization problem. As illustrated in [31, Paper 1],
this approach can provide tractable opportunities to develop algorithms for the bilevel optimization
problem. The benefit of such reformulation is that it does not involve first order derivatives for
lower-level problem, in contrast to the KKT reformulation.

There are recent studies on solution methods for bilevel programs, based on the LLVF reformu-
lation. For example, [46, 47, 53, 58, 73] develop global optimization techniques for (1.1) based on
(1.2)–(1.3). [50, 75, 76] propose algorithms computing stationary points for (1.2)–(1.3), in the case

1 introduction 55

where the upper-level and lower-level feasible sets do not depend on the lower-level and upper-
level variable, respectively. [31, Paper 1] are the first papers to propose Newton-type methods for
the LLVF reformulation for bilevel programs. Numerical results there show that the methods could
be well-defined and produce successful results with reasonable frequency. The study of Gauss-
Newton-type techniques to capture certain classes of bilevel optimization stationarity points was
already carried out in [Paper 1]. This paper considers extension of Gauss-Newton method, known
as Levenberg-Marquardt method. Levenberg-Marquardt method is more robust than Gauss-Newton
method as the possibility of the singularity problem is avoided by adding a perturbation on the
main diagonal of the matrix.

One of the main problems in solving (1.2) is that its feasible set systematically fails many con-
straint qualifications (see, e.g., [24]). To deal with this issue, we will use the partial calmness condi-
tion [81], to shift the value function constraint f(x,y) 6 ϕ(x) to the upper-level objective function, as
the penalty term with parameter λ. The choice of the penalty parameter is a broad area, where au-
thors use different methods to optimally choose the parameter, [8, 11, 33, 51, 59, 61]. For this reason,
this paper will study partial calmness assumption and penalization approach for our framework in
details. The other difficulty with the LLVF reformulation is that ϕ is typically non-differentiable
function. This will be handled by using upper estimates of the subdifferential of the function; see,
e.g., [24, 20, 23, 81]. This estimate will lead us to a relatively simple system of optimality conditions,
which depend on λ. However, the control of the penalty parameter λ is not trivial. Two approaches
in the context of applying Levenberg-Marquardt scheme will be discussed in the paper. The more
theoretical approach suggests varying λ as a sequence, increasing the value of λ at each iteration.
However, this approach has a disadvantage for implementing the algorithm. In particular, It will
be shown that if we let penalty parameter to be too large an issue of ill-conditioning could occur.
Hence, the approach of choosing fixed values of λ is discussed as well. As we do not know the ap-
propriate order of magnitude of λ for each example beforehand, it makes sense to test the algorithm
for several values of fixed λ.

In section 2 we start by transforming the optimality conditions into a system of equations. To do
so we substitute the corresponding complementarity conditions by the standard Fischer-Burmeister
function [29]. To deal with the non-differentiability of the Fischer-Burmeister function, we imple-
ment a smoothing technique by adding a perturbation, µ, inside the Fischer-Burmeister function.
We are then going to introduce Smoothed Levenberg-Marquardt method for Bilevel Optimization.
It will be shown that the method can converge for solving bilevel programs from the perspective
of the LLVF reformulation (1.2). Line search is then introduced, where we use Armijo condition to
control stepsize of the algorithm. This ensures global convergence of the method and brings in
an extra parameter to the method. As we are combining several techniques, involving the task of
choosing parameters efficiently, we conclude Section 2 by discussing parameters selection for the
algorithm. For the numerical tests in Section 4, we present results of extensive experiments for
testing the method. The numerical analysis will be in the similar framework as in [Paper 1]. Addi-
tionally, we are going to study the behaviour of the method with the penalty parameter defined as
increasing sequence. In Section 3 we are going to focus on partial calmness and exact penalization,
including discussion of the choice of penalty parameter and ill-conditioning issue. This analysis
plays an important role in the behaviour of the method and hence discussed in details, including
the ways to avoid ill-conditioning of the method. Further, we are going to present some results on
experimental order of convergence (EOC) of the method and line search stepsize parameter at the last
iteration. The results in Section 4 are compared with known solutions of the problems to check the
performance of the method under two different scenarios of choosing penalty parameter.

2 levenberg-marquardt method for bilevel optimization 56

2 levenberg-marquardt method for bilevel optimization

We start this section with some definitions necessary to state the optimality conditions of the bilevel
program (1.2). The lower-level problem is fully convex if the functions f and gi, i = 1, . . . ,p are
convex in (x,y). A point (x̄, ȳ) is said to be lower-level regular if there exists d such that

∇ygi(x̄, ȳ)>d < 0 for i ∈ Ig(x̄, ȳ) := {i : gi(x̄, ȳ) = 0} . (2.1)

Obviously, this is the Mangasarian-Fromovitz constraint qualification (MFCQ) for the lower-level prob-
lem in (1.2). Similarly, a point (x̄, ȳ) is upper-level regular if there exists d such that

∇gi(x̄, ȳ)>d < 0 for j ∈ Ig(x̄, ȳ),
∇Gj(x̄, ȳ)>d < 0 for j ∈ IG(x̄, ȳ) :=

{
j : Gj(x̄, ȳ) = 0

}
.

(2.2)

Finally, to write the necessary optimality conditions for problem (1.2), it is standard to use the
following partial calmness concept [81]:

Definition 2.1. Let (x̄, ȳ) be a local optimal solution of problem (1.2). This problem is partially calm at (x̄, ȳ)
if there exists λ > 0 and a neighbourhood U of (x̄, ȳ, 0) such that

F(x,y) − F(x̄, ȳ) + λ|u| > 0, ∀(x,y,u) ∈ U : G(x,y) 6 0, g(x,y) 6 0, f(x,y) −ϕ(x) − u = 0.

The following relationship shows that partial calmness enables the penalization of the optimal
value function constraint f(x,y) −ϕ(x) 6 0 to generate a tractable optimization problem.

Theorem 2.2 ([52]). Let (x̄, ȳ) be a local minimizer of (1.2). Then, this problem is partially calm at (x̄, ȳ) if
and only if there is some λ̄ > 0 such that for any λ > λ̄, the point (x̄, ȳ) is also a local minimizer of

min
x,y

F(x,y) + λ(f(x,y) −ϕ(x)) s.t. G(x,y) 6 0, g(x,y) 6 0. (2.3)

Problem (2.3) is known as the partial exact penalization problem of (1.2), as only the optimal value
constraint is penalized. Next, we state the necessary optimality conditions for problems based on
the aforementioned qualification conditions (see, e.g., [24, 20, 23, 81]) based on an estimate of the
subdifferential of the optimal value function ϕ (1.3).

Theorem 2.3. Let (x̄, ȳ) be a local optimal solution of problem (1.2), where all involved functions are as-
sumed to be continuously differentiable, ϕ is finite around x̄, and the lower-level problem is fully convex.
Furthermore, suppose that the problem is partially calm at (x̄, ȳ), and the lower- and upper-level regularity
conditions are both satisfied at (x̄, ȳ). Then, there exist λ > 0, as well as u,w ∈ Rp and v ∈ Rq such that

∇F(x̄, ȳ) +∇g(x̄, ȳ)T (u− λw) +∇G(x̄, ȳ)Tv = 0, (2.4)

∇yf(x̄, ȳ) +∇yg(x̄, ȳ)Tw = 0, (2.5)

u > 0, g(x̄, ȳ) 6 0, uTg(x̄, ȳ) = 0, (2.6)

v > 0, G(x̄, ȳ) 6 0, vTG(x̄, ȳ) = 0, (2.7)

w > 0, g(x̄, ȳ) 6 0, wTg(x̄, ȳ) = 0. (2.8)

Remark 2.4. Most of the literature such as [20, 23, 24, 81] consider the case where upper-level
constraint G does not depend on lower-level variable y. Hence, the result there would have
∇yG(x,y) = 0. However, it has been shown in [80] that introducing optimality conditions with
G(x,y) is mathematically valid and we consider this scenario here as it is more general.

In this result, partial calmness and full convexity are essential and fundamentally related to the
nature of the bilevel optimization. Hence, it is important to highlight a few classes of problems sat-
isfying these assumptions. Partial calmness has been the main tool to derive optimality conditions
for (1.1) from the perspective of the optimal value function; see, e.g., [20, 23, 24, 81]. It automatically
holds if G is independent from y and the lower-level problem is defined by

f(x,y) := c>y and g(x,y) := A(x) +By, (2.9)

2 levenberg-marquardt method for bilevel optimization 57

whereA : Rn → Rp, c ∈ Rm, and B ∈ Rp×m. More generally, various sufficient conditions ensuring
that partial calmness holds have been studied in the literature; see [81] for the seminal work on the
subject. More recently, the paper [52] has revisited the condition, proposed a fresh perspective, and
established new dual-type sufficient conditions for partial calmness to hold.

As for full convexity, it will be automatically be satisfied for the class of problem defined in (2.9)
provided that each component of the function A is a convex function. Another class of nonlinear
fully convex lower-level problem is given in [48]. Note however when it is not possible to guarantee
that this assumption is satisfied, there are at least two alternative scenarios to obtain the same op-
timality conditions. The first is to replace the full convexity assumption by the inner semicontinuity
of the optimal solution set-valued mapping S (1.1). Secondly, note that a much weaker qualification
condition known as inner semicompactness can also be used here. However, under the latter assump-
tion, it will additionally be required to have S(x̄) = {ȳ} in order to get the optimality conditions in
(2.4)–(2.8). The concept of inner semicontinuity (resp. semicompactness) of S is closely related to
the lower semicontinuity (resp. upper semicontinuity) of set-valued mappings; for more details on
these notions and their implementation on bilevel programs, see [20, 23, 24].

It is important to mention that various other necessary optimality conditions, different from the
above ones, can be obtained, depending on the assumptions made. Details of different stationarity
concepts for (1.2) can be found in the latter references, as well as in [83].

2.1 The algorithm and its convergence analysis

To reformulate the complementarity conditions (2.6)–(2.8) into a system of equations, we use the
well-known Fischer-Burmeister function [29] φ(a,b) :=

√
a2 + b2 − a− b, which ensures that

φ(a,b) = 0 ⇐⇒ a > 0, b > 0, ab = 0.

This leads to the reformulation of the optimality conditions (2.4)–(2.8) into the system of equations:

Υλ(z) :=



∇xF(x,y) +∇xg(x,y)T (u− λw) +∇xG(x,y)Tv
∇yF(x,y) +∇yg(x,y)T (u− λw) +∇yG(x,y)Tv

∇yf(x,y) +∇yg(x,y)Tw√
u2 + g(x,y)2 − u+ g(x,y)√
v2 +G(x,y)2 − v+G(x,y)√
w2 + g(x,y)2 −w+ g(x,y)


= 0, (2.10)

where we have z := (x,y,u, v,w) and

√
u2 + g(x,y)2 − u+ g(x,y) :=


√
u21 + g1(x,y)2 − u1 + g1(x,y)

...√
u2p + gp(x,y)2 − up + gp(x,y)

 . (2.11)

√
v2 +G(x,y)2 − v+G(x,y) and

√
w2 + g(x,y)2 −w+ g(x,y) are defined as in (2.11). The super-

script λ is used to emphasize the fact that this number is a parameter and not a variable for equation
(2.10). One can easily check that this system is made of n+ 2m+ p+ q+ p real-valued equations
and n+m+ p+ q+ p variables. Clearly, this means that (2.10) is an overdetermined system and the
Jacobian of Υλ(z), when it exists, is a non-square matrix.

To focus our attention on the main ideas of this paper, we smoothen the function Υλ (2.10) using
the smoothed Fischer-Burmeister function (see [42]) defined by

φ
µ
j (x,y,u) :=

√
u2j + gj(x,y)2 + 2µ− uj + gj(x,y), j = 1, . . . ,p, (2.12)

where the perturbation µ > 0 helps to guaranty its differentiability at points (x,y,u), where uj =
gj(x,y) = 0 for j = 1, . . . ,p. It is well-known (see latter reference) that for j = 1, . . . ,p,

φ
µ
j (x,y,u) = 0 ⇐⇒

[
uj > 0, −gj(x,y) > 0, −ujgj(x,y) = µ

]
. (2.13)

2 levenberg-marquardt method for bilevel optimization 58

The smoothed version of system (2.10) then becomes

Υλµ(z) =



∇xF(x,y) +∇xg(x,y)T (u− λw) +∇xG(x,y)Tv
∇yF(x,y) +∇yg(x,y)T (u− λw) +∇yG(x,y)Tv

∇yf(x,y) +∇yg(x,y)Tw√
u2 + g(x,y)2 + 2µ− u+ g(x,y)√
v2 +G(x,y)2 + 2µ− v+G(x,y)√
w2 + g(x,y)2 + 2µ−w+ g(x,y)


= 0, (2.14)

following the convention in (2.11), where µ is a vector of appropriate dimensions with sufficiently
small positive elements. Under the assumption that all the functions involved in problem (1.1) are
continuously differentiable, Υλµ is also a continuously differentiable function for any λ > 0 and
µ > 0. We can easily check that for a fixed value of λ > 0,

‖Υλµ(z) −Υλ(z)‖ −→ 0 as µ ↓ 0. (2.15)

Hence, based on this scheme, our aim is to consider a sequence {µk} decreasing to 0 such that
equation (2.10) is approximately solved while leading to

Υλµk(z
k) −→ 0 as k ↑∞

for a fixed value of λ > 0. In order to proceed, let us define the least squares problem

min Φλµ(z) :=
1

2

∥∥Υλ(z)∥∥2 . (2.16)

Before we introduce the smoothed Levenberg-Marquardt method, that will be one of the main focus
points of this paper, note that for fixed λ > 0 and µ > 0,

∇Υλµ(z) =


∇2Lλ(z) ∇g(x,y)T ∇G(x,y)T −λ∇g(x,y)T

∇(∇yL(z)) O O ∇yg(x,y)T

Tµ∇g(x,y) Γµ O O

Aµ∇G(x,y) O Bµ O

Θµ∇g(x,y) O O Kµ

 (2.17)

with the pair (Tµ, Γµ) defined by Tµ := diag {τ
µ
1 , .., τµp} and Γµ := diag {γ

µ
1 , ..,γµp}, where

τ
µ
j :=

gj(x,y)√
u2j + gj(x,y)2 + 2µ

+ 1 and γ
µ
j :=

uj√
u2j + gj(x,y)2 + 2µ

− 1, j = 1, . . . p. (2.18)

The pairs (Aµ, Bµ) and (Θµ,Kµ) are defined in a similar way, based on (vj,Gj(x,y)), j = 1, . . . ,q
and (wj,gj(x,y)), j = 1, . . . ,p respectively.

We now move on to present some definitions that will help us state the algorithm with line search.
It is well-known that line search helps to choose optimal step length to avoid over-going an optimal
solution in the direction dk and also to globalize the convergence of the method, i.e., have more
flexibility on the starting point z0. We need to calculate the optimal step-length, γk. This can be
done through minimizing Φλ(zk + γkdk), with respect to γk, such that

Φλ(zk + γkd
k) 6 Φλ(zk) + σγk∇Φλ(zk)Tdk for 0 < σ < 1.

That is, we are looking for γk = argminγ∈R ||Υλ(zk + γdk)||2. To implement line search, it is
standard to use Armijo condition that guarantees a decrease at the next iterate.

Definition 2.5. Fixing d and z, consider the function φλ(γ) := Φλ(z+ γd). Then, the Armijo condition
will be said to hold if φλ(γ) 6 φ(0) + γσφ ′λ(γ) for some 0 < σ < 1.

The practical implementation of the Armijo condition is based on backtracking.

2 levenberg-marquardt method for bilevel optimization 59

Definition 2.6. Let ρ ∈ (0, 1) and γ̄ > 0. Backtracking is the process of checking over a sequence γ̄, ργ̄,
ρ2γ̄, . . . , until a number γ is found satisfying the Armijo condition.

Line search is widely used in continuous optimization; see, e.g., [55] for more details. For the
implementation in this paper, we start with stepsize γ0 := 1; then, if the condition∥∥Υλ(zk + γkdk)∥∥2 < ∥∥Υλ(zk)∥∥2 + σγk∇Υλµ(zk)TΥλ(zk)dk,

is not satisfied, we set γk = γk/2 and check again until the condition above is satisfied. Sufficient
conditions to ensure global convergence of the method are known to be satisfied for backtracking line
search. The algorithm then proceeds as follows:

Algorithm 2.7. Smoothed Levenberg-Marquardt Method for Bilevel Optimization

Step 0: Choose (λ,µ,K, ε,α0) ∈
(
R∗+
)5, (ρ,σ,γ0) ∈ (0, 1)3, z0 := (x0,y0,u0, v0,w0), and set k := 0.

Step 1: If
∥∥Υλµ(zk)∥∥ < ε or k > K, then stop.

Step 2: Calculate the Jacobian ∇Υλµ(zk) and subsequently find a vector dk satisfying(
∇Υλµ(zk)>∇Υλµ(zk) +αkI

)
dk = −∇Υλµ(zk)>Υλµ(zk), (2.19)

where I denotes the identity matrix of appropriate size.
Step 3: While

∥∥Υλµ(zk + γkdk)∥∥2 > ∥∥Υλµ(zk)∥∥2 + σγk∇Υλµ(zk)TΥλµ(zk)dk, do γk ← ργk end.
Step 4: Set zk+1 := zk + γkdk, k := k+ 1, and go to Step 1.

Note that in Step 0, R∗+ := (0, ∞). Before we move on to focus our attention on the practical
implementation details of this algorithm, we present its convergence result, which is based on the
following selection of the Levenberg-Marquardt (LM) parameter αk:

αk = ‖Υλµ(zk)‖η for any choice of η ∈ [1, 2] . (2.20)

Theorem 2.8 ([27]). Consider Algorithm 2.7 with fixed values for the parameters λ > 0 and µ > 0 and let
αk be defined as in (2.20). Then, the sequence {zk} generated by the algorithm converges quadratically to z̄
satisfying Υλµ(z̄) = 0, under the following assumptions:

1. Υλµ : RN → RN+m is continuously differentiable and∇Υλµ : RN → R(N+m)×(N) is locally Lipschitz
continuous in a neighbourhood of z̄.

2. There exists some C > 0 and δ > 0 such that

Cdist(z,Zλµ) 6
∥∥Υλµ(z)∥∥ for all z ∈ B(z̄, δ),

where dist denotes the distance function and Zλµ corresponds to the solution set of equation (2.14).

For fixed values of λ > 0 and µ > 0, assumption 1 in this theorem is automatically satisfied
if all the functions involved in problem (1.1) are twice continuously differentiable. According to
[78], assumption 2 of Theorem 2.8 is fulfilled if the matrix ∇Υλµ has a full column rank. Various
conditions guarantying that ∇Υλµ has a full rank have been developed in [Paper 1]. Below, we
present an example of bilevel program satisfying the first and second assumptions of Theorem 2.8.

Example 2.9. Consider the following instance of problem (1.1) from the BOLIB library [85, Lam-
prielloSagratelli2017Ex33]:

F(x,y) := x2 + (y1 + y2)
2,

G(x,y) := −x+ 0.5,
f(x,y) := y1,

g(x,y) :=

(
−x− y1 − y2 + 1

−y

)
.

Obviously, assumption 1 holds. According to [Paper 1], for this example, the columns of ∇Υλµ are
linearly independent at the solution point

z̄ := (x̄, ȳ1, ȳ2, ū1, ū2, ū3, v̄, w̄1, w̄2, w̄3) = (0.5, 0, 0.5, 1, λ, 0, 0, 0, 1, 0)

with the parameters chosen as µ = 2× 10−2 and λ = 10−2.

2 levenberg-marquardt method for bilevel optimization 60

2.2 Practical implementation details

On the selection of the LM parameter αk, a preliminary analysis based on the BOLIB library test set
[85]. It was observed that for almost all the corresponding examples, the choice αk :=

∥∥Υλµ(zk)∥∥η
with η ∈ (1, 2] leads to a very poor performance of Algorithm 2.7. The typical behaviour of the
algorithm for η ∈ (1, 2] is shown in the following example.

Example 2.10. Consider the following scenario of problem (1.1) from [85, AllendeStill2013]:

F(x,y) := x21 − 2x1 + x
2
2 − 2x2 + y

2
1 + y

2
2,

G(x,y) :=

 −x

−y

x1 − 2

 ,

f(x,y) := y21 − 2x1y1 + y
2
2 − 2x2y2,

g(x,y) :=

(
(y1 − 1)

2 − 0.25
(y2 − 1)

2 − 0.25

)
.

Figure 9 shows the progression of
∥∥Υλ(zk)∥∥ generated from Algorithm 2.7 with αk selected as in

(2.20) while setting η = 1 and η = 2, respectively. Clearly, after about 100 iterations
∥∥Υλ(zk)∥∥ blows

up relatively quickly when η = 2, while it falls and stabilizes within a certain tolerance for η = 1.

(a) αk :=
∥∥Υλ(zk)∥∥ (b) αk :=

∥∥Υλ(zk)∥∥2
Figure 9: Typical behaviour of Algorithm 2.7 for two scenarios of LM parameter

It is worth noting that the scale on the y-axis of Figure 9(b) is quite large. Hence, it might not be
apparent that solutions at the early iterations of the algorithm are much better for η = 1 compared
to the ones obtained in the case where η = 2.

Although Algorithm 2.7 is designed to have descent direction, we cannot guarantee that direction
is indeed descent at every iteration of the algorithm. In the above example we observe that the algo-
rithm can sometimes make non-descending iterations. There could be a variety of reasons for such
behaviour. The most obvious ones are nature of the problem, complexity of the algorithm and speci-
fications of the parameters of the method. However, the most likely explanation for non-descending
behaviour is the procedure of varying the penalty parameter λ between the iterations, as this results
in solving a different problem at each iteration. Adding this to overdetermined structure of the
system and tuning required for the convergence of the algorithm (such as smoothing technique and
line-search) could lead to surprising behaviour at some iterations. Note that for almost all of the
examples in the BOLIB test set [85], we have a behaviour of Algorithm (2.7) similar to that of Figure
9(b) when αk =

∥∥Υλ(zk)∥∥η for many different choices of η ∈ (1, 2]. It is important to mention
that the behaviour of the algorithm is not surprising, as it is well-known in the literature that with
αk :=

∥∥Υλµ(zk)∥∥2, the Levenberg–Marquardt faces some potential implementation problems. When

the sequence is close to the solution set, αk :=
∥∥Υλµ(zk)∥∥2 could become smaller than the machine

2 levenberg-marquardt method for bilevel optimization 61

precision and hence lose its role as a result of this. On the other hand, when the sequence is far
away from the solution set,

∥∥Υλµ(zk)∥∥2 may be very large; making movement to the solution set to
be very slow. Hence, from now on, we use αk :=

∥∥Υλ(zk)∥∥ (k = 0, 1, . . .) for all the analysis of
Algorithm 2.7 conducted in this paper. Note however that there are various other approaches to
select αk in the literature; see, e.g., [5, 6, 26, 27, 44, 78].

It is worth noting that Step 0 of Algorithm 2.7 is crucial for the convergence and performance of
the algorithm. There, K represents the maximum number of iteration that we set to K := 1000. As for
γ, ρ, and σ, they correspond to the parameters of the line search technique described in Definitions
2.5 and 2.6. To be precise, we use the values γ0 := 1, ρ = 0.5, and σ = 10−2. The selection of the
remaining parameters of the algorithm is going to be carefully addressed in the sequel.

Smoothing parameter µ. First, note that for the practical implementation of Algorithm 2.7, the
smoothing process, i.e., the use of the parameter µ is used only where the derivative calculation
is necessary. That is, precisely in Step 2 and Step 3. Where the derivative evaluation for Υλµ is
necessary, fixing µ to be a small constant for all iterations can perform better than setting µk ↓ 0
to be a decreasing sequence. We have tried both approaches and it was observed is that our algo-
rithms is indifferent of both of the options. For our algorithms we are going to define decreasing
sequence µk := 0.001/(1.5k). As the idea of the smoothing parameter is to be as small as possible
to approximate the original function, we start with the small value and decrease it with every iter-
ation drawing the value of µ to zero, i.e. µk ↓ 0. Smoothing is well-known and popular approach
to use for Newton-type methods. Some of the papers (e.g. [31, Paper 1]) report difficulties with
running the algorithm with a smoothing parameter being a sequence µk ↓ 0. In such cases authors
fix the parameter µ to be a small number (e.g. µ := 10−11) and run algorithm keeping µ constant
throughout all iterations. Interestingly, testing the behaviour of constant smoothing parameter and
smoothing parameter as decreasing sequence for our algorithm has shown that both options lead to
obtaining the same results. This was observed to hold for the algorithm with varying λ, as well as
for the algorithm with fixed values of λ . We obtain the same results fixing µ to be a small constant
(µ := 10−11) or choosing µk := 0.001/(1.5k). In the light of this, we stick to what is theoretically
right, that is the smoothing sequence µk := 0.001/(1.5k).

Descent direction check and update. If
∥∥Υλ(zk + γkdk)∥∥2 < ∥∥Υλ(zk)∥∥2 + σγk∇Υλ(zk)TΥλ(zk)dk

we redefine γk = γk/2 and check again. Remind ourselves that Levenberg-Marquardt direction
can be interpreted as a combination of Gauss-Newton direction and steepest descent direction.
When αk = 0 Levenberg-Marquardt direction is equivalent to Gauss-Newton direction. Similarly as
αk → ∞ the direction dk tends to steepest descent direction. With this approach, if the Levenberg-
Marquardt direction is not descent at some iteration, we give more weight to the steepest descent
direction. Hence, when

∥∥Υλ(zk)∥∥ > ∥∥Υλ(zk−1)∥∥ setting αk+1 := 10000
∥∥Υλ(zk)∥∥ has led to an oev-

erall good performance of Algorithm 2.7 for test set used in this paper.

Stopping Criteria. The primary stopping criteria is that the algorithm is that
∥∥Υλµ(zk)∥∥ < ε, as

requested in Step 1. However, as it will be discussed in detail in the next sections, robust safeguards
are needed to deal with ill-behaviours typically due to the size of the penalty parameter λ. Hence,
for the practical implementation of the method, we set ε = 10−5 and stop if one of the following six
conditions is satisfied:

1.
∥∥Υλ(zk)∥∥ < ε,

2.
∣∣ ∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ ∣∣ < 10−9,

3.
∣∣ ∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ ∣∣ < 10−4 and iter > 200,

4.
∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ < 0 and

∥∥Υλ(zk)∥∥ < 10 and iter > 175,

5.
∥∥Υλ(zk)∥∥ < 10−2 and iter > 500,

3 partial exact penalty parameter selection 62

6.
∥∥Υλ(zk)∥∥ > 102 and iter > 200.

The additional stopping criteria is important to ensure that algorithm is not running for too long.
The danger of running algorithm for too long is that ill-conditioning could occur. Further, we typi-
cally observe the pattern that we recover solution earlier than algorithm stops. This appears due to
the nature of the overdetermined system. We do not know beforehand the tolerance with which we
can solve for

∥∥Υλ(z)∥∥ as Υλ is overdetermined system. Hence, it is hard to select ε that would fit all
examples and allow to solve examples with efficient tolerance. With the stopping criteria defined
above we avoid running unnecessary iterations, retaining the obtained solution. To avoid algorithm
running for too long and to prevent λ to become too large, we impose additional stopping criterion
3, 5 or 6 above. The motivation behind this stopping criteria was the observation of the behaviour of
the algorithm. For almost all of the examples we observe that after 100-150 iterations we obtain the
value reasonably close to the solution but we cannot know beforehand what would be the tolerance
of
∥∥Υλ(zk)∥∥ to stop. Choosing small ε would not always work due to the overdetermined nature of

the system being solved. Choosing ε too big would lead to worse solutions and possibly not recover
some of the solutions. Further, a quick check has shown that ill-conditioning issue typically takes
place after 500 iterations for majority of the problems. For these reasons we stop if the improve of
the Error value from step to step becomes too small,

∣∣ ∥∥Υλ(zk−1)∥∥− ∥∥Υλ(zk)∥∥ ∣∣ < 10−4, after the
algorithm has performed 200 iterations. Since ill-conditioning is likely to happen after 500 iterations
we stop if by that time we obtain a reasonably small Error,

∥∥Υλ(zk)∥∥ < 10−2. Finally, if it turns
out that system cannot be solved with a good tolerance, such that we would obtain a reasonably
small value of the Error, we stop if the Error after 200 iterations is big,

∥∥Υλ(zk)∥∥ > 102. This way
additional stopping criteria plays the role of safeguard to prevent ill-conditioning and also does not
allow the algorithm to keep running for too long once a good solution is obtained.

Starting point. The experiments have shown that the algorithm performs much better if the starting
point (x0,y0) is feasible. As a default setup, we start with x0 = 1n and y0 = 1m. If the default
starting point does not satisfy at least one constraint and algorithm diverges, we choose a feasible
starting point; see [Supp2] for such choices. To be more precise, if for some i, Gi(x0,y0) > 0 or for
some j we have gj(x0,y0) > 0 and the algorithm does not converge to a reasonable solution, we
generate a starting point such that Gi(x0,y0) = 0 or gj(x0,y0) = 0. Subsequently, the Lagrange
multipliers are initialised at u0 = max

{
0.01, −g(x0,y0)

}
, v0 = max {0.01, −G(x,y)}, and u0 = w0.

To conclude this section, it is important to recall that from the perspective of bilevel optimization,
the partial exact penalization parameter λ is the main element of Algorithm 2.7, as it originates
from the penalization of the value function constraint f(x,y) 6 ϕ(x). Additionally, unlike the
other parameters involved in the algorithm, which have benefited from many years of research, as
reported above, it remains unknown what is the best way to select λ while solving problem (1.1) via
the value function reformulation (1.2). Hence, the focus of the remaining parts of this paper will be
focused on the selection of λ and impact on Algorithm 2.7.

3 partial exact penalty parameter selection

The aim of this section is to explore the best way to select the penalization parameter λ. Based on
Theorem 2.2, we should be getting the solution for some threshold value λ̄ of the penalty parameter
and the algorithm should be returning the value of the solution for any λ > λ̄. Hence, increasing λ
at every iteration seems to be the ideal approach to follow this logic to obtain and retain the solution.
Hence, to proceed, we take the increasing sequence λk := 0.5 ∗ (1.05)k, where k is the number of
iterations of the algorithm. The main reason of this choice is that the final value of λ needs not
to be too small to recover solutions and not too large to avoid the issue of ill-conditioning. It was
observed that going too aggressive with the sequence (e.g., with λk := 2k) forces the algorithm
to diverge. Also, it was observed that for fixed and small values of λ (i.e., λ < 1), Algorithm 2.7
performs well for many examples. This justifies choosing the starting value for varying parameter

3 partial exact penalty parameter selection 63

λ to be λ < 1. Overall, the aim here is vary λ as mentioned above and assess what could be the
potential best ranges for selection of the parameter based on our test set from BOLIB [85].

3.1 How far can we go with the value of λ?

We start here by acknowledging that it is very difficult to check that partial calmness holds in
practice. Nevertheless, we would like to consider Theorem 2.2 as the base of our analysis, and
ask ourselves how large does λ need to be for Algorithm 2.7 to converge. Intuitively, one would
think that taking λ as whatever large number should be fine. However, this is usually not the case
in practice. One of the main reasons for this is that for too large values of λ algorithm does not
behave well. In particular, if we run Algorithm 2.7 with varying λ for too many iterations, the
value of the Error blows up at some point and algorithm stops descending. Since we are only
increasing λ throughout iterations it is likely, but not definitely, that the explanation of such ill
behaviour of the algorithm is the issue known as ill conditioning of the penalty functions. Remind
ourselves that ill condition refers to one eigenvalue of the Hessian being much larger than the other
eigenvalue, which affects the curvature in the negative way for gradient methods [62]. To analyze
the ill behaviour in this section, we are going to run the algorithm for 1, 000 iterations with no
stopping criteria and let λ vary indefinitely. We would then look at which iteration algorithm blows
up and record the value of λ there. Let us define λill to be the first value of λ for which ill behaviour
is observed for each example, and present for how many examples λill took certain values in the
table below

Table 2: Starting λ for ill behaviour
λill λill < 10

7 107 < λill < 10
9 109 < λill < 10

11 1011 < λill < 10
20 Not observed

Examples 1 6 72 11 34

Ill behaviour seems to typically occur after about 500 iterations (where λill ≈ 1010), as seen in
the table above. For 34 problems ill behaviour was not observed under the scope of 1000 iterations.
We also see that for most of the problems (72/124) ill-conditioning happens for 109 < λ < 1011.
We further observe that algorithm has shown to behave well for the values of penalty parameter
λ < 109 with only 7/124 examples demonstrating ill behaviour for such λ. This makes the choice of
very large values of λ not attractive at all. Mainly, the analysis shows that choosing λ > 109 could
cause algorithm to diverge. We could further recommend that for our method λ 6 107 is very safe
choice. This is useful for the choice of fixed λ as we can choose values smaller than 107. For the case
of varying λ the values are controlled by the introduced stopping criteria. The complete results on
the values of λill for each example will be presented in Table 3.

Interestingly, 34 out of 124 test problems do not demonstrate signs of any ill behaviour even if we
run the algorithm for 1, 000 iterations with λ = 0.5 ∗ 1.05iter. A potential reason why ill-behaviour is
not observed for these examples could just be that the parameter λ does not get large enough after
1, 000 iterations to cause problems for these examples. However, it could also be that the eigenvalues
of the Hessian are not affected by large values of λ for these examples. Possibly, elements of the
Hessian do not depend on λ at all, as for 20/34 problems the function g is linear in (x,y) or not
present in these problems. Let us now proceed to discussing which magnitudes of the penalty
parameter λ seem to perform the best for our method.

3.2 Do the values of λ really need to be large?

It is clear from the previous subsection that to reduce the chances for Algorithm 2.7 to diverge or
exhibit some ill-behaviour, we should approximately select λ < 107. However, it is still unclear
whether only large values of λ would be sensible to ensure a good behaviour of the algorithm.
In other words, it is important to know whether relatively small values of λ can lead to a good
behaviour for Algorithm 2.7. To assess this, we attempt here to identify inflection points, i.e., values
of k where we have

∥∥∥Υλkµ (zk)
∥∥∥ < ε as λk varies increasingly as described in the previous subsection.

We would then record the value of λk at these points. Ideally, we want to get the threshold λ̄

3 partial exact penalty parameter selection 64

such that solution is retained for all λ > λ̄ in the sense of Theorem 2.2. To proceed, we extract
the information on the final Error∗ :=

∥∥Υλ(z∗)∥∥ for each example from [Supp2] and then rerun
the algorithm with varying penalty parameter λ := 0.5 ∗ 1.05k with new stopping criterion (i.e.,
Error 6 1.1Error∗) while relaxing all of the previous stopping criteria. This way we stop once
we observe Errork :=

∥∥Υλk(z)∥∥ close to the Error∗ that we obtained in our experiments [Supp2].
It is worth noting, that it would make sense to test only 72/117 (61.54%) of examples, for which
algorithm performed well and produced a good solution. This approach can be thought of as
finding the inflection point. For instance, if we have an algorithm running as below, we want to stop
at the inflection point after 125-130 iterations. The illustration of how we aim stop at the inflection
point is presented in Figure 10 (a) and (b) below, where we have

∥∥Υλ(z)∥∥ on the y-axis and iterations
on the x-axis.

(a) Complete run of algorithm
for AllendeStill2013

(b) Stop at the inflection point
for AllendeStill2013

(c) Complete run of algorithm
for Anetal2009

(d) Stop at the inflection point
for Anetal2009

Figure 10: Illustrating the inflection point identification for Examples AllendeStill2013 and Anetal2009

from BOLIB [85]

It was observed that for some of the examples it was the case that we got better Error than
initial Error∗. For these cases we stopped very early as Errork 6 1.1Error∗ was typically met at
an early iteration k (where λ was still small), as demonstrated in Figure 10 (c) and (d) above. This
demonstrates the disadvantage of λ being an increasing sequence. If the algorithm makes many
iterations, the parameter λ keeps increasing without possibility to go back to the smaller values. It
turns out that for some examples the smaller value of λwas as good as large values, or even better to
recover a solution. For such cases we get good enough Error to satisfy Error 6 1.1Error∗ when the
value of λ is relatively small. The reason for this could be that in our initial experiments algorithm
could make too many iterations, where descent direction was not always guaranteed. In practice it
seems quite often that small λ is the better option for the algorithm. This further justifies the choice
to start from the small value of λ, that is λ0 < 1 and increase it slowly.

With the setting to stop whenever Errork 6 1.1Error∗ we often stop very early. This way we do
not get λ̄ that represents the inflection point, which we aimed to get. This scenario is demonstrated
in Figure 10 (c) an (d) above, where picture (c) has a scale of 104 on the y-axis. In this example we
were able to obtain Error = 136 after 12 iterations, where λ̄ is small, while the value of the error
when algorithm stopped was Error∗ = 124. Although, we can clearly see from Figure 10 (c) that
inflection point lies around 190-200 iterations, where the value of λ is much bigger. It is clear that we
stopped earlier due to having small value of Error after 12-45 iterations. It was observed that such
scenario is typical for the examples in the considered test set. For this reason, we want to introduce
λ∗ as the large threshold λ. The value of λ∗ will be used to represent the value of the penalty parameter
at the inflection point, where solution starts to be recovered for large values of λ (λ > 6.02), while
we also record λ̄ as the first (smallest) value of λ for which good solution was obtained. For instance,
with λ defined as λ := 0.5× 1.05k in Figure 10 (c) we have λ̄ = 0.5× 1.0512 and λ∗ = 0.5× 1.05190
as we obtain good solution for small λ after 12 iterations and for large λ after 190 iterations. We
shall note that the value λ > 6.02 is the value of the penalty parameter after we make at least 50

iterations as for the case with varying λ we have λ = 0.5× 1.0551 = 6.02. The complete results of
detecting λ̄ and λ∗ is presented in Table 3 below. It was observed that the behaviour of the method
follows the same pattern for majority of the examples. Typically, we get a good solution retaining
for a few small values of λ, then value of the Error blows up and takes some iterations to start

3 partial exact penalty parameter selection 65

decreasing, coming back to obtaining and retaining a good solution for large values of λ. Such
pattern is clearly demonstrated in Figure 10 (c). Such behaviour is interesting as classically only
large values of penalty parameter are considered to be good [11, 59, 61], which coincides with the
result of Lemma 2.2. As mentioned in [33] some methods require penalty parameter to increase to
infinity to obtain convergence.

Table 3: Ill behaviour and two thresholds for λ
Problem number Problem name iterill λill λ̄ λ∗ iter for λ∗

1 AiyoshiShimizu1984Ex2 495 1.54e+10 9.92 ∗ 104 9.92 ∗ 104 250

2 AllendeStill2013 Not observed NA 245 245 127

3 AnEtal2009 Not observed NA - - -
4 Bard1988Ex1 520 5.22e+10 0.608 245 127

5 Bard1988Ex2 536 1.14e+11 - - -
6 Bard1988Ex3 Not observed NA 0.525 54.1 96

7 Bard1991Ex1 Not observed NA 0.608 183 121

8 BardBook1998 502 2.17e+10 - - -
9 CalamaiVicente1994a 476 6.1e+09 0.608 27.3 82

10 CalamaiVicente1994b 490 1.21e+10 0.739 79.9 104

11 CalamaiVicente1994c 490 1.21e+10 - - -
12 CalveteGale1999P1 538 1.26e+11 0.525 1.57 ∗ 103 165

13 ClarkWesterberg1990a 520 5.22e+10 - - -
14 Colson2002BIPA1 510 3.2e+10 792 792 151

15 Colson2002BIPA2 900 5.88e+18 1.33 1.65 ∗ 103 166

16 Colson2002BIPA3 110 107 - - -
17 Colson2002BIPA4 Not observed NA 0.551 2.68 ∗ 103 176

18 Colson2002BIPA5 550 2.25e+11 - - -
19 Dempe1992a Not observed NA - - -
20 Dempe1992b Not observed NA 0.551 1.29 ∗ 103 161

21 DempeDutta2012Ex24 Not observed NA - - -
22 DempeDutta2012Ex31 Not observed NA 0.525 137 115

23 DempeEtal2012 470 4.55e+09 - - -
24 DempeFranke2011Ex41 492 1.33e+10 0.704 44.5 92

25 DempeFranke2011Ex42 495 1.54e+10 0.67 54.1 96

26 DempeFranke2014Ex38 495 1.54e+10 0.551 79.9 104

27 DempeLohse2011Ex31a 502 2.17e+10 0.525 6.02 51

28 DempeLohse2011Ex31b 510 3.2e+10 - - -
29 DeSilva1978 495 1.54e+10 0.551 69 101

30 FalkLiu1995 440 1.05e+09 1.1 ∗ 104 1.1 ∗ 104 205

31 FloudasEtal2013 505 2.51e+10 0.525 183 121

32 FloudasZlobec1998 510 3.2e+10 - - -
33 GumusFloudas2001Ex1 530 8.5e+10 - - -
34 GumusFloudas2001Ex3 510 3.2e+10 - - -
35 GumusFloudas2001Ex4 502 2.17e+10 - - -
36 GumusFloudas2001Ex5 495 1.54e+10 3.04 38.4 89

37 HatzEtal2013 Not observed NA 0.608 6.02 51

38 HendersonQuandt1958 Not observed NA 5.64 ∗ 107 5.64 ∗ 107 380

39 HenrionSurowiec2011 Not observed NA 0.551 6.02 51

40 IshizukaAiyoshi1992a 495 1.54e+10 - - -
41 KleniatiAdjiman2014Ex3 445 1.34e+09 - - -
42 KleniatiAdjiman2014Ex4 485 9.46e+09 0.739 42.4 91

43 LamparSagrat2017Ex23 Not observed NA 0.525 137 115

44 LamparSagrat2017Ex31 Not observed NA 0.525 6.02 51

45 LamparSagrat2017Ex32 Not observed NA 0.551 284 130

46 LamparSagrat2017Ex33 495 1.54e+10 0.551 102 109

47 LamparSagrat2017Ex35 Not observed NA 0.525 298 131

48 LucchettiEtal1987 495 1.54e+10 0.525 6.02 51

49 LuDebSinha2016a Not observed NA 0.943 6.02 51

50 LuDebSinha2016b Not observed NA 0.67 6.02 51

51 LuDebSinha2016c Not observed NA - - -
52 LuDebSinha2016d 890 3.61e+18 - - -
53 LuDebSinha2016e 900 5.88e+18 - - -
54 LuDebSinha2016f Not observed NA - - -
55 MacalHurter1997 Not observed NA 0.551 6.02 51

3 partial exact penalty parameter selection 66

56 Mirrlees1999 Not observed NA 0.579 6.02 51

57 MitsosBarton2006Ex38 398 1.36e+08 6.64 7.32 55

58 MitsosBarton2006Ex39 400 1.5e+08 - - -
59 MitsosBarton2006Ex310 470 4.55e+09 56.8 56.8 97

60 MitsosBarton2006Ex311 452 1.89e+09 - - -
61 MitsosBarton2006Ex312 470 4.55e+09 0.99 6.02 51

62 MitsosBarton2006Ex313 505 2.51e+10 0.579 54.1 96

63 MitsosBarton2006Ex314 460 2.79e+09 0.855 11.9 65

64 MitsosBarton2006Ex315 470 4.55e+09 26 56.8 97

65 MitsosBarton2006Ex316 Not observed NA 1.33 6.02 51

66 MitsosBarton2006Ex317 420 3.97e+08 3.7 6.02 51

67 MitsosBarton2006Ex318 Not observed NA 1.04 6.02 51

68 MitsosBarton2006Ex319 398 1.36e+08 - - -
69 MitsosBarton2006Ex320 485 9.46e+09 0.943 6.32 52

70 MitsosBarton2006Ex321 452 1.89e+09 1.09 10.3 62

71 MitsosBarton2006Ex322 470 4.55e+09 0.99 20.4 76

72 MitsosBarton2006Ex323 505 2.51e+10 - - -
73 MitsosBarton2006Ex324 495 1.54e+10 0.855 6.02 51

74 MitsosBarton2006Ex325 505 2.51e+10 - - -
75 MitsosBarton2006Ex326 505 2.51e+10 - - -
76 MitsosBarton2006Ex327 475 5.81e+09 1.26 7.32 55

77 MitsosBarton2006Ex328 510 3.2e+10 - - -
78 MorganPatrone2006a 500 1.97e+10 0.525 6.02 51

79 MorganPatrone2006b 505 2.51e+10 0.551 6.02 51

80 MorganPatrone2006c 470 4.55e+09 56.8 56.8 97

81 MuuQuy2003Ex1 Not observed NA - - -
82 MuuQuy2003Ex2 Not observed NA - - -
83 NieEtal2017Ex34 520 5.22e+10 0.551 118 112

84 NieEtal2017Ex52 Not observed NA - - -
85 NieEtal2017Ex54 495 1.54e+10 - - -
86 NieEtal2017Ex57 850 5.13e+17 - - -
87 NieEtal2017Ex58 780 1.69e+16 - - -
88 NieEtal2017Ex61 Not observed NA - - -
89 Outrata1990Ex1a 505 2.51e+10 0.608 192 122

90 Outrata1990Ex1b 510 3.2e+10 0.551 223 125

91 Outrata1990Ex1c 495 1.54e+10 0.99 718 149

92 Outrata1990Ex1d 495 1.54e+10 - - -
93 Outrata1990Ex1e 495 1.54e+10 0.855 873 153

94 Outrata1990Ex2a 520 5.22e+10 0.551 245 127

95 Outrata1990Ex2b 470 4.55e+09 1.78 6.02 51

96 Outrata1990Ex2c 510 3.2e+10 0.551 72.5 102

97 Outrata1990Ex2d 520 5.22e+10 - - -
98 Outrata1990Ex2e 470 4.55e+09 0.898 6.02 51

99 Outrata1993Ex31 520 5.22e+10 0.551 144 116

100 Outrata1993Ex32 680 1.28e+14 - - -
101 Outrata1994Ex31 910 9.58e+18 - - -
102 OutrataCervinka2009 505 2.51e+10 - - -
103 PaulaviciusEtal2017a 400 1.5e+08 107 107 110

104 PaulaviciusEtal2017b 490 1.21e+10 - - -
105 SahinCiric1998Ex2 510 3.2e+10 - - -
106 ShimizuAiyoshi1981Ex1 495 1.54e+10 46.7 46.7 93

107 ShimizuAiyoshi1981Ex2 520 5.22e+10 - - -
108 ShimizuEtal1997a 910 9.58e+18 0.638 212 124

109 ShimizuEtal1997b Not observed NA - - -
110 SinhaMaloDeb2014TP3 Not observed NA 0.525 651 147

111 SinhaMaloDeb2014TP6 530 8.5e+10 - - -
112 SinhaMaloDeb2014TP7 Not observed NA 5.75 ∗ 1010 5.75 ∗ 1010 522

113 SinhaMaloDeb2014TP8 520 5.22e+10 - - -
114 SinhaMaloDeb2014TP9 505 2.51e+10 - - -
115 SinhaMaloDeb2014TP10 480 7.41e+09 - - -
116 TuyEtal2007 495 1.54e+10 2.9 16.8 72

117 Vogel2002 Not observed NA - - -
118 WanWangLv2011 520 5.22e+10 - - -

3 partial exact penalty parameter selection 67

119 YeZhu2010Ex42 Not observed NA 0.814 6.02 51

120 YeZhu2010Ex43 Not observed NA 4.49 6.02 51

121 Yezza1996Ex31 460 2.79e+09 223 223 125

122 Yezza1996Ex41 490 1.21e+10 0.608 46.7 93

123 Zlobec2001a 360 2.12e+07 - - -
124 Zlobec2001b 495 1.54e+10 - - -

We are now going to proceed with finding the threshold of λ for which we start getting a solution
and retain the value for larger values of λ. We are going to proceed with the technique of finding
small threshold λ̄ and large threshold λ∗, which was briefly discussed earlier. To find the threshold
we first extract the value of the final Error∗ for each example from [Supp2]. To find λ̄ we run the
algorithm with λ being defined as λ := 0.5× 1.05k, with the new stopping criteria:

Stop if Error 6 1.1Error∗.

Of course, we also relax all of the previous stopping criteria, as Error is the main measure here and
we know that desired value of Error exists. We then define λ̄ := 0.5× 1.05k̄, where k̄ is the number
of iterations after stopping whenever we get Error < 1.1Error∗. For most of the cases we detect λ̄
early due to a good solution after the first few iterations in the same manner as shown in Figure 10

(c). Since for many examples we satisfy condition Error 6 1.1Error∗ for early iterations (before the
inflection point is achieved), we further introduce λ∗, the large threshold λ. The value of λ∗ will be
used to represent the value of the penalty parameter at the inflection point, where solution starts
to be recovered for large values of λ. This will be obtained in the same way as λ̄ with the only
difference that we additionally impose the condition to stop after at least 50 iterations. To obtain λ∗

we run the algorithm with λ := 0.5× 1.05k and the following stopping criteria:

Stop if Error 6 1.1Error∗ & iter > 50.

Then the large threshold is defined as λ∗ := 0.5× 1.05k∗ , where k∗ is the number of iterations after
stopping whenever we get Error < 1.1Error∗ and k > 50. This way λ̄ represents the first (smallest)
value of λ for which good solution was obtained, while λ∗ represent the actual threshold after which
solution is retained for large values of λ. The demonstration of stopping at the inflection point for
large threshold λ∗ was shown in Figure 10 (b) and for small threshold λ̄ in Figure 10 (d).

It makes sense to test only the examples where algorithm performed well and produced a good
solution. For the rest of the examples, the value of Error∗ would not make sense as the measure
to stop, and we do not obtain good solutions for these examples by the algorithm anyway. From
the optimistic perspective we could consider recovered solutions to be the solutions for which the
optimal value of upper-level objective was recovered with some prescribed tolerance. Taking the
tolerance of 20%, the total amount of recovered solutions by the method with varying λ is 72/117

(61.54%) for the cases where solution was reported in BOLIB [85]. This result will be shown in more
details in Section 4.1. Let us look at the thresholds λ̄ and λ∗ for these examples in the figure below,
where the value of λ is shown on y− axis and the example numbers on the x− axis.

Figure 11: Small threshold λ̄ and large threshold λ∗ for examples with good solutions

3 partial exact penalty parameter selection 68

For 68/72 problems we observe that large threshold of the penalty parameter has the value λ∗ 6
104, which shows that we usually can obtain a good solution before 205 iterations. This further
justifies stopping algorithm after 200 iterations if there is no significant step to step improvement.
As for the main outcome of Figure 11, we observe that small threshold is smaller than large threshold
(λ̄ < λ∗) for 59/72 (82%) problems. This clearly shows that for majority of the problems, for which
we recover solution with λ := 0.5× 1.05k, we obtain a good solution for small λ as well as for large
λ. This demonstrates that small λ could in principle be good for the method. For the rest 18% of
the problems we have λ̄ = λ∗, meaning that good solution was not obtained for λ < 6 for these
examples. This also means that we typically obtain good solution for small values of λ and for large
values of λ, but not for the medium values (λ̄ < λ < λ∗).

As for the general observations of Figure 11, for 42/72 (58.33%) examples we observed that the
large threshold λ∗ is located somewhere in between 90− 176 iterations with 40 < λ∗ < 2680. For
7/72 problems threshold is in the range 6.02 < λ∗ 6 40, and for only 4/72 problems λ∗ > 1.1× 104.
Once again, this justifies that typically λ does not need to be large. It also suggests the optimal
values of λ for the tested examples, at least for our solution method. We observe that for 19/72
problems we get λ∗ = 51, which should be treated carefully as this could mean that the inflection
point could possibly be achieved before 50 for these examples. Nevertheless, λ∗ = 6.02 is still a
good value of penalty parameter for these examples as solutions are retained for λ > λ∗.

As going to be observed in Section 4 we could actually argue that smaller values of λ work better
for our method not only for varying λ but also for fixed λ. Together with the fact that we often
have the behaviour as demonstrated in Figure 10 (c), it follows that small λ could be more attractive
for the method we implement. We even get better values of Error and better solutions for small
values of λ for some examples. Hence we draw the conclusion that small values of λ can generate
good solutions. Since it is typical to use large values of λ for other penalization methods (e.g. in
[8, 11, 59, 61]), it is interesting what could be the reasons that small λ worked better for our case.
This could be due to the specific nature of the method, or due to the fact that we do not do full
penalization in the usual sense. Other reason could come from the structure of the problems in the
test set. The exact reason of why such behaviour was observed remains an open question. What
is important is that this could possibly be the case that small values of λ would be good for some
other penalty methods and optimization problems of different nature. This result contradicts typical
choice of large penalty parameter for general penalization methods for optimization problems. As
the conclusion for our framework, we can claim that for our method λ needs not to be large.

3.3 Partially calm examples

Intuitively, one would think that for partially calm examples, Algorithm 2.7 would behave well, in
the sense that varying λ increasingly would lead to a good convergence behaviour. To show that it
is not necessarily the case, we start by considering the following result identifying a class of bilevel
program of the form (1.1) that is automatically partially calm.

Theorem 3.1 ([52]). Consider a bilevel program (1.1), where G is independent of y and the lower-level
optimal solution map is defined as follows, with c ∈ Rm, d ∈ Rp, B ∈ Rp×m, and A : Rn → Rp:

S(x) := arg min
y

{
cTy| A(x) +By 6 d

}
. (3.1)

In this case, problem (1.1) is partially calm at any of its local optimal solutions.

Examples 8, 40, 43, 45, 46, 188, and 123 in the BOLIB library (see Table 3) are of the form described
in this result. The expectation is that these examples will follow the pattern of retaining solution
after some threshold, that is for λ > λ∗, as they fit the theoretical structure behind the penalty
approach as described in Theorem 2.2. Note that all of these examples follow the pattern shown in
Figure 9(a). However, if we relax the stopping criteria used to mitigate the effects of ill-conditioning,
as discussed in the previous two subsections, varying λ for 1000 iterations for these seven partially
calm examples leads to the 3 typical scenarios demonstrated in Figure 12.

4 performance comparison under fixed and varying penalty parameter 69

(a) Example 8 (b) Example 123 (c) Example 45

Figure 12: (a) and (b) are obtained for 1000 iterations, while (c) is based on 500 iterations.

In the first case of Figure 12, we can clearly see the algorithm is performing well, retaining the
solution for the number of iteration, but then blows up at one point (after 500 iterations) and never
goes back to reasonable solution values. Examples 40 and 46 also follow this pattern. Example
123 (second picture in Figure 12) shows a slightly different picture, where the zig-zagging pattern
is observed. Algorithm 2.7 blows up at some point and starts zig-zagging away from the solution
after obtaining it for a smaller value of λ. Zig-zagging is very common issue in penalty methods
and often caused by ill-conditioning [55]. Note that Example 118 exhibits a similar behaviour. This
is somewhat similar to scenario 1. However, we put this separately as zig-zagging issue is often
referred to as the danger that could be caused by ill-conditioning of a penalty function. The last
picture of Figure 12 shows a case where Algorithm 2.7 runs very well without any ill-behaviour
observed for all the 1000 iterations. It could be possible that the algorithm could blow up after more
iterations if we keep increasing λ. It could also be possible that ill-conditioning does not occur for
this example at all, as the Hessian of Υλ (2.10) is not affected by λ. Out of the seven BOLIB problems
considered here, only examples 43 and 45 follows this pattern.

4 performance comparison for the levenberg-marquardt method
under fixed and varying partial exact penalty parameter

Considering the behaviour of Algorithm 2.7 based on the nature of the parameter λ, the aim of this
section is to provide a thorough comparison of two scenarios: (a) varying λ and (b) fixed values of λ.
As in the previous section, the examples used for the experiments are from the Bilevel Optimization
LIBrary of Test Problems (BOLIB) [85], which contains 124 nonlinear examples. The experiments are
run in MATLAB, version R2016b, on MACI64. Here, we present a summary of the results obtained;
more details for each example are reported in the supplementary material [Supp2]. It is important
to mention that algorithm always converges, that is algorithm never diverges and always produces
an output. This brings us to a strong advantage of the method compared to the method considered
in [Paper 1], where algorithm could diverge for some values of λ for some examples.

For Step 0 of Algorithm 2.7 we set the tolerance to ε := 10−5 and the maximum number of
iterations to be K := 1000. We also choose α0 :=

∥∥Υλ(z0)∥∥, γ0 := 1, ρ = 0.5, and σ = 10−2. The
selection of σ is based on the overall performance of the algorithm while the other parameters
are standard in the literature. For the numerical implementation we calculate the direction dk by
solving (2.19) with Gaussian elimination. Following the discussion from Section 3, two approaches
for selecting penalty parameter are tested. For the approach with varying λ we define penalty
parameter as λ := 0.5× 1.05k, where k is the number of iterations. For the approach with fixed
values of penalty parameter, ten different values of the penalty parameter are used for all the
experiments; i.e., λ ∈ {106, 105, ..., 10−3}, see [Supp2] for details of the values of each solution for a
selection of λ. For the fixed values of λ one could choose best λ for each example to see if at least
one of the selected values worked well to recover the solution. After running the experiments for all
values of λ ∈ {106, 105, 104, ..., 10−3}, the best one is chosen i.e. for which the best feasible solution is
produced for the particular problem by the tested algorithms. We judge best λ by the best feasible
value of upper-level objective function.

4 performance comparison under fixed and varying penalty parameter 70

4.1 Accuracy of the upper-level objective function

Here, we compare the values of the upper-level objective functions at points computed by the
Levenberg-Marquardt algorithm with fixed λ and varying λ. For the comparison purpose, we
focus our attention only on 117 BOLIB examples [85], as solutions are not known for the other
seven problems. To proceed, let F̄A be the value of upper-level objective function at the point (x̄, ȳ)
obtained by the algorithm and F̄K the value of this function at the known best solution point reported
in the literature (see corresponding references in [85]). We consider all fixed λ ∈ {106, 105, ..., 10−3}
and varying λ in one graph and present the results in Figure 13 below, where we have the relative
error (F̄A − F̄K)/(1+ |F̄K|) on the y− axis and number of examples on the x-axis, starting from 30th

example. We further plot the results for the best fixed value of λ. The graph is plotted in the order
of increasing error.

Figure 13: Error of the upper-level objective value for examples with known solutions

From the Figure 13 above we can clearly see that much more solutions were recovered for the
small values of fixed λ than for large values. For instance with the allowable accuracy error of 6 20%
we recover solutions for 78.63% for fixed λ ∈ {10−2, 10−3}, while for λ ∈ {106, 105, 104, 103, 102} we
recover at most 40.17% solutions. Interestingly, the worst performance is observed for fixed λ = 100.
With the varying λ we observe that algorithm performed averagely in comparison between large
and small fixed values of λ, recovering 59.83% of the solutions with the accuracy error of 6 20%. It
is worth saying that implementing Algorithm 2.7 with λ := 0.5× 1.05k still recovers over half of the
solutions, which is not too bad. However, fixing λ to be small recovers way more solutions, which
shows that varying λ is not the most efficient option for our case.

It was further observed that for some examples only λ > 103 performed well, while for others
small values (λ < 1) showed good performance. If we were able to pick best fixed λ for each example,
we would obtain negligible (less than 10%) error for upper-level objective function for 85.47% of the
tested problems. With the accuracy error of 6 25% our algorithm recovered solutions for 88.9% of
the problems for the best fixed λ and for 61.54% with varying λ. This means that if one can choose
the best fixed λ from the set of different values, fixing λ is much more attractive for the algorithm.
It was further observed that for some examples only λ > 103 performed well, while for others small
values of λ (λ < 1) showed good performance. However, if one does not have a way to choose the
best value or a set of potential values cannot be constructed efficiently for certain problems, varying
λ could be a better option to choose. Nevertheless, for the test set of small problems from BOLIB
[85], fixing λ to be small performed much better than varying λ as increasing sequence. Further, if
one could run the algorithm for all fixed λ and was able to choose the best one, the algorithm with

4 performance comparison under fixed and varying penalty parameter 71

fixed λ performs extremely well compared to varying λ. In other words, algorithm almost always
finds a good solution for at least one value of fixed λ ∈ {106, 105, ..., 10−3}.

4.2 Feasibility check

Considering the structure of the feasible set of problem (1.2), it is critical to check whether the
points computed by our algorithms satisfy the value function constraint f(x,y) 6 ϕ(x), as it is not
explicitly included in the expression of Υλ (2.10). If the lower-level problem is convex in y and a
solution generated by our algorithms satisfies (2.5) and (2.8), then it will verify the value function
constraint. Conversely, to guaranty that a point (x,y) such that y ∈ S(x) satisfies (2.5) and (2.8),
a constraint qualification (CQ) is necessary. Note that conditions (2.5) and (2.8) are incorporated
in the stopping criterion of Algorithm 2.7. To check whether the points obtained are feasible, we
first identify the BOLIB examples, where the lower-level problem is convex w.r.t. y. As shown in
[Paper 1] it turns out that a significant number of test examples have linear lower-level constraints.
For these examples, the lower-level convexity is automatically satisfied. We detect 49 examples for
which some of these assumptions are not satisfied, that is the problems having non-convex lower-
level objective or some of the lower-level constraints being nonconvex. For these examples, we
compare the obtained solutions with the known ones from the literature. Let fA stand for f(x̄, ȳ)
obtained by one of the tested algorithms and fK to be the known optimal value of lower-level
objective function. In the graph below we have the lower-level relative error, (fA − fK)/(1+ |fK|), on
the y-axis, where the error is plotted in increasing order. In Figure 14 below we present results for
all fixed λ ∈ {106, 105, ..., 10−3} as well as varying λ defined as λ := 0.5× 1.05k.

Figure 14: Feasibility error for the lower-level problem in increasing order

From the Figure 14 above we can see that for 20 problems the relative error of lower-level objective
is negligible (< 5%) for all values of fixed λ and varying λ. We have seen that convexity and a CQ
hold for the lower-level hold for 74 test examples. We consider solutions for these problems to be fea-
sible for the lower-level problem. Taking satisfying feasibility error to be < 20% and using informa-
tion from the graph above, we claim that feasibility is satisfied for at most 100 (80.65%) problems for
fixed λ ∈ {106, 105, 104, 103}, for 101− 104 (81.45− 83.87%) problems for λ ∈ {103, 102, 101, 100, 10−1}
and for 106 (85.48%) problems for λ ∈ {10−2, 10−3}. We further observe that feasibility is satisfied
for 101 (81.4%) problems for varying λ. Considering we could choose best fixed λ for each of the
examples, we could also claim that feasibility is satisfied for 108 (87.1%) problems for best fixed λ.

4 performance comparison under fixed and varying penalty parameter 72

From Figure 14 we note that slightly better feasibility was observed for smaller values of fixed λ
than for the big ones and that varying λ has shown average performance between these magnitudes
in terms of the feasibility.

4.3 Experimental order of convergence

Recall that the experimental order of convergence (EOC) is defined by

EOC := max
{

log ‖Υλ(zK−1)‖
log ‖Υλ(zK−2)‖

,
log ‖Υλ(zK)‖

log ‖Υλ(zK−1)‖

}
,

where K is the number of the last iteration [31]. If K = 1, no EOC will be calculated (EOC= ∞).
EOC is important to estimate the local behaviour of the algorithm and to show whether this practical
convergence reflects the theoretical convergence result stated earlier. Let us consider EOC for fixed
λ ∈ {106, ..., 10−3} and for varying λ (λ = 0.5× 1.05k) in Figure 15 below.

Figure 15: Observed EOC at the last iterations for all examples (in decreasing order)

It is clear from this picture that for most of the examples our method has shown linear experi-
mental convergence. This is slightly below the quadratic convergence established by Theorem 2.8.
It is however important to note that the method always converges, although the obtained solution
is not necessarily optimal for the problem. There are a few examples that shown better convergence
for each value of λ, with the best ones being λ ∈ {10−3, 10−2, 10−1, 106} as seen in the figure above.
These fixed values have shown slightly better EOC performance than varying λ. Varying λ showed
slightly better convergence than fixed λ ∈ {100, 101, 102, 103, 104, 105}. EOC bigger than 1.2 has been
obtained for less than 5 (4.03 %) examples for fixed λ ∈ {100, 101, 102, 103, 104, 105}, while varying
λ showed such EOC for 11 (8.87%) examples. Fixed λ = 106 has shown almost the same result as
varying λ with rate of convergence greater than 1.2 for 12 (9.67%) examples, while λ = 10−1 has
demonstrated such EOC for 14 (11.29%) examples and λ ∈ {10−2, 10−3} for 17 (13.71 %) examples.
Finally, in the graph above, we can see that for all values of λ only a few (6 4/124) examples have
worse than linear convergence.

5 final comments 73

4.4 Line search stepsize

Let us now look at the line search stepsize, γk, at the last step of the algorithm for each example.
Consider all fixed λ and varying λ in Figure 16 below. This is quite important to know two things.
Firstly, how often line search was used at the last iteration, that is how often implementation of
line search was clearly important. Secondly, as main convergence results are for the pure method
this would be demonstrative to note how often the pure (full) step was made at the last iteration.
This can then be compared with the experimental convergence results in the previous subsection,
namely with Figure 15.

Figure 16: Stepsize made at the last iteration for all examples (in decreasing order)

In the figure above whenever stepsize on the y-axis is equal to 1 it means the full step was made at
the last iteration. For these cases the convergence results shown in Theorem 2.8 could be considered
valid. From the graphs above we observe that stepsize at the last iteration was rather γk = 1 or γk <
0.05. We observe that for varying λ algorithm would typically do a small step at the last iteration.
It seems that algorithm with varying λ benefits more from line search technique than the algorithm
with fixed λ. Possibly, pure Levenberg-Marquardt method with varying λ would not converge for
most of the problems. Interestingly, for fixed values of λ stepsize was γk < 0.05 at the last iteration
much more often for the values of λ that showed worse performance in terms of recovering solutions
(i.e. λ ∈ {101, 102}). We also observe that for medium values of λ (λ ∈ {104, 103, 102, 101, 100}) full
stepsize was made for less than half of the examples. For large values λ ∈ {105, 105} full step was
made for 63.71% and 70.16% of the problems respectively. Further on, small values of λ for which
more solutions were recovered would do the full step at the last iteration for most of the examples.
For instance, with λ = 10−3 and λ = 10−2 full step was made at the last iteration for 73.39% of the
problems, while for λ = 10−1 full step was made for 75.81% of the problems. In terms of the fixed
λbest it is interesting to observe that full step was used only for 82/124 (66.13%) of the problems,
meaning that for a third of the problems line-search was implemented in the last step for the best
tested value of λ. This also coincides with the results of Figure 15 where with smaller values of
λ algorithm has shown faster than linear convergence for more examples than for big values of λ.
This is likely to be the case that small steps were made in the other instances due to the non-efficient
direction of the method at the last iteration.

5 final comments

In this paper, a class of the LLVF-based optimality conditions for bilevel optimization problems
has been reformulated as a system of equations using the Fischer-Burmeister function. Smoothed

5 final comments 74

Levenberg-Marquardt method was proposed to solve the system. We have seen that penalty param-
eter could affect the method to diverge. That is why we discussed the penalty parameter selection
and partial calmness in details. Surprisingly, small values of penalty parameter have shown good
properties for our method. This demonstrated that small penalty parameter could possibly be good
for our framework, although classic literature on exact penalization suggests selection of the large
penalty parameter. Further, we have discussed that implementing the method with line search to
control step-size. We have then provided the framework of choosing all required parameters for
the method. The results of the numerical experiments were presented, where we demonstrated the
results for implementing smoothed Levenberg-Marquardt method for bilevel optimization with the
two approaches of choosing λ. The method with fixing λ showed to strongly outperform the method
with varying λ, which coincides with the discussion in Section 3. Further, numerical experiments
approved that small λ could be a good choice of penalty parameter for our framework, showing
even better performance than large values of λ for both approaches. Medium values of λ were the
worst for the method to converge to a solution. We further observe that with both approaches the
method showed linear experimental order of convergence for most of the examples.

Average CPU time for all fixed λ is 0.243 seconds, average CPU time for fixed λbest is 0.193
seconds, average CPU time for varying λ is 0.525 seconds. Algorithm with varying λ turns out to
be more than twice slower than for fixed λ. However, running algorithm for all fixed values of λ
would take way more time than just for varying λ.

75

Part IV.
Paper 3: Levenberg-Marquardt method for
linear bilevel optimization
This article examines the application of smoothed Levenberg-Marquardt method to find solutions
of linear bilevel programming problems (BLPs). It will be shown that for this class of problems
some key assumptions needed to state optimality conditions are satisfied automatically. Two refor-
mulations of bilevel programming problems will be considered, namely Karush-Kuhn-Tucker (KKT)
and lower-level value function (LLVF) reformulations. The optimality conditions for both reformu-
lations will be stated for the linear class of bilevel problems. In particular, we will discuss how the
linear structure of the problem affects the introduced optimality conditions. We will then compare
the basic properties of the reformulations to show the theoretical differences and similarities of the
KKT and LLVF formulations for the linear case. With the use of NCP-functions and smoothing tech-
nique optimality conditions for both reformulations will be stated as the differentiable systems of
equations. We then present Levenberg-Marquardt algorithm for linear bilevel optimization with the
required convergence assumptions and parameters specifications for the linear framework. Finally,
we compare the two reformulations in the context of implementing Levenberg-Marquardt algorithm
for the instances of linear bilevel programming problems. The comparison will be performed for
the test set of 24 linear problems from BOLIB [85]. To extend numerical tests, we further present
transformation of mixed integer and binary examples from [32] and provide results obtained by our
algorithm for these transformed examples.

1 introduction

In this paper we are going to focus on the optimistic linear bilevel problems of the form

min
x,y

F(x,y) := c>1 x+ d
>
1 y

s.t. A1x+B1y− b1 6 0,
y ∈ S(x) := arg min

y

{
f(x,y) = c>2 x+ d

>
2 y : A2x+B2y− b2 6 0

}
,

(1.1)

where c1 ∈ Rn×1, d1 ∈ Rm×1, A1 ∈ Rq×n, B1 ∈ Rq×m, b1 ∈ Rq×1, c2 ∈ Rn×1, d2 ∈ Rm×1, A2 ∈
Rp×n, B2 ∈ Rp×m, and b2 ∈ Rp×1. As usual, we refer to F (resp. f) as upper-level (resp. lower-level)
objective function. Interested reader is referred to [3] for detailed overview of the problem. Problems
of the form of (1.1) are known to be NP-hard. In terms of solution methods, there are several ways
to deal with linear bilevel programming problems. The methodologies include kth best algorithm,
KKT approach, Simplex method etc. The class of exact methods take advantage of specific properties
of LB problem. These methods have been classified as enumerative algorithms. One of the most well-
known algorithms of this class is the Kth best algorithm. The methodology is to enumerate extreme
points and examine all extreme of the polyhedron and choose the best one with respect to the upper-
level objective function. Further on, [77] achieved similar results under weaker assumptions via a
penalty function approach. Another category of algorithms deals with transforming LB problem
into a single level problem using Karush-Kuhn-Tucker (KKT) conditions. For linear optimization
problems KKT conditions are known to be necessary and sufficient for optimality. The approach
substitutes lower-level problem by KKT conditions, transforming bilevel problem into single-level
problem. This is then typically solved by mixed-integer linear programming or by branch-and-
bound algorithms, or penalty approaches. The third subcategory includes algorithms that apply
classical optimization theory. One of the first algorithms to solve LB problem was introduced by
Bialas and Karwan [9]. They develop the Sequential Linear Complementarity Problems (SLCP)
algorithm. Finally, there are some metaheuristic algorithms, such as evolutionary algorithms, but

1 introduction 76

we are not going to touch heuristics in details in this paper. The discussed methods are known
to have some disadvantages. As it was mentioned in [60] the kth best method is computationally
costly in comparison to KKT conditions, especially for large problems. The KKT approach does not
always guarantee an optimal solutions. Further, with the certain structure one can only guarantee
local optimality of the solution by the methods based on this reformulation. Nevertheless, this is
the most popular approach to solve linear bilevel programming problems. For this reason, we aim
to compare KKT approach with lower level value function (LLVF) reformulation for the class of linear
bilevel programming problems.

To solve (1.1) from the perspective of standard constrained optimization, we are going to look at
two approaches to reformulate the problem as a single-level optimization problem. We are firstly
going to consider Karush-Kuhn-Tucker (KKT) reformulation, where lower-level problem is replaced
with its KKT optimality conditions. The second reformulation is to formulate the problem as exact
penalization problem with the lower-level problem being replaced by the value function penalty
term as done in [Paper 1, Paper 2]. This will be referred to as lower-level value function (LLVF)
reformulation. In this paper we will compare theoretical and numerical properties of KKT and LLVF
reformulations for the linear bilevel problems. Both reformulations take advantage of the linearity
of the problem as some main assumptions needed to state optimality conditions for both KKT and
LLVF reformulations hold automatically in the context of linear framework. We are going to show
what are the theoretical simplifications arising due to the linear structure of (1.1) for the chosen
solution methods. According to [84], for a general problem it is not obvious which reformulation is
more beneficial in terms of the assumptions needed for the reformulation to be obtained. The KKT
reformulation of problem (1.1) can be written as

min
x,y,w

c>1 x+ d
>
1 y

s.t. A1x+B1y− b1 6 0, d2 +B>2w = 0,
A2x+B2y− b2 6 0, w > 0, wT (A2x+B2y− b2) = 0.

(KKT)

The second single-level reformulation of (1.1) is lower-level value function reformulation (LLVF)

min
x,y

c>1 x+ d
>
1 y

s.t. A1x+B1y− b1 6 0,
A2x+B2y− b2 6 0, c>2 x+ d

>
2 y 6 ϕ(x),

(LLVF)

where the optimal value function is defined by

ϕ(x) := inf
{
c>2 x+ d

>
2 y | A2x+B2y− b2 6 0

}
. (1.2)

We assume throughout that S(x) 6= ∅ for all x ∈ Rn to ensure that ϕ is well-defined. We will see
that partial calmness is the crucial condition to state optimality conditions for both reformulations.
According to [52], problems of the structure defined by (1.1) are partially calm due to the linearity in
the lower-level problem. Clearly, it is a big advantage that partial calmness is automatically satisfied
for the linear bilevel problems (1.1). However, this approach still leads to the formulations involving
penalty parameter, which remains hard to choose. Authors use different methods to optimally
choose penalty parameter in the context of their framework, [8, 11, 33, 51, 59, 61]. In [Paper 2]
some properties of the parameter were studied for LLVF reformulation and some interesting results
were observed in the context of implementing Levenberg-Marquardt method for nonlinear bilevel
optimization problems. It is interesting whether the observed behaviour of the penalty parameters
will hold for the problems with linear structure considered in this paper.

In the next section we are going to define optimality conditions for KKT and LLVF reformulations
and discuss what are the simplifications for the linear class of bilevel problems in comparison to the
general case. In terms of the method to solve the optimality conditions based on the KKT and LLVF
reformulations, we will implement Levenberg-Marquardt method in Section 2.2. As Levenberg-
Marquardt method is essentially the combination of Gauss-Newton method and gradient descent
method, the link to these methods will be discussed. We will note that some elements of the Jacobian

2 levenberg-marquardt method for linear bilevel optimization 77

of the system of optimality conditions will vanish due to the linear structure, which creates a small
concern about Levenberg-Marquardt direction that will be discussed. However, we will discuss
that due to the other elements involved to compute direction this does not create a big danger in
terms of implementing the method for the linear bilevel problems. We will further show under
what conditions Levenberg-Marquardt method converges for both reformulations of a linear bilevel
problem. For this we will mainly be touching possible scenarios for which error bound condition
holds, which is the main property required to establish convergence of the method. This will show
the method is theoretically appropriate to solve problems of the type (1.1). We are also going to show
that framework of the method is relatively robust, as assumptions required for the convergence of
the method are easier to satisfy for the linear framework than for the general case.In Section 3 we
are going to present the implementation results of the smoothed Levenberg-Marquardt method for
both KKT and LLVF reformulations on two different test sets of linear bilevel problems. Firstly, we
are going to compare performance of the methods for 24 small linear bilevel problems from BOLIB
[85], where solutions are known. We are then going to define transformations of 50 integer and 124

binary problems from [32] to the general BLPs. As these transformations can be considered to be
new problems, we simply present the obtained results, hoping to create basis for the comparison
for other authors.

2 levenberg-marquardt method for linear bilevel optimization

2.1 Optimality conditions and equation reformulation

It is well-known that because of the complementarity conditions in (KKT) and the value function
constraint c>2 x+ d

>
2 y 6 ϕ(x) in (LLVF), standard constraint qualifications cannot hold for the cor-

responding problems. Hence, to deal with this issue, we start here by building corresponding
penalization models that are more tractable optimization problems.

Theorem 2.1. Assuming that B1 = 0, the following statements hold true:

(i) If the point (x̄, ȳ) is a local optimal solution of problem (LLVF), then there exists some λ̄ > 0 such that
this point is also locally optimal for the following problem for all λ > λ̄:

min
x,y

c>1 x+ d1y+ λ(c
>
2 x+ d

>
2 y−ϕ(x))

s.t. A1x+B1y− b1 6 0, A2x+B2y− b2 6 0.
(λ-LLVF)

Any local optimal solution of (λ-LLVF) with λ > λ̄ with respect to the neighborhood of (x̄, ȳ) in which
(x̄, ȳ) is a local minimum are also local minima of (LLVF).

(ii) If the point (x̄, ȳ, w̄) is a local optimal solution of problem (KKT), then there exists some λ̄ > 0 such
that this point is also locally optimal for the following problem for all λ > λ̄:

min
x,y

c>1 x+ d
>
1 y− λw

>(A2x+B2y− b2)

s.t. A1x+B1y− b1 6 0, A2x+B2y− b2 6 0, d2 +B>2w = 0, w > 0.
(λ-KKT)

Any local optimal solution of (λ-KKT) with λ > λ̄ with respect to the neighbourhood of (x̄, ȳ, w̄) in
which (x̄, ȳ, w̄) is a local minimum are also local minima of (KKT).

Proof. For (i), let (x̄, ȳ) be a local optimal solution of (1.2) but not for (λ-LLVF) for all λ > 0. Then,
there is a sequence (xk,yk) with

A1x
k 6 b1, A2xk +B2yk 6 b2, and

∥∥(xk,yk) − (x̄, ȳ)
∥∥ < 1

k

such that we have the following sequence of inequalities:

0 < c>2 x
k + d>2 y

k −ϕ(xk) <
1

k

[
c>1
(
x̄− xk

)
+ d>1

(
ȳ− yk

)]
. (2.1)

2 levenberg-marquardt method for linear bilevel optimization 78

Hence, lim
k→∞

[
c>2 x

k + d>2 y
k −ϕ(xk)

]
= 0 considering the fact that

∥∥(xk,yk) − (x̄, ȳ)
∥∥ < 1

k . However,

the second inequality in (2.1) contradicts the existence of δ > 0 and κ > 0 such that

c>1 (x̄− x) + d>1 (ȳ− y) 6 κ|u| (2.2)

for all (x,y,u) ∈ Bδ(x̄, ȳ, 0) satisfying

A1x 6 b1, c>2 x+ d
>
2 y−ϕ(x) 6 u, A2x+B2y− b2 6 0, (2.3)

which is guarantied under the assumption that B1 = 0 based on the partial calmness concept [52].
The remaining part of the proof of item (i) is obvious. As for item (ii), note that it follows in a
similar, while noting that for any vector (x,y,w,u) ∈ Bδ(x̄, ȳ, w̄, 0), for some δ > 0, such that

A1x 6 b1, −w>(A2x+B2y− b2) 6 u, A2x+B2y− b2 6 0, d2 +B>2w = 0, w > 0,

condition (2.3) is satisfied. Hence, ensuring that (2.2) also holds in the context of problem (KKT).

Although we assumed B1 = 0 in Theorem 2.3, we believe that having B1 present in the problem
does not break mathematical structure of the reformulations. It has been verified in [80] that intro-
ducing optimality conditions of this nature with upper-level constraints depending on lower-level
variable is a mathematically valid approach. The assumption that upper-level constraints do not
depend on lower-level variables is common in bilevel optimization due to the nature of the problem
being solved. Hence, most sources construct the proof for the case when B1 = 0. However, our ini-
tial formulation (1.1) considers more general case with B1 being present in the problem and we aim
to construct the analysis that allows the possibility for the scenario when upper-level constraints
could depend on y. Next, we derive necessary optimality conditions for (KKT) and (LLVF) based
on (λ-KKT) and (λ-LLVF), respectively. To proceed, we need the following assumption:

Assumption 2.2. The matrix B2 ∈ Rp×m in (1.1) is full rank.

Theorem 2.3. The following statements hold true:

(i) If (x,y,w) is a local optimal solution of problem (λ-KKT) for some λ > 0, then there exist vectors
(u,η,w) ∈ R3p, v ∈ Rq, and s ∈ Rm such that

c1 +A
>
2 (u− λw) +AT1v = 0, (2.4)

d1 +B
>
2 (u− λw) +B>1 v = 0, (2.5)

d2 +B
>
2w = 0, (2.6)

−λ(A2x+B2y− b2) +B2s+ η = 0, (2.7)

u > 0, (A2x+B2y− b2) 6 0,u>(A2x+B2y− b2) = 0, (2.8)

v > 0, (A1x+B1y− b1) 6 0, v>(A1x+B1y− b1) = 0, (2.9)

η 6 0,w > 0,η>w = 0. (2.10)

(ii) If (x,y,w) is a local optimal solution of problem (λ-LLVF) for some λ > 0, and Assumption 2.2 holds.
Then there exist Lagrange multipliers (u,w) ∈ R2p and v ∈ Rq such that

c1 +A
>
2 (u− λw) +AT1v = 0, (2.11)

d1 +B
>
2 (u− λw) +B>1 v = 0, (2.12)

d2 +B
>
2w = 0, (2.13)

u > 0, A2x+B2y− b2 6 0, u> (A2x+B2y− b2) = 0, (2.14)

v > 0, A1x+B1y− b1 6 0, v> (A1x+B1y− b1) = 0, (2.15)

w > 0, A2x+B2y− b2 6 0, w> (A2x+B2y− b2) = 0. (2.16)

2 levenberg-marquardt method for linear bilevel optimization 79

Proof. The optimality conditions in (i) follow easily from the standard well-known Lagrange mul-
tipliers rule, without any constraint qualification, as the feasible set of problem (λ-KKT) is defined
only by linear constraints. In the case of (ii), we might just want to observe that the optimal value
function ϕ (1.2) is convex, as S(x) 6= ∅ for all x ∈ Rn, and hence locally Lipschitz continuous. There-
fore, the Lagrange multipliers rule for Lipschitz continuous optimization for (λ-LLVF) also holds,
but while noting that the subdifferential of ϕ, in the sense of convex analysis, can be estimated as

∂ϕ(x) ⊆
{
c2 +A

>
2w

∣∣∣d2 +B>2w = 0, w > 0, A2x+B2y 6 b2, w> (A2x+B2y− b2) = 0
}

,

thanks to the fulfilment of Assumption 2.2.

First observe that the optimality conditions in (i) have more variables and constraints than the
ones in (ii) and more importantly, as we will see later in this section the system (2.4)–(2.10) will lead
to a square system of equations, while (2.11)–(2.16) will generate an overdetermined one. However,
as we show below, there is a close connection between the two systems.

Proposition 2.4. If the point (x,y,u, v,w,η, s) satisfies (2.4)–(2.10) with either

w>B2s > 0 or w> (A2x+B2y− b2) > 0, (2.17)

then, the point (x,y,u, v,w) fulfils conditions (2.11)–(2.16).
Conversely, if the point (x,y,u, v,w) satisfies (2.11)–(2.16) and there exists some s such that

w>B2s 6 0 and λ (A2x+B2y− b2) 6 B2s, (2.18)

then, we can find some η such that the point (x,y,u, v,w,η, s) fulfills conditions (2.4)–(2.10).

Proof. For a point (x,y,u, v,w,η, s) satisfying (2.4)–(2.10), we have

η = λ (A2x+B2y− b2) −B2s. (2.19)

Hence, combining this with (2.17) and (2.10), we have

0 6
1

λ
w>B2s =

1

λ

(
w>η+w>B2s

)
= w> (A2x+B2y− b2) 6 0,

thus ensuring that the complementarity system (2.16) is satisfied.
Conversely, consider a point (x,y,u, v,w) satisfying (2.11)–(2.16) and some s such that (2.18) holds.

Then defining η as in (2.19), it follows that

0 6 −w>B2s = w
> [λ (A2x+B2y− b2) −B2s] = w

>η 6 0

while considering the fact that w> (A2x+B2y− b2) = 0 from (2.16). Combining this with the
aforementioned definition of η, we clearly have (2.7) and (2.10). Thus, concluding the proof.

Conditions (2.4)-(2.10) and (2.12)-(2.16) involve presence of complementarity conditions (2.8)-
(2.10) and (2.14)-(2.16) respectively. In order to reformulate the complementarity conditions in the
form of a system of equations, we are going make use of NCP-functions; see, e.g., [68]. The function
φ : R2 → R is said to be a NCP-function if we have

φ(a,b) = 0 ⇐⇒ a > 0, b > 0, ab = 0.

In this paper, we use φ(a,b) :=
√
a2 + b2−a−b, known as the Fischer-Burmeister function [29]. This

leads to the reformulation of the optimality conditions (2.4)–(2.10) into the system of equations:

ΥλKKT (z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w

−λ(A2x+B2y− b2) +B2s+ η√
u2 + (A2x+B2y− b2)2 − u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 − v+A1x+B1y− b1√

η2 +w2 −w+ η


= 0. (2.20)

2 levenberg-marquardt method for linear bilevel optimization 80

With the use of NCP functions, optimality conditions (2.12)–(2.16) result into the following system.

ΥλLLVF(z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w√

u2 + (A2x+B2y− b2)2 − u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 − v+A1x+B1y− b1√
w2 + (A2x+B2y− b2)2 −w+A2x+B2y− b2


= 0. (2.21)

It is possible to transform (2.20) by substituting η in the last line of (2.20) by the expression
η = λ(A2x+ B2y− b2) − B2s from (2.7). This would make systems (2.20) and (2.21) look very simi-
lar and easy to see how Proposition 2.4 implies the equivalence of the reformulations. However, it is
beneficial to keep (2.20) as it is, due to the system being square this way. To solve the systems of op-
timality conditions (2.20) and (2.21) we are going to implement Levenberg-Marquardt method with
line search. With the method of this nature, instead of directly solving (2.20) and (2.21), respectively,
we are dealing with the minimization of the following least-squares problem,

ΦλKKT (z) =
1

2

∥∥∥Υλ,µ
KKT (z)

∥∥∥2 and ΦλLLVF(z) =
1

2

∥∥∥Υλ,µ
LLVF(z)

∥∥∥2 . (2.22)

The Levenberg-Marquardt method requires ΥλKKT and ΥλLLVF to be differentiable. The only prob-
lem with the differentiability occurs for the NCP-functions whenever Lagrange multiplier and the
corresponding constraint are (0, 0) for some component. As discussed in [Paper 1] there are two
main approaches to deal with the differentiability: strict complementarity assumption and smoothing
technique. As was discussed in [Paper 1] the first approach has a big practical disadvantage as strict
complementarity is too strong assumption to often hold in practice. Smoothing technique works
well theoretically and practically to deal with the differentiability of the NCP functions. For this
reason we are going to proceed with the smoothing technique. For the smoothing technique we
will add the perturbation 2µ, where µ ↓ 0, under the square root of Fischer-Burmeister function to
ensure differentiability of the systems (2.20) and (2.21) as follows. With the smoothing, the KKT
system (2.20) becomes

Υ
λ,µ
KKT (z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w

−λ(A2x+B2y− b2) +B2s+ η√
u2 + (A2x+B2y− b2)2 + 2µ− u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 + 2µ− v+ (A1x+B1y− b1)√

η2 +w2 + 2µ− η+w


. (2.23)

Applying smoothing to LLVF system, (2.21) takes the form

Υ
λ,µ
LLVF(z) :=



c1 +A
>
2 (u− λw) +A>1 v

d1 +B
>
2 (u− λw) +B>1 v

d2 +B
>
2w√

u2 + (A2x+B2y− b2)2 + 2µ− u+A2x+B2y− b2√
v2 + (A1x+B1y− b1)2 + 2µ− v+A1x+B1y− b1√
w2 + (A2x+B2y− b2)2 + 2µ−w+A2x+B2y− b2


. (2.24)

We can easily check that

‖Υλ,µ
KKT (z) −Υ

λ
KKT (z)‖ −→ 0 and ‖Υλ,µ

LLVF(z) −Υ
λ
LLVF(z)‖ −→ 0 as µ ↓ 0.

Following the principle of the introduced smoothing scheme (see e.g. [70]), our aim is to consider a
sequence {µk} decreasing to 0 such that equations (2.20) and (2.21) are approximately solved:

Υ
λ,µk
KKT (z) = 0 and Υ

λ,µk
KKT (z) = 0, k = 0, 1, . . . (2.25)

2 levenberg-marquardt method for linear bilevel optimization 81

for a fixed value of λ > 0. The implementation of the smoothing technique will be discussed
later in the context of implementing Levenberg-Marquardt method for bilevel optmization. In the
framework with smoothing, the Jacobians of Υλ,µ

KKT and Υλ,µ
LLVF are well-defined everywhere. Hence,

for λ > 0, µ > 0 and z := (x,y,u, v,w, s,η) the Jacobian ∇Υλ,µ
KKT can be expressed as

∇Υλ,µk
KKT (z) =



O O A>2 A>1 −λA>2 O O

O O B>2 B>1 −λB>2 O O

O O O O B>2 O O

−λA2 −λB2 O O O B2 I

TµA2 TµB2 Γµ O O O O

AµA1 AµB1 O Bµ O O O

O O O O Ψµ O Ωµ


(2.26)

with Tµ := diag {τ
µ
1 , . . . , τµp} and Γµ := diag {γ

µ
1 , . . . ,γµp} representing a pair of diagonal matrices,

where the pair (τµj ,γµj), j := 1, . . . p is given by

τ
µ
j :=

A2jx+B2jy− b2j√
u2j + (A2jx+B2jy− b2j)

2 + 2µ
+ 1, j = 1, . . . p (2.27)

and
γ
µ
j :=

uj√
u2j + (A2jx+B2jy− b2j)

2 + 2µ
− 1, j = 1, . . . p, (2.28)

respectively. The other pairs are similarly defined by

Aµ := diag {αµ1 , . . . ,αµq}
Bµ := diag {βµ1 , . . . ,βµq}

}
and

{
Ψµ := diag {ψµ1 , . . . ,ψµp}
Ωµ := diag {ωµ1 , . . . ,ωµp}

(2.29)

with the pairs (αµj ,βµj), j = 1, . . . ,q and (ψµj ,ωµj), j = 1, . . . ,p are defined similarly to (2.27)-(2.28)
in terms of (A1jx+B1jy− b1j , vj), j = 1, . . . ,q and in terms of (ηj,wj), j = 1, . . . ,p, respectively.

For λ > 0, µ > 0 and the variables z := (x,y,u, v,w), the Jacobian of Υλµ(z) can be written as

∇Υλ,µk
LLVF(z) =



O O A>2 A>1 −λA>2
O O B>2 B>1 −λB>2
O O O O B>2

TµA2 TµB2 Γµ O O

AµA1 AµB1 O Bµ O

ΘµA2 ΘµB2 O O Kµ


(2.30)

with Tµ := diag {τµ1 , . . . , τµp}, Γµ := diag {γµ1 , . . . ,γµp}, Aµ := diag {αµ1 , . . . ,αµq}, Bµ := diag {βµ1 , . . . ,βµq},
Θµ := diag {θµ1 , . . . , θµp}, and Kµ := diag {κµ1 , . . . , κµp}, where the pair (τµj ,γµj), j := 1, . . . p is defined
by (2.27)-(2.28). The pairs (αµj ,βµj), j = 1, . . . ,q and (θµj , κµj), j = 1, . . . ,p are defined similarly in
terms of (A1jx+ B1jy− b1j , vj), j = 1, . . . ,q and (A2jx+ B2jy− b2j ,wj), j = 1, . . . ,p, respectively.
The following lemma from [Paper 1] clearly holds for the linear case and will be useful in upcoming
convergence analysis.

Lemma 2.5 ([Paper 1]). For a point z := (x,y,u, v,w) such that Υλ,µ
LLVF(z) = 0 with λ > 0 and µ > 0, it

holds that
τ
µ
j > 0, γ

µ
j < 0, j = 1, . . . ,p,

α
µ
j > 0, β

µ
j < 0, j = 1, . . . ,q,

θ
µ
j > 0, κ

µ
j < 0, j = 1, . . . ,p.

Further, for a point z := (x,y,u, v,w, s,η) such that Υλ,µ
KKT = 0 with λ > 0 and µ > 0 the signs of

τ
µ
j ,γµj ,αµj ,βµj above hold true and the following is satisfied

ψ
µ
j > 0, ω

µ
j < 0, j = 1, . . . ,p.

2 levenberg-marquardt method for linear bilevel optimization 82

2.2 The algorithm and convergence analysis

We present an algorithm to compute the stationary points for problems (λ-KKT) and (λ-LLVF); i.e.,
precisely to solve the approximated systems (2.23) and (2.24), respectively. To make sure that the
algorithm is suited for both systems, we use Υλ to represent ΥλKKT (2.20) or ΥλLLVF (2.21). Similarly,
Υλ,µ correspond to Υλ,µ

KKT (2.23) or Υλ,µk
LLVF (2.24).

Algorithm 2.6 (General method with line search).
Step 0: Choose λ > 0, µ > 0, ε > 0, K > 0, (γ, ρ,σ) ∈ (0, 1)3, α0 > 0, z0, and set k := 0.
Step 1: If

∥∥Υλ(zk)∥∥ < ε or k > K, then stop.
Step 2: Calculate Jacobian ∇Υλ,µ(z

k) and find dk such that(
∇Υλ,µ(zk)>∇Υλ,µ(zk) +αkI

)
dk = −∇Υλ,µ(zk)>Υλ,µ(zk), (2.31)

where I denotes the identity matrix of appropriate size.
Step 3: While

∥∥Υλ,µ(zk + γkd
k)
∥∥2 > ∥∥Υλ,µ(zk)

∥∥2 + σγk∇Υλ,µ(zk)TΥλ,µ(zk)dk, do γk ← ργk end.

Step 4: Set zk+1 := zk + γkdk, k := k+ 1, µk+1 = µk+1k and go to Step 1.

Obviously, this algorithm is an adaptation of the well-known Levenberg–Marquardt method. We
are going to choose a fixed number λ ∈ {105, 104, ..., 10−2} as the first approach and varying λ
as increasing sequence λ = 0.5 × 1.05k as another approach. It is worth noting that Levenberg-
Marquardt method is essentially a combination of Gauss-Newton method and gradient descent
method with the weight given to one or another depending on Levenberg-Marquardt parameter
α. Whenever αk → 0 the direction dk tends to Gauss-Newton direction, while if α(zk) → ∞
the direction taken is essentially gradient descent direction. Gradient descent method is known to
converge well for linear problems but loses to Newton-like methods for quadratic and higher order
problems. As we consider all original functions to be linear and add nonlinear NCP-functions to the
system, it makes a lot of sense to implement the method that is combination of the method that deals
well with linear problems and the higher order method. There is slight concern that some terms
in the Jacobians (2.26) and (2.30) vanished due to the linearity of the problem (1.1). In particular,
second derivatives of Lagrangians Lλ and Lλ vansish, which leads to (2.26) and (2.30) not to depend
on the objective functions F(x,y) and f(x,y) at all. However, the direction dk of the Levenberg-
Marquardt method defined by (2.31) involves the actual systems ΥλKKT and Υλ. Obviously, these
systems do depend on F(x,y) and f(x,y) of (1.1) and hence Levenberg-Marquardt method does not
ignore objective functions. We are going to show that the method can convergence for both KKT
and LLVF frameworks, and compare their numerical performance in the next section.

Line search implemented in Step 3 of the algorithm above ensures that Levenberg-Marquardt
algorithm converges globally with the choices α(zk) :=

∥∥∥Υλ1KKT (zk)∥∥∥ and α(zk) :=
∥∥Υλ(zk)∥∥, accord-

ing to [27]. Before stating the convergence results, let us quickly discuss some of the initialization
details of the algorithm. Step 0 is crucial for the convergence and performance of the algorithm.
There, K represents the maximum number of iteration that we set to K := 200. As for γ, ρ, and σ,
they correspond to the parameters of the line search techniqueWe use the values γ0 := 1, ρ = 0.5,
and σ = 10−2. The selection of the remaining parameters of the algorithm is going to be carefully
addressed in Section 3. This will ensure that the following convergence results holds. The following
assumption is needed to proceed.

Assumption 2.7. q+ p > n+m and the matrix
[
A1 B1
A2 B2

]
is full rank.

Theorem 2.8. Consider Algorithm 2.6 with fixed values for the parameters λ > 0 and µ > 0 and let
αk = ‖Υλ,µ

LLVF(z
k)‖` for any choice of ` ∈ [1, 2]. Then, the sequence {zk} converges quadratically to a point

z̄ such that Υλ,µ
LLVF(z̄) = 0 if one of the following set of conditions is satisfied:

(i) Assumption 2.7 holds and rank
(
B>2
)
= p 6 m.

2 levenberg-marquardt method for linear bilevel optimization 83

(ii) Assumption 2.7 holds and 0 < λ <
τ
µ
j

γ
µ
j

κ
µ
j

θ
µ
j

.

Proof. Considering the fact that Υλ,µ
LLVF (2.23) is twice continuously differentiable, according to [27],

it suffices to show that the error bound condition holds under the assumptions made in the theorem.
The condition is known to be fulfilled if the columns of the Jacobian matrix ∇Υλ,µ

LLVF(z̄) are linearly
independent [78]. To proceed, consider an arbitrary vector d := (d>1 ,d>2 ,d>3 ,d>4 ,d>5)

> such that
∇Υλ,µ

LLVF(z̄)d = 0 with d1 ∈ Rn, d2 ∈ Rm, d4 ∈ Rq, and (d3,d5) ∈ R2p,

A>2 d3 +A
>
1 d4 − λA

>
2 d5 = 0, (2.32)

B>2 d3 +B
>
1 d4 = 0, (2.33)

TµA2d1 + TµB2d2 + Γ
µd3 = 0, (2.34)

AµA1d1 +AµB1d2 +Bµd4 = 0, (2.35)

ΘµA2d1 +Θ
µB2d2 +Kµd5 = 0, (2.36)

B>2 d5 = 0. (2.37)

Under (i), (2.37) implies that d5 = 0. Hence, the system (2.32)–(2.37) reduces to

A>2 d3 +A
>
1 d4 = 0, (2.38)

B>2 d3 +B
>
1 d4 = 0, (2.39)

TµA2d1 + TµB2d2 + Γ
µd3 = 0, (2.40)

AµA1d1 +AµB1d2 +Bµd4 = 0, (2.41)

ΘµA2d1 +Θ
µB2d2 = 0. (2.42)

Multiplying (2.38) by d>1 and (2.39) by d>2 and summing them up, we get

d>1 A
>
2 d3 + d

>
1 A
>
1 d4 + d

>
2 B
>
2 d3 + d

>
2 B
>
1 d4 = 0. (2.43)

Furthermore multiplying (2.40) by d>3 and (2.41) by d>4 , we get

d>3 A2d1 + d
>
3 B2d2 =

p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d23j , d

>
4 A1d1 + d

>
4 B1d2 =

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d24j . (2.44)

Substituting (2.44) into (2.43) leads to

p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d23j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d24j = 0, (2.45)

where −
γ
µ
j

τ
µ
j
> 0 and −

β
µ
j

α
µ
j
> 0 due to Lemma 2.5 and hence d3 = 0 and d4 = 0. Inserting these

values in (2.35) and (2.34), respectively, the resulting system ensures d1 = 0 and d2 = 0 thanks to
Assumption 2.7.

In the context of scenario (ii), let us start by multiplying (2.34) and (2.36) by d>5 . Then, thanks to
(2.37), we respectively have the following equations:

Tµd>5 A2d1 + d
>
5 Γ
µd3 = 0, (2.46)

Θµd>5 A2d1 + d
>
5K

µd5 = 0. (2.47)

Multiplying (2.32) by d>1 and (2.33) by d>2 and adding them up, we get

d>1 A
>
2 d3 + d

>
1 A
>
1 d4 + d

>
2 B
>
2 d3 + d

>
2 B
>
1 d4 − λd

>
1 A
>
2 d5 = 0, (2.48)

Substituting d>5 A2d1 = −
∑p
j=1

κ
µ
j

θ
µ
j
d25j from (2.47) in equation (2.48),

d>1 A
>
2 d3 + d

>
1 A
>
1 d4 + d

>
2 B
>
2 d3 + d

>
2 B
>
1 d4 + λ

p∑
j=1

κ
µ
j

θ
µ
j

d25j = 0, (2.49)

2 levenberg-marquardt method for linear bilevel optimization 84

where
κ
µ
j

θ
µ
j
< 0. Then multiplying (2.34) by d>3 and (2.35) by d>4 , we get the expressions in (2.44).

Replacing these values in (2.49), we have

p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d23j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d24j + λ

p∑
j=1

κ
µ
j

θ
µ
j

d25j = 0, (2.50)

Further, due to (2.34) and (2.36) we have the relationship d3j =
τ
µ
j

γ
µ
j

κ
µ
j

θ
µ
j
d5j for j = 1, . . . ,p, so that

equation (2.50) becomes

p∑
j=1

(
−
τ
µ
j

γ
µ
j

)(
κ
µ
j

θ
µ
j

)2
d25j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d24j + λ

p∑
j=1

κ
µ
j

θ
µ
j

d25j = 0, (2.51)

where
τ
µ
j

γ
µ
j
< 0,

β
µ
j

α
µ
j
< 0, and

κ
µ
j

θ
µ
j
< 0 due to Lemma 2.5. Then with 0 < λ <

τ
µ
j

γ
µ
j

κ
µ
j

θ
µ
j

we have that

p∑
j=1

[
−
τ
µ
j

γ
µ
j

(κµj
θ
µ
j

)2
+ λ

κ
µ
j

θ
µ
j

]
> 0.

Then we can deduce from (2.51) that d4 = 0 and d5 = 0. Inserting these values in (2.35) and (2.36),
it also follows from Assumption 2.7 that d1 = 0 and d2 = 0. Finally, inserting these latter values in
(2.34), we have d3 = 0, considering the nature of Γµ being diagonal matrix with non-zero elements
on the main diagonal, thanks to Lemma 2.5 once again.

Theorem 2.9. Consider Algorithm 2.6 with fixed values for the parameters λ > 0 and µ > 0 and let
αk = ‖Υλ,µ

KKT (z
k)‖` for any choice of ` ∈ [1, 2]. Then, the sequence {zk} converges quadratically to a point z̄

such that Υλ,µ
KKT (z̄) = 0 if Assumption 2.7 holds and rank

(
B>2
)
= p = m.

Proof. Clearly, Υλ,µ
KKT (2.23) is twice continuously differentiable. Similarly to the proof of Theorem 2.8,

it then suffices to show that the columns of the Jacobian matrix ∇Υλ,µ
KKT (z̄) are linearly independent

under the assumptions made. Considering an arbitary vector

d := (d>1 ,d>2 ,d>3 ,d>4 ,d>5 ,d>6 ,d>7)
> with d1 ∈ Rn, (d2,d6) ∈ R2m, (d3,d5,d7) ∈ R3p, and d4 ∈ Rq.

Then, having ∇Υλ,µ
KKT (z̄)d = 0 is equivalent to the system of equations

A>2 d3 +A
>
1 d4 − λA

>
2 d5 = 0, (2.52)

B>2 d3 +B
>
1 d4 = 0, (2.53)

−λA2d1 − λB2d2 +B2d6 + d7 = 0, (2.54)

TµA2d1 + TµB2d2 + Γ
µd3 = 0, (2.55)

AµA1d1 +AµB1d2 +Bµd4 = 0, (2.56)

Ψµd5 +Ω
µd7 = 0, (2.57)

B>2 d5 = 0. (2.58)

Under assumption rank
(
B>2
)
= p 6 m, we have d5 = 0 from (2.58). Subsequently, Ωµd7 = 0 from

(2.57). Since ωµj < 0 for all j = 1, . . . ,p due to Lemma 2.5, we deduce that d7 = 0. Hence, system
(2.52)–(2.56) becomes

A>2 d3 +A
>
1 d4 = 0, (2.59)

B>2 d3 +B
>
1 d4 = 0, (2.60)

−λA2d1 − λB2d2 +B2d6 = 0, (2.61)

TµA2d1 + TµB2d2 + Γ
µd3 = 0, (2.62)

AµA1d1 +AµB1d2 +Bµd4 = 0, (2.63)

3 numerical study 85

Multiplying (2.62) by d>3 and (2.63) by d>4 , we respectively get

d>3 A2d1 + d
>
3 B2d2 = −

p∑
j=1

γ
µ
j

τ
µ
j

d23j , (2.64)

d>4 A1d1 + d
>
4 B1d2. = −

q∑
j=1

β
µ
j

α
µ
j

d24j . (2.65)

Multiplying (2.59) and (2.60) by d>1 ,d>2 respectively and adding the resulting equations we get

d>1 A
>
2 d3 + d

>
1 A
>
1 d4 + d

>
2 B
>
2 d3 + d

>
2 B
>
1 d4 = 0.

Using (2.64) and (2.65) this becomes

p∑
j=1

(
−
γ
µ
j

τ
µ
j

)
d23j +

q∑
j=1

(
−
β
µ
j

α
µ
j

)
d24j = 0. (2.66)

Since −
γ
µ
j

τ
µ
j
> 0 for all j = 1, . . . ,p and −

β
µ
j

α
µ
j
> 0 for all j = 1, . . . ,q, this clearly means that d3 = 0

and d4 = 0 for all components. Hence, we are left with the following equations:

−λA2d1 − λB2d2 +B2d6 = 0, (2.67)

TµA2d1 + TµB2d2 = 0, (2.68)

AµA1d1 +AµB1d2 = 0. (2.69)

Multiplying (2.68) by λ, we get λA2d1 = −λB2d2. Using this for (2.67) yields B2d6 = 0, meaning
that d6 = 0 due to Assumption of the full rank of B2. Finally, under Assumption 2.7, it follows from
(2.68) or (2.69) that d1 = 0 and d2 = 0. This completes the proof.

Remark 2.10. Scenario considered in Theorem 2.9 imposes the same conditions on the problem
(1.1) as the first scenario in Theorem 2.8. This demonstrates a strong link between KKT and LLVF
reformulations for the linear case. Further, if any conditions from Proposition 2.4 are fulfilled and
full rank of the Jacobian could be established for one of the systems then it holds for the other one.

3 numerical study

In this section we are going to analyze the performance of the algorithm in the context of KKT-
based and LLVF-based approaches for the instances of the problem (1.1). We split the results be-
tween two test sets of linear examples. The first test set contains 24 linear problems from BOLIB
[85], for which solutions are known apart from one problem, for which there is no optimal so-
lution. The second test set is constructed by modifying mixed integer problems from Fischetti,
[32], msinnl.github.io/bilevel/MIPLIB. This test set contains 174 problems, where we have 50 trans-
formed integer examples and 124 transformed binary examples. These problems are modified by
dropping integer constraints and replacing binary integer constraints with the bound constraints
on the variables, i.e. 0 6 xi 6 1 and 0 6 yj 6 1 for all i = 1, ...,n and j = 1, ...,m. Since problems
have been modified, we do not know the optimal solutions to these problems. A good number of
solutions are expected to be reasonably close to optimal as the considered framework benefits a lot
from the structure of the problems. Mainly, partial calmness, lower-level convexity and continuity
of original functions of (1.1) are automatically satisfied. We hope that our study will provide a
benchmark of the solutions, which could play a role of comparison basis for other algorithms. All
experiments are run in MATLAB, version R2016b, on MACI64. Here, we present a summary of the
results obtained; more details for each example are reported in the supplementary material.

Algorithm proposed in this paper is based on the systems of optimality conditions, which depend
on λ. The choice of the parameter λ is not trivial and might depend on the structure of the problems.

https://msinnl.github.io/pages/bilevel.html

3 numerical study 86

It has been shown in [Paper 2] that small values of λ perform well for the nonlinear problems of
small scale. It is interesting to see if such conjecture holds for the problems with linear structure
discussed in this paper. The focus of our experiments in this section will be on the smoothed systems
Υ
λ,µ
KKT (z) and Υλ,µ

LLVF(z), where we set µ := 0.001/(1.5k) with k being the number of iterations. For
Step 0 of Algorithm 2.6 we set the tolerance to ε := 10−5 and the maximum number of iterations
to be K := 200. We also choose α0 :=

∥∥Υλ(z0)∥∥, γ0 := 1, ρ = 0.5 and σ = 10−2. For the numerical
implementation we calculate the direction dk by solving (2.31) with Gaussian elimination. In terms
of the starting point (x0,y0) = (1n, 1m) is used for all BOLIB examples and for all transformed
integer examples from [32]. For transformed binary examples (x0,y0) = (0.5n, 0.5m) is used. Two
approaches for selecting penalty parameter are tested. For the approach with varying λ we define
penalty parameter as λ := 0.5 × 1.05k, where k is the number of iterations. For the approach
with fixed values of penalty parameter, eight different values are used for all experiments; i.e.,
λ ∈ {105, 104, ..., 10−2}. After running the experiments for all fixed values of penalty parameter
λ ∈ {105, 104, 103, ..., 10−2}, the best one is chosen i.e. for which the best feasible solution is produced
for the particular problem by the tested algorithms. Such best λ for each example will allow us to
see if at least one of the selected values worked well to recover the solution. The stopping criteria is
defined by the following conditions. Algorithm stops if

1.
∥∥Υλ∥∥ < ε. If the system is solved with prescribed tolerance ε.

2.
∥∥Υλ(zk)∥∥− ∥∥Υλ(zk−1)∥∥ < 10−7 & iter > 5. If the value of the

∥∥Υλ∥∥ stops improving after a
few iterations is done. Specifically algorithm will stop if algorithm stops descending, which
prevents algorithm going away from the solution once solution is obtained.

3. K iterations performed by the algorithm. The number of iterations reaches predefined maxi-
mum number of iterations.

Finally, it is important to mention that for both reformulations algorithm always converges to some
solution, that is algorithm never diverges and always produces an output.

3.1 Bilevel Optimization LIBrary (BOLIB) examples

In this section we are going to study the performance of Algorithms 2.6 for 24 linear problems
from BOLIB [85]. We are going to compare implementation of Levenberg-Marquardt method for
KKT and LLVF reformulations of (1.1). The measures of the comparison will be how to close are
upper-level objective values to the known optimal values, how feasible are they in terms of the lower-
level objective values, how fast was experimental convergence rate and with what error the actual
systems (2.23) and (2.24) are solved. Number of iterations and time required by the algorithms
will be reported to finish the comparison. As discussed earlier, fixed choices of λ will include
λ ∈ {105, 104, ..., 10−2}, while varying λ will be set to be λ := 0.5× 1.05k. The linear problems in
BOLIB [85] are of small dimensions, with the maximum dimensions being [n,m,q,p] = [10, 6, 12, 13].

3.1.1 Accuracy of the upper-level objective values

Let us compare the values of the upper-level objective functions at the points computed by algorithm
2.6 with fixed λ and varying λ. As problem 18 (’MershaDempe2006Ex1’) has no global optimal solution
it is not considered in this section, and we focus our attention on the remaining 23 linear BOLIB
examples [85]. Let F̄AKKT and F̄A be the values of upper-level objective function at the point (x̄, ȳ)
obtained by algorithm 2.6 by solving (2.20) and (2.21) systems respectively. Further, let F̄K be the
value of this function at the known best solution point reported in the literature (see corresponding
references in [85]). We consider all fixed λ ∈ {105, 104, ..., 10−2} and varying λ in one graph and
present the results in Figure 17 below, where we have the relative error on the y− axis and number
of examples on the x-axis, starting from 6th example. We further plot the results for the best fixed
value of λ, discussed earlier. The graphs are plotted in the order of increasing error.

3 numerical study 87

(a) Upper-level error for solving LLVF reformulation (b) Upper-level error for solving KKT reformulation

Figure 17: Upper-level objective accuracy for LLVF and KKT systems

From the Figure 17 we can clearly see that for both reformulations fixed λ = 100 showed very
strong performance, recovering upper-level objective value with accuracy error of 6 20% for 19/23

(82.61%) problems for LLVF case and for 18/23 (78.26%) for KKT case. Interestingly, for fixed large
value of penalty parameter, λ ∈ {105, 104, 103, 102}, algorithm showed very poor performance for
LLVF reformulation, recovering only 12/23 (52.17%) of the values with the allowable accuracy error
of 6 25%. Apart from λ = 100, fixed λ = 10−1 and varying λ := 0.5× 1.05k showed the strongest
performance for LLVF reformulation, recovering 19/23 (82.61%) upper-level objective values with
accuracy of 6 20%. Finally, we can see that for the best fixed λ we have error of < 30% for 21/23

problems (91.30%), with the remaining two examples having error of < 70%. This means that if we
can pick the best λ we could obtain reasonable solution for almost all of the problems. It is worth
noting that varying λ performed very well in the context of LLVF reformulation for the test set of
linear problems from BOLIB [85]. It can be seen from Figure 17 (a) that it is almost as good as fixed
λ. The situation is very different for KKT reformulation. For large values of the penalty parameter,
λ ∈ {105, 104, 103, 102}, algorithm has shown reasonable performance, recovering 15/23 (65.22%)
solutions with allowable accuracy error of 6 20%. We further observe that λ ∈ {101, 10−1, 10−2}
recovered only 14/23 (60.87%) of values. Once again, fixed λ = 100 showed the strongest perfor-
mance, recovering 18/23 (78.26%) solutions. Varying λ for KKT reformulation showed reasonably
strong performance, recovering 17/23 (73.91%) solutions. For the best fixed λ we observe error of
< 30% for 21/23 problems (91.30%), which is the same as for LLVF reformulation. However, for the
KKT case the remaining two examples have error of > 90%.

With the varying λ we observe that algorithms performed very well in comparison to any partic-
ular fixed value λ ∈ {105, 104, ..., 10−2}, recovering more than 73% of the solutions with the accuracy
error of 6 20%. With the implementation of Algorithm 2.6, solving LLVF reformulation leads to
recovering more values of upper-level objective function than solving KKT reformulation. We note
that Levenberg-Marquardt algorithm almost always finds a good solution for at least one value of
fixed λ ∈ {105, 104, . . . , 10−2}, and always converges as expected. Although best fixed λ showed very
strong strong performance, the approach of fixing λ has some disadvantages. Firstly, one would
need to consume time, running algorithm for many values of λ. Further, if one does not have a
way to choose the best value, or a set of potential values cannot be constructed efficiently, varying
λ could be a better option to choose. Varying λ showed almost as good performance as fixed λbest
and so could very well be more attractive option to choose rather than fixing λ.

3.1.2 Lower-level feasibility

Although due to linearly of (1.1) lower-level problem is convex w.r.t. x and y for all examples
in the test set, we cannot guarantee that lower-level feasibility at the computed points would be
satisfied for all examples. First of all, Constraint qualification might not be satisfied for some of the
problems not satisfying Assumption 2.2. Secondly, the points obtained in practice might have some
feasibility error due to overdetermined nature of the systems. For this reason, we aim to compare
feasibility with respect to the value of the lower-level objective value in this section. Let fAKKT stand
for f(x̄, ȳ) obtained by Algorithm 2.6 by solving (2.20), fA stand for f(x̄, ȳ) obtained by Algorithm

3 numerical study 88

2.6 by solving (2.21) and fK to be the known optimal value of lower-level objective function. In
Figure 18 below we have the lower-level relative error on the y-axis, where the error is plotted in
increasing order. Results are presented for all fixed λ ∈ {105, 104, ..., 10−2} as well as for varying λ.

(a) Lower-level error for solving LLVF (b) Lower-level error for solving KKT

Figure 18: lower-level feasibility for LLVF and KKT systems

From the figure above we can see that the error is negligible (< 5%) for 11 examples for LLVF
reformulation and for 14 problems for KKT reformulation for all values of fixed λ and varying
λ. From Figure 18 (a) we can see that solutions of LLVF system with λ ∈ {105, 104, 103, 101} have
smaller feasibility error than for the other fixed values of λ. For these values we have feasibility error
6 20% for 17/23 (73.91%) of the test problems. Surprisingly, feasibility error for LLVF formulation
is higher for small fixed values of λ as well as for varying λ. For λ = 10−0 and for varying λ we
have error below 20% for 15/23 (65/22%), while λ ∈ {102, 10−2} showed smaller feasibility error
with the value below 20% for 16/23 (69.57%) test problems. We can further see that feasibility
error was much smaller if we could choose best fixed λ. Fixed λbest has less than 20% error for
21/23 (91.30%) problems with the remaining two problems having 6 60% error. From Figure 18

(b) we observe that for KKT reformulation the feasibility error is on average smaller than for LLVF
reformulation. Similar to LLVF, small values of λ performed worse in terms of preserving feasibility
of the lower-level objective value. We can see that for λ ∈ {105, 104, 103, 102, 101} the feasibility error
is below 20% for 19/23 (82.61%) examples. For λ ∈ {10−1, 10−2} the same error was obtained only
for 16/23 (69.57%) examples. In terms of varying λ it performed similar to fixed λ = 100 with the
error below 20% for 18/23 (78.26%). Interestingly, fixed λbest has shown the same performance as
varying λ, making varying λ seemingly strong to implement in the context of KKT reformulation.

3.1.3 Experimental order of convergence

Let us proceed define Experimental order of convergence (EOC) for LLVF reformulation to be

EOC := max
{

log ‖Υλ(zK−1)‖
log ‖Υλ(zK−2)‖

,
log ‖Υλ(zK)‖

log ‖Υλ(zK−1)‖

}
,

where K is the number of the last iteration [31]. Similarly, experimental order of convergence for
KKT reformulation will be defined as

EOCKKT := max
{

log ‖ΥλKKT (zK−1)‖
log ‖ΥλKKT (zK−2)‖

,
log ‖ΥλKKT (zK)‖

log ‖ΥλKKT (zK−1)‖

}
.

If K = 1, no EOC will be calculated (EOC= ∞). EOC is important to estimate the local behaviour
of the algorithm. Let us consider EOC for both reformulation for fixed λ ∈ {105, ..., 10−2} and for
varying λ in Figure 19 below. The values are plotted in the decreasing order of EOC on the y-axis.

3 numerical study 89

(a) EOC for solving LLVF system (b) EOC for solving KKT system

Figure 19: Experimental Order of Convergence for LLVF and KKT systems

For most of the examples our method has shown linear experimental convergence. This suggests
that our method converges linearly, which coincides with the theory behind convergence of the
algorithm with line search. It is important to note that the method always converges, although
sometimes the output might not be the optimal point for the problem. For LLVF reformulation, in
Figure 19 (a), there are a few examples that shown better than linear convergence for each value of
λ, with the best ones being fixed values λ ∈ {100, 10−1, 10−2} and varying λ. For varying λ and for
fixed λ = 10−1 EOC was bigger than 1 for 14/24 problems. For λ = 10−2 EOC was higher than 1

for 10/24 problems, which is similar to what is observed for best fixed λ. For λ = 100 EOC > 1

was observed for 8/24 problems. The rest of the values show linear convergence for all examples.
For λ = 106 one example has shown slightly worse than linear convergence. For KKT formulation,
in Figure 19 (b), we can see that for just 4/24 examples convergence rate was better than linear
for varying λ and for all values of fixed λ, except large values λ ∈ {105, 104, 103, 102} for which
convergence was linear for all examples. We claim that convergence rate has some more potential
to be better than linear for LLVF scenario rather than KKT scenario.

3.1.4 Comparison of the Error of the systems at the last iteration

Let us now move on to the comparison of the Error at the last iteration of the Algorithm 2.6.
This will show with what tolerance (2.20) and (2.21) were solved and allow us to judge how well
algorithm was able to solve the considered systems of optimality conditions for the examples from
the test set. In the graph below Error and ErrorKKT are defined by

∥∥ΥλLLVF(ẑ)∥∥ and
∥∥ΥλKKT (ẑ)∥∥

respectively. In the graph below Error is plotted in the increasing order.

(a) The value of the Error :=
∥∥ΥλLLVF(z̄)∥∥ at the solution

point of Algorithm 2.6
(b) The value of the ErrorKKT :=

∥∥ΥλKKT (ẑ)∥∥at the solu-
tion point of Algorithm 2.6

Figure 20: Error for LLVF and KKT systems

Firstly, we observe that on average much smaller error was obtained for LLVF reformulation in
Figure 20 (a) than for KKT reformulation in Figure 20 (b). For the LLVF reformulation in Figure
20 (a), algorithm with varying λ and with fixed λ ∈ {105, 104, 103, 102, 101} reports the value of the
Error in the range 10−1 6 Error 6 101 for 15/24 examples and Error 6 102 for 22/24 examples. For
λ = 100 we observe 10−5 6 Error 6 10−1 for 4/24 examples and Error 6 101 for 15/24 examples.

3 numerical study 90

Finally, the strongest performance in the sense of the LLVF Error at the last iteration is observed
for small fixed values λ ∈ {10−1, 10−2} with Error 6 100 for 20/24 examples. Best fixed λ shows
even better performance for LLVF case, lying below the plotted values of Error for each value of
tested penalty parameter λ. For KKT reformulation in Figure 20 (b) we see that no Error better
than 100 was observed. This observation on its own makes a strong point that LLVF reformulation
performed better in the sense of measuring Error at the solution point. This could possibly be
due to the extra equation (2.7) containing λ, comparing to LLVF system. Large values of λ, i.e.
λ ∈ {105, 104, 103}, result into very high error for KKT reformulation with ErrorKKT > 102 for 20/24

examples. Interestingly, λ = 102 produces larger error than the smaller values of λ. In terms of the
other values λ ∈ {101, 100, 10−1, 10−2} and varying λ, they all show similar performance with the
values 100 6 ErrorKKT 6 101 for 9/24 examples and ErrorKKT 6 102 for 20/24 examples. Best
fixed λ also shows the same performance as these value of λ, making the point that varying λ for
such reformulation could be a better choice even stronger. With the values of Error and ErrorKKT
observed in Figure 20 above LLVF reformulation is a clear winner under this measure.

3.1.5 Final comments on the numerical performance for BOLIB linear examples

With the analysis considered in this section we observe that Levenberg-Marquardt method to solve
LLVF reformulation outperforms Levenberg-Marquardt method to solve KKT reformulation by al-
most all of the measures considered. The only slight advantage of KKT reformulation was feasibility
of the lower-level problem. However, feasibility obtained for LLVF approach was not dramatically
worse than for KKT approach, meaning there is no big concern regarding feasibility of the obtained
solutions. To finalize this section, let us compare the average number of iterations required to solve
each reformulation for each choice of λ, as well as the average time taken by the algorithm.

λ λ = 105 λ = 104 λ = 103 λ = 102 λ = 101 λ = 100 λ = 10−1 λ = 10−2 λvar
Average LLVF 109.58 109.08 150.71 144.04 73.08 50.25 111.08 106.25 23.75

Iter KKT 167.92 167.92 164.17 118.12 63.54 20.38 18.92 18.46 12.21

Average LLVF 0.21 0.09 0.09 0.09 0.05 0.04 0.07 0.08 0.14

Time KKT 0.19 0.13 0.11 0.07 0.04 0.02 0.02 0.02 0.07

Average LLVF 0.0019 0.0008 0.0006 0.0006 0.0007 0.0007 0.0006 0.0007 0.0059

Time/Iter KKT 0.0011 0.0008 0.0007 0.0006 0.0007 0.0011 0.0011 0.0011 0.0058

Table 4: Number of iterations and time used by the algorithms for BOLIB linear examples

From the table above we can see that algorithms show very similar speed and similar number
of iterations required to converge to a solution. We observe that more iterations are taken by
KKT approach for fixed λ > 103, while for the rest of the choices of λ LLVF approach used more
iterations to converge. We shall not forget that LLVF produced better solutions and hence smaller
number of iterations taken by KKT approach could be for the cases where KKT system could not
produce solution reasonably close to the optimal. The speed of each iteration is almost the same for
both approaches. Interestingly, time needed to do an iteration for varying λ is more than 5 times
bigger than needed for any fixed value of λ for both reformulations. However, much less iterations
are needed to converge for varying λ, which makes the total average time taken by the algorithm
almost the same as for any fixed λ.

Summarizing, LLVF-based optimality conditions for linear bilevel optimization were compared
with KKT-based optimality conditions for linear bilevel optimization. With regards to theoretical
aspects we could not say which approach is better. We have used NCP-functions and smoothing
technique to state optimality conditions of both reformulations in the form of differentiable systems
of equations. Smoothed Levenberg-Marquardt method was then proposed to solve the systems. We
have shown that Levenberg-Marquardt method could converge to solve such systems under mild as-
sumptions. The results of the numerical experiments were then presented, where we demonstrated
the results of implementing smoothed Levenberg-Marquardt method for linear bilevel optimization
in the context of solving KKT and LLVF reformulations. Two approaches of choosing λ were con-

3 numerical study 91

sidered for each of the two reformulations. The method with varying λ showed strong performance
for the linear framework in comparison to the nonlinear scenario considered in [Paper 2]. We fur-
ther observe that the method has shown linear experimental order of convergence for most of the
examples for both reformulations. In terms of the comparison, LLVF-based approach outperformed
KKT-based approach in terms of recovering upper-level objective value, obtaining smaller Error at
the solution point and demonstrating faster order of convergence. This extends similar observation
made for nonlinear bilevel problems in the comparison analyzed in [84].

3.2 Fischetti et al. based examples

In this section we transform mixed integer bilevel linear examples from [32] to linear bilevel opti-
mization examples. We do so by dropping integer constraints for examples with integer variables
and we impose bounds on the variables to be between 0 and 1 for binary examples. The examples
from [32] are initially in the format of mps files with the following structure

min
x
cTx (3.1)

s.t.: Aineq ∗ x 6 bineq (3.2)

Aeq ∗ x = beq (3.3)

lb 6 x 6 ub (3.4)

x(i) is integer, (3.5)

where i ∈ intcon (integer constraints). The whole test set from [32] has integer constraints on all
variables, as i = 1 for all components of intcon. Further, some examples have binary variables, i.e.
xi ∈ {0, 1}. Apart from mps-files, some infromation is stored in AUX files. The information there
includes dimension of lower-level variable "N", indices required for lower-level objective "LO" and
indices for which variables and constraints are lower-level. It is worth noting that all constraints
involving both upper-level and lower-level variables are considered to be lower-level constraints. We
extract information from mps files in MATLAB, using the command mpsread, obtaining the matrices
c,Aineq,bineq,Aeq,beq, lb,ub as described by (3.1)-(3.5) above. This information from mps-files
is combined with the information from aux files as follows. In the sense of bilevel problem, the
variable x above is the combination of upper-level variable x and lower-level variable y. We split the
variable into upper-level and lower-level by using the information from aux file. Most importantly,
we extract the dimension of y denoted by N and indices of y for lower-level objective denoted
by LO. We then split the bounds (3.4) into upper-level and lower-level constraints based on the
split of the variables into upper-level and lower-level ones. We define upper-level objective as
F(x,y) := c>x = c>x x+ c

>
yy, where c>x comes from (3.1). All inequality constraints involving both

upper-level and lower-level variables are treated as lower-level constraints. Hence, we move (3.2) to
be lower-level constraints together with bounds on y coming from (3.4). Although it was observed
that there are no equality constraints in the test set, our transformation includes redefining any
equality constraints (3.3) as inequality constraints and move it to upper-level constraints G(x,y)
together with the bounds on variable x resulting from (3.4). Finally, we drop integer constraint (3.5)
and define lower-level objective as suggested by aux file (coefficients of f(x,y) are given by LO).
Then the resulting system is

min
x,y

c>x x+ c
>
yy (3.6)

s.t.: Aeq ∗ (x,y) − beq 6 0 (3.7)

beq−Aeq ∗ (x,y) 6 0 (3.8)

lb 6 x 6 ub (3.9)

min
y

LO ∗ y (3.10)

s.t.: Aineq ∗ (x,y) − bineq 6 0 (3.11)

lb 6 y 6 ub (3.12)

3 numerical study 92

For all 174 considered examples there are no equality constraints, so we do not have (3.7)-(3.8) in
the model. For our transformation, coefficients LO from aux file are defined as the vector LO =

LO1,LO2, ..,LOm for each example in the corresponding m-file of the example, such that LO above
is the vector of coefficients for y. Further, if an example is binary, we relax the binary constraints
as the bound constraints 0 6 xi 6 1 and 0 6 yj 6 1 for all i = 1, ...,n and j = 1, ...,m. The bound
constraints are then stated as upper-level constraints G for variables xi and as lower-level constraints
g for variables yi.

Since examples have been modified, they are considered to be new examples with not-known
solutions. We denote solutions obtained by Algorithm 2.6 by (x̂, ŷ) and λvar := 0.5× 1.05k, where
k is the number of the iteration. In Table 8 (Appendix A) we provide the solutions obtained by
our algorithms for 50 transformed integer examples from [32] (initial mixed integer examples are
available in "RAND_BILEVEL" folder from msinnl.github.io/bilevel/MIPLIB). The starting point
for these examples was (x0,y0) = (1n, 1m). For the names of these examples we have replaced "mi"
(standing for "mixed integer") by capital letter "B". In Table 9 (Appendix B) we provide solution
obtained for 124 transformed binary examples from [32] (initial binary examples are available in
"TedConverted" folder from msinnl.github.io/bilevel/MIPLIB). The starting point for this examples
was (x0,y0) = (0.5n, 0.5m). The names of these examples were changed by adding capital "B" at the
start of the name of each example. The dimension of the examples are summarized as follows.

No n m q p

1–10 5 10 10 40

11–40 15 5 30 30

41–50 5 15 10 50

(a) Dimensions of the transformed integer examples

No n m q p

1–25 25 25 50 96

26–44 10 10 20 32

45–64 20 20 40 62

65–84 30 30 60 92

85–104 40 40 80 122

105–114 50 50 100 152

115–124 20 20 40 62

(b) Dimensions of the transformed binary examples

Table 5: Dimensions of x,y,G(x,y) and g(x,y) of the transformed problems from [32]

We hope the results in Table 8 (Appendix A) and Table 9 (Appendix B) will provide a basis for
comparison for anyone attempting to solve the examples with different algorithms. As the solutions
are not known we cannot claim which solutions in tables 8 and 9 are the best. Clearly, the smallest
value of upper-level objective might not be the best solution as such solutions could possibly be
infeasible. Further, the values of Error :=

∥∥Υλ(ẑ)∥∥ and ErrorKKT :=
∥∥ΥλKKT (ẑ)∥∥ are also not great

measures as these directly depend on the value of λ, meaning that smaller values of λ would lead to
smaller values of error at the solution point, but the quality of the solutions is not necessary better
than for bigger values of λ. Hence, we do not have a good unbiased way to choose the best solutions.
We hope the provided values of F(x̂, ŷ) and f(x̂, ŷ) will enable other authors to make conclusions
about their own solution methods. Let us also provide a summary of the performance and speed of
the smoothed Levenberg-Marquardt algorithm in the context of solving LLVF-based and KKT-based
optimality conditions for these examples. For the relaxed integer examples presented in Table 8

(Appendix A) we observe the following performance of Algorithm 2.6 in terms of the iterations
made and CPU time used.

https://msinnl.github.io/pages/bilevel.html
https://msinnl.github.io/pages/bilevel.html

3 numerical study 93

λ λ = 105 λ = 104 λ = 103 λ = 102 λ = 101 λ = 100 λ = 10−1 λ = 10−2 λvar
Average LLVF 140 130 150 200 190 170 180 200 37

iter KKT 160 140 130 100 200 200 170 160 21

Average LLVF 1.3 0.91 1 1.4 1.3 1.2 1.2 1.4 0.43

time KKT 1.3 1.1 0.99 0.78 1.5 1.5 1.3 1.3 0.28

Average LLVF 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.012

time/iter KKT 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.013

Table 6: Time and iterations required to solve LLVF and KKT reformulations of relaxed integer problems

For both reformulations Levenberg-Marquardt algorithm shows similar speed for solving relaxed
integer examples. For LLVF system slightly more iterations were made but iterations are also
less expensive, leading to very similar average time required to solve one system or another. It
is interesting to observe that algorithm with varying λ takes significantly more time to make an
iteration, which is in line to what was observed for linear examples from BOLIB [85]. In terms of
experimental order of convergence (EOC), for both reformulations algorithm has shown super-linear
convergence for all fixed values of λ for all examples from Table 8 (Appendix A). For varying λ the
convergence was slightly faster with 1 6 EOCLLVF 6 1.1 for 15/50 examples and 1 6 EOCKKT 6
1.05 for 5/50 examples. As we can see in the table above, there is no much difference in terms
of computation time of the algorithm but some difference in EOC suggests that algorithm to solve
LLVF-based system converges slightly faster than for KKT-based approach.

The values F(x̂, ŷ) and f(x̂, ŷ) for the relaxed binary examples from [32] are presented in Table 9

(Appendix B). There are 124 such examples that we have transformed by replacing binary constraints
by the bounds on the variables. It is interesting to observe that for the examples No 26− 124 in
Table 9 (Appendix B) for fixed λ ∈ {100, 10−1, 10−2} the algorithms produced solutions (x̂, ŷ) with
very small values of upper-level objective F(x̂, ŷ) < −104 and very large values of of the lower-
level objective f(x̂, ŷ) > 104. In contrast, for fixed λ ∈ {105, 104, 103, 102} algorithm returns rather
large upper-level values F(x̂, ŷ) and small lower-level values f(x̂, ŷ) for both reformulations. This is
demonstrated in Figures 21 and 22 below, where we have the values of the objective functions at the
solution point on the y− axis with the scale of 104.

(a) Upper-level objective for LLVF reformulation (b) Upper-level objective for KKT reformulation

Figure 21: Upper-level objective values for LLVF and KKT systems for relaxed binary examples

4 final comments 94

(a) lower-level objective for LLVF reformulation (b) lower-level objective or KKT reformulation

Figure 22: Lower-level objective values for LLVF and KKT systems for relaxed binary examples

Due to the large observed values, It is very likely that solutions for λ ∈ {100, 10−1, 10−2} are
infeasible for the lower-level problem. This would mean that solutions for the LLVF and KKT
reformulations with small values of λmight be infeasible for majority of the considered transformed
binary examples (in Appendix B). Further, solutions for λ ∈ {105, 104, 103, 102} for transformed
binary examples are likely to be bad solutions from the optimistic perspective as the values of
upper-level objective are large. It is interesting that solutions for varying λ seem similar to solutions
for large values of λ, but slightly better. Finally, solutions for λ = 101 lie in the middle between those
two extreme scenarios and seem to be the most reasonable solutions reported in Appendix B. With
these observations our conjecture is that it could be the case that the problem was under-penalized
for small values of λ and over-penalized for large values of λ, making medium value λ = 101 and
varying λ more attractive choices. This is in line with the initial motivation of using different values
of λ with the idea of not over-penalizing and not under-penalizing deviation of lower-level objective
values from the minimum. In terms of iterations and time used by the algorithms, we observe the
following performance for the relaxed binary examples presented in Appendix B.

λ λ = 105 λ = 104 λ = 103 λ = 102 λ = 101 λ = 100 λ = 10−1 λ = 10−2 λvar
Average LLVF 200 180 160 92 85 170 170 170 41

iter KKT 9.9 8.6 8.2 9.7 76 160 160 160 49

Average LLVF 4.2 3.5 3.1 1.5 1.8 3.2 3.2 3.2 1

time KKT 0.32 0.23 0.21 0.24 2 3.7 3.7 3.7 1.3
Average LLVF 0.021 0.019 0.02 0.016 0.021 0.02 0.019 0.019 0.025

time/iter KKT 0.033 0.027 0.026 0.024 0.026 0.023 0.023 0.023 0.026

Table 7: Time and iterations required to solve LLVF and KKT reformulations of relaxed binary problems

For both reformulations Levenberg-Marquardt algorithm demonstrated similar performance on
average but very different for different magnitudes of λ. The small number of iterations for large
values of λ for KKT system indicates that algorithm stopped descending quite early, which could
either be a problem with the direction for the reformulation, or a good solution was obtained very
early. It is interesting to see that time needed to make an iteration for relaxed binary examples (from
Appendix B) is more than twice more expensive than for integer examples (from Appendix A).

4 final comments

We have shown that the assumptions needed to reformulate linear bilevel programming problem
as the single-level KKT and LLVF reformulations are much weaker than for the nonlinear case.
However, even with this it is still hard to tell which reformulation is theoretically better for the linear
bilevel optimization framework. To proceed, we have used NCP-functions and smoothing technique
to formulate KKT-based and LLVF-based optimality conditions in the form of differentiable systems
of equations. We then focused on testing the implementation of Levenberg-Marquardt method to

4 final comments 95

solve these systems. We have shown that the method can theoretically converge for the linear
bilevel framework under mild assumption. We have then presented the numerical comparison of
implementing Levenberg-Marquardt method for KKT-based and LLVF-based approaches on the test
of linear bilevel problems from BOLIB, [85]. It was observed that Levenberg-Marquardt method for
LLVF reformulation has shown slightly better numerical performance than Levenberg-Marquardt
method for KKT system. However, the test set was not very large, having just 24 problems of
small size. This motivated creating the basis for comparison for the larger test set of linear bilevel
problems. In the final part of the paper, we have transformed mixed integer and binary problems
from [32]. We have presented the obtained results in tables 8 and 9 in terms of the objective functions
values at the solution points for both reformulations. Finally, we have provided general observations
on the obtained results. It is worth saying that we avoided any suggestions on which results are the
best, as the solutions to the modified problems are clearly unknown.

a objective functions values for transformed integer examples 96

a
ob

je
ct

iv
e

fu
nc

ti
on

s
va

lu
es

at
th

e
so

lu
ti

on
po

in
t

fo
r

tr
an

sf
or

m
ed

in
te

ge
r

ex
am

pl
es

fr
om

[3
2]

λ
λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

N
o

Pr
ob

le
m

na
m

es
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)

1
B

bl
p_

20
_1

5_
50

_1
0_

1
LL

V
F

-6
1

3
-1

4
2

-6
1

1
-1

4
1

-5
9

0
-1

3
6

-6
2

8
-1

5
0

1
5

6
1

2
2

1
6

7
0

7
4

5
6

3
5

-5
4

2
2

2
9

-4
6

4
1

4
4

-1
7

K
K

T
6

3
-5

3
0

6
3

-5
3

0
6

3
-5

3
1

6
5

-5
3

5
7

8
-5

4
6

2
9

8
-5

4
7

2
0

3
-4

8
9

1
0

3
-2

5
4

-1
0

2
-4

5
5

2
B

bl
p_

20
_1

5_
50

_1
0_

2
LL

V
F

-2
3

4
1

3
2

-2
3

2
1

3
2

-2
0

1
1

3
3

3
3

0
1

3
4

4
4

1
7

4
1

4
3

2
-6

3
0

5
2

1
4

8
2

-1
0

5
4

0
5

3
8

3
1

4

K
K

T
-1

7
9

4
1

4
-1

7
9

4
1

4
-1

7
9

4
1

4
-1

8
0

4
1

8
-1

9
6

4
2

1
-2

9
3

3
8

7
-2

4
5

3
0

8
-1

6
1

2
6

3
-2

8
1

3
2

0

3
B

bl
p_

20
_1

5_
50

_1
0_

3
LL

V
F

7
9

-9
3

7
8

-9
3

6
6

-9
7

-2
1

-3
4

3
-2

1
7

-4
8

2
-5

0
6

-3
0

1
4

1
7

0
-6

2
2

5
7

-2
8

0
4

9
-1

3
6

K
K

T
2

0
4

-5
4

2
2

0
4

-5
4

2
2

0
4

-5
4

3
2

0
6

-5
4

7
2

0
9

-5
7

6
2

2
6

-8
5

4
1

6
9

-2
0

4
3

5
7

1
2

0
-1

1

4
B

bl
p_

20
_1

5_
50

_1
0_

4
LL

V
F

-3
5

1
-2

1
7

-3
4

4
-2

1
4

-3
4

4
-2

1
7

-3
8

7
-4

0
0

-2
6

9
-6

8
7

-2
4

9
4

8
5

4
4

2
2

6
4

3
4

6
1

8
4

7
-2

7
8

6
1

K
K

T
-2

6
6

9
2

-2
6

6
9

2
-2

6
6

9
2

-2
5

7
0

1
3

2
7

6
2

2
3

6
8

2
3

-2
0

0
1

4
3

-2
4

3
1

2
8

-8
1

3
5

4

5
B

bl
p_

20
_1

5_
50

_1
0_

5
LL

V
F

-1
5

3
1

4
1

-1
5

5
1

4
0

-1
8

3
1

3
2

-4
6

7
5

9
-2

1
7

-2
9

1
1

1
2

-6
9

8
7

7
-8

8
7

1
5

4
-3

5
7

2
6

0
-6

2
8

K
K

T
-2

3
0

-3
7

5
-2

3
0

-3
7

5
-2

3
0

-3
7

5
-2

3
2

-3
7

8
-1

9
6

-3
8

9
-9

5
-3

5
9

4
4

4
5

0
-9

1
-1

8
9

-3
0

-3
2

3

6
B

bl
p_

20
_1

5_
50

_1
0_

6
LL

V
F

-1
3

2
-1

1
9

-1
3

4
-1

1
9

-1
5

2
-1

1
4

-3
0

8
-1

8
-9

7
3

0
-1

8
1

4
5

3
7

5
5

1
6

6
8

5
9

7
1

0
5

2
4

4
3

5
3

K
K

T
3

2
9

-1
9

5
3

2
9

-1
9

5
3

2
9

-1
9

5
3

3
2

-1
9

6
3

7
8

-1
7

5
3

6
9

-1
4

7
3

8
4

-3
6

1
6

5
-1

6
1

4
2

9
-1

4
1

7
B

bl
p_

20
_1

5_
50

_1
0_

7
LL

V
F

-1
4

6
6

9
-1

4
5

7
0

-1
3

2
8

1
-7

4
1

2
7

-8
7

8
3

-3
9

6
-5

4
3

-9
3

1
-1

6
9

8
-4

1
4

-1
7

2
-2

0
8

-1
7

1

K
K

T
-3

9
6

1
1

7
-3

9
6

1
1

7
-3

9
6

1
1

7
-3

9
8

1
1

7
-4

4
0

1
0

9
-6

1
8

8
1

-4
2

6
3

3
-1

2
4

8
5

-4
8

6
1

1
0

8
B

bl
p_

20
_1

5_
50

_1
0_

8
LL

V
F

7
8

9
0

7
8

9
0

7
6

8
5

5
2

4
0

-7
7

2
-7

7
0

-2
3

9
7

-2
1

4
9

-4
6

7
2

-2
3

8
6

-2
9

3
9

-1
4

4
0

-1
1

9
1

-7
5

5

K
K

T
-1

1
7

1
9

9
-1

1
7

1
9

9
-1

1
7

1
9

9
-1

1
9

2
0

1
-7

6
2

4
4

-5
0

3
7

2
4

1
0

6
7

4
2

3
3

2
5

2
9

0

9
B

bl
p_

20
_1

5_
50

_1
0_

9
LL

V
F

-3
0

2
-3

-3
0

0
-2

-2
8

5
5

-4
7

3
7

5
2

2
7

1
2

4
9

2
4

9
2

-5
2

0
1

4
1

9
-8

1
7

1
8

2
-2

7
1

1
1

5
1

8
0

K
K

T
-2

3
2

-1
9

1
-2

3
2

-1
9

1
-2

3
2

-1
9

1
-2

3
4

-1
9

3
-2

7
2

-1
9

8
-4

6
0

-1
0

8
-5

7
4

-2
0

3
-2

6
1

-2
2

6
-4

0
0

-2
7

2

1
0

B
bl

p_
20

_1
5_

50
_1

0_
10

LL
V

F
4

3
5

3
7

9
4

3
6

3
7

8
4

4
7

3
7

1
4

2
7

2
7

0
-3

1
9

8
-9

7
3

-1
1

2
7

-2
5

3
-4

2
8

6
9

0
4

7
2

7
2

2
-1

4
4

1
8

1

K
K

T
4

8
3

5
4

5
4

8
3

5
4

5
4

8
3

5
4

6
4

8
7

5
5

0
4

4
4

5
6

3
4

8
9

6
4

0
5

7
9

8
0

8
4

7
2

5
5

1
1

7
1

1
3

1
1

B
bl

p_
20

_2
0_

50
_5

_1
LL

V
F

-3
8

9
2

0
4

-3
8

0
1

7
6

-1
1

3
6

2
8

2
-1

1
2

1
1

7
6

-2
3

7
-9

6
1

0
7

4
-9

2
3

1
4

2
-5

1
7

3
3

-3
4

6
4

0
6

-1
6

1

K
K

T
-5

1
0

3
2

-1
2

0
8

3
-4

4
1

4
0

-1
0

5
5

4
-3

2
9

1
7

-7
9

5
7

-2
6

3
1

2
-6

4
3

2
-1

4
5

5
1

-3
7

7
5

-6
0

9
-7

1
9

4
4

7
-2

8
8

2
8

6
-1

3
3

4
4

4
-2

1
3

1
2

B
bl

p_
20

_2
0_

50
_5

_2
LL

V
F

-4
0

3
-5

2
-4

0
1

-5
2

-3
7

2
-5

6
-1

1
1

-8
3

2
1

4
-2

3
9

5
5

7
7

1
6

7
8

8
3

2
-9

4
9

1
2

5
7

-1
1

0
3

1
5

1
-8

0
7

K
K

T
1

5
7

-4
8

0
1

5
7

-4
8

0
1

5
7

-4
8

1
1

6
0

-4
8

5
1

1
5

-5
2

5
-6

9
7

-6
4

3
-7

9
3

-5
7

7
-5

7
-1

3
5

3
3

-2
8

5

1
3

B
bl

p_
20

_2
0_

50
_5

_3
LL

V
F

-4
7

4
-1

1
8

-2
0

6
-9

2
-2

2
3

-9
2

-4
4

0
-1

0
4

-3
0

5
-9

4
-1

8
4

-4
1

4
0

-4
5

1
-7

-3
5

2
1

0
-6

8

K
K

T
-3

5
6

9
-7

3
6

-3
5

6
9

-7
3

6
-3

5
7

3
-7

3
7

-3
6

0
7

-7
4

3
-3

8
6

3
-7

8
8

-1
1

7
5

-4
3

0
2

2
5

-1
3

4
2

8
0

-8
4

2
4

9
9

2

1
4

B
bl

p_
20

_2
0_

50
_5

_4
LL

V
F

-7
0

2
-2

3
8

-7
0

2
-2

3
8

-7
0

1
-2

3
9

-5
8

9
-3

3
5

-4
9

1
-3

1
6

-1
6

2
-3

4
9

-5
1

0
-3

1
6

-4
5

2
-2

9
4

-5
9

8
-3

1
9

K
K

T
-1

5
3

-2
8

2
-1

5
3

-2
8

2
-1

5
3

-2
8

2
-1

5
3

-2
8

3
-1

4
2

-2
9

0
-2

8
3

-3
6

9
-3

3
0

-2
7

3
-3

3
4

-2
4

2
-2

4
7

-2
4

4

1
5

B
bl

p_
20

_2
0_

50
_5

_5
LL

V
F

-1
2

8
-5

6
-9

3
-1

6
-1

3
4

-5
0

3
2

6
1

6
7

1
6

5
4

9
3

4
-6

5
5

1
9

4
0

8
2

6
4

7
-3

3
4

-1
2

-5
2

K
K

T
-4

9
2

1
1

1
-4

9
3

1
1

1
-4

9
3

1
1

1
-4

8
9

1
0

9
-5

2
2

1
0

3
-1

2
7

-2
9

2
-7

6
-7

-4
1

7
-8

6
-3

3

1
6

B
bl

p_
20

_2
0_

50
_5

_6
LL

V
F

-4
1

3
8

6
-4

1
5

8
6

-4
3

6
9

1
-5

9
7

1
4

2
-5

2
9

-9
1

3
6

1
1

7
-2

8
6

5
-7

1
-1

4
4

0
-8

2
9

-1
4

1
7

-2
2

2
1

0
1

K
K

T
-1

6
0

7
-8

4
7

-1
6

0
8

-8
4

7
-1

6
0

9
-8

4
8

-1
5

7
0

-8
0

5
-1

6
7

9
-9

5
4

1
5

-9
9

5
-1

7
3

-2
8

1
-2

0
1

5
9

-2
3

2
6

1

1
7

B
bl

p_
20

_2
0_

50
_5

_7
LL

V
F

-6
5

-1
9

9
-6

6
-1

9
8

-7
4

-1
9

7
-1

2
5

-1
9

6
-1

5
9

4
-7

5
1

3
5

4
9

-1
4

0
3

-7
5

1
-9

4
5

-9
3

0
-8

1
1

-9
2

-1
1

3
1

a objective functions values for transformed integer examples 97

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)

1
7

B
bl

p_
20

_2
0_

50
_5

_7
K

K
T

2
3

1
-1

0
2

2
3

1
-1

0
2

2
3

1
-1

0
2

2
3

3
-1

0
3

2
4

1
-1

2
0

-5
1

4
-1

2
6

-4
0

9
-5

1
9

1
6

4
-2

1
4

1
6

5
-2

1
9

1
8

B
bl

p_
20

_2
0_

50
_5

_8
LL

V
F

-5
7

8
-5

8
-5

7
6

-5
7

-5
5

9
-5

0
-3

6
2

8
3

-1
8

0
8

1
4

0
3

1
7

3
2

1
8

7
7

1
6

2
2

2
6

0
3

4
5

0
3

1
8

-1
7

7
7

0
6

K
K

T
-2

5
6

6
1

3
8

1
-2

5
6

7
1

3
8

2
-1

9
1

1
1

0
5

0
-1

1
3

4
6

6
4

-9
3

2
5

3
7

-8
8

-1
0

2
7

-3
2

7
-1

9
3

-3
1

9
-6

6
4

3
-1

4
5

1
9

B
bl

p_
20

_2
0_

50
_5

_9
LL

V
F

-2
0

5
4

1
-2

1
4

3
9

-1
1

0
1

7
7

-3
8

9
1

9
0

-1
3

2
6

3
1

8
-1

2
5

6
-2

5
0

-8
5

9
-2

9
7

-4
9

0
-2

5
4

-3
7

2
-1

6
9

K
K

T
-5

7
7

4
-2

6
8

7
-5

7
7

5
-2

6
8

7
-5

8
1

0
-2

7
0

2
-5

8
3

5
-2

7
1

3
-6

1
6

7
-2

8
7

5
-1

3
7

8
-9

0
7

1
-9

0
9

2
-4

4
9

1
-5

0

2
0

B
bl

p_
20

_2
0_

50
_5

_1
0

LL
V

F
-2

0
8

2
-2

2
8

3
-4

1
9

5
-2

2
0

1
6

7
-4

2
1

3
9

4
-8

5
5

6
1

1
-1

9
5

3
9

2
-1

1
6

2
7

6
-2

6
1

6
6

K
K

T
-3

2
9

7
8

2
-3

3
0

7
8

2
-3

3
0

7
8

2
-3

2
5

7
6

7
-3

7
7

8
6

1
-4

3
8

5
9

7
7

2
2

1
1

9
3

-6
5

2
4

9
-8

4

2
1

B
bl

p_
20

_2
0_

50
_5

_1
1

LL
V

F
4

9
7

-5
6

4
9

8
-5

6
4

9
9

-4
9

4
7

8
1

9
3

0
1

6
5

4
6

5
0

8
3

3
2

9
0

-8
5

8
2

6
1

-1
4

0
8

6
5

9
-1

3
8

K
K

T
-5

0
0

5
4

-5
0

0
2

7
-2

3
2

1
7

-2
3

2
8

0
-6

0
5

4
-6

2
2

0
-2

5
3

1
-2

7
2

7
-2

9
1

9
-3

1
6

5
5

1
6

-2
1

8
-1

6
-1

9
5

2
2

3
3

2
2

7
7

-8
3

2
2

B
bl

p_
20

_2
0_

50
_5

_1
2

LL
V

F
3

1
8

8
1

3
1

8
8

1
3

1
5

8
2

2
3

4
9

2
9

1
9

1
5

8
-2

1
8

9
-6

8
5

-3
3

4
-7

3
1

2
8

8
-4

0
9

6
9

3
-8

4

K
K

T
-1

3
6

1
8

0
6

3
6

0
4

-5
5

2
4

0
2

6
3

9
7

-2
4

8
1

0
1

2
1

0
8

-1
7

4
3

9
8

6
6

3
-5

8
7

9
3

3
3

5
2

9
3

4
0

5
1

1
5

8
-3

1
3

9
4

2
0

8
4

4
7

6
6

2
3

B
bl

p_
20

_2
0_

50
_5

_1
3

LL
V

F
-4

2
1

0
9

-4
1

1
0

8
-4

3
1

0
9

9
9

1
1

3
3

-5
8

4
2

7
9

1
3

1
3

-1
8

6
-2

3
2

-1
6

0
-2

1
1

-2
1

3
5

1
-8

0

K
K

T
-8

5
7

-2
2

7
-8

5
7

-2
2

7
-8

5
8

-2
2

7
-8

6
9

-2
3

0
-9

4
6

-2
3

7
-1

4
3

2
-2

3
3

-5
5

9
-2

2
3

-1
9

2
9

-5
5

6
6

2
4

B
bl

p_
20

_2
0_

50
_5

_1
4

LL
V

F
-1

3
8

4
-9

1
2

-1
3

8
4

-9
1

1
-1

3
7

8
-9

0
4

-1
3

6
5

-8
5

8
-6

7
2

-1
1

7
3

-7
5

8
-1

5
7

4
-1

3
-4

9
2

-1
8

-5
4

2
-1

1
4

3
-4

1
9

K
K

T
-2

0
2

3
-1

5
8

4
-1

8
4

6
-1

4
8

8
-7

8
1

-8
7

9
-1

6
9

-5
2

2
-5

2
9

-7
4

3
-2

3
6

-4
3

3
-4

5
5

-8
4

9
2

2
-1

1
0

-2
0

2
-4

1
4

2
5

B
bl

p_
20

_2
0_

50
_5

_1
5

LL
V

F
4

0
8

3
1

4
3

8
0

2
8

6
4

0
3

3
0

5
4

0
9

2
3

0
-7

1
0

4
8

3
-5

5
3

2
5

4
1

3
1

8
-5

3
1

1
6

7
1

-7
8

2
9

5
6

-1
5

3

K
K

T
8

2
7

6
0

-5
6

1
7

1
5

1
6

9
9

-3
5

1
3

1
3

2
9

2
3

-2
2

4
4

8
2

6
3

3
3

-1
7

9
9

7
6

7
7

5
-4

7
8

8
8

4
1

-5
2

3
6

6
7

-1
0

4
7

0
4

2
6

5
1

-1
3

4

2
6

B
bl

p_
20

_2
0_

50
_5

_1
6

LL
V

F
-1

6
0

1
0

1
-1

5
8

1
0

0
-1

4
0

1
0

0
-3

8
9

6
2

9
0

1
3

7
3

5
9

3
1

9
4

9
3

2
1

4
6

4
0

3
3

3
-1

7
4

5
6

-2
5

8

K
K

T
-1

7
7

2
3

2
-1

7
7

2
3

3
-1

7
7

2
3

3
-1

7
7

2
3

5
-2

3
2

2
5

1
-2

2
3

2
2

5
-8

3
0

-2
1

0
-5

6
-3

1
2

9
3

1

2
7

B
bl

p_
20

_2
0_

50
_5

_1
7

LL
V

F
-3

0
9

1
6

8
-3

1
1

1
6

8
-3

3
0

1
7

4
-5

6
3

2
4

7
-3

2
7

2
4

2
1

-1
3

2
0

7
4

0
3

8
-3

7
3

8
1

7
8

9
-1

6
7

7
4

9
6

-1
5

4
2

4
1

8

K
K

T
-5

9
5

-5
3

9
-5

9
5

-5
3

9
-5

9
5

-5
4

0
-5

8
1

-5
1

5
-6

6
0

-6
3

6
2

7
-3

3
2

-4
2

5
2

3
0

-2
7

9
1

6
2

-2
8

5
-4

3

2
8

B
bl

p_
20

_2
0_

50
_5

_1
8

LL
V

F
-6

1
8

-5
1

8
-9

2
0

-1
3

9
-3

-1
3

2
-4

6
6

2
2

8
4

-7
5

1
2

6
3

6
-2

5
6

5
1

7
2

-2
0

6
1

2
0

-4
0

5

K
K

T
-3

3
1

-4
1

2
-3

3
1

-4
1

2
-3

3
2

-4
1

3
-3

3
9

-4
2

0
-3

6
4

-4
1

0
-1

7
7

-7
4

-5
8

4
-1

0
3

1
4

9
2

0
6

1
6

2
9

B
bl

p_
20

_2
0_

50
_5

_1
9

LL
V

F
4

8
6

-1
5

4
8

7
-1

5
4

9
8

-1
7

6
7

2
-5

8
7

7
8

5
2

8
-7

3
7

7
2

0
9

1
0

9
3

4
0

7
4

9
9

2
7

0
5

4
7

1
0

4

K
K

T
1

3
8

8
4

5
1

3
8

8
4

5
1

3
9

0
4

5
1

3
8

9
4

6
2

9
3

5
3

1
6

3
-6

9
4

3
5

-4
6

5
9

-3
6

4
8

7
1

0
7

3
0

B
bl

p_
20

_2
0_

50
_5

_2
0

LL
V

F
-6

7
2

0
1

-6
8

2
0

0
-7

0
1

9
7

-9
4

1
8

1
-4

7
7

-2
0

3
7

0
5

-5
9

5
3

7
1

9
-4

2
2

-3
7

3
-1

3
7

-4
8

5
-3

5
4

K
K

T
4

1
9

-2
9

4
1

9
-2

9
4

1
9

-2
9

4
2

2
-2

9
4

0
7

-3
6

9
9

4
-5

8
1

-3
3

5
8

1
5

6
7

0
5

3
1

B
bl

p_
20

_2
0_

50
_1

0_
1

LL
V

F
-5

7
7

4
-5

8
7

6
-5

6
7

5
1

0
1

6
3

5
2

5
7

2
5

9
1

2
1

8
-9

1
-2

4
2

9
-8

3
-1

7
2

3
-1

7
-5

8
-6

8

K
K

T
-1

8
3

4
-3

4
-1

8
3

4
-3

4
-1

8
3

5
-3

4
-1

8
2

3
-3

0
-1

9
1

4
-2

6
-1

3
9

6
1

4
9

-3
5

9
-1

7
5

-1
6

5
7

2
-5

8
1

1
4

7

3
2

B
bl

p_
20

_2
0_

50
_1

0_
2

LL
V

F
-4

9
-6

4
-4

9
-6

5
-4

5
-6

5
2

4
2

1
0

4
-2

5
5

3
9

8
1

1
6

-3
5

7
6

3
8

-3
9

9
-3

9
2

-5
4

5
2

8
-1

5
7

K
K

T
1

6
4

2
3

-7
7

6
1

6
3

9
0

-7
7

4
7

0
7

5
-4

6
1

2
2

4
9

-2
7

8
5

9
0

3
-3

9
4

9
8

3
-3

-2
6

1
-4

2
7

1
2

-1
0

9
4

9
-5

5

3
3

B
bl

p_
20

_2
0_

50
_1

0_
3

LL
V

F
-4

2
9

2
6

4
-4

2
9

2
5

7
-4

0
9

1
8

5
-6

1
3

4
8

7
-8

9
2

-2
7

0
-7

3
5

-5
5

7
-7

0
0

-3
8

3
-1

6
4

-1
9

0
-3

3
7

-3
2

K
K

T
-2

5
3

-2
2

8
-2

5
3

-2
2

8
-2

5
3

-2
2

9
-2

5
7

-2
2

9
-2

1
7

-2
5

0
-1

8
4

-5
0

7
-1

2
6

-2
2

4
-1

8
0

-3
3

-1
7

5
3

4

3
4

B
bl

p_
20

_2
0_

50
_1

0_
4

LL
V

F
-8

0
0

-3
2

2
-7

9
6

-3
2

1
-7

5
2

-3
1

0
-6

2
8

-3
6

5
-3

5
9

-8
8

0
-1

8
0

8
-2

8
9

4
1

1
-5

3
4

2
1

-4
2

3
-1

3
7

-5
8

K
K

T
-1

7
6

3
9

1
6

6
6

-1
6

0
2

9
1

5
0

2
-1

4
4

8
1

1
3

4
5

-1
4

2
4

8
1

3
2

1
-2

0
9

9
5

0
-9

6
-3

6
4

1
3

0
-3

8
2

-3
1

8
-1

0
4

-2
9

6
-7

6

a objective functions values for transformed integer examples 98

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)

3
5

B
bl

p_
20

_2
0_

50
_1

0_
5

LL
V

F
-5

9
6

2
0

9
-4

2
8

2
3

6
-4

3
1

2
3

6
-1

1
4

5
1

1
6

-1
4

7
4

-2
5

5
7

1
3

7
8

-1
3

9
8

3
9

1
5

-1
4

9
1

1
7

7
1

-7
3

2
-2

3
0

8
5

K
K

T
1

2
3

7
5

3
-6

0
6

3
0

1
1

0
8

2
1

-5
4

1
9

1
4

8
6

1
1

-2
3

4
5

9
2

9
7

9
1

-1
4

1
2

3
3

1
1

6
9

-1
4

8
4

5
3

4
3

4
-1

2
7

7
6

0
2

-3
3

5
2

5
9

1
2

3
7

0
1

2
2

3
6

B
bl

p_
20

_2
0_

50
_1

0_
6

LL
V

F
-5

4
-7

6
6

-5
8

-7
6

3
-9

8
-7

2
1

-3
5

4
-4

2
1

-8
9

3
8

5
3

-9
1

8
5

2
7

-3
0

1
9

3
5

1
7

-1
7

8
5

1
0

0
5

-8
5

0
8

7

K
K

T
-1

7
9

9
1

9
6

7
6

-1
7

8
9

1
9

4
7

5
-1

6
3

6
1

5
0

0
9

-1
0

5
9

2
1

8
2

-1
3

0
0

6
4

5
4

-1
4

0
8

6
8

3
-6

4
3

-6
8

-2
2

7
-1

0
2

-6
7

4
-8

6

3
7

B
bl

p_
20

_2
0_

50
_1

0_
7

LL
V

F
-9

4
4

0
9

-8
8

4
0

1
-9

4
4

0
8

-4
3

4
2

5
1

-7
5

9
2

3
4

8
8

1
6

1
5

5
5

8
5

0
6

5
7

1
1

3
3

8
9

0
5

-1
2

6
4

7
2

K
K

T
6

3
-6

9
9

6
3

-6
9

9
6

3
-6

9
9

-2
8

-5
9

4
8

5
-7

7
7

-2
5

2
-1

1
2

1
1

6
2

3
2

-1
1

1
6

1
-1

4
4

2
6

0

3
8

B
bl

p_
20

_2
0_

50
_1

0_
8

LL
V

F
-1

4
0

-3
3

5
-1

4
1

-3
3

5
-2

7
8

-2
5

2
-1

2
0

4
-2

4
2

-7
2

9
-1

1
7

-1
6

0
7

-2
8

-1
5

5
8

-8
6

0
-2

8
6

-8
8

8
-3

6
5

-3
6

5

K
K

T
3

2
3

0
2

-7
3

4
2

3
1

8
1

5
-7

2
3

3
2

9
3

6
9

-6
6

7
9

2
9

5
1

1
-6

7
0

8
8

7
1

6
-1

9
1

0
-1

5
9

-6
7

1
-6

2
4

-1
4

0
-3

4
6

-1
3

9
-3

7
9

3
9

B
bl

p_
20

_2
0_

50
_1

0_
9

LL
V

F
4

1
3

-4
1

8
4

1
3

-4
1

8
4

1
5

-4
1

9
4

6
3

-1
3

8
1

-7
8

9
-2

0
5

0
-9

8
1

-4
9

0
-8

1
9

-1
3

3
1

-1
7

5
-2

8
5

-1
1

6
-1

0
3

K
K

T
2

0
6

6
6

-2
0

8
5

9
2

5
6

3
4

-2
5

8
2

4
8

8
6

7
-9

1
4

0
2

3
7

5
-2

6
9

1
6

2
7

4
-6

6
5

6
5

2
2

-1
3

9
2

1
0

3
-2

4
6

8
2

1
7

8
4

1
3

6

4
0

B
bl

p_
20

_2
0_

50
_1

0_
10

LL
V

F
2

3
8

-5
9

2
3

9
-5

8
2

4
0

-5
9

6
9

8
-1

1
6

1
9

6
2

-4
8

0
-1

6
7

3
3

0
3

2
-1

1
7

1
1

0
9

7
-2

6
5

1
7

7
-1

4
4

1
8

1

K
K

T
1

6
8

9
2

4
1

6
8

9
2

4
1

6
9

1
2

4
1

6
7

8
2

7
1

7
7

1
3

2
5

7
9

2
7

4
1

6
4

-3
1

2
0

3
-2

2
1

7
1

1
3

4
1

B
bl

p_
20

_2
0_

50
_1

5_
1

LL
V

F
-1

2
8

8
-5

6
2

-1
2

8
8

-5
6

3
-1

2
9

0
-5

7
3

-1
2

9
6

-6
8

0
-1

6
7

3
-8

3
1

-2
2

6
2

-2
2

-1
6

9
4

-1
6

-1
3

8
6

1
8

-1
8

6
-4

8

K
K

T
-8

6
6

1
9

6
-8

6
6

1
9

6
-8

6
8

1
9

6
-8

8
3

1
9

8
-6

2
6

2
9

6
-4

6
9

4
1

1
-3

0
2

1
4

7
-1

2
1

2
1

2
1

0
3

8
7

4
2

B
bl

p_
20

_2
0_

50
_1

5_
2

LL
V

F
8

7
5

6
8

7
8

5
6

1
-2

3
5

0
1

-3
8

9
1

0
8

-6
8

0
-6

2
5

-1
1

8
6

-2
1

7
6

-1
1

6
-2

3
5

-2
8

2
2

3
3

-3
5

3
0

K
K

T
-2

7
3

3
5

9
-2

7
3

3
5

9
-2

7
3

3
6

0
-2

7
6

3
6

2
-3

4
1

4
0

3
-1

7
3

2
9

9
-4

8
4

1
8

1
3

2
4

1
5

2
6

0
3

9
8

4
3

B
bl

p_
20

_2
0_

50
_1

5_
3

LL
V

F
-1

2
4

2
2

-1
2

3
2

4
-1

0
9

4
5

-6
6

3
7

3
2

6
0

1
0

3
-4

2
7

5
8

3
-4

1
6

2
3

-2
7

0
-9

0
-1

4
3

8
1

K
K

T
1

4
9

1
9

8
1

4
9

1
9

8
1

4
9

1
9

8
1

5
2

2
0

0
1

2
4

1
0

3
-3

4
1

-1
3

0
-1

9
5

-5
8

-1
6

3
-1

1
9

-2
9

7
-1

8
8

4
4

B
bl

p_
20

_2
0_

50
_1

5_
4

LL
V

F
-2

3
1

-1
6

4
-2

0
6

-1
8

9
-2

0
9

-1
9

1
-6

3
4

-3
1

9
-1

3
6

4
-5

3
8

-3
3

5
1

-3
9

0
-2

4
9

1
-1

1
4

1
-1

4
0

7
-9

5
8

-1
7

3
-1

2
3

K
K

T
-9

2
0

1
-1

5
1

4
0

-6
8

4
7

-1
1

3
1

6
-4

6
6

4
-7

7
7

4
-3

6
0

0
-6

0
4

5
-1

5
7

3
-2

9
2

7
-1

2
2

-2
5

6
6

4
-1

5
6

-1
4

-2
0

0
2

3
9

-9
7

4
5

B
bl

p_
20

_2
0_

50
_1

5_
5

LL
V

F
2

3
2

2
5

5
2

2
8

2
6

8
2

3
3

2
5

4
3

3
6

9
8

2
-4

5
1

1
6

3
-1

6
3

4
2

7
3

2
2

-1
1

3
-1

1
2

-1
4

4
4

6
1

1
1

K
K

T
-3

0
1

1
6

1
-3

0
1

1
6

1
-3

0
2

1
6

1
-3

0
5

1
6

2
3

0
-1

4
8

1
1

8
-2

2
8

2
2

6
-4

9
2

8
8

-1
1

8
1

2
5

-1
0

4

4
6

B
bl

p_
20

_2
0_

50
_1

5_
6

LL
V

F
7

4
5

8
8

7
4

5
8

8
7

4
7

9
0

8
9

1
1

0
8

1
-3

7
3

2
8

1
3

-8
9

0
9

4
0

-8
8

0
6

4
0

-3
0

1
3

6
1

6
7

-1
4

4

K
K

T
-1

0
0

2
7

1
4

6
7

2
-1

0
0

2
8

1
4

6
7

3
-9

3
1

0
1

3
5

4
9

-8
5

4
8

1
2

3
4

5
-7

0
0

6
9

5
9

9
-1

3
7

8
1

8
1

6
2

9
1

2
5

9
3

9
4

2
4

4
-4

8
6

0
6

4
7

B
bl

p_
20

_2
0_

50
_1

5_
7

LL
V

F
-3

7
7

1
3

7
-3

6
7

1
4

1
-3

8
8

1
2

7
-1

1
3

8
-3

6
5

-5
0

3
2

8
7

-3
2

2
8

7
3

-2
3

1
0

-5
7

3
-1

7
0

8
-2

8
9

-6
8

7
7

1

K
K

T
-5

5
2

6
3

1
4

0
-5

1
5

2
3

2
4

8
-4

1
4

9
3

0
4

5
-3

7
7

2
3

0
3

3
-2

9
2

8
2

6
3

0
-9

6
2

6
7

1
-3

1
5

3
9

0
-1

7
5

3
2

3
-2

4
4

3
2

7

4
8

B
bl

p_
20

_2
0_

50
_1

5_
8

LL
V

F
-2

1
6

3
5

3
-2

1
5

3
5

2
-2

0
7

3
4

3
2

8
-8

8
1

2
8

9
8

-5
7

9
9

1
5

4
7

-3
9

1
6

9
4

-4
0

2
6

-6
0

8
-1

2
1

3
-3

0
1

-8
8

K
K

T
1

3
1

-1
8

6
3

1
3

1
-1

8
6

4
1

3
1

-1
8

6
5

1
3

3
-1

8
8

3
1

7
4

-1
9

8
6

-2
7

2
-7

0
6

-6
0

8
3

2
8

-3
7

0
3

6
4

-3
8

4
3

8
2

4
9

B
bl

p_
20

_2
0_

50
_1

5_
9

LL
V

F
-1

7
4

3
7

0
-1

7
8

3
6

9
-2

1
9

3
5

7
-6

5
6

5
0

6
-2

3
5

2
3

7
7

2
0

5
9

1
1

9
7

1
2

0
6

-9
2

3
6

7
3

5
3

-1
7

1
2

5
1

K
K

T
-2

5
4

6
8

9
7

0
-2

3
8

1
8

2
2

8
-2

1
3

6
7

1
8

1
-1

0
6

2
2

6
0

3
-1

4
2

6
4

3
0

5
-5

8
8

8
3

2
-5

0
0

3
0

3
-3

3
2

3
9

5
-5

5
3

3
1

0

5
0

B
bl

p_
20

_2
0_

50
_1

5_
10

LL
V

F
-9

6
-1

6
1

-6
2

3
8

-1
5

2
-1

2
4

-5
4

6
1

5
5

-2
0

8
-5

8
2

-2
0

2
4

-5
9

3
-7

0
5

2
6

1
-4

3
7

4
1

0
-3

7
7

3

K
K

T
-1

4
3

3
4

4
3

3
5

7
8

-1
3

5
8

4
2

3
1

8
3

4
-8

0
6

9
7

1
8

9
0

6
-5

1
5

2
4

1
2

0
7

4
-3

3
6

4
5

7
7

8
1

-2
7

3
9

3
6

5
-3

0
1

2
6

2
-1

4
5

3
8

4
2

2
2

4
2

Ta
bl

e
8:

U
pp

er
-l

ev
el

an
d

lo
w

er
-l

ev
el

ob
je

ct
iv

e
va

lu
es

at
th

e
so

lu
ti

on
po

in
t

of
al

go
ri

th
m

s
??

an
d

2
.6

fo
r

re
la

xe
d

in
te

ge
r

ex
am

pl
es

fr
om

[3
2
]

b objective functions values for transformed binary examples 99

b
ob

je
ct

iv
e

fu
nc

ti
on

s
va

lu
es

at
th

e
so

lu
ti

on
po

in
t

fo
r

tr
an

sf
or

m
ed

bi
na

ry
ex

am
pl

es
fr

om
[3

2]

λ
λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

N
o

Pr
ob

le
m

na
m

es
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)

f(
x̂

,ŷ
)
F
(x̂

,ŷ
)
f(
x̂

,ŷ
)

1
B

2A
P0

5-
1

LL
V

F
-3

4
4

3
-3

6
4

0
-6

0
5

8
-9

1
8

7
-9

2
8

7
-4

2
-3

3
-9

9
-1

1
-1

0
4

-4
-1

1
1

2

K
K

T
7

6
2

3
8

-7
1

0
4

2
0

1
6

1
2

1
3

3
-1

9
7

8
-4

3
3

8
-9

0
6

6
-9

4
7

0
-5

2
5

2

2
B

2A
P0

5-
2

LL
V

F
-3

9
3

7
-3

2
3

8
-5

4
5

5
-8

1
8

1
-8

2
8

3
-8

2
-8

2
-1

5
1

-2
8

-1
6

5
-2

0
-2

3
2

3

K
K

T
-2

0
3

4
3

-9
3

4
4

-1
4

3
4

9
-1

2
1

4
9

-7
0

4
2

-4
6

3
4

-9
4

6
4

-9
8

6
7

-5
4

5
4

3
B

2A
P0

5-
3

LL
V

F
-4

2
3

8
-4

6
3

8
-6

8
5

7
-1

0
2

8
6

-1
0

3
8

7
-1

0
-7

6
-9

4
3

-1
0

5
2

5
-3

0
3

0

K
K

T
6

5
7

-2
3

3
6

3
3

1
-1

6
3

7
-3

5
3

8
-5

3
4

0
-1

0
6

7
7

-1
1

0
8

0
-6

4
6

4

4
B

2A
P0

5-
4

LL
V

F
-3

6
3

4
-3

7
3

7
-5

5
6

0
-8

3
8

9
-8

4
9

0
-3

-9
2

-1
0

5
-3

2
-1

2
3

-1
1

-7
7

K
K

T
6

2
-1

4
1

-1
4

-8
1

0
-5

4
-7

-2
3

-2
6

1
4

-4
5

3
5

-7
9

6
8

-8
6

7
2

-5
2

5
2

5
B

2A
P0

5-
5

LL
V

F
-4

0
4

0
-4

1
3

9
-6

0
5

9
-9

0
8

8
-9

1
8

9
-3

4
-6

4
-9

9
-2

0
-1

0
9

-1
2

-1
8

1
8

K
K

T
1

1
1

0
2

-3
2

6
1

-2
1

8
1

-3
1

7
3

-3
7

5
2

-4
7

3
6

-8
9

6
9

-9
3

7
3

-5
5

5
5

6
B

2A
P0

5-
6

LL
V

F
-3

3
3

9
-3

6
3

8
-5

3
5

7
-8

0
8

6
-8

1
8

7
-3

8
-6

3
-1

0
3

-1
5

-9
9

3
-8

8

K
K

T
4

5
1

3
7

-1
9

7
2

0
1

0
2

-1
4

8
9

-2
8

5
9

-3
9

3
5

-7
5

6
2

-7
8

6
5

-4
6

4
6

7
B

2A
P0

5-
7

LL
V

F
-3

7
3

7
-3

7
3

7
-5

9
5

9
-8

8
8

8
-8

9
8

9
8

4
-8

4
-4

2
4

2
-8

2
8

2
-1

3
1

3

K
K

T
-1

0
8

1
0

8
-5

9
5

9
-7

7
7

7
-6

9
6

9
-4

9
4

9
-4

5
4

5
-8

4
8

4
-8

7
8

7
-5

2
5

2

8
B

2A
P0

5-
8

LL
V

F
-4

6
4

6
-4

7
4

7
-7

3
7

3
-9

6
9

6
-9

7
9

7
7

8
-7

8
-4

8
4

8
-7

9
7

9
-2

5
2

5

K
K

T
-4

8
4

8
-5

3
5

3
-5

7
5

7
-5

8
5

8
-5

1
5

1
-5

3
5

3
-1

1
1

1
1

1
-1

1
5

1
1

5
-6

9
6

9

9
B

2A
P0

5-
9

LL
V

F
-5

2
5

2
-5

2
5

2
-8

4
8

4
-1

2
5

1
2

5
-1

2
5

1
2

5
5

6
-5

6
-6

9
6

9
-9

8
9

8
-3

9
3

9

K
K

T
3

-3
-4

6
4

6
-3

6
3

6
-4

7
4

7
-5

2
5

2
-6

5
6

5
-1

3
2

1
3

2
-1

3
7

1
3

7
-7

8
7

8

1
0

B
2A

P0
5-

10
LL

V
F

-4
7

4
7

-4
6

4
6

-6
5

6
5

-9
8

9
8

-9
9

9
9

8
5

-8
5

-8
6

8
6

-1
0

5
1

0
5

-2
7

2
7

K
K

T
-2

4
1

2
4

1
-1

0
0

1
0

0
-1

5
0

1
5

0
-1

2
3

1
2

3
-7

3
7

3
-5

3
5

3
-1

0
7

1
0

7
-1

1
1

1
1

1
-6

5
6

5

1
1

B
2A

P0
5-

11
LL

V
F

-4
9

4
9

-5
0

5
0

-9
2

9
2

-1
0

6
1

0
6

-1
0

7
1

0
7

5
1

-5
1

-4
1

4
1

-7
8

7
8

-2
8

2
8

K
K

T
1

4
4

-1
4

4
-1

1
1

1
3

1
-3

1
1

0
8

-1
0

8
-3

4
3

4
-5

8
5

8
-1

0
8

1
0

8
-1

1
3

1
1

3
-6

8
6

8

1
2

B
2A

P0
5-

12
LL

V
F

-4
7

4
7

-4
5

4
5

-5
8

5
8

-8
6

8
6

-8
8

8
8

1
8

-1
8

-7
6

7
6

-8
3

8
3

-3
8

3
8

K
K

T
-1

3
5

1
3

5
-7

5
7

5
-9

9
9

9
-8

8
8

8
-6

2
6

2
-5

1
5

1
-8

8
8

8
-9

4
9

4
-6

1
6

1

1
3

B
2A

P0
5-

13
LL

V
F

-3
9

4
7

-3
9

4
6

-5
9

6
5

-8
9

9
8

-9
0

9
9

-4
-8

2
-1

0
0

-2
1

-1
1

2
-1

-4
8

-7
K

K
T

-1
2

2
4

1
-3

7
1

0
0

-3
2

1
5

0
-3

8
1

2
3

-3
8

7
3

-4
7

4
5

-8
8

8
0

-9
2

8
4

-5
4

4
9

1
4

B
2A

P0
5-

14
LL

V
F

-4
0

4
2

-4
3

4
0

-5
7

5
2

-9
2

8
4

-9
4

8
6

2
2

-9
7

-1
2

2
-2

9
-1

3
0

-5
-5

1
-8

K
K

T
4

5
8

6
-2

4
5

7
-5

7
2

-1
9

6
7

-3
4

4
9

-5
3

4
0

-1
0

2
7

8
-1

0
6

8
2

-6
1

4
7

1
5

B
2A

P0
5-

15
LL

V
F

-5
2

5
2

-5
2

5
2

-7
1

7
1

-1
1

5
1

1
5

-1
1

6
1

1
6

4
3

-4
3

-8
1

8
1

-1
0

0
1

0
0

-4
4

4
4

K
K

T
-3

4
3

4
-5

5
5

5
-5

4
5

4
-5

9
5

9
-5

5
5

5
-6

0
6

0
-1

2
8

1
2

8
-1

3
3

1
3

3
-7

7
7

7

1
6

B
2A

P0
5-

16
LL

V
F

-3
1

3
1

-3
3

3
3

-7
0

7
0

-9
3

9
3

-9
4

9
4

1
2

9
-1

2
9

-3
1

3
1

-9
0

9
0

-3
3

K
K

T
-2

1
2

1
-3

6
3

6
-3

5
3

5
-4

0
4

0
-3

5
3

5
-4

3
4

3
-9

1
9

1
-9

5
9

5
-5

1
5

1

1
7

B
2A

P0
5-

17
LL

V
F

-4
9

4
9

-5
0

5
0

-6
8

6
8

-1
0

0
1

0
0

-1
0

2
1

0
2

1
0

2
-1

0
2

-2
5

2
5

-8
7

8
7

-2
3

2
3

b objective functions values for transformed binary examples 100

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

1
7

B
2A

P0
5-

17
K

K
T

-5
2

5
2

-5
5

5
5

-5
8

5
8

-5
9

5
9

-5
3

5
3

-6
0

6
0

-1
1

8
1

1
8

-1
2

5
1

2
5

-7
1

7
1

1
8

B
2A

P0
5-

18
LL

V
F

-3
7

3
7

-3
7

3
7

-6
0

6
0

-9
0

9
0

-9
1

9
1

9
1

-9
1

-2
4

2
4

-7
0

7
0

-6
6

1
8

B
2A

P0
5-

18
K

K
T

-7
7

-3
4

3
4

-3
0

3
0

-3
6

3
6

-3
7

3
7

-4
4

4
4

-8
8

8
8

-9
5

9
5

-5
5

5
5

1
9

B
2A

P0
5-

19
LL

V
F

-5
2

5
2

-5
1

5
1

-7
8

7
8

-1
0

3
1

0
3

-1
0

4
1

0
4

1
2

-1
2

-9
5

9
5

-1
0

1
1

0
1

-4
9

4
9

K
K

T
-1

2
8

1
2

8
-7

9
7

9
-1

0
4

1
0

4
-9

3
9

3
-6

8
6

8
-6

1
6

1
-1

0
9

1
0

9
-1

1
3

1
1

3
-7

0
7

0

2
0

B
2A

P0
5-

20
LL

V
F

-3
8

3
8

-3
8

3
8

-6
4

6
4

-9
3

9
3

-9
4

9
4

6
5

-6
5

-5
2

5
2

-7
9

7
9

-1
4

1
4

K
K

T
-3

9
3

9
-4

4
4

4
-4

6
4

6
-4

9
4

9
-4

2
4

2
-4

3
4

3
-9

0
9

0
-9

4
9

4
-5

2
5

2

2
1

B
2A

P0
5-

21
LL

V
F

-3
9

3
9

-4
0

4
0

-6
3

6
3

-9
2

9
2

-9
3

9
3

8
0

-8
0

-3
3

3
3

-7
7

7
7

-9
9

K
K

T
1

5
-1

5
-3

0
3

0
-1

9
1

9
-2

9
2

9
-3

4
3

4
-4

4
4

4
-9

6
9

6
-1

0
1

1
0

1
-5

4
5

4

2
2

B
2A

P0
5-

22
LL

V
F

-5
6

5
6

-5
6

5
6

-7
4

7
4

-1
0

8
1

0
8

-1
0

9
1

0
9

6
3

-6
3

-8
2

8
2

-1
0

5
1

0
5

-3
1

3
1

K
K

T
-3

5
3

5
-5

4
5

4
-5

3
5

3
-5

8
5

8
-5

4
5

4
-5

8
5

8
-1

2
0

1
2

0
-1

2
5

1
2

5
-7

3
7

3

2
3

B
2A

P0
5-

23
LL

V
F

-4
2

6
0

-4
4

5
7

-6
8

7
1

-1
0

2
1

0
4

-1
0

2
1

0
4

-6
-3

2
-9

5
3

5
-1

0
1

5
7

-5
1

2
8

K
K

T
-1

4
5

4
-4

2
6

0
-3

7
6

3
-4

4
6

5
-4

4
5

7
-5

0
5

5
-1

0
2

9
7

-1
0

7
1

0
1

-6
4

6
5

2
4

B
2A

P0
5-

24
LL

V
F

-4
4

5
3

-4
3

5
3

-6
8

7
3

-1
0

2
1

0
7

-1
0

3
1

0
8

-2
5

-8
5

-1
1

0
-2

5
-1

2
3

-1
3

-5
9

-3
K

K
T

3
4

-7
-2

9
4

0
-1

1
2

9
-2

6
4

0
-3

8
4

5
-5

3
4

6
-1

0
4

9
3

-1
0

8
9

8
-6

3
5

6

2
5

B
2A

P0
5-

25
LL

V
F

-4
8

4
8

-4
5

4
5

-6
3

6
3

-8
2

8
2

-8
4

8
4

6
2

-6
2

-8
4

8
4

-1
1

7
1

1
7

-2
0

2
0

K
K

T
-2

8
9

2
8

9
-1

1
9

1
1

9
-1

9
0

1
9

0
-1

5
4

1
5

4
-8

7
8

7
-5

1
5

1
-9

2
9

2
-9

6
9

6
-5

6
5

6

2
6

B
K

50
10

W
02

K
N

P
LL

V
F

2
4

5
7

-2
4

5
7

2
4

5
8

-2
4

5
8

2
4

7
7

-2
4

7
7

1
5

0
9

-1
5

0
9

-6
7

7
3

6
7

7
3

-3
4

0
4

0
3

4
0

4
0

-3
9

4
2

8
3

9
4

2
8

-3
8

2
0

0
3

8
2

0
0

-1
2

6
1

2
6

K
K

T
2

4
4

7
-2

4
4

7
2

4
2

0
-2

4
2

0
2

3
1

4
-2

3
1

4
8

2
6

-8
2

6
-2

5
7

5
2

5
7

5
-3

4
9

0
3

3
4

9
0

3
-3

6
1

9
6

3
6

1
9

6
-3

6
0

8
4

3
6

0
8

4
-6

7
8

6
7

8

2
7

B
K

50
10

W
03

K
N

P
LL

V
F

2
0

0
5

-2
0

0
5

2
0

0
9

-2
0

0
9

2
0

6
2

-2
0

6
2

1
0

5
0

-1
0

5
0

-2
3

7
8

8
2

3
7

8
8

-1
6

2
5

3
1

6
2

5
3

-2
6

1
2

9
2

6
1

2
9

-2
5

9
8

5
2

5
9

8
5

4
6

9
-4

6
9

K
K

T
2

0
0

4
-2

0
0

4
1

9
8

8
-1

9
8

8
1

9
3

1
-1

9
3

1
2

0
3

-2
0

3
-8

9
3

8
9

3
-1

9
7

5
6

1
9

7
5

6
-2

1
8

4
5

2
1

8
4

5
-2

2
0

8
8

2
2

0
8

8
6

8
7

-6
8

7

2
8

B
K

50
10

W
04

K
N

P
LL

V
F

2
7

5
4

-2
7

5
4

2
7

5
9

-2
7

5
9

2
8

2
6

-2
8

2
6

1
5

1
1

-1
5

1
1

-2
0

2
0

2
0

2
0

-2
5

9
6

9
2

5
9

6
9

-3
1

9
9

2
3

1
9

9
2

-3
0

4
6

2
3

0
4

6
2

1
0

8
0

-1
0

8
0

K
K

T
2

7
4

9
-2

7
4

9
2

7
3

8
-2

7
3

8
2

6
8

7
-2

6
8

7
1

1
9

4
-1

1
9

4
5

7
-5

7
-2

3
9

5
6

2
3

9
5

6
-2

4
7

3
0

2
4

7
3

0
-2

4
8

4
5

2
4

8
4

5
7

9
0

-7
9

0

2
9

B
K

50
10

W
05

K
N

P
LL

V
F

3
4

4
3

-2
3

1
9

3
4

4
6

-2
3

2
1

3
4

9
6

-2
3

4
7

1
3

5
0

-8
2

1
-8

9
7

5
5

8
7

4
-3

6
0

8
2

1
6

4
9

7
-4

1
0

9
4

2
1

1
2

1
-3

8
7

5
3

2
0

2
0

0
1

1
5

8
-1

1
5

8

K
K

T
3

4
3

1
-2

3
1

1
3

4
2

1
-2

2
9

6
3

3
7

6
-2

2
3

4
1

9
1

1
-3

9
9

-4
2

7
3

0
0

-2
5

7
0

5
1

3
4

0
7

-2
6

4
8

0
1

5
8

3
2

-2
6

7
3

3
1

6
1

8
1

1
1

5
1

-1
1

5
1

3
0

B
K

50
10

W
06

K
N

P
LL

V
F

2
3

1
8

-2
3

1
8

2
3

2
1

-2
3

2
1

2
3

5
9

-2
3

5
9

7
0

4
-7

0
4

-5
1

4
9

5
1

4
9

-3
4

3
0

4
3

4
3

0
4

-4
0

7
3

7
4

0
7

3
7

-3
9

1
1

0
3

9
1

1
0

-1
7

4
1

7
4

K
K

T
2

3
1

3
-2

3
1

3
2

3
0

3
-2

3
0

3
2

2
5

6
-2

2
5

6
1

4
5

8
-1

4
5

8
-1

0
2

9
1

0
2

9
-3

3
2

3
5

3
3

2
3

5
-3

4
0

3
5

3
4

0
3

5
-3

3
9

1
1

3
3

9
1

1
-5

0
9

5
0

9

3
1

B
K

50
10

W
07

K
N

P
LL

V
F

2
5

0
6

-2
5

0
6

2
5

0
8

-2
5

0
8

2
5

3
4

-2
5

3
4

1
5

1
4

-1
5

1
4

-4
6

9
7

4
6

9
7

-2
5

3
2

4
2

5
3

2
4

-3
2

9
4

7
3

2
9

4
7

-3
1

5
4

5
3

1
5

4
5

6
5

7
-6

5
7

K
K

T
2

5
0

2
-2

5
0

2
2

4
8

5
-2

4
8

5
2

4
2

0
-2

4
2

0
5

8
0

-5
8

0
-9

8
2

9
8

2
-2

8
0

3
8

2
8

0
3

8
-2

9
2

2
2

2
9

2
2

2
-2

9
1

3
6

2
9

1
3

6
9

9
-9

9

3
2

B
K

50
10

W
08

K
N

P
LL

V
F

2
4

9
8

-2
4

9
8

2
5

0
1

-2
5

0
1

2
5

5
3

-2
5

5
3

1
1

2
0

-1
1

2
0

-4
7

3
9

4
7

3
9

-4
7

2
2

6
4

7
2

2
6

-5
1

1
6

7
5

1
1

6
7

-4
7

3
6

5
4

7
3

6
5

-7
4

1
7

4
1

K
K

T
2

4
9

0
-2

4
9

0
2

4
8

1
-2

4
8

1
2

4
7

0
-2

4
7

0
2

1
5

4
-2

1
5

4
-1

4
7

1
4

7
-4

0
5

6
7

4
0

5
6

7
-3

9
0

2
8

3
9

0
2

8
-3

8
7

8
8

3
8

7
8

8
-8

6
6

8
6

6

3
3

B
K

50
10

W
09

K
N

P
LL

V
F

1
9

2
5

-1
9

2
5

1
9

2
9

-1
9

2
9

1
9

8
2

-1
9

8
2

4
4

4
-4

4
4

-2
4

7
6

2
4

7
6

-2
0

7
4

5
2

0
7

4
5

-2
9

2
3

4
2

9
2

3
4

-2
9

0
6

6
2

9
0

6
6

7
9

-7
9

K
K

T
1

9
2

1
-1

9
2

1
1

9
0

1
-1

9
0

1
1

8
6

6
-1

8
6

6
1

4
8

-1
4

8
-2

3
1

4
2

3
1

4
-2

4
5

7
6

2
4

5
7

6
-2

6
4

3
7

2
6

4
3

7
-2

6
5

3
4

2
6

5
3

4
-9

3
5

9
3

5

3
4

B
K

50
10

W
10

K
N

P
LL

V
F

2
3

6
2

-2
3

6
2

2
3

6
6

-2
3

6
6

2
4

1
5

-2
4

1
5

1
5

1
-1

5
1

-1
6

5
5

1
6

5
5

-2
0

3
1

0
2

0
3

1
0

-2
7

8
7

1
2

7
8

7
1

-2
7

7
2

5
2

7
7

2
5

5
6

6
-5

6
6

K
K

T
2

3
4

9
-2

3
4

9
2

3
3

1
-2

3
3

1
2

2
0

8
-2

2
0

8
1

3
0

-1
3

0
-2

6
2

8
2

6
2

8
-2

2
9

3
2

2
2

9
3

2
-2

5
1

7
5

2
5

1
7

5
-2

5
3

5
6

2
5

3
5

6
-6

4
7

6
4

7

3
5

B
K

50
10

W
11

K
N

P
LL

V
F

2
6

9
2

-2
6

9
2

2
6

9
5

-2
6

9
5

2
7

3
7

-2
7

3
7

2
2

7
4

-2
2

7
4

1
5

1
-1

5
1

-3
6

8
2

0
3

6
8

2
0

-4
3

1
1

0
4

3
1

1
0

-3
9

8
2

4
3

9
8

2
4

9
3

1
-9

3
1

b objective functions values for transformed binary examples 101

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

3
5

B
K

50
10

W
11

K
N

P
K

K
T

2
6

9
4

-2
6

9
4

2
6

9
4

-2
6

9
4

2
7

0
3

-2
7

0
3

2
7

4
4

-2
7

4
4

1
3

4
5

-1
3

4
5

-3
0

8
5

9
3

0
8

5
9

-3
0

5
9

3
3

0
5

9
3

-2
9

5
6

0
2

9
5

6
0

4
5

1
-4

5
1

3
6

B
K

50
10

W
12

K
N

P
LL

V
F

2
7

9
8

-2
7

9
8

2
8

0
4

-2
8

0
4

2
8

8
5

-2
8

8
5

1
8

5
0

-1
8

5
0

-2
8

4
2

8
4

-3
0

6
2

2
3

0
6

2
2

-3
8

7
4

7
3

8
7

4
7

-3
6

8
6

2
3

6
8

6
2

7
3

3
-7

3
3

K
K

T
2

7
9

7
-2

7
9

7
2

7
9

1
-2

7
9

1
2

7
7

0
-2

7
7

0
2

1
5

1
-2

1
5

1
-3

8
9

3
8

9
-3

0
0

0
1

3
0

0
0

1
-2

9
4

7
1

2
9

4
7

1
-2

9
3

4
7

2
9

3
4

7
3

3
7

-3
3

7

3
7

B
K

50
10

W
13

K
N

P
LL

V
F

2
9

5
8

-2
9

5
8

2
9

6
5

-2
9

6
5

3
0

5
0

-3
0

5
0

2
2

2
8

-2
2

2
8

8
5

-8
5

-9
2

6
1

9
2

6
1

-1
8

3
8

9
1

8
3

8
9

-1
8

3
4

5
1

8
3

4
5

1
9

4
5

-1
9

4
5

K
K

T
2

9
6

2
-2

9
6

2
2

9
5

6
-2

9
5

6
2

9
2

2
-2

9
2

2
2

2
8

2
-2

2
8

2
-2

5
7

2
5

7
-1

2
0

2
3

1
2

0
2

3
-1

3
0

7
5

1
3

0
7

5
-1

3
3

0
7

1
3

3
0

7
2

2
5

6
-2

2
5

6

3
8

B
K

50
10

W
14

K
N

P
LL

V
F

1
7

6
2

-1
7

6
2

1
7

6
3

-1
7

6
3

1
7

8
1

-1
7

8
1

8
3

1
-8

3
1

-4
5

1
2

4
5

1
2

-3
4

1
2

0
3

4
1

2
0

-4
1

3
7

7
4

1
3

7
7

-3
9

8
7

0
3

9
8

7
0

-9
3

9
9

3
9

K
K

T
1

7
5

7
-1

7
5

7
1

7
4

4
-1

7
4

4
1

6
9

3
-1

6
9

3
1

2
1

9
-1

2
1

9
-1

0
8

3
1

0
8

3
-3

7
8

9
8

3
7

8
9

8
-3

8
1

3
2

3
8

1
3

2
-3

7
9

8
7

3
7

9
8

7
-1

4
3

3
1

4
3

3

3
9

B
K

50
10

W
15

K
N

P
LL

V
F

2
9

5
2

-2
9

5
2

2
9

5
4

-2
9

5
4

2
9

8
2

-2
9

8
2

1
9

9
1

-1
9

9
1

-4
1

3
0

4
1

3
0

-4
2

8
1

3
4

2
8

1
3

-4
6

3
4

8
4

6
3

4
8

-4
3

2
8

6
4

3
2

8
6

2
0

-2
0

K
K

T
2

9
4

7
-2

9
4

7
2

9
3

5
-2

9
3

5
2

8
6

1
-2

8
6

1
4

5
4

-4
5

4
-8

4
2

8
4

2
-3

8
4

2
2

3
8

4
2

2
-3

8
1

5
0

3
8

1
5

0
-3

7
9

5
8

3
7

9
5

8
-1

6
2

1
6

2

4
0

B
K

50
10

W
16

K
N

P
LL

V
F

2
7

1
9

-2
7

1
9

2
7

2
1

-2
7

2
1

2
7

5
5

-2
7

5
5

2
3

6
-2

3
6

-2
3

8
9

2
3

8
9

-2
6

3
6

2
2

6
3

6
2

-3
3

1
9

8
3

3
1

9
8

-3
1

9
7

1
3

1
9

7
1

7
6

7
-7

6
7

K
K

T
2

7
1

0
-2

7
1

0
2

6
7

7
-2

6
7

7
2

6
1

8
-2

6
1

8
-9

7
9

7
-1

5
6

9
1

5
6

9
-2

6
0

6
2

2
6

0
6

2
-2

7
7

7
7

2
7

7
7

7
-2

7
7

9
3

2
7

7
9

3
2

4
5

-2
4

5

4
1

B
K

50
10

W
17

K
N

P
LL

V
F

2
9

4
7

-2
9

4
7

2
9

4
9

-2
9

4
9

2
9

7
7

-2
9

7
7

1
2

2
0

-1
2

2
0

-8
7

5
0

8
7

5
0

-3
4

2
1

0
3

4
2

1
0

-3
9

0
6

4
3

9
0

6
4

-3
7

2
2

4
3

7
2

2
4

5
9

9
-5

9
9

K
K

T
2

9
3

6
-2

9
3

6
2

9
0

6
-2

9
0

6
2

7
9

2
-2

7
9

2
1

2
5

0
-1

2
5

0
-1

6
8

3
1

6
8

3
-3

1
5

9
1

3
1

5
9

1
-3

2
5

4
0

3
2

5
4

0
-3

2
4

4
6

3
2

4
4

6
1

8
7

-1
8

7

4
2

B
K

50
10

W
18

K
N

P
LL

V
F

2
7

4
5

-2
7

4
5

2
7

4
9

-2
7

4
9

2
8

0
3

-2
8

0
3

1
1

9
9

-1
1

9
9

-3
0

1
9

3
0

1
9

-2
5

7
2

9
2

5
7

2
9

-3
3

1
9

7
3

3
1

9
7

-3
1

5
5

2
3

1
5

5
2

1
0

1
7

-1
0

1
7

K
K

T
2

7
4

0
-2

7
4

0
2

7
3

4
-2

7
3

4
2

7
0

1
-2

7
0

1
1

6
5

0
-1

6
5

0
4

4
5

-4
4

5
-2

0
9

7
5

2
0

9
7

5
-2

2
5

6
8

2
2

5
6

8
-2

2
4

2
1

2
2

4
2

1
1

4
7

0
-1

4
7

0

4
3

B
K

50
10

W
19

K
N

P
LL

V
F

3
1

8
5

-3
1

8
5

3
1

8
8

-3
1

8
8

3
2

2
8

-3
2

2
8

1
7

9
3

-1
7

9
3

-2
8

2
5

2
8

2
5

-3
4

2
7

1
3

4
2

7
1

-3
8

4
6

7
3

8
4

6
7

-3
6

0
2

9
3

6
0

2
9

1
3

8
4

-1
3

8
4

K
K

T
3

1
8

0
-3

1
8

0
3

1
7

0
-3

1
7

0
3

1
1

9
-3

1
1

9
1

7
4

8
-1

7
4

8
3

5
4

-3
5

4
-2

8
1

7
6

2
8

1
7

6
-2

9
0

4
5

2
9

0
4

5
-2

8
8

2
9

2
8

8
2

9
1

0
2

7
-1

0
2

7

4
4

B
K

50
10

W
20

K
N

P
LL

V
F

3
0

8
2

-3
0

8
2

3
0

8
6

-3
0

8
6

3
1

4
6

-3
1

4
6

1
6

1
7

-1
6

1
7

-3
6

0
4

3
6

0
4

-3
8

0
4

9
3

8
0

4
9

-4
2

4
7

1
4

2
4

7
1

-3
9

7
8

6
3

9
7

8
6

6
0

6
-6

0
6

K
K

T
3

0
8

1
-3

0
8

1
3

0
6

8
-3

0
6

8
3

0
0

2
-3

0
0

2
6

4
3

-6
4

3
-6

3
8

6
3

8
-3

3
3

5
5

3
3

3
5

5
-3

3
7

6
8

3
3

7
6

8
-3

3
5

3
9

3
3

5
3

9
3

5
2

-3
5

2

4
5

B
K

50
20

W
01

K
N

P
LL

V
F

5
5

6
0

-5
5

6
0

5
5

6
7

-5
5

6
7

5
6

6
7

-5
6

6
7

4
6

6
3

-4
6

6
3

-1
1

0
1

2
1

1
0

1
2

-3
0

0
3

5
3

0
0

3
5

-3
3

8
5

2
3

3
8

5
2

-3
2

8
3

2
3

2
8

3
2

3
2

1
7

-3
2

1
7

K
K

T
5

5
4

6
-5

5
4

6
5

4
8

7
-5

4
8

7
5

3
0

4
-5

3
0

4
3

4
5

3
-3

4
5

3
-4

9
8

8
4

9
8

8
-2

6
5

2
6

2
6

5
2

6
-2

7
2

9
1

2
7

2
9

1
-2

7
2

6
4

2
7

2
6

4
3

1
8

3
-3

1
8

3

4
6

B
K

50
20

W
02

K
N

P
LL

V
F

5
2

6
5

-5
2

6
5

5
2

6
9

-5
2

6
9

5
3

2
5

-5
3

2
5

3
8

3
1

-3
8

3
1

-4
5

6
7

4
5

6
7

-3
6

3
7

0
3

6
3

7
0

-3
9

3
6

4
3

9
3

6
4

-3
7

5
0

2
3

7
5

0
2

2
8

2
4

-2
8

2
4

K
K

T
5

2
5

6
-5

2
5

6
5

2
4

2
-5

2
4

2
5

0
4

5
-5

0
4

5
4

0
0

7
-4

0
0

7
-2

6
7

6
2

6
7

6
-3

1
5

9
4

3
1

5
9

4
-3

2
2

1
3

3
2

2
1

3
-3

2
0

5
6

3
2

0
5

6
2

4
1

8
-2

4
1

8

4
7

B
K

50
20

W
03

K
N

P
LL

V
F

4
6

8
8

-4
6

8
8

4
6

9
3

-4
6

9
3

4
7

6
7

-4
7

6
7

1
6

9
6

-1
6

9
6

-6
4

2
6

4
2

-2
6

3
3

3
2

6
3

3
3

-3
1

7
2

4
3

1
7

2
4

-3
0

5
1

1
3

0
5

1
1

2
7

0
9

-2
7

0
9

K
K

T
4

6
7

9
-4

6
7

9
4

6
6

6
-4

6
6

6
4

5
8

4
-4

5
8

4
2

5
0

6
-2

5
0

6
-2

1
2

7
2

1
2

7
-2

4
9

9
4

2
4

9
9

4
-2

5
7

0
0

2
5

7
0

0
-2

5
7

6
3

2
5

7
6

3
2

3
1

1
-2

3
1

1

4
8

B
K

50
20

W
04

K
N

P
LL

V
F

4
8

7
2

-4
8

7
2

4
8

7
9

-4
8

7
9

4
9

7
7

-4
9

7
7

3
9

6
2

-3
9

6
2

-1
0

5
4

8
1

0
5

4
8

-2
8

9
3

8
2

8
9

3
8

-3
3

5
3

8
3

3
5

3
8

-3
2

5
7

7
3

2
5

7
7

2
4

3
5

-2
4

3
5

K
K

T
4

8
5

9
-4

8
5

9
4

8
0

7
-4

8
0

7
4

6
1

8
-4

6
1

8
2

6
6

5
-2

6
6

5
-3

7
0

6
3

7
0

6
-2

6
8

6
9

2
6

8
6

9
-2

7
5

1
7

2
7

5
1

7
-2

7
4

9
5

2
7

4
9

5
2

1
2

5
-2

1
2

5

4
9

B
K

50
20

W
05

K
N

P
LL

V
F

5
2

5
9

-5
2

5
9

5
2

6
2

-5
2

6
2

5
3

1
7

-5
3

1
7

2
4

6
4

-2
4

6
4

-1
0

2
1

5
1

0
2

1
5

-4
5

2
2

7
4

5
2

2
7

-4
7

0
9

2
4

7
0

9
2

-4
4

1
9

3
4

4
1

9
3

2
3

8
9

-2
3

8
9

K
K

T
5

2
4

3
-5

2
4

3
5

2
3

5
-5

2
3

5
5

0
9

6
-5

0
9

6
3

5
7

4
-3

5
7

4
-7

2
5

7
2

5
-3

5
9

0
3

3
5

9
0

3
-3

5
9

1
1

3
5

9
1

1
-3

5
6

2
4

3
5

6
2

4
2

2
6

3
-2

2
6

3

5
0

B
K

50
20

W
06

K
N

P
LL

V
F

4
1

0
7

-4
1

0
7

4
1

1
1

-4
1

1
1

4
1

7
3

-4
1

7
3

3
3

4
2

-3
3

4
2

-8
2

4
6

8
2

4
6

-2
6

9
4

0
2

6
9

4
0

-3
2

1
5

7
3

2
1

5
7

-3
1

4
0

6
3

1
4

0
6

1
9

6
6

-1
9

6
6

K
K

T
4

0
9

7
-4

0
9

7
4

0
6

5
-4

0
6

5
3

9
5

0
-3

9
5

0
2

5
7

8
-2

5
7

8
-2

5
6

0
2

5
6

0
-2

6
2

4
2

2
6

2
4

2
-2

7
5

7
7

2
7

5
7

7
-2

7
5

3
5

2
7

5
3

5
1

3
8

1
-1

3
8

1

5
1

B
K

50
20

W
07

K
N

P
LL

V
F

5
6

6
9

-5
6

6
9

5
6

7
4

-5
6

7
4

5
7

4
0

-5
7

4
0

4
8

0
2

-4
8

0
2

-1
4

3
3

7
1

4
3

3
7

-1
9

1
3

9
1

9
1

3
9

-2
3

7
8

1
2

3
7

8
1

-2
3

4
0

5
2

3
4

0
5

3
9

8
4

-3
9

8
4

K
K

T
5

6
5

0
-5

6
5

0
5

6
2

7
-5

6
2

7
5

3
4

5
-5

3
4

5
1

8
1

1
-1

8
1

1
-4

4
8

9
4

4
8

9
-1

8
4

4
7

1
8

4
4

7
-1

9
6

9
5

1
9

6
9

5
-1

9
7

4
7

1
9

7
4

7
4

0
1

6
-4

0
1

6

5
2

B
K

50
20

W
08

K
N

P
LL

V
F

5
1

4
6

-5
1

4
6

5
1

5
0

-5
1

5
0

5
2

1
7

-5
2

1
7

2
2

2
4

-2
2

2
4

-4
4

2
8

4
4

2
8

-4
5

3
1

5
4

5
3

1
5

-4
8

4
6

8
4

8
4

6
8

-4
5

4
7

0
4

5
4

7
0

2
1

5
4

-2
1

5
4

K
K

T
5

1
4

1
-5

1
4

1
5

1
2

2
-5

1
2

2
5

0
3

8
-5

0
3

8
4

3
7

0
-4

3
7

0
-8

4
8

8
4

8
-3

6
9

3
2

3
6

9
3

2
-3

6
7

8
1

3
6

7
8

1
-3

6
4

4
8

3
6

4
4

8
2

2
5

8
-2

2
5

8

5
3

B
K

50
20

W
09

K
N

P
LL

V
F

4
5

5
9

-4
5

5
9

4
5

6
4

-4
5

6
4

4
6

4
1

-4
6

4
1

3
6

2
8

-3
6

2
8

-1
0

1
1

0
1

-2
0

1
1

1
2

0
1

1
1

-2
6

6
4

8
2

6
6

4
8

-2
6

0
3

3
2

6
0

3
3

2
8

3
0

-2
8

3
0

b objective functions values for transformed binary examples 102

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

5
3

B
K

50
20

W
09

K
N

P
K

K
T

4
5

5
0

-4
5

5
0

4
5

1
8

-4
5

1
8

4
4

7
8

-4
4

7
8

2
6

2
9

-2
6

2
9

-2
1

1
2

2
1

1
2

-1
9

4
5

6
1

9
4

5
6

-2
0

8
4

0
2

0
8

4
0

-2
0

8
8

3
2

0
8

8
3

2
5

5
6

-2
5

5
6

5
4

B
K

50
20

W
10

K
N

P
LL

V
F

5
4

8
7

-5
4

8
7

5
4

9
2

-5
4

9
2

5
5

5
8

-5
5

5
8

5
0

8
2

-5
0

8
2

-8
2

8
2

-2
7

9
5

4
2

7
9

5
4

-3
2

7
4

6
3

2
7

4
6

-3
1

6
3

6
3

1
6

3
6

3
1

1
9

-3
1

1
9

K
K

T
5

4
8

8
-5

4
8

8
5

4
4

7
-5

4
4

7
5

2
7

6
-5

2
7

6
1

4
3

0
-1

4
3

0
-4

5
5

2
4

5
5

2
-2

5
9

9
9

2
5

9
9

9
-2

7
1

9
7

2
7

1
9

7
-2

7
1

2
2

2
7

1
2

2
3

2
3

7
-3

2
3

7

5
5

B
K

50
20

W
11

K
N

P
LL

V
F

4
3

5
1

-4
3

5
1

4
3

5
5

-4
3

5
5

4
4

2
2

-4
4

2
2

3
1

8
3

-3
1

8
3

-6
0

8
0

6
0

8
0

-2
4

6
0

5
2

4
6

0
5

-3
1

1
0

5
3

1
1

0
5

-2
9

8
9

3
2

9
8

9
3

2
5

8
6

-2
5

8
6

K
K

T
4

3
4

4
-4

3
4

4
4

3
2

0
-4

3
2

0
4

2
3

0
-4

2
3

0
3

6
6

3
-3

6
6

3
-4

8
5

4
8

5
-2

4
1

7
4

2
4

1
7

4
-2

4
9

1
6

2
4

9
1

6
-2

4
8

0
4

2
4

8
0

4
2

1
6

7
-2

1
6

7

5
6

B
K

50
20

W
12

K
N

P
LL

V
F

5
7

4
0

-5
7

4
0

5
7

4
8

-5
7

4
8

5
8

4
9

-5
8

4
9

5
6

0
5

-5
6

0
5

-2
5

1
3

2
5

1
3

-1
7

6
3

8
1

7
6

3
8

-2
3

7
4

0
2

3
7

4
0

-2
3

0
2

4
2

3
0

2
4

4
2

5
2

-4
2

5
2

K
K

T
5

7
3

0
-5

7
3

0
5

7
0

5
-5

7
0

5
5

6
1

1
-5

6
1

1
4

0
7

1
-4

0
7

1
-1

3
2

4
1

3
2

4
-1

5
5

4
9

1
5

5
4

9
-1

6
4

0
6

1
6

4
0

6
-1

6
4

2
6

1
6

4
2

6
4

5
1

0
-4

5
1

0

5
7

B
K

50
20

W
13

K
N

P
LL

V
F

5
8

9
9

-5
8

9
9

5
9

0
9

-5
9

0
9

6
0

4
2

-6
0

4
2

4
4

7
3

-4
4

7
3

-4
0

4
7

4
0

4
7

-2
1

4
3

4
2

1
4

3
4

-2
7

2
4

9
2

7
2

4
9

-2
6

1
4

4
2

6
1

4
4

4
1

8
4

-4
1

8
4

K
K

T
5

8
8

6
-5

8
8

6
5

8
6

0
-5

8
6

0
5

7
6

3
-5

7
6

3
4

8
6

2
-4

8
6

2
-2

3
3

0
2

3
3

0
-1

8
3

1
9

1
8

3
1

9
-1

8
7

6
6

1
8

7
6

6
-1

8
8

1
2

1
8

8
1

2
4

4
7

3
-4

4
7

3

5
8

B
K

50
20

W
14

K
N

P
LL

V
F

4
5

7
9

-4
5

7
9

4
5

8
2

-4
5

8
2

4
6

3
2

-4
6

3
2

2
0

4
3

-2
0

4
3

-3
8

0
4

3
8

0
4

-3
7

7
4

1
3

7
7

4
1

-4
1

8
2

2
4

1
8

2
2

-4
0

1
2

5
4

0
1

2
5

1
6

5
3

-1
6

5
3

K
K

T
4

5
7

1
-4

5
7

1
4

5
3

6
-4

5
3

6
4

3
6

7
-4

3
6

7
3

2
4

6
-3

2
4

6
-2

5
7

2
2

5
7

2
-3

5
9

1
3

3
5

9
1

3
-3

5
7

4
0

3
5

7
4

0
-3

5
5

5
1

3
5

5
5

1
1

2
8

0
-1

2
8

0

5
9

B
K

50
20

W
15

K
N

P
LL

V
F

5
4

2
1

-5
4

2
1

5
4

2
6

-5
4

2
6

5
4

9
4

-5
4

9
4

3
9

1
0

-3
9

1
0

-1
2

3
3

0
1

2
3

3
0

-2
5

6
8

7
2

5
6

8
7

-3
0

2
8

8
3

0
2

8
8

-2
9

3
3

6
2

9
3

3
6

3
4

2
1

-3
4

2
1

K
K

T
5

4
0

8
-5

4
0

8
5

3
6

0
-5

3
6

0
5

1
8

3
-5

1
8

3
2

1
4

8
-2

1
4

8
-2

9
5

2
2

9
5

2
-2

3
6

8
3

2
3

6
8

3
-2

4
4

5
9

2
4

4
5

9
-2

4
4

1
5

2
4

4
1

5
3

0
7

7
-3

0
7

7

6
0

B
K

50
20

W
16

K
N

P
LL

V
F

5
0

9
3

-5
0

9
3

5
0

9
8

-5
0

9
8

5
1

6
1

-5
1

6
1

4
3

0
2

-4
3

0
2

-2
0

7
7

2
0

7
7

-2
4

1
2

5
2

4
1

2
5

-2
9

1
6

3
2

9
1

6
3

-2
8

3
2

3
2

8
3

2
3

3
2

2
7

-3
2

2
7

K
K

T
5

0
7

9
-5

0
7

9
5

0
5

7
-5

0
5

7
4

9
2

3
-4

9
2

3
3

2
2

9
-3

2
2

9
-2

0
8

6
2

0
8

6
-2

1
5

4
3

2
1

5
4

3
-2

2
9

8
2

2
2

9
8

2
-2

3
0

0
5

2
3

0
0

5
2

9
6

8
-2

9
6

8

6
1

B
K

50
20

W
17

K
N

P
LL

V
F

6
8

4
9

-6
8

4
9

6
8

7
3

-6
8

7
3

6
9

7
8

-6
9

7
8

7
4

2
8

-7
4

2
8

3
7

7
5

-3
7

7
5

-1
4

4
6

5
1

4
4

6
5

-2
0

3
9

0
2

0
3

9
0

-2
0

3
2

4
2

0
3

2
4

6
8

6
2

-6
8

6
2

K
K

T
4

8
4

1
-4

8
4

1
5

8
6

4
-5

8
6

4
6

0
0

9
-6

0
0

9
2

2
7

8
-2

2
7

8
4

6
4

6
-4

6
4

6
-1

3
1

9
1

1
3

1
9

1
-1

3
0

3
6

1
3

0
3

6
-1

2
6

9
9

1
2

6
9

9
7

1
2

8
-7

1
2

8

6
2

B
K

50
20

W
18

K
N

P
LL

V
F

4
9

4
2

-4
9

4
2

4
9

4
7

-4
9

4
7

5
0

1
7

-5
0

1
7

3
8

1
2

-3
8

1
2

-4
2

6
5

4
2

6
5

-2
4

6
4

1
2

4
6

4
1

-3
0

2
0

6
3

0
2

0
6

-2
8

9
8

7
2

8
9

8
7

3
2

8
6

-3
2

8
6

K
K

T
4

9
3

4
-4

9
3

4
4

9
1

2
-4

9
1

2
4

8
3

0
-4

8
3

0
3

8
9

2
-3

8
9

2
-7

9
7

9
-2

1
6

3
8

2
1

6
3

8
-2

2
5

2
3

2
2

5
2

3
-2

2
3

9
3

2
2

3
9

3
3

1
0

7
-3

1
0

7

6
3

B
K

50
20

W
19

K
N

P
LL

V
F

6
5

4
7

-6
5

4
7

6
5

5
1

-6
5

5
1

6
6

1
2

-6
6

1
2

5
1

0
3

-5
1

0
3

-1
4

1
0

1
4

1
0

-3
5

1
7

3
3

5
1

7
3

-3
8

6
9

1
3

8
6

9
1

-3
5

8
6

8
3

5
8

6
8

4
5

2
6

-4
5

2
6

K
K

T
6

5
5

0
-6

5
5

0
6

5
0

7
-6

5
0

7
6

3
2

8
-6

3
2

8
4

3
6

2
-4

3
6

2
-1

9
9

1
9

9
-2

5
1

7
1

2
5

1
7

1
-2

6
1

6
1

2
6

1
6

1
-2

5
8

7
7

2
5

8
7

7
4

6
8

7
-4

6
8

7

6
4

B
K

50
20

W
20

K
N

P
LL

V
F

4
8

8
5

-4
8

8
5

4
8

9
0

-4
8

9
0

4
9

6
5

-4
9

6
5

3
8

5
6

-3
8

5
6

-4
4

0
5

4
4

0
5

-3
3

7
8

0
3

3
7

8
0

-3
8

1
3

4
3

8
1

3
4

-3
6

7
5

1
3

6
7

5
1

2
2

2
2

-2
2

2
2

K
K

T
4

8
7

1
-4

8
7

1
4

8
5

1
-4

8
5

1
4

7
4

0
-4

7
4

0
2

9
8

8
-2

9
8

8
-2

9
8

4
2

9
8

4
-3

0
4

4
1

3
0

4
4

1
-3

1
1

9
7

3
1

1
9

7
-3

1
0

5
2

3
1

0
5

2
2

0
0

2
-2

0
0

2

6
5

B
K

50
30

W
01

K
N

P
LL

V
F

7
9

4
0

-7
9

4
0

7
9

4
8

-7
9

4
8

8
0

6
8

-8
0

6
8

6
9

5
1

-6
9

5
1

-1
5

1
9

8
1

5
1

9
8

-2
6

4
4

5
2

6
4

4
5

-2
9

9
9

0
2

9
9

9
0

-2
9

0
2

2
2

9
0

2
2

5
7

0
1

-5
7

0
1

K
K

T
7

9
2

2
-7

9
2

2
7

8
5

1
-7

8
5

1
7

6
0

4
-7

6
0

4
5

5
7

3
-5

5
7

3
-4

9
7

5
4

9
7

5
-2

1
5

5
2

2
1

5
5

2
-2

2
3

0
8

2
2

3
0

8
-2

2
2

6
8

2
2

2
6

8
5

9
6

4
-5

9
6

4

6
6

B
K

50
30

W
02

K
N

P
LL

V
F

7
5

0
7

-7
5

0
7

7
5

1
3

-7
5

1
3

7
6

0
2

-7
6

0
2

6
8

1
9

-6
8

1
9

-1
2

5
4

2
1

2
5

4
2

-2
9

6
3

4
2

9
6

3
4

-3
2

7
0

1
3

2
7

0
1

-3
1

3
9

9
3

1
3

9
9

5
3

0
9

-5
3

0
9

K
K

T
7

4
9

4
-7

4
9

4
7

4
5

8
-7

4
5

8
7

3
3

3
-7

3
3

3
6

1
5

7
-6

1
5

7
-2

8
1

1
2

8
1

1
-2

4
9

1
3

2
4

9
1

3
-2

5
5

6
4

2
5

5
6

4
-2

5
4

0
7

2
5

4
0

7
5

2
5

4
-5

2
5

4

6
7

B
K

50
30

W
03

K
N

P
LL

V
F

6
9

0
1

-6
9

0
1

6
9

0
6

-6
9

0
6

6
9

8
0

-6
9

8
0

6
1

1
4

-6
1

1
4

-1
2

2
0

1
2

2
0

-3
1

6
6

5
3

1
6

6
5

-3
5

3
1

3
3

5
3

1
3

-3
4

0
0

8
3

4
0

0
8

4
4

4
0

-4
4

4
0

K
K

T
6

8
8

3
-6

8
8

3
6

8
5

8
-6

8
5

8
6

6
9

9
-6

6
9

9
4

9
2

1
-4

9
2

1
-3

4
1

5
3

4
1

5
-2

7
9

9
3

2
7

9
9

3
-2

8
6

0
7

2
8

6
0

7
-2

8
4

9
6

2
8

4
9

6
4

1
6

8
-4

1
6

8

6
8

B
K

50
30

W
04

K
N

P
LL

V
F

8
1

0
2

-8
1

0
2

8
1

1
1

-8
1

1
1

8
2

3
3

-8
2

3
3

7
7

0
7

-7
7

0
7

1
1

6
6

-1
1

6
6

-2
7

2
7

2
2

7
2

7
2

-3
0

4
7

8
3

0
4

7
8

-2
9

6
1

6
2

9
6

1
6

5
7

8
4

-5
7

8
4

K
K

T
8

0
8

4
-8

0
8

4
8

0
4

7
-8

0
4

7
7

5
5

1
-7

5
5

1
4

2
9

5
-4

2
9

5
-7

5
6

9
7

5
6

9
-2

2
7

4
9

2
2

7
4

9
-2

3
5

4
5

2
3

5
4

5
-2

3
5

0
7

2
3

5
0

7
5

7
9

6
-5

7
9

6

6
9

B
K

50
30

W
05

K
N

P
LL

V
F

8
0

8
2

-8
0

8
2

8
0

8
6

-8
0

8
6

8
1

5
0

-8
1

5
0

6
2

2
9

-6
2

2
9

-1
1

0
8

5
1

1
0

8
5

-4
0

2
5

0
4

0
2

5
0

-4
2

2
0

0
4

2
2

0
0

-3
9

4
6

3
3

9
4

6
3

5
7

5
5

-5
7

5
5

K
K

T
8

0
7

4
-8

0
7

4
8

0
6

3
-8

0
6

3
7

9
4

0
-7

9
4

0
6

8
8

0
-6

8
8

0
4

7
9

-4
7

9
-2

8
9

8
6

2
8

9
8

6
-2

9
4

0
9

2
9

4
0

9
-2

8
9

9
5

2
8

9
9

5
5

6
8

4
-5

6
8

4

7
0

B
K

50
30

W
06

K
N

P
LL

V
F

6
0

5
3

-6
0

5
3

6
0

5
8

-6
0

5
8

6
1

4
2

-6
1

4
2

5
7

1
9

-5
7

1
9

-1
0

4
1

9
1

0
4

1
9

-2
8

3
0

8
2

8
3

0
8

-3
2

3
2

2
3

2
3

2
2

-3
1

4
3

9
3

1
4

3
9

3
7

1
4

-3
7

1
4

K
K

T
6

0
4

3
-6

0
4

3
6

0
2

8
-6

0
2

8
5

8
6

0
-5

8
6

0
5

1
5

7
-5

1
5

7
-3

2
6

6
3

2
6

6
-2

5
3

5
0

2
5

3
5

0
-2

6
3

8
5

2
6

3
8

5
-2

6
2

7
9

2
6

2
7

9
3

5
5

4
-3

5
5

4

7
1

B
K

50
30

W
07

K
N

P
LL

V
F

7
1

7
0

-7
1

7
0

7
1

7
5

-7
1

7
5

7
2

5
4

-7
2

5
4

6
4

1
3

-6
4

1
3

2
9

4
4

-2
9

4
4

-2
0

9
7

6
2

0
9

7
6

-2
4

8
8

2
2

4
8

8
2

-2
4

2
8

1
2

4
2

8
1

5
2

9
0

-5
2

9
0

b objective functions values for transformed binary examples 103

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

7
1

B
K

50
30

W
07

K
N

P
K

K
T

7
1

4
7

-7
1

4
7

7
1

1
4

-7
1

1
4

6
9

0
7

-6
9

0
7

4
9

9
9

-4
9

9
9

-4
9

0
9

4
9

0
9

-1
8

7
3

3
1

8
7

3
3

-1
9

8
9

1
1

9
8

9
1

-1
9

9
1

2
1

9
9

1
2

5
3

8
6

-5
3

8
6

7
2

B
K

50
30

W
08

K
N

P
LL

V
F

8
1

1
0

-8
1

1
0

8
1

1
6

-8
1

1
6

8
2

1
7

-8
2

1
7

5
5

2
5

-5
5

2
5

-9
9

1
5

9
9

1
5

-4
2

3
5

8
4

2
3

5
8

-4
4

0
9

5
4

4
0

9
5

-4
1

5
9

6
4

1
5

9
6

5
4

1
8

-5
4

1
8

K
K

T
8

1
1

1
-8

1
1

1
8

0
9

5
-8

0
9

5
7

9
7

4
-7

9
7

4
7

7
8

0
-7

7
8

0
-9

6
2

9
6

2
-3

2
3

4
6

3
2

3
4

6
-3

2
3

8
1

3
2

3
8

1
-3

1
9

6
7

3
1

9
6

7
5

4
2

2
-5

4
2

2

7
3

B
K

50
30

W
09

K
N

P
LL

V
F

6
9

0
4

-6
9

0
4

6
9

1
0

-6
9

1
0

6
9

9
8

-6
9

9
8

6
1

9
5

-6
1

9
5

-1
3

6
7

5
1

3
6

7
5

-2
2

0
5

3
2

2
0

5
3

-2
6

5
8

0
2

6
5

8
0

-2
5

9
0

8
2

5
9

0
8

4
9

9
9

-4
9

9
9

K
K

T
6

8
8

8
-6

8
8

8
6

8
6

7
-6

8
6

7
6

6
1

4
-6

6
1

4
4

8
0

1
-4

8
0

1
-3

0
9

5
3

0
9

5
-1

8
6

6
8

1
8

6
6

8
-1

9
8

7
1

1
9

8
7

1
-1

9
8

7
4

1
9

8
7

4
5

1
9

2
-5

1
9

2

7
4

B
K

50
30

W
10

K
N

P
LL

V
F

7
8

7
7

-7
8

7
7

7
8

8
4

-7
8

8
4

7
9

8
1

-7
9

8
1

7
1

8
2

-7
1

8
2

1
2

6
1

-1
2

6
1

-2
9

6
5

0
2

9
6

5
0

-3
2

8
1

6
3

2
8

1
6

-3
1

8
7

7
3

1
8

7
7

5
2

2
0

-5
2

2
0

K
K

T
7

8
7

3
-7

8
7

3
7

8
0

8
-7

8
0

8
7

5
2

0
-7

5
2

0
2

7
7

0
-2

7
7

0
-1

0
1

0
6

1
0

1
0

6
-2

7
0

0
3

2
7

0
0

3
-2

7
6

9
9

2
7

6
9

9
-2

7
6

1
5

2
7

6
1

5
4

9
8

8
-4

9
8

8

7
5

B
K

50
30

W
11

K
N

P
LL

V
F

5
9

1
0

-5
9

1
0

5
9

1
6

-5
9

1
6

5
9

9
9

-5
9

9
9

3
8

8
3

-3
8

8
3

-1
0

5
0

4
1

0
5

0
4

-2
5

6
9

8
2

5
6

9
8

-3
0

6
6

6
3

0
6

6
6

-2
9

7
4

4
2

9
7

4
4

3
7

2
5

-3
7

2
5

K
K

T
5

8
9

7
-5

8
9

7
5

8
7

9
-5

8
7

9
5

6
6

6
-5

6
6

6
4

7
1

8
-4

7
1

8
-2

5
6

2
2

5
6

2
-2

4
0

4
8

2
4

0
4

8
-2

4
8

8
6

2
4

8
8

6
-2

4
8

0
1

2
4

8
0

1
3

4
6

6
-3

4
6

6

7
6

B
K

50
30

W
12

K
N

P
LL

V
F

8
2

2
1

-8
2

2
1

8
2

3
0

-8
2

3
0

8
3

5
2

-8
3

5
2

7
6

8
6

-7
6

8
6

4
7

0
9

-4
7

0
9

-2
1

0
1

0
2

1
0

1
0

-2
5

4
7

5
2

5
4

7
5

-2
4

4
9

3
2

4
4

9
3

6
3

3
1

-6
3

3
1

K
K

T
8

2
0

3
-8

2
0

3
8

1
7

8
-8

1
7

8
8

0
3

3
-8

0
3

3
5

4
7

1
-5

4
7

1
-4

1
1

5
4

1
1

5
-1

7
1

3
7

1
7

1
3

7
-1

7
8

8
4

1
7

8
8

4
-1

7
8

8
1

1
7

8
8

1
6

5
5

0
-6

5
5

0

7
7

B
K

50
30

W
13

K
N

P
LL

V
F

8
3

8
0

-8
3

8
0

8
3

9
0

-8
3

9
0

8
5

2
6

-8
5

2
6

7
3

6
4

-7
3

6
4

4
4

9
8

-4
4

9
8

-2
4

1
0

4
2

4
1

0
4

-2
8

3
1

3
2

8
3

1
3

-2
7

1
6

4
2

7
1

6
4

6
3

3
6

-6
3

3
6

K
K

T
8

3
7

8
-8

3
7

8
8

3
4

6
-8

3
4

6
8

0
2

6
-8

0
2

6
5

9
1

7
-5

9
1

7
-4

8
4

1
4

8
4

1
-1

9
5

2
1

1
9

5
2

1
-2

0
0

8
2

2
0

0
8

2
-2

0
0

5
2

2
0

0
5

2
6

5
3

9
-6

5
3

9

7
8

B
K

50
30

W
14

K
N

P
LL

V
F

6
5

5
8

-6
5

5
8

6
5

6
4

-6
5

6
4

6
6

4
7

-6
6

4
7

4
7

8
2

-4
7

8
2

-5
2

6
5

2
6

-3
3

5
2

5
3

3
5

2
5

-3
7

2
5

2
3

7
2

5
2

-3
6

0
6

7
3

6
0

6
7

3
6

5
3

-3
6

5
3

K
K

T
6

5
4

0
-6

5
4

0
6

5
1

5
-6

5
1

5
6

1
4

4
-6

1
4

4
4

5
5

0
-4

5
5

0
-5

6
7

9
5

6
7

9
-3

1
8

8
8

3
1

8
8

8
-3

1
8

7
3

3
1

8
7

3
-3

1
7

1
5

3
1

7
1

5
3

3
2

0
-3

3
2

0

7
9

B
K

50
30

W
15

K
N

P
LL

V
F

7
5

9
5

-7
5

9
5

7
6

0
1

-7
6

0
1

7
6

8
4

-7
6

8
4

5
6

4
3

-5
6

4
3

1
3

5
5

-1
3

5
5

-2
8

8
7

0
2

8
8

7
0

-3
2

2
9

9
3

2
2

9
9

-3
1

0
4

4
3

1
0

4
4

5
2

9
6

-5
2

9
6

K
K

T
7

5
7

8
-7

5
7

8
7

5
5

0
-7

5
5

0
7

1
5

3
-7

1
5

3
5

6
7

4
-5

6
7

4
-4

3
5

5
4

3
5

5
-2

4
1

6
7

2
4

1
6

7
-2

4
7

7
8

2
4

7
7

8
-2

4
6

8
8

2
4

6
8

8
5

1
5

8
-5

1
5

8

8
0

B
K

50
30

W
16

K
N

P
LL

V
F

6
7

9
8

-6
7

9
8

6
8

0
5

-6
8

0
5

6
9

0
5

-6
9

0
5

6
0

4
4

-6
0

4
4

9
5

7
-9

5
7

-2
5

5
7

1
2

5
5

7
1

-2
9

7
1

1
2

9
7

1
1

-2
9

0
1

7
2

9
0

1
7

4
4

6
8

-4
4

6
8

K
K

T
6

7
7

4
-6

7
7

4
6

7
3

8
-6

7
3

8
6

5
1

6
-6

5
1

6
4

2
2

3
-4

2
2

3
-5

3
0

9
5

3
0

9
-2

3
4

3
4

2
3

4
3

4
-2

4
3

1
9

2
4

3
1

9
-2

4
2

9
4

2
4

2
9

4
4

0
6

6
-4

0
6

6

8
1

B
K

50
30

W
17

K
N

P
LL

V
F

7
9

3
2

-7
9

3
2

7
9

3
6

-7
9

3
6

8
0

0
3

-8
0

0
3

7
0

3
2

-7
0

3
2

-1
9

3
6

8
1

9
3

6
8

-2
8

0
5

8
2

8
0

5
8

-3
1

2
7

7
3

1
2

7
7

-3
0

0
6

4
3

0
0

6
4

5
7

4
9

-5
7

4
9

K
K

T
7

9
1

8
-7

9
1

8
7

8
9

9
-7

8
9

9
7

6
8

2
-7

6
8

2
4

9
0

1
-4

9
0

1
-2

2
2

4
2

2
2

4
-2

2
7

2
5

2
2

7
2

5
-2

3
5

7
9

2
3

5
7

9
-2

3
4

1
2

2
3

4
1

2
5

7
3

3
-5

7
3

3

8
2

B
K

50
30

W
18

K
N

P
LL

V
F

6
7

4
4

-6
7

4
4

6
7

5
0

-6
7

5
0

6
8

4
9

-6
8

4
9

6
3

1
5

-6
3

1
5

-6
5

6
0

6
5

6
0

-2
5

5
6

0
2

5
5

6
0

-3
0

3
0

1
3

0
3

0
1

-2
9

2
3

0
2

9
2

3
0

4
8

7
6

-4
8

7
6

K
K

T
6

7
3

3
-6

7
3

3
6

7
2

1
-6

7
2

1
6

5
7

6
-6

5
7

6
5

9
9

3
-5

9
9

3
-1

1
3

1
1

1
3

1
-2

2
0

5
5

2
2

0
5

5
-2

2
6

9
4

2
2

6
9

4
-2

2
5

4
1

2
2

5
4

1
4

6
8

9
-4

6
8

9

8
3

B
K

50
30

W
19

K
N

P
LL

V
F

8
6

6
5

-8
6

6
5

8
6

7
1

-8
6

7
1

8
7

7
1

-8
7

7
1

7
3

3
7

-7
3

3
7

-1
0

6
4

0
1

0
6

4
0

-3
5

8
1

0
3

5
8

1
0

-3
8

3
2

9
3

8
3

2
9

-3
6

2
0

4
3

6
2

0
4

6
2

7
4

-6
2

7
4

K
K

T
8

6
4

5
-8

6
4

5
8

6
0

5
-8

6
0

5
8

4
6

5
-8

4
6

5
7

1
3

1
-7

1
3

1
-1

2
9

9
1

2
9

9
-2

6
9

0
1

2
6

9
0

1
-2

7
1

9
6

2
7

1
9

6
-2

6
8

9
3

2
6

8
9

3
6

3
6

2
-6

3
6

2

8
4

B
K

50
30

W
20

K
N

P
LL

V
F

7
0

4
6

-7
0

4
6

7
0

5
1

-7
0

5
1

7
1

3
4

-7
1

3
4

6
2

2
4

-6
2

2
4

-1
6

1
7

1
6

1
7

-3
3

0
2

5
3

3
0

2
5

-3
6

2
6

7
3

6
2

6
7

-3
5

1
3

9
3

5
1

3
9

4
1

9
1

-4
1

9
1

K
K

T
7

0
2

3
-7

0
2

3
6

9
9

1
-6

9
9

1
6

7
9

3
-6

7
9

3
4

6
4

0
-4

6
4

0
-5

6
0

4
5

6
0

4
-2

8
9

6
4

2
8

9
6

4
-2

9
6

2
0

2
9

6
2

0
-2

9
4

6
5

2
9

4
6

5
4

1
3

7
-4

1
3

7

8
5

B
K

50
40

W
01

K
N

P
LL

V
F

1
0

3
0

2
-1

0
3

0
2

1
0

3
1

1
-1

0
3

1
1

1
0

4
4

7
-1

0
4

4
7

9
3

3
5

-9
3

3
5

-1
7

7
2

4
1

7
7

2
4

-2
7

3
7

3
2

7
3

7
3

-3
0

0
9

1
3

0
0

9
1

-2
8

9
9

6
2

8
9

9
6

7
9

2
7

-7
9

2
7

K
K

T
1

0
2

7
9

-1
0

2
7

9
1

0
2

4
5

-1
0

2
4

5
9

8
6

9
-9

8
6

9
8

7
3

0
-8

7
3

0
-5

9
2

6
5

9
2

6
-2

1
3

7
4

2
1

3
7

4
-2

1
9

1
1

2
1

9
1

1
-2

1
8

1
6

2
1

8
1

6
8

1
3

2
-8

1
3

2

8
6

B
K

50
40

W
02

K
N

P
LL

V
F

1
0

3
9

8
-1

0
3

9
8

1
0

4
0

6
-1

0
4

0
6

1
0

5
2

4
-1

0
5

2
4

1
0

3
0

1
-1

0
3

0
1

3
4

3
4

-3
4

3
4

-2
5

2
2

7
2

5
2

2
7

-2
8

0
6

2
2

8
0

6
2

-2
6

9
1

8
2

6
9

1
8

8
3

4
3

-8
3

4
3

K
K

T
1

0
3

8
8

-1
0

3
8

8
1

0
3

6
8

-1
0

3
6

8
1

0
1

0
1

-1
0

1
0

1
9

3
3

0
-9

3
3

0
-2

6
0

8
2

6
0

8
-1

9
8

2
2

1
9

8
2

2
-2

0
4

3
7

2
0

4
3

7
-2

0
2

4
9

2
0

2
4

9
8

2
9

1
-8

2
9

1

8
7

B
K

50
40

W
03

K
N

P
LL

V
F

9
0

5
5

-9
0

5
5

9
0

6
1

-9
0

6
1

9
1

4
6

-9
1

4
6

8
8

0
5

-8
8

0
5

-1
7

8
6

4
1

7
8

6
4

-3
0

9
5

9
3

0
9

5
9

-3
3

9
0

3
3

3
9

0
3

-3
2

8
0

0
3

2
8

0
0

6
4

3
1

-6
4

3
1

K
K

T
9

0
3

5
-9

0
3

5
9

0
0

8
-9

0
0

8
8

6
9

5
-8

6
9

5
7

6
9

5
-7

6
9

5
-5

8
8

7
5

8
8

7
-2

7
4

1
8

2
7

4
1

8
-2

7
8

8
0

2
7

8
8

0
-2

7
7

0
0

2
7

7
0

0
6

2
0

3
-6

2
0

3

8
8

B
K

50
40

W
04

K
N

P
LL

V
F

9
7

8
4

-9
7

8
4

9
7

9
5

-9
7

9
5

9
9

4
2

-9
9

4
2

9
5

2
9

-9
5

2
9

3
2

8
9

-3
2

8
9

-2
4

6
7

0
2

4
6

7
0

-2
7

7
7

7
2

7
7

7
7

-2
6

9
9

2
2

6
9

9
2

7
4

2
0

-7
4

2
0

K
K

T
9

7
5

7
-9

7
5

7
9

7
1

8
-9

7
1

8
9

1
6

3
-9

1
6

3
7

6
4

9
-7

6
4

9
-7

9
3

6
7

9
3

6
-2

0
0

5
6

2
0

0
5

6
-2

0
7

5
8

2
0

7
5

8
-2

0
7

1
7

2
0

7
1

7
7

5
7

0
-7

5
7

0

8
9

B
K

50
40

W
05

K
N

P
LL

V
F

9
6

4
7

-9
6

4
7

9
6

5
4

-9
6

5
4

9
7

6
2

-9
7

6
2

9
0

6
8

-9
0

6
8

3
4

7
7

-3
4

7
7

-2
7

2
3

3
2

7
2

3
3

-3
0

4
7

4
3

0
4

7
4

-2
8

8
9

7
2

8
8

9
7

7
5

9
2

-7
5

9
2

b objective functions values for transformed binary examples 104

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

8
9

B
K

50
40

W
05

K
N

P
K

K
T

9
6

3
8

-9
6

3
8

9
6

1
9

-9
6

1
9

9
3

5
6

-9
3

5
6

8
6

6
8

-8
6

6
8

-1
5

5
8

1
5

5
8

-2
0

9
4

5
2

0
9

4
5

-2
1

5
0

0
2

1
5

0
0

-2
1

2
8

9
2

1
2

8
9

7
6

4
1

-7
6

4
1

9
0

B
K

50
40

W
06

K
N

P
LL

V
F

8
3

5
3

-8
3

5
3

8
3

6
0

-8
3

6
0

8
4

6
5

-8
4

6
5

8
1

0
1

-8
1

0
1

-1
3

1
0

2
1

3
1

0
2

-2
5

9
9

2
2

5
9

9
2

-2
9

5
6

2
2

9
5

6
2

-2
8

7
3

6
2

8
7

3
6

6
1

5
8

-6
1

5
8

K
K

T
8

3
3

3
-8

3
3

3
8

3
1

2
-8

3
1

2
8

0
5

4
-8

0
5

4
7

1
7

6
-7

1
7

6
-3

9
9

7
3

9
9

7
-2

2
5

7
1

2
2

5
7

1
-2

3
3

9
6

2
3

3
9

6
-2

3
2

8
8

2
3

2
8

8
6

0
6

0
-6

0
6

0

9
1

B
K

50
40

W
07

K
N

P
LL

V
F

1
0

0
9

1
-1

0
0

9
1

1
0

1
0

0
-1

0
1

0
0

1
0

2
2

0
-1

0
2

2
0

9
2

0
5

-9
2

0
5

6
2

1
2

-6
2

1
2

-1
9

5
8

6
1

9
5

8
6

-2
2

7
8

6
2

2
7

8
6

-2
2

0
6

8
2

2
0

6
8

8
2

3
1

-8
2

3
1

K
K

T
1

0
0

6
8

-1
0

0
6

8
1

0
0

2
9

-1
0

0
2

9
9

4
9

3
-9

4
9

3
8

0
9

6
-8

0
9

6
-5

5
1

2
5

5
1

2
-1

5
4

9
5

1
5

4
9

5
-1

6
3

1
1

1
6

3
1

1
-1

6
3

0
0

1
6

3
0

0
8

3
9

1
-8

3
9

1

9
2

B
K

50
40

W
08

K
N

P
LL

V
F

1
0

3
2

4
-1

0
3

2
4

1
0

3
2

9
-1

0
3

2
9

1
0

4
4

0
-1

0
4

4
0

7
3

0
2

-7
3

0
2

-1
4

0
1

9
1

4
0

1
9

-4
3

8
2

3
4

3
8

2
3

-4
4

4
7

4
4

4
4

7
4

-4
1

9
4

9
4

1
9

4
9

7
5

4
8

-7
5

4
8

K
K

T
1

0
3

1
2

-1
0

3
1

2
1

0
3

0
2

-1
0

3
0

2
1

0
2

0
5

-1
0

2
0

5
1

0
1

1
8

-1
0

1
1

8
-9

3
4

9
3

4
-3

2
4

1
3

3
2

4
1

3
-3

2
1

8
0

3
2

1
8

0
-3

1
7

0
8

3
1

7
0

8
7

3
4

1
-7

3
4

1

9
3

B
K

50
40

W
09

K
N

P
LL

V
F

9
8

3
8

-9
8

3
8

9
8

4
6

-9
8

4
6

9
9

5
6

-9
9

5
6

9
5

4
0

-9
5

4
0

-1
5

2
6

1
1

5
2

6
1

-1
8

9
9

7
1

8
9

9
7

-2
2

4
8

0
2

2
4

8
0

-2
1

8
1

8
2

1
8

1
8

8
1

3
1

-8
1

3
1

K
K

T
9

8
1

8
-9

8
1

8
9

7
9

2
-9

7
9

2
9

4
8

7
-9

4
8

7
7

7
6

5
-7

7
6

5
-2

5
7

1
2

5
7

1
-1

4
0

4
0

1
4

0
4

0
-1

5
0

4
1

1
5

0
4

1
-1

5
0

3
3

1
5

0
3

3
8

3
9

9
-8

3
9

9

9
4

B
K

50
40

W
10

K
N

P
LL

V
F

1
1

6
0

3
-1

1
6

0
3

1
1

6
1

2
-1

1
6

1
2

1
1

7
3

8
-1

1
7

3
8

1
0

9
3

9
-1

0
9

3
9

5
8

3
6

-5
8

3
6

-2
6

5
8

6
2

6
5

8
6

-2
8

9
0

2
2

8
9

0
2

-2
7

8
2

4
2

7
8

2
4

9
0

2
5

-9
0

2
5

K
K

T
1

1
5

6
0

-1
1

5
6

0
1

1
5

0
0

-1
1

5
0

0
1

1
1

2
2

-1
1

1
2

2
6

3
7

6
-6

3
7

6
-1

1
9

6
1

1
1

9
6

1
-2

1
7

9
4

2
1

7
9

4
-2

2
3

6
7

2
2

3
6

7
-2

2
2

7
2

2
2

2
7

2
9

2
0

0
-9

2
0

0

9
5

B
K

50
40

W
11

K
N

P
LL

V
F

9
4

1
9

-9
4

1
9

9
4

2
7

-9
4

2
7

9
5

3
9

-9
5

3
9

8
7

5
5

-8
7

5
5

2
7

6
5

-2
7

6
5

-2
8

2
0

4
2

8
2

0
4

-3
1

3
9

0
3

1
3

9
0

-3
0

3
3

6
3

0
3

3
6

6
9

5
0

-6
9

5
0

K
K

T
9

4
0

1
-9

4
0

1
9

3
6

8
-9

3
6

8
8

9
1

7
-8

9
1

7
8

3
2

3
-8

3
2

3
-5

7
8

9
5

7
8

9
-2

4
6

7
9

2
4

6
7

9
-2

5
1

2
7

2
5

1
2

7
-2

4
9

4
8

2
4

9
4

8
6

8
3

5
-6

8
3

5

9
6

B
K

50
40

W
12

K
N

P
LL

V
F

1
0

7
1

1
-1

0
7

1
1

1
0

7
2

1
-1

0
7

2
1

1
0

8
6

0
-1

0
8

6
0

1
0

0
0

1
-1

0
0

0
1

5
7

9
9

-5
7

9
9

-2
3

7
8

7
2

3
7

8
7

-2
6

9
9

2
2

6
9

9
2

-2
5

8
2

9
2

5
8

2
9

8
6

3
6

-8
6

3
6

K
K

T
1

0
6

9
1

-1
0

6
9

1
1

0
6

6
2

-1
0

6
6

2
1

0
2

5
6

-1
0

2
5

6
8

0
8

8
-8

0
8

8
-5

3
3

9
5

3
3

9
-1

7
9

1
6

1
7

9
1

6
-1

8
4

0
8

1
8

4
0

8
-1

8
3

1
5

1
8

3
1

5
8

7
3

5
-8

7
3

5

9
7

B
K

50
40

W
13

K
N

P
LL

V
F

1
0

8
7

0
-1

0
8

7
0

1
0

8
8

0
-1

0
8

8
0

1
1

0
3

4
-1

1
0

3
4

1
0

1
4

9
-1

0
1

4
9

-1
6

9
2

9
1

6
9

2
9

-2
5

2
3

1
2

5
2

3
1

-2
8

1
5

4
2

8
1

5
4

-2
7

0
7

5
2

7
0

7
5

8
6

8
4

-8
6

8
4

K
K

T
1

0
8

5
4

-1
0

8
5

4
1

0
8

3
1

-1
0

8
3

1
1

0
5

7
8

-1
0

5
7

8
9

2
2

7
-9

2
2

7
-5

9
1

7
5

9
1

7
-1

9
0

2
9

1
9

0
2

9
-1

9
5

0
4

1
9

5
0

4
-1

9
4

1
8

1
9

4
1

8
8

8
6

3
-8

8
6

3

9
8

B
K

50
40

W
14

K
N

P
LL

V
F

9
0

4
8

-9
0

4
8

9
0

5
4

-9
0

5
4

9
1

5
4

-9
1

5
4

7
9

1
6

-7
9

1
6

9
7

2
-9

7
2

-3
2

5
5

1
3

2
5

5
1

-3
5

7
1

3
3

5
7

1
3

-3
4

5
3

9
3

4
5

3
9

6
3

3
6

-6
3

3
6

K
K

T
9

0
2

7
-9

0
2

7
8

9
9

4
-8

9
9

4
8

5
3

1
-8

5
3

1
6

9
0

2
-6

9
0

2
-5

5
6

4
5

5
6

4
-2

9
8

4
5

2
9

8
4

5
-2

9
7

2
4

2
9

7
2

4
-2

9
5

0
5

2
9

5
0

5
5

9
0

8
-5

9
0

8

9
9

B
K

50
40

W
15

K
N

P
LL

V
F

9
8

7
4

-9
8

7
4

9
8

8
0

-9
8

8
0

9
9

7
2

-9
9

7
2

8
5

1
4

-8
5

1
4

2
9

8
0

-2
9

8
0

-2
8

2
8

5
2

8
2

8
5

-3
1

1
6

5
3

1
1

6
5

-2
9

9
0

0
2

9
9

0
0

7
4

4
6

-7
4

4
6

K
K

T
9

8
5

0
-9

8
5

0
9

8
1

6
-9

8
1

6
9

3
2

5
-9

3
2

5
7

7
6

5
-7

7
6

5
-4

3
3

8
4

3
3

8
-2

2
1

5
7

2
2

1
5

7
-2

2
7

9
6

2
2

7
9

6
-2

2
6

6
4

2
2

6
6

4
7

5
9

3
-7

5
9

3

1
0

0
B

K
50

40
W

16
K

N
P

LL
V

F
9

1
4

1
-9

1
4

1
9

1
5

0
-9

1
5

0
9

2
7

0
-9

2
7

0
8

2
6

4
-8

2
6

4
-2

3
3

4
3

2
3

3
4

3
-2

8
2

5
8

2
8

2
5

8
-3

1
1

3
4

3
1

1
3

4
-3

0
3

5
4

3
0

3
5

4
6

5
5

9
-6

5
5

9

K
K

T
9

1
1

4
-9

1
1

4
9

0
7

6
-9

0
7

6
8

6
4

4
-8

6
4

4
7

3
7

1
-7

3
7

1
-9

0
7

5
9

0
7

5
-2

4
9

5
8

2
4

9
5

8
-2

5
4

3
5

2
5

4
3

5
-2

5
3

4
6

2
5

3
4

6
6

2
9

2
-6

2
9

2

1
0

1
B

K
50

40
W

17
K

N
P

LL
V

F
9

9
2

6
-9

9
2

6
9

9
3

0
-9

9
3

0
9

9
9

9
-9

9
9

9
9

5
4

4
-9

5
4

4
9

2
3

-9
2

3
-2

8
7

0
1

2
8

7
0

1
-3

1
3

4
6

3
1

3
4

6
-3

0
2

0
4

3
0

2
0

4
7

5
1

2
-7

5
1

2

K
K

T
9

9
0

3
-9

9
0

3
9

8
6

6
-9

8
6

6
9

6
4

0
-9

6
4

0
7

7
8

8
-7

7
8

8
-5

2
8

6
5

2
8

6
-2

3
4

1
4

2
3

4
1

4
-2

4
2

1
7

2
4

2
1

7
-2

4
0

4
3

2
4

0
4

3
7

4
5

5
-7

4
5

5

1
0

2
B

K
50

40
W

18
K

N
P

LL
V

F
9

0
2

3
-9

0
2

3
9

0
3

0
-9

0
3

0
9

1
3

1
-9

1
3

1
9

1
1

3
-9

1
1

3
-7

5
6

6
7

5
6

6
-2

2
6

1
2

2
2

6
1

2
-2

6
9

3
3

2
6

9
3

3
-2

5
9

5
2

2
5

9
5

2
7

2
1

5
-7

2
1

5

K
K

T
9

0
1

3
-9

0
1

3
8

9
9

9
-8

9
9

9
8

8
3

9
-8

8
3

9
8

3
1

5
-8

3
1

5
-4

3
2

4
3

2
-1

8
7

1
0

1
8

7
1

0
-1

9
3

3
0

1
9

3
3

0
-1

9
1

4
2

1
9

1
4

2
7

0
8

5
-7

0
8

5

1
0

3
B

K
50

40
W

19
K

N
P

LL
V

F
1

0
8

8
3

-1
0

8
8

3
1

0
8

9
1

-1
0

8
9

1
1

1
0

2
0

-1
1

0
2

0
9

8
8

5
-9

8
8

5
-1

5
6

5
5

1
5

6
5

5
-2

8
7

4
6

2
8

7
4

6
-3

1
6

5
4

3
1

6
5

4
-3

0
1

7
4

3
0

1
7

4
8

7
0

1
-8

7
0

1

K
K

T
1

0
8

6
2

-1
0

8
6

2
1

0
8

4
4

-1
0

8
4

4
1

0
6

1
4

-1
0

6
1

4
9

1
8

0
-9

1
8

0
-2

7
6

1
2

7
6

1
-2

1
0

9
4

2
1

0
9

4
-2

1
4

9
9

2
1

4
9

9
-2

1
2

8
9

2
1

2
8

9
8

7
8

2
-8

7
8

2

1
0

4
B

K
50

40
W

20
K

N
P

LL
V

F
9

0
3

5
-9

0
3

5
9

0
4

2
-9

0
4

2
9

1
4

1
-9

1
4

1
8

4
6

9
-8

4
6

9
-2

1
2

0
9

2
1

2
0

9
-2

8
2

5
1

2
8

2
5

1
-3

1
2

3
5

3
1

2
3

5
-3

0
4

1
6

3
0

4
1

6
6

4
1

2
-6

4
1

2

K
K

T
9

0
1

0
-9

0
1

0
8

9
7

7
-8

9
7

7
8

5
9

5
-8

5
9

5
7

3
9

4
-7

3
9

4
-6

9
2

9
6

9
2

9
-2

3
6

4
3

2
3

6
4

3
-2

4
4

5
4

2
4

4
5

4
-2

4
3

4
1

2
4

3
4

1
6

5
7

2
-6

5
7

2

1
0

5
B

K
50

50
W

01
K

N
P

LL
V

F
1

2
2

0
5

-1
2

2
0

5
1

2
2

1
4

-1
2

2
1

4
1

2
3

5
7

-1
2

3
5

7
1

1
4

7
9

-1
1

4
7

9
6

1
5

8
-6

1
5

8
-2

2
1

9
6

2
2

1
9

6
-2

5
0

5
4

2
5

0
5

4
-2

4
1

6
8

2
4

1
6

8
1

0
0

5
1

-1
0

0
5

1

K
K

T
1

2
1

8
1

-1
2

1
8

1
1

2
1

3
6

-1
2

1
3

6
1

1
5

3
9

-1
1

5
3

9
1

0
0

6
3

-1
0

0
6

3
-5

2
8

4
5

2
8

4
-1

6
3

8
6

1
6

3
8

6
-1

7
0

7
7

1
7

0
7

7
-1

7
0

1
2

1
7

0
1

2
1

0
2

6
4

-1
0

2
6

4

1
0

6
B

K
50

50
W

02
K

N
P

LL
V

F
1

2
6

9
7

-1
2

6
9

7
1

2
7

0
6

-1
2

7
0

6
1

2
8

3
8

-1
2

8
3

8
1

2
6

1
8

-1
2

6
1

8
4

7
3

3
-4

7
3

3
-2

4
7

5
2

2
4

7
5

2
-2

6
9

5
6

2
6

9
5

6
-2

5
9

3
9

2
5

9
3

9
1

0
5

1
8

-1
0

5
1

8

K
K

T
1

2
6

7
7

-1
2

6
7

7
1

2
6

4
9

-1
2

6
4

9
1

2
2

4
7

-1
2

2
4

7
1

1
3

1
3

-1
1

3
1

3
-4

7
7

3
4

7
7

3
-1

8
5

9
3

1
8

5
9

3
-1

9
1

9
8

1
9

1
9

8
-1

9
0

1
9

1
9

0
1

9
1

0
4

8
7

-1
0

4
8

7

1
0

7
B

K
50

50
W

03
K

N
P

LL
V

F
1

1
6

2
4

-1
1

6
2

4
1

1
6

3
0

-1
1

6
3

0
1

1
7

2
5

-1
1

7
2

5
1

1
6

5
0

-1
1

6
5

0
1

8
0

2
-1

8
0

2
-3

0
2

9
0

3
0

2
9

0
-3

3
0

6
8

3
3

0
6

8
-3

1
8

8
0

3
1

8
8

0
8

9
2

4
-8

9
2

4

b objective functions values for transformed binary examples 105

λ
=
1
0
5

λ
=
1
0
4

λ
=
1
0
3

λ
=
1
0
2

λ
=
1
0
1

λ
=
1
0
0

λ
=
1
0
−
1

λ
=
1
0
−
2

λ
v
a
r

1
0

7
B

K
50

50
W

03
K

N
P

K
K

T
1

1
5

9
6

-1
1

5
9

6
1

1
5

5
6

-1
1

5
5

6
1

0
9

9
1

-1
0

9
9

1
9

3
7

2
-9

3
7

2
-6

4
8

9
6

4
8

9
-2

6
3

1
0

2
6

3
1

0
-2

6
6

8
8

2
6

6
8

8
-2

6
4

4
1

2
6

4
4

1
8

7
0

2
-8

7
0

2

1
0

8
B

K
50

50
W

04
K

N
P

LL
V

F
1

1
1

4
6

-1
1

1
4

6
1

1
1

5
7

-1
1

1
5

7
1

1
3

2
0

-1
1

3
2

0
1

1
0

5
7

-1
1

0
5

7
4

5
2

6
-4

5
2

6
-2

2
7

5
1

2
2

7
5

1
-2

5
7

5
9

2
5

7
5

9
-2

5
1

1
2

2
5

1
1

2
8

8
7

8
-8

8
7

8

K
K

T
1

1
1

2
0

-1
1

1
2

0
1

1
0

8
4

-1
1

0
8

4
1

0
5

6
9

-1
0

5
6

9
9

3
3

1
-9

3
3

1
-7

3
9

7
7

3
9

7
-1

7
9

8
7

1
7

9
8

7
-1

8
6

7
9

1
8

6
7

9
-1

8
6

2
4

1
8

6
2

4
8

9
5

5
-8

9
5

5

1
0

9
B

K
50

50
W

05
K

N
P

LL
V

F
1

1
4

9
0

-1
1

4
9

0
1

1
4

9
7

-1
1

4
9

7
1

1
6

1
1

-1
1

6
1

1
1

0
9

7
9

-1
0

9
7

9
4

6
1

6
-4

6
1

6
-2

7
3

3
6

2
7

3
3

6
-2

9
7

2
0

2
9

7
2

0
-2

8
3

5
3

2
8

3
5

3
9

1
9

0
-9

1
9

0

K
K

T
1

1
4

7
2

-1
1

4
7

2
1

1
4

4
6

-1
1

4
4

6
1

1
0

8
0

-1
1

0
8

0
1

0
0

9
3

-1
0

0
9

3
-4

0
1

4
4

0
1

4
-2

0
4

5
3

2
0

4
5

3
-2

1
0

3
0

2
1

0
3

0
-2

0
8

3
4

2
0

8
3

4
9

2
8

4
-9

2
8

4

1
1

0
B

K
50

50
W

06
K

N
P

LL
V

F
1

0
8

7
0

-1
0

8
7

0
1

0
8

7
9

-1
0

8
7

9
1

1
0

0
7

-1
1

0
0

7
1

0
6

9
1

-1
0

6
9

1
-1

4
2

3
0

1
4

2
3

0
-2

3
6

0
1

2
3

6
0

1
-2

6
6

8
7

2
6

6
8

7
-2

5
8

5
0

2
5

8
5

0
8

6
4

9
-8

6
4

9

K
K

T
1

0
8

5
2

-1
0

8
5

2
1

0
8

2
6

-1
0

8
2

6
1

0
5

4
3

-1
0

5
4

3
9

7
3

1
-9

7
3

1
-3

9
6

6
3

9
6

6
-1

8
4

3
2

1
8

4
3

2
-1

9
1

8
0

1
9

1
8

0
-1

9
0

6
7

1
9

0
6

7
8

8
7

2
-8

8
7

2

1
1

1
B

K
50

50
W

07
K

N
P

LL
V

F
1

2
2

0
9

-1
2

2
0

9
1

2
2

1
9

-1
2

2
1

9
1

2
3

6
3

-1
2

3
6

3
1

1
8

1
3

-1
1

8
1

3
7

0
2

8
-7

0
2

8
-2

2
3

1
8

2
2

3
1

8
-2

4
9

3
9

2
4

9
3

9
-2

4
0

6
3

2
4

0
6

3
1

0
1

3
8

-1
0

1
3

8

K
K

T
1

2
1

8
7

-1
2

1
8

7
1

2
1

5
1

-1
2

1
5

1
1

1
6

4
7

-1
1

6
4

7
1

0
5

1
3

-1
0

5
1

3
-7

0
6

3
7

0
6

3
-1

7
1

5
3

1
7

1
5

3
-1

7
7

3
8

1
7

7
3

8
-1

7
6

2
1

1
7

6
2

1
1

0
1

5
1

-1
0

1
5

1

1
1

2
B

K
50

50
W

08
K

N
P

LL
V

F
1

3
2

0
0

-1
3

2
0

0
1

3
2

0
7

-1
3

2
0

7
1

3
3

5
1

-1
3

3
5

1
1

0
9

2
8

-1
0

9
2

8
1

0
2

7
-1

0
2

7
-4

1
5

0
3

4
1

5
0

3
-4

1
9

5
8

4
1

9
5

8
-3

9
6

0
8

3
9

6
0

8
1

0
5

9
5

-1
0

5
9

5

K
K

T
1

3
2

1
2

-1
3

2
1

2
1

3
2

0
0

-1
3

2
0

0
1

3
0

3
7

-1
3

0
3

7
1

3
1

0
3

-1
3

1
0

3
-1

4
1

6
1

4
1

6
-2

9
2

6
5

2
9

2
6

5
-2

9
1

2
4

2
9

1
2

4
-2

8
6

1
3

2
8

6
1

3
1

0
4

0
4

-1
0

4
0

4

1
1

3
B

K
50

50
W

09
K

N
P

LL
V

F
1

2
4

3
9

-1
2

4
3

9
1

2
4

4
7

-1
2

4
4

7
1

2
5

6
0

-1
2

5
6

0
1

2
3

4
6

-1
2

3
4

6
-1

9
6

3
9

1
9

6
3

9
-2

1
0

0
2

2
1

0
0

2
-2

3
7

5
2

2
3

7
5

2
-2

2
9

3
9

2
2

9
3

9
1

0
5

7
1

-1
0

5
7

1

K
K

T
1

2
4

1
0

-1
2

4
1

0
1

2
3

7
7

-1
2

3
7

7
1

1
9

8
2

-1
1

9
8

2
9

9
4

9
-9

9
4

9
-3

3
3

6
3

3
3

6
-1

5
2

2
1

1
5

2
2

1
-1

6
0

6
4

1
6

0
6

4
-1

5
9

5
1

1
5

9
5

1
1

0
6

0
0

-1
0

6
0

0

1
1

4
B

K
50

50
W

10
K

N
P

LL
V

F
1

4
0

0
8

-1
4

0
0

8
1

4
0

1
9

-1
4

0
1

9
1

4
1

7
4

-1
4

1
7

4
1

3
3

4
3

-1
3

3
4

3
-2

6
8

2
1

2
6

8
2

1
-2

2
5

3
4

2
2

5
3

4
-2

4
4

3
9

2
4

4
3

9
-2

3
6

0
5

2
3

6
0

5
1

1
7

1
4

-1
1

7
1

4

K
K

T
1

3
9

6
4

-1
3

9
6

4
1

3
9

0
5

-1
3

9
0

5
1

3
2

3
5

-1
3

2
3

5
1

0
5

1
8

-1
0

5
1

8
-1

2
5

8
7

1
2

5
8

7
-1

7
1

9
8

1
7

1
9

8
-1

7
7

6
2

1
7

7
6

2
-1

7
6

9
6

1
7

6
9

6
1

1
8

3
7

-1
1

8
3

7

1
1

5
B

K
50

50
W

11
K

N
P

LL
V

F
1

1
5

7
0

-1
1

5
7

0
1

1
5

7
9

-1
1

5
7

9
1

1
7

0
3

-1
1

7
0

3
1

1
1

8
1

-1
1

1
8

1
-2

1
2

2
0

2
1

2
2

0
-2

6
0

2
3

2
6

0
2

3
-2

8
7

4
9

2
8

7
4

9
-2

7
8

6
7

2
7

8
6

7
9

0
4

3
-9

0
4

3

K
K

T
1

1
5

4
4

-1
1

5
4

4
1

1
5

1
0

-1
1

5
1

0
1

1
1

2
1

-1
1

1
2

1
1

0
1

0
8

-1
0

1
0

8
-8

5
0

7
8

5
0

7
-2

2
6

2
0

2
2

6
2

0
-2

3
0

2
2

2
3

0
2

2
-2

2
8

3
8

2
2

8
3

8
8

9
7

3
-8

9
7

3

1
1

6
B

K
50

50
W

12
K

N
P

LL
V

F
1

3
0

9
6

-1
3

0
9

6
1

3
1

0
7

-1
3

1
0

7
1

3
2

7
0

-1
3

2
7

0
1

2
4

1
1

-1
2

4
1

1
7

5
5

9
-7

5
5

9
-2

4
0

6
4

2
4

0
6

4
-2

6
5

2
3

2
6

5
2

3
-2

5
3

9
5

2
5

3
9

5
1

0
8

5
1

-1
0

8
5

1

K
K

T
1

3
0

7
2

-1
3

0
7

2
1

3
0

3
8

-1
3

0
3

8
1

2
5

5
5

-1
2

5
5

5
1

0
4

2
3

-1
0

4
2

3
-7

8
7

1
7

8
7

1
-1

7
7

3
0

1
7

7
3

0
-1

8
0

8
9

1
8

0
8

9
-1

7
9

5
6

1
7

9
5

6
1

0
8

7
0

-1
0

8
7

0

1
1

7
B

K
50

50
W

13
K

N
P

LL
V

F
1

3
2

5
5

-1
3

2
5

5
1

3
2

6
6

-1
3

2
6

6
1

3
4

3
0

-1
3

4
3

0
1

2
3

8
3

-1
2

3
8

3
7

4
0

7
-7

4
0

7
-2

5
6

2
3

2
5

6
2

3
-2

8
0

6
9

2
8

0
6

9
-2

6
9

2
5

2
6

9
2

5
1

0
9

1
5

-1
0

9
1

5

K
K

T
1

3
2

3
8

-1
3

2
3

8
1

3
1

9
8

-1
3

1
9

8
1

2
6

8
6

-1
2

6
8

6
1

1
6

5
6

-1
1

6
5

6
-1

0
3

2
9

1
0

3
2

9
-1

9
6

5
9

1
9

6
5

9
-1

9
9

8
9

1
9

9
8

9
-1

9
8

5
4

1
9

8
5

4
1

0
8

6
6

-1
0

8
6

6

1
1

8
B

K
50

50
W

14
K

N
P

LL
V

F
1

1
6

8
6

-1
1

6
8

6
1

1
6

9
4

-1
1

6
9

4
1

1
8

2
5

-1
1

8
2

5
1

0
9

8
9

-1
0

9
8

9
-2

1
3

4
6

2
1

3
4

6
-2

8
3

3
5

2
8

3
3

5
-3

1
2

6
5

3
1

2
6

5
-3

0
2

1
2

3
0

2
1

2
9

1
3

1
-9

1
3

1

K
K

T
1

1
6

6
0

-1
1

6
6

0
1

1
6

3
1

-1
1

6
3

1
1

1
2

8
6

-1
1

2
8

6
1

0
3

1
6

-1
0

3
1

6
-5

7
1

5
5

7
1

5
-2

4
2

0
2

2
4

2
0

2
-2

4
3

1
2

2
4

3
1

2
-2

4
0

7
8

2
4

0
7

8
8

9
2

5
-8

9
2

5

1
1

9
B

K
50

50
W

15
K

N
P

LL
V

F
1

1
6

5
9

-1
1

6
5

9
1

1
6

6
5

-1
1

6
6

5
1

1
7

7
1

-1
1

7
7

1
1

0
6

2
3

-1
0

6
2

3
-2

1
2

9
1

2
1

2
9

1
-2

5
7

9
6

2
5

7
9

6
-2

8
3

3
1

2
8

3
3

1
-2

7
3

0
2

2
7

3
0

2
9

3
2

5
-9

3
2

5

K
K

T
1

1
6

3
2

-1
1

6
3

2
1

1
5

9
6

-1
1

5
9

6
1

1
1

9
3

-1
1

1
9

3
1

0
0

4
9

-1
0

0
4

9
-4

0
9

4
4

0
9

4
-1

9
6

7
7

1
9

6
7

7
-2

0
3

2
0

2
0

3
2

0
-2

0
1

8
8

2
0

1
8

8
9

4
3

2
-9

4
3

2

1
2

0
B

K
50

50
W

16
K

N
P

LL
V

F
1

2
0

7
9

-1
2

0
7

9
1

2
0

8
8

-1
2

0
8

8
1

2
2

2
4

-1
2

2
2

4
1

1
3

7
4

-1
1

3
7

4
4

6
4

9
-4

6
4

9
-2

6
4

1
4

2
6

4
1

4
-2

9
0

0
7

2
9

0
0

7
-2

8
1

1
3

2
8

1
1

3
9

3
9

7
-9

3
9

7

K
K

T
1

2
0

4
7

-1
2

0
4

7
1

1
9

9
1

-1
1

9
9

1
1

1
2

2
8

-1
1

2
2

8
9

3
7

8
-9

3
7

8
-9

3
8

3
9

3
8

3
-2

2
0

1
0

2
2

0
1

0
-2

2
4

8
4

2
2

4
8

4
-2

2
3

6
1

2
2

3
6

1
9

4
6

1
-9

4
6

1

1
2

1
B

K
50

50
W

17
K

N
P

LL
V

F
1

2
2

7
6

-1
2

2
7

6
1

2
2

8
1

-1
2

2
8

1
1

2
3

6
3

-1
2

3
6

3
1

2
2

5
4

-1
2

2
5

4
-2

6
7

4
3

2
6

7
4

3
-2

6
7

6
4

2
6

7
6

4
-2

8
9

5
0

2
8

9
5

0
-2

7
9

3
3

2
7

9
3

3
9

9
8

2
-9

9
8

2

K
K

T
1

2
2

4
5

-1
2

2
4

5
1

2
2

0
9

-1
2

2
0

9
1

1
7

9
0

-1
1

7
9

0
9

5
7

6
-9

5
7

6
-4

8
0

7
4

8
0

7
-2

0
5

7
9

2
0

5
7

9
-2

1
4

0
1

2
1

4
0

1
-2

1
1

8
7

2
1

1
8

7
9

9
2

7
-9

9
2

7

1
2

2
B

K
50

50
W

18
K

N
P

LL
V

F
1

2
2

0
9

-1
2

2
0

9
1

2
2

1
7

-1
2

2
1

7
1

2
3

4
1

-1
2

3
4

1
1

2
3

9
4

-1
2

3
9

4
-1

0
5

7
9

1
0

5
7

9
-2

0
6

8
3

2
0

6
8

3
-2

4
4

0
3

2
4

4
0

3
-2

3
3

9
3

2
3

3
9

3
1

0
5

2
7

-1
0

5
2

7

K
K

T
1

2
1

9
3

-1
2

1
9

3
1

2
1

7
3

-1
2

1
7

3
1

1
9

4
5

-1
1

9
4

5
1

1
3

5
5

-1
1

3
5

5
-7

0
2

7
0

2
-1

5
2

7
2

1
5

2
7

2
-1

5
8

4
8

1
5

8
4

8
-1

5
6

4
2

1
5

6
4

2
1

0
3

8
4

-1
0

3
8

4

1
2

3
B

K
50

50
W

19
K

N
P

LL
V

F
1

3
7

0
8

-1
3

7
0

8
1

3
7

1
8

-1
3

7
1

8
1

3
8

6
2

-1
3

8
6

2
1

2
9

8
3

-1
2

9
8

3
7

1
9

7
-7

1
9

7
-2

3
4

4
7

2
3

4
4

7
-2

6
3

0
1

2
6

3
0

1
-2

5
0

2
3

2
5

0
2

3
1

1
7

3
4

-1
1

7
3

4

K
K

T
1

3
6

8
7

-1
3

6
8

7
1

3
6

5
8

-1
3

6
5

8
1

3
2

3
9

-1
3

2
3

9
1

2
3

3
1

-1
2

3
3

1
-4

2
5

8
4

2
5

8
-1

6
3

9
5

1
6

3
9

5
-1

6
8

5
3

1
6

8
5

3
-1

6
6

6
5

1
6

6
6

5
1

1
6

8
0

-1
1

6
8

0

1
2

4
B

K
50

50
W

20
K

N
P

LL
V

F
1

1
7

8
9

-1
1

7
8

9
1

1
7

9
6

-1
1

7
9

6
1

1
9

0
8

-1
1

9
0

8
1

1
0

7
6

-1
1

0
7

6
3

0
7

5
-3

0
7

5
-2

9
4

7
0

2
9

4
7

0
-3

1
5

8
4

3
1

5
8

4
-3

0
5

4
2

3
0

5
4

2
9

0
3

3
-9

0
3

3

K
K

T
1

1
7

5
4

-1
1

7
5

4
1

1
7

0
5

-1
1

7
0

5
1

1
0

0
0

-1
1

0
0

0
1

0
2

9
1

-1
0

2
9

1
-8

5
6

1
8

5
6

1
-2

3
5

4
6

2
3

5
4

6
-2

4
1

0
1

2
4

1
0

1
-2

3
9

3
0

2
3

9
3

0
9

1
7

5
-9

1
7

5

Ta
bl

e
9:

U
pp

er
-l

ev
el

an
d

lo
w

er
-l

ev
el

ob
je

ct
iv

e
va

lu
es

at
th

e
so

lu
ti

on
po

in
t

of
al

go
ri

th
m

s
??

an
d

2
.6

fo
r

re
la

xe
d

bi
na

ry
ex

am
pl

es
fr

om
[3

2
]

References 106

references

[1] G.B. Allende and G. Still. Solving bi-level programs with the KKT-approach, Mathematical Programming
131:37-48 (2012)

[2] I. K. Argyros and S. Hilout. Improved generalized differentiability conditions for Newton-like methods, Journal
of Complexity, 26(3): 316-333 (2010)

[3] J.F. Bard. Practical bilevel optimization: algorithms and applications. Kluwer Academic Publishers (1998)

[4] J .F. Bard. Some Properties of the Bilevel Programming Problem, Jounal of Optimization Theory and Appli-
cations 68(2): 371-378 (1991)

[5] R. Behling, A. Fischer, M. Herrich, A. Lusem and Y. Ye. A Levenberg-Marquardt method with approximate
projections, Journal of Computational and Applied Mathematics 59:5-26 (2014)

[6] R. Behling, A. Fischer, G. Haeser, A. Ramos and K. Schönefeld. On the constrained error bound condition
and the projected Levenberg-Marquardt method, A Journal of Mathematical Programming and Operations
Research (2016)

[7] V. Beiranvand, W.Hare and Y. Lucet. Best practices for comparing optimization algorithms, Optimization
and Engineering 18: 815-848 (2017)

[8] D.P. Bertsekas. Constrained optimization and Lagrange multiplier methods, Academic Press, New York (1982)

[9] W.F. Bialas and M.H. Karwan. Two-level linear programming, Management Science 30: 1004-1024 (1984)

[10] J. Bracken and J. McGill. Mathematical programs with optimization problems in the constraints, Operational
Research 21: 37-44 (1973)

[11] J.V. Burke. An exact penalization viewpoint of constrained optimization, SIAM journal on control and opti-
mization 29(4): 968-998 (1991)

[12] Y. Chen and M. Florian. The nonlinear bilevel programming problem: Formulations, regularity and optimality
conditions, Optimization 32(3): 193-209 (1995)

[13] J. Chen and W. Li. Convergence of Gauss-Newton’s method and uniqueness of the solution, Applied Mathe-
matics and Computation, 170(1): 686-705 (2005)

[14] X. Chen, L. Qi and D. Sun. Global and superlinear convergence of the smoothing Newton method and its
application to general box constrained variational inequalities, Mathematics of Computation 67(222): 519-540

(1998)

[15] B. Colson, P. Marcotte and G. Savard. An overview of bilevel optimization, Annals of Operational Research
153: 235-256 (2007)

[16] S. Dempe. A necessary and a sufficient optimality condition for bilevel programming problems, Optimization
25(4): 341-354 (1992)

[17] S. Dempe. A bundle algorithm applied to bilevel programming problems with non-unique lower level solutions,
Computational Optimization and Applications, 15(2): 145-166 (2000)

[18] S. Dempe. Foundations of bilevel programming. Kluwer Academic Publishers (2002)

[19] S. Dempe and J.Dutta. Is bilevel programming a special case of mathematical programming with equilibrium
constraints? Mathematical Programming 131: 37-48 (2010)

[20] S. Dempe, J. Dutta and B.S. Mordukhovich. New necessary optimality conditions in optimistic bilevel pro-
gramming, Optimization 56 (5-6): 577-604 (2007)

[21] S. Dempe, and H. Schmidt. On an algorithm solving two-level programming problems with nonunique lower
level solutions, Computational Optimization and Applications, 6(3): 227-249 (1996)

[22] S. Dempe and A.B. Zemkoho. KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth
Bilevel Optimization, SIAM Journal on Optimization, 24(4): 1639-1669 (2014)

[23] S. Dempe and A.B. Zemkoho. The bilevel programming problem: reformulations, constraint qualification and
optimality conditions, Mathematical Programming 138: 447-473 (2013)

[24] S. Dempe and A.B. Zemkoho. The generalized Mangasarian-Fromowitz constraint qualification and optimality
conditions for bilevel programs, Journal of Optimization Theory and Applications 148(1): 46-68 (2011)

[25] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and nonlinear equa-
tions, SIAM Classics in Applied Mathematics, 1996

References 107

[26] J. Fan and J. Pan. A note on the Levenberg-Marquardt parameter, Applied Mathematics and Computation
207:351-359 (2009)

[27] J.Y. Fan and Y.X. Yuan. On the quadratic convergence of the Levenberg-Marquardt method without nonsingu-
larity assumption, Computing 74: 23-39 (2005)

[28] O.P. Ferreira, M.L.N. Goncalves and P.R. Oliveira. Local convergence analysis of the Gauss-Newton method
under a majorant condition, Journal of Complexity, 27(1): 111-125 (2011)

[29] A. Fischer. A special Newton-type optimization method, Optimization 24(3): 269-284 (1992)

[30] A. Fischer and P.K. Shukla. Levenberg-Marquardt algorithm for unconstrained multicriteria optimization,
Operations Research Letters 36:643-646 (2008)

[31] A. Fischer, A.B. Zemkoho and S. Zhou. Semismooth Newton-type method for bilevel optimization: global
convergence and extensive numerical experiments, Optimization and Control, arXiv:1912.07079 (2019)

[32] M. Fischetti, I. Ljubic̀, M. Monaci and M. Sinnl. Instances and solver software for mixed-integer bilevel linear
problems, msinnl.github.io/pages/bilevel (2017)

[33] R. Fletcher. An Ideal Penalty Function for Constrained Optimization Journal Inst. Maths Applies 15: 319-342

(1975)

[34] R. Fletcher. Generalized inverse methods for the best least squares solution of systems of non-linear equations,
The Computer Journal 10(4): 392-399 (1968)

[35] R. Fletcher. Practical methods of optimization (2nd Ed.), John Wiley (1987)

[Paper 1] J. Fliege, A. Tin and A.B. Zemkoho. Gauss-Newton-type methods for bilevel optimization School of
Mathematical Sciences, University of Southampton, UK (2020)

[Supp1] J. Fliege, A. Tin, and A.B. Zemkoho. Supplementary material for “Gauss-Newton-type methods for
bilevel optimization”, Computational Optimization and Applications, doi.org/10.1007/s10589-020-00254-
3 (2021)

[36] R.G. Jeroslow. The Polynomial Hierarchy and a Simple Model for Competitive Analysis, Mathematical Pro-
gramming 32: 146-164 (1985)

[37] S.Yu. Gatilov. Using low-rank approximation of the Jacobian matrix in the Newton-Raphson method to solve
certain singular equations, Journal of Computational and Applied Mathematics, 272: 8-24 (2014)

[38] M.L.N. Goncalves. Local convergence of the Gauss-Newton method for injective-overdetermined systems of
equations under a majorant condition, Computers & Mathematics with Applications, 66(4): 490-499 (2013)

[39] G.H. Golub and C.F. Van Loan. Matrix computations, The John Hopkins University Press (1996)

[40] R.A. Horn and C.R. Johnson. Matrix Analysis (2nd edition), Cambridge University Press: 441-442 (2013)

[41] Y. Jiang, X. Li, C. Huang and X. Wu. W. Application of particle swarm optimization based on CHKS smoothing
function for solving nonlinear bi-level programming problem, Applied Mathematics and Computation 219:
4332-4339 (2013)

[42] C. Kanzow. Some noninterior continuation methods for linear complementarity problems, SIAM Journal on
Matrix Analysis and Applications 17(4):851-868 (1996)

[43] C. Kanzow and H. Pieper. Jacobian smoothing methods for general nonlinear complementarity problems, SIAM
Journal on Optimization 9: 342-372 (1999)

[44] C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence
properties for solving nonlinear equations with convex constraints, Journal of Computational and Applied
Mathematics 172: 375-397 (2004)

[45] C.T. Kelley. Iterative methods for optimization, Frontiers in Applied Mathematics 18. Philadelphia: SIAM
(1999)

[46] P. Kleniati and C.S. Adjiman. Branch-and-sandwich: a deterministic global optimization algorithm for optimistic
bilevel programming problems. Part I: Theoretical development, Journal of Global Optimization 60(3): 425-458

(2014)

[47] P. Kleniati and C.S. Adjiman. Branch-and-sandwich: a deterministic global optimization algorithm for opti-
mistic bilevel programming problems. Part II: Convergence analysis and numerical results, Journal of Global
Optimization 60(3): 459-481 (2014)

[48] L. Lampariello and S. Sagratella. Numerically tractable optimistic bilevel problems, Computational Opti-
mization and Applications 76(2): 277-303 (2020)

https://msinnl.github.io/pages/bilevel.html
https://doi.org/10.1007/s10589-020-00254-3
https://doi.org/10.1007/s10589-020-00254-3

References 108

[49] C. Li, Wen-Hong Zhang and Xiao-Qing Jin. Convergence and uniqueness properties of Gauss-Newton’s
method, Computers & Mathematics with Applications, 47(6-7): 1057-1067 (2004)

[50] G.-H. Lin, M. Xu and J.J. Ye. On solving simple bilevel programs with a nonconvex lower level program,
Mathematical Programming 144(1-2):277-305 (2014)

[51] N. Maratos. Exact Penalty Function Algorithms for Finite Dimensional and Control Optimization Problems,
Thesis Department of Computing and Control, Imperial College of Science and Technology, University
of London (1978)

[52] P. Mehlitz, L.I. Minchenko and A.B. Zemkoho. A note on partial calmness for bilevel optimization problems
with linear structures at the lower level Optimization letters, doi.org/10.1007/s11590-020-01636-6 (2020)

[53] A. Mitsos, P. Lemonidis and P.I. Barton. Global solution of bilevel programs with a nonconvex inner program,
Journal of Global Optimization 42(4): 475-513 (2008)

[54] B.S. Mordukhovich. Variational analysis and generalized differentiation. I: Basic theory. II: Applications, Berlin:
Springer (2006)

[55] J. Nocedal and S.J. Wright. Numerical optimization, Springer (1999)

[56] J.V. Outrata. Necessary optimality conditions for Stackelberg problems, Optimization Theory and Applica-
tions 76(2): 305-320 (1993)

[57] V. Pan and R. Schreiber. An improved newton iteration for the generalized inverse of a matrix, with applications,
SIAM Journal on Scientific and Statistical Computing 12(5):1109-1130 (1991)

[58] R. Paulavicius, J. Gao, P. Kleniati and C.S. Adjiman. BASBL: Branch-and-sandwich bilevel solver. Imple-
mentation and computational study with the BASBLib test sets, Computers & Chemical Engineering 132

(2020)

[59] G.Di Pillo and L. Grippo. Exact penalty functions in constrained optimization, SIAM journal on control and
optimization 27 (6): 1333-1360 (1989)

[60] S. Pineda, H. Bylling and J.M. Morales. Efficiently solving linear bilevel programming problems using off-the-
shelf optimization software Optimization and Engineering 19: 187-211 (2018)

[61] M. J. D. Powell. In Optimization (ed. R. Fletcher) London: Academic Press, chapter 19 (1969)

[62] W.Press, S.Teukolsky, W. Vetterling and B.Flannery. Numerical recipes in C, Cambridge University Press,
Cambridge (1992)

[63] R.W. Siregar, Tulus and M. Ramli. Analysis Local Convergence of Gauss-Newton Method, et al 2018 IOP
Conf. Ser.: Mater. Sci. Eng. 300 012044 (2018)

[64] H.v. Stackelberg, Marktform und Gleichgewicht English Translated: The Theory of the Market Economy,
Springer, Berlin (1934)

[65] O. Stein and A.Tezel. The semismooth approach for semi-infinite programming under the Reduction Ansatz,
Journal of Global Optimization, 41(2): 245-266 (2008)

[66] O. Stein and A.Tezel. The semismooth approach for semi-infinite programming without strict complementarity,
SIAM Journal on Optimization, 20(2): 1052-1072 (2009)

[67] W. Sun and Y.-X. Yuan. Optimization Theory and Methods, Springer, 2006

[68] D. Sun and L. Qi. On NCP Functions, Computational Optimization and Applications 13(1-3): 201-220

(1999)

[69] W. Sun and Y.-X. Yuan. Optimization Theory and Methods, Springer (2006)

[70] L. Qi and D. Sun. A survey of some nonsmooth equations and smoothing Newton methods. In Progress in
optimization 30: 121-146, Springer (1999)

[71] L. Qi and D. Sun. Smoothing Functions and Smoothing Newton Method for Complementarity and Variational
Inequality Problems, Journal of Optimization Theory and Applications, 113: 121-147 (2002)

[72] L. Qi and J. Sun. A Nonsmooth version of Newton’s method, Mathematical Programming, 58: 353-367 (1993)

[73] W. Wiesemann, A. Tsoukalas, P. Kleniati and B. Rustem. Pessimistic bilevel optimization, SIAM Journal on
Optimization 23(1): 353-380 (2013)

[74] D.J. White and G. Anandalingam. A penalty function approach for solving bi-level linear programs Journal
of Global Optimization, 3: 397-419 (1993)

[75] M. Xu and J.J. Ye. A smoothing augmented lagrangian method for solving simple bilevel programs, Computa-
tional Optimization and Applications 59(1-2): 353-377 (2014)

https://doi.org/10.1007/s11590-020-01636-6

References 109

[76] M. Xu, J.J. Ye and L. Zhang. Smoothing sqp methods for solving degenerate nonsmooth constrained optimization
problems with applications to bilevel programs, SIAM Journal on Optimization 25(3): 1388-1410 (2015)

[77] Z.K. Xu. Deriving the properties of linear bilevel programming via a penalty function approach, Journal of
Optimization Theory and Applications, 103: 441-456 (1999)

[78] N. Yamashita and M. Fukushima. On the rate of convergence of the Levenberg-Marquardt method, Computing
15: 237-249 (2001)

[79] J.J. Ye and X.Y. Ye. Necessary optimality conditions for optimization problems with variational inequality con-
straints, Mathematics of Operations Research 22(4): 977-997 (1997)

[80] J.J. Ye, D.L. Zhu and Q.J. Zhu. Exact penalization and necessary optimality conditions for generalized bilevel
programming problems, SIAM Journal on optimization, May 7(2): 481-507 (1997)

[81] J.J. Ye and D.L. Zhu. Optimality conditions for bilevel programming problems, Optimization 33: 9-27 (1995)

[82] J.J. Ye and D.L. Zhu. New necessary optimality conditions for bilevel programs by combining the MPEC and
value function approache,. SIAM Journal on Optimization 20(4): 1885-1905 (2010)

[83] A.B. Zemkoho. Bilevel programming: reformulations, regularity and stationarity, PhD thesis, Department of
Mathematics and Computer Science, TU Bergakademie Freiberg, Freiberg, Germany (2012)

[Paper 2] A. Tin and A.B. Zemkoho. Solving bilevel programs with the Levenberg-Marquardt method, School of
Mathematical Sciences, University of Southampton, UK (2020)

[Paper 3] A. Tin and A.B. Zemkoho. Levenberg-Marquardt method for linear bilevel programming, School of
Mathematical Sciences, University of Southampton, UK (2020)

[Supp2] A. Tin and A.B. Zemkoho. Supplementary material for "Solving bilevel programs with the Levenberg-
Marquardt method”, School of Mathematical Sciences, University of Southampton, UK (2020)

[Supp3] A. Tin and A.B. Zemkoho. Supplementary material for "Levenberg-Marquardt method for linear bilevel
optimization”, School of Mathematical Sciences, University of Southampton, UK (2020)

[84] A.B. Zemkoho and S. Zhou. theoretical and numerical comparison of the karush-kuhn-tucker and
value function reformulations in bilevel optimization, Computational Optimization and Applications
doi.org/10.1007/s10589-020-00250-7 (2021)

[85] S. Zhou, A.B. Zemkoho, and A. Tin. BOLIB: Bilevel Optimization LIBrary of Test Problems, In: S. Dempe
and A.B. Zemkoho (eds.) Bilevel Optimization: Advances and Next Challenges, Springer, Berlin (2020)

https://doi.org/10.1007/s10589-020-00250-7

	I Summary
	1 Introduction
	2 Gauss-Newton method for bilevel optimization
	3 Levenberg-Marquardt method and penalty parameter selection in bilevel optimization
	4 Levenberg-Marquardt method for linear bilevel optimization
	5 Conclusion

	II Paper 1: Gauss-Newton-type Methods for Bilevel Optimization
	1 Introduction
	2 Optimality conditions and equation reformulation
	3 Gauss-Newton-type methods under strict complementarity
	3.1 Nonsingularity of (z)T (z) and Convergence
	3.2 Newton method with Moore-Penrose pseudo inverse

	4 Smoothing Gauss-Newton method
	5 Numerical results
	5.1 Performance profiles
	5.2 Feasibility check
	5.3 Accuracy of the upper-level objective function
	5.4 Variation of the tolerance in the stopping criterion
	5.5 Checking assumption on

	6 Final comments

	III Paper 2: Levenberg-Marquardt method and partial exact penalty parameter selection in bilevel optimization
	1 Introduction
	2 Levenberg-Marquardt method for bilevel optimization
	2.1 The algorithm and its convergence analysis
	2.2 Practical implementation details

	3 Partial exact penalty parameter selection
	3.1 How far can we go with the value of ?
	3.2 Do the values of really need to be large?
	3.3 Partially calm examples

	4 Performance comparison under fixed and varying penalty parameter
	4.1 Accuracy of the upper-level objective function
	4.2 Feasibility check
	4.3 Experimental order of convergence
	4.4 Line search stepsize

	5 Final comments

	IV Paper 3: Levenberg-Marquardt method for linear bilevel optimization
	1 Introduction
	2 Levenberg-Marquardt method for linear Bilevel Optimization
	2.1 Optimality conditions and equation reformulation
	2.2 The algorithm and convergence analysis

	3 Numerical study
	3.1 Bilevel Optimization LIBrary (BOLIB) examples
	3.2 Fischetti et al. based examples

	4 Final comments
	A Objective functions values for transformed integer examples
	B Objective functions values for transformed binary examples
	References

