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Abstract
Structured light refers to the ability to tailor optical patterns in all its degrees of freedom, from
conventional 2D transverse patterns to exotic forms of 3D, 4D, and even higher-dimensional
modes of light, which break fundamental paradigms and open new and exciting applications for
both classical and quantum scenarios. The description of diverse degrees of freedom of light can
be based on different interpretations, e.g. rays, waves, and quantum states, that are based on
different assumptions and approximations. In particular, recent advances highlighted the
exploiting of geometric transformation under general symmetry to reveal the ‘hidden’ degrees
of freedom of light, allowing access to higher dimensional control of light. In this tutorial, I
outline the basics of symmetry and geometry to describe light, starting from the basic
mathematics and physics of SU(2) symmetry group, and then to the generation of complex
states of light, leading to a deeper understanding of structured light with connections between
rays and waves, quantum and classical. The recent explosion of related applications are
reviewed, including advances in multi-particle optical tweezing, novel forms of topological
photonics, high-capacity classical and quantum communications, and many others, that, finally,
outline what the future might hold for this rapidly evolving field.

Supplementary material for this article is available online
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1. Introduction

There is a saying by Claude Debussy (1862.8.22–1918.3.25),
a French impressionist musician, that ‘Music is the arith-
metic of sounds as optics is the geometry of light.’ Indeed,
although belonging to very different disciplines, music and
optics are inextricably related by the similarity of their phys-
ical structures, as unveiled by Debussy. In Debussy’s age, rays
and geometric optics were still the most prevailing tools to
describe light, thus Debussy used the term of ‘geometry of
light.’ While, soon after, wave optics emerged as a new branch
of optics to describe light by waves gradually took the upper
hand, and it was argued that geometric optics is just a special
case of wave optics when the wavelength is approaching zero
[1]. As time went on, more branches of optics emanated to
unveil deeper physics and general structures of light, such as
electromagnetic optics, quantum optics, and recent advances
of quantum–classical connection [2–4] (figure 1). Today, the
relationship between music and optics can be more deeply
understood because more tools have emerged to describe light.
For instance, the connection between music and optics can be
made explicitly by considering sound and light as waves, as the
sound (acoustic wave) and the light (electromagnetic wave) are
both waves. Debussy’s story inspires people to everlastingly
pursue the more general structures of light by toolkits includ-
ing rays and waves in order to deepen the understanding of the
beauty of nature and science.

In recent advances of structured light, peoples have been
able to control customized structures of light in many degrees-
of-freedom (DoFs) such as intensity, phase, polarization,
orbital angular momentum (OAM), fuelling fundamental
physics and practical applications for both quantum and clas-
sical fields [5–9]. While it is still an everlasting topic to push
the limit of structured light into higher dimensions and flexib-
ility. The key to address this challenge is to explore the most
fundamental symmetry of light, so as to exploit diverse tools to
construct on-demand structured light in a better way. In funda-
mental physics, many kinds of symmetric groups were used to
deal with special physical problems [10]. For instance, SU(2)
is a general symmetry describing paraxial particle beams, and
SO(3) generally describing the particle behavior in central
potential fields [10]. Thus, the SU(2) symmetry can provide
a basic tool to describe a general set of paraxial light beams,
which has been widely applied in optics, such as photon stat-
istics [11–13], beam splitter [14], polarization optics [15–17],
and nonlinear wave-packet dynamics [18, 19]. However, the
use of SU(2) (symmetry) in the structured light community
is still in its adolescence. Thus, it is an advantage to exploit
SU(2) mathematics and physics to establish generalized types
of structured light for extending its advanced applications.

In this tutorial, the quintessential tools to tailor light, rays,
waves, symmetry and geometry, are discussed in a unified
and generalized framework. In particular, it demonstrates how
to exploit mathematics of SU(2) symmetry to tailor non-
trivial geometric pattern and ray-wave coupled structures of
light. The theoretical framework especially unveils new field
of applied physics such as higher-dimensional mode control
and quantum–classical connections. Catering the structured

light revolution, I concentrate on new understanding of diverse
exotic forms of structured light based on the physics of SU(2)
symmetry and geometry, and how this has fueled many excit-
ing applications, appealing to a broad applied physics com-
munity and in particular those optical physicists working in
multi-disciplinary fields. This tutorial starts from several fun-
damental questions then toward profound and universal mech-
anism, the style of which will make it useful to students and
emerging researchers, while the comprehensive review nature
will make it invaluable to senior researchers in the field too.

The content of this tutorial is arranged as follows. The fol-
lowing section 2 firstly answers the question—what is the uni-
versal symmetry to describe light?—the SU(2) symmetry, and
provides the clear mathematical basis of SU(2) (symmetry,
matrix, group, operation and transformation). Then, I demon-
strate how the basic mathematics is used in physics, espe-
cially, the quantum linear oscillator, and how the SU(2)
coupled linear oscillator theory is used to describe a gen-
eral family of structured light modes. In section 3, the frame-
work of SU(2) symmetry of light is extended to develop
the intriguing classical-quantum coupled theory—ray-wave
duality, whereby more diversified structured light beams can
be represented as the generalized coherent state superposed
by various eigenstates. Such generalized ray-wave structured
light has more intriguing properties of OAM frequency-
degeneracy, multiple singularities, etc. The further generaliz-
ation of complex structured light carries on in next sections 4
and 5, including the higher-order ray-wave geometric light
corresponding to the generally coupled linear oscillators at
3D spatially orthogonal directions, encompassing exotic Lis-
sajous and trochoidal curve patterns, and the hybrid-order geo-
metric mode as the hybrid superposition of different coherent
state wave-packets. In section 6, the methods of experimental
generation of various kinds of ray-wave structured light are
reviewed, including the at-the-source generation from a laser
cavity and the passive modulation by digital holography. In
section 7, a graphical representation is given to show that the
complex ray-wave geometric light can be elegantly mapped on
generalized Poincaré sphere, as an simplified but very versat-
ile model guiding applications. The SU(2) structured light is
a general concept, where many other extensions not covered
above, we review other exotic SU(2) structured light. In
section 9,many potential applications of SU(2) structured light
are discussed taking advantage of its unique properties such as
ray-wave duality, multiple DoFs, and high-dimensional state.
Finally in section 10, we give the perspective of future devel-
opment of light with general geometric patterns.

2. The general symmetry of light

Symmetry is a basic tool for human being to recognize and
classify natural objects. In mathematics, symmetry has more
precise definitions and classifications, and is usually used to
refer to an object that is invariant under some transform-
ations, including mirror reflection, arbitrary rotation (circu-
lar), or rotation of specific angle, and so on. Some examples
of objects with different kinds of symmetry in daily life are
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Figure 1. The schematic diagram of the evolution of branches of optics.

Figure 2. Selective natural pictures with various kinds of symmetry (mirror symmetry, circular symmetry, and rotational symmetry). The
snowflake image comes from https://unsplash.com/photos/rGzUMs-QsCM, other images belong to the author.

shown in figure 2. Among which, rotational symmetry (the
third column of figure 2) is a phenomenon widely existed in
nature, from themovement of galaxies to ocean circulation and
typhoon vortices and even to spiral galaxies in the milky way,
manifesting themselves not only in macroscopic matter but
also in structured electromagnetic and optical fields. Inmodern
mathematics, symmetries are generally defined as invariances
under transformations. In the case rotational symmetry, it can
be defined as invariance under SU(2) or SO(3) transforma-
tion, where SO(3) is the rotation group acting on 3D vectors
whereas SU(2) correspond to special unitary transformation
on complex 2D vectors, which are very useful to simplify vari-
ous profound models in particle physics [10]. In fundamental
physical courses, SU(2) can be widely seen, which is a gen-
eral symmetry describing paraxial particle systems such as
photon or electron beam, as the SO(3) describing the particle
behavior in central potential field, such as the hydrogen atom.
Thus, SU(2) provides the basic tool to describe a general set
of paraxial light beams.

SU(2) symmetry has been applied in optics in various com-
munities for a long time, such as photon statistics [11–13],
beam splitter [14], polarization optics [15–17], and nonlinear
wave-packet dynamics [18, 19], to name a few. In the struc-
tured light community, SU(2) symmetry is still understudied.
Recently, the structured light has attracted growing interest
due to its ability to tailor customized distribution of arbitrary

DoFs such as intensity, phase, polarization, and OAM [8, 20].
SU(2) transformation has been used in structured light as they
are the basis of many transformations and are realized by a
large variety of optical elements, and promises to be a useful
tool in the exploration of new horizons. Thus, it is an implied
advantage to apply SU(2) mathematics and physics to estab-
lish more generalized structured light model for extending its
applications in more potential dimensions.

2.1. Matrix representation of rotation: SU(2) and SO(3)

Mathematically, a rotation in 2D plane can be represented by a
2× 2 matrix. If a certain point with coordinate (x, y) is rotated
counterclockwise by an α angle around the origin, this process
can be represented by a transformation of two-dimensional
rotation matrix:[

x ′

y ′

]
=

[
cosα sinα
−sinα cosα

][
x
y

]
. (1)

The rotation matrix can be written as the linear combination of
two basic matrices, the identity matrix and orthogonal rotation
matrix:[

cosα sinα
−sinα cosα

]
= cosα

[
1 0
0 1

]
+ sinα

[
0 1
−1 0

]
. (2)

4
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Figure 3. (a) The 2D vector rotation in a complex plane. (b) The 3D
vector rotation in a pure quaternion space. (c)–(e) The 3D
coordinate rotation transformation based on the three Euler angles.

Equivalently, the 2D coordinates can be considered as the real
and imaginary parts of the complex number, and the rotation
matrix can be expressed as the matrix form of the complex
number of argument of α, the complex number formation of
rotation operation is given by:

x ′ + iy ′ = (cosα+ i sinα)(x+ iy) , (3)

corresponding to the transformation form a complex number
z1 = x ′ + iy ′ to another z2 = x+ iy as shown in figure 3(a).

Because beams of light are actually defined in 3D space,
with a longitudinal axis (z) and transverse plane (x,y), we will
also consider how these 2D rotations can be generalized in
3D. For the 3D rotation, the operation can also be repres-
ented by matrix, as well by the quaternion formation (akin
to the complex number formation) [21], that q= a+ bi+
cj+ dk, where i2 = j2 = k2 = ijk=−1. When a= 0, the qua-
ternion only has imaginary parts, namely the pure quaternion
q= bi+ cj+ dk, which can represents an arbitrary 3D vector
ν = (b,c,d)T. Without loss of generality, we consider the rota-
tion axis passing through the origin, u= uxi+ uyj+ uzk (ux =
sinβ1 cosβ2, uy = sinβ1 sinβ2, uz = cosβ1), a 3D vector q1 =
x1i+ y1j+ z1k is transformed into q2 = x2i+ y2j+ z2k after
rotation by a φ angle, as shown in figure 3(b). This transform-
ation can be expressed by the multiplication of quaternion:

q2 = vq1, (4)

where the transformation quaternion is given by:

ν = cosβ3 + sinβ3uxi+ sinβ3uyj+ sinβ3uzk. (5)

Therefore, a certain quaternion q= a+ bi+ cj+ dk can
generally represent a rotation transformation in 3D space, the
matrix formation of which can be given by [22]:

Q=


a −b −c −d
b a d −c
c −d a b
d c −b a

 , (6)

that can be simplified into a 2× 2 partitioned matrix and each
partitioned part represented by a complex number:

Q=

[
a+ bi −c+ di
c+ di a− bi

]
. (7)

The quaternion is always defined under normalization
a2 + b2 + c2 + d2 = 1, correspondingly, the matrix Q of
equation (7) is a unitary matrix, that can be written into argu-
ment formation:

Q=

[
e−iθ/2 cos(φ/2) eiθ/2 sin(φ/2)
−e−iθ/2 sin(φ/2) eiθ/2 cos(φ/2)

]
≜ SU(2). (8)

Inmathematics, the special unitary group SU(2) is the group of
2× 2 unitary matrices with determinant 1. Thus, equation (8)
can be seen as a definition of SU(2) matrix. SU(2) symmetry
means the symmetry under SU(2) matrix transformation. The
group constructed by the matrix multiply operation is termed
as SU(2) group, which is isomorphic to the group of all
normalized quaternions transformation, completely describing
the 3D fixed-axis rotation and generally revealing the spatial
axial rotation symmetry.

SU(2) group completely describes the 3D fixed-axis rota-
tion operation, while the rotation axis can be selected arbit-
rarily, thus it actually represents general 3D spatial rotation.
A well endorsed description of arbitrary 3D rigid body rota-
tion is using Euler angles [23], α,β,γ, corresponding to three
composed elemental rotations [rotations about the three axes
through the origin of a coordinate system, see figures 3(c)–(e)],
with matrix representations of:

Rz (α) =

 cosα sinα 0
−sinα cosα 0

0 0 1

 ,
Ry (β) =

1 0 0
0 cosβ sinβ
0 −sinβ cosβ

 ,Rx (γ) =
cosγ 0 −sinγ

0 1 0
sinγ 0 cosγ

 ,
(9)

and the general rotation is represented by the multiplicat-
ive matrix. In mathematics, 3D rotation group, often denoted
SO(3), is the group of all rotations about the origin ofR3 under
the operation of composition. Thus, the SO(3) matrix can be
defined by:

SO(3)= Rz(α)Ry(β)Rx(γ). (10)

Three-dimensional real space rotation can be equivalently rep-
resented by the SU(2) matrix of a two-dimensional complex
plane,

SU(2)= U1(α)U2(β)U3(γ), (11)

5
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where

U1 (α) =

[
eiα/2 0
0 e−iα/2

]
,

U2 (β) =

[
cos(β/2) sin(β/2)
−sin(β/2) cos(β/2)

]
,U3 (γ) =

[
eiγ/2 0
0 e−iγ/2

]
.

(12)

This rotation model leads us to the most intuitive approach:
while the quaternion and the Euler description can both
describe 3D rotations, the Euler description can suffer from
singularity issues (Gimbal lock), a problem known in the
world of animation, making the quaternion representation
advantageous in some cases.

Locally, SU(2) and SO(3) groups are isomorphic, based on
equations (10)–(12). SU(2)matrix can be safely used for optics
if the possible transformations of optical field are unitary in the
general condition.

2.2. SU(2) in physics

2.2.1. SU(2) in classical mechanics. SU(2) provides a very
simplified expression for complex spatial rotation, which has
a large number of applications in physics. For instance of
the classical mechanics, it is widely used to describe macro-
scopic and microscopic oscillation phenomena [24–26]. The
2D harmonic oscillation can be expressed as x= Ax cos(ω1 t+
ϕ1),y= Ay cos(ω2 t+ϕ2), where Ax (Ay) refer to the amp-
litude, ω1 (ω2) the frequency of oscillation, ϕ1 (ϕ2) the phase
factor at x (y) direction. Applying additional rotation motion
onto a 2D harmonic oscillation [x1(t),y1(t)], we can realize a
periodic trochoidal motion [x2(t),y2(t)], this process yields an
SU(2) transformation:[

x2
y2

]
=

[
e−iθ/2 cos(φ/2) eiθ/2 sin(φ/2)
−e−iθ/2 sin(φ/2) eiθ/2 cos(φ/2)

][
x1
y1

]
, (13)

where the oscillation with a trajectory of Lissajous curve
is transformed into the oscillation with a trochoidal traject-
ory, see figure 4 for the example illustration with parameters
of ω1/ω2 = 1/4, A1 = A2, ϕ1 = ϕ2 = 0, θ = φ= π/2. Sum-
marily, the SU(2) provides a compact mathematical tools to
describe more complex group of classical motion modes, i.e.
the modes coupled to Lissajous-trochoidal geometric curves.

2.2.2. SU(2) in quantummechanics and optics. In quantum
mechanics, the physical quantity is not represented by real
functions, e.g. x(t) and y(t), but by operators, e.g. âx and ây
(the hat symbol ‘̂ ’ will be omitted hereinafter in this article
just for the convenience of writing), and the detailed possib-
ility distribution (wavefunction) of corresponding operator is
determined by a certain Hamiltonian [27]. For a simple 1D
linear oscillator, the Hamiltonian is given by:

H=
1
2m

p2 +
1
2
mω2x2

=
1
2

(
a†a+ aa†

)
ℏω =

(
a†a+

1
2

)
ℏω, (14)

Figure 4. Schematics of 2D harmonic oscillators: (a) the oscillation
is composed by two linear oscillations with frequency ω1 and ω2

along a Lissajous curve; (b) the oscillation is composed by two
angular oscillations with frequency ω1 and ω2 along a trochoidal
curve.

where m is the mass, ω is the unperturbed frequency, p is the
momentum operator, x is the coordinate operator, a† and a are
the ladder (creation and annihilation) operators of photon, and
ℏ is the reduced Planck constant. Under coordinate represent-
ation, the discrete eigenstates |n⟩ (n= 0,1,2, . . .) are solved by
Hermite function:

⟨ξ|n⟩=

√
1√
π2nn!

Hn(ξ)e
−ξ2/2, (15)

where ξ =
√
mω/ℏ · x, and Hn represents Hermite polynomi-

als, with corresponding eigenvalues:

En =

(
n+

1
2

)
ℏω, (16)

Generally, the Hamiltonian for the 3D linear harmonic
oscillator is given by:

H=
∑
j

1
2

(
a†j aj+ aja

†
j

)
ℏωj =

∑
j

(
a†j aj+

1
2

)
ℏωj, (17)

where j= x,y,z. We take the application in optics for
an illustration. The representation of a laser beam often
includes transverse and longitudinal modes, which are
yielded by the Hamiltonian H0 =

(
a†xax+ a†yay+ 1

)
ℏω0 +(

a†zaz+
1
2

)
ℏωz for the 3D transversely symmetric harmonic

oscillator in quantum optics [28], where ω0 and ωz are the fre-
quencies of linear oscillations at transverse and longitudinal
directions, a†i and ai are the creation and annihilation operat-
ors for the photon of transverse mode (i= x,y) and longitud-
inal mode (i= z), and ℏ is the reduced Planck constant. The
eigenstates |n,m, l⟩ (n,m, l ∈ N) of the Hamiltonian H0 can be
generated by the ladder properties of creation operators from
the fundamental Gaussian mode as the ground state [28, 29]:

|n,m, l⟩= (a†x)
n

√
n!

(a†y)
m

√
m!

(a†z )
l

√
l!
|0,0,0⟩, (18)

with eigenfrequency of ωn,m,l = ωT+ωL, where the trans-
verse mode frequency ωT = (n+m+ 1)ω0 and longitudinal
mode frequency ωL = (l+ 1/2)ωz. Eigenstates as described

6
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Figure 5. SU(2) eigenstate of coherent field for representing HLG mode: the wavepacket of |ψ(θ,φ)
n,m,l ⟩ (n= 4,m= 3) versus θ and ϕ. The

plotting is based on the principal in [30] (colormap: darkness to brightness means 0 to 1 for intensity and −π to π for phase).

by equation (18) are just corresponding to the well-known
Hermite–Gaussian (HG) modes under the Cartesian coordin-
ate representation, with the transverse mode indices of n and
m at x- and y-directions respectively, and the longitudinal
mode index l at z-direction; and corresponding to Laguerre–
Gaussian (LG) modes under the representation of cylindrical
coordinate.

Nevertheless, recent advance of structured light unveiled
that a laser beam can also harness complex patterns out-
doing the transverse symmetry. As such, it should be gen-
erally yielded by the Hamiltonian H=

(
b†xbx+

1
2

)
ℏωx+(

b†yby+
1
2

)
ℏωy+

(
b†zbz+

1
2

)
ℏωz of separable 3D harmonic

oscillator, where ωx, ωy, and ωz are the frequencies of lin-
ear oscillations along x-, y-, and z-axes. The separable 3D
harmonic oscillator is also called as generalized oscillator,
because it can degrade into 3D transversely symmetric har-
monic oscillator when ωx = ωy. Corresponding to an SU(2)
rotation along a fixed axis of the 3D transversely symmetric
harmonic oscillator, the general 3D harmonic oscillator can
be transformed by transversely symmetric harmonic oscillator
via applying SU(2) unitary transformation on ladder operators
of transverse oscillators [28, 29]:

b†xb†y
b†z

=

 e−iθ/2 cos(φ/2) eiθ/2 sin(φ/2) 0
−e−iθ/2 sin(φ/2) eiθ/2 cos(φ/2) 0

0 0 1

a†xa†y
a†z

 .
(19)

Similarly according to the property of ladder oper-
ators, the eigenstates of Hamiltonian H are given
by:

|ψ(θ,φ)
n,m,l ⟩=

(b†x)
n

√
n!

(b†y)
m

√
m!

(b†z )
l

√
l!
|0,0,0⟩, (20)

with eigenfrequency of ωn,m,l = ωT+ωL, where the trans-
verse mode frequency ωT = (n+ 1/2)ωx+(m+ 1/2)ωy and
longitudinal mode frequency ωL = (l+ 1/2)ωz. Eigenstates in
equation (20) are corresponding to the Hermite–Laguerre–
Gaussian (HLG) modes [30, 31] with transverse mode indices
of (n,m) and longitudinal mode index of l under Cartesian
coordinate representation. Of particular note, when φ= 0 or
φ= π, |ψ(θ,φ)

n,m,l ⟩ are reduced into HG modes; when θ = φ=

π/2, LG modes. The evolution of the wavepacket of |ψ(θ,φ)
n,m,l ⟩

versus θ and φ is shown in figure 5. The two angles also refer
to mapping angles on generalized Poincaré sphere (see details
in section 7).

In order to obtain the analytical expression of terms of
equation (20), we exploit the Wigner d-matrix, which is a
unitary matrix in an irreducible representation of the SU(2)
groups [32]. In terms of the Wigner d-matrix, an eigen-
state equation (20) of the Hamiltonia H can be analytic-
ally expressed as a linear combination of a set of eigenstates
equation (18) of the Hamiltonia:

7
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|ψ(θ,φ)
n,m,l ⟩= ei

n+m
2 θ

n+m∑
k=0

eikθd
n+m
2

k− n+m
2 , n−m

2
(φ)|k,n+m− k, l⟩,

(21)
where the elements of Wigner d-matrix are given by:

d
n+m

2

k− n+m
2 , n−m

2

(φ) =
√
k!(n+m− k)!n!m!

min(m,k)∑
υ=max(0,k−n)

× (−1)υ[cos(φ/2)]m+k−2υ[sin(φ/2)]n−k+2υ

υ! (m− υ)! (k− υ)! (n− k+ υ)!
.

(22)

Using equations (21) and(22), we can numerically calculate
the wave-packet of any mode states of HLG mode.

Hereinbefore, the SU(2) matrix was shown as an effective
toolket to describe the transformation for both geometric rays
and wave eigenfunctions. In the next section, more complex
coherent states exploiting SU(2) symmetry will be introduced
to deeper physics of quantum–classical connection and ray-
wave duality of light.

3. Rays and waves: from quantum to classical

In this section, a ray-wave duality model for describing a
general class of geometric beams is reviewed. Following
the the coupled harmonic oscillator model, various HLG
eigenmodes can be represented by a general SU(2) trans-
formation, but there are still a large number of structured
lights uncovered. Hereinafter, increasingly complex geomet-
ric modes with more intriguing properties are demonstrated,
as well-defined superpositions of special sets of eigenstates. In
which, SU(2) symmetry still play a important role in the gen-
eration of various complex quantum coherent state, for repres-
enting more intriguing structured light beams with quantum–
classical coupled properties.

3.1. Schrödinger coherent state

A coherent state is a specific quantum state whose beha-
vior most closely resembles the classical state, where the
quantum probability wave-packet can be coupled with clas-
sical movement, which is particularly adapted for study-
ing the quantum-to-classical transition [33–35]. According
to the definition of coherent state of Schrödinger’s ori-
ginal motivation, i.e. Schrödinger coherent state [36, 37],
the coherent state under coordinate representation is given
by:

|α⟩= e−α∗α/2
∞∑
n=0

αn√
n!

|n⟩e−iEnt/ℏ. (23)

Substituting equations (15) and (16) into equation (23)
and applying the generating function of Hermite
polynomials, exp(2xt− t2) =

∑∞
n=0Hn(x)tn/n!, we

get:

Figure 6. Schrödinger coherent state. (a) Probability wave-packet
of eigenstate of 1D linear oscillator (n = 20). (b) Trajectory of the
classical movement of 1D linear oscillator and (c) the probability
wave-packet of coherent state (α= 1, ω= 1, δ= 0).

⟨ξ|α⟩= e−
|α|2

2

∞∑
n=0

(
|α|eiδ

)n
√
n!

Hn (ξ)√√
π2nn!

e−
ξ2

2 e−i(n+ 1
2 )ωt

=
1√√
π
e−

|α|2+ξ2

2 e−
iωt
2 e−

|α|2e−i2(ωt−δ)

2 +
√

2|α|e−i(ωt−δ)ξ,

(24)

where δ is the argument of α. Then, the probability wave-
packet of Schrödinger coherent state can be derived by:

⟨α|α⟩= 1√
π
e−ξ2−2|α|2cos2(ωt−δ)+2

√
2|α|ξ cos(ωt−δ)

=
1√
π
e−[ξ−

√
2|α|cos(ωt−δ)]

2

. (25)

As shown in figure 6, the peak of wave-packet of is along
the trajectory of corresponding classical oscillator, i.e. ξ =√
2 |α|cos(ωt− δ), manifesting the quantum–classical coup-

ling. Theoretically, coherent states are always minimize
quantum uncertainty, the squeezed states of wave packet with
squeezed uncertainty is not included in the discussion of this
tutorial.

3.2. SU(2) coherent state

In quantum optics, the Hamiltonian for the 3D linear har-
monic oscillator is given by equation (17). Here,H0 is used to
represent the Hamiltonian of conventional transversely sym-
metric harmonic oscillator, and H to represent the general-
ized Hamiltonian after SU(2) transformation. The generalized
Hamiltonian of the SU(2)-coupled oscillator can be expanded
as:

H=H0 +
∑
j

ΩjJj, (26)

8
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Figure 7. SU(2) coherent state. (a) Probability wave-packet of
eigenstate of 1D linear oscillator (n = 20). (b) Trajectory of the
classical movement of 1D linear oscillator and (c) the probability
wave-packet of coherent state (α= 1, ω= 1, δ= 0).

where H0 = (axa†x + aya†y + 1)ℏω0 is the Hamiltonian for the
2D isotropic oscillator deciding the transverse wave-packet
on (x, y) plane. Figure 7 shows examples for the eigenstate
wave-packet, classical trajectory, and coherent wave-packet in
this case. The coupling parameters Ωj are assumed to be real
constants, and the operators under Schwinger representation
reveal the SU(2)-Lie group accommodating two linear oscil-
lators and an angular momentum oscillator [13, 38]:

Jx =
1
2

(
a†xay+ a†yax

)
Jy =

−i
2

(
a†xay− a†yax

)
Jz =

1
2

(
a†xax− a†yay

) . (27)

Operators Jj satisfy the SU(2)-Lie commutator algebra
[Ji,Jj] = iεi,j,kJk ({i, j,k}= {1,2,3}= {x,y,z}), where the
Levi-Civita tensor εi,j,k is equal to +1 and −1 for even and
odd permutations of its indices, respectively, and zero other-
wise. The Hamiltonian in equation (26) can not only represent
a host of entanglement mechanisms [39, 40] but also be associ-
ated with astigmatism and aberration in wave optics, relevant
in high-order laser pattern formations [28, 41]. For the statist-
ics of quantum number at transverse oscillation, SU(2) coher-
ent state is defined as [18, 19]:

|α⟩= exp(αJ+ −α∗J−) |j,−j⟩ , (28)

where J± = Jx± iJy are the ladder (creation and annihilation)
operators of angular momentum, and j is a certain integer or
half-integer that represents angular-momentum quantum num-
ber. Using the disentangling theorem for angular-momentum
operators, we can rewrite equation (28) in the following equi-
valent form [13]:

|τ⟩=
(
1+ |τ |2

)−j
exp(τJ+) |j,−j⟩ , (29)

where τ is an arbitrary complex number. Hereinafter, we
express equation (29) into eigenstates representation via unit-
ary transformation. According to Taylor expansion, the expo-
nential operator in equation (29) can be expanded as:

exp(τJ+) =
∞∑
n=0

(τJ+)
n

n!
. (30)

Substitute equation (30) into equation (29) and apply unitary
transformation into angular-momentum representation:

|τ⟩=
(
1+ |τ |2

)−j
j∑

k=−j

⟨j,k|exp(τJ+) |j,−j⟩ | j,k⟩

=
(
1+ |τ |2

)−j
j∑

k=−j

⟨j,k|
∞∑
n=0

(τJ+)
n

n!
|j,−j⟩ | j,k⟩

=
(
1+ |τ |2

)−j
j∑

k=−j

⟨j,k| (τJ+)
j+k

( j+ k)!
| j,−j⟩ | j,k⟩. (31)

According to the property of ladder operators:

J± | j,k⟩=
√
j( j+ 1)− k(k± 1)ℏ | j,k± 1⟩ . (32)

Equation (31) can be rewritten as:

|τ⟩=

j∑
k=−j

s−1∏
i=−j

√
j( j+1)−i(i+1)

( j+k)! τ j+k | j,k⟩(
1+ |τ |2

)j
=
(
1+ |τ |2

)−j
j∑

k=−j

(
2j
j+ k

)1/2

τ j+k | j,k⟩, (33)

After substituting N= 2j and K= j+ k (N is a constant
integer, K is integer yielded 0⩽ K⩽ N), we get:

|τ⟩=
(
1+ |τ |2

)−N/2 N∑
K=0

(
N
K

)1/2

τK |K,N⟩. (34)

where the states |K,N⟩ mean the states with K bosons in the
first mode and (N−K) bosons in the second mode, some-
times also noted as |K,N−K⟩. In another usually used form,
τ is rewritten as the normalized argument form τ = eiϕ, and
equation (34) can be rewritten as the phase state:

|ϕ⟩= 1
2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ |K,N⟩, (35)

where the eigenstates |K,N⟩ should fulfill the orthogon-
ality ⟨K,N|L,N⟩= δKL, where δi,j is the Kronecker delta,
and the completeness a†xax |K,N⟩= K |K,N⟩, a†yay |K,N⟩=

(N−K) |K,N⟩,
N∑

K=0
|K,N⟩⟨K,N|= 1.

9
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Figure 8. Frequency-degenerate spectrum and the ray representation in laser cavity. The frequency-degenerate spectrum
( fn,m,l− fn0,m0,l0)/∆fL of the ideal spherical cavity as a function of the normalized cavity length L/R for the range of |n− n0|⩽ 12,
|m−m0|⩽ 12, and |l− l0|⩽ 12, where some degeneracy states |Ω= P/Q⟩ are marked at corresponding positions with corresponding
schematics of ray representation of SU(2) oscillation.

3.3. Frequency-degenerate state

In order to realize SU(2) coherent state in a laser cavity, the
eigenstates should be the eigenmodes of the resonator and ful-
fil the coherent-superposition condition of SU(2) wave-packet
[35, 42]. Without loss of generality, we consider a plano-
concave cavity with the length of L, formed by a gain medium,
a concave spherical mirror with the radius of curvature of R
as the output coupler, and a plane mirror high-reflective for
laser. The eigenmodes ψn,m,l (n,m are the indices of transverse
mode and l is the index of longitudinal mode) and the eigenval-
ues kn,m,l for a laser cavity can be solved from the Helmholtz
equation: (

∇2+k2n,m,l
)
ψn,m,l (x,y,z) = 0. (36)

Under the paraxial approximation, the eigenmodes that are
separable in Cartesian coordinate can be expressed as HG
modes:

ψ
(HG)
n,m,l (x,y,z) =

1√
2m+n−1πm!n!

1
w(z)

e
− x2+y2

w2(z)

×Hn

[√
2x

w(z)

]
Hm

[√
2y

w(z)

]
× eikn,m,l̃z−i(m+n+1)ϑ(z), (37)

where ϑ(z) = tan−1(z/zR) is the Gouy phase, Hn(·) repres-
ents the Hermite polynomials of nth order, kn,m,l = 2πfn,m,l/c,
fn,m,l is the eigenmode frequency, c is the speed of light,
z̃= z+(x2 + y2)z/[2(z2 + z2R)], w(z) = w0

√
1+(z/zR)2,

w0 =
√
(λzR)/π is the beam radius parameter, and λ is the

emission wavelength. The eigenmode frequency of resonator
is given by [42, 43]:

fn,m,l = l∆fL+(n+
1
2
)∆fx+(m+

1
2
)∆fy

= [l+(n+m+ 1)Ω]∆fL, (38)

where the longitudinal mode spacing ∆fL = c/(2L), here
the minor disparity between the physical length and the
geometric length is neglected. Without consideration of
symmetry breaking, the transverse mode spacing should
be ∆fx =∆fy =∆fT =∆fLϑ(L)/π. The mode-spacing ratio
Ω= P/Q= (1/π)cos−1(

√
1−L/R) reveals the degeneracy,

which is varied in the range between 0 and 1/2 by chan-
ging the cavity length as 0< L< R. The frequency differ-
ence in the neighborhood of the indices (n0,m0, l0) is given by
( fn,m,l− fn0,m0,l0)/∆fL, which can illustrate the various degen-
eracy states distribution as topological joints in the fractal
spectrum [43]. Figure 8 depicts a diagram of the frequency-
degenerate spectrum, where some degeneracy states |Ω=
P/Q⟩ are marked at corresponding positions. In order to ful-
fill the condition of coherent superposition, the frequency of
every decomposed eigenmodes should be a constant, which
requires a coupling effect between transverse and longitudinal
modes. If the transverse mode at x-axis and longitudinal mode
are coupled, i.e. n+m+ l= N, we can choose a frequency-
degenerate family of HG modes as the complete set of ortho-
gonal bases:

⟨x,y,z|K,N⟩= ψ
(HG)
n0+QK,m0,l0−PK (x,y,z) , (39)

where n0, m0, and l0 are constants with n0 +m0 + l0 = N, thus
the constant frequency should be:

fn,m,l = [l0 −PK+(n0 +QK+m0 + 1)Ω]∆fL

= [l0 +(n0 +m0 + 1)Ω]∆fL

= fn0,m0,l0 , (40)

which meets the required form of transverse mode locking
[44–47], and the corresponding laser wave-packet of SU(2)
coherent state is given by:

10
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ΨN,Ω,ϕ
n0,m0

(x,y,z) =
1

2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ

×ψ
(HG)
n0+QK,m0,l0−PK (x,y,z) , (41)

sharing the same form of equation (35). Here we have already
proved that frequency-degenerate state of laser cavity fulfills
the condition for generating a laser wave-packet as SU(2)
coherent state.

We can also use Laguerre–Gaussian (LG)modes being sep-
arable in circular coordinate as the eigenmodes to generate
SU(2) vortex beams:

ΦN,Ω,ϕ
n0,m0

(x,y,z) =
1

2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ

×φ
(LG)
n0+QK,m0,l0−PK (x,y,z) , (42)

where the LG modes are given by:

φ
(LG)
n,m,l (r,φ,z) =

√
2ρ!

π (ρ+ |ℓ|)!
1

w(z)

[√
2r

w(z)

]|ℓ|
e
− r2

w2(z) eiℓφ

×L|ℓ|ρ

[
2r2

w2 (z)

]
eikn,m,l̃z−i(m+n+1)ϑ(z), (43)

where ρ=min(m,n), ℓ=±(m− n), and Lℓρ (·) represents the
associated Laguerre polynomial with radial and azimuthal
indices of ρ and ℓ. Form0 = 0, figure 10 shows the 3D simula-
tion of SU(2) vortex beams with positive, negative, and super-
posed OAMs, and the inserts show the topological phases of
the SU(2) vortex beams. For m0 ⩾ 1, the SU(2) beams mani-
fest the multi-LG vortex beams [48, 49], where the main OAM
at the center is decided by the index n0 and the sub-OAM car-
ried by sub-LG beams is decided by the index m0. To consti-
tute a completed oscillation in cavity, the positive and neg-
ative oscillations should be superposed together forming a
standing wave mode, the phase state expression of which is
|ϕ⟩+ |2π−ϕ⟩ [35]. Figure 9 shows the ray presentation (a)
intensity wave-packet (b)–(d) of intracavity geometric modes
versus the coherent state phase. From larger n0 to smaller one,
the wave-packets perform from ray-like cases to wave-like
cases. Figure 10 shows the transverse patterns of planar and
vortex geometric modes and the topological phase of vortex
geometric modes at SU(2) coherent state |Ω= 1/4⟩|ϕ= π⟩
with parameters as z= zR, N= 20, and various n0 and m0.
Some cases performmulti-spot shapewhile somewave fringes
unravel the interference among lights on the sub-orbits, which
is manifested by the property of ray-wave duality.

There are also other ways to realize frequency degeneracy
in order to fulfill the coherent superposition of SU(2) wave-
packet. For instance:

⟨x,y,z|K,N⟩= ψ
(HG)
n0+pK,m0+qK,l0−PK (x,y,z) , (44)

where the integers p and q yield p+ q= κQ (κ= 1 selected
here, the case of κ ̸= 1 will be discussed in section 6.1 since it
is caused by astigmatism), thus the eigenmodes also constitute
a frequency-degenerate family with frequency fn0,m0,l0 . Using

Figure 9. Phase states of SU(2) oscillation with ray-wave duality.
Intracavity planar SU(2) geometric mode |ϕ⟩+ |2π−ϕ⟩ oscillating
at (x, z)-plane at degenerate state |Ω= 1/4⟩: (a) the ray
representations and (b)–(d) intensity wave-packets with n0 from
larger to smaller (n0 = 30,20,10) for various ϕ. The patterns of
wave representations from (b) to (d) change from the case of more
ray-like properties to that of more wave-like properties.

the more general equation (44) as the bases of SU(2) coher-
ent state, we can obtain more exotic structured light beams
[28, 43].

3.4. Ray-wave duality

Ray-wave duality, as its name implies, describes the effect
that a wavepacket behaves matching a prescribed ray famil-
ies [50, 51]. In this section, it is demonstrated that the ray-
wave duality is also the salient property of the geometric mode
in degenerate cavity. When an optical resonator is operat-
ing close to a frequency-degenerate state, its laser mode and
intensity would undergo dramatic changes with the principle
that laser modes have a preference to be localized on the
periodic ray trajectories under selective gain control, which
was called the ray-wave duality or ray-wave correspondence
[35, 42, 52, 53]. Like the Schrödinger coherent state coupled
with the trajectory of classical oscillator, the SU(2) coherent
state can also be coupledwith the periodic oscillating trajector-
ies in frequency-degenerate cavity, interpreting the ray-wave
duality mode.

Based on geometrical optics, the ABCD matrix is used to
characterize the propagation property of the optical ray traject-
ories inside a stable plano-concave cavity [54–56]. Since the
cavity length satisfies L/R= sin2(Ωπ) under degeneracy state
|Ω= P/Q⟩, the correspondingABCDmatrix of the frequency-
degenerate cavity is given by:

A=

[
1− 2L

R 2L
(
1− L

R

)
− 2

R 1− 2L
R

]
=

[
cos(2Ωπ) R

2 sin
2 (2Ωπ)

− 2
R cos(2Ωπ)

]
.

(45)
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Figure 10. Planar and vortex SU(2) geometric modes. The theoretical intensity transverse patterns of planar and vortex geometric modes
and the topological phase of vortex geometric modes at SU(2) coherent state |Ω= 1/4⟩|ϕ= π⟩ with parameters as z= zR, M= 20, and
various n0 and m0.

After n times of round trips in the frequency-degenerate cavity,
the matrix is derived as:

An =

[
cos(2nΩπ) R

2 sin
2 (2nΩπ)

− 2
R

sin(2nΩπ)
sin(2Ωπ) cos(2nΩπ)

]
. (46)

Because QΩ= P is an integer, we have cos(2QΩπ) = 1,
sin(2QΩπ) = 0, and Qth power of A is an unit matrix:

AQ =

[
cos(2QΩπ) R

2 sin
2 (2QΩπ)

− 2
R

sin(2QΩπ)
sin(2Ωπ) cos(2QΩπ)

]
= I. (47)

Equation (47) reveals that an optical ray oscillating at an arbit-
rary position within the cavity would coincide exactly with
the initial state after Q times of round trips. Therefore, it is
proved that the lasing modes have a preference to be local-
ized on the periodic ray trajectories in a frequency-degenerate
cavity. The schematics of classical oscillating trajectories at
various states |Ω= P/Q⟩ are shown in figure 8. Manifested
by the ray matrix, the parametric equation for each periodic
orbit in SU(2) oscillation can be derived [57]. For the planar
geometric modes, the orbits can be derived as:

x±s (z) =
√
Nw0 [cos(θs+ϕx)∓ (z/zR)sin(θs+ϕx)]

=
√
Nw(z)cos [θs+ϕx±ϑ(z)] , (48)

where θs = (P/Q)2πs,s= 0,1,2, . . . ,Q− 1 is the running
index for the different rays, ϕx is the phase factor related to the
initial position and direction, and+ and− in the symbol of±
indicate the backward and forward rays, respectively. Defin-
ing the dimensionless variable x̃=

√
2x/w(z), the expression

for the ray equation can be expressed as x̃(z) = Re[
√
2u±s (z)]

with:

u±s (z) =
√
Ne−i[θs+ϕx±ϑ(z)], (49)

when ϕx = nπ/Q (n ∈ Z), the forward and backward rays
would be coincidently overlapped, and the bouncing orbits
with positive and negative transverse directions share the same

location. In this case, the trajectories in frequency-degenerate
cavities at various degenerate states |Ω= P/Q⟩ are depicted
in figure 8. For the general spatial geometric mode, the ray
equations for the 3D periodic orbits can be written as:{

u±s (z) =
√
Nxe

−i[θs+ϕx±ϑ(z)]

ν±s (z) =
√
Nye

−i[θs+ϕy±ϑ(z)]
, (50)

where the dimensionless variable in the y-direction is simil-
arly defined as ỹ=

√
2y/w(z) with the ray equation ỹ(z) =

Re[
√
2v±s (z)]. Here + and − in the symbol of ± indicate the

positive and negative OAM states |±ℓ⟩, they together consti-
tute a completed oscillation in cavity. For constituting a com-
pleted oscillation with both OAM states in a cavity, the phase
factors yield |ϕx−ϕy|= π/2.

The above is the ray representation of geometric modes in
frequency-degenerate cavity. Hereinafter, we derive the wave
representation coupled with the geometric modes and prove
that it fulfills the SU(2) coherent state. In terms of Schrödinger
coherent state, the Gaussian wave packet with the central peak
moving along the path x= Re(

√
2u) =

√
2Ncos(ωt+φ0) can

be derived as [57]:

π−1/4e−x2/2F(x,u) =
∞∑
n=0

anψn(x)e
−in(ωt+φ0), (51)

where coefficients an = Nn/2e−N/2/
√
n! =

√
P(n,N),

where P(n,N) is the Poisson distribution, F(x,u) =

e−(u
2+|u|2−2

√
2ux)/2 is the wavefunction of Schrödinger coher-

ent state and ψn(x) = (2nn!)−1/2
π−1/4Hn(x)e−x2/2 is the HG

function. The wave representation of a Gaussian wave packet
moving along the sth ray, equation (50), in a spatial geometric
mode can be given by [57]:

Φ(r,u±s ,ν
±
s ) = G(r)F(x̃,u±s )F(ỹ,ν

±
s ). (52)

where G(r) = π−1/2e−(̃x2+ỹ2)(1+ĩz)/2e∓iϑ(̃z) represents the
fundamental mode Gaussian beam and r= (x,y,z) the
Cartesian coordinates. In terms of equation (52), the resonant
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mode for the forward and backward components of a complete
period is given by [57]:

Ψ±
Nx,Ny(r) =

1
Q

Q−1∑
s=0

Φ
(
r,u±s ,ν

±
s

)
ei(Nx+Ny)θs , (53)

where the phase term ei(Nx+Ny)θs is associated with the trans-
verse frequency. For Nx = 0 or Ny = 0, equation (53) rep-
resents the planar geometric modes with ray structure on
(x, z) or (y, z) plane; for Nx = Ny ̸= 0, circular vortex geomet-
ric modes; for Nx ̸= Ny and Nx and Ny are nonzero, ellipt-
ical vortex geometric modes. In the above description, Nx or
Ny should be large enough to stimulate more ray-like prop-
erties, otherwise the pattern will be nearly a certain eigen-
mode. Hereinafter, we demonstrate the wave representation
fulfills the form of SU(2) coherent state. Using planar traject-
ory (Ny = 0) for convenience, it can be obtained that ν±s =
0 and F(ỹ,0) = 1, and the planar geometric mode is given
by:

Ψ±
Nx(r) =

1
Q

Q−1∑
s=0

G(r)F
(
x̃,u±s

)
eiNθs , (54)

Substituting equation (51) into equation (54) and ignoring the
constant coefficient, we get:

Ψ±
Nx(r)∝

Q−1∑
s=0

G(r)e
x̃2

2

∞∑
n=0

anψn(x̃)e
−in[θs+ϕx±ϑ(z)]eiNθs

=

Q−1∑
s=0

∞∑
n=0

anψn(x̃)e
x̃2

2 G(r)e∓inϑ(z)−in(θs+ϕx)+iNθs

∝
Q−1∑
s=0

∞∑
n=0

anψ
(HG)
n,0,l (x,y,±z)e

−inϕxei(N−n)θs

=
∞∑
n=0

anψ
(HG)
n,0,l (x,y,±z)e

−inϕx

Q−1∑
s=0

ei(N−n)θs , (55)

where the indices of HG modes should also fulfill the
frequency-degenerate condition. Setting n ′ = N− n, the last
term in the external summation notation of equation (55) can
be written as:

Q−1∑
s=0

ein
′θs =

Q−1∑
s=0

ein
′ P
Q 2πs. (56)

When n ′ = KQ (K ∈ Z), ein
′ P
Q 2πs = ei2πKPs = 1 and

equation (56) is equal to a constant Q; when n ′ ̸= KQ,
equation (56) is always a sum of the complex numbers
uniformly distributed on the unit circle of the complex
plane, thus it should be zero. And then, we use the Dirac
notation to represent the spatial mode, and note the set
of frequency-degenerate HG modes with number of M as
|K,M⟩= |ψ(HG)

n0+KQ,0,l0−KP⟩, equation (55) can thus be simpli-
fied as:

∣∣Ψ±
Nx(r)

〉
∝

N∑
K=0

an0+KQe
−iKQϕx

∣∣∣ψ(HG)
n0+KQ,0,l0−KP

〉
=

N∑
K=0

√
P(n0 +KQ,N)e−iKQϕx |K,N⟩

∝
N∑

K=0

√
B(K;N,

1
2
)e−iKQϕx |K,N⟩

=
1

2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ|K,N⟩, (57)

where the coherent state phase ϕ= Qϕx, and the Pois-
son distribution P(n0 +KQ,N) is approximated by Binomial
distribution B(K;N,1/2) when N= 4Q2n0 is large enough,

where B(k;n,p) =

(
n
k

)
pk(1− p)n−k is Binomial distribution,

according to the central-limit theorem. Then the laser mode
equation (57) shares the same form of SU(2) coherent state as
equation (35).

Therefore, the SU(2) wave-packet in frequency-degenerate
cavity has the property of ray-wave duality, the laser mode can
be not only characterized by the wave function representation
but also coupled with classical oscillating trajectory given by
ray representation. The preponderance of wave-like or ray-like
property can be actually controlled by the parameters in SU(2)
wave-packet. It is also worth to note that the ray-wave duality
effect discussed above originates from laser cavity optomech-
anism, it is also available to study the ray-wave duality in
general freespace electromagnetic fields [50, 58, 59], which
should have more flexible applicability beyond the limit of
laser cavity condition.

4. Higher-order geometric patterns of light

Based on the theoretical bases introduced in last section, the
structured light wave-packet of SU(2) coherent state can be
written as the ket formation:

|ψN,P,p,qn,m,l ⟩= 1
2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ|ψn+pK,m+qK,l−PK⟩, (58)

As a salient property of ray-wave duality, the probability wave
packet is coupled with the classical movement. Therefore, the
wave-packet of the SU(2) coherent state should be located on
the corresponding SU(2) geometric trajectory. The trajectory
of classical movement of the SU(2) coupled oscillator is yiel-
ded by [28]:xbyb

zb

=

 e−iθ/2 cos(φ/2) eiθ/2 sin(φ/2) 0
−e−iθ/2 sin(φ/2) eiθ/2 cos(φ/2) 0

0 0 1

xaya
za

 ,
(59)

where (xa,ya,za) represents the 3D classical trajectory of the
oscillator corresponding to HamiltonianH0. This SU(2) trans-
formation of classical trajectory equation (59) is coupled with
that of operator transformation equation (19), and the coherent
state wave-packet of Hamiltonian H should be located along
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Figure 11. The first column shows the Lissajous-to-trochoidal parametric surface modes, the second column multi-axis HLG modes, the
third column planar-to-vortex multi-path geometric modes, and the fourth column eigenstate modes. The first to third rows are
corresponding to three different SU(2) angular parameters of (φ,θ) = (π/2,π/2), (π/2,π/4), and (π/2,0).

the trajectory of (xb,yb,zb), namely the property of quantum–
classical connection. The analytical expression of (xa,ya,za)
can be solved by [60, 61]:

x±a,k =
√
Nxw(z)cos

[
2πk

ωx
ωz

+ϕx±ϑ(z)

]
y±a,k =

√
Nyw(z)cos

[
2πk

ωy
ωz

+ϕy±ϑ(z)

]
z±a,k = z

, (60)

where the integer k= 0,1,2, . . . is the running index for the
cluster of rays, (Nx,Ny) and (ϕx,ϕy) are the intensities and ini-
tial phases of oscillator components at x- and y-axis, w(z) =
w0

√
1+(z/zR) is Gaussian beamwaist parameter, and ϑ(z) =

tan−1(z/zR) is Gouy phase where zR is Rayleigh range. Nx

and Ny are positively correlated with n and m, and ϕx−ϕy is
related to ϕ in coherent state.

Hereinafter we demonstrate how a higher-order geometric
mode is reduced into a HLG eigenmode. The relationship is

demonstrated in the first row of figure 11. The selected modes
on the poles are shown in the second row of figure 11, that on
the interposed regions between the poles and the equator the
third row of figure 11, and that on the equators the fourth row
of figure 11. Using SU(2) transformation, the modes together
with the corresponding classical trajectories in the first row
can be transformed into that in the second and third row, vice
versa.

4.1. Lissajous-to-trochoidal parametric surface mode

For a general case that the ratio of transverse and longitudinal
frequency spacings can be expressed as ω0/ωz = P/Q where
(P,Q) is a pair of coprime integers, the ratios of ωx/ωz and
ωy/ωz are two rational numbers that can be expressed by:

ωx
ωz

=
ω0 −∆ωx

ωz
=
ω0

ωz

(
1− q∆ω

ω0

)
=
P
Q

(
1− qM1

M2

)
,

(61)
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ωy
ωz

=
ω0 +∆ωy

ωz
=
ω0

ωz

(
1+

p∆ω
ω0

)
=
P
Q

(
1+

pM1

M2

)
,

(62)

where (M1,M2) is a pair of coprime integers satisfying
∆ω/ω0 =M1/M2, the classical trajectory equation (60) is
reduced into a ray cluster with limited rays [60, 61]:

x±a,k =
√
Nxw(z)cos

[
2πk

P
Q

(
1− qM1

M2

)
+ϕx±ϑ(z)

]
y±a,k =

√
Nyw(z)cos

[
2πk

P
Q

(
1+

pM1

M2

)
+ϕy±ϑ(z)

]
z±a,k = z

,

(63)

which is a ray cluster with QM2 rays, where the meaning-
ful range of k should be k= 0,1,2, . . . ,QM2 − 1, because Q
is the overlapping period for the running of k, P= 1 selec-
ted commonly. The representation for SU(2) geometric beams
needs to be discussed in frame of Schrödinger coherent state,
which could be referred in [57]. The trajectory (x±a,k,y

±
a,k,z

±
a,k)

represents a ray cluster including QM2 rays uniformly dis-
tributed on a Lissajous parametric surface, which is also a
kind of ruled surface. At a certain transverse plane, the trans-
verse pattern of the ray cluster illustrates multiple dots uni-
formly distributed on a certain Lissajous curve. The corres-
ponding general ray cluster (x±b,k,y

±
b,k,z

±
b,k) after SU(2) trans-

formation includes the QM2 rays uniformly distributed on a
trochoidal parametric surface. At a certain transverse plane,
the transverse pattern illustrates the structure of multiple dots
distributed on a certain trochoid (at the poles of PS), or a Lis-
sajous curve (at the equator of PS), or the topological curve
interposed between Lissajous curve and trochoid. The corres-
ponding coherent state equation (58) generally harnesses the
wave-packet located on the 3D Lissajous-to-trochoidal para-
metric surface (trochoidal parametric surface at the poles of
PS and Lissajous parametric surface at the equator of PS). The
SU(2) PS and some represented Lissajous-to-trochoidal para-
metric surface modes with corresponding classical trajectories
are shown in the first column of figure 11.

4.2. Multi-axis Hermite–Laguerre–Gaussian mode

For a special case of ∆ωx = 0, i.e. q= 0, we can get ωx/ωz =
ω0/ωz = P/Q, also get pω0 + sωz = 0 based on the frequency-
degenerate condition, then it can be deduced that p=Q, q= 0,
and s=−P here, thus ωy/ωz = P/Q(1+QM1/M2) and the
classical trajectory equation (63) is reduced into:

x±a,k =
√
Nxw(z)cos

[
2πk

P
Q

+ϕx±ϑ(z)

]
y±a,k =

√
Nyw(z)cos

[
2πk

P
Q

(
1+

QM1

M2

)
+ϕy±ϑ(z)

]
z±a,k = z

,

(64)

which is a spatial ray cluster with QM2 rays, but the dots
distribution is no longer along a Lissajous curve but reduced

to compose multiple linear oscillation orbits in a certain
transverse plane. The general SU(2) trajectory (x±b,k,y

±
b,k,z

±
b,k)

shows multip-axis elliptical orbits distributed on subset uni-
parted hyperboloid ruled surfaces, where the axes are located
on a main uniparted hyperboloid ruled surface, composing a
SU(2) symmetric structure. The corresponding coherent state
wave-packet equation (58) is reduced into:

|ψN,P,Qn,m,l ⟩=
1

2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ|ψn+QK,m,l−PK⟩, (65)

which refers to multi-axis vortex beams, also named as multi-
axis HLG modes. The subset multiple HLG modes propagat-
ing along the Q axes uniformly distributed on the main uni-
parted hyperboloid ruled surface. Specially, the topological
charge of a HLG sub-mode vortex is equal to m in the multi-
axis HLGmode, the center topological charge of the main vor-
tex is equal to n, and that for the partial phase singularities
is QN. The SU(2) PS and some represented multi-axis HLG
modes with corresponding classical trajectories are shown in
the second column of figure 11.

4.3. Planar-to-vortex multi-path geometric mode

For an even special case of ∆ωx = 0 and ωy = 0, naturally
ω0 = ωx, Ny = m= q=∆ω =M1 = 0, and ωx/ωz = ω0/ωz =
P/Q, the classical trajectory equation (64) is further reduced
as: 

x±a,k =
√
Nxw(z)cos

[
2πk

P
Q

+ϕx±ϑ(z)

]
y±a,k = 0

z±a,k = z

, (66)

where the meaningful range of k should be k= 0,1,2, . . . ,Q−
1, which is cluster of Q rays in a planar hyperbola region. The
corresponding general trajectory (x±b,k,y

±
b,k,z

±
b,k) after SU(2)

transformation is actually the Q rays uniformly distributed on
a unparted hyperboloid ruled surface. At a certain transverse
plane, the pattern illustrates multiple dots uniformly distrib-
uted on a ellipse orbit. The corresponding coherent state wave-
packet is reduced from equation (65) into:

|ψN,P,Qn,0,l ⟩= 1
2N/2

N∑
K=0

(
N
K

)1/2

eiKϕ|ψn+QK,0,l−PK⟩, (67)

which harnesses a multi-path geometric mode with theQ paths
uniformly distributed on the main uniparted hyperboloid ruled
surface, which can be obtained by replacing the sub-HLG
beams in the multi-axis HLGmode into fundamental Gaussian
beams. With the SU(2) transformation, the planar multi-path
geometric mode is transformed into vortex multi-path geomet-
ric mode. Specially, the topological charge of the center vortex
is equal to n, and that for the partial phase singularities is QN.
The SU(2) PS and some represented planar-to-vortex multi-
path geometric modes with corresponding classical trajector-
ies are shown in the third column of figure 11.
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4.4. From coherent state to eigenstate

For a even further special case when Q→∞, the ratio of
ω0/ωz is approaching a irrational number. There would be
infinity classical rays in trajectory equation (66) covering the
whole inside region of a hyperbola, and the corresponding
coherent state is reduced into an eigenstate HG mode. After
the SU(2) transformation, the rays in trajectory (x±b,k,y

±
b,k,z

±
b,k)

would cover the whole surface of an uniparted hyperboloid,
and the corresponding coherent state is reduced into an eigen-
state HLG or LG vortex mode (θ = φ=±π/2). This process
subtly reveals the nature of photons traveling along straight
lines in the formation of various basic vortex modes. The
OAM PS and some represented HLG modes with correspond-
ing classical trajectories are shown in the fourth column of
figure 11. It is also a condition of N= 0 that the coherent state
is naturally reduced into an eigenstate, where there is only one
component state in the coherent state wave-packet.

5. Hybrid-order and vectorial structured light

In contrast to conventional beams, a geometric mode opens
new DoFs to describe its structures taking advantage of the
ray-wave duality, such as ray numbers, frequency-degenerate
ratios, and coherent phase. In this section, the further gener-
alized models for geometric light are discussed, opening even
more DoFs to tailor geometry of light.

5.1. Hybrid-order SU(2) geometric mode

Any SU(2) geometric beam discussed in prior section is
coupled with a periodic ray trajectory. Is it possible to exist
generalized cases of geometric modes that can be coupled with
multiple ray trajectories? Recent works demonstrate that two
and more SU(2) geometric mode sharing a coincident projec-
tion at the highly reflective mirror plane can coexist in a single
cavity [62]. Such modes, namely hybrid-order SU(2) geomet-
ric modes, can be generated by forcing the laser to oscillate
on two different trajectories with orthogonal transverse orders
and coherent-state phases simultaneously, each one has a dif-
ferent transverse ordersN i (i= 1,2) in equation (41). A hybrid
SU(2) geometric mode with two components can be described
as:

|ψ⟩ = |ψ1⟩+ |ψ2⟩ = |Ω⟩ |N1⟩ |ϕ⟩+ |Ω⟩ |N2⟩ |ϕ+π⟩, (68)

where |Ω⟩ represents the degenerate state, ϕ is coherent-state
phase and |ψ⟩ represents phase state, the trajectory shape is
determined by Ω and ϕ, the trajectory scale is determined by
transverse orders N i, the lager N i corresponds to the outer tra-
jectory and the smaller one corresponds to the inner trajectory,
|Ω⟩ |Ni⟩ |ϕ⟩ represents a SU(2) geometric mode with paramet-
ers (Ω,Ni,ϕ determined by equation (58), such compact nota-
tions reveals multi-DoFs entanglement. To fulfill the coincid-
ent project condition, transverse orders N, which is directly
proportional to pump off-axis displacement, and satisfies a
mathematical relation to ensure at least one shared coincident
projection points as [62]:

η =
N1

N2
=

cos2(2π/Q)
cos2(π/Q)

. (69)

When solving this equation, we need to first consider the value
of integer Q. The lowest possible Q is 5, because no shared
coincident projection can be found forQ⩽ 4. ForQ= 6, there
is also a simple solution, that is depicted in figures 12(a) and
(b). For higher values of Q, things become complex, we can
divide the possible situation into 4 cases. Figure 13 shows
the trajectory combination cases for Q= 7, Q= 8, Q= 9, and
Q= 10, respectively. Importantly, in contrast to pure SU(2)
geometric modes, the hybrid geometric mode opens new DoF
to distinguish geometry of light—the combinatorial number
C, which refers to how many cases of available superpositions
of hybrid ray trajectories:

• Q≡ 0(mod4) The number of inflection points is n− 2
for |ϕ= 0⟩ (chiral, non-axisymmetrical) and n for|ϕ= π⟩
(achiral, axisymmetrical), respectively. For half-plane (x>
0), it is n1 − 1 for |ϕ= 0⟩ and n1 for |ϕ= π⟩ so that the com-
binatorial number is C= n1(n1 − 1) .

• Q≡ 1(mod4) The number of inflection points is n for both
|ϕ= 0⟩ and |ϕ= π⟩. For half-plane (x> 0), it is n1 for both
|ϕ= 0⟩ and |ϕ= π⟩ so that the combinatorial number isC=
n12.

• Q≡ 2(mod4) The number of inflection points is n− 1 for
both|ϕ= 0⟩ and |ϕ= π⟩. For half-plane (x> 0), it is n1 for
both |ϕ= 0⟩ and |ϕ= π⟩ so that the combinatorial number
is C= n12.

• Q≡ 3(mod4) The number of inflection points is n for
both|ϕ= 0⟩and |ϕ= π⟩, respectively. For half-plane (x>
0), it is n1 for |ϕ= 0⟩ and n1 + 1 for |ϕ= π⟩ so that the
combinatorial number is C= n1(n1 + 1) .

For a hybrid trajectory with same parameters of Ω, N i, and
ϕ, the geometry can still be diverse with different value of
C. Similar to pure SU(2) geometric modes, the hybrid SU(2)
geometric modes can also be converted into vortex geometric
modes carrying OAM with astigmatic converter outside the
cavity, see example in figures 12(c) and (d). Unlike planar
SU(2) geometric modes, the evolution of phase state|ϕ⟩ for
vortex geometric modes just corresponds to the axial rota-
tion (also the rotation of auxiliary circle) of ϕ/Q according
to SU(2) rotational symmetry. As a result, the two eigenstate
components do not intersect like planar modes. However, on
any lateral propagation plane forms the equilateral star shapes,
where the angle difference between inner and outer shape is
π/Q .

5.2. Hybrid-order SU(2) vector beam

According to the principle of hybrid trajectory in last section,
the general representation of hybrid SU(2) geometric vector
mode can be given by introducing polarization as another DoF:

|ψ⟩= |ψ1⟩+ |ψ2⟩= |Ω⟩|N⟩|ϕ⟩|H⟩+ |Ω⟩|ηN⟩|ϕ+π⟩|V⟩,
(70)

where transverse order states |N⟩ and |ηN⟩ of the two compon-
ents fulfill the condition for sharing a coincident projection of
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Figure 12. Generation of hybrid SU(2) geometric modes. Example of Ω= 1/6 (a) intra-cavity classical trajectory with (b) corresponding
auxiliary circles. (c) Planer mode wave-packet and (d) vertex mode (x−y cross-section) Auxiliary circle describes the parametric function of
the planer trajectory in equation (64).

Figure 13. Complicated hybrid SU(2) geometric modes with multiple trajectory-combination numbers and multi-trajectory superposition.
The solutions are represented in auxiliary circle form.

inflection points, which are also corresponding to the OAM
state |ℓ⟩ and |ηℓ⟩; phase states |ϕ⟩ and |ϕ+π⟩manifest that the
two components have opposite classical trajectories; the hori-
zontal and vertical linear polarized states |H⟩ and |V⟩ can be
replaced by other pairs of orthogonal polarized states. In terms
of the theories of ray-wave duality, the analytical expression
for the hybrid SU(2) VBs can be given by:

Ψ±
Nx,Ny(r) =

1
2Q

[
J1Ψ

±,ϕ
Nx,Ny(r)+ J2Ψ

±,ϕ+π
ηNx,ηNy(r)

]
, (71)

where J1 and J2 are the Jones vectors representing two ortho-
gonal polarizations. ForNx orNy = 0, equation (71) represents
the planar hybrid SU(2) VBs with geometric structure on the
(x, z) or (y, z) plane; for Nx = Ny ̸= 0, the OAM hybrid SU(2)
vector vortex beams; for 0 ̸= Nx ̸= Ny ̸= 0, the general ellipt-
ical hybrid SU(2) vector vortex beams. When an SU(2) vector
beam is controlled into ray-like state with large enoughNx and
Ny without interference among light on sub-orbits, the wave-
function along different orbits are independent for calculating
the intensity:

∥∥∥Ψ±
Nx,Ny(r)

∥∥∥2 = 1
4Q2

[∣∣∣Ψ±,ϕ
Nx,Ny(r)

∣∣∣2 + ∣∣∣Ψ±,ϕ+π
ηNx,ηNy(r)

∣∣∣2] . (72)

where ∥Ψ∥ is the Frobenius norm of vector Ψ.

In contrast to the scalar hybrid-order geometric beams, the
hybrid vector beams can have more interesting vectorial prop-
erties, different intensity patterns can be obtained after projec-
tion to different polarization state, as shown in figures 14(a)
and (b). A scalar hybrid beam always show the star shape
pattern (figure 14(a1)), while a vector hybrid beam can show
both star shape and polygonal shape under different polariz-
ation projections (figure 14(b1)). Moreover, the hybrid-order
scalar beams and vector beams have very different topological
phase. For the scalar hybrid beam, its phase difference of two
orthogonal polarized components shows a multi-singularity
vortex pattern (figure 14(a2)), while the vector hybrid beam
shows the phase distribution of a multi-singularity flower pat-
tern (figure 14(b2)).

5.3. General SU(2) vector beams

Using general digital modulation technique onto geometric
beams, a normal SU(2) geometric beam can be modulated as a
general SU(2) vector beam, where arbitrary amplitude, phase,
and polarization for each orbit can be modulated. By modify-
ing equation (53), a general SU(2) vector beam can be given
by:

Ψ±
Nx,Ny(r) =

Q−1∑
s=0

Ase
iϕsJsΦ

(s)
Nx,Ny (r) , (73)
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Figure 14. Experimental results of Intensity patterns, vectorial properties (left), and theoretical phase distributions (right) of various kinds
of general SU(2) vector beams: (a) (|ℓ1⟩|0⟩+ |ℓ2⟩|π⟩)|V⟩, (b) |ℓ1⟩|0⟩|H⟩+ |ℓ2⟩|π⟩|V⟩, (c) |ℓ1⟩|0⟩|R⟩+ |ℓ2⟩|π⟩|V⟩, and (d)
|ℓ1⟩|0⟩|R⟩+ |ℓ2⟩|π⟩|H⟩.

where we set Φ(s)
Nx,Ny =Φ(r,u±s ,ν

±
s )ei(Nx+Ny)θs for conveni-

ence; As, ϕs, and Js are the amplitude, phase, and polarization
Jones vector of light at the sth orbit.

When an SU(2) vector beam was controlled into ray-like
state with large enough Nx and Ny without interference among
lights on sub-orbits, thewavefunction along different orbits are
independent without interference to each other. Thus, intensity
pattern can be simplified as:

∥∥∥Ψ±
Nx,Ny(r)

∥∥∥2 = Q−1∑
s=0

A2
s

∣∣∣Φ(s)
Nx,Ny (r)

∣∣∣2 , (74)

where ∥Ψ∥ is the Frobenius norm of vectorΨ. Hereinafter, we
derive the expression for the polarization projection states. The
Jones matrix for a linear polarizer with a inclined angle of θP

is JP =
[
cosθP 0

0 sinθP

]
, which can project the light into the

linear polarization state with inclined angle of θP. The SU(2)
geometric vector beam after projection can be given by:

Ψ̃
±
Nx,Ny(r) =

Q−1∑
s=0

Ase
iϕsJPJsΦ

(s)
Nx,Ny (r) . (75)

When Nx and Ny are both large enough, the lights on various
orbits cannot make interference to each other, the intensity pat-
tern can be given by:

∥∥∥Ψ̃±
Nx,Ny(r)

∥∥∥2 = Q−1∑
s=0

A2
s ∥JPJs∥

2
∣∣∣Φ(s)

Nx,Ny (r)
∣∣∣2 . (76)

Figures 14(c) and (d) show the intensity patterns after polar-
ization projection and topological phase distribution of two
general SU(2) vector beams as intermediate states between
pure scalar hybrid beams and maximally nonseparable hybrid
vector beams. Their phase distributions show interesting poly-
gonal shapes but with divide of non-singularity and multi-
singularity regions.

6. Generation of geometric modes of light

In this section, we systematically review the methods to gener-
ate various kinds of SU(2) structured light, including the con-
ventional laser cavity control and the recently advanced digital
holographic shaping methods. In addition, here we not only
describe the technical approaches, but also provide strict the-
oretical background to explainwhy and how the corresponding
approaches can control the on-demand SU(2) structures.

6.1. Laser generation of SU(2) geometric beam

From the theories in above sections, the coupling between
transverse and longitudinal modes plays a crucial role in
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manipulation of SU(2) structures in a laser beam. Thus a dir-
ect way to realize it is using the solid-state laser cavity with
precise geometric control. For exploring the structured light
fulfilling a set of paraxial multi-pass ray paths, the confocal
cavity with special control of frequency-degenerate transverse
and longitudinal modes is endorsed as the effective tool, which
is firstly proposed by Herriott et al for a long history [63].
Such frequency-degenerate resonator scheme was also usually
called as Herriott-type cell or Herriott-type cavity [64–66].
In recent decade, the Herriott-type cavity was used as laser
oscillator with gain control of off-axis pumping to selectively
generate SU(2) geometric beam [35, 42, 67]. In section 3.3,
we have demonstrated that the frequency-degenerate cavity
can fulfill the condition of generating SU(2) wave-packet.
However, it is still a question: how to excite such mode in a
frequency-degenerate cavity? In this section we give a proof
that using off-axis pumping onto the degenerate cavity can
excite the output laser mode as the form of SU(2) wave-packet.

To theoretically prove this, considering the gain distribu-
tion f(x,y,z) in a cavity, the resonant modes of the laser system
pumped by a localized source can be solved from the inhomo-
geneous Helmholtz equation [42]:(

∇2 + k̃2
)
Ψ(x,y,z) = ηcf(x,y,z), (77)

where k̃= k0 + iα, k0 = 2π/λ0 is the given wave number of
the laser with given wavelength λ0, the factor ηc represents
the conversion efficiency for the excitation source, and α is a
small loss parameter including losses from the scattering, the
absorption, and the output coupling. If we set the gain distribu-
tion f(x,y,z) as the off-axis pumping spot distribution, we can
solve the corresponding wave packet expression. And then if
we set the cavity length L in the boundary condition as that of a
frequency-degenerate state, L= LP/Q, we can prove the wave
packet result fulfills the SU(2) coherent state, as the form of
multi-path geometric mode. The process can be expressed as
the following:

Ψ(x,y,z)∝
√
2L2

π3w0Lc

l0+l
′∑

l=l0−l′

n0+n
′∑

n=n0−n′

×
√
P(n,n0)

[(l0 − l)+ (n0 − n)Ω]+ iαL/π
ψ
(HG)
n,m,l (x,y,z)

L=LP/Q−−−−→ 1

2N/2

N∑
K=0

(
N
K

)1/2

ψ
(HG)
n̄0+KQ,0,̄l0−PK

(x,y,z), (78)

We arrange the complete theoretical derivation from
inhomogeneous Helmholtz equation to SU(2) coherent state
in supplementary materials (available online at stacks.iop.org/
JOPT/23/124004/mmedia) in details. In conclusion, the
frequency-degenerate cavity with off-axis pumping can emit
the multi-path geometric laser mode of SU(2) coherent state.

6.2. Laser generation of higher-order SU(2) geometric beam

For generating higher-order SU(2) geometric beams from
a laser, the technique exploits the astigmatism in normal

frequency-degenerate cavity, namely degenerate astigmatic
cavities [69, 70]. This case is for the more general mode
coupling at transverse directions, that ωx ̸= ωy, the transverse
symmetry breaking occurs and more frequency degeneracies
arise, and the effective cavity lengths in x-axis and y-axis
can be expressed as Lx = LP/Q− d/2 and Ly = LP/Q+ d/2,
where d is the small difference between Lx and Ly (d≪ LP/Q),
and result into different transverse mode frequencies at two
orthogonal directions of ωx = (ωz/π)sin

−1(Lx/R) and ωy =
(ωz/π)sin

−1(Ly/R), which correspond to the frequencies of
separable 3D harmonic oscillator in equation (17). The small
difference d between the two equivalent astigmatic cavity
lengths, Lx and Ly, can be realized by applying an anisotropic
crystal in experiment. The pump light spot also needs to be
tuned as larger shape to accommodate higher-order transverse
modes. In order to describe themore detailed frequency degen-
eracy in the cavity of transverse symmetry breaking, we intro-
duce a dimensionless parameter ξ to reveal the fine adjustment
on the cavity length as L= LP/Q+ ξd, where |ξ| ≪ 1, i.e. the
effective cavity lengths are given by [43]:

Lx = LP/Q−
d
2
+ ξd= LP/Q+ d

(
ξ− 1

2

)
, (79)

Ly = LP/Q+
d
2
+ ξd= LP/Q+ d

(
ξ+

1
2

)
. (80)

In this symmetry breaking cavity, the transverse frequencies
near cavity length LP/Q can be derived as:

ωx
ωz

=
1
π
sin−1

(
Lx
R

)
=

1
π
sin−1

(
LP/Q+

(
ξ− 1

2

)
d

R

)

=
1
π
sin−1

(
LP/Q
R

(
1+

(
ξ− 1

2

)
d

LP/Q

))
(81)

ωy
ωz

=
1
π
sin−1

(
Ly
R

)
=

1
π
sin−1

(
LP/Q+

(
ξ+ 1

2

)
d

R

)

=
1
π
sin−1

(
LP/Q
R

(
1+

(
ξ+ 1

2

)
d

LP/Q

))
.

(82)

Applying Taylor expansion of sin−1 [a(1− x)] =
∞∑
n=0

f(n)(0)
n! xn = sin−1 (a)+ a√

1−a2
x+ o

(
x2
)
, we can simplify

the equations (81) and (82) as:

ωx
ωz

=
1
π

sin−1
(
LP/Q
R

)
+

LP/Q
R√

1−
(
LP/Q
R

)2

(
ξ− 1

2

)
d

LP/Q


=
P
Q

+
1
π

 1

Rcos
(
P
Qπ
) (ξ− 1

2

)
d

=
P
Q

+β

(
ξ− 1

2

)
(83)
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ωy
ωz

=
1
π

sin−1
(
LP/Q
R

)
+

LP/Q
R√

1−
(
LP/Q
R

)2

(
ξ+ 1

2

)
d

LP/Q


=
P
Q

+
1
π

 1

Rcos
(
P
Qπ
) (ξ+ 1

2

)
d

=
P
Q

+β

(
ξ+

1
2

)
,

(84)

where β = d/[πRcos(πP/Q)]. An equivalent expressions for
the expressions of transverse frequencies transverse fre-
quencies are ∆ωx/ωz =−β(ξ− 1/2) and ∆ωy/ωz = β(ξ+
1/2), based on ωx = ω0 −∆ωx, ωy = ω0 +∆ωy, and ω0/ωz =
P/Q. Equations (81) and (82) are the generalized cases
of equations (61) and (62) in actual cavity. Substituting
equations (81) and (82) into the eigenfrequency equation (38)
and using the index notations of n= n0 + pK, m= m0 + qK,
l= l0 + sK, and the frequency difference spectrum near L=
LP/Q can be derived as:

∆ω

ωz
= (n− n0)

ωx
ωz

+(m−m0)
ωy
ωz

+(l− l0)

= pK
ω0 −∆ωx

ωz
+ qK

ω0 +∆ωy
ωz

+ sK

= K

[
pβ

(
ξ− 1

2

)
+ qβ

(
ξ+

1
2

)
+(p+ q)

P
Q

+ s

]
.

(85)

The frequency-degenerate state requires ∆ω = 0, thus triple
integers (p,q,s) should fulfill (p+ q)(P/Q)+ s= 0 to reveal
the independence of term ω0/ωz decided by the main cavity
length LP/Q, and the rest terms in equation (85) are written as:

∆ω

ωz
= Kβ

[
p

(
ξ− 1

2

)
+ q

(
ξ+

1
2

)]
, (86)

thus the frequency-degenerate states occur at the effective cav-
ity lengths with ξ = 1

2 (p− q)/(p+ q)⇐⇒∆ω = 0.
The detailed frequency difference spectrum versus ξ

near the cavity length L= L1/4 is shown in figure 15(b),
where the frequency-degenerate states occur at cor-
responding values of 1

2 (p− q)/(p+ q) are selectively
marked. For example, under frequency-degenerate condi-
tion ξ =−3/4,−3/8,−1/8,1/8,3/8,3/4 corresponds to
(p,q) = (−1,5),(1,7),(3,5),(5,3),(7,1),(5,−1) respect-
ively. Figure 15(c) is the classical trajectories of Lissajous
geometric modes for different integer pairs (p, q) correspond-
ing to different ξ marked at figure 15(b). And the Lissajous
geometric modes can be converted into corresponding vortex
trochoidal geometric modes and other transitional topological
curve states by using the astigmatic mode converter to control
the latitude angle θ. Besides, we could conclude that the closer
the value of κ is to 1, the stronger the frequency-degenerate
because the frequency-degenerate gap in figure 15(b) would
be more obvious with κ closing to 1.

6.3. Laser generation of hybrid-order and vectorial SU(2)
geometric beam

The last two sections (sections 6.2 and 6.3), introduce the
method to directly generate various scalar SU(2) geometric
mode from a degenerate cavity. In other words, a degenerate
cavity with off-axis displacement should commonly generate
the general SU(2) vector beams while normal SU(2) scalar
beams are just specific cases. In order to generate vectorial
geometric mode, a practical method is to introduce aniso-
tropic medium in laser cavity, resulting into different polar-
ization modulations on each ray orbit state in corresponding
geometric mode. Actually, considering the anisotropism in
gain medium induced by crystal cutting geometry and nonuni-
form thermal effect by asymmetric pumping, it was repor-
ted that the geometric beams can undergo complex amplitude
and polarization modulations in cavity and be output as vec-
tor fields [71, 72]. For example, when we use c-cut uniaxial
crystal (e.g. Nd:YVO4) as gain medium in a degenerate cav-
ity with off-axis pumping, the generated oscillating ray paths
would underlays different polarization modulation due to the
different inclined angles, as shown in figure 16. Nd:YVO4 is
a positive uniaxial crystal with anisotropic refractive indices
and stimulated absorption and emission cross-sections [73].
In c-cut Nd:YVO4, the principal c-axis is located on z-axis
and other two a-axes on the (x, y) transverse plane. For a light
beamwith normal incidence, there is no birefringent effect; for
a beam with a incident angle θin, there is a birefringent mod-
ulation where the vertical linear polarized component under-
goes an ordinary refractive index no and angle θo while the
horizontal linear polarized component undergoes an effective
refractive index neff and angle θeff involved in the ordinary and
extraordinary refractive indices no and ne:

neff =
none√

n2e cos2 θin + n2o sin
2 θin

. (87)

The difference of the two refractive indices leads to the phase
retardation between the orthogonal polarized components,
which can be represented as:

∆=
2πd
λ0

(
neff

cosθeff
− no

cosθo

)
, (88)

where d is the thickness of the crystal. According to
equation (88), when the laser crystal is given (d and λ0 is
determined), the polarization control of geometric mode can
be experimentally realized by two methods of: (1) modulat-
ing the refractive indices; (2) modulating the incidence angle,
i.e. the included angle of classical orbits of geometric mode.
The method-(1) can be realized by control of pump power,
and the method-(2) can be realized by control of off-axis
displacement.

6.3.1. Modulation by pump power. It has been proved that
the temperature-dependent thermal effects in Nd:YVO4 solid-
state laser is highly related to the pump power, while the
refractive indices, stimulated absorption and emission cross-
sections are all related to the thermal effect [74–76]. Thus the
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Figure 15. Frequency-degenerate states. (a) The intensity distributions at y= 0 plane under various frequency-degenerate states in cavity.
(b) The fractal frequency spectrum shows the distribution of frequency-degenerate states. The frequency difference ratio ∆ω/ωz as a
function of L/R for the range of |n− n0|⩽ 12, |m−m0|⩽ 12, and |l− l0|⩽ 12. The labeled frequency-degenerate gaps correspond to
figure 8. (c) Partial zoom-in of fractal frequency spectrum in the neighborhood of P/Q= 1/4 on the condition of symmetry breaking. The
new degeneracies arise at ξ = 1/2[(p− q)/(p+ q)]. (d) The classical Lissajous parametric surfaces of different integer pairs (p, q) are
marked at corresponding positions. And the Lissajous geometric modes can be converted into corresponding vortex trochoid geometric
modes via an astigmatic mode converter. The fractal frequency spectra are calculated based on the theories in [43, 68].

different powers are corresponding to different thermal effects
and then to different refractive indices. In SU(2) geometric
mode, the pump spot is off-axis, thus nonuniform thermal
effect is nonuniform and the polarization modulation is also
nonuniform, resulting into the output of SU(2) vector beams.

6.3.2. Modulation by off-axis displacement. According to
the ray-wave duality, the SU(2) geometric modes with differ-
ent orders have different incident angles for various orbits and
the ray trajectory is coupled with the pumping spot. Therefore,
the control of pumping spot is related to the included angles of
incidence rays in the classical trajectory. The different off-axis
displacements corresponding to different transverse-orders of
geometric mode result into different incidence angles. Note
that the nonuniform thermal distribution and transverse-order
comprehensively impact on the polarization of geometric
mode.

In summary, using off-axis pumping in a frequency-
degenerate cavity with c-cut Nd:YVO4 as gain medium
is an effective way to generate hybrid and general SU(2)

vector beams with high-dimensional entanglement prop-
erty generated. Notably, there should be more styles of
asymmetrical complex amplitude and polarization modula-
tions by controlling general pumping location, crystal size and
cut orientation style, for realizing other textures of complex
SU(2) geometric vector beams.

6.4. Digital generation of SU(2) structured wave-packet

Over the past three decades, researchers have become increas-
ingly interested in how to obtain structured light fields more
flexibly. Obviously, the most effective way to do this is to use
programmable devices for light generation. With the develop-
ment of liquid-crystal spatial light modulator (LC-SLM) and
digital micromirror device (DMD), various digital holographic
modulation methods [77–81] applied to modulation genera-
tion of various eigen structured light fields including HLG
modes, Ince-Gaussian modes, Bessel-Gaussian modes, Airy
beams, etc.

However, can SU(2) structured wave-packets be generated
in the same way? The answer is yes. Physically, the SU(2)
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Figure 16. A schematic of the birefringent effects for the geometric
beams in c-cut Nd:YVO4 used in a degenerate cavity to generate an
SU(2) geometric mode. (I) The index ellipsoid is depicted for
determining the effective refractive index of an input beam. (II) For
an obliquely incident beam, the vertical and horizontal polarized
components respectively yield ordinary and effective refractive
indices, and this difference can introduce a polarization modulation
effect in the light beam. (III) For normal incidence, there would not
be a polarization modulation because there is always an ordinary
refractive index.

structured wave-packets obtained by coherent superimposed
eigen modes that fulfill the frequency-degenerate condition
as shown in equation (58). Mathematically, the SU(2) struc-
tured wave-packets be obtained by Fresnel diffraction from
light field of any cross-section. Therefore, the SU(2) structured
wave packets can be obtained by the same method of digital
modulation as the eigen modes (as shown in figure 17). Which
realized by binary intensity modulation with a DMD, or pure
phase modulation with an LC-SLM.

Then, based on the above theory, a specific example is
provided to construct an SLM computer generated hologram
(CGH) mask for generating a SU(2) geometric mode, that is
a trochoidal mode with parameters of P= 1, Q= 4, n= 8,
m= 18, and N= 5, as shown in figure 18. Firstly, we prepare
a phase blazed grating with a certain period, which is just a
wrapped 1D phase slope. The period is selected based actual
experimental condition in order to effectively separate the 1st
diffraction order (figure 18(a)). Secondly, we superpose the
theoretical phase distribution of the on-demand mode onto the
blazed grating, and make that into a structured phase grat-
ing (figure 18(b)). Thirdly, we multiply the envelope function
based on the theoretical amplitude pattern of the on-demand
mode (figure 18(c)), then the SLM CGH mask was completed
(figure 18(d)). If we illuminate the mask by a nearly-planar
wave, e.g. a collimated TEM00 mode at beam waist, and filter
the 1st diffraction order, the modulated beam will become the
SU(2) geometric mode demanded.

As a special structured modes, the SU(2) structured wave-
packets are scalar modes. And its light field in any cross
section can be represented by:

SU2(x,y) = A(x,y)exp(iΦ(x,y)), (89)

where A and Φ are amplitude and phase of SU(2) structured
wave-packets modes, respectively, and A⊂ [0,1], Φ⊂ [0,2π].
The phase function of CGH method [78] is given as:

Ψ(x,y) = J−1
1 [CA(x,y)]sin[Φ(x,y)+ 2π (u0x+ ν0y)], (90)

where J−1
1 is the inverse function of the first class of first-order

Bessel functions, and the maximum value of C for fulfilling
A= J1[ f(A)]/C is C= 0.5819.

Ms (x,y) = exp{iΨ(x,y)}=
∞∑

q=∞
mq (x,y)exp

× [i2π (qu0x+ qν0y))] , (91)

where the u0 and v0 are the reciprocal of the period of linear
blazed grating in x and y direction, respectively. Now that we
have obtained the target SU(2) structured wave-packets in the
first diffraction order of modulated light.

In contrast to the SLM, the merit of DMD is the fast speed.
The DMD transmission function of the hologram is given as
[79]:

T(x,y) =
1
2
+

1
2
sign{cos [2π (u0x+ ν0y)+Φ(x,y)]

+ cos(arcsin(A(x,y)))}, (92)

where the u0 and v0 have same physical meaning as SLMphase
hologram method. The experimental generation of SU(2) geo-
metric modes using DMD was recently reported [82]. And
the wave-packets also was isolated and selected in the diffrac-
tion order of modulated light. Such digital modulation method
can overcome this limitation to generate on-demand the SU(2)
structured wave-packets in free space without a cavity [58].
extending advanced ray-wave geometric modes as a powerful
and customized toolbox into applications such as optical com-
munication, optical tweezers, high dimensional cryptography,
and quantum entanglement.

7. Geometric representations of geometric light

Abstractly geometric representations of complex structured
light is convenient for researching their topological evolution
and revealing their topological structure intuitively, playing as
a salient toolkit to enrich the technologies of optical manipula-
tion and quantum information, particularly pertaining tomulti-
dimensional geometric light. Thus, a lot of efforts have been
devoted to related research.

7.1. Poincaré sphere: from polarization to OAM

Polarization and spatial mode, the two basic DoFs to construct
structured light, both have classic graphical representations to
describe their evolutions. In particular, the polarization state
in two-dimensional qubit space is mapped on the Poincaré
sphere:

|ψp⟩= cos(θ/2)e−iϕ |R⟩+ sin(θ/2)eiϕ |L⟩ , (93)

as shown in figure 19(a). The spatial mode is always given by
the OAM state of light, sharing the same qubit formation of
the polarization, which can be also mapped on a Poincaré-like
sphere [83]:

|ψo⟩= cos(θ/2)e−iϕ |ℓ1⟩+ sin(θ/2)eiϕ |ℓ2⟩ , (94)
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Figure 17. Schematic diagram of digital hologram modulation method for generating SU(2) structured wave-packets. The hologram masks
(essentially computer generated hologram, CGH) loaded on spatial light modulator carries the amplitude and phase information of the target
light. A Gaussian beam illuminates the CGH. Then the first order of outputting beam contains the target light. After filtering, the intensity
distribution of the target light can be collected. The subplot on right top section shows the classical trajectories and transverse intensity
distributions at some planes revealing ray-wave duality, the subplot on right bottom section shows the corresponding spatial wave packets.

Figure 18. An example to construct an SLM phase mask for generating a SU(2) geometric mode: (a) a phase blazed grating with a certain
period; (b) the phase of the SU(2) geometric mode; (c) the amplitude of the SU(2) geometric mode; (d) the SLM CGH mask for generating
the SU(2) geometric mode.

where |ℓ1⟩ and |ℓ2⟩ are the two OAM states with topological
charges ℓ1 and ℓ2 corresponding to the two poles of Poin-
caré sphere, see figure 19(b). This representation also plays an
important role in quantum optics, because it represent a unit
of quantum information (qubit). Therefore the vector beam
state is combining the two DoFs together, that is using the
tensor product of OAM state and polarization state, |ψv⟩=
|ψo⟩⊗ |ψp⟩, thus which can also be represented by a Poincaré
sphere, namely higher-order or hybrid-order Poincaré sphere
[84, 85]:

|ψv⟩= cos(θ/2)e−iϕ |ℓ1⟩ |R⟩+ sin(θ/2)eiϕ |ℓ2⟩ |L⟩ , (95)

as shown in figure 19(c). Therefore, the vector beam, as the
two-DoF 2D non-separable state, shares the same formation
as the bipartite entangled state in quantum mechanics. The
conventional structured light are limited by two DoFs, spa-
tial mode (OAM) and polarization. While we can find a way
to generalize the description of structured light with extended
DoFs and higher dimensions. In the OAM Poincaré sphere
model, we actually only consider the azimuthal mode of a
laser beam, but a complete description of laser beam should
includes three modes: one longitudinal mode |l⟩ and two trans-
verse modes (azimuthal |ℓ⟩ and radial |p⟩modes, or horizontal
|n⟩ and vertical |m⟩ modes). The longitudinal mode determ-
ines how the beam is divergent upon propagation. The two

transverse modes determine the singularity distributions along
the two transverse directions. A generalized model consider-
ing the three modes can be exploited by the SU(2) transform-
ation [86–88],

ψθ,φ
n,m,l(x,y,z) =

N/2∑
ℓ ′=−N/2

e−iKφ/2dN/2ℓ ′/2,ℓ/2(θ)LGρ,ℓ,l(r,φ,z),

(96)

where N= n+m, ρ=min(n,m), ℓ= n−m, d jm ′,m(θ) is the
Wigner d function, and LGρ,ℓ,l(r,φ,z) is LG mode with radial
and azimuthal indices of ρ and ℓ. The generalized eigenstate
of equation (96) forms a family of HLG modes, and which
can also be mapped on a modal Poincaré sphere with full
OAMevolution, as shown in figure 20(a), the subplots on north
and south poles are LG modes with opposite OAM. The sub-
plots on equator are HG modes and others are HLG modes.
The longitudinal mode l cannot revealed by the transverse
pattern but impacts on how the beam is divergent along the
longitudinal direction, as shown in figures 20(b)–(d), which
plays an important role in superposing complex longitudin-
ally variant structured beams (see section 7.3 for more details).
This modal Poincaré sphere representation is the most general
description of scalar freespace eigenmodes under the general
SU(2) symmetry of paraxial beam system. While, it is also
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Figure 19. (a) Poincaré sphere represents the polarization state of
light. (b) Poincaré sphere represents the OAM mode of light, The
Hue color refers to phase from 0 to 2π and the darkness/brightness
refers to the intensity from 0 to 1. (c) High-order Poincaré sphere
represents complex the vector field of light.

Figure 20. (a) Modal Poincaré sphere represents the HLG
eigenmode with OAM evolution with example of indices
(m,n) = (2,1). (b)–(d) the longitudinally divergent profiles of LG,
HLG, and HG modes.

a valuable direction to further generalize the modal, coupled
with the polarization Poincaré sphere, to include more kinds
of intriguing vectorial structured light beams.

7.2. Ray-optics Poincaré sphere for structured Gaussian
eigenmodes

Paraxial ray families crossing the focal plane can be repres-
ented as dual-parameter families of ellipses, parametrized by
curves on an ray-optics Poincaré sphere for rays with diverse
caustic structures. With deeper understanding of structured

Figure 21. (a) The spatial wave packet of a propagating HG mode
and (b) corresponding analogue caustic representation including a
set of rays. (c) The ray-optics Poincaré sphere with corresponding
rays modes shown at selective points, and corresponding Poincaré
paths for various points are marked as purple circles. (a), (b)
Reprinted (figure) with permission from [92], Copyright (2018) by
the American Physical Society.

eigenmodes, any HLG mode can be described in terms of the
ray family in which each ray is specified by the values of
two periodic parameters so as to be mapped on such Poincaré
sphere, which has been proposed in the context of semiclas-
sical estimates for structured light [89–92]. For example, the
behavior of a propagating HGmode as figure 21(a) can be ana-
logue to a corresponding ray caustics as figure 21(b).

In ray-optics Poincaré sphere, a ray caustic mode is not
represented by a single point on the sphere, but by the point
together with a closed loop surrounded to it over the sphere
model, namely Poincaré path, as shown in figure 21(c). In
paraxial ray optics, each ray can be expressed asQ+ iP, where
Q= (Qx,Qy) is the transverse coordinate and P= (Px,Py) is
the transverse direction vector. At z= 0 plane, Q(τ ;θ,φ) =
Q0 ℜ[v(θ,φ)exp(−iτ), P(τ ;θ,φ) = P0 ℑ[v(θ,φ)exp(−iτ)
(0⩽ τ ⩽ 2π, where v is an unit vector defined on Poin-
caré sphere as v(θ,φ) = sin(θ/2)(cos(φ/2),sin(φ/2))+
icos(θ/2)(−sin(φ/2),cos(φ/2)), where (s1,s2,s3) =
(sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)) determines the points
on Poincaré sphere, 0⩽ θ ⩽ π, 0⩽ φ⩽ 2π. For fixed (θ,φ),
(s1,s2,s3) is a fixed point on Poincaré sphere, Q traces out
an ellipse. For varying (θ,φ), if (s1,s2,s3) can form a closed
Poincaré path, the trajectories of Q consists of a series of
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ellipses corresponding to generalized HLG beams, then the
wave fields can be estimated only based on ray description
validly [51, 89, 93].

In addition to the conditions for HLG beams, a general-
ized model of the ray-optics Poincaré sphere for more gen-
eral structured Gaussian beam was proposed recently [94].
The general structured Gaussian beam with total order N can
be expressed as |U⟩=

∑
ℓ cℓ|N, ℓ⟩, where |N, ℓ⟩ represents LG

mode with total order number N and angular order ℓ, expan-
sion coefficients cℓ are used to define Nth-order Majorana

polynomial as S(ξ) =
∑N/2

ℓ/2=−N/2

√(
N
N+ℓ
2

)
c∗ℓξ

N−ℓ
2 , where

the zeros of Majorana polynomial map onto so-called
modal Majorana sphere through a stereographic projection
ξ = tan(θ/2)eiϕ. Thus any structured Gaussian beam could
beniquely represented by N points on modal Majorana sphere.
This representation method reveals hidden symmetries of
structured Gaussian beams and provides a deep physical
insight for geometric phases. Note that the Majorana sphere
and Poincaré sphere have fundamental difference to represent
a mode. The Poincare sphere represent a mode by a point on
it, but the Majorana represent a mode by a special set of points
on it. That is a manifestation that majorana model can open
higher dimensions of structured beams [94, 95].

7.3. General SU(2) Poincaré sphere for ray-wave structured
light

In above two sections, elegant models are reviewed to map
arbitrary-order SU(2) eigenmodes, i.e. HLG modes, onto
a Poincaré sphere and reveal the general OAM evolution,
especially in both wave and ray treatment. Although each
eigenmode has corresponding ray caustic representation, the
caustics is just a phenomenological interpretation of the wave
mode propagation. In contrast to this, the SU(2) coherent
state mode with ray-wave duality, as well-defined super-
posed state of a set of eigenmodes, can show more rigor-
ous ray-wave coupling representation, where the wave pat-
tern is exactly coupled with the distribution of rays. Here-
inafter, the modal of general SU(2) Poincaré sphere will be
shown to represent the coherent state ray-wave structured
light.

Since arbitrary-order HLG eigenmodes can be mapped on
Poincaré sphere, the SU(2) coherent state, as the superposed
wave-packet with a special set of eigenmodes can also be
mapped on Poincaré sphere, to further generalize the Poincaré
sphere model, namely, SU(2) Poincaré sphere [96]. Based on
equation (96) and, the closed-form expression can be given
by:

Ψθ,φ,ϕ,p,q
n,m,l (x,y,z) =

1
2M/2

M∑
K=0

eiKϕ
(
M
K

)1/2

×ψθ,φ
n+pK,m+qK,l−PK(x,y,z), (97)

which enables us to map the SU(2) coherent state onto a
new generalized Poincaré sphere, namely, a SU(2) Poincaré
sphere, as shown in figure 22 for a example case of multi-path

Figure 22. SU(2) Poincaré sphere represents the ray-wave
geometric mode, for both evolutions of spatial wave pattern and ray
trajectory.

geometric mode with Ω= 1/6, which vividly illustrates the
OAM evolutions of both the spatial geometric wave packet
together and the coupled 6-ray caustics. Also the SU(2) Poin-
caré sphere has its higher-order generalization to represent
multi-HLG and Lissajous-to-trochoidal geometric modes, the
diverse generalized forms of eigenmode Poincaré sphere and
SU(2) Poincaré sphere are shown in figures 23(a) and (b),
respectively. Note that a diagram showing how the various
kinds of SU(2) beams relate to each other can refer to figure 11.
As a more generalized form of eigenmode Poincaré sphere,
SU(2) Poincaré sphere opens new dimensions to reveal the
topological evolution of complex ray-wave structured light,
paving the way to the new studies of spin-to-orbital conver-
sion, complex mode entanglement, optical encoding and com-
munication, and geometric phase transition.

8. Other kinds of SU(2) structured light

The SU(2) symmetry in structured light is so general that
there are many other extensions not covered above. In addi-
tion to the freespace geometric beams at frequency degener-
ate states, there are still many other kinds of exotic SU(2)
structured light with general conditions. For instance, when
a basic multi-spot ray-wave SU(2) geometric mode is tuned
from a pure frequency-degenerate state into a quasi-degenerate
state, multiple spots in the pattern can be connected to each
others to form a polygonal vortex beam. We can introduce
astigmatic effects onto an basic SU(2) geometric mode to
generate astigmatic SU(2) geometric mode with more gen-
eral longitudinally variant patterns. We can also can replace
trivial freespace HLG eigenmodes state into nontrivial nondif-
fracting modes and waveguide modes and so on to explore
more intriguing forms of SU(2) structured light. Hereinafter,
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Figure 23. (a) Eigenmode Poincaré sphere representations for polarization states, OAM mode states and HLG modes in inner, middle, and
outer inserts, respectively. The poles represent right- and left-handed circular polarizations, right- and left-handed-OAM LG modes and
higher-order LG modes of opposite OAM. The equator linear polarization, HG modes and higher-order HG modes. (b) SU(2) Poincaré
sphere representations for multi-path, multi-HLG, and Lissajous-trochoidal ray-wave geometric modes.

these exotic SU(2) structured light will be introduced in more
details.

8.1. Polygonal vortex beams

The frequency-degenerate theory is established under the
assumption of monochromatic light field, while the actual
laser beams are always quasi-monochromatic with a spectral
linewidth. Thus, a mode in degenerate state cannot drastic-
ally collapse to a non-degenerate state when the frequency-
degenerate state is adjusted to a condition in the vicinity of
degenerate state. It was reported that, at a quasi-degenerate
state, the original multiple spots of the transverse pattern
of SU(2) vortex can be connected to each others to form
an exotic polygonal shape, i.e. the polygonal vortex beams
[67], see figure 24. The quasi-frequency-degenerate (QFD)
wave-function to describe the mode behavior in the vicinity
of frequency-degenerate state [67]:

Ψ(x,y,z) =
1

2N/2

N∑
K=0

[(
N
K

)1/2

eiKϕ + qK

]
×ψ

(HLG)
n̄0+KQ,0,̄l0−PK

(x,y,z), (98)

which can be seen as a superposition of a pure SU(2)
degenerate HLG modes and some additional HLG modes,
where the coefficient qK represent the weights of the super-
posed ψHLG

n̄0+KQ,0,̄l0−PK
(x,y,z) modes. The physical meaning

of parameter qK can be interpreted as the component of
the decomposed HG mode ψ(HLG)

n̄0+KQ,0,̄l0−PK
(x,y,z) outside of

the pure SU(2) wave-packet, see simulation examples in
figures 25(a1)–(a4).

In a optical resonator, the condition of a pure SU(2) wave-
packet in degenerate states is more rigorous than that of a
HG mode in non-degenerate states. Therefore, it is rational to
understand the quasi-degenerate states as that some extrinsic

Figure 24. At a quasi-degenerate state, the original multiple spots
of the transverse pattern of SU(2) vortex can be connected to each
others to form an exotic polygonal shape, i.e. the polygonal vortex
beams.

HG modes outside a pure SU(2) wave-packet are mixed in.
The polygonal vortex beams can be demonstrated with the
intrinsic LG bases, which can be realized by a an external
π/2-cylindrical-lens astigmatic mode converter. Additionally,
we note that the occurrence of degenerate states is not only
determined by the fraction, but also impacted by factors such
as pump power, pump beam size, off-axis displacement, gain
medium, etc [97]. For the same fraction, the laser can pos-
sibly perform as a degenerate state or a quasi-degenerate state

26



J. Opt. 23 (2021) 124004 Y Shen

Figure 25. Exotic SU(2) structured light. (a) Quasi-degenerate state
SU(2) geometric beam, the transverse distributions for (a1), (a2)
(|Ω= 1/3⟩) and (a3), (a4) (|Ω= 1/4⟩). (b) Astigmatic hybrid
SU(2) geometric beam, the transverse distributions (|Ω= 1/5⟩) at
z= 0 plane for (b1), (b2) and at far field for (b3), (b4). (c) Resonate
SU(2) geometric beam, the transverse distributions for (c1), (c2)
(p,q) = (−1,4) and (c3), (c4) (p,q) = (0,3). (d) Localized SU(2)
geometric microlaser mode, the transverse distributions for (d1)(d2)
ϕ= 0 and (d3)(d4) ϕ= π/2. (e) Eigenmodes of SU(2) coupled
commensurate harmonic oscillators, n1 = 0 for (e1), (e2) and n1 = 2
for (e3), (e4). Rows 1,3 for intensity distributions and rows 2,4 for
phase distributions, respectively (colormap: darkness to brightness
means 0 to 1 for intensity, −π to π for phase, 0 to π/2 for P1 and
−π to π for P2, respectively).

or even a non-degenerate state for different gain media, pump
power, off-axis displacement, etc which is related by the form
of quasi-degenerate parameters qK . However, such model can-
not predict the value of qK for the given polygonal geo-
metry. Recently, some improved models were proposed that
can make the polygonal vortex beams exactly more strictly
coupled with the given polygonal geometry [97, 98]. How-
ever, which cannot be related to the corresponding frequency-
degenerate state. Thus the complete theory for polygonal vor-
tex beams is still to be explored.

8.2. Astigmatic hybrid SU(2) geometric beams

Recently, an exotic kind of structured light, astigmatic hybrid
SU(2) geometric beam, has been proposed in the perspective
of classical trajectories [99], providing a physical insight in
the picture of semi-classical ray-wave duality [100, 101]. The
hybrid planar geometric beam would evolve to circular vor-
tex geometric beam during propagation after passing through
the cylindrical lens, as shown in figures 25(b1)–(b4). Select-
ing z= 0 as the position of the cylindrical lens and (Nx,Ny) =
(N,0), the mathematical formulas of astigmatic hybrid clas-
sical trajectories cluster {(x ′s ,y ′s ,z)}h has been derived for
characterizing the topological evolution of astigmatic hybrid
SU(2) geometric beam as [99]:

{(x ′s ,y ′s ,z)}h = {(x ′s ,y ′s ,z)}N,0,ϕ + {(x ′s ,y ′s ,z)}ηN,0,ϕ+π ,
(99)

whereN is the transverse indices, η = cos2(2π/Q)/cos2(π/Q),
{(x ′s ,y ′s ,z)}N,0,ϕ is the cluster of classical trajectories of
astigmatic geometric beam, which can be mathematically
expressed as [99]:{

x ′s(z) =
√
Ncos(α)wx ′(z)cos[θs+ϕx±ϑG,x ′(z)]

y ′s(z) =−
√
Nsin(α)wy ′(z)cos[θs+ϕx±ϑG,y ′(z)]

, (100)

where θs = 2πsP/Q, θG,x ′(z) = π/2+ tan−1( z−zR
zR

),
θG,y ′(z) = tan−1( z+zRzR

) are astigmatic Gouy phases in

x′- and y′-axis, wx ′(z) = w0

√
1+( z−zR

zR
)2, wy ′(z) =

w0

√
1+( z+zRzR

)2 are astigmatic Gaussian beam waist para-

meters [102, 103]. Then we can get the spatial wave-packet of
astigmatic geometric beam by substituting equation (100)
into equation (53) as Φ(x ′s ,y

′
s ,z) (xs → x ′s ,ys → y ′s ). And

the spatial wave-packet of astigmatic hybrid geometric
beam can be expressed as Φh(x ′s ,y

′
s ,z) = ΦN,0,ϕ(x ′s ,y

′
s ,z)+

ΦηN,0,ϕ+π(x ′s ,y
′
s ,z). Particularly, an exotic vector structured

light, vector astigmatic hybrid SU(2) geometric beam can be
constructed by modulating the polarization of ΦN,0,ϕ(x ′s ,y

′
s ,z)

and ΦηN,0,ϕ+π(x ′s ,y
′
s ,z), which can realize longitudinally-

variant spatial twisted ray-wave structure and vector singu-
larities upon propagation, as shown in figures 25(b1)–(b4),
where |Φh⟩=ΦN,0,ϕ(x ′s ,y

′
s ,z)|L⟩+ΦηN,0,ϕ+π(x ′s ,y

′
s ,z)|V⟩,

|L⟩ and |V⟩ are left-handed circular polarization and ver-
tical polarization. In order to reveal more vector properties
about vector structured light, two parameter has been defined
as P1 = tan−1(|Ex|/|Ey|) and P2 = tan−1(Ex/Ey) [62]. The
spatial wave-packet located on each astigmatic ray can be
obtained by substituting equation (100) into equation (52).
Figures 25(b1)–(b4) show the exotic longitudinally-variant
property of vector astigmatic hybrid SU(2) geometric beam,
evolving from planar geometric beam without singularities at
z= 0 plane to vortex geometric beam with multi-singularities
at far field, which is significant for further exploring the related
applications in longitudinally variant polarized optics, optical
manipulation and communication, etc [8, 104–106]. Besides,
the exotic vector astigmatic hybrid SU(2) geometric beam can
have more controllable DoFs by modulating the polarization
of sub-beams [99].

8.3. Resonate SU(2) geometric beams

SU(2) geometric beams are essentially coherent superposi-
tion of a series of eigenmodes with sub-Poisson distribution
weights and same frequency. Therefore, the transformations
of SU(2) geometric modes can be realized by converting
eigenmodes. For example, the planar geometric modes can
be converted to circular geometric modes by converting HG
modes to LG modes. Furthermore, LG modes can be conver-
ted into Bessel modes by using an axicon [107] leading to an
exotic kind of geometric modes, i.e. resonate geometric modes
[108], as shown in figures 25(c1)–(c4). In fact, Bessel beams
are propagation-invariant solutions in cylindrical waveguide
[109]. Because the confinement of waveguide can be regarded
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as a circular billiard for light, the resonate geometric modes,
coherent superposition of nearly degenerate Bessel beams, can
be regarded as coherent state related with a circular quantum
billiard [110], which can be expressed as [108, 110]:

Ψϕ,p,q
n,m (x,y,z) =

1
2M/2

e−ik̃z
M∑
K=0

eiKϕ
(
M
K

)1/2

×BGn+qK,m−pK(x,y,z)e
i(n+qK)ϑ(z), (101)

BGn,m(x,y,z) =
1√
2 π

Nn,mJn(kn,mr)e
inφe

− r2

w(z)2 , (102)

where 1√
2 π

is angular normalization factor, Nn,m is radial nor-

malization factor derived from N2
n,m

´ R
0 [Jn(kn,mr)]

2rdr= 1,
Jn is the first kind of Bessel function with indices n, r=√
x2 + y2, φ= tan−1(y/x), z̃= z+ (x2+y2)z

2(z2+z2R)
, and kn,mR is mth

zero of Jn [111].

8.4. Localized SU(2) geometric microlaser beams

SU(2) coherent state can not only be constructed in free space,
but also existed in localized waveguide or microcavities. In
construct to the eigenmodes in freespace, the eigenmodes in a
localized waveguide require boundary conditions determined
by its geometric shape. The frequency-degenerate set of eigen-
modes in a waveguide is also existed and can play as the eigen-
states for constructing the SU(2) coherent state wavepacket.
For example of a 2D square waveguide with side length of a,
rather than the HGmode solutions in freespace, the eigenmode
can be solved as [112]:

ψK,N−K(x,y) =
2
a
sin
[
(K+ 1)

πx
a

]
cos
[
(N−K+ 1)

πy
a

]
,

(103)

where K= 0,1,2, . . . ,N, which can also act as eigenstates to
construct an SU(2) coherent state [113, 114]:

Ψϕ,p,q
N,M (x,y) =

1
2N/2

e−ik̃z
N∑

K=0

eiKϕ
(
N
K

)1/2

×ψp(K+1),M+q(N−K)(x,y), (104)

Such micro-scale localized SU(2) geometric beam also har-
ness intriguing ray-wave duality, that the corresponding clas-
sical trajectory includes the rays bouncing back and forth
in a waveguide with prescribed geometric orbits [115].
Figures 25(d1)–(d4) show some patterns of micro-scale loc-
alized SU(2) geometric beams (N= 2, p= q= 1,M= 0). The
earliest localized SU(2) geometric mode was realized in a
electric pumped square waveguide as a vertical cavity surface
emitting laser (VCSEL), where the lasing pattern is described
as quantum billiards [114, 116]. The quantum billiard effect
was also realized by triangle waveguide, forming more gen-
eral patterns and intriguing vortex lattices effect [113]. With
the development of microlaser, the localized SU(2) geometric
mode manipulated in a VCSEL can emit the SU(2) structured
light from waveguide into free space [117, 118].

Recently, the SU(2) structured light realized in micro-
lasers has hatched tremendous attentions in fundamental phys-
ics. The ray-wave light structure in microcavities provided
an effective way to realize high-power directional emission
from the microscale [119]. Also, combining the advanced
organic single-crystalline materials, the crystalline microres-
onators enables more intriguing whispering-gallery modes
with improved tunable polygonal geometries [120]. It was also
unveiled that the ray-wave duality in microcavities provide
new opportunities to study fundamental physical effects of
wave chaos [121] and non-Hermitian physics [122], whichwas
also recently applied to suppressing spatiotemporal instabilit-
ies of microlaser [123]. The ray-wave structured light in semi-
conductor laser was also used as a powerful tool to control
complex coherent modes [124, 125] and directional emission
[126], enabling new applications in imaging and wavefront
shaping [127].

8.5. Commensurate harmonic oscillator coupled geometric
beams and beyond

These kinds of exotic SU(2) structured light mentioned above
are the cases of classical structured light corresponding to
SU(2) coherent state. Here we will introduce another exotic
structured light with SU(2) symmetry, an eigenstate of SU(2)
coupled commensurate harmonic oscillator [128]. For a gener-
alized anisotropic Hamiltonian in equation (26), the coupling
term

∑
j
ΩjJj can be regarded as SU(2) coupling interaction and

the corresponding eigenstate can be expressed as [128]:

|n1p+λ1,n21+λ2⟩H = eiNα/2
N∑

m1=0

e−im1αdN/2m1−N/2,n1−N/2

× (β) |m1p+λ1,m21+λ2⟩H0
,

(105)

where |m1p+λ1,m21+λ2⟩H0
represents eigenstate of

isotropic H0 corresponding to HG modes with indices
(m1p+λ1,m21+λ2), d

N/2
m1−N/2,n1−N/2(β) is wigner d coef-

ficient, α=− tan−1(Ω2/Ω1), β =− tan−1(
√
Ω2

1 +Ω2
2/Ω3),

N= n1 + n2 = m1 +m2. Eigenmodes corresponding to aniso-
tropic HamiltonianH are a linear superposition of HG modes,
where the intensity are located on Lissajous curves from
single to multiple trajectories with n1 increasing, as shown in
figures 25(e1)–(e4). The simulation parameters are as N= 30,
(p,q) = (2,1), (α,β) = (π/2,π/2), (λ1,λ2) = (0,0).

Based on the above discussions, the SU(2) mathemat-
ical model with multiple controllable parameters can derive
diverse exotic geometric modes with infinite possibilities.
Besides the above four typical forms, many new modes
were emerged very recently, polygonal Airy beams [129],
frequency-degenerate bottle beams [130], Siegman’s elegant
laser modes [131], standing-wave and traveling-wave unified
geometric mode [82], to name a few. There are definitely many
hidden parameters in SU(2) symmetry to be opened to explore
more intriguing geometric modes in the future.
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Figure 26. A conventional vector vortex beam as the form of bipartite Bell entangled state and the novel SU(2) vector beams as the form of
multipartite Greenberger–Horne–Zeilinger (GHZ) state.

8.6. Classically entangled SU(2) structured light

What is classical entanglement? Entanglement, a purely
quantum mechanical phenomenon, was originally coined to
describe quantum correlations that can be shared between
spatially separated multi-particle systems. A defining char-
acteristic of such systems is nonseparability: mathematically,
the wavefunctions of entangled systems cannot be written as
separable products of the individual subsystems. An typical
example is a Bell states,

|ϕ⟩= 1√
2
(|0⟩A|0⟩B+ |1⟩A|1⟩B) , (106)

where the states |0⟩ and |1⟩ form an information basis for the
subsystem A and B. A consequence of equation (106) is that
the two systems cannot be written as separable product, hence
it is nonseparable. In classical regime, nonlocal interaction at
a distance is not existed, but nonseparability as an mathem-
atic relation can be widely applied. The classical entanglement
describes systems where the nonseparability or equivalently
entanglement, occurs between the internal DoFs of particles.
In optics such similarities have been discussed at length in
[132–135]. Typical examples of a classical entangled light are
vector vortex beams, where the correlations between the polar-
ization and spatial components mimick two-particle maxim-
ally entangled Bell states:

|ψ⟩= 1√
2
(|uR⟩A|R⟩B+ |uL⟩A|L⟩B . (107)

Here the labels A and Bmark the spatial and polarization com-
ponents just as one would a composite system of two particles.
Here the difference is that the kets mark the DoFs of each
single photon in the field and not spatially separated photons.
Also notice that the field are completely separable for uR = uL.

Conventionally, a vector vortex beam fulfill the form of
bipartite classical entanglement, as the Bell state, with two
DoFs of spatial mode and polarization, see figure 26 left. Now,

SU(2) structured light opens an new platform to construct
more intriguing classically entangled states, because it har-
nesses more intrinsic DoFs due to its unique ray-wave geo-
metric structure. For instance, a ray-wave SU(2) geometric
beam can have ray oscillating directions and locations to be
the extendedDoFs. Amulti-axis vortex SU(2) geometricmode
can have not only central OAM but also partial OAM along
sub-rays as extended DoFs. Hereinafter we demonstrate how
to use the intrinsic DoFs of SU(2) structured light to repres-
ent multi-partite classically entangled state, see figure 26 right,
beyond the bipartite Bell state.

For example at |Ω= 1/4⟩ (ϕx = π/4) we used in the main
text, positive and negative W-shaped trajectories coincide
exactly, i.e. the positive and negative oscillating states are
expressed by:

|+⟩= |u−0 ⟩|u
+
1 ⟩|u

−
3 ⟩|u

+
2 ⟩, |−⟩= |u+0 ⟩|u

−
1 ⟩|u

+
3 ⟩|u

−
2 ⟩,
(108)

as shown in figure 2 in the main text. Additionally, in the four
periodic round-trips, two share the first bouncing location and
other two share the second one, i.e. the round-trip location
states are expressed by:

|1⟩= |u±0 ⟩|u
±
1 ⟩, |2⟩= |u±2 ⟩|u

±
3 ⟩. (109)

The output states of various rays can be expressed by the cor-
responding positively longitudinal propagation components of
product states between the direction and location states, which
are given by:

|+⟩|1⟩= |u+1 ⟩, |+⟩|2⟩= |u+2 ⟩,
|−⟩|1⟩= |u+0 ⟩, |−⟩|2⟩= |u+3 ⟩. (110)

The ray trajectories in a complete oscillation and the output ray
states from cavity are shown in figure 27. In our setup, the con-
cave mirror is the laser output mirror, thus only the forward-
propagation states are observable, as the four output ray states
marked in figure 27.
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Figure 27. Trajectory direction and location states. The ray orbit
components for the positive and negative x-direction construct the
trajectory for the direction states |+⟩ and |−⟩, and the two |+⟩ and
|−⟩ construct a complete oscillation in a degenerate laser cavity.
The output ray states can be represented by the product states of
direction and location states.

The SU(2) geometric vector beam can be expressed in the
high-dimensional Hilbert space using the new DoFs from ray-
wave representation. For instance of the geometric mode in
degenerate state |Ω= 1/4⟩, the geometric vector beam can be
represented by trajectory states:

∣∣∣Ψ±
Nx,Ny

〉
=

3∑
s=0

Ase
iϕs |Js⟩

∣∣∣Φ(s)
Nx,Ny

〉
= A0e

iϕ0 |J0⟩|−⟩|1⟩+A1e
iϕ1 |J1⟩|+⟩|1⟩

+A2e
iϕ2 |J2⟩|+⟩|2⟩+A3e

iϕ3 |J3⟩|−⟩|2⟩, (111)

where the state of polarization |Js⟩ is two dimensions, which
can be linearly expanded by bases of |D⟩ and |A⟩. There-
fore, the SU(2) vector beam of equation (111) is expressed
in 8-dimensional space with bases of |+⟩|1⟩|D⟩, |−⟩|1⟩|D⟩,
|+⟩|2⟩|D⟩, |+⟩|1⟩|A⟩, |−⟩|2⟩|D⟩, |−⟩|1⟩|A⟩, |+⟩|2⟩|A⟩, and
|+⟩|2⟩|A⟩.

We can control the SU(2) geometric beam into ray-like state
and then make special modulations to realize various classical
Greenberger–Horne–Zeilinger (GHZ) states, the maximally
entangled states for multiple particles, see equations (112)–
(115), as specific cases:

• |Φ+⟩: A0 = A2 =
1√
2
, A1 = A3 = 0, ϕ0 = ϕ2, J0 = |D⟩ and

J2 = |A⟩;
• |Φ−⟩: A0 = A2 =

1√
2
, A1 = A3 = 0, ϕ0 = ϕ2 +π, J0 = |D⟩

and J2 = |A⟩;
• |Ψ+

1 ⟩: A1 = A3 =
1√
2
, A0 = A2 = 0, ϕ1 = ϕ3, J1 = |D⟩ and

J3 = |A⟩;
• |Ψ−

1 ⟩: A1 = A3 =
1√
2
, A0 = A2 = 0, ϕ1 = ϕ3 +π, J1 = |D⟩

and J3 = |A⟩;
• |Ψ+

2 ⟩: A0 = A3 =
1√
2
, A1 = A2 = 0, ϕ0 = ϕ3, J0 = |D⟩ and

J3 = |A⟩;
• |Ψ−

2 ⟩: A0 = A3 =
1√
2
, A1 = A2 = 0, ϕ0 = ϕ3 +π, J0 = |D⟩

and J3 = |A⟩;

• |Ψ+
3 ⟩: A0 = A2 =

1√
2
, A1 = A3 = 0, ϕ0 = ϕ2, J0 = |A⟩ and

J2 = |D⟩;
• |Ψ−

3 ⟩: A0 = A2 =
1√
2
, A1 = A3 = 0, ϕ0 = ϕ2 +π, J0 = |A⟩

and J2 = |D⟩;

where the GHZ states are given by:

∣∣Φ±〉= |+⟩ |1⟩ |D⟩± |−⟩|2⟩ |A⟩√
2

, (112)

∣∣Ψ±
1

〉
=

|−⟩ |1⟩ |D⟩± |+⟩ |2⟩ |A⟩√
2

, (113)

∣∣Ψ±
2

〉
=

|+⟩ |2⟩ |D⟩± |−⟩|1⟩ |A⟩√
2

, (114)

∣∣Ψ±
3

〉
=

|+⟩ |1⟩ |A⟩± |−⟩|2⟩ |D⟩√
2

. (115)

The 3D intensity patterns of various GHZ states with various
polarization projection states (θP = 0, π/2, π, and 3π/2) are
shown in figure 28, where we setNx = Ny in simulation. When
the vortex geometric mode is reduced into planar geometric
mode, i.e. Nx or Ny = 0, we can directly use intensity pattern
⟨Ψ±

Nx,Ny |Ψ
±
Nx,Ny⟩ to observe the interference effect among sub-

orbits, as shown in figure 5 in the main article for various GHZ
states. By experimentally measuring the amplitude, phase, and
polarization of each orbit (the phase can be reconstructed by
the interference pattern among various basic states), we can
evaluate the experimental state:

|ψexp⟩= α1 |+⟩ |1⟩ |D⟩+α2 |−⟩ |1⟩ |D⟩+α3 |+⟩ |2⟩ |D⟩

+α4 |+⟩ |1⟩ |A⟩+α5 |−⟩ |2⟩ |D⟩+α6 |−⟩ |1⟩ |A⟩

+α7 |+⟩ |2⟩ |A⟩+α8 |−⟩ |2⟩ |A⟩ , (116)

reconstitute the density matrix ρ̂exp = |ψexp⟩⟨ψexp| for each
experimental GHZ state, and calculate the fidelities F=
⟨Φ±|ρ̂exp|Φ±⟩ and F= ⟨Ψ±

i |ρ̂exp|Ψ
±
i ⟩ (i= 1,2,3) comparing

with the theoretical density matrices of GHZ states.
Hereto, we can already generate a complete set of GHZ

states from a laser, sharing the same form of three-photon
quantum entanglement. The general SU(2) geometric modes
also have potential to be used to generate even higher-
dimensional entanglement states with the form of N-photon
(N > 3) quantum entanglement. To this end, we should find
more DoFs to extend the dimension in classical entangle-
ment such as OAM. As shown in figures 29(a)–(d), two
SU(2) geometric modes with opposite OAM can be super-
posed together fulfilling a complete oscillating trajectory in
a cavity, which can also be experimentally realized [72].
After inhomogeneous intensity and polarization modulation,
this kind of general SU(2) geometric modes should be rep-
resented in 16-D Hilbert space like the 4-photon quantum
entanglement:
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Figure 28. Control of four maximumly entangled groups in GHZ states. The experimental and theoretical results of four general SU(2)
vector beams corresponding to the four maximumly entangled groups in classical GHZ states. The white arrow means the allowed
polarization orientation of the polarizer. The plot on the left for each group shows the theoretical spatial wave-packet of the corresponding
SU(2)-like vector beams. |Φ±⟩: the SU(2)-like vector beam with diagonal intensity pattern where |+1⟩ orbit with diagonal polarization
|−2⟩ orbit with anti-diagonal polarization; |Ψ±

1 ⟩: anti-diagonal intensity pattern, |−1⟩ orbit with diagonal polarization |+2⟩ orbit with
anti-diagonal polarization; |Ψ±

2 ⟩: anti-diagonal intensity pattern, |+2⟩ orbit with diagonal polarization |−1⟩ orbit with anti-diagonal
polarization; |Ψ±

3 ⟩: diagonal intensity pattern, |−2⟩ orbit with diagonal polarization |+1⟩ orbit with anti-diagonal polarization.

|ψ⟩= α1 |+ℓ⟩ |+⟩ |1⟩ |H⟩+α2 |−ℓ⟩ |+⟩ |1⟩ |H⟩
+α3 |+ℓ⟩ |+⟩ |1⟩ |V⟩+α4 |−ℓ⟩ |+⟩ |1⟩ |V⟩
+α5 |+ℓ⟩ |−⟩|1⟩ |H⟩+α6 |−ℓ⟩ |−⟩|1⟩ |H⟩
+α7 |+ℓ⟩ |−⟩|1⟩ |V⟩+α8 |−ℓ⟩ |−⟩|1⟩ |V⟩
+α9 |+ℓ⟩ |+⟩ |2⟩ |H⟩+α10 |−ℓ⟩ |+⟩ |2⟩ |H⟩
+α11 |+ℓ⟩ |+⟩ |2⟩ |V⟩+α12 |−ℓ⟩ |+⟩ |2⟩ |V⟩
+α13 |+ℓ⟩ |−⟩|2⟩ |H⟩+α14 |−ℓ⟩ |−⟩|2⟩ |H⟩
+α15 |+ℓ⟩ |−⟩|2⟩ |V⟩+α16 |−ℓ⟩ |−⟩|2⟩ |V⟩ , (117)

with 16 (4 partite and 8 maximumly entangled group) GHZ
states as eigenstates (just show the first maximumly entangled
group here):

∣∣Φ±〉= |+ℓ⟩ |+⟩ |1⟩ |D⟩± |−ℓ⟩ |−⟩|2⟩ |A⟩√
2

. (118)

For exploring more DoFs to extend the dimension in clas-
sical entanglement, we can utilize multi-LG SU(2) beams
[48, 49], where LG beams replace the Gaussian beams along
SU(2) orbits in a geometric mode based on ray-wave duality.
Thus, there is a main OAM state |+ ℓ⟩ along the propaga-
tion axis, but also OAM |+m⟩ along an SU(2) orbit. The
sub-OAM |+m⟩ has potential to be a DoF to reach higher-
dimensional entanglement. As shown in figures 29(e) and (f),
exotic beams can be obtained by the superposition of two
multi-LG SU(2) beams with opposite main OAM, realizing
the 32D entangled stated with 5-partite 16-group GHZ states

as eigenstates (just show the first maximumly entangled group
here):

∣∣Φ±〉= |+m⟩ |+ℓ⟩ |+⟩ |1⟩ |D⟩± |−m⟩ |−ℓ⟩ |−⟩|2⟩ |A⟩√
2

.

(119)

Besides findingmore DoFs, increasing the number of orbits
can also extend the dimension. The above demonstrations are
all at degenerate state |Ω= 1/4⟩. If we can control higher-
order degenerate state |Ω= P/Q⟩ (P and Q are co-prime
integers,Q is even), the general SU(2) geometric modes would
be extended into 4Q-dimensional space:

|ψ⟩=
∑
i=±ℓ

∑
j=±

Q/2∑
k=1

|i⟩ | j⟩ |k⟩(αijk |H⟩+βijk |V⟩). (120)

Involving the sub-OAM in multi-LG SU(2) beams, that can be
further extended into 8Q-dimensional space:

|ψ⟩=
∑
h=±m

∑
i=±ℓ

∑
j=±

Q/2∑
k=1

|h⟩ |i⟩ | j⟩ |k⟩

× (αhijk |H⟩+βhijk |V⟩) . (121)

The realization of high-dimensional classical entanglement
can pave the way for developing a myriad of novel applica-
tions of quantum mechanism using classical light.
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Figure 29. Towards higher-dimensional classical entanglement. Spatial SU(2) geometric beams can carry OAM and the OAM can be a DoF
manifesting additional dimensions in classical entanglement. (a) A superposed trajectory on SU(2) state |Ω= 1/4⟩ including the
positive-OAM and negative-OAM decomposed SU(2) trajectories, (b) which can exactly fulfill a complete SU(2) oscillation in a degenerate
cavity. (c) Based on the ray-wave duality, the corresponding geometric mode can be represented by the superposition of a positive-OAM and
a negative-OAM vortex SU(2) beams (the topological phase manifesting the OAM and intensity wave-packet are shown in the inserts). This
generalized beam can be expressed into 16-dimensional state with 4 DoFs and 16 eigenstates noted in (d). (e) An exotic multi-vortex
SU(2)-structured mode is obtained by the superposition of two multi-vortex SU(2) geometric modes with opposite main-OAMs, and the
sub-OAM carried by each sub-ray mode can also play as a new DoF, where the notation |±ℓ⟩ refers to the OAM topological charge at the
beam center (as marked by the yellow dashed circle) and |±m⟩ the OAM topological along each sub-ray (as marked by the purple dashed
circle). This generalized beam can be expressed into 32-dimensional state with 5 DoFs and 32 eigenstates noted in (f).

9. Potential applications

In recent years, the creation and control of various SU(2) struc-
tured light has made major breakthrough with more DoFs of
light tamed, which has promised the advances in a myriad
of applications. However, the development of these potential
applications is in its infancy. Thus, it is important to outlook
on some applications in this section.

9.1. Laser machining and fabrication

The recent development of solid-state laser allows not only the
generation of various SU(2) structured light but also higher
output power and energy beyond the threshold to be applied
in laser machining and fabrication [140]. Many advanced
laser technologies, e.g. Q-switching and mode-locking, were
used to generate high-power and large-energy pulse from a
laser, and these methods were applied in structured light laser
to generate high-power and large-energy SU(2) structured
light. The self-mode-locking effect of Nd:YVO4 crystal was

applied in solid-state laser to generate the SU(2) structured
ultrashort pulse with pulse-width about 30 ps and the aver-
age output power at 500 mW, which is applied for both planar
geometric modes [141] and vortex geometric modes [142].
Then, the passively Q-switching scheme was used to further
improve the output power with output energy and peak power
towards over 100 µJ and 10 kW [143]. Recently, a method for
optimizing high-power geometric mode is proposed, consid-
ering the thermal lensing effect in the gain medium, which
allows the output of geometric mode to hold several-Watt-
level average power [144]. Soon after, this power-optimizing
method was applied in higher-order SU(2) structured light
laser, which realized the Watt-level output and complex SU(2)
structure simultaneously [49]. Such high-power output optim-
ization was also verified in higher-order Lissajous structured
modes [145]. In short, the recent advance of high-power SU(2)
structured light laser has promised the enough power output
to be applied in laser machining and fabrication. The light
with complex spatial structure, especially the OAM structure,
has a great potential to be used in advanced chiral material
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Figure 30. Examples of potential applications. (a) Laser machining and fabrication: two-photon polymerization with femtosecond vortex
beam for direct laser writing of microtubes. Reprinted from [136], with the permission of AIP Publishing; (b) complex tweezers and
multi-particle manipulation: the trapping potential and force distributions induced by pulsed SU(2) cylindrical vector beams. Reprinted with
permission from [137]. Copyright © 2018, American Chemical Society; (c) topological photonics: SU(2) twisted wave packets of the right-
and left-traveling modes in a Weyl semimetal. Reproduced from [138]. CC BY 4.0; (d) high dimensional encoding and high-capacity
communication: simulating multiplexed vortices passing through a Dammann vortex grating. Reproduced from [139]. CC BY 4.0.

processing and fabrication [146]. While the SU(2) structured
light has more versatile spatial chiral structure than the com-
mon OAM beam to extend the frontier of material fabrication,
which leads to advanced photonic devices such as metama-
terials, ultra-sensitive detector, and chiral chemical compos-
ites. For example, the polygonal vortex beams can be used to
produce complex 3D spiral polygonal microtubes for realizing
novel polymerized functional devices [136], see figure 30(a).

9.2. Complex tweezers and multi-particle manipulation

With the application of optical force in biology, physics and
chemistry, numerous optical tweezers and optical trapping
with different properties appeared in people’s field of vision
[147]. Optical tweezers commonly refer to utilizing gradient
and scattering forces of electromagnetic fields to manipulate
micro- and nano-particles [148]. The customization of pattern
andOAMhas become the focus of research [149–151], includ-
ing multi-spots optical trapping [149, 152], polygonal optical
trapping [153], three dimensional optical trapping [154, 155],
etc. Utilizing structured light to manipulate various micro-
or nano-particles has been a hot topic in past few decades,
such as Mathieu beams [156] and Ince–Gaussian beams [157]
for 3D assembly of micro-particles, perfect vortex beam and
asymmetrical vortex Bessel-Gaussian beams [158] for trap-
ping micro-particles [159], non-diffracting Airy beams array
for optical trapping [160] and many other advanced optical

manipulations based on complex beams [152, 153, 161, 162].
SU(2) geometric beams with complex and customized spatial
structure, including the OAM structure and intensity shape,
have a great potential to be a toolkit in advanced optical manip-
ulation. Based on holographic method, the generation and
dynamic control of SU(2) geometric beams can be accurately
and rapidly realized with high-quality via SLM [58], which
is significant for flexible and controllable optical trapping and
manipulation [163]. Besides, polarization and nonlinearity of
light beams can also be practical tools to realize optical trap-
ping and manipulation [137], see figure 30(b). The complex
polarization structures of SU(2) geometric beams with mul-
tiple DoFs have been constructed [62, 164], demonstrating the
potential applications of SU(2) geometric beams with exotic
hybrid vector structure in complex tweezers and multi-particle
manipulation. Researching the nonlinearity of SU(2) geomet-
ric beams would be an attractive topic to reveal more signific-
ant applications in optical manipulation.

9.3. Topological photonics

Since the discovery of topological phases and topological
insulators in modern natural science, topological phenom-
ena are ubiquitous in physics, with explorations spanning
areas from condensed-matter physics to physical cosmology
[165, 166]. In which, an important branch is topological
photonics, that emulates concepts in condensed matters
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Figure 31. (a) A customized ray-wave frequency degenerate state in laser resonator, which can realized by a manifold rotating-mirror
geometric solid-state cavity, (b) the structured laser emission of various frequency-degenerate SU(2) geometric modes fulfills a mechanism
of photonic Landau levels [171]. (c) The topological structure in real space of photonic Landau level laser shares a similar form of k-space
structure of a topological Chern insulator, (d) and the direct measurement of the Chern number in bulk topology requires a
disorder-insensitive probe of bulk chiral nonreciprocity [172].

and topological insulators into optical or photonic systems
[167–170]. The frequency-degenerate cavity and the enabled
SU(2) geometric modes also play import role in extending
the frontier of topological photonics. It was proposed that
the photonic Landau levels can be realized in an SU(2) geo-
metric mode laser cavity, see figure 31(a), with controlled
frequency-degenerate states, see figure 31(b), exactly emulat-
ing the fermion energy level motion in a synthetic magnetic
field [171]. Due to the similar topology of topological Chern
insulators, see figures 31(c) and (d), the Landau levels of SU(2)
structured light laser can be used to realize electromagnetic
and gravitational responses of photonic quantum Hall mater-
ials, enabling enable precise characterization and metrology
of topological matter in photon fluids [172]. Moreover, with
light-mater interaction using such topological effect of struc-
tured light, the photonic Laughlin mater can be made to reveal
deeper ordered states and new DoFs in light [173, 174].

Besides, significant advances have been made in high
dimensional topological photonics [175, 176]. A concept of
three-dimensional (3D) topological twistronics has been pro-
posed based on a 3D layered systems with a constant twist
angle between successive layers, providing a novel method
to realize topological physics [138], see figure 30(c). SU(2)
geometric beams also have 3D spatial distortion property in
free-space propagation, which could be used to simulate the
3D topological twistronics to research high-dimensional topo-
logical physics. Active topological photonics is also a rap-
idly developing field due to its wide applications in topo-
logical lasers, topological edge modes, non-Hermitian topo-
logical physics, and singular optics, etc [177, 178]. SU(2)
geometric beams can provide richly exotic topological phase
structure for active topological photonics. Although most of
advances in topological photonics is oriented to theoretical
research, some technical works have been made. For example,
terahertz topological photonics was used to realize low-cost,
efficient and high-speed on-chip communication [179].

Topological photonics is a very attractive topic for many
frontier fields such as topological quantum photonics [180],

non-Hermitian topological photonics [181], topological insu-
lator laser [182, 183], toroidal light [184, 185], optical skyrmi-
ons and bimerons [186, 187], and calling for more funda-
mental ideas and exciting applications [188]. Exploring the
classical structured light to simulate the topological photonics
would be a significant direction and SU(2) geometric beams
could offer a powerful tool to research classical simulation of
topological photonics.

9.4. High-capacity encoding and communication

High dimensional encoding and high-capacity communic-
ation are attractive topics and structured light applied in
related fields has been researched for few decades [20, 105,
189, 190]. Various properties of structured light such as
OAM evolution and spatial mode structure have been demon-
strated that can be used to improve high-dimensional cryp-
tography and secure communication [191–193]. The spatial
topological structure is significant for mode-division multi-
plexed method because spatial mode have shocking infinite
DoFs in theory [194–196]. SU(2) geometric beams have rich
spatial mode structures which can be accurately controlled
by a series of parameters, which is a great advantage for
expanding encoding dimensional and communication capa-
city. Meantime, the digital generation and modulation meth-
ods make it more flexible in coding and channel multiplexing
[58, 139], see figure 30(d). Importantly, the SU(2) geomet-
ric light have other versatile DoFs, including central OAM,
partial OAM and coherent-state phase, while all DoFs can
be used for constructing higher dimensions optical commu-
nication and broadening the communication capacity. Fur-
thermore, pulsed SU(2) laser and mode-locked SU(2) laser
[141, 142, 197] were generated, which can be applied for
more potential applications in high-dimensional encoding and
high-capacity communications [193]. Besides, a multiplex-
ing method for high-capacity communications without more
bandwidth was proposed by exploiting the spatial shapes
of ‘twisted’ photons [198], which provides a novel idea
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for expanding communication capacity. Interestingly, SU(2)
geometric beams also have ‘twisted’ orbits during propaga-
tion in free space, which exotic spatial structure would have
large potential applications in high-capacity and low-error-rate
communications [199]. And another twisted optical commu-
nication solution was also researched by using OAM [200].
SU(2) geometric beam has multi-DoFs and exotic spatial
structure, demonstrating its widely potential applications in
realizing high dimensional encoding and high-capacity com-
munications [199]. Recently, a precise detection method for
multiple DoFs of SU(2) structured light was realized assisted
by deep-learning, which also enables the design of new secret
sharing protocol for high-security communications [201].

9.5. High-dimensional quantum information processing

Advancements in photonic quantum information processing
have proven fruitful in the recent decade. The execution of
cryptographic and computational protocols in the canonical
polarization basis has enabled for the demonstration of these
protocols. This is because polarization states are easy to con-
trol with readily available simple optical elements. For this
reason, accelerated progress is now leading towards commer-
cial deployment. However, the limiting factor with polariza-
tion encoding is low dimensionality, i.e. d = 2 dimensional
encoding, which limits the information capacity per encoded
photon. Much effort have been focused on accessing alternat-
ive DoFs by using the temporal and spatial DiFs to push the
limits of what was previously possible.

There has been significant progress in the spatial and with
hybrid spatial and polarization encoding [202, 203], of in
quantum key distribution [204–206], quantum secret sharing
[207–209] and computing [210, 211]. Many such quantum
protocols benefit from the higher information capacities [203],
higher quantum bit error rate thresholds [204] as well as high
tolerance to noise [212]. The attraction towards using clas-
sical light sources instead of pure single photons, is the avail-
ability, high photon yields and ease of control. Pure single
photon sources are in their infancy while generating multi-
photon entanglement correlations can be a cumbersome task
and the generation methods can be highly inefficient.

For this reason, advancements with single particle or clas-
sical light sources are culminating. We envisage that SU(2)
structured beams can be disruptive since they open up the
potential of accessing high dimensional states and multiple
DoFs in a simpler way than previously possible. The rich spa-
tial structure gives access to alternative DoFs which can play
a crucial in increasing the dimensionality [62] and access-
ible DoFs [213]. We have seen that interfacing numerous
DoFs can greatly improve the execution of quantum gates. For
example, the radial and azimuthal [214] and path DoF [215]
have been used to demonstration the implementation of vari-
ous quantum gates [214] while in quantum secret sharing it
enabled for enacting simple unitary operations via dynamic
phase control [208].

The control of numerous DoFs in light fields, which the
SU(2) geometric beams posses, can be beneficial for the imple-
menting of multibit gates for quantum computing [216], e.g.

C-Not qutrit gates [217]. Moreover the extension of numerous
quantum computing with classical light is well underway,
with demonstrations also exploiting the internal DoFs of laser
beams. Such techniques can be easily scaled up by increas-
ing the dimensions and DoFs. The main advantage of using
classical light in quantum computing, is higher signal (many
photons) and implementation of quantum logic gates with
simple linear optical elements that cheap and readily avail-
able. The SU(2) geometric light fields offer the key compon-
ents that are required for high dimensional state encoding; high
dimensional alphabet formed by OAM states, ray states and
polarization states.

9.6. Others

In short, SU(2) geometric beam has various potential applic-
ations due to its exotic spatial mode, OAM evolution, and
vector property coupled with polarization, etc. In addition to
these potential applications above, there are so many other
potential applications such as particle acceleration [218–221],
spin-orbit Hall effects [222–225], optical frequency comb
metrology [226–228], imaging and holography [229–231],
waiting for researchers to explore. With recent development of
ultrafast optics, the SU(2) wave packets were also studied in
structured femtosecond-level ultrashort laser pulse and atomic
dynamics in its interaction with matters [232, 233].

10. Perspectives

Structured light refers to the ability for arbitrarily tailoring the
distribution of amplitude, phase, polarization, OAM and other
DoFs of light, but only recently has it been possible to control it
in all its DoFs and dimensions, fueling fundamental advances
and applications alike. More importantly, these achievements
were largely dependent on generally exploiting of the fun-
damental symmetries of optical systems, standing out among
which is the SU(2) symmetry:

• SU(2) symmetry constitutes a cornerstone of the description
of general photon flow systems;

• SU(2) symmetry acts its role of fundamental mathematics in
modeling complex optical effects in both quantum and clas-
sical mechanics, such as photon statistics, beam splitting,
and spin-to-orbital coupling. With the recent development
of structured light;

• SU(2) symmetry shows its efficacy on ‘pushing the limits’
with structured light towards full control of all DoFs and
high dimensions.

However, today, usage of such powerful tool in shaping
light is still in a fragmented fashion in structured light com-
munity, many researchers involuntarily used it in shaping
light, but missed opportunities for improving the versatile tun-
ablity due to the lack of solid knowledge background on the
general theories.

SU(2) symmetry acts as the resource to generate tremend-
ous families of novel structured light beams, which is applied
to represent a complete set of spatial eigenmodes, as well to
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interpret more complex coherent structured mode. In contract
to the conventional structured beams, SU(2) structured light
can not only hold classic optical properties, e.g. vortex beams
carrying OAM and spin-to-OAM conversion of light, but
also extend more parameters and DoFs to represent high-
dimensional structures of light.

This tutorial systematically summarized the mathematical
bases of SU(2) symmetry, SU(2) transformation, and SU(2)
coherent state, as an elegant unification of classic SU(2) theory
and advanced structured light, and demonstrated how the the-
ory of SU(2) states is applied to coupled oscillators (classical
and quantum) and then transferred to structured light. SU(2)
structured light represents themost general symmetry and geo-
metry to tailor light, including not only the various multi-
path, multi-HLG, Lissajous-to-trochoidal geometric modes,
etc that we mainly discussed in this tutorial, but also many
other kinds of exotic wave packets to be explored. Although
the SU(2) theories are existed for a long history, the devel-
opment and applications of SU(2) structured light are still
in adolescence, promising opportunities of its usage towards
higher-dimensional energy and information carriers, as well
as more and more potential applications are requiring the tail-
oring of more general and complex geometry of light.
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