The University of Southampton
University of Southampton Institutional Repository

AI3SD Video: Accelerating design of organic materials with machine learning and AI

AI3SD Video: Accelerating design of organic materials with machine learning and AI
AI3SD Video: Accelerating design of organic materials with machine learning and AI
Deep learning is revolutionizing many areas of science and technology, particularly in natural language processing, speech recognition, and computer vision. In this talk, we will provide an overview of the latest developments of machine learning and AI methods and application to the problem of drug discovery and development at Isayev’s Lab at CMU. We identify several areas where existing methods have the potential to accelerate materials research and disrupt more traditional approaches. First we will present a deep learning model that approximates the solution of Schrodinger equation. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions. Second, we proposed a novel ML-guided materials discovery platform that combines synergistic innovations in automated flow synthesis and automated machine learning (AutoML) method development. A software-controlled, continuous polymer synthesis platform enables rapid iterative experimental–computational cycles that resulted in the synthesis of hundreds of unique copolymer compositions within a multi-variable compositional space. The non-intuitive design criteria identified by ML, which was accomplished by exploring less than 0.9% of overall compositional space, upended conventional wisdom in the design of 19F MRI agents and led to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.
AI, AI3SD Event, Artificial Intelligence, Chemistry, Drug Discovery, Machine Intelligence, Machine Learning, Materials Discovery, ML, Scientific Discovery
Isayev, Olexandr
8e458df3-cab9-455b-93d0-517e9e0882fa
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Isayev, Olexandr
8e458df3-cab9-455b-93d0-517e9e0882fa
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f

Isayev, Olexandr (2021) AI3SD Video: Accelerating design of organic materials with machine learning and AI. Frey, Jeremy G., Kanza, Samantha and Niranjan, Mahesan (eds.) AI3SD Autumn Seminar Series 2021. 13 Oct - 15 Dec 2021. (doi:10.5258/SOTON/AI3SD0162).

Record type: Conference or Workshop Item (Other)

Abstract

Deep learning is revolutionizing many areas of science and technology, particularly in natural language processing, speech recognition, and computer vision. In this talk, we will provide an overview of the latest developments of machine learning and AI methods and application to the problem of drug discovery and development at Isayev’s Lab at CMU. We identify several areas where existing methods have the potential to accelerate materials research and disrupt more traditional approaches. First we will present a deep learning model that approximates the solution of Schrodinger equation. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions. Second, we proposed a novel ML-guided materials discovery platform that combines synergistic innovations in automated flow synthesis and automated machine learning (AutoML) method development. A software-controlled, continuous polymer synthesis platform enables rapid iterative experimental–computational cycles that resulted in the synthesis of hundreds of unique copolymer compositions within a multi-variable compositional space. The non-intuitive design criteria identified by ML, which was accomplished by exploring less than 0.9% of overall compositional space, upended conventional wisdom in the design of 19F MRI agents and led to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.

Video
AI3SDAutumnSeminar-031121-OlexandrIsayev - Version of Record
Available under License Creative Commons Attribution.
Download (558MB)
Text
03112021-AI3SDQA-OI
Available under License Creative Commons Attribution.
Download (55kB)

More information

Published date: 3 November 2021
Additional Information: Olexandr Isayev is an Assistant Professor at the Department of Chemistry at Carnegie Mellon University. In 2008, Olexandr received his Ph.D. in computational chemistry. He was Postdoctoral Research Fellow at the Case Western Reserve University and a scientist at the government research lab. During 2016-2019 he was a faculty at UNC Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill. Olexandr received the “Emerging Technology Award” from the American Chemical Society (ACS) and the GPU computing award from NVIDIA. The research in his lab focuses on connecting artificial intelligence (AI) with chemical sciences.
Venue - Dates: AI3SD Autumn Seminar Series 2021, 2021-10-13 - 2021-12-15
Keywords: AI, AI3SD Event, Artificial Intelligence, Chemistry, Drug Discovery, Machine Intelligence, Machine Learning, Materials Discovery, ML, Scientific Discovery

Identifiers

Local EPrints ID: 452737
URI: http://eprints.soton.ac.uk/id/eprint/452737
PURE UUID: ea08e66c-7dd4-459b-95c7-58d43c5aa4d1
ORCID for Jeremy G. Frey: ORCID iD orcid.org/0000-0003-0842-4302
ORCID for Samantha Kanza: ORCID iD orcid.org/0000-0002-4831-9489
ORCID for Mahesan Niranjan: ORCID iD orcid.org/0000-0001-7021-140X

Catalogue record

Date deposited: 17 Dec 2021 17:43
Last modified: 17 Mar 2024 03:51

Export record

Altmetrics

Contributors

Author: Olexandr Isayev
Editor: Jeremy G. Frey ORCID iD
Editor: Samantha Kanza ORCID iD
Editor: Mahesan Niranjan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×