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Auditory Brainstem Response Detection using Machine Learning: A Comparison with Statistical Detection Techniques
Abstract
OBJECTIVES: The primary objective of this study was to train and test machine learning algorithms to be able to detect accurately whether EEG data contains an ABR or not and recommend suitable machine learning methods. In addition, the performance of the best machine learning algorithm was compared to that of prominent statistical detection methods.
DESIGN: Four machine learning algorithms were trained and evaluated using nested k-fold cross-validation: a random forest, a convolutional long short-term memory network, a stacked ensemble, and a multilayer perceptron. The best method was evaluated on a separate test set and compared to conventional detection methods: Fsp, Fmp, q-sample uniform scores test, and Hotelling’s T2 test. The models were trained and tested on simulated data that were generated based on recorded ABRs collected from 12 normal-hearing participants and no-stimulus EEG data from 15 participants. Simulation allowed the ground truth of the data (‘response present’ or ‘response absent’) to be known.
RESULTS: The sensitivity of the best machine learning algorithm, a stacked ensemble, was significantly greater than that of the conventional detection methods evaluated. The stacked ensemble, evaluated using a bootstrap approach, consistently achieved a high and stable level of specificity across ensemble sizes.
CONCLUSIONS: The stacked ensemble model presented was more effective than conventional statistical ABR detection methods and the alternative machine learning approaches tested. The stacked ensemble detection method may have potential both in automated ABR screening devices as well as in evoked potential software, assisting clinicians in making decisions regarding a patient’s ABR threshold. Further assessment of the model’s generalizability using a large cohort of subject recorded data, including participants of different ages and hearing status, is a recommended next step.
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Introduction
The Auditory Brainstem Response (ABR) consists of a series of peaks and troughs in the electroencephalogram (EEG) amplitude following an auditory stimulus, and is generated by various structures in the auditory brainstem pathway (Hall, 2007). These peaks and troughs give the ABR its characteristic morphology. As ‘gold standard’ behavioral hearing thresholds are often predictable within a relatively close margin of the ABR threshold (±15 dB with a 90% confidence level for tone-pip stimuli) (Stapells, 2000), the ABR is useful clinically in objective hearing evaluation when behavioral tests are difficult to carry out. The earliest documented human ABR recordings in the literature were by Sohmer & Feinmesser (1967) and subsequently Jewett et al. (1970) who detected the evoked potential using a computer averaging technique and attributed the evoked response to the brainstem due to its short latency.

Interpretation of the ABR is reliant largely on the visual inspection of averaged waveforms by trained clinicians (British Society of Audiology, 2019), which is known to be highly variable (Vidler & Parker, 2004). Machine learning allows computers to learn complex tasks which would typically require human intelligence and pattern-recognizing abilities to perform (Nilsson, 1971 in McKearney & MacKinnon, 2019). Whilst statistical models are useful for inferring relationships between variables in order to make predictions based on certain statistical assumptions, machine learning algorithms attempt to maximize performance for any given task by mapping the variables to a specific outcome (Sidey-Gibbons & Sidey-Gibbons, 2019). This can allow complex non-linear relationships to be identified between observations and outcomes. Machine learning algorithms are currently amongst the most powerful techniques available for detecting complex relationships between variables, and have been found to exceed human expert-level performance in numerous fields (Sidey-Gibbons & Sidey-Gibbons, 2019), often considered the ‘gold standard’. Even if this level of performance is only matched, this may still be beneficial; automating systems to allow the best expert performance to be paralleled can help standardize performance between clinicians with varying levels of experience. It also has the potential to minimize healthcare inequalities by providing access to top-level signal interpretation in settings where training, experience and resources may be limited.

There have been several studies leveraging the effects of machine learning to detect the ABR (Alpsan, 1991; Acir et al, 2006; Davey et al, 2007; McKearney & MacKinnon, 2019). In 1991, Alpsan trained a multi-layer perceptron (with three layers) to classify waveforms into either being ‘response present’ or ‘response absent’. The input to the neural network was a smoothed, downsampled and then normalized averaged waveform. The model’s performance was reported to be comparable to that of a group of human experts with 75% accuracy. Acir et al. (2006) used a support vector machine (a type of machine learning algorithm) to classify ABR responses. Features were first extracted from the coherent average and stored in three separate feature sets. These feature sets were obtained from: raw amplitude values, discrete cosine transform (DCT) coefficients and discrete wavelet transform (DWT) coefficients. The best performance observed was obtained using the DCT coefficients with an accuracy of 98% compared to the labelling of two experts.

Davey et al. (2007) proposed a hybrid model (combining multiple existing models) which classified EEG waveforms using both time and frequency domain features. Extracted features included: a power ratio of the pre- and post-stimulus waveform, cross-correlation of repeated recordings, and a power ratio of the pre- and post-stimulus fast Fourier transform (FFT) amplitude values, amongst others. In a two-stage classification process, large response waveforms, defined as having a post/pre-stimulus time domain power ratio of >5, were classified with 95.6% accuracy. Smaller responses with a post/pre-stimulus time domain power ratio of <5 went on to a second stage of classification whereby separate time and frequency domain multilayer perceptron classifiers were ensembled by applying a Dempster-Shafer discounting factor (a method for combining evidence from different sources, in this case model outputs), producing a final classification output. An accuracy of 85.0% for these ‘weaker’ ABR responses was reported. This reporting acknowledges the significant variance in outcomes that can arise based on the magnitude of the responses in the data used to evaluate an algorithm.

In 2019, McKearney & MacKinnon reported the use of a convolutional neural network to classify pairs of ABR waveforms into either ‘response present’, ‘response absent’, or ‘inconclusive’, reflecting the guidance on ABR interpretation from the British Society of Audiology (2019). Some waveforms may not contain sufficient information in order for a clear decision regarding the presence or absence of the ABR to be made. This may be due to excess noise, an insufficient number of recording epochs, or there being a weak response close to the auditory threshold. Inclusion of the ‘inconclusive’ class allows for these responses and alerts the clinician that these responses should not be used to make clinical decisions regarding the patient’s ABR threshold. An accuracy of 93% across the three classes was reported, compared to the labelling of two audiologists using the prevailing British Society of Audiology guidelines (Sutton & Lightfoot, 2013).

Overall, previous studies suggest that machine learning methods can achieve a comparable performance in ABR detection to that of human experts with accuracies of 85-98% reported. The feature selection process, algorithms used, and model evaluation procedure vary substantially in these publications. Additionally, the ABR data used is extremely heterogeneous across studies, with different stimulus levels, recording conditions, and data labelling procedures being used. It is therefore difficult to directly compare the relative performance between the various algorithms presented in the literature. No previous studies have compared their novel machine learning detection methods with existing detection methods which could help to serve as a benchmark.

One limitation of previous research is the method used for labelling the data (‘response present’/‘response absent’) for the machine learning model to learn from and be evaluated upon. In all the aforementioned studies, labelling has been performed by one or more clinical experts who decide by visual inspection if an ABR is present or absent. Whilst this makes use of the current gold-standard for clinical ABR evaluation, this labelling process is subjective and may lead to sub-optimal training. In addition, when performance is evaluated based on human observers, optimal performance would be found when the method matches rather than exceeds the judgement of experts. ABR interpretation is known to be highly variable, even amongst experienced clinicians (Vidler & Parker, 2004), and therefore cannot provide a reliable ‘gold standard’ for the data labelling process. One way of overcoming this labelling paradox is to simulate ABR ensembles based on recorded data so that the ground truth is known (in this case whether an ABR is truly present or absent). This may allow a machine learning algorithm to exceed the current benchmark of human visual detection given the wealth of information which is overlooked when relying primarily on the visual inspection of averaged waveforms. 

Another limitation of previous studies is the lack of formal comparison to currently available detection methods. Note that a direct comparison of the accuracies reported in the literature is not possible given the heterogeneity of the datasets and labelling processes used. Inclusion of an analysis of eminent existing detection methods such as the Fsp, Fmp, Hotelling’s T2 test, and the q-sample uniform scores test may provide a yardstick, more readily allowing comparison between studies. 

The objective of the present study is to compare the performance of several machine learning algorithms with well-established conventional detection methods on simulated data where the ground truth of EEG data is known. This study uses subject recorded ABR data and no-stimulus EEG data to carry out multiple simulations in order to train and extensively evaluate the performance of a new technique for ABR detection using machine learning. The performance of the new detection method is compared to that of some well-established conventional statistical detection methods which serve as a benchmark, providing context to the performance metrics reported. The findings of this study may be used to inform the design of future extended clinical studies.

Materials and Methods
ABR data
The ABR data, described in previous publications (Chesnaye et al., 2018; Lv et al., 2007), were recorded from 12 normal-hearing participants (pure tone audiometry thresholds <= 20 dB HL at octave intervals between 0.25 – 8 kHz inclusive) aged between 18-30 (6 female; 6 male). These data are available from the University of Southampton Institutional Repository: http://doi.org/10.5258/SOTON/D0168. A 100 µs click stimulus was used with a stimulus rate of 33.3 Hz. Recordings were carried out in 10 dB increments ranging from 0 to 50 dB Sensation Level (SL – relative to the individual’s audiometric threshold). The behavioral click stimulus thresholds were obtained using a 10-dB-down, 5-dB-up sequence. Offline processing included: band-pass filtering from 30 to 1,500 Hz using a 3rd order Butterworth filter, downsampling to 5kHz, and artefact rejection set at ±15 µV. Across all of the ABR recordings, the mean number of recording epochs rejected was 0.5% (range 0.0 – 11.7%). This resulted in a mean of ~3,400 artefact-free epochs per recording. The chosen filter settings match the recommendations of the British Society of Audiology for recording ABRs (2019).

The coherent averages of the pre-processed ABR ensembles were later used as templates to simulate ABR ensembles (further discussed below). In order to only use templates where there was a high degree of confidence that a response was present (necessary to ensure the simulation contained a realistic ABR morphology), two independent audiologists were asked to visually inspect the templates to determine whether they contained a response according to the British Society of Audiology (2019) criteria of a clear response for replicated waveforms (there must be a high degree of correlation between the waveforms; waveforms must show the expected ABR morphology, latency and amplitude characteristics; waveforms must follow the expected latency and amplitude changes with stimulus level; and the response amplitude must be ≥ 40 nV and ≥ 3 times the background noise level). The waveforms were arranged into two sub-averages (~1,700 epochs each) per stimulus level along with the grand coherent average (Figure 1). In total, 48 coherent averages which both audiologists independently determined to contain a clear response were used as ABR templates to simulate data. Inter-observer agreement between audiologists was 93% (see Tables, Supplemental Digital Content 1, which shows the independent ABR ratings by the two audiologists). No responses from 0 dB SL were used.

No-stimulus EEG data
Spontaneous EEG data (i.e. without sound stimulation), previously recorded by Madsen et al, (2010; 2018) were used, which were collected under four conditions: sleep, lying still, blinking, and moving. Only data from the sleep and lying still conditions were used in this analysis, forming a database of 15 participants (~6.5 hours of EEG recordings). The no-stimulus EEG data were pre-processed offline in the same manner as the ABR data (described above).

Ethics
This study was granted ethical approval by the University of Southampton Faculty Ethics Committee (ERGO 55576).

Data simulation
In order to have a sufficiently large dataset on which to train and evaluate a machine learning model, data augmentation was applied, generating simulated recordings based on the subject recorded ABR and no-stimulus EEG data. The frequency domain bootstrap (FDB) (Chesnaye et al., 2021) was used to simulate numerous realistic and heterogeneous EEG ensembles based on the properties of the subject recorded no-stimulus EEG data. The FDB is a parametric bootstrap method which can be used to generate realistic EEG surrogate data which maintain a comparable spectral composition, envelope and time-varying change in amplitude to the original EEG from which they are derived (Chesnaye et al., 2021; Paparoditis, 2002). One portion of these surrogate ensembles were used to simulate ‘response absent’ data. For the remaining portion, the ABR templates derived from the subject recorded ABR data were scaled and added to simulate ‘response present’ data. By virtue of appearing in every recording epoch, the template becomes the de facto signal. The templates were scaled such that the SNR of the simulated ensemble matched the estimated SNR of the subject recorded ABR ensemble from which they were derived:

where Psignal is the average power of the coherent average and Pnoise the average power of the continuous unaveraged EEG (Chesnaye et al., 2018). In total, 60,000 ABR present and 75,000 no-stimulus ensembles were simulated, which were further partitioned as described below. Equal numbers of ensembles were generated for ensemble sizes of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 epochs.

Data partitioning
The simulated data were divided into a training set, threshold set and test set (Figure 2). The training set was used to train the machine learning models (described in the ‘Machine Learning Models’ section below), fine-tune the hyperparameters (also described below) and select the single best machine learning model. The threshold set was used to set the critical value of the model, such that the desired level of specificity (99%) would be achieved. Finally, the test set (previously unseen during the training and threshold phases) was used to evaluate the performance of the best machine learning model (trained on the entire training set data) and draw comparisons with existing detection methods. The number of ensembles per set was: 90,000 (training set), 15,000 (threshold set – no-stimulus data only), and 30,000 (test set). There was no participant overlap in the subject recorded participant ABR and no-stimulus EEG data which were used to simulate the ensembles between the training, threshold and test sets, i.e. data from each participant (ABR data or no-stimulus EEG data) appeared exclusively in only one of the training, threshold or test sets. Avoiding participant overlap between training and test sets is important in order to achieve a more accurate evaluation of a model’s generalizable performance on unseen data. 

Selecting the best machine learning algorithm using the training set
Wolpert & Macready's 'no free lunch' theorem (1997) suggests that there is no one machine learning algorithm that will perform best for all problems. The nature of the data and classification task must be considered, and multiple machine learning approaches may need to be explored. The first step of this study was therefore to use the training set data to compare several different machine leaning approaches and select the best one for subsequent evaluation using the separate test set data. In this study, the data from the training set was used for three purposes: to train the machine learning models (described below), to fine-tune their hyperparameters (e.g. learning rate and the number of neurons in the neural network), and finally to evaluate (validate) each machine learning algorithm in order to select the best-performing algorithm for further evaluation on the test set. Hyperparameters are tunable variables (e.g. the learning rate) which steer the machine learning process, and contrast with model parameters which are learnt directly from the data during the training process and are used to make predictions. Model training, hyperparameter tuning and algorithm selection need to be independent in order to prevent one process from influencing another, potentially leading to an optimistic bias when estimating model performance in a way that can be generalized to unseen data. Nested k-fold cross-validation is a technique for resampling without replacement which is able to achieve this (Varma & Simon, 2006). Over multiple iterations, different subsets (‘folds’) of the data are used to train the model, select the best hyperparameters and finally to select the best algorithm. The inner loop of nested cross-validation (leave-one-group-out) is used to select the optimal hyperparameters. The outer loop is used to train the model using the optimized hyperparameters and then evaluate the model on a separate fold of data, again using leave-one-group-out cross-validation. There were 9 outer loop folds, with each fold/group containing data from one unique no-stimulus EEG and ABR participant i.e. no participant overlap between folds. The inner loop contained 8 folds/groups. The choice of 9 folds in the outer loop and 8 folds in the inner loop reflects the leave-one-group-out cross-validation strategy employed and the number of participants who contributed ABR or no-stimulus EEG data to the training set. This cross-validation strategy was chosen based on the size of the dataset to maximize the amount of training data available in each iteration of cross-validation. This comes at the expense of increased computational cost compared to group cross-validation using a lower number of folds.

Hyperparameter selection
The hyperparameter space is often vast and it is not known a priori which hyperparameter combination will be best. Hyperparameters need to be methodically selected, typically within k-fold cross-validation which is computationally expensive. A compromise is therefore sought between exploring a wide range of hyperparameters and computational effort. Hyperparameter optimization in this study was performed using a randomized search of the hyperparameter space within nested k-fold cross-validation (Bergstra & Bengio, 2012).

Evaluation metric
In order to evaluate and compare the performance of machine learning algorithms and select the optimal hyperparameters, it is necessary to select an evaluation metric. The Receiver Operating Characteristic Area Under the Curve (ROC AUC) is an evaluation metric which amalgamates information regarding both sensitivity and specificity without the need for a critical value to be set a priori. The ROC curve represents the ability of a binary classifier to correctly discriminate between outcomes (here between ‘response present’ and ‘response absent’) as its detection threshold is varied. The area under the ROC curve (AUC) is widely accepted as an effective evaluation metric when comparing detection methods (Fawcett, 2006), and was used during training to both optimize model hyperparameters and to select the best machine learning algorithm.

Test set sensitivity and specificity analysis
Whilst ROC-AUC provides a single metric for evaluating specificity and sensitivity in combination, it does not quantify performance at any specific, clinically desirable false positive rate. A positive result in this context refers to the detection of an ABR, rather than the detection of a hearing loss. In the case of ABR detection, a false positive result would mean an incorrect ‘pass’ result for a newborn hearing screening test for a child who should otherwise have been referred onwards for further diagnostic assessment and subsequent audiological habilitation as appropriate. It can therefore be argued that the clinically relevant portion of the ROC curve corresponds to low false-positive rates and so in the present study the sensitivity will be investigated for a set specificity level of 99%, providing a false-positive rate of 0.01. This level of specificity was chosen as in clinical practice it is important to have a high degree of certainty when deciding that a response is present (British Society of Audiology, 2019). With the exception of the various modified q-sample uniform scores test statistics (Stürzebecher et al., 2001), commonly used statistical detection methods such as the Fsp (Elberling & Don, 1984), Fmp (Martin et al., 1994), q-sample uniform scores test (Mardia, 1972), and Hotelling’s T2 test (Hotelling, 1931) produce test statistics which follow a null distribution that can be derived from statistical theory under the hypothesis of ‘no ABR being present’ and some assumptions about the data. This allows the critical value for the test statistic to be determined for a given p-value of say 0.01, which theoretically provides 99% specificity. In practice however, some of the assumptions required, e.g. the independence of samples within or between epochs (Elberling & Don, 1984) may not be justified and the tests based on these theory-derived critical values may lead to inflated or reduced false-positive rates (Chesnaye et al., 2018). 

Setting the critical value of detection methods
The theoretical null distributions underlying the machine learning models and q-sample test (modified versions) are unknown. The critical value necessary to achieve the desired false positive rate therefore cannot be derived from theory. In the current study we evaluated two approaches to setting the critical value of these detection methods. The first was to use a set of ‘response absent’ data separate to the training and test sets (the threshold set) to determine the test statistic value that achieved the desired false positive rate of 1%. However, it was found that this method did not produce false positive rates consistent with those expected (see results section). A second approach to setting the critical value was therefore employed, utilizing bootstrapping to approximate the underlying null distributions and better control the false positive rate.

Bootstrapping is a useful technique that allows a p-value for a test statistic to be generated. Bootstrapping aims to estimate the null distribution of a test statistic by randomly resampling (with replacement) the recorded data. Following the approach previously described in the literature (Chesnaye et al., 2018; Lv et al., 2007), for each recording being evaluated (an ensemble of epochs structured as a matrix of shape N epochs by K samples), 500 random ensembles were generated from the recorded EEG. Rather than using the stimulus onset as the starting point for each epoch included in the resampled ensemble (as is the case for coherent averaging), in bootstrapping the starting points were randomly chosen throughout the continuous EEG recording. It is assumed that, because time-locking between epoch onsets and ABRs has been disrupted, these bootstrapped ensembles are representative of the no-stimulus condition and can hence be used to approximate the null distribution of the statistic in question. The location of the original test statistic along this bootstrapped distribution provides an estimate of its statistical significance in the form of a p-value (Lv et al., 2007). In this study, the bootstrapped null distribution was generated from the samples contained within the analysis window of 1-15ms.

Conventional statistical detection methods
In order to provide a benchmark for evaluating the performance of the machine learning approach, some conventional statistical ABR detection methods were also evaluated. These were the Fsp (Elberling & Don, 1984), Fmp (Cebulla et al., 2000; Stürzebecher et al., 2001), q-sample uniform scores test (Mardia, 1972; Stürzebecher et al., 1999), q-sample uniform scores test modified to include the ranks of the spectral amplitudes (Stürzebecher et al., 1999), and Hotelling’s T2 test (Chesnaye et al., 2018; Golding et al., 2009; Hotelling, 1931).

The Fsp and Fmp provide an estimate of the SNR of the recorded EEG by using the variance of the coherent average as an estimate of the signal power. The power of the background noise is estimated from either the variance down a single (Fsp) or multiple columns (Fmp) of an ensemble matrix of shape N recording epochs by K EEG samples. The Fsp is defined as (Elberling & Don, 1984):

where N is the number of epochs,  is the coherent average, and SP is a single column of the ensemble matrix. The Fmp is an adaptation of the Fsp, taking an average of the variance calculated across M columns of the ensemble matrix, potentially providing a more stable estimate of the variance of the averaged background noise (Martin et al., 1994):

Both the Fsp and Fmp are assumed to follow theoretical F-distributions with a conservative 5 degrees of freedom (df) for the numerator (Elberling & Don, 1984). 

Hotelling’s T2 test is a multivariate extension of the Student’s t-test (Hotelling, 1931). In the time domain, the Hotelling’s T2 test is typically applied to a compressed version of the ensemble matrix in order to increase test performance. This compression is performed by taking the mean across several sample points within each epoch creating voltage means. The ensemble matrix is therefore compressed from a matrix of size N epochs by K samples into a matrix of N epochs by Q voltage means (time domain features) with Q being < K. The one-sample Hotelling’s T2 test estimates whether there is a significant difference between the average of each of the Q voltage means across N epochs (the coherent average) and an assumed mean of zero. To do so, the voltage means are weighted by the inverse of the feature covariance matrix, and then combined into a single test statistic (T2). The parameter Q for the number of voltage means is an important parameter that affects test performance; having too few voltage means reduces the ability of the test to resolve short duration changes in the response amplitude as these may be averaged out within a single voltage mean (Golding et al., 2009; Van Dun et al., 2015). In this study, the parameter Q was optimized based on ROC AUC and k-fold cross validation on the training set data. Whilst optimizing the number of voltage means it was found that, for certain ensembles, results became unreliable when using more than 35 voltage means. As the number of voltage means increases, consecutive voltage means become increasingly correlated, resulting in an increasingly ill-conditioned feature covariance matrix and hence unstable results (Lim et al., 2017). For this reason, the range of possible voltage means explored during optimization was limited to 2-35.

The q-sample uniform scores test (Mardia, 1972) is a frequency domain test which assesses the uniformity of the phase distributions across multiple spectral bands within the recorded EEG. If the EEG contains exclusively noise, the phase distribution is expected to be uniform. The modified version of the q-sample test (Stürzebecher et al., 1999) in addition to using ranked phase angles, includes the ranked spectral amplitudes. This modified version of the q-sample uniform scores test was chosen as it has been shown to perform better than the original q-sample uniform scores test in ABR detection (Stürzebecher et al., 1999). For both versions of the q-sample uniform scores test, the number and range of spectral bands to be included were optimized using ROC AUC and k-fold cross-validation applied to the training set. An additional parameter optimized for both versions of q-sample test evaluated was whether zero-padding was used to improve the FFT frequency resolution, or not.

Machine learning approaches
The following four machine learning algorithms in combination with different feature extraction techniques were evaluated on the training set, after which the best performing model was selected to be evaluated on the test set. 

Multilayer perceptron
The multilayer perceptron (MLP) is a commonly used artificial neural network architecture made up of multiple layers of interconnected perceptrons (a perceptron being a single layer of artificial neurons) imitating the interconnectedness of neurons in the brain (McCulloch & Pitts, 1943). This model was trained using features extracted from the coherent average of the ensemble using the DWT. The DWT is a versatile signal processing technique able to capture and localize transient features (Subasi, 2007). DWT was performed using a biorthogonal wavelet (a family of wavelets which exhibit symmetry and linear phase) (‘bior5.5’) (Bradley & Wilson, 2004; Zhang et al., 2005). The dimensionality of the input data was reduced by extracting statistical features of the coefficient subbands including: skew, kurtosis, and root mean square (43 input features in total) (Kandaswamy et al., 2004). This approach of combining statistical features extracted using the DWT of EEG data was used successfully by Subasi (2007) to help detect seizure activity.

Convolutional-LSTM
This model combines a convolutional neural network (CNN) with a Long Short-Term
Memory (LSTM) layer and will be subsequently referred to as CNN-LSTM. Convolutional neural networks make use of filters with learned weights to generate feature maps (a processed version of the data inputted to the layer). Pooling layers within the network then downsample these feature maps. Convolutional and pooling layers in combination confer local translation invariance, meaning that the same signal will be equally well detected even if the response latency is slightly different to that seen previously by the network. This characteristic is understandably useful in detecting evoked responses, which exhibit variable latencies. The stacking of consecutive convolutional layers also allows the temporal hierarchy (equivalent to the spatial hierarchy for image processing) of patterns to be learnt (Yamashita et al., 2018), e.g. it would be beneficial to learn that the trough of SN10 should follow the peak of wave V.

Unlike the MLP and random forest (described below) algorithms, a CNN-LSTM network is adept at dealing with sequential data. This model received an input of three feature vectors: the coherent average of the ensemble, a denoised version of the coherent average using the Teager-Kaiser energy operator (TKEO) (Kaiser, 1990), and a sequence of the Student’s t-test statistic p-value calculated down each column of samples within the ensemble. The TKEO has been found to improve the SNR and detection of event onsets (Li et al., 2007). The use of this machine learning algorithm in the present study and its architecture was influenced by the results of McKearney & MacKinnon (2019). Given the input variables and model architecture used, this deep neural network may be crudely considered as being a machine learning approach to template matching.

Random forest
A random forest is a type of machine learning algorithm which is formed of an ensemble of decision trees each trained on a bootstrapped subset of the training data. This process is known as ‘bagging’, a contraction of ‘bootstrapped aggregation’, and can lead to improved generalizable performance (Breiman, 1996). The aim of this model was to amalgamate the benefits of various existing detection methods by using machine learning. This was achieved by engineering input features for this model using conventional statistical detection methods, namely: Fmp, q-sample uniform scores test, residual noise within the coherent average, Hotelling’s T2 test (applied 34 times with different voltage means parameters from 2 to 35), giving a total of 37 features. To accommodate the different ensemble sizes that the model was trained on, the p-values of the detection methods were used as opposed to the raw test statistics which are ensemble-size dependent.

Stacked ensemble
Stacked ensembles are the algorithmic manifestation of the adage ‘two heads are better than one’. Here, two or more base models feed their output predictions into a final second-layer model which weighs up these predictions to produce a final output (Wolpert, 1992). This aggregation of multiple base models often leads to improved generalizable performance. The base models in this ensemble were the CNN-LSTM and random forest as described above, thereby combining the template matching focus of the CNN-LSTM network and the focus on statistical detection of the random forest. The outputs of these two base models were provided as inputs to the deciding meta-estimator which was a logistic regression classifier (see Figure, Supplemental Digital Content 2, which contains the model architecture and optimized hyperparameter values). The machine learning models were constructed using a combination of the Keras (Chollet‬ & and others, 2015) and scikit-learn (Pedregosa et al., 2011) Python libraries.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Results
Statistical detection method optimization using the training set data
Based on optimization using the training set data, the optimized number of voltage means for Hotelling’s T2 test was found to be 16, with near-equivalent performance across the range of 15-30 voltage means. The optimized q-sample uniform scores test included spectral bands between 30 and 600 Hz, and those between 30 and 1350 Hz for the modified version of the test. Both q-sample uniform scores test methods achieved higher training set ROC AUC scores when zero-padding was applied.

Training set cross-validation
The ROC AUC scores across the 9 validation folds of the outer loop of nested k-fold cross-validation applied to the training set data were used to produce Figure 3. 

For each detection method, the distribution of ROC-AUC scores across folds were visually inspected using Q-Q plots and determined not to be normally distributed. A Friedman test was used to compare the training set cross-validation scores between detection methods and a significant difference between detection methods was found: χ2(8) = 53.2, p < 0.001.

Training set post hoc analysis
Post hoc pairwise multiple comparisons of ROC-AUC scores between ABR detection methods were performed using the Wilcoxon signed-rank test. The p-values were adjusted for multiple comparisons using the Benjamini-Hochberg method to maintain a false discovery rate of 0.05 (Benjamini & Hochberg, 1995). The Benjamini-Hochberg method provides a balance between mistakenly rejecting the null hypothesis (false negative) and mistakenly accepting it (false positive). It is more powerful than some other methods which control the familywise error rate (the probability of falsely rejecting one or more null hypotheses when testing multiple hypotheses). 

Hotelling’s T2 and the modified and unmodified versions of the q-sample uniform scores test were the best performers amongst the conventional statistical detection methods evaluated; in this group, the only statistically significant differences were between the modified q-sample test and Fsp/Fmp. The stacked ensemble and random forest performed significantly better than all of the 5 conventional detection methods evaluated. Of the machine learning algorithms evaluated, the stacked ensemble and associated hyperparameter optimization procedure had the highest mean and median ROC AUC score across the 9 outer folds. This algorithm was therefore selected as the best machine learning algorithm to be used in the next stages of evaluation: to have its detection threshold adjusted to achieve the desired false positive rate (0.01) using the threshold set and subsequently evaluated on the test set. The optimized hyperparameters for the stacked ensemble were identical across 6 of the 9 outer folds, which in combination with consistent good performance across outer folds, suggested a stable and effective algorithm.

Evaluation of the final model on the test set
Specificity analysis
Specificity in the context of the present study is the proportion of ‘response absent’ ensembles which were correctly identified. The Hotelling’s T2 test and stacked ensemble (bootstrapped) were the only two methods to consistently (for ≥ 8/10 ensemble sizes) achieve a specificity within the 95% confidence interval of the expected binomial distribution (Figure 4). The binomial distribution provides the range (e.g. 95% confidence interval) for the number of false positives expected for a given number of trials and nominal false positive (alpha) level (Chesnaye et al., 2018). The specificity for the Fsp and Fmp detection methods was above the expected range across all 10 ensemble sizes. The stacked ensemble, which had its critical values per ensemble size set using the separate threshold set, and q-sample uniform scores test consistently achieved a specificity below that which was expected. Because of this, a second approach for controlling the false positive rate using the bootstrapping was employed (see methods section) which achieved a specificity within the 95% confidence interval for 8/10 ensemble sizes (Figure 4). Further evaluation of the q-sample uniform scores test applied without zero-padding is provided in Table 1.

Sensitivity analysis
Effective detection is a trade-off between sensitivity and specificity. The balance between sensitivity and specificity is altered by adjusting the critical value (threshold) of the detection method. In order to allow a fair comparison of response detection between methods, the critical value for response detection for each method was adjusted to the level that achieved a false positive rate of exactly 0.01 on the test set ‘response absent’ data. Given the trade-off between sensitivity and specificity, this approach allows the sensitivity analysis to be independent of the previous specificity analysis preventing models which had a lower specificity from having an unfair boost in sensitivity (Chesnaye et al., 2018). The detection rates for each method were compared for each ensemble size (Figure 5) after correcting the critical values to those achieving a false positive rate of precisely 0.01 (99% specificity). Cochran’s Q test demonstrated a significant difference between all seven detection methods for each ensemble size (p < 0.001). Post hoc testing using a pairwise McNemar test between each detection method for each ensemble size was performed with the Benjamini-Hochberg correction applied to control for multiple comparisons. The stacked ensemble and the stacked ensemble (bootstrapped) both performed statistically significantly better than all 5 conventional detection methods evaluated across all ensemble sizes (largest adjusted p < 3×10-6). Of the conventional statistical detection methods, Hotelling’s T2 and the modified q-sample test performed the best. The differences between these two methods were largely not statistically significant across ensemble sizes apart from for ensembles of 100 epochs where Hotelling’s T2 performed significantly worse than both versions of the q-sample test. This can likely be attributed to the limitations of the Hotelling’s T2 test for small sample size data (Dong et al., 2016). Hotelling’s T2 and both versions of the q-sample test were found to be significantly better than both Fsp and Fmp for ensembles of 300 -1,000 epochs. When considering the statistical significance of these results it is important to be mindful that simply increasing the number of simulations would increase the power of the study to detect a significant difference, and therefore the absolute difference in performance observed may be more meaningful.

Analysis of detection performance by SNR
The test set simulations aimed to maintain a realistic SNR for each ABR template used by matching the SNR of the simulated ABR present data to that of the subject recorded ABR data. This was useful in bringing authenticity to the simulations and ensured that templates from the subject recorded ABR ensembles were scaled to a physiologically representational amplitude. It is also useful when evaluating detection methods to observe their performance across various fixed SNRs. To do this the same test set data were resimulated using fixed dB steps in SNR. The 12 ABR templates from the test set were added to the 1,500 no-stimulus test set ensembles of 1,000 epochs and scaled to achieve a set range of SNRs (Figure 6). When evaluating the detection methods, the critical value was set as the level which achieved a false positive rate of 0.01 on these 1,500 no-stimulus ensembles prior to the scaled ABR templates being added. The stacked ensemble was able to detect a higher proportion of responses compared to the conventional detection methods.

Discussion
Interpretation of the ABR in the clinical setting is typically reliant on visual inspection by the clinician whose interpretation may be informed by the additional use of statistical detection methods such as Fsp/Fmp. Although visual inspection by experts in known to be highly-variable (Vidler & Parker, 2004), it has been considered the gold-standard as humans are often considered the de facto best pattern recognizers. Increasingly, with advances in AI, this is no longer considered to be the case. The current work seeks to develop and optimize such AI methods for the detection of the ABR and to identify promising approaches for follow-on larger scale clinical studies which should include participants with hearing loss as well as participants with normal hearing. The results suggest that these tools have strong potential in providing clinicians with additional support in detecting hearing thresholds from ABR recordings. 

This study evaluated new objective methods for detecting the ABR using machine learning and compared their performance to that of optimized conventional detection techniques using simulated data. Overall, the results suggest that machine learning techniques can offer an improvement on conventional ABR detection methods, with the proposed stacked ensemble model being most effective at distinguishing between EEG containing an ABR response and EEG containing no response. The stacked ensemble using a bootstrapped output achieves consistently high specificity across ensemble sizes which is important clinically in order to avoid false positive results. The level of sensitivity attained was significantly better than the other detection methods evaluated. At a SNR corresponding to that of ABR data recorded at 0dB SL, the stacked ensemble had a detection rate of 0.14 (Figure 6). For the Fsp and Fmp to achieve the same detection rate, the SNR had to be increased by ~4 dB; this corresponds approximately to having to increase the stimulus level by 10 dB SL to achieve the same detection rate at around threshold. This modest improvement in performance may translate to larger benefits at the population level when applied to, for example, national newborn hearing screening. On the individual level, improved accuracy of estimated behavioral thresholds would be beneficial when prescribing amplification. Note that the stacked ensemble receives input features derived from conventional test statistics and so is not entirely distinct from these methods of ABR detection. The stacked ensemble detection method may offer potential both in automated ABR screening devices as well as in evoked potential software aiding clinicians in making decisions regarding a patient’s ABR threshold. 

Of the conventional detection methods evaluated, the modified q-sample uniform scores test and Hotelling’s T2 were found to be the most effective. Based on its low computational complexity, stable test specificity and high sensitivity, the Hotelling’s T2 test may serve as an effective benchmark for future studies allowing comparison of results between heterogeneous datasets. The differences in the datasets, methodology and outcome measures used between studies evaluating new algorithms on ABR detection performance make comparisons between studies challenging. We expect that the common use of one test would facilitate such comparisons in the future and propose that the Hotelling’s T2 test be chosen for this task. 

Bootstrapping the stacked ensemble model output provides a p-value for the significance of the results, which can then be easily interpreted. This obviates the need for pre-determined model thresholds to be established using no-stimulus data (Chesnaye et al., 2018), which in the present study were not found to generalize well between the data sets (Figure 4). The bootstrap method has the drawback of increasing the computational cost, increasing the time of a single prediction by the stacked ensemble from ~0.5 seconds to ~4 minutes using a laptop computer, and 500 bootstrap samples. While this is excessive for practical use, there are extensive possibilities for reducing the computational time by simplifying the model (e.g. decreasing the number of trees in the random forest), stricter feature selection, streamlining the software code for efficiency, improved use of computational hardware (e.g. GPUs), and decreasing the desired p-value resolution (reducing the number of bootstrap resamples). However, the latter comes at the cost of a reduced p-value test-retest reliability due to random variation in the bootstrapped surrogates. Now that the performance benefits of the machine learning methods have been noted, further work on improving computational efficiency is justified and called for.

Specificity analysis
The only detection methods to maintain a specificity within the 95% confidence interval of the expected binomial distribution consistently (across ≥8/10 ensemble sizes) were Hotelling’s T2 test and the stacked ensemble (bootstrapped). The Fmp and Fsp were found to have significantly lower false positive rates than that expected when assuming a theoretical F-distribution with 5 df. This finding is in agreement with previous work (Chesnaye et al., 2018), and is primarily a result of the conservative 5 df of the numerator applied to these test statistics (Elberling & Don, 1984). Increasing the value for the degrees of freedom of the numerator would decrease the level of specificity, increasing the level of sensitivity. However, accurately estimating the degrees of freedom of the numerator from individual EEG recordings is challenging. By choosing a conservative 5 df for the numerator, we help ensure that the false positive rate will not be higher than expected across all data, at the expense of an excessively low false positive rate for some data. Note that the limitations of theoretical distributions may be overcome with bootstrapping to correct false positive rates.

The modified q-sample uniform scores test and stacked ensemble (without bootstrapping) methods achieved specificities significantly below that which was expected from a binomial distribution. The critical values for these two methods were set using a separate pool of no-stimulus EEG data (the threshold set). Given the relatively small pool of data from which the simulated data were generated, it may be that the distribution of these output statistics in the threshold set was not reflective of that in the test set. Note, bootstrapping the stacked ensemble model output lead to a much more stable specificity across ensemble sizes.

The lower than expected specificity observed for the q-sample uniform scores test was hypothesized to arise as a result of the zero-padding used (which was found to improve ROC AUC performance during optimization), violating the assumption of the test that the spectral bands are independent. Reanalysis without the use of zero-padding confirmed this to be the case, with specificities now largely falling within or just above the 95% confidence interval of the expected binomial distribution (Table 1). Note that removal of zero padding decreased the sensitivity of the test when adapting the critical value for a fixed type I error rate of 0.01.

Limitations
Whilst consideration has been applied to simulating the data as realistically as possible, the original subject recorded data on which the simulations were based is comprised of a relatively small sample of normal-hearing participants and hence findings should be treated with some caution. This is important when considering how well the presented model will generalize to unseen data in the clinical context. The presented work should be regarded as a proof of concept, the results of which may be used to inform subsequent studies. Any model implemented for clinical application will need to be trained and evaluated on a large body of recorded ABR and no-stimulus data in order to help avoid overfitting of the model to a small pool of data which can lead to poor model generalization. Bootstrapping and/or simulation may be useful tools in broadening the exposure of a model during training to improve its performance when exposed to the heterogeneity of real-life clinical data. It will be important for training data to reflect the recording equipment settings and the populations for which it will be used, with data both from individuals with normal hearing and from individuals with varying degrees of hearing loss. For example there are known spectral, latency and morphological differences in the ABR between neonates and adults (Spivak, 1993). Optimization of hyperparameters should also be performed using the targeted dataset as optimal hyperparameters may vary by target population. 

Conclusions
Various conventional and machine learning methods for detecting the ABR were evaluated using simulated data. In this study simulation was used as it provides control of data quality and error-free knowledge of whether a response is present or not. The stacked ensemble model was more sensitive than conventional statistical detection methods and was overall more effective than the alternative machine learning approaches investigated. By bootstrapping the output of detection methods, a consistent specificity across ensemble sizes was obtained without the need to define a predetermined detection threshold. In future research, training and evaluating the proposed model on a large body of real data will be necessary to determine how well the presented findings may generalize to a clinical setting.
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FIGURE LEGENDS
Figure 1.   Example ABR data.
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Figure 2.   Dataset.
The simulated data are divided into a training set, threshold set and test set, with no participant overlap between sets.
Figure 3.   Training set performance.
Box and whisker plots demonstrating the performance of each optimized detection method across the 9 outer validation folds of the training set. CNN-LSTM = Convolutional Long Short-Term Memory Network; MLP = Multilayer Perceptron.
Figure 4.   Test set specificity analysis.
Specificity achieved by each detection method for each ensemble size on the test set no-stimulus data. Based on having set critical values to achieve a target false positive rate of 0.01 a specificity of 0.99 was expected. The 95% confidence intervals were calculated from the binomial distribution based on an expected specificity of 0.99 and the number of ensembles evaluated (n = 1,500 per ensemble size).
Figure 5.   Test set sensitivity analysis.
Sensitivity achieved by each detection method on the test set (ABR present) data as a function of the number of recording epochs. The critical values for each of the detection methods were controlled to provide a false positive rate of exactly 0.01. The error bars are the 95% confidence intervals based on the estimated binomial distribution (n=1500) centered over each detection rate. 
Figure 6.   SNR analysis.
Detection rate by SNR. The critical values for each detection method have been adjusted to the level which achieves a false positive rate of 0.01 using the no-stimulus ensembles prior to ABR templates being added. The mean estimated SNR ± 1 SD of the subject recorded ABR ensembles at each stimulus level are added to provide clinical context to the detection rate across SNRs.

List of Supplemental Digital Material
Supplemental Digital Content 1. Tables showing the ABR assessor ratings.docx
Supplemental Digital Content 2. Stacked ensemble machine learning algorithm architecture and hyperparameters.docx


Figure 1
[image: ]


Figure 2
[image: ]


Figure 3
[image: ]


Figure 4
[image: ]


Figure 5
[image: ]


Figure 6
[image: ]


Supplemental Digital Content 1
	Assessor 1

	
	                                      Participant

	Stimulus
Level
(dB SL)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	50
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	40
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	30
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1

	20
	1
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	1

	10
	1
	0
	1
	0
	0
	1
	0
	1
	0
	0
	1
	0

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0









	Assessor 2

	
	                                      Participant

	Stimulus
Level
(dB SL)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	50
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	40
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	30
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	20
	1
	1
	1
	0
	1
	1
	0
	1
	1
	1
	1
	1

	10
	0
	0
	1
	0
	0
	1
	0
	1
	0
	1
	1
	0

	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0



Supplemental Tables.   Assessment of ABR data by two independent audiologists to determine which waveforms contained a clear response. Data considered to contain a clear response are marked as 1. All other data are marked as 0.  
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Supplemental Figure.   Stacked ensemble machine learning algorithm architecture and hyperparameters. The two base estimators of the stacked ensemble were a random forest and a CNN-LSTM network (combining Convolutional Neural Network and Long Short-Term Memory layers). The meta-estimator which weighed up the outputs of the two base estimators was a logistic regression classifier. The hyperparameter names in this figure refer to the parameter names utilized by the software libraries used to create the models. Namely, Keras (Chollet‬ & and others, 2015) for the CNN-LSTM and scikit-learn (Pedregosa et al., 2011) for the random forest and logistic regression classifier.‬‬‬‬‬‬‬‬‬‬‬‬‬‬
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