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Highlights 

1. Reveal the nature of the boundary conditions provided by wheels mounted on the 

track 

2. Explain the generation of multiple peaks in track vibration based on phase closure 

3. Explain the highest response peak around 700 Hz due to total reflection at the wheels 

Abstract 

A resonance pattern at frequencies from around 400 Hz to 1000 Hz has often been 

observed from measured rail accelerations. Such resonances are important for rail noise 

and corrugation. Although this pattern has been reported and discussed in several papers 

in terms of wave reflections between multiple wheels, the aim of this study is to 

investigate the generation mechanism of this resonance phenomenon in detail, and to 

give both mathematical and physical insight. An infinite Timoshenko beam with 

continuous supports is adopted for modelling the track system, and the point and 
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transfer receptances of the rail for a stationary harmonic excitation are explicitly 

obtained by the residue theorem. A frequency-domain method is then presented to 

calculate the power spectral densities of the wheel-track coupled system responses to 

stochastic irregularities with the moving irregularity model. It is found that the multiple 

peaks can be explained by using the phase closure principle. Moreover, total reflection 

between the two wheels may occur at around 700 Hz, which results in the highest peak 

in the response. 

Keywords 

Railway track; wheel-rail interaction resonance; reflection and transmission ratio; 

phase closure principle; track irregularity. 

1 Introduction 

Dynamic wheel-rail interactions in the railway system are mainly caused by the 

irregular profiles on the wheel and rail contact surfaces, among which random track 

undulations (also called track geometry irregularities or rail roughness) are the major 

source. If the responses of the train-track coupled system induced by track irregularities 

are presented in the frequency domain, they contain several peaks at different 

frequencies associated with various mechanisms, such as system resonances [1]. These 

peaks in the vibration spectra of the wheel and rail may result in higher environmental 

noise at particular frequencies, from dozens to thousands of Hertz [2, 3], negatively 

affecting the comfort of both passengers and residential areas as trains pass by. Besides, 

the high frequency wheel-rail contact forces play an important role in the formation of 
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railhead corrugation [4], which in turn causes increased wheel-rail interaction forces. 

In view of these considerable effects, many attempts have been made to investigate the 

origin of the dominant peaks in the wheel-rail interaction forces and the vibration of the 

train-track system. 

Typical natural frequencies of the car bodies and bogies on the suspension system 

usually lie below 10 Hz [5, 6], whereas the first bending mode of the axles occurs at 

around 100 Hz [7]. The track also has a number of resonances. A ballasted track has a 

highly damped resonance at about 100 Hz related to the total track mass bouncing on 

the stiffness of the ballast [8]; slab tracks have a similar, but more lightly damped, 

resonance due to the flexibility of the rail fasteners. For a track with sleepers mounted 

in ballast or on elastic supports, an anti-resonance of the track occurs at about 200-300 

Hz caused by the sleepers vibrating between the two elastic layers [9]. A further peak, 

resulting from the resonance of the rail mass on the pad stiffness, occurs in the region 

300-500 Hz [10, 11]. It may shift to a higher frequency if the rail pads are stiffer, making 

it difficult to tell apart from the so-called pinned-pinned resonance at around 1000 Hz 

[9, 12]. The pinned-pinned resonance corresponds to a standing wave in a discretely 

supported rail, with half a wavelength equal to the sleeper spacing [13]. Severe 

vibration of the train-track coupled system can occur if the frequency of excitation due 

to track irregularities is equal to the pinned-pinned frequency [14]. It should be noted 

that the pinned-pinned frequency is mainly determined by the fastener spacing rather 

than the stiffness of the supports but the effect is more significant for fasteners with a 
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high stiffness [9, 15-17].  

Due to the presence of multiple wheels on a rail, the responses from multiple 

wheel-rail interactions are found to contain additional resonance peaks [15]. An earlier 

study carried out by Igeland [4] has observed several peaks around 600-800 Hz in the 

spectrum of wheel-rail interaction forces, for a bogie moving on a discretely supported 

rail. She attributed this phenomenon to various standing waves in the rail with nodes at 

the two wheels. To calculate the track response induced by multiple wheels, Wu and 

Thompson [1] introduced the concepts of an active wheel and passive wheels, finding 

the total response by superposition. A peak at around 600 Hz was then observed both 

in the point receptance of a rail with additional passive wheels and in the active wheel-

rail contact force [1, 18]. Wu and Thompson [19] investigated in detail the peaks in the 

spectrum of wheel-rail interaction forces, using a track model with multiple wheels on 

it. It was shown that four main peaks in the interaction forces occurred in the frequency 

region 550-1200 Hz, different from the results from a single-wheel model, and the 

peaks become higher when softer rail pads are used. To explain this phenomenon, the 

effects of wave reflections between the wheels were qualitatively studied. Subsequently, 

the formation of short pitch corrugation has been studied [4, 15, 20, 21] by considering 

the multiple peaks in the wheel-rail interaction force. The effects of rail dampers in 

suppressing the growth of that rail corrugation were investigated including the multiple 

wheel-rail interactions [15, 21, 22]. The multiple force peaks found in these studies [15, 

20-22] were taken as practical factors affecting corrugation. Ding et al. [23] similarly 
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investigated the influence of wave reflections between multiple wheels on curve squeal. 

To investigate these resonances, the first step is to calculate the receptance of the 

rail, providing a foundation for dealing with wheel-rail interactions both in the time 

domain and frequency domain [24]. An infinite Timoshenko beam is often applied to 

include the effect of shear deformation and rotational inertia of the rail, which become 

important at frequencies above 500 Hz [25]. A wavenumber-based method was 

developed by Sheng et al. [26] that can be used to calculate track vibration excited by 

a high frequency harmonic load moving at high speed. It is noted that the response of 

this discretely supported model to a harmonic load is not purely harmonic, causing 

difficulties in dealing with train-track dynamics in the frequency domain [9, 26]. In fact, 

however, the effect of the discrete supports can be neglected if the frequency of interest 

does not fall in the vicinity of the pinned-pinned frequency, especially for soft rail pads 

[14]. By adopting a continuously supported model, the track becomes an invariant 

system with respect to space, meaning that, when subjected to a moving harmonic load, 

it will give a stationary response in the moving frame at the frequency of the load [27]. 

A moving roughness model [1, 18, 19, 22] is often employed to calculate wheel-rail 

interactions, in which the wheels are assumed to be stationary and irregularities are 

pulled between the wheels and the rail as a relative excitation [19]. At low frequencies 

the effect of the moving load becomes important for tracks on soft soil when the train 

speed approaches the wave speed in the ground [28, 29]. However, these effects are 

limited to frequencies below 100 Hz. 
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Recently, peaks in the track vibration in the frequency range from around 400 Hz 

to 1000 Hz have been once more observed by the authors during several field 

measurements made on a viaduct with ballastless track. Although these peaks have been 

observed in several papers, as discussed above, the aim of this study is to investigate 

the generation mechanism responsible for them in more detail, to give both 

mathematical and physical insight. To apply the frequency-domain method, a typical 

model of an infinite Timoshenko beam with continuous supports is adopted for 

modelling the track system, and its point and transfer receptances are explicitly obtained 

by a Fourier transform-based method together with the residue theorem. Then, the 

power spectral densities (PSDs) of the system response are derived analytically. By 

adopting the concepts of active and passive wheels [1], the multiple peaks in the PSDs 

of the wheel-rail contact forces are investigated mathematically by extreme value 

analysis of the response function and from a physical viewpoint based on wave 

propagation theory. Additionally, the nature of the boundary conditions provided by the 

wheels is discussed with the concepts of reflection and transmission ratios. Finally, 

vibration amplifications of the track due to multiple wheels are investigated, and 

differences between the amplification of wheel-rail contact force and rail vibration are 

discussed. 

2 Receptance of an infinite Timoshenko beam 

The rails are usually discretely supported by periodic sleepers or fasteners. 

However, the effect of the discrete supports can be neglected if the dominant 
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frequencies do not fall in the vicinity of the pinned-pinned frequency [25, 30], and 

especially if the rail pads are relatively soft [15-17]. In addition, it was shown by Wu 

and Thompson [1] that the effects of multiple wheel–rail interactions may also suppress 

the pinned-pinned resonance. As the shear deformation and rotational inertia of the rail 

should be considered for frequencies above 500 Hz [25], a continuously supported 

Timoshenko beam model is used in this study. The response to a stationary harmonic 

load [27] is used to obtain the point and transfer receptances of the track, initially 

without wheels mounted on it. 

The vibration of a Timoshenko beam is described by the vertical displacement 𝑤𝑟 

(directed positive downwards) and the rotation angle 𝜙𝑟  of the cross-section 

(clockwise), as shown in Fig. 1. For a stationary harmonic load 𝑄ei𝜔𝑡, with complex-

valued amplitude 𝑄  and angular frequency 𝜔 , the kinetic equations for an infinite 

Timoshenko beam with continuous supports can be written in the frequency domain in 

terms of the distance 𝜉 from the load 

 

Fig. 1. An infinite Timoshenko beam on an elastic foundation showing the vibration 

generated by a harmonic load. 
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{
 
 

 
 𝐺𝐴𝜅

d

d𝜉
(𝜙𝑟 −

d𝑤𝑟
d𝜉
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d𝑤𝑟
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d2𝜙𝑟
d𝜉2

− 𝜌𝐼𝜔2𝜙𝑟 = 0

(1) 

where 𝑤𝑟 and 𝜙𝑟 are the complex-valued amplitudes, 𝜌𝐴 is the rail mass per unit 

length, 𝜌𝐼 is the rail rotational inertia, 𝐸𝐼 is the rail bending stiffness, 𝐺𝐴 is the rail 

shear stiffness, 𝜅 is the rail shear parameter, and 𝑠 is the support stiffness per unit 

length. Damping is introduced in the beam and its supports by making the Young’s 

modulus, shear modulus and support stiffness complex with the form 𝐸(1 + i𝜂𝑟) , 

𝐺(1 + i𝜂𝑟) and 𝑠(1 + i𝜂𝑠) (they are suppressed in the equations for simplicity). 

 The transfer receptance of the track at a distance 𝜉 from the load can be easily 

obtained based on a Fourier-transform method [12] 

𝐻(𝜉,𝜔) =
1

2π
∫
𝑀(𝑘)

𝑁(𝑘)
e−i𝑘𝜉d𝑘

∞

−∞

(2) 

where 

𝑀(𝑘) = 𝐺𝐴𝜅 + 𝐸𝐼𝑘2 − 𝜌𝐼𝜔2 (3) 

𝑁(𝑘) = (𝐺𝐴𝜅𝑘2 + 𝑠 − 𝜌𝐴𝜔2)(𝐺𝐴𝜅 + 𝐸𝐼𝑘2 − 𝜌𝐼𝜔2) − 𝐺2𝐴2𝜅2𝑘2 (4) 

The integral in Eq. (2) can be evaluated by using contour integration. For 𝜉 ≥ 0, 

the integral is equal to −2πi times the sum of the residues of the poles in the lower 

half plane, whereas for 𝜉 < 0 , the integral is equal to 2πi  times the sum of the 

residues of the poles in the upper half plane. Hence, the receptance is given by 

𝐻(𝜉,𝜔) =

{
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    (5) 
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where 𝑘𝑛  are the zeros of 𝑁(𝑘)  and Im(𝑘1,2) > 0, Im(𝑘3,4) < 0 . This can be 

written more simply as 

𝐻(𝜉) = {
𝑢3e

−i𝑘3𝜉 + 𝑢4e
−i𝑘4𝜉 (𝜉 ≥ 0)

𝑢1e
−i𝑘1𝜉 + 𝑢2e

−i𝑘2𝜉 (𝜉 < 0)
(6) 

where 

𝑢𝑗 = {
−i𝑀(𝑘𝑗)/𝑁

′(𝑘𝑗) (𝑗 = 3, 4)

i𝑀(𝑘𝑗)/𝑁
′(𝑘𝑗) (𝑗 = 1, 2)

(7) 

Moreover, 𝑢1 = 𝑢3 , 𝑢2 = 𝑢4 , 𝑘1 = −𝑘3  and 𝑘2 = −𝑘4 . To illustrate the contour 

integration, use is made of typical parameters given in Table 1 for the rail, which are 

also applied in the following analysis. It is noted that the support stiffness of 𝑠 =

66.67 MN/m2 corresponds to a vertical fastener stiffness of 40 MN/m at a fastener 

spacing of 0.6 m. Damping is introduced in the rail pads and the rail as listed in Table 

1. Fig. 2 (a) shows the distribution of the four poles 𝑘𝑛 on the complex plane, for a 

harmonic load at a frequency of 300 Hz. The decay rates for the track waves 

corresponding to 𝑘3 and 𝑘4 are shown in Fig. 2 (b). 

 

(a)                                     (b) 

Fig. 2. Poles of 𝑁(𝑘) on the complex plane and decay rates for the track waves using 

the parameters in Table 1: (a) distribution of four poles at 300 Hz; (b) decay rates. 
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Table 1. Parameters for railway track based on Timoshenko beam model [12, 31] 

Parameter Definition Unit Value 

𝐺𝐴 Rail shear stiffness MN 617 

𝐸𝐼 Rail bending stiffness MNm2 6.42 

𝜂𝑟 Damping loss factor of rail / 0.02 

𝜌𝐴 Rail mass per unit length kg/m 60 

𝜌𝐼 Rail rotational inertia kgm 0.240 

𝜅 Rail shear parameter / 0.4 

𝑠 Support stiffness per unit length of foundation MN/m2 66.67 

𝜂𝑠 Damping loss factor of foundation / 0.15 

 As is shown in Fig. 2(a), all the poles are complex-valued, with the real part 

representing the wavenumber and the imaginary part corresponding to the decay rate. 

The wave corresponding to 𝑘3 decays exponentially in the whole frequency region, 

and can be identified as a nearfield wave. In contrast, above the cut-off frequency (170 

Hz), the 𝑘4 wave propagates with little attenuation, and plays a dominant role in the 

track transfer receptance at sufficient distance from the load. 

Fig. 3 illustrates the point receptance of the rail and the transfer receptance at 𝜉 =

2.5 m . The magnitude of the transfer receptance is far lower than that of the point 

receptance at frequencies below 200 Hz, due to the high decay rates in this frequency 

region. A peak is found at around 170 Hz in both point and transfer receptances, 

corresponding to the resonance of the rail mass bouncing on the pad stiffness which is 
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also the cut-off frequency for wave propagation [12]. 

 

Fig. 3. Magnitudes of the point receptance at 𝜉 = 0 and the transfer receptance at 

𝜉 = 2.5 m. 

3 Dynamics of the wheel-track coupled system 

In this section, the receptances obtained in Section 2 are employed to derive the 

spectral density matrices for the response of the track and the wheels (see Fig. 4) excited 

by random roughness or irregularities. The moving irregularity model is used to solve 

the wheel-track coupled dynamics, in which irregularities are pulled between the 

wheels and the rail as a relative excitation. 

3.1 Wheel-track coupled model 

 

Fig. 4. Two-dimensional model of two wheels supported by an infinite elastic track 
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represented by a Timoshenko beam. 

The investigation is based on the model of a track coupled with two wheels, which 

represent one bogie, as shown in Fig. 4. The bogie and car body are omitted from the 

model; this only affects the results at frequencies below about 10 Hz. The wheels are 

regarded as rigid bodies, and only vibration in the vertical direction is considered. It is 

noted that, for vertical motion, the rigid model for the wheel is reasonable for 

frequencies below 1 kHz. At higher frequencies flexible modes in the radial direction 

occurring above 2 kHz should be considered [12]. Table 2 lists the main parameters 

used to describe the wheels along with their values that relate to a metro train in 

Shanghai. 

Table 2. Parameters for the wheels used in urban rail transit in Shanghai 

Parameter Definition Unit Value 

𝑚𝑤 Mass of the wheel (half wheelset) kg 894 

𝑑1 Distance between the two wheels of one bogie m 2.5 

𝐾𝑐 Equivalent vertical stiffness of wheel-track contact per wheel N/m 1.5 × 109 

The wheel-rail contact model is an essential element for analyzing the dynamic 

performance of the entire system. A linearized contact spring is adopted for simplifying 

the system as a linear stationary stochastic vibration problem (see Fig. 5), which is 

reasonable for typical levels of excitation [32]. Thus, the dynamic interaction force at 

the 𝑖-th wheel-rail contact point, 𝑓𝑖, can be determined by 

𝑓𝑖 = 𝐾𝑐(𝑢𝑤𝑖 − 𝑢𝑐𝑖) (8) 
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where 𝑢𝑤𝑖 is the vertical displacement of the 𝑖-th wheel; 𝑢𝑐𝑖 is the displacement of 

the contact end of the i-th contact spring (𝑖 = 1,2) and 𝐾𝑐 is the linearized contact 

stiffness. 

 

Fig. 5. Schematic diagram for mechanical analysis of the decomposed wheel-rail 

system. 

Only vertical track irregularities are taken into consideration in this study. These 

are expressed by the US FRA vertical alignment irregularity PSD function 𝑆𝑟(𝛺) [33] 

𝑆𝑟(𝛺) =
𝑘𝐴𝑟𝛺𝑐

2

𝛺2(𝛺2 + 𝛺𝑐
2)

(9) 

where 𝛺 represents the spatial angular frequency of track irregularities; 𝑘 represents 

the safety factor, which ranges from 0.25  to 1.0 ; 𝐴𝑟  represents the roughness 

constant; 𝛺𝑐 represents the cutoff spatial angular frequency. The track irregularity of 

class 6 is used in this study for illustration purposes with 𝑘 = 1, 𝐴𝑟 = 0.0339 cm2 ⋅

rad/m, and 𝛺𝑐 = 0.8245 rad/m.  

3.2 Frequency response functions of subsystems 

To facilitate mechanical analysis, the original coupled model can be decomposed 

into the wheel-spring subsystem, the irregularity and the track subsystem, as is shown 
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schematically in Fig. 5. Based on the aforementioned assumptions, the response of 

wheel-spring subsystem can be determined in the frequency domain as 

𝐔𝑐 = −𝛂0𝐅𝑤 (10) 

in which 𝐔𝑐 = {𝑈𝑐1 𝑈𝑐2}
T is the displacement vector of contact points on the springs, 

and 𝐅𝑤 = {𝐹𝑤1 𝐹𝑤2}
T  is the vector of the wheel-rail interaction forces. 𝛂0  is 

defined as the receptance matrix of the wheel-spring subsystem [1]. Since the two 

wheels are assumed to be unconnected, 𝛂0 is a diagonal matrix expressed as 

𝛂0 = diag{1 1} × (
1

𝐾𝑐
−

1

𝑚𝑤𝜔2
) (11) 

The negative sign in Eq. (10) represents the fact that the forces act upward on the wheels 

(Fig. 5). 

Similarly, the response of the contact points on the track, 𝐔𝑡 = {𝑈𝑡1 𝑈𝑡2}
T, can 

be written as 

𝐔𝑡 = 𝐇𝑡𝐅𝑤 (12) 

where 𝐇𝑡 is the receptance matrix of the track subsystem and can be determined from 

the point and transfer receptances, Eq. (5), with consideration of the superposition 

principle 

𝐇𝑡 = [
𝐻(0) 𝐻(−𝑑1)

𝐻(𝑑1) 𝐻(0)
] (13) 

It should be noted that 𝐇𝑡  is symmetric due to the use of the moving irregularity 

assumption, in which the effect of load motion on the rail is neglected. 

3.3 Solution of coupled system 

The track irregularities are assumed to be a spatial stochastic process. If the running 
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of the wheels is taken into consideration, the irregularities under each contact point 

become temporal variables, which can be expressed in the frequency domain as 

𝐑𝑤 = {𝑅1 𝑅2}T (14) 

To ensure the wheel-rail contact is maintained, the various displacements are 

related by 

𝐔𝑡 − 𝐑𝑤 = 𝐔𝑐 (15) 

where 𝐑𝑤 is the complex-valued vector of the irregularity input at a certain frequency 

(positive for an asperity). Substituting Eq. (10) and (12) into Eq. (15), the interaction 

forces 𝐅𝑤 can be obtained by 

𝐅𝑤 = (𝛂0 +𝐇𝑡)
−1𝐑𝑤 = 𝐊𝑑𝐑𝑤 (16) 

where 𝐊𝑑 is a dynamic stiffness matrix, the inverse of the combined receptance matrix, 

which converts spatial geometric irregularities into equivalent wheel-rail interaction 

forces 

𝐊𝑑 = (𝛂0 +𝐇𝑡)
−1 (17) 

The displacement response of the contact points on the track can be easily obtained 

by substituting Eq. (16) into Eq. (12) 

𝐔𝑡 = 𝐇𝑡𝐊𝑑𝐑𝑤 (18) 

3.4 Response PSD  

The spectral density matrix for the wheel-rail contact force 𝐒𝐟𝑤  and for the 

response of the contact points on the track 𝐒𝐔𝑡 can be expressed as [34] 

𝐒𝐟𝑤 = lim
𝑇→∞

𝐅𝑤
∗ 𝐅𝑤

T

2𝑇
(19) 
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𝐒𝐔𝑡 = lim
𝑇→∞

𝐔𝑡
∗𝐔𝑡

T

2𝑇
(20) 

where the superscript * denotes the conjugate and superscript T denotes the transpose 

operation, and the variable 𝑇 in the denominator is the duration of the signal that is 

considered. Substituting Eq. (16) into Eq. (19) and Eq. (18) into Eq. (20), 𝐒𝐟𝑤  and 𝐒𝐔𝑡 

can be obtained as 

𝐒𝐟𝑤 = 𝐊𝑑
∗ 𝐒𝑟𝐊𝑑

T (21) 

𝐒𝐔𝑡 = 𝐇𝑡
∗𝐊𝑑

∗ 𝐒𝑟𝐊𝑑
T𝐇𝑡

T (22) 

where 𝐒𝑟 is defined as the spectral density matrix for the irregularities at the contact 

points, given by 

𝐒𝑟 = lim
𝑇→∞

𝐑𝑤
∗ 𝐑𝑤

T

2𝑇
= 𝓑(𝜔, 𝑉)

1

𝑉
𝑆𝑟 (

𝜔

𝑉
) (23) 

in which 𝑆𝑟(𝛺) is the spatial-PSD function of track irregularities in Eq. (9); 𝓑(𝜔, 𝑉) 

is a phase-lag matrix, describing relationships of time delay among the excitations. The 

use of the phase-lag matrix allows different types of excitation to be represented. For 

example, at low frequencies, excitations at the two wheels can be regarded as strictly 

correlated, and 𝓑(𝜔, 𝑉) can be expressed as 

𝓑(𝜔, 𝑉) = [ 1 e−i
𝜔
𝑉
𝑑1

ei
𝜔
𝑉
𝑑1 1

] (24) 

In contrast, at high frequencies an uncorrelated excitation model is more reasonable, 

for which 𝓑(𝜔, 𝑉) can be obtained as 

𝓑(𝜔, 𝑉) = diag{1 1} (25) 

The derivation of Eq. (24) and Eq. (25) can be found in [35]. For the active-passive 

wheel model which has been developed in [1], the irregularity excitation is only applied 
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on one wheel at a time. If the first wheel is treated as the active wheel, 𝓑(𝜔, 𝑉) can 

be expressed as 

𝓑(𝜔, 𝑉) = diag{1 0} (26) 

4 Mechanism analysis 

4.1 Influence of additional wheel 

The frequency-domain method is first applied to analyze the vibration of the wheel-

track coupled system introduced in Section 3. To investigate the generation mechanism 

of the multiple peaks observed in the spectra of wheel-rail interaction forces [15, 19], 

the model including active and passive wheel/rail interactions is applied in the 

following sections, as shown in Fig. 6. Track irregularities are assumed to exist under 

the left-hand wheel (the active wheel), using the US FRA class 6 spectrum in Eq. (9), 

and the other wheel is excited only by the rail vibration; this is treated as the passive 

wheel. Responses of this active-passive wheel model can be easily calculated based on 

previous derivations in Section 3, in which Eq. (26) should be adopted. 

 

Fig. 6. An infinite Timoshenko beam model of the rail with two wheels with 

irregularities only existing under the active (left-hand) wheel. 
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The response PSDs of the active and passive contact forces are presented in Fig. 7 

(a), for a passage speed of 40 m/s. As a comparison, the response PSD of wheel-rail 

contact forces for a single wheel running on the rail at this speed is shown in Fig. 7 (b). 

 

  (a)                               (b) 

Fig. 7. PSD functions of wheel-rail contact forces for the system of (a) the active and 

passive wheels on the rail; (b) a single wheel on the rail. 

 As can be seen from Fig. 7 (a), there are several peaks in the PSD which can be 

divided into two categories. In the low frequency region, a strong peak occurs at around 

50 Hz that corresponds to the so-called P2 resonance of the wheel mass on the track 

stiffness [10, 12]. In the frequency range from 400 Hz to 1000 Hz, there are additional 

peaks, the highest of which occurs at around 656 Hz. In contrast, these additional peaks 

do not occur in Fig. 7 (b), with only the peak corresponding to the P2 resonance of the 

wheel on the rail appearing. Therefore, the effects of the additional passive wheel on 

the rail have changed the pattern of wheel/rail interactions, leading to multiple peaks in 

the response [1, 18]. 
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4.2 Mathematical reasoning 

These multiple peaks can be explained from a mathematical perspective. Assume 

the active wheel is subjected to a particular component of track irregularities with a 

constant wavelength. Utilizing the frequency-domain method established above, the 

interaction forces 𝐅𝑤 = [𝐹𝑎 𝐹𝑝]T  can be derived from Eq. (16), in which 𝐹𝑎 

represents contact forces of the active wheel and 𝐹𝑝 for the passive wheel. Note that 

the irregularity under the passive wheel is zero, so the complex-valued vector of the 

irregularity input can be expressed as 𝐑𝑤 = [𝑅 0]T . By expanding Eq. (16), the 

active and passive contact forces can then be determined by 

𝐹𝑎 =
[𝐻(0) + 𝛼0]𝑅

[𝐻(0) + 𝛼0]2 − 𝐻(𝑑1)𝐻(−𝑑1)
(27) 

𝐹𝑝 =
−𝐻(𝑑1)𝑅

[𝐻(0) + 𝛼0]2 − 𝐻(𝑑1)𝐻(−𝑑1)
(28) 

 The contact forces are complex-valued functions of frequency, especially as the rail 

receptance 𝐻(𝜉) is a complex-valued integral, but the contact force magnitude will 

reach a local maximum if the modulus of the denominator in Eq. (27) or Eq. (28), which 

is the determinant of the combined receptance matrix, has a local minimum. Fig. 8 gives 

the modulus of the denominator in the contact forces as a function of frequency. 
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Fig. 8. The determinant of the combined receptance matrix in contact force 

expressions as a function of frequency. 

 As expected, the curve has local minima at around 50 Hz, 389 Hz, 656 Hz and 965 

Hz, exactly the places where the multiple peaks occur in Fig. 7 (a). This kind of 

explanation makes sense from a mathematical viewpoint, but it fails to provide a 

physical interpretation and still cannot answer the question why these functions have 

local extrema at certain frequencies. 

4.3 Wave reflection and transmission at a wheel 

 

Fig. 9. An infinite beam excited at 𝜉 = 0 with an attachment at 𝜉 = 𝑑1. 

To derive a more physical explanation, the waves propagating in the rail are 

considered in this Section. Fig. 9 again shows the rail attached to two wheels, one of 

which is active at 𝜉 = 0, excited by irregularity excitation, and the other is passive at 

𝜉 = 𝑑1. Assume that the active wheel initially generates a unit harmonic force at 𝜉 =

0. The total displacement at 𝜉 = 𝑑1 is the sum of the incident wave and the response 

caused by the reaction force 𝐹1, and is equal to the displacement of the passive wheel 

𝐻(𝑑1) + 𝐹1𝐻(0) = 𝑈𝑐 = −𝐹1𝛼0 (29) 
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where 𝛼0 is the receptance of the wheel-spring system defined in Eq. (11). Hence 

𝐹1 =
−𝐻(𝑑1)

𝛼0 +𝐻(0)
(30) 

As discussed in Section 2, the incident nearfield wave decays rapidly and so it can 

be considered negligible after a distance of 2.5 m (at 𝜉 = 𝑑1). Therefore, from Eq. (6) 

the transfer receptance can be written in terms of the incident wave as 𝐻(𝑑1) ≈

𝑢4e
−i𝑘4𝑑1 = 𝐴4 , having undergone a phase change Re(−𝑘4)𝑑1 . The reflected 

propagating wave is generated by the reaction force 𝐹1, with the amplitude 

𝐴2
′ = 𝐹1𝑢2 =

−𝐴4𝑢2
𝛼0 + 𝐻(0)

(31) 

at 𝜉 = 𝑑1 , in which 𝑢2 = 𝑢4  is the propagating wave component in the point 

receptance 𝐻(0). The amplitude reflection ratio is given by the ratio of reflected to 

incident waves 

𝑟1 =
𝐴2
′

𝐴4
=

−𝑢2
𝛼0 +𝐻(0)

=
−𝑢4

𝛼0 + 𝑢3 + 𝑢4
(32) 

The phase of the reflection ratio can be written as 𝜖1 = arg(𝑟1).  

Unlike a finite beam, a transmitted wave will also propagate beyond the attachment. 

The total amplitude of the transmitted wave in this region (𝜉 > 𝑑1) is the sum of the 

incident wave 𝐴4 and the propagating wave 𝐴4
′  generated by the reaction force. The 

amplitude transmission ratio can be written as: 

𝑡1 =
𝐴4 + 𝐴4

′

𝐴4
= 1 −

𝑢4
𝛼0 + 𝑢3 + 𝑢4

(33) 

Using the same parameters as in Tables 1 and 2, Fig. 10 (a) shows the amplitude 

reflection ratios for a wheel-spring attachment. Also shown is the result for a grounded 

spring 𝛼0 = 1/𝐾𝑐. Fig. 10 (b) shows the corresponding transmission ratios. 
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(a)                               (b) 

Fig. 10. Amplitude reflection ratios (a) and transmission ratios (b) for a wheel-spring 

system and a grounded spring. 

The reflection ratio has a magnitude less than 1 at most frequencies (due to energy 

transmission beyond the wheel) but it tends to 1 at 687 Hz (718 Hz when the wheel 

mass is included). The transmission coefficient tends to 0 at this frequency, signifying 

total reflection. The phase of the reflection ratio varies from –   to – 0.77  and 

0.65  to   within the frequency range shown and equals ±  at the frequency at 

which the transmission coefficient tends to 0. 

Fig. 11 shows the magnitudes and phases of the point receptance for the rail 𝐻(0), 

as well as the two wave components 𝑢3 and 𝑢4. At low frequencies, the two wave 

components have similar magnitudes (as would be found for an Euler-Bernoulli beam) 

and a phase difference of /2. Above the resonance frequency of the rail mass on the 

stiffness of the elastic support at 168 Hz, the wave component 𝑢3 has a phase of – , 

corresponding to mass-like behaviour, and 𝑢4  has a phase of – /2 . Above a few 

hundred Hertz, due to the influence of shear deformation and rotational inertia, the 
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relative magnitude of wave 3 (the decaying wave) becomes smaller and that of wave 4 

becomes larger (compared with an Euler-Bernoulli beam) so that the receptance of the 

rail becomes dominated by the propagating wave (wave 4) and the phase of the rail 

receptance tends to – /2. 

 

Fig. 11. Magnitudes and phases of point receptance of the rail, the two wave 

components 𝑢3 and 𝑢4, the wheel-spring system 𝛼0 and the contact spring 1/𝐾𝑐. 

To clarify the total reflection by the wheel, these receptances are also compared 

with 𝛼0 for the wheel-spring system and for the grounded spring. At frequencies above 

200 Hz, 𝛼0 has a phase of 0, the opposite to 𝑢3. It can be identified that 𝛼0 for the 

grounded spring and the nearfield wave component 𝑢3 have equal magnitudes at 687 

Hz; when the wheel mass is included this occurs at 718 Hz. According to Eq. (32)-(33), 

when 𝛼0 = −𝑢3, the amplitude reflection ratio 𝑟1 will be −1, and the transmission 

ratio 𝑡1 will equal to 0, which signifies that total reflection occurs, and the energy is 
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constrained between the two wheels. 

4.4 Explanation of force peaks based on wave propagation theory 

When the reflected wave in Eq. (31), with amplitude 𝐴2
′ , arrives back at 𝜉 = 0, 

its amplitude becomes 𝐴2
′′ = 𝐴2

′ ei𝑘2𝑑1  and it will have experienced a further phase 

change of Re(𝑘2)𝑑1 . A similar process to that described above can then give the 

amplitude reflection ratio at the active wheel at 𝜉 = 0, which can be written as  

𝑟2 =
𝐴4
′′

𝐴2
′′ =

−𝑢4
𝛼0 + 𝐻(0)

=
−𝑢4

𝛼0 + 𝑢3 + 𝑢4
= 𝑟1 (34) 

where 𝐴4
′′ is the amplitude of wave 4 at 𝜉 = 0 after the second reflection. The phase 

of this reflection ratio can be written as 𝜖2 = arg(𝑟2). 

According to the phase closure principle [36], resonance will occur if 𝜖1 +

Re(−𝑘4)𝑑1 + 𝜖2 + Re(𝑘2)𝑑1 = 2𝑛π , for integer values of n. As 𝑟1 = 𝑟2  and 𝑘2 =

−𝑘4, the condition becomes 𝜖1 + Re(𝑘2)𝑑1 = 𝑛π. 

Similar to Eq. (30), the reaction force at the active wheel can be written as  

𝐹2 =
−𝐴2

′′

𝛼0 +𝐻(0)
(35) 

Expanding the expression for 𝐴2
′′ from above, 

𝐹2 =
−𝑢4e

−i𝑘4𝑑1𝑟1e
i𝑘2𝑑1

𝛼0 +𝐻(0)
= 𝑟2e

−i𝑘4𝑑1𝑟1e
i𝑘2𝑑1 (36) 

Denoting the ratio of this reaction force to the initial (unit) force by 𝜂, it can be found 

that the phase of 𝜂 is the same as that given in the phase closure principle 

arg(𝜂) = 𝜖1 + Re(−𝑘4)𝑑1 + 𝜖2 + Re(𝑘2)𝑑1 (37) 

This implies that, when satisfying the phase closure principle, the reaction force will be 

in phase with the initial force and the excitation will be intensified. Fig. 12 shows the 
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magnitudes and phases of the coefficient 𝜂 for an infinite track excited at 𝜉 = 0 with 

a passive wheel at 𝜉 = 𝑑1 and the case with a grounded spring at 𝜉 = 𝑑1. 

 

(a)                                 (b) 

Fig. 12. The magnitudes and phases of the coefficient 𝜂 for an infinite beam excited 

at 𝜉 = 0 with a passive wheel at 𝜉 = 𝑑1 and the case with a grounded spring at 𝜉 =

𝑑1: (a) magnitude; (b) phase. 

It can be seen that the magnitude of 𝜂 is less than 1, due to the effect of wave 

attenuation and the influence of the wheel and contact receptances in 𝛼0. The phase of 

𝜂 reaches 2𝑛π at around 200 Hz, 389 Hz, 656 Hz and 965 Hz, where the peaks were 

found in Fig. 7 (a). The reflected wave will continue to propagate and get reflected 

between the two wheels. As long as it is in phase with the initial irregularity, the 

excitation will be continuously intensified, leading to the peaks in the response. The 

total force at the active wheel due to an infinite number of reflections becomes 

𝐹total = ∑𝜂𝑛𝐹0

∞

𝑛=0

=
𝐹0
1 − 𝜂

(38) 

which is equivalent to Eq. (27). It is noted that the velocity of the vehicle has no 

influence on the frequencies at which the multiple peaks occur, because arg(𝜂)  is 
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independent of the vehicle velocity due to the moving irregularity assumption. However, 

it may affect the magnitude of the peaks in the response PSD, for the irregularity 

excitation depends on the vehicle velocity according to Eq. (23). 

To investigate the wave interference phenomenon further, the presented frequency-

domain method is applied to analyze a track coupled with four wheels, representing a 

pair of bogies at the adjacent ends of two vehicles. The uncorrelated irregularity 

excitation is assumed for each wheel, and the PSDs of the vertical contact forces from 

the first and second wheels are shown in Fig. 13, for a passage speed of 40 m/s. The 

distance between wheels 2 and 3, 𝑑2 = 7.1 m; all other parameters are the same as 

above.  

 

Fig. 13. PSD functions of the first and the second wheel-rail contact forces for the 

system of four wheels on the rail with uncorrelated irregularity excitation. 

In Fig. 13, multiple response peaks can be observed at frequencies above 200 Hz 

in the contact forces, which broadly resembles the results in Fig. 7 (a). Moreover, the 

force at the second wheel (the dashed line) contains more peaks than the first wheel (the 

solid line). Due to the decay rate of the wave propagation, the middle wheels, e.g., the 
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second wheel, will receive more reflected waves from the adjacent wheels than the 

outer wheels, e.g., the first wheel. Therefore, more peaks are observed in the dashed 

line. 

5 Vibration amplification due to multiple wheels 

To investigate further the amplification effect on the track response due to multiple 

wheels, Fig. 14 shows the ratio of the total interaction force at the active wheel between 

the cases with and without an additional passive wheel on the track. Also shown is the 

ratio of the rail dynamic stiffness (the inverse of the rail point receptance) and the rail 

displacement response at the active wheel. 

 

Fig. 14. Ratios of 1/receptance, contact force and rail displacement response at the 

contact for the cases with and without a passive wheel at 2.5 m from the excitation 

point. 

Due to presence of multiple wheels on the rail, each of these ratios has a series of 

peaks that can be associated with wave reflections between the wheels, but the 

amplification for the rail vibration is not as great as that for the interaction force. 
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Moreover, it is seen that these peaks occur at slightly different frequencies in the three 

curves. The first few peaks in the force spectrum are close to those found in the dynamic 

stiffness, whereas at high frequency the peaks in the rail displacement spectrum 

correspond to the dips in the dynamic stiffness, i.e., local maxima of the rail receptance. 

To explain this, it can be noted that the contact force at the active wheel can be 

written as 

𝐹𝑎 =
𝑅

𝛼0 + 𝐻0
𝑤

(39) 

and the rail displacement at the contact point as 

𝑤ra = 𝐹𝑎𝐻0
𝑤 =

𝑅𝐻0
𝑤

𝛼0 +𝐻0
𝑤

(40) 

where 𝑅  is the complex-valued amplitude of the irregularity input and 𝐻0
𝑤  is the 

receptance of the rail with added passive wheel 

𝐻0
𝑤 = 𝐻(0) −

𝐻(𝑑1)𝐻(−𝑑1)

𝛼0 +𝐻(0)
(41) 

At low frequencies |α0| ≪ |𝐻0
𝑤|  leading to 𝐹𝑎 ≈ 𝑅/𝐻0

𝑤  and 𝑤ra ≈ 𝑅 , whereas at 

high frequencies |α0| ≫ |𝐻0
𝑤| leading to 𝐹𝑎 ≈ 𝑅/𝛼0 and 𝑤ra ≈ 𝑅𝐻0

𝑤/𝛼0. 

 At 200 Hz the rail displacement response is unaffected by the additional wheel and 

the ratio in Fig. 14 is equal to 1. At this frequency the wheel and contact spring 

receptances have equal magnitude and opposite phase (see Fig. 11), so α0 = 0 and 

from Eq. (40) the rail response is equal to the roughness despite the addition of the 

passive wheel (which acts as a pinned constraint). 

If the amplitude reflection ratio is equal to –1, resonance will occur when 

Re(𝑘2)𝑑1 = 𝑛π, similar to a simply supported finite beam [36]. Frequencies at which 

the wavenumber Re(𝑘2) = 𝑛π/𝑑1 can be identified in Fig. 15 and are listed in Table 
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3 along with the peak frequencies from the three curves in Fig. 14. 

 

Fig. 15. Real part of propagating wavenumber, with horizontal lines at 𝑛π/𝑑1. 

Table 3. Peak frequencies from Fig. 14 and corresponding to 𝑛 half wavelengths 

from Fig. 15. 

𝑛 𝑛 half wavelengths 1/receptance Contact force Rail response 

1 183 Hz 208 Hz 208 Hz / 

2 346 Hz 393 Hz 389 Hz 380 Hz 

3 647 Hz 679 Hz 656 Hz 652 Hz 

4 1018 Hz 1015 Hz 965 Hz 955 Hz 

5 1422 Hz 1392 Hz 1318 Hz 1287 Hz 

The frequencies identified from Fig. 15 are lower than the actual peak frequencies 

for 𝑛 = 1, 2  and higher for 𝑛 = 4, 5 , but they are approximately equal for 𝑛 = 3 , 

which is the peak closest to 718 Hz, at which total reflection occurs. 

Unlike phase closure on a finite beam, as the beam is infinite there is transmission 

of energy beyond the attachment, as seen in Fig. 10. This acts as a form of radiation 

damping to limit the magnitude of the peaks. However, if 𝛼0 = −𝑢3 (identified at 718 
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Hz in Fig. 11) the transmitted wave amplitude tends to 0 (see Eq. (33)) and the energy 

is constrained between the two wheels. From Fig. 14 it can be seen that there is 

maximum amplification at the peak around 650 Hz, at least in terms of the force. This 

is also affected by the track decay rate which has a broad minimum between 500 and 

1000 Hz. 

6 Conclusions 

This study has investigated the generation mechanism of multiple peaks in the rail 

vibration spectra in the frequency region 400-1000 Hz. A frequency-domain method 

has been adopted to calculate the PSD responses of the wheel-track coupled system 

excited by stochastic irregularities. The track is modelled as an infinite Timoshenko 

beam with continuous supports. Based on the residue theorem, the point and transfer 

receptances of the rail are explicitly determined using a Fourier transform-based 

method.  

The results from the analytical wheel-track dynamic interaction model show the 

multiple peaks in the responses of the system, from around 400 Hz to 1000 Hz, occur 

with the presence of multiple wheels on the rail. It can be explained through extreme 

value analysis where the determinant of the combined dynamic stiffness matrix has 

local minima. The peaks in the interaction force and rail vibration can be identified 

using the ‘phase closure principle’ which relates the modes of a finite structure to 

propagating waves within it. However, the peaks found in the present case do not 

correspond simply to an integer number of half wavelengths between adjacent wheels.  

It has been identified that the boundary conditions introduced by the wheels do not 
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give a reflection with a phase change of 0 or , as would be the case for e.g. a simply 

supported finite beam, which would lead to a mode shape with an integer number of 

half wavelengths. By studying the amplitude reflection ratio for waves incident on the 

discontinuity caused by a wheel, it is shown that the phase change varies with frequency.  

As the rail is actually infinite, there is transmission of energy beyond the region 

bounded by the pair of wheels. The amplitude transmission ratio shows the proportion 

of the incident wave that is transmitted. A frequency can be identified at which total 

reflection occurs and the energy is constrained between the two wheels; for the current 

parameters this occurs at around 700 Hz which is close to the highest peak in the 

interaction force.  
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