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Preface 24 

It has been 19 months since COVID-19 was first documented in Wuhan, China. Since 25 

this time, the world has witnessed a devastating global pandemic, with more than 209 26 

million infections, over four million fatalities, and cases rising rapidly on a daily basis. 27 

Herein, we describe the currently available data on the origins of the causative virus, 28 

SARS-CoV-2, outline its early spread in Wuhan and transmission patterns in China 29 

and globally, and highlight how genomic surveillance has helped trace the spread and 30 

genetic variation of the virus, comprising a key element of pandemic control. We 31 

devote particular attention to characterizing and describing the international spread of 32 

the major ‘variants of concern’ that were first identified in SARS-CoV-2 in late 2020 33 

and demonstrate that virus evolution has entered a new phase. More broadly, we 34 

highlight our currently limited understanding of coronavirus diversity in nature, the 35 

rapid spread of the virus and its variants in such an increasingly connected world, the 36 

reduced protection of vaccines, and the urgent need for coordinated global 37 

surveillance using genomic techniques. Overall, we provide important information for 38 

the prevention and control of both the ongoing COVID-19 pandemic and the novel 39 

diseases that will inevitably emerge in humans in future generations. 40 

 41 

1. Introduction 42 

On the last day of 2019, the Wuhan Municipal Health Commission reported an 43 

outbreak of pneumonia on its official website. Shortly after, scientists reported the 44 

discovery of a novel coronavirus from the respiratory system from some of these 45 

patients that was different from all known coronaviruses including severe acute 46 

respiratory syndrome (SARS) coronavirus (SARS-CoV) and Middle East respiratory 47 

syndrome (MERS) coronavirus (MERS-CoV)1-4. Shortly afterwards, the World Health 48 

Organization (WHO) named the disease COVID-19 and the International Committee 49 

on Taxonomy of Viruses named the novel infectious agent SARS-CoV-25, the seventh 50 

coronavirus that can cause epidemics. Dramatically and unexpectedly, COVID-19 51 

rapidly spread through the global population, generating several variants of concern 52 

and developing into a major and devastating pandemic. Herein, we summarize our 53 
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current understanding of the origins, global spread and genetic diversity of 54 

SARS-CoV-2. 55 

2. The origins of SARS-CoV-2 56 

2.1 SARS-CoV-2 related coronaviruses 57 

Many early COVID-19 cases from Wuhan were associated with the Huanan seafood 58 

market2 which, given the presence of wildlife at the market, made it an obvious 59 

candidate for the location of the initial zoonotic (i.e. cross-species transmission) event. 60 

However, none of the animals from the market (including rabbits, snakes, stray cats, 61 

badgers, and bamboo rats) tested positive for SARS-CoV-26, and viral genome 62 

sequences of environmental samples from the market may not occupy basal positions 63 

on the viral phylogeny (although the position of the rooting on the tree is uncertain)7. 64 

In addition, some early COVID-19 cases from Wuhan were not epidemiologically 65 

linked to the market8, and some were linked to other markets9,10. Hence, although not 66 

fully resolved, current evidence suggests that the Huanan seafood market might be the 67 

location of an early ‘superspreading’ event. 68 

From the earliest genomic comparisons it was clear that SARS-CoV-2 possessed a 69 

similar genomic organization to SARS-CoV. Both had similar three-dimensional 70 

structures in the spike protein, suggesting that these viruses might utilize the same cell 71 

surface receptor - human angiotensin-converting enzyme (hACE2)2: this was soon 72 

confirmed in vitro4 and by structural biology11. However, SARS-CoV-2 differs from 73 

SARS-CoV in two fundamental ways12. First, there are six amino acid positions in the 74 

receptor binding domain (RBD) of the spike protein that mediate attachment of the 75 

SARS-CoV and SARS-CoV-2 spike to the hACE2 receptor13. However, amino acids 76 

at five of the six positions differed between SARS-CoV and SARS-CoV-22,12. 77 

Intriguingly, such differences have endowed SARS-CoV-2 with higher binding 78 

efficiency to the hACE2 receptor11, and may contribute to the higher transmissibility 79 

of SARS-CoV-2 than SARS-CoV. Second, there was a 12-nucleotide (nt) insertion at 80 

the cleavage site of the spike protein of SARS-CoV-2 that has not yet been identified 81 

in closely related betacoronaviruses, but which has a complex evolutionary history 82 

across the coronaviruses as a whole indicating that it is evolutionarily volatile14. This 83 

insertion encoded four amino acids, PRRA, that can be recognized by a protease 84 
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-furin- extensively expressed in different tissues and organs15. This insertion may 85 

decrease the overall stability of SARS-CoV-2 spike, thereby facilitating the adoption 86 

of the open conformation required for the spike-ACE2 binding16, and SARS-CoV-2 87 

without this furin-cleavage site had reduced replication in a human respiratory cell 88 

line and was attenuated in laboratory animals17. Notably, amino acid substitutions 89 

have been documented at all four positions in the PRRA motif, with a P-to-H 90 

substitution (HRRA) identified in >487,000 viral genomes as of June 2021. 91 

SARS-CoV-2, like many other members of the genus Betacoronavirus (including 92 

SARS-CoV), seemingly has its evolutionary roots in those viruses that commonly 93 

infect bats2. Not surprisingly, shortly after the identification of SARS-CoV-2, a close 94 

relative of SARS-CoV-2 was described - RaTG13 that was identified from a bat 95 

(Rhinolophus affinis) sampled in Yunnan province in 20134. Interestingly, it was 96 

collected from a mine cave where four workers were sent to clean bat faeces and 97 

subsequently developed severe pneumonia18. Although RaTG13 exhibits 96.2% 98 

sequence identity to SARS-CoV-2 at the scale of whole genome, it does not possess 99 

similar RBD or cleavage site sequences. Further analyses suggest that RaTG13, rather 100 

than SARS-CoV-2, was a recombinant, and they likely diverged over 30 years ago19. 101 

Therefore, the SARS-CoV-2 RBD was an ancestral trait shared with bat viruses19. 102 

Subsequently, a number of groups reported the identification of SARS-CoV-2 related 103 

coronaviruses in Malayan pangolins (Manis javanica) smuggled into Guangxi and 104 

Guangdong provinces, China20,21. These pangolin coronavirus genomes exhibited 85.5% 105 

to 92.4% sequence similarity to SARS-CoV-220. Notably, however, these pangolin 106 

derived coronaviruses formed two sub-lineages, with the Guangdong sub-lineage 107 

clustering with RaTG13 and SARS-CoV-2 and sharing 97.4% amino acid similarity to 108 

SARS-CoV-2 in the RBD, with identical amino acids at the six critical residues of the 109 

RBD. Also of note was that the Guangdong pangolins appeared to suffer a similar 110 

disease manifestation to humans suffering from COVID-1922. Thus, although the role, 111 

if any, played by pangolins in the genesis of SARS-CoV-2 and the ecology of 112 

coronaviruses in general is unknown, it is clear that wildlife coronaviruses exist that 113 

possess SARS-CoV-2 like RBD and high binding efficiency to hACE2. 114 

Furthermore, a novel bat coronavirus, RmYN02, was reported, having been collected 115 

during routine surveillance of R. malayanus bats in Yunnan province on June 25, 116 
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201923. RmYN02 shared 97.2% sequence identity with SARS-CoV-2 in the 1ab open 117 

reading frame (ORF), the largest in coronaviruses at approximately 21,300 nt. In June 118 

2021, we reported four SARS-CoV-2 related coronaviruses genomes from Yunnan 119 

province24. Of these, RpYN06, found in R. pusillus, exhibited 94.5% sequence 120 

identity to SARS-CoV-2. However, for the genome excluding the spike gene which 121 

has a recombination history, the similarity to SARS-CoV-2 was 97.2%, making it the 122 

closest genomic backbone to SARS-CoV-2 identified to date. The other three 123 

SARS-CoV-2 related coronaviruses were more distant from SARS-CoV-2. However, 124 

they carried a genetically distinct spike gene that could bind to the hACE2 receptor in 125 

vitro, though weakly. 126 

SARS-CoV-2-like coronaviruses have also been identified in bat populations from 127 

other parts of Asia, including Japan25, Cambodia26, and Thailand27. Notably, although 128 

two betacoronaviruses (STT182 and STT200) from R. shameli bats sampled in 2010 129 

from Cambodia share 92.6% nucleotide identity with SARS-CoV-2 across the genome 130 

as a whole, they share five of the six critical RBD sites observed in SARS-CoV-2 and 131 

the Guangdong pangolin coronavirus26. 132 

2.2 Emergence pathways of SARS-CoV-2 133 

There are several hypotheses regarding the origin and emergence of SARS-CoV-2 that 134 

have been thoroughly clarified in the WHO-China joint report6. These contradictory 135 

hypotheses have raised standing debates, with the central point being two competing 136 

hypotheses: zoonotic emergence (including direct zoonotic introduction or 137 

introduction through an intermediate host) and a laboratory escape. The discovery of 138 

more and more SARS-CoV-2 related coronaviruses from wild animals provides 139 

evidence of a zoonotic origin of SARS-CoV-24,20,21,23-27. Importantly, all the 140 

SARS-CoV-2 related coronaviruses mentioned above are evidently not the direct 141 

ancestor of SARS-CoV-2. Any such direct ancestral virus, which has yet to be 142 

identified, would be expected to exhibit >99% similarity to SARS-CoV-2 across the 143 

genome as a whole. However, the discovery of these viruses again highlights that 144 

more closely related viruses in bats and other wildlife species will be identified with 145 

enhanced sampling in a broader geographic region, including most parts of Southeast 146 

Asia with high diversity of Rhinolophus species24. Since it has been seldom seen that 147 

a bat coronavirus is able to efficiently transmit among humans without adaptation and 148 
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the repeated human-animal contacts9, introduction through an intermediate host, such 149 

as raccoon dogs, is more likely than direct zoonotic introduction. 150 

Whether SARS-CoV-2 is introduced through a laboratory incident or it has been 151 

genetically manipulated is highly debatable. After a thorough analysis of the genetic 152 

characterizations of SARS-CoV-2 from both the early and later stages, as well as its 153 

close relatives from wild animals, the global scientific community have reached the 154 

consensus that SARS-CoV-2 is unlikely to be a laboratory escape and there is no 155 

scientific evidence that SARS-CoV-2 has been genetically manipulated9. However, 156 

the exact spillover and emergence process of SARS-CoV-2 is still obscure, and more 157 

information from the earliest stage of the epidemic is clearly important to understand 158 

how SARS-CoV-2 reached humans. 159 

3. Global genetic diversity of SARS-CoV-2 160 

3.1 Genomic surveillance of SARS-CoV-2 161 

Mutations are a natural part of the replication cycle of any RNA virus, leading to the 162 

diversification of viral lineages when coupled with inter-host transmission. This is 163 

also true of SARS-CoV-2, even though coronaviruses contain certain proofreading 164 

mechanisms that enhance the genome fidelity28. Genomic surveillance has generated 165 

unprecedented amount of sequencing data for a single virus (Box 1), and has proven 166 

an essential tool29,30 to trace the spread of SARS-CoV-2 at various scales, from 167 

individual transmission events to the intercontinental spread of the virus. In addition, 168 

it plays a central role in monitoring the evolution of SARS-CoV-2 and identifying 169 

novel variants with enhanced transmissibility and/or pathogenicity, decreased 170 

susceptibility to therapeutic agents and evading natural or vaccine-induced immunity 171 

(Fig. 1). Genomic surveillance has demonstrated the effectiveness in tracking local 172 

transmission cases, recognizing importation sources and superspreading events in 173 

Australia31,32, in informing public health decision-making in the Netherlands33, and in 174 

adopting social distancing measures to reduce viral spread in Israel34. In January 2021, 175 

du Plessis and colleagues described the analysis of 50,887 SARS-CoV-2 genomes35, 176 

quantifying the viral genetic structure of the UK epidemic at fine scale, including the 177 

size, spatio-temporal origins and persistence of lineages as well as the impact of 178 

intervention measures. 179 
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Herein, we take Guangdong province, China and the USA as examples to illustrate 180 

how genomic surveillance has facilitated our understanding of this pandemic. 181 

Guangdong, China 182 

Guangdong is a populous province in Southeast China, with resident population >100 183 

million. After the SARS-CoV outbreak, believed to have originated in Guangdong36, 184 

long-term reforms in the public health agencies have greatly improved the 185 

infrastructures and enhanced the capacity of disease control and prevention. The first 186 

case of COVID-19 in Guangdong had symptom onset on January 1 and was reported 187 

on January 19, 202010,37. Like many other Chinese provinces, Guangdong experienced 188 

three phases - domestic importation, local community transmission and international 189 

importation - with the epidemic peak in early February37. Large-scale surveillance 190 

(~1.6 million tests by March 19, 2020 identifying 1,388 SARS-CoV-2 cases) and 191 

intervention measures were implemented from the very beginning the outbreak, and 192 

after February 22 no more than one case was being reported daily37. The genomic 193 

epidemiology of SARS-CoV-2 in Guangdong showed that most of the infections 194 

before March were imported from Hubei province, particularly Wuhan. Although 195 

some early cases were caused by community transmission, local transmission chains 196 

were limited both in size and duration37. These results suggest the efficacy of 197 

intensive testing and contact tracing even in such a densely populated urban region. 198 

Intensive surveillance also identified two SARS-CoV-2 variants with deletions in the 199 

spike gene38. In addition, the Guangdong CDC successfully identified the imported 200 

Alpha and Beta variants on January 2, 202139 and January 6, 202140, respectively. 201 

The USA 202 

The first COVID-19 case in the USA (sequence WA1) was reported on January 20, 203 

2020, representing a traveler from Wuhan41. By February 15, 2020, the number of 204 

laboratory confirmed and clinically diagnosed COVID-19 cases reached 1542. By 205 

combining multiple sources of information, Worobey and colleagues showed that the 206 

WA1 (belonging to lineage A) case was successfully contained, and the subsequent 207 

larger outbreaks in the Washington State might have been caused by multiple 208 

independent introductions of the virus from China in late January or early February, 209 

202043. However, evidence from various studies revealed that the early viruses present 210 

between February 29 and March 18, 2020 in the New York City were imported from 211 
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Europe and other parts of the United States via multiple, independent introductions44. 212 

In addition, cryptic transmission and a prolonged period of unrecognized community 213 

spread has been documented in Northern California45, Washington State46 and New 214 

York City47 from late January to March 2020. For example, SARS-CoV-2 sequences 215 

sampled from Connecticut during March 6-14, 2020 group with those from 216 

Washington State, highlighting the long-distance domestic transmission48. Genomic 217 

surveillance in Dane and Milwaukee counties in Wisconsin between March and April, 218 

2020 provided evidence for reduced viral spread following the statewide “Safer at 219 

Home” order49. Combined, these genomic surveillance studies clearly depict the early 220 

transmission of SARS-CoV-2 and highlight the efficacy of intensive testing, contact 221 

tracing and decreasing public gatherings in containing SARS-CoV-2. 222 

3.2 Mutational diversity of SARS-CoV-2 223 

By January 2021, approximately 25,000 out of the 29,800 sites (the length of the 224 

complete SARS-CoV-2 genome) have been shown to carry mutational differences 225 

(https://bigd.big.ac.cn/ncov/), and it has been estimated that approximately two 226 

mutations are fixed in the SARS-CoV-2 genome per month43,50,51. Although most of 227 

these mutations represent standard replication errors, host-dependent RNA editing 228 

may also shape the short- and long-term evolution of SARS-CoV-2. Indeed, the 229 

SARS-CoV-2 genome is characterized by frequent biased CU hypermutation that is 230 

likely due to a human APOBEC-like editing process52,53. 231 

Similar to other coronaviruses, the spike protein of SARS-CoV-2 contains important 232 

antigen epitopes54,55. As such, mutations in the spike protein will likely affect the 233 

receptor binding efficiency and potentially lead to immune escape and even weaken 234 

vaccine efficacy. The first notable mutation was A23403G that caused the D614G 235 

amino acid substitution in the spike protein. This mutation might have arisen 236 

separately as early as in late January 2020 in China and later in Europe, representing 237 

an interesting mutation of convergence evolution, and greatly increased in frequency 238 

during the European outbreak56,57. There is now compelling evidence that D614G has 239 

increased virus infectivity and transmissibility56-61, and molecular epidemiological 240 

studies suggest that this mutation increased R0 from 3.1 (614D) to 4.0 (614G)57. In 241 

addition, a so-called ‘cluster V’ (also called B.1.1.298) SARS-CoV-2 variant was 242 

identified in Danish mink that also carried mutations in the spike protein, including 243 



 9

Y453F, I692V, M1229I and the deletion of two amino acids (69-70) (Fig. 2)14,62. 244 

Not surprisingly, as number of COVID-19 cases continue to rise, mutational variants 245 

with a likely greater impact of fitness have also emerged, including some that might 246 

result in immune escape. Indeed, there are putative escape mutations to the ten human 247 

monoclonal antibodies (mAbs) targeting the SARS-CoV-2 RBD63. Of particular note 248 

are the major SARS-CoV-2 ‘variants of concern’ (VOC) that arose in late 2020: Alpha 249 

(formerly B.1.1.7, and also called VOC-202012/01), Beta (formerly B.1.351, and also 250 

denoted 501Y.V2), Gamma (formerly P.1), and Delta (formerly B.1.617.2) first 251 

identified in the UK64,65, South Africa66, Brazil67,68, and India69, respectively (Box 2, 252 

Fig. 1-2). 253 

The emergence of these variant lineages has raised concerns that the virus has entered 254 

a new phase in its evolution70,71, characterized by ongoing immune escape in the face 255 

of rising levels of infected hosts that likely impacts vaccine efficacy72, as well as the 256 

possibility of selection for increased transmission due to the imposition of 257 

nonpharmaceutical interventions (NPIs)71. The Alpha variant has been associated with 258 

increased rates of virus population growth64,65, and has been reported to be able to 259 

escape neutralization by most mAbs targeting the NTD of the spike73. However, there 260 

is no widespread escape of the Alpha variant from mAbs or antibody responses 261 

generated by natural infection or vaccination73-75, such that its spread may reflect 262 

increased transmissibility. In particular, some of the Alpha variants acquired 263 

additional mutations in the spike protein, particularly E484K, and exhibited a 264 

substantial loss of neutralizing activity by vaccine-elicited antibodies and mAbs 265 

resistance to convalescent plasma76. More worryingly, the Beta variant can escape 266 

neutralization by most RBD mAbs and substantially escape from neutralizing 267 

antibodies in COVID-19 convalescent plasma73,77,78. Similarly, the Gamma variant 268 

shows significant decreases in neutralization with post-vaccination sera79 although, 269 

surprisingly, it is significantly less resistant to naturally acquired or vaccine-induced 270 

antibody responses than the Beta lineage80. In addition, neutralization of the Delta 271 

lineage is reduced when compared with ancestral circulating strains74,75, and 272 

convalescent sera from patients infected with the Beta and Gamma variants show 273 

markedly more reduction in neutralization of the Delta lineage74. 274 

As well as nucleotide substitutions, the SARS-CoV-2 genome has experienced many 275 
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deletion events. For example, some viruses from Singapore and Taiwan, China carried 276 

a 382-nt deletion truncating ORF7b and covering almost the entire ORF881-83. This 277 

variant showed significantly higher replicative fitness in vitro than the wild type81, but 278 

seemed to be associated with a milder infection clinically82 and has not been reported 279 

in recent months. Su and colleagues described other ORF7b/8 deletions of various 280 

lengths, including viruses from Australia (138-nt), Bangladesh (345-nt) and Spain 281 

(62-nt)81. Long deletion events were also found in clinical samples from Beijing, with 282 

120-nt deletion within the ORF7a and 154-nt deletion within ORF8, respectively84. 283 

4. Global spread of SARS-CoV-2 284 

4.1 Initial spread of SARS-CoV-2 in China 285 

Generally, China experienced three distinct phases of SARS-CoV-2 transmission: (i) 286 

initial rapid spread within Wuhan, (ii) seeding from Wuhan to cause community 287 

transmission in other regions of China, and (iii) sporadic outbreaks caused by 288 

international importations after China controlled the first wave37,84. 289 

Early spread of SARS-CoV-2 in Wuhan 290 

The original SARS-CoV-2 outbreak in Wuhan can itself be divided into three phases85: 291 

(i) rapid transmission prior to the implementation of the large-scale population 292 

“lockdown” of the city on January 23, 20208, with an estimated effective reproduction 293 

number ( ) of 3.5 (95% credible interval 3.4-3.7) during this period86; (ii) reduction 294 

of the rate of virus transmission during the period January 23 to February 1 (via 295 

lockdown and home quarantine), producing an average  of 1.2 (95% CI 1.1-1.3)86; 296 

and (iii) the interruption of transmission through intensified stringent interventions 297 

during February 2-16, 2020 (centralized isolation and treatment of the cases) and 298 

February 17 - March 8 (community screening). Population-based serological surveys 299 

conducted during March-May 2020 revealed that the overall seropositivity rate in 300 

Wuhan was 3.2%-4.4%87-89, indicating that many infections went undetected due to 301 

asymptomatic and mild infections and the limited laboratory diagnosis capacity 302 

during the early stages of the outbreak86,90,91. However, a city-wide nucleic acid 303 

screening of SARS-CoV-2 between May 14 and June 1, 2020 among nearly ten 304 

million residents of Wuhan only found ~300 asymptomatic cases after the lockdown 305 

was lifted on April 8, 202092, and no symptomatic local cases have been found in the 306 
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city after May 10, 2020. 307 

Spread from Wuhan to other provinces 308 

The coincidence of the SARS-CoV-2 emergence and the massive seasonal human 309 

migration (Chunyun, starting from January 10 in 2020) for the Chinese Lunar New 310 

Year holiday likely exacerbated the seeding of the virus across China93,94. Movement 311 

restrictions from Wuhan, the key transportation hub in central China, commenced on 312 

January 23, 2020, and reduced the peak population numbers leaving the city two days 313 

before the Lunar New Year; unfortunately, however, the disease had spread to every 314 

province in mainland China by this time95,96. In general, following the rapid 315 

implementation of stringent and integrated NPIs,  in provinces outside Hubei 316 

decreased below the epidemic threshold (1.0) from February 8, 202097. Compared 317 

with Wuhan, the seropositivity rate in cities outside Wuhan was far lower. According 318 

to a national COVID-19 sero-epidemiological survey in China during March-May 319 

202089, only 0.44% of the sampled population in other cities of Hubei were positive, 320 

and only two out of more than 12,000 people outside Hubei tested positive, 321 

suggesting that SARS-CoV-2 transmission was well contained across the country 322 

during the first wave95,98,99.  323 

Frequent international importation events 324 

Over six thousand incoming travelers from abroad infected with SARS-CoV-2 had 325 

been reported in mainland China by June 15, 2021, although RT-PCR testing at the 326 

border control and the 14-day centralized quarantine implemented in China since 327 

March 2020 greatly reduced any transmission risk. For example, in Guangzhou, 328 

Guangdong province in southern China, 73.5% of the imported positive cases were 329 

detected at the immigration checkpoint and 19.0% during centralized quarantine in 330 

hotels100. Although SARS-CoV-2 is predominantly associated with respiratory 331 

transmission, since June 2020, multiple Chinese provinces have detected 332 

SARS-CoV-2 RNA or live virus from the packages of frozen products101. Indeed, 333 

cold-chain food or package contamination was proposed to have triggered the 334 

resurgence in Beijing in June 2020102 as well as other sporadic outbreaks in China101, 335 

although this warrants further investigation. It is notable that the number of confirmed 336 

cases was low in the Xinfadi outbreak, Beijing, June 2020. Similarly, all the 337 

COVID-19 outbreaks in China triggered by internationally imported travelers are 338 
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small-scale, with a few sustained cases. This was mainly due to the citywide, 339 

grid-based mass-screening protocol using reverse-transcriptase–340 

polymerase-chain-reaction (RT-PCR) testing103. 341 

4.2 Intercontinental spread of SARS-CoV-2 342 

From China to other regions 343 

The global spread of SARS-CoV-2 shows how rapidly geographically disparate 344 

countries can be reached by an emerging pathogen (Fig. 3a)104-105. Two distinct 345 

transmission phases of international exportations of SARS-CoV-2 were identified at 346 

the early stage of the pandemic106. In the first phase, a high volume of international 347 

airline passengers left Wuhan for hundreds of destinations across the world during the 348 

two weeks prior to the Wuhan lockdown91. Cities across Asia, Europe and North 349 

America are the main destinations and have reported several imported cases at the 350 

early stage of the outbreak105,107, and the WHO declared a Public Health Emergency 351 

of International Concern on January 30, 2020. Containment of the outbreak in China, 352 

particularly the implementation of travel restrictions since late January 2020, 353 

significantly reduced the further spread of SARS-CoV-2 beyond China95,96,98,108,109.  354 

From Europe to other regions 355 

However, international travel outside of China from mid-February to late-March 356 

facilitated the second phase of international SARS-CoV-2 spread and onward 357 

transmissions106,110, with the epicenter quickly shifted to the Middle East111 and 358 

Europe (Fig. 3c). Although France was the first country to identify COVID-19 cases 359 

in Europe, Italy soon became the first major hotspot in the continent107,108,112,113, and 360 

Spain, Belgium and the UK reported the highest numbers of deaths in Europe during 361 

the first wave114. The virus exported from Europe acted as a major source of global 362 

spread44, and the WHO eventually declared a pandemic on March 11, 2020. Countries 363 

quickly placed restrictions on flights from Europe during March-April 2020, although 364 

these measures could not prevent local community transmission72,110. 365 

By late March 2020 cases surged in the USA, with North America becoming the 366 

global epicenter115,116. By the end of 2020, the total number of confirmed cases 367 

recorded in the USA surpassed 20 million, including more than 350 thousand deaths. 368 

Although the first SARS-CoV-2 case in the USA was reported in a traveler returning 369 
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from China on January 20, 202041, phylogenetic evidence suggests that importations 370 

from Europe mainly contributed to the wide spread of the virus across the 371 

country106,115. Latin America and South Asia have also been badly affected. 372 

SARS-CoV-2 was confirmed in Brazil on February 25, 2020 and a month later it was 373 

found in every state, with confirmed cases exceeding one million on June 19, 374 

2020117,118. Although the first COVID-19 case was confirmed in India on January 30, 375 

2020 and the situation was seemingly under control until the end of March 2020119, 376 

India has reported the second highest number of COVID-19 cases since September 377 

2020120. Additionally, most African countries experienced community transmission by 378 

May 31, 2020, with most imported cases returning from Europe and the USA121, and 379 

it is believed that the disease is generally underreported across Africa due to the 380 

limited testing and health care capacity122-125. 381 

Secondary waves across countries 382 

NPIs, such as travel restrictions, case isolation and contact tracing, physical distancing, 383 

face covering, hand washing, and even closures of business and schools, have been 384 

widely implemented to mitigate the transmission of SARS-CoV-2108,126,127. Full or 385 

partial lockdowns during specific periods has also been imposed in many countries114. 386 

Although the effectiveness of different interventions and their combinations have 387 

varied, these measures have played an important role in the response to the first wave 388 

of the pandemic128,129. 389 

Unfortunately, following the relaxation of interventions, the recovery of population 390 

movements, and the spread of novel variants with higher transmissibility, a new wave 391 

of infections has swept through many nations since October 2020 (Fig. 3d-3e, 392 

Supplementary Table 1)130-132. The first wave in the USA mainly affected the 393 

Northeast of that country133, whereas the second wave in summer mainly hit the south 394 

and west, and almost every state has seen a spike in cases during the third wave since 395 

October 2020134. Brazil has experienced a major second wave since November 2020 396 

and even had death toll second only to the USA in early 2021135. Similarly, Europe 397 

also suffered from the spread of novel SARS-CoV-2 variants throughout the continent 398 

after travel resumed in the summer of 2020, with the highest daily number of cases 399 

recorded in many countries between October 2020 and March 2021. Following NPIs 400 

implemented and even the second or third lockdown, combined with ongoing and 401 
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large-scale vaccination, many countries passed the second wave by the end of May 402 

2021. This has reduced the pressure on the healthcare system and bought time to 403 

vaccinate people at the greatest risk of severe disease136. 404 

However, the emergence and rapid spread of various SARS-CoV-2 VOCs and VOIs 405 

that are more contagious and/or potentially evade immunity has triggered new waves 406 

in many countries (Fig. 3b, Extended Data Fig. 1). For example, India has 407 

experienced a major second wave from March to June 2021, mostly due to the Delta 408 

variant. As of August 10, 2021, a total of 142 countries, territories and areas across the 409 

world have reported the Delta variant69 (Extended Data Fig. 1d), even in countries 410 

with mass vaccination, e.g. the UK and Israel137. In particular, community 411 

transmission of this variant has also been reported in many countries69. In mid-June 412 

2021, the WHO declared that the Delta variant has displaced most of the other VOCs 413 

and become the dominant lineage across the world137,138. 414 

5. Challenges and outlook 415 

Although of vital importance to the prevention of future emerging infectious diseases 416 

that will inevitably impact human populations, current understanding of the initial 417 

SARS-CoV-2 spillover event is limited. Although the closest relatives to 418 

SARS-CoV-2 are found in horseshoe bats, it is unclear whether the virus directly 419 

jumped from bats to humans or was passed through an intermediate animal host as 420 

was the case for previous coronavirus epidemics, although the latter seems more 421 

reasonable6,9. 422 

The genomic surveillance of SARS-CoV-2 is by far the largest pathogen genomic 423 

sequencing project ever undertaken, with more than 2.8 million complete genomes 424 

generated as of August 2021. This endeavor has played an essential role in the 425 

prevention and control of COVID-19 and shed light on the transmission patterns of 426 

SARS-CoV-2 at different scales, such as the time and source of the introduction 427 

events, the spatio-temporal characterizations of local spread, the role of 428 

superspreading events, and also the viral factors associated with the fitness, 429 

transmissibility, infectivity and disease severity. Of particular note is the identification 430 

of the major SARS-CoV-2 variants of concern, as well as several Variants of Interest 431 

(VOI; denoted Epsilon to Lambda)139,140 that emerged in different countries and have 432 
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caused an increased proportion of cases both locally and globally. 433 

The emergence of these SARS-CoV-2 variants has shaped the complex global 434 

transmission dynamics of COVID-19. More importantly, there is mounting 435 

evidence141 that these SARS-CoV-2 variants are able to cause decreases in 436 

neutralizing titers from convalescent patients and vaccine recipients, and escape 437 

neutralization by the mAbs targeting the NTD and RBD of the spike to different 438 

degree. However, genomic surveillance would be more informative if coupled with a 439 

system for risk assessing and phenotyping these mutations. For example, the 440 

infectivity and antigenicity of 106 mutations in the SARS-CoV-2 spike was assessed 441 

using pseudotyped viruses142. Deep mutational scanning has also been used to assess 442 

all single amino acid variants of the SARS-CoV-2 spike protein143,144. In addition, 443 

more and more data on antigenic variations of the SARS-CoV-2 variants, with 444 

different sets of single amino acid mutations, to mAbs and vaccines are available. A 445 

risk assessment system that integrates pathogen surveillance and immune escape data 446 

is desirable, although confounded by the different classes of neutralizing antibodies, 447 

the NTD antibodies, vaccine strategies, and even the host heterogeneity. 448 

That the major SARS-CoV-2 VOCs have reduced the efficacy of mAbs and vaccines 449 

has posed serious challenges in the control of the COVID-19 pandemic. First, 450 

although vaccines can protect people with SARS-CoV-2 variants against severe 451 

disease, vaccine manufacturers are exploring redesigns of their products to gain more 452 

effective protection – to eventually prevent virus transmission. Second, the 453 

suboptimal protection provided by vaccines145 and the deployment of antibody-based 454 

treatments of limited or undemonstrated efficacy146 has raised concerns that this 455 

would accelerate the emergence of new variants, although there is a strong argument 456 

for mass vaccination even if vaccines can only provide partial immunity147,148. Third, 457 

this has also raised the possibility that SARS-CoV-2 will become a recurrent seasonal 458 

infection149,150. Fourth, since vaccines cannot completely prevent transmission of the 459 

major variants, stringent NPIs should have to be implemented in order to reduce 460 

transmission of the virus, as unlimited, large-scale spread of the variants would likely 461 

generate more novel variants. 462 

The genomic surveillance of SARS-CoV-2 is also facing several major challenges. 463 

First, despite this enormous endeavor, in reality only a tiny proportion (~1.3%) of 464 
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cases have been sequenced. In addition, the majority of sequences come from a small 465 

number of countries, and remarkably, as of August 2021, ~50% of genomes have 466 

generated in the UK and the USA that have led the world in this respect. In marked 467 

contrast, other countries with very major outbreaks, such as India and Brazil, have 468 

sequenced a far smaller number of cases, which may cause delays in identifying 469 

variants with novel phenotypic characteristics. Therefore, it is likely that there are 470 

additional new variants that are yet undetected given the limited genomic surveillance 471 

in a number of regions. Indeed, because the major VOCs are genetically divergent, it 472 

is possible that they had been circulating cryptically in unsampled locations, or have 473 

also emerged in chronically infected hosts that shed virus for extended periods151,152. 474 

Second, the complex transmission dynamics caused by different SARS-CoV-2 475 

variants and their continuous evolution clearly necessitate increased genomic 476 

surveillance. Third, it is possible that recombination among viruses will also change 477 

the genetic structure of SARS-CoV-2, perhaps generating viruses of altered phenotype. 478 

Indeed, there have already been suggestions of recombination between the Alpha and 479 

Epsilon variants in California in early 2021153. Similarly, the potential recombination 480 

between SARS-CoV-2 and other mild human coronaviruses should not be neglected. 481 

In summary, SARS-CoV-2 has led to a new understanding of coronavirus evolution 482 

and the virus has entered a new evolutionary phase characterized by the frequent 483 

emergence and spread of variants that impact immune escape and reduce the efficacy 484 

of vaccines. Of particular concern is that the limited genomic surveillance in many 485 

low-income countries may cause delays in identifying variants with novel phenotypic 486 

characteristics. To contain this and future pandemics, we urgently call for closer 487 

international cooperation, increased vaccine supply and sharing, rapid information 488 

exchange, and the establishment of both the infrastructure and trained personnel 489 

required for the effective genomic surveillance of SARS-CoV-2 and other emerging 490 

viruses. 491 

  492 
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Figures 493 

 494 

 495 

Fig. 1 | Phylogenetic tree of global SARS-CoV-2 and the temporal distribution of 496 

major sequence variants. 497 
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Phylogenetic analysis was performed using full-length genome sequences of 498 

SARS-CoV-2 collected from GISAID as of May 12, 2021. A maximum likelihood 499 

tree of 1715 representative high-quality SARS-CoV-2 sequences carrying specific 500 

accumulative mutations was estimated using RAxML156, with 1,000 bootstrap 501 

replicates and the GTR nucleotide substitution model. The major VOCs (Alpha to 502 

Delta) are shown in orange, and the major VOIs (Epsilon to Lambda) are shown in 503 

purple. Both the thickness of each branch in the phylogenetic tree and the shading 504 

from light to dark in the heatmap indicate the number of sequences carrying specific 505 

sets of mutations. Specific nucleotide substitutions are highlighted on the major 506 

branches of the tree. The branches with the D614G mutation are colored blue. 507 

 508 

 509 

Fig. 2 | SARS-CoV-2 spike mutations in the Alpha, Beta, Gamma, Delta, and 510 

mink ‘cluster V’ variants. 511 

Three-dimensional structures are modeled using the Swiss-Model program employing 512 

the spike protein of SARS-CoV-2 (PDB: 7CWU.1.G) as a template. In the left panel, 513 

the blue spheres represent the residues of NC_045512, and the red spheres represent 514 

the mutations found in the Alpha157, Beta64, Gamma140, Delta140 variants of concern, 515 
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as well as the mink ‘cluster V’ variants62. The amino acid positions of all the strains 516 

are numbered according to the template. The triangle represents a nucleotide deletion 517 

event. In the right panel, the surfaces of the six amino acid residues (L455, F486, 518 

Q493, S494, N501, and Y505) at the RBD are colored cyan. The molecular surfaces 519 

of the mutations in the Alpha (purple), Beta (blue), Gamma (yellow), Delta (orange), 520 

and mink ‘cluster V’ (pink) variants are highlighted. *Not all Alpha variants possess 521 

the E484K and S494P mutations. #Not all Delta variants possess the G142D mutation. 522 

It should be noted that we just use this figure to highlight the locations of the 523 

mutations in the variants based on the three-dimensional structure of one ancestral 524 

Wuhan strain (NC_045512), and this figure does not really represent the true 525 

three-dimensional structure of the variants. 526 

 527 

Fig. 3 | Global spread of SARS-CoV-2 and cases reported across countries. 528 

a, The date of the first COVID-19 report in each country, territory or area. The areas 529 

without data are shown in grey. b, Reports of “Variants of Concern” (now denoted 530 

VOC Alpha to Delta) based on records published at the COVID-19 Weekly 531 

Epidemiological Update by the World Health Organization  532 

(https://covid19.who.int/), as of August 10, 2021. c, The 7-day rolling average of the 533 

number of confirmed COVID-19 cases reported by continent. The orange vertical 534 

dashed line indicates the date of COVID-19 declared as a pandemic by the WHO. d, 535 

The weekly proportion of case number in the top 50 ranked countries with the highest 536 
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number of COVID-19 cases and the available mobility data in panel e, as of August 8, 537 

2021. The weekly proportion was calculated as the case count in a specific week and 538 

country, divided by the total number of cases reported in each country. e, The changes 539 

of human mobility (by August 8, 2021) in the 50 countries as presented in panel d, 540 

compared to the normal mobility from January 3 to February 6, 2020. Each row in 541 

panels d and e represents a country, grouped by continent and then sorted by the 542 

latitudes of capital cities from North to South (the country list is available in 543 

Supplementary Table 1). The grey dotted vertical lines in panels d and e from left to 544 

right indicate the first week of April, July, and October in 2020, and January, April, 545 

and July in 2021, respectively. The data set of case numbers was obtained from the 546 

data repository collated by the Johns Hopkins University 547 

(github.com/CSSEGISandData/COVID-19). The anonymized and aggregated data of 548 

population mobility in transit stations were obtained from the Google COVID-19 549 

Community Mobility Reports (www.google.com/covid19/mobility/). The 550 

administrative boundary maps were obtained from the Natural Earth 551 

(www.naturalearthdata.com). 552 
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BOX 1. Sources of SARS-CoV-2 genomic data and surveillance 

 

The GISAID database (Global Initiative on Sharing All Influenza Data, 

https://www.gisaid.org/)  

There have been more than 2.8 million complete SARS-CoV-2 genomes and metadata available 

from GISAID EpiCoVTM as of August 2021. Useful tools, including Blast search, phylogenetic 

trees, PrimerChecker, spike glycoprotein mutation and emerging variants surveillance are 

provided, and related analyses are constantly updated. 

 

The NCBI database (National Center for Biotechnology Information, 

https://www.ncbi.nlm.nih.gov/)  

More than 1.1 million SARS-CoV-2 nucleotide records and nine hundred thousand SRA runs have 

been deposited in the NCBI GenBank and SRA databases. The NCBI SARS-CoV-2 Resources 

(https://www.ncbi.nlm.nih.gov/sars-cov-2/) also provided a comprehensive access to other related 

data sources and numerous online analysis tools. 

 

The CNBC/NGDC database (National Bioinformatics Center/National Genomics Data 

Center, https://bigd.big.ac.cn/ncov/) 

This database integrates the SARS-CoV-2 genomes and related metadata from other sources, e.g. 

the GISAID, NCBI, GWH (Genome Warehouse, https://bigd.big.ac.cn/gwh/), NMDC (National 

Microbiology Data Center), and CNGB (China National GeneBank)155. It provides a variety of 

useful online analysis tools, including sequence integrity and quality assessment, spatiotemporal 

dynamics, Haplotype network, variant distribution, molecular mutation, and also published 

clinical trials.  

 

PANGO lineages (https://cov-lineages.org/) 

This is a useful nomenclature system for SARS-CoV-2 genomes. As of Aug 2021, the Pango 

system contains over 1500 designated lineages covering all the SARS-CoV-2 sequences from 

GISAID. Web-based or the open source code of applications e.g. Pangolin, Scorpio, Civet, Polecat 

are internally developed to cluster identify. Via the Pangolin web interface 

(https://pangolin.cog-uk.io/), sequences uploaded by the users can be assigned the most likely 

lineage based on the Pango dynamic nomenclature156. Information of the SARS-CoV-2 variants is 

also provided. 

 

Nextstrain SARS-CoV-2 resources (https://nextstrain.org/sars-cov-2/) 

Genomic epidemiological analysis of global SARS-CoV-2 is continually updated on the open 

source platform Nextstrain, based on the genomic data from GISAID. It provides a variety of 

visualization options for users. The nucleotide and amino acid diversity of the spike protein and 

the frequencies of the Nextstrain clades are provided and updated. In addition, Nextclade can 

perform clade assignment, mutation calling, and sequence quality check for the SARS-CoV-2 

sequences uploaded by users. 



BOX 2. Genetic characterizations of the major VOCs 
 
The Alpha variant 
The Alpha variant is defined by 17 amino acid-altering mutations (14 
non-synonymous mutations and 3 deletions), including eight in the spike protein (Fig. 
1-2). Notably, three of these mutations are of potential biological significance - 
N501Y, P681H and the deletion of two amino acids 69-7065,66. Notably, this new 
variant has increased infectiousness across all age groups, being 43% to 90% more 
transmissible than previously circulating strains65,66. In addition, the infection with the 
Alpha variant has the potential to cause substantial additional mortality, with an 
increased risk of death from 32% to 104%159. However, there are also reports of no 
association between this variant and increased severity160,161. As of August 10, 2021, 
185 countries, territories or areas have identified this variant162 (Fig. 3b, Extended 
Data Fig. 1a). 
 
The Beta variant 
The Beta variant is characterized by eight lineage-specific mutations in the spike 
protein, including three at important residues in the RBD (K417N, E484K and N501Y) 
(Fig. 1-2)67. Besides South Africa, 135 additional countries, territories or areas have 
also reported the identification of this variant as of August 10, 2021 (Fig. 3b, 
Extended Data Fig. 1b), with community transmission mainly found in Africa, 
Europe, and North America162. 
 
The Gamma variant 
The Gamma variant contains a number of potentially important mutations, such as 
K417T, E484K, and N501Y in the spike protein (Fig. 1-2)68,69. The Gamma variant 
might be 1.7- to 2.4- fold more transmissible than previous (non-Gamma) strains in 
Brazil. As of August 10, 2021, identification of this variant has been reported in 81 
countries, territories and areas (Fig. 3b, Extended Data Fig. 1c), with most of them 
located in America and Europe162. 
 
The Delta variant 
The Delta variant contains several important amino acid mutations in the spike protein, 
including a three-amino acid-altering mutations (two deletions at 156 and 157, and 
one substitution of R158G) in the N-terminal domain (NTD), L452R, T478K, and 
P681R (Fig. 1-2)163. The Delta variant itself has been subject to ongoing evolution 
and a so-called “Delta plus” variant with an additional K417N mutation in the spike 
protein was identified in India in June 2021138,164. 
 
Despite their independent emergence (Fig. 1), the Alpha, Beta, and Gamma variants 
possess the N501Y mutation found in the mouse-adapted SARS-CoV-2 variant165. In 
addition, the Beta and Gamma lineages share E484K65,66,68,69, which was also 
identified in the late, rather than early, Alpha variants77. 
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