1	The origins, genomic diversity and global spread of
2	SARS-CoV-2
3	
4	Juan Li ^{1,5#} , Shengjie Lai ^{2#} , George F. Gao ^{3,4} , Weifeng Shi ^{1,5} *
5	
6 7	¹ School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.
8	² WorldPop School of Geography and Environmental Science University of
9	Southampton, Southampton SO17 1BJ, UK.
10	³ National Institute for Viral Disease Control and Prevention, China CDC, Beijing
11	102206, China.
12	⁴ CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
13	Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for
14	Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of
15	Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences,
16	Beijing 100101, China.
17	⁵ Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in
18	the Universities of Shandong, Shandong First Medical University & Shandong
19	Academy of Medical Sciences, Taian 271000, China.
20	
21	#Contributed equally to this article.
22	*Corresponding author.
23	

24 **Preface**

25 It has been 19 months since COVID-19 was first documented in Wuhan, China. Since 26 this time, the world has witnessed a devastating global pandemic, with more than 209 27 million infections, over four million fatalities, and cases rising rapidly on a daily basis. 28 Herein, we describe the currently available data on the origins of the causative virus, 29 SARS-CoV-2, outline its early spread in Wuhan and transmission patterns in China 30 and globally, and highlight how genomic surveillance has helped trace the spread and 31 genetic variation of the virus, comprising a key element of pandemic control. We 32 devote particular attention to characterizing and describing the international spread of 33 the major 'variants of concern' that were first identified in SARS-CoV-2 in late 2020 34 and demonstrate that virus evolution has entered a new phase. More broadly, we 35 highlight our currently limited understanding of coronavirus diversity in nature, the 36 rapid spread of the virus and its variants in such an increasingly connected world, the 37 reduced protection of vaccines, and the urgent need for coordinated global 38 surveillance using genomic techniques. Overall, we provide important information for 39 the prevention and control of both the ongoing COVID-19 pandemic and the novel 40 diseases that will inevitably emerge in humans in future generations.

41

42 **1. Introduction**

43 On the last day of 2019, the Wuhan Municipal Health Commission reported an 44 outbreak of pneumonia on its official website. Shortly after, scientists reported the 45 discovery of a novel coronavirus from the respiratory system from some of these 46 patients that was different from all known coronaviruses including severe acute 47 respiratory syndrome (SARS) coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV)¹⁻⁴. Shortly afterwards, the World Health 48 Organization (WHO) named the disease COVID-19 and the International Committee 49 on Taxonomy of Viruses named the novel infectious agent SARS-CoV-2⁵, the seventh 50 51 coronavirus that can cause epidemics. Dramatically and unexpectedly, COVID-19 52 rapidly spread through the global population, generating several variants of concern 53 and developing into a major and devastating pandemic. Herein, we summarize our

54 current understanding of the origins, global spread and genetic diversity of

55 SARS-CoV-2.

56 2. The origins of SARS-CoV-2

57 2.1 SARS-CoV-2 related coronaviruses

Many early COVID-19 cases from Wuhan were associated with the Huanan seafood 58 market² which, given the presence of wildlife at the market, made it an obvious 59 60 candidate for the location of the initial zoonotic (i.e. cross-species transmission) event. 61 However, none of the animals from the market (including rabbits, snakes, stray cats, badgers, and bamboo rats) tested positive for SARS-CoV-2⁶, and viral genome 62 63 sequences of environmental samples from the market may not occupy basal positions 64 on the viral phylogeny (although the position of the rooting on the tree is uncertain)^{\prime}. 65 In addition, some early COVID-19 cases from Wuhan were not epidemiologically linked to the market⁸, and some were linked to other markets^{9,10}. Hence, although not 66 67 fully resolved, current evidence suggests that the Huanan seafood market might be the location of an early 'superspreading' event. 68

From the earliest genomic comparisons it was clear that SARS-CoV-2 possessed a 69 70 similar genomic organization to SARS-CoV. Both had similar three-dimensional 71 structures in the spike protein, suggesting that these viruses might utilize the same cell surface receptor - human angiotensin-converting enzyme (hACE2)²: this was soon 72 confirmed *in vitro*⁴ and by structural biology¹¹. However, SARS-CoV-2 differs from 73 SARS-CoV in two fundamental ways¹². First, there are six amino acid positions in the 74 receptor binding domain (RBD) of the spike protein that mediate attachment of the 75 SARS-CoV and SARS-CoV-2 spike to the hACE2 receptor¹³. However, amino acids 76 at five of the six positions differed between SARS-CoV and SARS-CoV- $2^{2,12}$. 77 Intriguingly, such differences have endowed SARS-CoV-2 with higher binding 78 efficiency to the hACE2 receptor¹¹, and may contribute to the higher transmissibility 79 of SARS-CoV-2 than SARS-CoV. Second, there was a 12-nucleotide (nt) insertion at 80 81 the cleavage site of the spike protein of SARS-CoV-2 that has not yet been identified in closely related betacoronaviruses, but which has a complex evolutionary history 82 across the coronaviruses as a whole indicating that it is evolutionarily volatile¹⁴. This 83 84 insertion encoded four amino acids, PRRA, that can be recognized by a protease

-furin- extensively expressed in different tissues and organs¹⁵. This insertion may 85 86 decrease the overall stability of SARS-CoV-2 spike, thereby facilitating the adoption of the open conformation required for the spike-ACE2 binding¹⁶, and SARS-CoV-2 87 88 without this furin-cleavage site had reduced replication in a human respiratory cell line and was attenuated in laboratory animals¹⁷. Notably, amino acid substitutions 89 have been documented at all four positions in the PRRA motif, with a P-to-H 90 91 substitution (HRRA) identified in >487,000 viral genomes as of June 2021. 92 SARS-CoV-2, like many other members of the genus *Betacoronavirus* (including 93 SARS-CoV), seemingly has its evolutionary roots in those viruses that commonly infect bats². Not surprisingly, shortly after the identification of SARS-CoV-2, a close 94 relative of SARS-CoV-2 was described - RaTG13 that was identified from a bat 95 96 (*Rhinolophus affinis*) sampled in Yunnan province in 2013⁴. Interestingly, it was collected from a mine cave where four workers were sent to clean bat faeces and 97 subsequently developed severe pneumonia¹⁸. Although RaTG13 exhibits 96.2% 98 sequence identity to SARS-CoV-2 at the scale of whole genome, it does not possess 99 100 similar RBD or cleavage site sequences. Further analyses suggest that RaTG13, rather than SARS-CoV-2, was a recombinant, and they likely diverged over 30 years ago^{19} . 101 Therefore, the SARS-CoV-2 RBD was an ancestral trait shared with bat viruses¹⁹. 102 103 Subsequently, a number of groups reported the identification of SARS-CoV-2 related 104 coronaviruses in Malayan pangolins (Manis javanica) smuggled into Guangxi and Guangdong provinces, China^{20,21}. These pangolin coronavirus genomes exhibited 85.5% 105 to 92.4% sequence similarity to SARS-CoV-2²⁰. Notably, however, these pangolin 106 107 derived coronaviruses formed two sub-lineages, with the Guangdong sub-lineage 108 clustering with RaTG13 and SARS-CoV-2 and sharing 97.4% amino acid similarity to 109 SARS-CoV-2 in the RBD, with identical amino acids at the six critical residues of the 110 RBD. Also of note was that the Guangdong pangolins appeared to suffer a similar disease manifestation to humans suffering from COVID-19²². Thus, although the role, 111 112 if any, played by pangolins in the genesis of SARS-CoV-2 and the ecology of 113 coronaviruses in general is unknown, it is clear that wildlife coronaviruses exist that 114 possess SARS-CoV-2 like RBD and high binding efficiency to hACE2. 115 Furthermore, a novel bat coronavirus, RmYN02, was reported, having been collected

116 during routine surveillance of *R. malayanus* bats in Yunnan province on June 25,

117 2019²³. RmYN02 shared 97.2% sequence identity with SARS-CoV-2 in the 1ab open

reading frame (ORF), the largest in coronaviruses at approximately 21,300 nt. In June

119 2021, we reported four SARS-CoV-2 related coronaviruses genomes from Yunnan

120 province²⁴. Of these, RpYN06, found in *R. pusillus*, exhibited 94.5% sequence

121 identity to SARS-CoV-2. However, for the genome excluding the spike gene which

has a recombination history, the similarity to SARS-CoV-2 was 97.2%, making it the

123 closest genomic backbone to SARS-CoV-2 identified to date. The other three

124 SARS-CoV-2 related coronaviruses were more distant from SARS-CoV-2. However,

they carried a genetically distinct spike gene that could bind to the hACE2 receptor *in*

126 *vitro*, though weakly.

127 SARS-CoV-2-like coronaviruses have also been identified in bat populations from

128 other parts of Asia, including Japan²⁵, Cambodia²⁶, and Thailand²⁷. Notably, although

two betacoronaviruses (STT182 and STT200) from *R. shameli* bats sampled in 2010

130 from Cambodia share 92.6% nucleotide identity with SARS-CoV-2 across the genome

as a whole, they share five of the six critical RBD sites observed in SARS-CoV-2 and

132 the Guangdong pangolin coronavirus 26 .

133 2.2 Emergence pathways of SARS-CoV-2

134 There are several hypotheses regarding the origin and emergence of SARS-CoV-2 that 135 have been thoroughly clarified in the WHO-China joint report⁶. These contradictory 136 hypotheses have raised standing debates, with the central point being two competing 137 hypotheses: zoonotic emergence (including direct zoonotic introduction or 138 introduction through an intermediate host) and a laboratory escape. The discovery of 139 more and more SARS-CoV-2 related coronaviruses from wild animals provides evidence of a zoonotic origin of SARS-CoV-2^{4,20,21,23-27}. Importantly, all the 140 141 SARS-CoV-2 related coronaviruses mentioned above are evidently not the direct 142 ancestor of SARS-CoV-2. Any such direct ancestral virus, which has yet to be 143 identified, would be expected to exhibit >99% similarity to SARS-CoV-2 across the 144 genome as a whole. However, the discovery of these viruses again highlights that 145 more closely related viruses in bats and other wildlife species will be identified with 146 enhanced sampling in a broader geographic region, including most parts of Southeast Asia with high diversity of *Rhinolophus* species²⁴. Since it has been seldom seen that 147 148 a bat coronavirus is able to efficiently transmit among humans without adaptation and

the repeated human-animal contacts⁹, introduction through an intermediate host, such
as raccoon dogs, is more likely than direct zoonotic introduction.

151 Whether SARS-CoV-2 is introduced through a laboratory incident or it has been 152 genetically manipulated is highly debatable. After a thorough analysis of the genetic 153 characterizations of SARS-CoV-2 from both the early and later stages, as well as its 154 close relatives from wild animals, the global scientific community have reached the 155 consensus that SARS-CoV-2 is unlikely to be a laboratory escape and there is no 156 scientific evidence that SARS-CoV-2 has been genetically manipulated⁹. However, 157 the exact spillover and emergence process of SARS-CoV-2 is still obscure, and more 158 information from the earliest stage of the epidemic is clearly important to understand 159 how SARS-CoV-2 reached humans.

160 3. Global genetic diversity of SARS-CoV-2

161 3.1 Genomic surveillance of SARS-CoV-2

162 Mutations are a natural part of the replication cycle of any RNA virus, leading to the 163 diversification of viral lineages when coupled with inter-host transmission. This is 164 also true of SARS-CoV-2, even though coronaviruses contain certain proofreading mechanisms that enhance the genome fidelity 28 . Genomic surveillance has generated 165 166 unprecedented amount of sequencing data for a single virus (**Box 1**), and has proven an essential tool^{29,30} to trace the spread of SARS-CoV-2 at various scales, from 167 168 individual transmission events to the intercontinental spread of the virus. In addition, 169 it plays a central role in monitoring the evolution of SARS-CoV-2 and identifying 170 novel variants with enhanced transmissibility and/or pathogenicity, decreased 171 susceptibility to therapeutic agents and evading natural or vaccine-induced immunity 172 (Fig. 1). Genomic surveillance has demonstrated the effectiveness in tracking local 173 transmission cases, recognizing importation sources and superspreading events in 174 Australia^{31,32}, in informing public health decision-making in the Netherlands³³, and in adopting social distancing measures to reduce viral spread in Israel³⁴. In January 2021, 175 176 du Plessis and colleagues described the analysis of 50,887 SARS-CoV-2 genomes³⁵, 177 quantifying the viral genetic structure of the UK epidemic at fine scale, including the 178 size, spatio-temporal origins and persistence of lineages as well as the impact of 179 intervention measures.

180 Herein, we take Guangdong province, China and the USA as examples to illustrate

181 how genomic surveillance has facilitated our understanding of this pandemic.

182 Guangdong, China

183 Guangdong is a populous province in Southeast China, with resident population >100184 million. After the SARS-CoV outbreak, believed to have originated in Guangdong³⁶, long-term reforms in the public health agencies have greatly improved the 185 186 infrastructures and enhanced the capacity of disease control and prevention. The first 187 case of COVID-19 in Guangdong had symptom onset on January 1 and was reported on January 19, 2020^{10,37}. Like many other Chinese provinces, Guangdong experienced 188 189 three phases - domestic importation, local community transmission and international importation - with the epidemic peak in early February³⁷. Large-scale surveillance 190 191 (~1.6 million tests by March 19, 2020 identifying 1,388 SARS-CoV-2 cases) and 192 intervention measures were implemented from the very beginning the outbreak, and 193 after February 22 no more than one case was being reported daily³⁷. The genomic 194 epidemiology of SARS-CoV-2 in Guangdong showed that most of the infections 195 before March were imported from Hubei province, particularly Wuhan. Although some early cases were caused by community transmission, local transmission chains 196 were limited both in size and duration³⁷. These results suggest the efficacy of 197 198 intensive testing and contact tracing even in such a densely populated urban region. 199 Intensive surveillance also identified two SARS-CoV-2 variants with deletions in the spike gene³⁸. In addition, the Guangdong CDC successfully identified the imported 200 Alpha and Beta variants on January 2, 2021³⁹ and January 6, 2021⁴⁰, respectively. 201

202 The USA

203 The first COVID-19 case in the USA (sequence WA1) was reported on January 20, 2020, representing a traveler from Wuhan⁴¹. By February 15, 2020, the number of 204 laboratory confirmed and clinically diagnosed COVID-19 cases reached 15⁴². By 205 206 combining multiple sources of information, Worobey and colleagues showed that the 207 WA1 (belonging to lineage A) case was successfully contained, and the subsequent 208 larger outbreaks in the Washington State might have been caused by multiple 209 independent introductions of the virus from China in late January or early February, 2020⁴³. However, evidence from various studies revealed that the early viruses present 210 211 between February 29 and March 18, 2020 in the New York City were imported from

Europe and other parts of the United States via multiple, independent introductions⁴⁴. 212 213 In addition, cryptic transmission and a prolonged period of unrecognized community spread has been documented in Northern California⁴⁵, Washington State⁴⁶ and New 214 York City⁴⁷ from late January to March 2020. For example, SARS-CoV-2 sequences 215 216 sampled from Connecticut during March 6-14, 2020 group with those from Washington State, highlighting the long-distance domestic transmission⁴⁸. Genomic 217 218 surveillance in Dane and Milwaukee counties in Wisconsin between March and April, 219 2020 provided evidence for reduced viral spread following the statewide "Safer at 220 Home" order⁴⁹. Combined, these genomic surveillance studies clearly depict the early 221 transmission of SARS-CoV-2 and highlight the efficacy of intensive testing, contact 222 tracing and decreasing public gatherings in containing SARS-CoV-2.

223 3.2 Mutational diversity of SARS-CoV-2

224 By January 2021, approximately 25,000 out of the 29,800 sites (the length of the 225 complete SARS-CoV-2 genome) have been shown to carry mutational differences 226 (https://bigd.big.ac.cn/ncov/), and it has been estimated that approximately two mutations are fixed in the SARS-CoV-2 genome per month^{43,50,51}. Although most of 227 228 these mutations represent standard replication errors, host-dependent RNA editing 229 may also shape the short- and long-term evolution of SARS-CoV-2. Indeed, the 230 SARS-CoV-2 genome is characterized by frequent biased $C \rightarrow U$ hypermutation that is likely due to a human APOBEC-like editing process^{52,53}. 231

232 Similar to other coronaviruses, the spike protein of SARS-CoV-2 contains important antigen epitopes^{54,55}. As such, mutations in the spike protein will likely affect the 233 234 receptor binding efficiency and potentially lead to immune escape and even weaken 235 vaccine efficacy. The first notable mutation was A23403G that caused the D614G 236 amino acid substitution in the spike protein. This mutation might have arisen 237 separately as early as in late January 2020 in China and later in Europe, representing 238 an interesting mutation of convergence evolution, and greatly increased in frequency during the European outbreak^{56,57}. There is now compelling evidence that D614G has 239 increased virus infectivity and transmissibility⁵⁶⁻⁶¹, and molecular epidemiological 240 studies suggest that this mutation increased R_0 from 3.1 (614D) to 4.0 (614G)⁵⁷. In 241 242 addition, a so-called 'cluster V' (also called B.1.1.298) SARS-CoV-2 variant was 243 identified in Danish mink that also carried mutations in the spike protein, including

244 Y453F, I692V, M1229I and the deletion of two amino acids (69-70) (**Fig. 2**)^{14,62}.

245 Not surprisingly, as number of COVID-19 cases continue to rise, mutational variants 246 with a likely greater impact of fitness have also emerged, including some that might 247 result in immune escape. Indeed, there are putative escape mutations to the ten human monoclonal antibodies (mAbs) targeting the SARS-CoV-2 RBD⁶³. Of particular note 248 249 are the major SARS-CoV-2 'variants of concern' (VOC) that arose in late 2020: Alpha 250 (formerly B.1.1.7, and also called VOC-202012/01), Beta (formerly B.1.351, and also 251 denoted 501Y.V2), Gamma (formerly P.1), and Delta (formerly B.1.617.2) first identified in the UK^{64,65}, South Africa⁶⁶, Brazil^{67,68}, and India⁶⁹, respectively (**Box 2**, 252 253 Fig. 1-2).

254 The emergence of these variant lineages has raised concerns that the virus has entered a new phase in its evolution^{70,71}, characterized by ongoing immune escape in the face 255 of rising levels of infected hosts that likely impacts vaccine efficacy 72 , as well as the 256 257 possibility of selection for increased transmission due to the imposition of nonpharmaceutical interventions (NPIs)⁷¹. The Alpha variant has been associated with 258 increased rates of virus population growth^{64,65}, and has been reported to be able to 259 escape neutralization by most mAbs targeting the NTD of the spike⁷³. However, there 260 261 is no widespread escape of the Alpha variant from mAbs or antibody responses generated by natural infection or vaccination⁷³⁻⁷⁵, such that its spread may reflect 262 263 increased transmissibility. In particular, some of the Alpha variants acquired 264 additional mutations in the spike protein, particularly E484K, and exhibited a 265 substantial loss of neutralizing activity by vaccine-elicited antibodies and mAbs resistance to convalescent plasma⁷⁶. More worryingly, the Beta variant can escape 266 267 neutralization by most RBD mAbs and substantially escape from neutralizing antibodies in COVID-19 convalescent plasma^{73,77,78}. Similarly, the Gamma variant 268 shows significant decreases in neutralization with post-vaccination sera⁷⁹ although, 269 270 surprisingly, it is significantly less resistant to naturally acquired or vaccine-induced antibody responses than the Beta lineage⁸⁰. In addition, neutralization of the Delta 271 lineage is reduced when compared with ancestral circulating strains^{74,75}, and 272 273 convalescent sera from patients infected with the Beta and Gamma variants show 274 markedly more reduction in neutralization of the Delta lineage 74 .

As well as nucleotide substitutions, the SARS-CoV-2 genome has experienced many

deletion events. For example, some viruses from Singapore and Taiwan, China carried
a 382-nt deletion truncating ORF7b and covering almost the entire ORF8⁸¹⁻⁸³. This
variant showed significantly higher replicative fitness *in vitro* than the wild type⁸¹, but
seemed to be associated with a milder infection clinically⁸² and has not been reported

280 in recent months. Su and colleagues described other ORF7b/8 deletions of various

281 lengths, including viruses from Australia (138-nt), Bangladesh (345-nt) and Spain

282 (62-nt)⁸¹. Long deletion events were also found in clinical samples from Beijing, with

283 120-nt deletion within the ORF7a and 154-nt deletion within ORF8, respectively⁸⁴.

4. Global spread of SARS-CoV-2

285 4.1 Initial spread of SARS-CoV-2 in China

286 Generally, China experienced three distinct phases of SARS-CoV-2 transmission: (i)

287 initial rapid spread within Wuhan, (ii) seeding from Wuhan to cause community

transmission in other regions of China, and (iii) sporadic outbreaks caused by

international importations after China controlled the first wave 37,84 .

290 Early spread of SARS-CoV-2 in Wuhan

291 The original SARS-CoV-2 outbreak in Wuhan can itself be divided into three phases⁸⁵: 292 (i) rapid transmission prior to the implementation of the large-scale population 293 "lockdown" of the city on January 23, 2020^8 , with an estimated effective reproduction number (R_e) of 3.5 (95% credible interval 3.4-3.7) during this period⁸⁶; (ii) reduction 294 of the rate of virus transmission during the period January 23 to February 1 (via 295 lockdown and home quarantine), producing an average R_e of 1.2 (95% CI 1.1-1.3)⁸⁶; 296 297 and (iii) the interruption of transmission through intensified stringent interventions 298 during February 2-16, 2020 (centralized isolation and treatment of the cases) and 299 February 17 - March 8 (community screening). Population-based serological surveys 300 conducted during March-May 2020 revealed that the overall seropositivity rate in Wuhan was 3.2%-4.4%⁸⁷⁻⁸⁹, indicating that many infections went undetected due to 301 302 asymptomatic and mild infections and the limited laboratory diagnosis capacity during the early stages of the outbreak^{86,90,91}. However, a city-wide nucleic acid 303 304 screening of SARS-CoV-2 between May 14 and June 1, 2020 among nearly ten million residents of Wuhan only found ~300 asymptomatic cases after the lockdown 305 was lifted on April 8, 2020⁹², and no symptomatic local cases have been found in the 306

307 city after May 10, 2020.

308 Spread from Wuhan to other provinces

309 The coincidence of the SARS-CoV-2 emergence and the massive seasonal human 310 migration (Chunyun, starting from January 10 in 2020) for the Chinese Lunar New Year holiday likely exacerbated the seeding of the virus across China^{93,94}. Movement 311 restrictions from Wuhan, the key transportation hub in central China, commenced on 312 313 January 23, 2020, and reduced the peak population numbers leaving the city two days 314 before the Lunar New Year; unfortunately, however, the disease had spread to every province in mainland China by this time^{95,96}. In general, following the rapid 315 implementation of stringent and integrated NPIs, R_e in provinces outside Hubei 316 decreased below the epidemic threshold (1.0) from February 8, 2020⁹⁷. Compared 317 318 with Wuhan, the seropositivity rate in cities outside Wuhan was far lower. According 319 to a national COVID-19 sero-epidemiological survey in China during March-May 320 2020⁸⁹, only 0.44% of the sampled population in other cities of Hubei were positive, 321 and only two out of more than 12,000 people outside Hubei tested positive, 322 suggesting that SARS-CoV-2 transmission was well contained across the country

during the first wave^{95,98,99}.

324 Frequent international importation events

325 Over six thousand incoming travelers from abroad infected with SARS-CoV-2 had 326 been reported in mainland China by June 15, 2021, although RT-PCR testing at the 327 border control and the 14-day centralized quarantine implemented in China since 328 March 2020 greatly reduced any transmission risk. For example, in Guangzhou, 329 Guangdong province in southern China, 73.5% of the imported positive cases were 330 detected at the immigration checkpoint and 19.0% during centralized quarantine in hotels¹⁰⁰. Although SARS-CoV-2 is predominantly associated with respiratory 331 332 transmission, since June 2020, multiple Chinese provinces have detected SARS-CoV-2 RNA or live virus from the packages of frozen products¹⁰¹. Indeed, 333 cold-chain food or package contamination was proposed to have triggered the 334 resurgence in Beijing in June 2020¹⁰² as well as other sporadic outbreaks in China¹⁰¹, 335 although this warrants further investigation. It is notable that the number of confirmed 336 337 cases was low in the Xinfadi outbreak, Beijing, June 2020. Similarly, all the

338 COVID-19 outbreaks in China triggered by internationally imported travelers are

- small-scale, with a few sustained cases. This was mainly due to the citywide,
- 340 grid-based mass-screening protocol using reverse-transcriptase-
- 341 polymerase-chain-reaction (RT-PCR) testing¹⁰³.

342 4.2 Intercontinental spread of SARS-CoV-2

343 From China to other regions

344 The global spread of SARS-CoV-2 shows how rapidly geographically disparate countries can be reached by an emerging pathogen (**Fig. 3a**)¹⁰⁴⁻¹⁰⁵. Two distinct 345 346 transmission phases of international exportations of SARS-CoV-2 were identified at the early stage of the pandemic¹⁰⁶. In the first phase, a high volume of international 347 airline passengers left Wuhan for hundreds of destinations across the world during the 348 two weeks prior to the Wuhan lockdown⁹¹. Cities across Asia, Europe and North 349 350 America are the main destinations and have reported several imported cases at the early stage of the outbreak^{105,107}, and the WHO declared a Public Health Emergency 351 352 of International Concern on January 30, 2020. Containment of the outbreak in China, 353 particularly the implementation of travel restrictions since late January 2020,

354 significantly reduced the further spread of SARS-CoV-2 beyond China^{95,96,98,108,109}.

355 From Europe to other regions

356 However, international travel outside of China from mid-February to late-March 357 facilitated the second phase of international SARS-CoV-2 spread and onward transmissions^{106,110}, with the epicenter quickly shifted to the Middle East¹¹¹ and 358 Europe (Fig. 3c). Although France was the first country to identify COVID-19 cases 359 in Europe, Italy soon became the first major hotspot in the continent^{107,108,112,113}. and 360 Spain, Belgium and the UK reported the highest numbers of deaths in Europe during 361 the first wave¹¹⁴. The virus exported from Europe acted as a major source of global 362 363 spread⁴⁴, and the WHO eventually declared a pandemic on March 11, 2020. Countries 364 quickly placed restrictions on flights from Europe during March-April 2020, although these measures could not prevent local community transmission^{72,110}. 365

- 366 By late March 2020 cases surged in the USA, with North America becoming the
- 367 global epicenter^{115,116}. By the end of 2020, the total number of confirmed cases
- recorded in the USA surpassed 20 million, including more than 350 thousand deaths.
- 369 Although the first SARS-CoV-2 case in the USA was reported in a traveler returning

from China on January 20, 2020^{41} , phylogenetic evidence suggests that importations

371 from Europe mainly contributed to the wide spread of the virus across the

372 country^{106,115}. Latin America and South Asia have also been badly affected.

- 373 SARS-CoV-2 was confirmed in Brazil on February 25, 2020 and a month later it was
- found in every state, with confirmed cases exceeding one million on June 19,
- 375 2020^{117,118}. Although the first COVID-19 case was confirmed in India on January 30,
- 2020 and the situation was seemingly under control until the end of March 2020^{119} ,
- 377 India has reported the second highest number of COVID-19 cases since September
- 2020^{120} . Additionally, most African countries experienced community transmission by
- 379 May 31, 2020, with most imported cases returning from Europe and the USA 121 , and
- it is believed that the disease is generally underreported across Africa due to the
- 381 limited testing and health care capacity¹²²⁻¹²⁵.

382 Secondary waves across countries

NPIs, such as travel restrictions, case isolation and contact tracing, physical distancing,
face covering, hand washing, and even closures of business and schools, have been
widely implemented to mitigate the transmission of SARS-CoV-2^{108,126,127}. Full or
partial lockdowns during specific periods has also been imposed in many countries¹¹⁴.
Although the effectiveness of different interventions and their combinations have
varied, these measures have played an important role in the response to the first wave
of the pandemic^{128,129}.

390 Unfortunately, following the relaxation of interventions, the recovery of population 391 movements, and the spread of novel variants with higher transmissibility, a new wave of infections has swept through many nations since October 2020 (Fig. 3d-3e. 392 **Supplementary Table 1**)¹³⁰⁻¹³². The first wave in the USA mainly affected the 393 Northeast of that country¹³³, whereas the second wave in summer mainly hit the south 394 and west, and almost every state has seen a spike in cases during the third wave since 395 October 2020¹³⁴. Brazil has experienced a major second wave since November 2020 396 and even had death toll second only to the USA in early 2021¹³⁵. Similarly, Europe 397 398 also suffered from the spread of novel SARS-CoV-2 variants throughout the continent 399 after travel resumed in the summer of 2020, with the highest daily number of cases 400 recorded in many countries between October 2020 and March 2021. Following NPIs 401 implemented and even the second or third lockdown, combined with ongoing and

402 large-scale vaccination, many countries passed the second wave by the end of May

403 2021. This has reduced the pressure on the healthcare system and bought time to

404 vaccinate people at the greatest risk of severe disease 136 .

- 405 However, the emergence and rapid spread of various SARS-CoV-2 VOCs and VOIs
- 406 that are more contagious and/or potentially evade immunity has triggered new waves
- 407 in many countries (**Fig. 3b, Extended Data Fig. 1**). For example, India has
- 408 experienced a major second wave from March to June 2021, mostly due to the Delta
- 409 variant. As of August 10, 2021, a total of 142 countries, territories and areas across the
- 410 world have reported the Delta variant⁶⁹ (**Extended Data Fig. 1d**), even in countries
- 411 with mass vaccination, e.g. the UK and Israel¹³⁷. In particular, community
- transmission of this variant has also been reported in many countries⁶⁹. In mid-June
- 413 2021, the WHO declared that the Delta variant has displaced most of the other VOCs
- 414 and become the dominant lineage across the world^{137,138}.

415 **5. Challenges and outlook**

- 416 Although of vital importance to the prevention of future emerging infectious diseases
- 417 that will inevitably impact human populations, current understanding of the initial
- 418 SARS-CoV-2 spillover event is limited. Although the closest relatives to
- 419 SARS-CoV-2 are found in horseshoe bats, it is unclear whether the virus directly
- 420 jumped from bats to humans or was passed through an intermediate animal host as
- 421 was the case for previous coronavirus epidemics, although the latter seems more 422 reasonable^{6,9}.
- 423 The genomic surveillance of SARS-CoV-2 is by far the largest pathogen genomic
- sequencing project ever undertaken, with more than 2.8 million complete genomes
- 425 generated as of August 2021. This endeavor has played an essential role in the
- 426 prevention and control of COVID-19 and shed light on the transmission patterns of
- 427 SARS-CoV-2 at different scales, such as the time and source of the introduction
- 428 events, the spatio-temporal characterizations of local spread, the role of
- 429 superspreading events, and also the viral factors associated with the fitness,
- 430 transmissibility, infectivity and disease severity. Of particular note is the identification
- 431 of the major SARS-CoV-2 variants of concern, as well as several Variants of Interest
- 432 (VOI; denoted Epsilon to Lambda) 139,140 that emerged in different countries and have

433 caused an increased proportion of cases both locally and globally.

434 The emergence of these SARS-CoV-2 variants has shaped the complex global 435 transmission dynamics of COVID-19. More importantly, there is mounting evidence¹⁴¹ that these SARS-CoV-2 variants are able to cause decreases in 436 437 neutralizing titers from convalescent patients and vaccine recipients, and escape 438 neutralization by the mAbs targeting the NTD and RBD of the spike to different 439 degree. However, genomic surveillance would be more informative if coupled with a 440 system for risk assessing and phenotyping these mutations. For example, the 441 infectivity and antigenicity of 106 mutations in the SARS-CoV-2 spike was assessed using pseudotyped viruses¹⁴². Deep mutational scanning has also been used to assess 442 all single amino acid variants of the SARS-CoV-2 spike protein^{143,144}. In addition, 443 444 more and more data on antigenic variations of the SARS-CoV-2 variants, with 445 different sets of single amino acid mutations, to mAbs and vaccines are available. A 446 risk assessment system that integrates pathogen surveillance and immune escape data 447 is desirable, although confounded by the different classes of neutralizing antibodies, 448 the NTD antibodies, vaccine strategies, and even the host heterogeneity. 449 That the major SARS-CoV-2 VOCs have reduced the efficacy of mAbs and vaccines 450 has posed serious challenges in the control of the COVID-19 pandemic. First, 451 although vaccines can protect people with SARS-CoV-2 variants against severe 452 disease, vaccine manufacturers are exploring redesigns of their products to gain more 453 effective protection - to eventually prevent virus transmission. Second, the suboptimal protection provided by vaccines¹⁴⁵ and the deployment of antibody-based 454 treatments of limited or undemonstrated efficacy¹⁴⁶ has raised concerns that this 455 456 would accelerate the emergence of new variants, although there is a strong argument for mass vaccination even if vaccines can only provide partial immunity^{147,148}. Third, 457 458 this has also raised the possibility that SARS-CoV-2 will become a recurrent seasonal infection^{149,150}. Fourth, since vaccines cannot completely prevent transmission of the 459 460 major variants, stringent NPIs should have to be implemented in order to reduce 461 transmission of the virus, as unlimited, large-scale spread of the variants would likely 462 generate more novel variants.

The genomic surveillance of SARS-CoV-2 is also facing several major challenges.
First, despite this enormous endeavor, in reality only a tiny proportion (~1.3%) of

465 cases have been sequenced. In addition, the majority of sequences come from a small 466 number of countries, and remarkably, as of August 2021, ~50% of genomes have 467 generated in the UK and the USA that have led the world in this respect. In marked 468 contrast, other countries with very major outbreaks, such as India and Brazil, have 469 sequenced a far smaller number of cases, which may cause delays in identifying 470 variants with novel phenotypic characteristics. Therefore, it is likely that there are 471 additional new variants that are yet undetected given the limited genomic surveillance 472 in a number of regions. Indeed, because the major VOCs are genetically divergent, it 473 is possible that they had been circulating cryptically in unsampled locations, or have also emerged in chronically infected hosts that shed virus for extended periods^{151,152}. 474 475 Second, the complex transmission dynamics caused by different SARS-CoV-2 476 variants and their continuous evolution clearly necessitate increased genomic 477 surveillance. Third, it is possible that recombination among viruses will also change 478 the genetic structure of SARS-CoV-2, perhaps generating viruses of altered phenotype. 479 Indeed, there have already been suggestions of recombination between the Alpha and Epsilon variants in California in early 2021^{153} . Similarly, the potential recombination 480 481 between SARS-CoV-2 and other mild human coronaviruses should not be neglected. 482 In summary, SARS-CoV-2 has led to a new understanding of coronavirus evolution 483 and the virus has entered a new evolutionary phase characterized by the frequent 484 emergence and spread of variants that impact immune escape and reduce the efficacy 485 of vaccines. Of particular concern is that the limited genomic surveillance in many 486 low-income countries may cause delays in identifying variants with novel phenotypic 487 characteristics. To contain this and future pandemics, we urgently call for closer 488 international cooperation, increased vaccine supply and sharing, rapid information 489 exchange, and the establishment of both the infrastructure and trained personnel 490 required for the effective genomic surveillance of SARS-CoV-2 and other emerging 491 viruses.

492

496 Fig. 1 | Phylogenetic tree of global SARS-CoV-2 and the temporal distribution of
497 major sequence variants.

498 Phylogenetic analysis was performed using full-length genome sequences of 499 SARS-CoV-2 collected from GISAID as of May 12, 2021. A maximum likelihood 500 tree of 1715 representative high-quality SARS-CoV-2 sequences carrying specific accumulative mutations was estimated using RAxML¹⁵⁶, with 1,000 bootstrap 501 502 replicates and the GTR nucleotide substitution model. The major VOCs (Alpha to 503 Delta) are shown in orange, and the major VOIs (Epsilon to Lambda) are shown in 504 purple. Both the thickness of each branch in the phylogenetic tree and the shading 505 from light to dark in the heatmap indicate the number of sequences carrying specific 506 sets of mutations. Specific nucleotide substitutions are highlighted on the major 507 branches of the tree. The branches with the D614G mutation are colored blue.

508

509

510 Fig. 2 | SARS-CoV-2 spike mutations in the Alpha, Beta, Gamma, Delta, and

511 mink 'cluster V' variants.

512 Three-dimensional structures are modeled using the Swiss-Model program employing

the spike protein of SARS-CoV-2 (PDB: 7CWU.1.G) as a template. In the left panel,

the blue spheres represent the residues of NC_045512, and the red spheres represent

the mutations found in the Alpha¹⁵⁷, Beta⁶⁴, Gamma¹⁴⁰, Delta¹⁴⁰ variants of concern,

as well as the mink 'cluster V' variants⁶². The amino acid positions of all the strains 516 517 are numbered according to the template. The triangle represents a nucleotide deletion 518 event. In the right panel, the surfaces of the six amino acid residues (L455, F486, 519 Q493, S494, N501, and Y505) at the RBD are colored cyan. The molecular surfaces 520 of the mutations in the Alpha (purple), Beta (blue), Gamma (yellow), Delta (orange), 521 and mink 'cluster V' (pink) variants are highlighted. *Not all Alpha variants possess 522 the E484K and S494P mutations. #Not all Delta variants possess the G142D mutation. 523 It should be noted that we just use this figure to highlight the locations of the 524 mutations in the variants based on the three-dimensional structure of one ancestral 525 Wuhan strain (NC 045512), and this figure does not really represent the true 526 three-dimensional structure of the variants.

528 Fig. 3 | Global spread of SARS-CoV-2 and cases reported across countries.

529 **a**, The date of the first COVID-19 report in each country, territory or area. The areas

530 without data are shown in grey. **b**, Reports of "Variants of Concern" (now denoted

- 531 VOC Alpha to Delta) based on records published at the COVID-19 Weekly
- 532 Epidemiological Update by the World Health Organization

- 533 (<u>https://covid19.who.int/</u>), as of August 10, 2021. **c**, The 7-day rolling average of the
- number of confirmed COVID-19 cases reported by continent. The orange vertical
- 535 dashed line indicates the date of COVID-19 declared as a pandemic by the WHO. **d**,
- 536 The weekly proportion of case number in the top 50 ranked countries with the highest

537 number of COVID-19 cases and the available mobility data in panel e, as of August 8, 538 2021. The weekly proportion was calculated as the case count in a specific week and 539 country, divided by the total number of cases reported in each country. e, The changes 540 of human mobility (by August 8, 2021) in the 50 countries as presented in panel **d**, 541 compared to the normal mobility from January 3 to February 6, 2020. Each row in 542 panels **d** and **e** represents a country, grouped by continent and then sorted by the 543 latitudes of capital cities from North to South (the country list is available in 544 Supplementary Table 1). The grey dotted vertical lines in panels **d** and **e** from left to 545 right indicate the first week of April, July, and October in 2020, and January, April, 546 and July in 2021, respectively. The data set of case numbers was obtained from the 547 data repository collated by the Johns Hopkins University 548 (github.com/CSSEGISandData/COVID-19). The anonymized and aggregated data of 549 population mobility in transit stations were obtained from the Google COVID-19 550 Community Mobility Reports (<u>www.google.com/covid19/mobility/</u>). The 551 administrative boundary maps were obtained from the Natural Earth 552 (www.naturalearthdata.com).

553

554 Acknowledgements

555 We thank the researchers who generated and shared the sequencing data from the 556 GISAID and NCBI GenBank databases. We also acknowledge the efforts of the World 557 Health Organization in sharing the COVID-19 Weekly Epidemiological Update, and 558 the researchers that are part of the cov-lineages.org team (https://cov-lineages.org/) in 559 assembling the records on new strains, and the Johns Hopkins University Center for 560 Systems Science and Engineering (JHU CSSE) in collating the COVID-19 case data 561 (github.com/CSSEGISandData/COVID-19), and Google in producing and sharing the 562 COVID-19 Community Mobility Reports (www.google.com/covid19/mobility/). We 563 thank T. Hu, P. Wang, X. Yao and H. Song for helping produce the figures, and E. C. 564 Holmes, A. Tatem and J. Floyd for commenting on the manuscript. This work was 565 supported by Key research and development project of Shandong province (Grant No. 566 2020SFXGFY01 and 2020SFXGFY08), the National Key Research and Development 567 Programme of China (Grant No. 2020YFC0840800), the National Science and

- 568 Technology Major Project (Grant No. 2018ZX10101004-002 and
- 569 2016ZX10004222-009), the National Natural Science Fund of China (81773498), the
- 570 Academic Promotion Programme of Shandong First Medical University (2019QL006),
- and the Bill & Melinda Gates Foundation (INV-024911). W.S. was supported by the
- 572 Taishan Scholars Programme of Shandong Province (ts201511056).

573 Competing interests

574 The authors declare no competing interests.

575 Author contributions

- 576 W.S. conceived the study. J.L. performed phylogenetic analysis and homology
- 577 modelling. S.L. conducted the literature review on the global spread of SARS-CoV-2
- and VOCs, and collected, analyzed and visualized the data of case number, VOC
- 579 reports, and human mobility, using publicly available data resources. W.S., J.L., and
- 580 S.L. wrote the first draft of the manuscript. W.S., and G.F.G. proofread the manuscript
- and the pre-submission inquiry.
- 582

583 **References**

584	1	Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J
585		<i>Med</i> 382 , 727-733 (2020).
586		The first paper to describe the identification of SARS-CoV-2 in Wuhan in late December
587		2019, providing the sequences of three full-length viral genomes.
588	2	Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:
589		implications for virus origins and receptor binding. Lancet 395, 565-574 (2020).
590		Described the genomic structure and phylogenetic position of nine SARS-CoV-2
591		genomes sampled from eight patients from different hospitals in Wuhan in late
592		December, 2019.
593	3	Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature
594		579 , 265-269 (2020).
595	4	Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
596		Nature 579 , 270-273 (2020).
597		As well as providing an early identification of SARS-CoV-2, this paper provides a
598		description of the closest relative of SARS-CoV-2 identified to date – the bat-derived
599		coronavirus RaTG13.

600	5	Gorbalenya, A. et al. The species Severe acute respiratory syndrome-related coronavirus:
601		classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology 5, 536-544 (2020).
602	6	Study, J. WC. WHO-convened Global Study of Origins of SARS-CoV-2: China Part.
603	7	Hill, V. & Rambaut, A. Phylodynamic analysis of SARS-CoV-2,
604		https://virological.org/t/phylodynamic-analysis-of-sars-cov-2-update-2020-03-06/420 (2020).
605	8	Li, Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected
606		Pneumonia. N Engl J Med 382, 1199-1207 (2020).
607		The first estimate of the epidemiological characteristics of the early COVID-19 outbreak,
608		providing important evidence that human-to-human transmission from the middle of
609		December 2019 in Wuhan.
610	9	Holmes, E. C. et al. The Origins of SARS-CoV-2: A Critical Review. Cell, doi:
611		https://doi.org/10.1016/j.cell.2021.08.017 (2021).
612	10	Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus
613		indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514-523
614		(2020).
615	11	Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
616		Science 367, 1260-1263 (2020).
617	12	Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal
618		origin of SARS-CoV-2. Nature medicine 26, 450-452 (2020).
619		This paper describes the fundamental genomic features of SARS-CoV-2, particularly the
620		receptor binding domain and the furin cleavage site, and outlines the case for its
621		zoonotic origin.
622	13	Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel
623		Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS
624		Coronavirus. J Virol 94, e00127-00120 (2020).
625	14	Garry, R. F. & Gallaher, W. R. Naturally occurring indels in multiple coronavirus spikes,
626		https://virological.org/t/naturally-occurring-indels-in-multiple-coronavirus-spikes/560 (2020).
627	15	Li, X. et al. A furin cleavage site was discovered in the S protein of the 2019 novel
628		coronavirus. Chinese Journal of Bioinformatics (In Chinese) 18, 103-108 (2020).
629	16	Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on
630		virus evolution and furin-cleavage effects. Nat Struct Mol Biol 27, 763-767 (2020).
631	17	Johnson, B. A. et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature
632		591 , 293-299 (2021).
633	18	Zhou, P. et al. Addendum: A pneumonia outbreak associated with a new coronavirus of
634		probable bat origin. Nature 588, E6 (2020).
635	19	Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible
636		for the COVID-19 pandemic. Nat Microbiol 5, 1408-1417(2020).
637	20	Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature
638		583 , 282-285 (2020).
639	21	Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature
640		583 , 286-289(2020).
641	22	Li, X. et al. Pathogenicity, tissue tropism and potential vertical transmission of SARSr-CoV-2
642		in Malayan pangolins. bioRxiv, doi:10.1101/2020.06.22.164442 (2020).
643	23	Zhou, H. et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural

644		Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol 30, 2196-2203 (2020).
645	24	Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins
646		of SARS-CoV-2 and related viruses. Cell, doi:10.1016/j.cell.2021.06.008 (2021).
647	25	Murakami, S. et al. Detection and Characterization of Bat Sarbecovirus Phylogenetically
648		Related to SARS-CoV-2, Japan. Emerg Infect Dis 26, 3025-3029 (2020).
649	26	Hul, V. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv,
650		doi:10.1101/2021.01.26.428212 (2021).
651	27	Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in
652		bats and pangolins in Southeast Asia. Nat Commun 12, 972 (2021).
653	28	Bouvet, M. et al. RNA 3 '-end mismatch excision by the severe acute respiratory syndrome
654		coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proceedings of the
655		National Academy of Sciences of the United States of America 109, 9372-9377 (2012).
656	29	Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen
657		surveillance system. Nature reviews. Genetics 19, 9-20 (2018).
658 659	30	Grubaugh, N. D. <i>et al.</i> Tracking virus outbreaks in the twenty-first century. <i>Nat Microbiol</i> 4 , 10-19 (2019)
660	31	Rockett R L et al. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome
661	51	sequencing and agent-based modeling. Nat Med 26 , 1398-1404 (2020)
662	32	Popa A <i>et al.</i> Genomic enidemiology of superspreading events in Austria reveals mutational
663	52	dynamics and transmission properties of SARS-CoV-2. <i>Science translational medicine</i> 12.
664		eshe2555 (2020)
665	33	Oude Munnink B B <i>et al</i> Rapid SARS-CoV-2 whole-genome sequencing and analysis for
666	55	informed public health decision-making in the Netherlands. <i>Nat Med</i> 26 1405-1410 (2020)
667	34	Miller D <i>et al</i> . Full genome viral sequences inform patterns of SARS-CoV-2 spread into and
668	51	within Israel <i>Nature communications</i> 11 5518 (2020)
669	35	du Plessis, L, <i>et al.</i> Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the
670	00	UK. Science 371 , 708-712 (2021).
671		Landmark paper describing the genomic surveillance of SARS-CoV-2 in the UK. Used
672		an analysis of over 50.000 genome sequences to quantify the structure of SARS-CoV-2
673		lineages in the UK epidemic at fine scale.
674	36	Zhong, N. S. <i>et al.</i> Epidemiology and cause of severe acute respiratory syndrome (SARS) in
675		Guangdong, People's Republic of China, in February, 2003. <i>The Lancet</i> 362 , 1353-1358
676		(2003).
677	37	Lu, J. <i>et al.</i> Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. <i>Cell</i> 181 ,
678		997-1003 e1009 (2020).
679		Detailed description of the genomic epidemiology of SARS-CoV-2 in Guangdong
680		province, China. Illustrated how genomic surveillance facilitated outbreak containment.
681	38	Liu, Z. et al. Identification of Common Deletions in the Spike Protein of Severe Acute
682		Respiratory Syndrome Coronavirus 2. J Virol 94, e00790-00720 (2020).
683	39	Xinhua. Imported coronavirus variant case reported in Guangdong,
684		http://www.xinhuanet.com/english/2021-01/03/c_139637931.htm (2021).
685	40	Xinhua. Guangdong reports imported coronavirus variant case,
686		http://www.xinhuanet.com/english/2021-01/06/c_139646690.htm (2021).
687	41	Holshue, M. L. et al. First Case of 2019 Novel Coronavirus in the United States. New England

688		Journal of Medicine 382 , 929-936 (2020).
689	42	WHO. Coronavirus disease 2019 (COVID-19) Situation Report – 26,
690		https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200215-sitrep-26-c
691		ovid-19.pdf?sfvrsn=a4cc6787_2 (2020).
692	43	Worobey, M. et al. The emergence of SARS-CoV-2 in Europe and North America. Science
693		370 , 564-570 (2020).
694	44	Gonzalez-Reiche, A. S. et al. Introductions and early spread of SARS-CoV-2 in the New York
695		City area. Science 369, 297-301 (2020).
696		The first paper described the early transmission dynamics of SARS-CoV-2 in New York
697		City, highlighting viral introductions from Europe into the USA.
698	45	Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into
699		Northern California. Science 369, 582-587 (2020).
700	46	Bedford, T. et al. Cryptic transmission of SARS-CoV-2 in Washington state. Science 370,
701		571-575 (2020).
702		Notable paper descriing the cryptic transmission of SARS-CoV-2 in the USA.
703	47	Maurano, M. T. et al. Sequencing identifies multiple early introductions of SARS-CoV-2 to
704		the New York City region. Genome research 30, 1781-1788 (2020).
705	48	Fauver, J. R. et al. Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the
706		United States. Cell 181, 990-996 e995 (2020).
707		Described the long-distance domestic spread of SARS-CoV-2 in the USA.
708	49	Moreno, G. K. et al. Revealing fine-scale spatiotemporal differences in SARS-CoV-2
709		introduction and spread. Nat Commun 11, 5558 (2020).
710	50	Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus
711		<i>evolution</i> 6 , veaa061 (2020).
712	51	Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34,
713		4121-4123 (2018).
714	52	Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for
715		host-dependent RNA editing in the transcriptome of SARS-CoV-2. Science advances 6,
716		eabb5813 (2020).
717	53	Simmonds, P. Rampant C -> U Hypermutation in the Genomes of SARS-CoV-2 and Other
718		Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary
719		Trajectories. <i>mSphere</i> 5 , e00408-00420 (2020).
720	54	Lu, G., Wang, Q. & Gao, G. F. Bat-to-human: spike features determining 'host jump' of
721		coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 23, 468-478 (2015).
722	55	Wang, Q., Wong, G., Lu, G., Yan, J. & Gao, G. F. MERS-CoV spike protein: Targets for
723		vaccines and therapeutics. Antiviral research 133, 165-177 (2016).
724	56	Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases
725		Infectivity of the COVID-19 Virus. Cell 182, 812-827 (2020).
726		An important paper that provided the initial evidence that the D614G mutation
727		increased the infectivity, and hence transmissibility, of SARS-CoV-2.
728	57	Volz, E. et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on
729		Transmissibility and Pathogenicity. Cell 184, 64-75 (2021).
730	58	Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116-121
731		(2020).

732	59	Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density
733		and infectivity. Nat Commun 11, 6013 (2020).
734	60	Yurkovetskiy, L. et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike
735		Protein Variant. Cell 183, 739-751 e738 (2020).
736	61	Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and
737		transmission in vivo. Science 370, 1464-1468 (2020).
738	62	Ria Lassaunière et al. SARS-CoV-2 spike mutations arising in Danish mink and their spread to
739		humans, https://files.ssi.dk/Mink-cluster-5-short-report_AFO2 (2020).
740	63	Greaney, A. J. et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike
741		Receptor-Binding Domain that Escape Antibody Recognition. Cell host & microbe 29,
742		44-57.e49 (2021).
743	64	Volz, E. et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from
744		linking epidemiological and genetic data. medRxiv, doi:10.1101/2020.12.30.20249034 (2021).
745	65	Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in
746		England. Science 372, eabg3055 (2020).
747	66	Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory
748		syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in
749		South Africa. medRxiv, doi:10.1101/2020.12.21.20248640 (2020).
750	67	Faria, N. R. et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus:
751		preliminary findings,
752		https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manau
753		s-preliminary-findings/586 (2021).
754	68	Naveca, F. et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with
755		emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein,
756		https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-wi
757		th-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/58
758		5 (2021).
759	69	O'Toole, Á. & Hill, V. SARS-CoV-2 lineages: B.1.617.2 report,
760		https://cov-lineages.org/global_report_B.1.617.2.html (2021).
761	70	MacLean, O. A. et al. Natural selection in the evolution of SARS-CoV-2 in bats created a
762		generalist virus and highly capable human pathogen. PLoS Biol 19, e3001115 (2021).
763	71	Martin, D. P. et al. The emergence and ongoing convergent evolution of the N501Y lineages
764		coincides with a major global shift in the SARS-CoV-2 selective landscape. medRxiv,
765		doi:10.1101/2021.02.23.21252268 (2021).
766	72	Kupferschmidt, K. Viral evolution may herald new pandemic phase. Science 371, 108-109
767		(2021).
768	73	Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593,
769		130-135 (2021).
770	74	Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent
771		serum. Cell 184, 4220-4236 (2021).
772	75	Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants.
773		Nature 596 , 273-275 (2021).
774	76	Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies.
775		<i>Nature</i> 593 , 136-141 (2021).

776	77	Nelson, G. et al. Molecular dynamic simulation reveals E484K mutation enhances spike
777		RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2
778		variant) induces conformational change greater than N501Y mutant alone, potentially
779		resulting in an escape mutant. bioRxiv, doi:10.1101/2021.01.13.426558 (2021).
780	78	Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African
781		COVID-19 donor plasma. Nat Med 27, 622-625 (2021).
782	79	Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by
783		vaccine-induced humoral immunity. Cell 184, 2523 (2021).
784	80	Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184,
785		2939-2954 e9 (2021).
786	81	Su, Y. C. F. et al. Discovery and Genomic Characterization of a 382-Nucleotide Deletion in
787		ORF7b and ORF8 during the Early Evolution of SARS-CoV-2. mBio 11, e01610-01620
788		(2020).
789	82	Young, B. E. et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of
790		infection and the inflammatory response: an observational cohort study. <i>Lancet</i> 396 , 603-611
791		(2020).
792	83	Gong, Y. N. <i>et al.</i> SARS-CoV-2 genomic surveillance in Taiwan revealed novel
793		ORF8-deletion mutant and clade possibly associated with infections in Middle East. <i>Emerg</i>
794		Microbes Infect 9, 1457-1466 (2020).
795	84	Du, P. et al. Genomic surveillance of COVID-19 cases in Beijing. Nat Commun 11, 5503
796		(2020).
797	85	Pan, A. <i>et al.</i> Association of Public Health Interventions With the Epidemiology of the
798		COVID-19 Outbreak in Wuhan, China. <i>Jama</i> 323 , 1915-1923 (2020).
799	86	Hao, X. <i>et al.</i> Reconstruction of the full transmission dynamics of COVID-19 in Wuhan.
800		<i>Nature</i> 584 , 420-424 (2020).
801		A comprehensive study of the transmission dynamics of COVID-19 in Wuhan through
802		time, providing important lessons learnt from the interventions in the city.
803	87	Xu, X. et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in
804		China. <i>Nat Med</i> 26 , 1193-1195 (2020).
805	88	Liu, A. <i>et al.</i> Seropositive Prevalence of Antibodies Against SARS-CoV-2 in Wuhan, China.
806		<i>JAMA Netw Open</i> 3 , e2025717 (2020).
807	89	ChinaCDC. a. Results of national COVID-19 seroepidemiological survey in China,
808		http://www.chinacdc.cn/yw_9324/202012/t20201228_223494.html (2020).
809	90	Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel
810		coronavirus (SARS-CoV-2). Science 368, 489-493 (2020).
811	91	Niehus, R., De Salazar, P. M., Taylor, A. R. & Lipsitch, M. Using observational data to
812		quantify bias of traveller-derived COVID-19 prevalence estimates in Wuhan, China. Lancet
813		Infectious Diseases 20, 803-808 (2020).
814	92	Cao, S. Y. et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million
815		residents of Wuhan, China. Nature communications 11,5917 (2020).
816	93	Jia, J. S. et al. Population flow drives spatio-temporal distribution of COVID-19 in China.
817		<i>Nature</i> 582 , 389-394 (2020).
818	94	Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and
819		international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling

820		study. Lancet 395 , 689-697 (2020).
821	95	Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China.
822		Nature 585, 410-413 (2020).
823		Quantified the impact of various non-pharmaceutical interventions and their timings on
824		COVID-19, providing early evidence to inform response efforts across the world.
825	96	Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus
826		(COVID-19) outbreak. Science 368, 395-400 (2020).
827	97	Zhang, J. et al. Evolving epidemiology and transmission dynamics of coronavirus disease
828		2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis 20,
829		793-802 (2020).
830	98	Kraemer, M. U. G. et al. The effect of human mobility and control measures on the
831		COVID-19 epidemic in China. Science 368, 493-497 (2020).
832	99	Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and
833		severity in China outside Hubei after control measures, and second-wave scenario planning: a
834		modelling impact assessment. Lancet 395, 1382-1393 (2020).
835	100	Zhang, ZB. et al. Countries of origin of imported COVID-19 cases into China and measures
836		to prevent onward transmission. Journal of travel medicine 27, taaa139 (2020).
837	101	Bai, L. et al. Controlling COVID-19 Transmission due to Contaminated Imported Frozen
838		Food and Food Packaging. China CDC Weekly 3, 30-33 (2021).
839	102	Pang, X. et al. Cold-chain food contamination as the possible origin of Covid-19 resurgence in
840		Beijing. National Science Review 7, 1861-1864 (2020).
841	103	Xing, Y., Wong, G. W. K., Ni, W., Hu, X. & Xing, Q. Rapid Response to an Outbreak in
842		Qingdao, China. N Engl J Med 383, e129 (2020).
843	104	Bogoch, I. I. et al. Potential for global spread of a novel coronavirus from China. Journal of
844		<i>travel medicine</i> 27 , taaa0111 (2020).
845	105	Lai, S., Isaac I. Bogoch, Alexander Watts, Kamran Khan & Tatem, A. Preliminary risk
846		analysis of 2019 novel coronavirus spread within and beyond China,
847		https://www.worldpop.org/events/china (2020).
848	106	Yang, J. et al. Uncovering two phases of early intercontinental COVID-19 transmission
849		dynamics. Journal of travel medicine 27, taaa200 (2020).
850	107	Pullano, G. et al. Novel coronavirus (2019-nCoV) early-stage importation risk to Europe,
851		January 2020. Eurosurveillance 25, 2000057 (2020).
852	108	Tian, H. et al. An investigation of transmission control measures during the first 50 days of the
853		COVID-19 epidemic in China. Science 368, 638-642 (2020).
854	109	Wells, C. R. et al. Impact of international travel and border control measures on the global
855		spread of the novel 2019 coronavirus outbreak. Proc Natl Acad Sci USA 117, 7504-7509
856		(2020).
857	110	Russell, T. W. et al. Effect of internationally imported cases on internal spread of COVID-19:
858		a mathematical modelling study. Lancet Public Health 6, e12-e20 (2021).
859	111	Devi, S. COVID-19 resurgence in Iran. Lancet 395, 1896 (2020).
860	112	Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of
861		population-wide interventions in Italy. Nat Med 26, 855-860 (2020).
862	113	Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369, 208-211 (2020).
863	114	Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in

864		Europe. Nature 584, 257-261 (2020).
865	115	Bushman, D. et al. Detection and Genetic Characterization of Community-Based
866		SARS-CoV-2 Infections — New York City, March 2020. MMWR. Morbidity and mortality
867		weekly report 69 , 918-922 (2020).
868	116	Rossen, L. M., Branum, A. M., Ahmad, F. B., Sutton, P. & Anderson, R. N. Excess Deaths
869		Associated with COVID-19, by Age and Race and Ethnicity — United States, January 26–
870		October 3, 2020. MMWR. Morbidity and mortality weekly report 69, 1522-1527 (2020).
871	117	Candido, D. S. <i>et al.</i> Evolution and epidemic spread of SARS-CoV-2 in Brazil. <i>Science</i> 369 ,
872		1255-1260 (2020).
873	118	Silveira, M. F. et al. Population-based surveys of antibodies against SARS-CoV-2 in Southern
874		Brazil. Nat Med 26, 1196-1199 (2020).
875	119	Acharya, R. & Porwal, A. A vulnerability index for the management of and response to the
876		COVID-19 epidemic in India: an ecological study. <i>The Lancet. Global health</i> 8 , e1142-e1151
877		(2020).
878	120	Laxminarayan, R. et al. Epidemiology and transmission dynamics of COVID-19 in two Indian
879		states. Science 370, 691-697 (2020).
880	121	Massinga Loembe, M. et al. COVID-19 in Africa: the spread and response. Nat Med 26,
881		999-1003 (2020).
882	122	Gilbert, M. et al. Preparedness and vulnerability of African countries against importations of
883		COVID-19: a modelling study. Lancet 395, 871-877 (2020).
884	123	Pullano, G. et al. Underdetection of cases of COVID-19 in France threatens epidemic control.
885		<i>Nature</i> 590 , 134-139 (2020).
886	124	Rice, B. L. et al. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat Med 27,
887		447-453 (2021).
888	125	Salyer, S. J. et al. The first and second waves of the COVID-19 pandemic in Africa: a
889		cross-sectional study. Lancet 397, 1265-1275 (2021).
890	126	Pei, S., Kandula, S. & Shaman, J. Differential effects of intervention timing on COVID-19
891		spread in the United States. Science advances 6, eabd6370 (2020).
892	127	Brauner, J. M. et al. Inferring the effectiveness of government interventions against
893		COVID-19. Science, eabd9338 (2020).
894		A chronological and global data set was constructed to compare the effectiveness of
895		different NPIs in reducing COVID-19 transmission among countries during the first
896		wave of the pandemic.
897	128	Haug, N. et al. Ranking the effectiveness of worldwide COVID-19 government interventions.
898		Nat Hum Behav 4, 1303-1312 (2020).
899	129	Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness
900		of interventions. Science 369, eabd9338 (2020).
901	130	Baker, R. E., Yang, W. C., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B. T. Susceptible supply
902		limits the role of climate in the early SARS-CoV-2 pandemic. <i>Science</i> 369 , 315-319 (2020).
903	131	Han, E. et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and
904		regions in Asia Pacific and Europe. Lancet 396, 1525-1534 (2020).
905	132	Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the
906		USA: a mathematical modelling study. Lancet Infectious Diseases 20, 1247-1254 (2020).
907	133	Perkins, T. A. et al. Estimating unobserved SARS-CoV-2 infections in the United States. Proc

908		Natl Acad Sci U S A 117, 22597-22602 (2020).
909	134	CDC. a. CDC COVID Data Tracker,
910		https://covid.cdc.gov/covid-data-tracker/#cases_casesper100klast7days (2020).
911	135	Health, B. M. o. Coronavirus, Brazil, https://covid.saude.gov.br/ (2021).
912	136	ECDC. COVID-19 pandemic, https://www.ecdc.europa.eu/en/covid-19-pandemic (2021).
913	137	Kupferschmidt, K. & Wadman, M. Delta variant triggers new phase in the pandemic. Science
914		372 , 1375 (2021).
915	138	WHO Weekly epidemiological update on COVID-19 - 29 June 2021,
916		https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-1929-ju
917		ne-2021 (2021).
918	139	WHO. Tracking SARS-CoV-2 variants,
919		https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (2021).
920	140	CDC. a. SARS-CoV-2 Variant Classifications and Definitions,
921		https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (2021).
922	141	Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nature
923		reviews. Microbiology 19, 409-424 (2021).
924	142	Li, Q. et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and
925		Antigenicity. Cell 182, 1284-1294 e9 (2020).
926	143	Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2
927		receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell
928		Host Microbe 29, 463-476 e6 (2021).
929	144	Greaney, A. J. et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike
930		Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29, 44-57 e9
931		(2021).
932	145	Saad-Roy, C. M. et al. Epidemiological and evolutionary considerations of SARS-CoV-2
933		vaccine dosing regimes. Science 372, 363-370 (2021).
934	146	Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592,
935		277-282 (2021).
936	147	Cobey, S., Larremore, D. B., Grad, Y. H. & Lipsitch, M. Concerns about SARS-CoV-2
937		evolution should not hold back efforts to expand vaccination. Nature reviews. Immunology 21,
938		330-335 (2021).
939	148	Hanage, W. P. & Russell, C. A. Partial immunity and SARS-CoV-2 mutations. Science 372,
940		354 (2021).
941	149	Murray, C. J. L. & Piot, P. The Potential Future of the COVID-19 Pandemic: Will
942		SARS-CoV-2 Become a Recurrent Seasonal Infection? Jama 325, 1249-1250 (2021).
943	150	Phillips, N. The coronavirus is here to stay-here's what that means. Nature 590, 382-384
944		(2021).
945	151	Avanzato, V. A. et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an
946		Asymptomatic Immunocompromised Individual with Cancer. Cell 183, 1901-1912 e9 (2020).
947	152	Aydillo, T. et al. Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for
948		Cancer. N Engl J Med 383, 2586-2588 (2020).
949	153	Lawton, G. Exclusive: Two variants have merged into heavily mutated coronavirus,
950		https://www.newscientist.com/article/2268014-exclusive-two-variants-have-merged-into-heav
951		ily-mutated-coronavirus/ (2021).

155	2019nCoVR. <i>Genomics Proteomics Bioinformatics</i> , doi:10.1016/j.gpb.2020.09.001 (2020). Rambaut, A. <i>et al.</i> A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist
155	Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist
	genomic epidemiology. Nat Microbiol 5, 1403-1407 (2020).
156	Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
	phylogenies. Bioinformatics 30, 1312-1313 (2014).
157	GISAID. UK reports new variant, termed VUI 202012/01,
	https://www.gisaid.org/references/gisaid-in-the-news/uk-reports-new-variant-termed-vui-2020
	1201/ (2021).
158	Davies, N. G. et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage
	B.1.1.7. Nature 593, 270-274 (2021).
159	Frampton, D. et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2
	B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study.
	Lancet Infect Dis, doi:10.1016/S1473-3099(21)00170-5 (2021).
160	Graham, M. S. et al. Changes in symptomatology, reinfection, and transmissibility associated
	with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health 6,
	e335-e345.
161	Organization, W. H. Weekly epidemiological update on COVID-19 - 10 August 2021,
	https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-1910-au
	gust-2021 (2021).
162	Control, E. C. f. D. P. a. Emergence of SARS-CoV-2 B.1.617 variants in India and situation in
	<i>the EU/EEA</i> . (2021).
163	Delta Plus: Key things to know about new coronavirus variant
	https://economic times.indiatimes.com/news/et-explains/delta-plus-key-things-to-know-about-plus-key-things-to-ke
	new-coronavirus-variant-in-india/articleshow/83739996.cms (2021).
164	Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science
	369 , 1603-1607 (2020).
	157 158 159 160 161 162 163 164

BOX 1. Sources of SARS-CoV-2 genomic data and surveillance

The GISAID database (Global Initiative on Sharing All Influenza Data, https://www.gisaid.org/)

There have been more than 2.8 million complete SARS-CoV-2 genomes and metadata available from GISAID EpiCoVTM as of August 2021. Useful tools, including Blast search, phylogenetic trees, PrimerChecker, spike glycoprotein mutation and emerging variants surveillance are provided, and related analyses are constantly updated.

The NCBI database (National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/)

More than 1.1 million SARS-CoV-2 nucleotide records and nine hundred thousand SRA runs have been deposited in the NCBI GenBank and SRA databases. The NCBI SARS-CoV-2 Resources (https://www.ncbi.nlm.nih.gov/sars-cov-2/) also provided a comprehensive access to other related data sources and numerous online analysis tools.

The CNBC/NGDC database (National Bioinformatics Center/National Genomics Data Center, https://bigd.big.ac.cn/ncov/)

This database integrates the SARS-CoV-2 genomes and related metadata from other sources, e.g. the GISAID, NCBI, GWH (Genome Warehouse, https://bigd.big.ac.cn/gwh/), NMDC (National Microbiology Data Center), and CNGB (China National GeneBank)¹⁵⁵. It provides a variety of useful online analysis tools, including sequence integrity and quality assessment, spatiotemporal dynamics, Haplotype network, variant distribution, molecular mutation, and also published clinical trials.

PANGO lineages (https://cov-lineages.org/)

This is a useful nomenclature system for SARS-CoV-2 genomes. As of Aug 2021, the Pango system contains over 1500 designated lineages covering all the SARS-CoV-2 sequences from GISAID. Web-based or the open source code of applications e.g. Pangolin, Scorpio, Civet, Polecat are internally developed to cluster identify. Via the Pangolin web interface (https://pangolin.cog-uk.io/), sequences uploaded by the users can be assigned the most likely lineage based on the Pango dynamic nomenclature¹⁵⁶. Information of the SARS-CoV-2 variants is also provided.

Nextstrain SARS-CoV-2 resources (https://nextstrain.org/sars-cov-2/)

Genomic epidemiological analysis of global SARS-CoV-2 is continually updated on the open source platform Nextstrain, based on the genomic data from GISAID. It provides a variety of visualization options for users. The nucleotide and amino acid diversity of the spike protein and the frequencies of the Nextstrain clades are provided and updated. In addition, Nextclade can perform clade assignment, mutation calling, and sequence quality check for the SARS-CoV-2 sequences uploaded by users.

BOX 2. Genetic characterizations of the major VOCs

The Alpha variant

The Alpha variant is defined by 17 amino acid-altering mutations (14 non-synonymous mutations and 3 deletions), including eight in the spike protein (**Fig. 1-2**). Notably, three of these mutations are of potential biological significance - N501Y, P681H and the deletion of two amino acids $69-70^{65,66}$. Notably, this new variant has increased infectiousness across all age groups, being 43% to 90% more transmissible than previously circulating strains^{65,66}. In addition, the infection with the Alpha variant has the potential to cause substantial additional mortality, with an increased risk of death from 32% to $104\%^{159}$. However, there are also reports of no association between this variant and increased severity^{160,161}. As of August 10, 2021, 185 countries, territories or areas have identified this variant¹⁶² (**Fig. 3b, Extended Data Fig. 1a**).

The Beta variant

The Beta variant is characterized by eight lineage-specific mutations in the spike protein, including three at important residues in the RBD (K417N, E484K and N501Y) (**Fig. 1-2**)⁶⁷. Besides South Africa, 135 additional countries, territories or areas have also reported the identification of this variant as of August 10, 2021 (**Fig. 3b, Extended Data Fig. 1b**), with community transmission mainly found in Africa, Europe, and North America¹⁶².

The Gamma variant

The Gamma variant contains a number of potentially important mutations, such as K417T, E484K, and N501Y in the spike protein (**Fig. 1-2**)^{68,69}. The Gamma variant might be 1.7- to 2.4- fold more transmissible than previous (non-Gamma) strains in Brazil. As of August 10, 2021, identification of this variant has been reported in 81 countries, territories and areas (**Fig. 3b, Extended Data Fig. 1c**), with most of them located in America and Europe¹⁶².

The Delta variant

The Delta variant contains several important amino acid mutations in the spike protein, including a three-amino acid-altering mutations (two deletions at 156 and 157, and one substitution of R158G) in the N-terminal domain (NTD), L452R, T478K, and P681R (**Fig. 1-2**)¹⁶³. The Delta variant itself has been subject to ongoing evolution and a so-called "Delta plus" variant with an additional K417N mutation in the spike protein was identified in India in June $2021^{138,164}$.

Despite their independent emergence (**Fig. 1**), the Alpha, Beta, and Gamma variants possess the N501Y mutation found in the mouse-adapted SARS-CoV-2 variant¹⁶⁵. In addition, the Beta and Gamma lineages share E484K^{65,66,68,69}, which was also identified in the late, rather than early, Alpha variants⁷⁷.