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Abstract

Reducing emissions is of increasing global importance. Within shipping, the

International Maritime Organization’s regulations are putting pressure on com-

panies to quickly reduce emissions. One solution is the optimisation of a ship’s

route where even comparatively small reductions, in the order of 5%, provide

sizeable cost and environmental benefits. The most recent advances from the

Evolutionary Computation field have not been benchmarked on this problem,

especially the co-evolutionary algorithms that provide the widest diversity of

search. This paper compares state-of-the-art algorithms on three case studies,

to show the impact of algorithm selection on the fuel consumption and expected

voyage time. Four state-of-the-art Genetic Algorithms are selected to represent

the leading families of Genetic Algorithm. The co-evolutionary approaches are

shown to have the top performance, with cMLSGA (co-evolutionary Multi-Level
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Selection Genetic Algorithm) showing top performance on all the problems with

the greatest potential reductions in fuel usage, 7.6% on average over the state

of the art, and voyage times, 8.4% on average over the state of the art.

Keywords: Genetic Algorithm, Ship weather routing, Voyage optimisation,

Maritime transport, Speed optimisation

1. Requirements for Voyage Optimisation Software1

Voyage optimisation provides an immediate reduction in ship emissions.2

These systems have been recognised to cut these emissions in the region of3

5-10% (1), helping ship operators to meet the International Maritime Organi-4

zation’s (IMO) target of reducing carbon intensity 40% by 2030 and greenhouse5

gas emissions 50% by 2050. In the longer term these tools will help to reduce6

the cost of using sustainable fuels, which are predicted to be more expensive7

than marine diesel and therefore a reduction in operational costs becomes more8

critical in encouraging the use of these fuels. They will also enable just-in-9

time arrival of ships at ports, helping to reduce the large quantity of emissions10

produced while ships wait to load/unload.11

Voyage optimisation software is based on environmental data, a ship perfor-12

mance model, the restrictions for sailing and the voyage optimisation algorithm.13

The optimisation algorithm is a key element, with the literature showing a sig-14

nificant difference in performance between different solvers. The problem is in15

the selection of the best algorithm, as a wide range of methods are available16

to find the most fuel efficient routes for ships. In addition, the proposed meth-17

ods utilise either single objective or multi-objective optimisation problems, with18
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multi-objective optimisation becoming a more important factor from an indus-19

trial context. Genetic Algorithms are increasingly the most used method in the20

state-of-the-art to optimise the route and speed. However, the latest algorithms21

are not compared and the importance of this selection is not highlighted in the22

current literature.23

2. State-of-the-art of voyage optimisation24

From a methodological perspective, voyage optimisation algorithms can be25

divided into two categories for route planning: specific optimisation algorithms26

and general optimisation algorithms (2). Here, specific optimisation algorithms27

are designed for routing optimisation, such as the Modified Isochrone method28

(3) and the Isopone method (4). General optimisation algorithms are used to29

solve a range of optimisation problems in which users define their own models30

for specific problems and include methods such as dynamic programming and31

genetic algorithms. The early literature related to voyage optimisation has a32

focus on the specific optimisation algorithms and Dijkstra, whereas more recent33

approaches are mainly heuristics (5) or hyperheuristics. This literature has been34

reviewed in detail, (6) and (7) but it is difficult to draw conclusions about which35

algorithms provide the lowest fuel consumption, without compromising on the36

time of arrival.37

Table 1 compares a number of these approaches, focusing on those that have38

solved the problem before the start of the voyage, without dynamic updates,39

and with a focus on a single arrival port. Isochrone and Isopone methods are40
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included as one column, where Isopone methods are shown to have a stronger41

performance (8).42

A* is a popular method method for current commercial Voyage Optimisation43

Software, despite limited benchmarking in the open literature. A comparison44

with the original Genetic Algorithm show similar results, although A* is selected45

as the results from the Genetic Algorithm are considered to be less robust and46

dependant on the initial population (9). However, more modern variants of47

the Genetic Algorithm, defined in Wang and Sobey as NSGA-II onwards (10),48

are more robust to the starting population. The problem with A* is that its49

computational time increases exponentially with the number of grids (6). While50

the benchmarking performed is on a reasonable length route, from Venezuela51

to the English Channel, there are a number of longer routes where it may not52

perform well and the increase in fidelity of weather data is increasing the number53

of nodes between destinations.54

The most successful algorithms are 3DDP (3D Dynamic Programming) and55

Genetic Algorithms, where these approaches can be shown to outperform all56

of the others. 3DDP has been shown to be the highest performing dynamic57

programming approach, (11) and (8), showing a slightly better, but similar,58

level of performance to NSGA-II. A number of different Genetic Algorithms59

are used: especially SPEA, NSGA-II and the original Genetic Algorithm or60

those with similar mechanisms to it, such as the modified distance GA (12)61

or the Genetic Algorithm integrated with dynamic programming (13). The62

original variants of the Genetic Algorithm have not been compared to modern63
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algorithms but various benchmarking exercises in other fields suggest that the64

new algorithms will have a considerably stronger performance (14).65

Despite the success of the Genetic Algorithm on voyage optimisation prob-66

lems, a number of modern highly-performing approaches are yet to be consid-67

ered. Four main branches are recognized in the current state-of-the-art, (14)68

and (10): niching, decomposition, co-evolutionary and multi-level selection.69

Niching is exemplified by the crowding mechanism based niching technique70

found in the most popular Genetic Algorithm, NSGA-II (34), which uses non-71

domination to select the fittest members of the population for reproduction.72

This approach has been extended to problems with higher numbers of objec-73

tives, 4+, through NSGA-III. U-NSGA-III (35) has been proposed as a sin-74

gle unified evolutionary optimisation procedure that solves single-, multi- and75

many-objective optimisation problems efficiently, eliminating the need to bench-76

mark NSGA-II and NSGA-III separately.77

Decomposition algorithms work by dividing the search space into multiple78

subspaces and solving each of them separately. The most popular approach in79

this family of algorithms is Multi-Objective Evolutionary Algorithm Based on80

Decomposition (MOEA/D) (36). In the MOEA/D the multi-objective prob-81

lem is decomposed into a predefined set of subproblems, by assigning a distinct82

weight vector to each individual and utilising a scalarisation method for the83

fitness calculation. The MOEA/D based methods have been shown to outper-84

form niching and other decomposition methods on unconstrained and dynamic85

functions by promoting convergence over diversity (37). However, as the vector86
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Table 1: Comparison of state-of-the-art voyage optimisation algorithms in chronological or-

der, where x indicates the algorithms benchmarked in the paper, !are the top performing

algorithms, * indicates algorithms of a similar family with small adjustments, red columns

are variants of Dynamic Programming, blue are Genetic Algorithms and grey represent other

methods

Dijkstra A* Dynamic SPEA NSGA-II Original PSO DIRECT Grid Exact Isochrone Directed Reference

Programming Search graph

x (15)

x (16)

x (17), (18), (19), (20)

x (21)

! x x x (11)

x x x (22)

x (23)

!* x (12)

x ! (24)

! x* (25)

x (26)

x (27)

x x (9)

x (28)

x ! x (8)

x (29)

x (30)

x (31)

x (32)

x (33)

x* (5)

x !* (13)

6



approach is based on predefined reference points, these algorithms are less effec-87

tive on constrained and discontinuous problems, due to the gaps on the search88

and objective spaces, or where there is a lack of a priori knowledge about the89

search space.90

Co-evolutionary algorithms refer to an evolutionary algorithm based on the91

concept of two, or more, species that’s evolution are dependant on each other.92

In these algorithms the individuals are evaluated based on their interaction with93

other individuals. The top performing co-evolutionary algorithm is Hybrid Evo-94

lutionary Immune Algorithm (HEIA) (38). In HEIA, two distinct evolutionary95

strategies, SBX and DE, are used independently on different sub-populations,96

instead of problem decomposition. It has shown high performance on discontin-97

uous cases with a better spread of points along the Pareto optimal front than98

other methods, indicating that the reproduction process has strong diversity99

retention.100

Multi-Level Selection (MLS) algorithms are based on the concept of selection101

being based on a fitness evaluation at multiple levels, for example in humans it102

might consider the fitness of an individual and the fitness of that individual’s103

social group (39). This results in a sub-population algorithm that incorpo-104

rates an additional selection procedure at the group-level, in addition to the105

individual level used in the standard Genetic Algorithm. In this case differ-106

ent sub-populations are allowed to compete with each other for reproduction107

and survival in a similar way to the individuals inside each group. This cre-108

ates an additional evolutionary pressure that allows a wider exploration of the109
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search space by different sub-populations (40; 41). It is the only GA to pro-110

mote a diversity-first and convergence-second approach. This strategy has been111

combined with co-evolution, resulting in co-evolutionary Multi-Level Selection112

Genetic Algorithm (cMLSGA) (14). It is the first algorithm to exhibit co-113

evolutionary behaviour at the collective level, leading to the top general perfor-114

mance, with particularly strong performance on discontinuous and constrained115

problems, where diversity in the mechanisms is of importance.116

As only niching, NSGA-II, is represented in the literature related to ship117

routing, this paper benchmarks the state-of-the-art Genetic Algorithms. Four118

GAs are selected to represent each of the major categories of Genetic Algorithms:119

U-NSGA-III (35), MOEA/D (36), HEIA (38), and cMLSGA (42). SPEA2 is also120

included due to its performance on voyage optimisation problems considering121

the travelling salesman problem (43) and (44). Based on Table 1 U-NSGA-III122

should have similar performance to NSGA-II and 3DDP, which show the top123

performance in the current literature and it’s performance is used as a proxy124

for the performance of the current top performing algorithms.125

3. Description of the Voyage Optimisation Software126

Typically the ship-routing problem is developed as a minimisation of the fuel127

consumption and voyage time, while maximising the voyage safety. Emission128

reduction is often considered to be a natural consequence from reduction of the129

fuel consumption, as is the cost. A three objective minimisation problem is130

considered: fuel consumption, voyage time and voyage distance. The voyage131
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time objective is to minimise the time for the voyage, with the Pareto Front132

finding a range of possible journey arrival times, from which the closest route to133

the preferred arrival time can be selected for the voyage. The objective for the134

voyage distance has been added, due to its positive impact on the effectiveness135

of all of the tested algorithms in pre-benchmarking. This is despite the direct136

dependency of the other two objectives on it and that it is not an objective137

of interest. Its inclusion leads to more “realistic” routes, where changes in the138

ship’s course do not occur as often as in the two-objective pre-benchmarks. This139

is important, especially during open-sea sailing, where a ship’s captain prefers140

to maintain a stable course instead of adjusting it every few miles. Safety is141

maintained by a set of constraints, to reduce the search space only on those142

routes deemed safe and allowing a binary definition of safety. For comparative143

purposes, all of the selected genetic algorithms have been incorporated into the144

T-VOS © engine. It was selected, as it allows different genetic algorithms to145

be incorporated as solvers, while benefiting from a high resolution of met-ocean146

data and a range of safety parameters.147

3.1. Route representation148

Voyage optimisation begins by discretizing the ship’s possible sailing area149

into a mesh of 250 nodes. The mesh is developed around a predefined, first-150

order approximation of the route1 in three steps:151

1First order approximations are included in the data supplement for benchmarking:

http://dx.doi.org/10.17632/ssdbwvsrm9.2
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• The nodes are generated by solving the spherical triangle problem, while152

maintaining a similar distance between neighbouring nodes. In this study153

the target number of nodes in the first order approximation is set to 250154

for each case. The resulting waypoints are, on average, 42.36km apart for155

the Dalian to San Francisco voyage, 43.92km apart for the Southampton156

to Karachi voyage and 27.6km for New York to Oslo voyage.157

• Developing a minimum and maximum boundary for each node with a158

maximum allowed spread of 10 degrees in each direction.159

• Reducing the size of the minimum and maximum boundary for the first160

and last 10% of nodes, so that the mesh size gradually “develops” from161

the starting point, and reduces near the destination. This reduces the162

computational effort and produces more feasible routes.163

A separate parameter is maintained defining the ship’s speed between nodes.164

Speed is changed every 5 waypoints, while remaining constant in between. This165

allows more realistic voyages, as it is unlikely that the ship’s speed would be166

adjusted regularly. A high-fidelity hindcast met-ocean data model taken from167

HYCOM (HYbrid Coordinate Ocean Model), with a resolution of 0.08◦ for168

ocean currents and 0.25◦ for wind and waves taken from NOAA GFS for global169

and WRF for regional modelling, is used to simulate the actual weather-related170

updates2.This data is taken for a period starting on the 13th August 2018 for171

2The weather data is available as a supplement for benchmarking:

http://dx.doi.org/10.17632/ssdbwvsrm9.2
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Figure 1: Fuel consumption calculation based on ISO15016:2015 (45)

each of the 3 voyages.”172

As the node grid is a different shape to the met-ocean grid, the route between173

each node is split into a set of sub-routes using linear interpolation, that matches174

to the met-ocean grid to calculate the fuel consumption. This provides the175

benefits from the high-fidelity met-ocean data, increasing the accuracy of the176

route-planning, while maintaining reasonable computational times.177

3.2. Fuel consumption178

To predict the fuel consumption the ISO15016:2015 (45) procedure is used,179

presented in Fig. 1, which is commonly used for this purpose.180

The main components in evaluating the fuel consumption are: the speed181

of the ship through water, met-ocean conditions, resistance calculation model182

and ship-model. The speed through water was calculated by subtracting the183
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speed of the currents from a ship’s GPS speed. The calm water resistance184

was calculated using Holtrop and Mennen (46) with weather added resistance185

provided by the Kwon and Townsin (47) empirical formulas, which were derived186

from a large number of experimental data. The Kwon and Townsin model187

accounts for the wave and wind conditions through their impact on the ship’s188

resistance and therefore the required engine’s power. The current is used to189

calculate the speed through the water from the speed over the ground (GPS190

speed), which is used in the Kwon and Townsin model to calculate the power.191

The fuel consumption was calculated from the effective power, based on the192

ship-specific fuel oil consumption curve (SFOC), and voyage time. A 2800TEU193

container ship, taken from (48), is investigated, with ship’s parameters detailed194

in Table 2. A maximum speed of 20 knots and minimum speed of 14 knots are195

assumed for the vessel, based on its size.196

3.3. Safety and voyage constraints197

To ensure that the route reduces the potential for grounding, larger land198

masses are removed from the pool of potential nodes during the mesh genera-199

tion process. This is done using the difference between the ocean depth, from200

bathymetry data (49), and the draft of the ship, with an under keel clearance of201

1.5 times the draft. This eliminates the infeasible sub-paths/edges and improves202

the efficiency of the optimisation process. Here, high-fidelity bathymetry data,203

with a resolution of 0.0045◦ taken from SRTM, is used to ensure safe under keel204

clearance during the voyage. A number of additional constraints are introduced205

in order to maintain ship’s safety:206
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Table 2: Main particulars of the 2800TEU container ship

Ship particular Value

Min speed 14 kn

Max speed 20 kn

Length 232 m

Beam 32.2 m

Depth 19 m

Draft 10.78 m

Block coefficient 0.685

Midship coefficient 0.98

Waterplane coefficient 0.75

Deadweight 40900 t
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• the maximum allowed wind speed and wave heights are 20 m/s wind speed207

for all directions; 6m for head waves; 5m for following waves and 4m for208

beam waves.209

• The maximum turning angle of the vessel at a single node is 20 degrees.210

• The engine power can not exceed 90% of the maximum continuous rating.211

• Route-specific traffic separation schemes are implemented by constraining212

the speed or allowable direction at each node in that region e.g. for Suez213

Canal and Gibraltar strait, taken from the IMO’s Ship Routeing guidance214

(50)215

4. Experimental plan216

4.1. Voyage definitions217

Three exemplar voyages are selected for this study, and illustrated in figure218

2:219

• Voyage 1: Dalian to San Francisco, as a long route with a large number220

of nodes.221

• Voyage 2: Southampton to Karachi via the Suez Canal as a route incor-222

porating restrictions and traffic separation schemes.223

• Voyage 3: New York to Oslo, which includes a bifurcation of the voyage,224

where the ships can take a northern route around the United Kingdom,225

and a southern route via the Channel.226
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(a) Voyage 1 - Dalian to San Francisco (b) Voyage 2 - Southampton to Karachi

(c) Voyage 3 - New York to Oslo

Figure 2: Routes representing different voyage optimisation challenges used to benchmark the

algorithms; the purple and blue dotted lines represent the boundaries of the mesh and the red

dotted line represents the first order approximation of the route
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The Traffic Separation Schemes included in the routes are: route 1: N/A,227

route 2: the Suez Canal and the Strait of Gibraltar and route 3: the Dover228

Straits. The Suez Canal has a speed limit of 7 knots, the Strait of Gibraltar has229

a speed limit of 13 knots and there are no speed restrictions through the Dover230

Strait. The weather on route 1 was the worst throughout the voyage from all of231

the evaluated scenarios. There are two hurricanes, one of these starts South of232

Japan and moves directly North, dissipating over the Japanese mainland and a233

second which starts in the East China Sea and moves North, dissipating over the234

South Korean Mainland. There are also high sea states over the main Pacific235

Ocean where the wind is blowing North/North-East. These are situated in the236

middle of the Pacific and which are level with the bottom of Korea, stretching237

North and East into the Arctic circle.The other routes have fair weather during238

the simulated journeys. More details of the weather are available in the data239

attachment.240

4.2. Benchmarking methodology241

The population size was set to 1500 as the best value for all of the algorithms,242

after testing in a range of values from 600 to 2000. The maximum number of243

fitness function evaluations was set to 500,000 and each simulation was repeated244

over 10 independent runs for each route. The algorithms3 are all used with the245

hyperparameters documented in the original papers, shown in Table 3. cMLSGA246

3The source code for the Genetic Algorithms utilised is in C++ and can be found here:

https://github.com/pag1c18/cMLSGA.
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has 1 collective replaced every 5 generations.247

Table 3: Hyperparamters for the different Genetic Algorithms

Hyperparameters cMLSGA NSGA-II MOEA/D HEIA SPEA2

Crossover type SBX SBX DE SBX and DE SBX

Crossover rate 1

Mutation type polynomial mutation

Mutation rate 0.003333

Algorithm Specific collectives= 6 η = 20 F = 0.5, η = 20, η = 20

η = 20, CR = 1 F = 0.5,

F =0.5, CR = 1 CR = 1

The performance was evaluated based on the mimicked Inverted Genera-248

tional Distance (mIGD) (51) and mimicked Hyper Volume (mHV) (52). mIGD249

is the average value of the minimum distance between uniform points on the250

Pareto Optimal Front and the non-dominated solution set. Lower values of251

mIGD emphasise better performance, focusing on the convergence of solutions,252

and is calculated according to (51). mHV is the measure of the volume of the253

objective space solutions that is dominated by the set of solutions, where bigger254

values indicate better performance, emphasizing a higher diversity of solutions255

on the Pareto Optimal Front. Here, the mHV metric is calculated according to256

(52), which provides the fastest and most widely used method for this calcula-257

tion. Since the global Pareto Optimal Fronts are not known for the presented258

case studies, this front is approximated by non-dominated sorting of all of the259
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Pareto Optimal Fronts achieved from all of the separate tests, resulting in 653260

points for voyage 1, 896 points for voyage 2 and 1001 points for voyage 3.261

5. Benchmarking of the performance262

The five algorithms are compared to generate optimum routes for the three263

case studies. The resulting performance measures for the investigated voyages264

are listed in Table 4. The lowest distance is included in the optimisation as265

it improves the results for the other 2 variables, but is not included in the266

discussion as it is not considered to be a useful characteristic, reducing the 3267

dimensional Pareto Sets to 2 dimensional Pareto Fronts.268

In all three cases cMLSGA shows the top performance in terms of reducing269

the fuel consumption and finds the route with the lowest travel time. This270

is followed by HEIA, MOEA/D, SPEA2 and U-NSGA-III for voyages 1 and 2271

with MOEA/D finishing last for voyage 3. For voyage 1, the difference in the272

fuel consumption between cMLSGA and the next best performer, HEIA, is not273

significant, despite the length of the voyage. However, the results are significant274

for Voyages 2 and 3 with voyage 2 giving a difference of 17 tonnes and for voyage275

3 a difference of 4.8 tonnes. When compared to the worst performer, U-NSGA-276

III, which approximates the strongest performance of the methods summarised277

in Table 1, this difference is more substantial. In all of these cases the difference278

is significant with voyage 1 showing a difference of 12.9 tonnes, voyage 2, 39.6279

tonnes, and voyage 3, 12.2 tonnes. The top performing algorithms in each case280

are those with co-evolutionary elements, showing the importance of diversity of281
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Table 4: Performance measures of the optimized routes where low values of IGD and high

values of HV indicate stronger Pareto Fronts

Voyage GA IGD HV Most fuel Most time

name efficient route efficient route

Fuel Time Fuel Time

(tonnes) (hrs) (tonnes) (hrs)

cMLSGA 6.2* 0.041* 258.5 467.4 345.5 393.8

Voyage 1 HEIA 8.9 0.037* 258.6* 469.8 345.0 393.9*

MOEA/D 9.2* 0.032 264.1* 464.3 333.5 400.8

SPEA2 17.7 0.032 270.7 454.8 305.2 420.4

UNSGA-III 14.8* 0.032 271.4 456.2 314.4 414.6*

cMLSGA 14.2* 0.008* 313.0* 423.0 796.0 297.9*

Voyage 2 HEIA 17.5* 0.005 322.4* 422.6 807.4 300.8*

MOEA/D 40.7* 0.007* 330.0 417.8 521.2 337.5*

SPEA2 114.4 0.004 333.3* 405.6 520.9 333.8

UNSGA-III 51.3* 0.006 352.6 398.3 488.2 345.1

cMLSGA 4.2* 0.043* 164.1* 319.8 215.3 255.3*

Voyage 3 HEIA 8.5* 0.039* 168.9* 305.4 212.0 260.0*

SPEA2 10.7* 0.011 174.5 300.1 197.5 270.9*

UNSGA-III 12.1 0.032* 176.3 299.4 197.5 273.5

MOEA/D 7.2 0.018* 179.2 288.7 205.6 262.6*

* indicates that the results are significantly better than the next score, using Wilcoxon’s rank

sum test with a significance level of α = 0.05. Where green boxes are algorithms with

co-evolutionary elements and the grey boxes show U-NSGA-III which acts as a proxy for the

performance of algorithms used in the previous literature
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search.282

Figures representing the median Pareto Optimal Front achieved by each283

algorithm for all the case studies are shown in Figs. 3, 4 and 5.284

When comparing Pareto Optimal Fronts for the Dalian to San Francisco285

route then U-NSGA-III and SPEA2 show narrow fronts, that do not contain286

the range of results obtained by the other algorithms. MOEA/D finds a wider287

range of points than these two algorithms and a complete range of points along288

the front. The front for HEIA is much more discontinuous, including two points289

with high time of arrivals that are not on the fronts for the other algorithms,290

likely showing that the algorithm has not yet converged in this area. cMLSGA291

shows a more jagged front than MOEA/D but with a wider range of points, that292

provides a greater selection of routes on the time to arrival side but that do not293

provide substantial benefits in fuel over HEIA. The Pareto Front looks more294

resolved in this case than HEIA in the centre, with the results demonstrating295

that this is a difficult problem to completely resolve in the number of function296

calls available and showing that the results of generally higher interest, the297

reduction in fuel consumption, are harder to find.298

A similar behaviour is shown for voyage 2, between Southampton and Karachi.299

In this case the shortest front is U-NSGA-III, which also has a shift to the high300

fuel consumption/low travel time results and shows that the results have not301

converged. MOEA/D shows a shorter front, but well resolved, with a few points302

found at the extreme values. HEIA and cMLSGA have incomplete values along303

the fronts, but with a much wider spread. These have a higher diversity of304
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(a) cMLSGA (b) HEIA

(c) U-NSGA-III (d) MOEA/D

(e) SPEA2

Figure 3: Pareto Optimal Fronts for minimum fuel consumption vs estimated time of arrival

in Voyage 1
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(a) cMLSGA (b) HEIA

(c) U-NSGA-III (d) MOEA/D

(e) SPEA2

Figure 4: Pareto Optimal Fronts for minimum fuel consumption vs estimated time of arrival

in Voyage 2
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solutions but without having found all of the solutions in the middle area. This305

provides a considerably higher number of low fuel options compared to the other306

algorithms. HEIA in this case has not converged on the final solution and more307

runs will be required to find the optimal solutions in the cMLSGA Pareto Front.308

In this case many of the SPEA2 results might provide more realistic solutions309

than HEIA, despite not providing the lowest fuel consumption.310

The Pareto Fronts for voyage 3, New York to Oslo, also show a similar trend311

to that for voyages 1 and 2, with U-NSGA-III, MOEA/D and SPEA2 showing312

shorter fronts and a focus on higher fuel/short time solutions. In this case the313

front for HEIA is sparse, with a number of points missing along the length, but314

with a wide range of results at both ends, demonstrating solutions with low fuel315

consumption and early arrival times. However, in these cases the results with316

the lowest fuel consumption have a considerable increase in time of arrival and317

it may be that the extreme fuel reduction adds too much additional time for a318

realistic voyage. cMLSGA is the only algorithm to provide a range of solutions319

that are close to optimal and that can be used to balance between arrival time320

and fuel cost.321

6. Discussion322

The results show that the selection of the optimisation algorithm is impor-323

tant. Small improvements in fuel reduction provide substantial cost savings and324

help to reduce green house gas emissions. The previous literature demonstrates325

a move towards the Genetic Algorithm to solve this problem, with NSGA-II326
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(a) cMLSGA (b) HEIA

(c) U-NSGA-III (d) MOEA/D

(e) SPEA2

Figure 5: Pareto Optimal Fronts for minimum fuel consumption vs estimated time of arrival

in Voyage 3.
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providing high performance, roughly equivalent to that of 3DDP. Testing of327

more recently developed algorithms shows that the co-evolutionary approaches328

demonstrate a clear improvement over the rest of the literature. The ability to329

have different algorithms searching different parts of the search space provides330

a diversity of search that is important in finding the extreme values. This is331

increased in cMLSGA through the use of collectives that can spread even more332

widely across the search space. These algorithms not only provide the best re-333

sults, but they also provide a range of results that will become more important334

as Just-In-Time arrival becomes more prevalent. It indicates that for future335

applications the selection of the algorithm is likely to be even more critical. A336

high diversity of search provides a range of profiles that can be selected from,337

allowing selection of the one that is most beneficial for current ship operations.338

As we move towards just-in-time arrival, where the port specifies a time of ar-339

rival for the ship’s captain to arrive and load/unload immediately, a range of340

results becomes more important. This is to allow the flexibility to determine341

what times will be possible and change route immediately to match changes in342

the arrival. The result should be slower steaming and reduced emissions.343

An area of difficultly in benchmarking is the range of different algorithms344

that have been tested across a wide range of different problem types, with345

varying levels of realism, making a fair comparison difficult. However, deter-346

mining the difference in performance of the top performing algorithms is shown347

to be significant. It is hoped that the open sourcing of the problems used for348

this benchmarking, with the relevant weather data, will provide some initial349

25



benchmarking problems for the community. These can be used in the future to350

directly compare to the results documented here and to grow a set of problems351

where high performance on the problem set will reflect high performance in the352

real-world, focusing the literature on the top algorithms 4.353

An area that is not considered within the paper explicitly is the run time354

for the algorithms. Time dependant results are notoriously difficult to provide355

fairly, with the results being dependant on the implementation and the users356

computer. In this benchmarking the code bases are taken from the original de-357

velopers of the algorithm, in the hope that this provides a reasonably optimised358

version, and run on the same desktop computer. In this case cMLSGA provides359

the fastest simulation times, with a mean value of 3 times faster resolution of360

the function calls than the other algorithms (in the range of 5-15mins), ranging361

from 2.6 times faster compared to SPEA2 on voyage 2 to 4.0 times faster for362

HEIA on voyage 1. In addition, there are elements of engine performance that363

are required to provide more realism, such as the inclusion of fouling, which will364

provide more accurate assessments of the fuel used in transit.365

7. Conclusion366

Voyage optimisation solutions are reported to reduce fuel consumption and367

greenhouse gas emissions up to 10-15%. However, it provides a complicated368

optimisation problem and the number of algorithms that have been tested is369

large. To see the full benefits of the approach requires benchmarking of the top370

4Link to the dataset: http://dx.doi.org/10.17632/ssdbwvsrm9.1
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available algorithms. The use of Genetic Algorithms to solve these problems is371

common but the current literature does not consider the state-of-the-art from372

Evolutionary Computation, especially co-evolutionary algorithms, which exhibit373

a high diversity of search. In this paper it is shown that these co-evolutionary374

approaches outperform the rest of the state-of-the-art, and the top performing375

algorithm is cMLSGA. In addition the benefits of the diversity of search are that376

a range of solutions are produced that will empower changes in ship operations,377

including Just-In-Time arrival. However, for these applications the selection378

of the algorithm is shown to be even more important. The top performing379

algorithm can result in a considerable difference in fuel savings, with a 7.6%380

improvement over algorithms previously tested in the literature.381
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