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This thesis studies the limiting behaviour of the torsion in the homotopy groups
πn(X) of a space X as n→ ∞. It is a ‘three paper thesis’, the main body of which
consists of the following papers:

[1] G. Boyde, Bounding size of homotopy groups of spheres. Proceedings of the
Edinburgh Mathematical Society, 63(4):1100–1105, 2020.

[2] G. Boyde, p-hyperbolicity of homotopy groups via K-theory, preprint, available at
arXiv:2101.04591 [math.AT], 2021.

[3] G. Boyde, Z/pr-hyperbolicity via homology, preprint, available at arXiv:2106.03516
[math.AT], 2021.

In [1], we improve on the best known bound for the size of the homotopy group
πq(Sn), using the combinatorics of the EHP sequence.

In [2], we study Huang and Wu’s p- and Z/pr-hyperbolicity for spaces related to the
wedge of two spheres Sn ∨ Sm. We show that Sn ∨ Sm is Z/pr-hyperbolic for all
primes p and all r ∈N, which implies that various spaces containing Sn ∨ Sm as a
retract are similarly hyperbolic. We then prove a K-theory criterion for p-hyperbolicity
of a finite suspension ΣX, and deduce some examples.

In [3], we study p- and Z/pr-hyperbolicity for spaces related to the Moore space
Pn(pr). When ps 6= 2, we show that Pn(pr) is Z/ps-hyperbolic for s ≤ r. Combined
with Huang and Wu’s work, and Neisendorfer’s results on homotopy exponents, this
completely resolves the question of when such a Moore space is Z/ps-hyperbolic for
p ≥ 5. We then prove a homological criterion for Z/pr-hyperbolicity of a space X, and
deduce some examples.

http://www.southampton.ac.uk
https://arxiv.org/abs/2101.04591
https://arxiv.org/abs/2106.03516
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Notation

Z/` The cyclic group of order `
Sn The n-dimensional sphere

Pn(`) The mod-` Moore space, with H̃m(Pn(`); Z) ∼=

Z/` m = n,

0 otherwise.

X ∼= Y The spaces X and Y are homeomorphic
X ' Y The spaces X and Y are homotopy equivalent
ΩX The space of based loops on X
ΣX The reduced suspension S1 ∧ X of X
〈t, x〉 The image of (t, x) ∈ S1 × X in the quotient ΣX
η The unit map X −→ ΩΣX of the adjunction Σ a Ω
ev The counit (evaluation) map ΣΩX −→ X of the adjunction Σ a Ω
Xk The cartesian product of k copies of the space X
X∨k The wedge sum of k copies of the space X
X∧k The smash product of k copies of the space X
JX The James construction on X
Jk(X) The k-th stage of the James construction on X
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Chapter 0

Background

This introduction provides context for the three papers which comprise this thesis; we
will refer to them as Paper 1 [Boy20], Paper 2 [Boy21b], and Paper 3 [Boy21a].

For a space X and n ∈N, one may define the homotopy group πn(X), which captures
information about the continuous maps from the n-dimensional sphere Sn to X ‘up to
deformation’. Formally, πn(X) is the set [Sn, X] of based homotopy classes of
continuous maps Sn −→ X.

The homotopy groups of even relatively simple compact spaces like spheres are not
known in their entirety, and in many cases are nonzero in arbitrarily high dimension.
This provides a stark contrast with homology, which vanishes above the dimension of
the space, and is often (reasonably) easy to compute. Our focus is on the asymptotics
of the homotopy groups, that is, the behaviour of πn(X) as n→ ∞.

In rational homotopy theory, deep results on this subject have been obtained. Papers 2
and 3 fit into a program initiated by Huang and Wu, which investigates the
asymptotics of the part of the homotopy groups that cannot be seen rationally. Paper 1
asks an older related question, namely ‘can we bound the size of the homotopy
groups of spheres?’.

1 Foundations

In this section, we collect the preliminaries necessary for the rest of the thesis.
Throughout, we assume a basic knowledge of algebraic topology, notably the theory
of singular (co)homology and the Universal Coefficient Theorem. These topics are
covered in the book of Hatcher [Hat02]. Neisendorfer’s book [Nei10] is an invaluable
resource for the parts of homotopy theory which most closely concern us; especially
the theory of Moore spaces and homotopy Lie algebras. Other textbooks which the
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reader may find useful are those of Arkowitz ([Ark11], for general homotopy theory),
Hilton-Mislin-Roitberg ([HMR75], for localization) and Félix-Halperin-Thomas
([FHT15], for rational homotopy theory). We will appeal to all of these texts from time
to time.

Perhaps most importantly of all, we need to be clear about what is meant by
exponential growth.

Definition 1.1 (Exponential growth). A sequence (αk | k ∈N) is said to grow
exponentially if there exists C > 1 such that for k large enough we have

αk ≥ Ck,

or equivalently if

lim inf
k→∞

ln(αk)

k
> 0.

Our objects of study are topological spaces, so we now establish some simple
conventions for these. We give only those definitions necessary to establish notation;
more detail may be found in the textbooks of Arkowitz and Hatcher [Ark11, Hat02].

Throughout, all spaces X will be assumed to come with a basepoint x0 ∈ X. When
there is no ambiguity about which space we are talking about, we will often denote
the basepoint by ∗. We will write X ∼= Y to mean that the spaces X and Y are
homeomorphic as based topological spaces, and we will write X ' Y to mean that X
and Y are based homotopy equivalent.

Now let X and Y be spaces, with basepoints x0 and y0 respectively. The product X×Y
is the ordinary cartesian product of topological spaces, with basepoint (x0, y0). The
wedge sum X ∨Y is the subspace of X×Y given by

X ∨Y := {(x, y) ∈ X×Y | x = x0 or y = y0},

while the smash product of X and Y is the quotient

X ∧Y := X×Y�X ∨Y.

The product X×Y is the product in the category of based spaces, and the wedge
X ∨Y is the coproduct. In practice, this means that a pair of maps A −→ X and
A −→ Y determine a unique map A −→ X×Y, and moreover all maps A −→ X×Y
are obtained in this way. Similarly, a pair of maps X −→ Z and Y −→ Z determine a
unique map X ∨Y −→ Z, and moreover all maps X ∨Y −→ Z are obtained in this
way.
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Let X be a space, and let k ∈N. We will write X∨k for the wedge sum of k copies of X,
and X∧k for the smash product of k copies of X, reserving the unadorned notation Xk

for the ordinary product of k copies of X.

The n-dimensional sphere Sn is the subspace of the Euclidean space Rn+1 given by

Sn := {(x0, x1, . . . , xn) ∈ Rn+1 |
n

∑
i=0

xi
2 = 1}.

We take the basepoint to be the ‘North Pole’ (1, 0, 0, . . . , 0). There is then a natural
inclusion Sn−1 ↪−→ Sn obtained by restriction of the inclusion

Rn −→ Rn+1,

(x0, x1, . . . , xn−1) 7−→ (x0, x1, . . . , xn−1, 0).

The sphere provides perhaps the most important example of the smash product, as
follows.

Proposition 1.2. We have a homeomorphism Sn ∧ Sm ∼= Sn+m.

Proof. The proposition will follow from the observation that (as unbased spaces) we
have a homeomorphism Rn ×Rm ∼= Rn+m. Let Xc denote the one-point
compactification of a space X [Rot88], and regard one-point compactification as a
functor from unbased spaces to based spaces, by taking the point at infinity as the
basepoint. There is then a homeomorphism (Rn)c ∼= Sn.

Then, for unbased noncompact locally compact Hausdorff spaces X and Y we have
(X×Y)c ∼= Xc ∧Yc [Rot88, Chapter 11]. Thus,

Sn ∧ Sm ∼= (Rn)c ∧ (Rm)c ∼= (Rn ×Rm)c ∼= (Rn+m)c ∼= Sn+m,

as required.

1.1 Finitely generated abelian groups

We depend heavily on the simplicity of the structure theory of finitely generated
abelian groups. The key theorem is the following classical result, which can be found
in for example [Lan02].

Theorem 1.3. Let A be a finitely generated abelian group. Then A is isomorphic to a finite
direct sum of (finite and infinite) cyclic groups.
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That is, given a finitely generated abelian group A, we may write

A ∼= Zr ⊕
n⊕

i=1

Z/`i.

We can go further; the Chinese Remainder Theorem says that if a and b are coprime,
then Z/a⊕Z/b ∼= Z/ab. This implies that the finite cyclic groups Z/`i in the above
decomposition of A may be decomposed as a direct sum of cyclic groups according to
the prime factors of `i. In particular, in Theorem 1.3, we may assume that each finite
cyclic group has prime power order.

We claim that if A is written as a direct sum of cyclic groups of infinite and prime
power order, then the number of summands of given isomorphism type is
independent of the choice of decomposition. To see this, note first that the number of
Z-summands is equal to the dimension of the rational vector space A⊗Q, so is
certainly independent of the choice of decomposition. Next, fix p prime and r ∈N

and construct the Z/p-vector space pr−1A�pr A. The dimension of this vector space is
equal to the sum of

• the number of Z-summands appearing in the decomposition, and

• the number of summands isomorphic to Z/ps for some s ≥ r.

It follows that the number of Z/pr-summands is equal to the difference

dimZ/p(pr−1A�pr A)− dimZ/p(pr A�pr+1A), so is also independent of the choice of
decomposition. All in all, we have the following well-known improvement on
Theorem 1.3.

Theorem 1.4. Let A be a finitely generated abelian group. Then A is isomorphic to a finite
direct sum of infinite cyclic groups and finite cyclic groups of prime power order. Furthermore,
the number of summands of given isomorphism type is well-defined independent of the choice
of decomposition.

This theorem justifies the following definition, which is foundational in what follows.

Definition 1.5. Let A be a finitely generated abelian group. For p prime, and r ∈N,
the number of Z/pr-summands in A is the number of Z/pr-summands occurring in
some choice of decomposition of A into cyclic summands of infinite and prime power
order. Similarly, we may speak of the number of Z-summands in A.

1.2 Suspensions and loop spaces

In this subsection we introduce suspensions and loop spaces, establishing notation
and laying the groundwork for the next subsection, where we will introduce
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homotopy groups, which are the central objects of this thesis. Much of what we will
say about loop spaces and suspensions holds in the more general setting of H- and
co-H-spaces [Ark11], but for the sake of brevity we will generally ignore this.

Let X and Y be based spaces. Write C(X, Y) for the set of continuous based maps from
X to Y and write [X, Y] for the set of based homotopy classes of map from X to Y. It is
immediate that as sets [X, Y] is the quotient of C(X, Y) by the equivalence relation
defined by based homotopy. Write [ f ] ∈ [X, Y] for the homotopy class of some map
f ∈ C(X, Y).

Fixing f ∈ C(X, Y), we obtain, for any space W, a map

f∗ : [W, X] −→ [W, Y],

[g] 7−→ [ f ◦ g].

Similarly, for any space Z, f induces a map

f ∗ : [Y, Z] −→ [X, Z],

[g] 7−→ [g ◦ f ].

Both maps depend only on the homotopy class [ f ].

It will frequently be convenient to regard the circle S1 as a quotient of the interval
I = [0, 1] ⊂ R. Recall that we have defined S1 to be the unit circle in R2, with
basepoint (1, 0). Identifying R2 with the complex plane C in the usual way, the map

I −→ C

t 7−→ ei2πt

realises S1 as the quotient I�(0 ∼ 1). When we refer to t ∈ S1, we mean the point

ei2πt ∈ S1 ⊂ R2.

For a space X, the reduced suspension ΣX is the smash product S1 ∧ X. Write 〈t, x〉 for
the image of (t, x) ∈ S1 × X under the quotient map S1 × X −→ S1 ∧ X =: ΣX.
Following Arkowitz [Ark11], we think of 〈t, x〉 as giving ‘coordinates’ on ΣX, even
though t ∈ S1 and x ∈ X are not in general uniquely determined by 〈t, x〉 ∈ ΣX. These
‘almost-coordinates’ are often useful for writing down maps explicitly; for example,
the suspension of a map f : X −→ Y is the map

Σ f : ΣX −→ ΣY,

〈t, x〉 7−→ 〈t, f (x)〉.
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We immediately have the following corollary of Proposition 1.2.

Corollary 1.6. We have ΣSn ∼= Sn+1.

Recall that we regard the wedge A ∨ B as a subspace of the product A× B, so it
naturally inherits coordinates from the product; a point of A ∨ B is precisely a point of
A× B which takes either the form (a, ∗) or (∗, b). With this notation, there is a map

c : ΣX −→ ΣX ∨ ΣX,

〈t, x〉 7−→

(〈2t, x〉, ∗) if t ≤ 1
2 , and

(∗, 〈2t− 1, x〉) if t ≥ 1
2 .

This map is called the suspension comultiplication on ΣX, and makes ΣX into a
co-H-space [Ark11, Chapter 2]. The comultiplication gives a group structure on the
homotopy set [ΣX, Y] for any space Y: the product of homotopy classes [ f ] and [g] is
defined to be the homotopy class of the map

ΣX c−→ ΣX ∨ ΣX
f∨g−−→ Y ∨Y ∇−→ Y,

where ∇ : Y ∨Y −→ Y is the fold map, which is defined to be the identity on each
wedge summand.

We have the following first example, from Corollary 1.6.

Example 1.7. For n ≥ 1, the sphere Sn is homeomorphic to the suspension of Sn−1, and so, for
any space X, the homotopy set [Sn, Y] is a group.

The loop space of X, denoted ΩX, is the set C(S1, X) of continuous based maps
S1 −→ X, which is made a topological space via the compact-open topology (see for
example [Hat02]). For a map f : X −→ Y, and a loop γ ∈ ΩX, the composite f ◦ γ is a
loop in Y. We may therefore define a map, called the loops on f , to be the map

Ω f : ΩX −→ ΩY,

γ 7−→ f ◦ γ.

For γ1, γ2 ∈ ΩX, define the concatention γ1#γ2 ∈ ΩX by setting

γ1#γ2(t) 7−→

γ1(2t) if t ≤ 1
2 , and

γ2(2t− 1) if t ≥ 1
2 .

There is then a map
µ : ΩX×ΩX −→ ΩX,
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(γ1, γ2) 7−→ γ1#γ2.

The map µ will be referred to as the concatenation multiplication, or just the
multiplication on ΩX, and makes ΩX into an H-group [Ark11, Chapter 2]. When there
is no ambiguity, we will omit the # and write the multiplication as a concatenation,
setting γ1γ2 = γ1#γ2. For γ ∈ ΩX, the inverse of γ, denoted γ−1, is defined by
γ−1(t) = γ(1− t). The H-group inverse is then the map

i : ΩX −→ ΩX,

γ 7−→ γ−1.

The multiplication gives a group structure on the homotopy set [X, ΩY], for any space
X, as follows. Let ∆ : X −→ X× X be the diagonal map, defined by ∆(x) = (x, x). The
product of homotopy classes [ f ] and [g] in [X, ΩY] is then defined to be the homotopy
class of the map

X ∆−→ X× X
f×g−−→ ΩY×ΩY

µ−→ ΩY.

Let κ : C(ΣX, Y) −→ C(X, ΩY) be defined by κ( f )(x)(t) = f (〈t, x〉). The map κ

descends to give a map [ΣX, Y] −→ [X, ΩY], which by abuse of notation we also call κ.
The key proposition is the following.

Proposition 1.8. [Ark11, Proposition 2.3.5] The map κ : [ΣX, Y] −→ [X, ΩY] is an
isomorphism of groups.

The image of a homotopy class f under this isomorphism (in either direction) will be
called the adjoint of f and denoted f .

1.3 Homotopy groups and Moore spaces

We are now ready to define the homotopy groups of a space, which are the topic of
this thesis.

Definition 1.9. Let X be a based space, and let n ∈N. The n-th (integral) homotopy
group of X, denoted πn(X) or πn(X; Z), is the homotopy set [Sn, X], with group
structure induced by the fact that Sn ∼= ΣSn−1, as in Example 1.7.

Recall the definitions of the homotopy fibre and homotopy cofibre from [Ark11]. For
` ∈N, we will write ` : Sn −→ Sn for the degree ` map on the n-sphere.

Definition 1.10. Let ` ∈N, and let n ≥ 2. The mod-` Moore space Pn(`) is defined by
the homotopy cofibration

Sn−1 `−→ Sn−1 −→ Pn(`).
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It is immediate that Pn+1(`) ∼= ΣPn(`). Moore spaces are used to define homotopy
groups with coefficients.

Definition 1.11. Let X be a based space, let ` ∈N, and let n ≥ 2. The n-th homotopy
group of X with coefficients in Z/`, denoted πn(X; Z/`), is the homotopy set [Pn(`), X],
with group structure induced by the fact that Pn(`) ∼= ΣPn−1(`).

A priori, the homotopy groups with coefficients are only Z-modules, although we will
see in Proposition 1.36 that unless pr = 2, the homotopy group πn(X; Z/pr) is a
Z/pr-module. We will write π∗(X) for the graded abelian group whose degree-n
component is πn(X), and similarly for the homotopy groups with coefficients.

Proposition 1.12. Let R = Z or Z/`. For any space X, and any n ∈N, there is an
isomorphism

πn+1(X; R) ∼= πn(ΩX; R).

Proof. For the integral homotopy groups, we have, by Proposition 1.8, that

πn+1(X) ∼= [Sn+1, X] ∼= [ΣSn, X] ∼= [Sn, ΩX] ∼= πn(ΩX).

The case with coefficients in Z/pr is identical.

A space is said to be n-connected if πi(X) = 0 for all i ≤ n. In the case n = 1 we say that
X is simply connected. By the higher homotopy groups, we mean the homotopy groups
πn(X) for n ≥ 2.

Proposition 1.13. [Ark11, Proposition 2.3.8] For n ≥ 2, and for any space X, the homotopy
groups πn(X) are abelian. Similarly, for n ≥ 3, and for any space X, the homotopy groups
πn(X; Z/`) are abelian.

By Proposition 1.12, π2(X) ∼= π1(ΩX), so a loop space will always have abelian
fundamental group.

From our point of view, the most important foundational results on the structure of
the homotopy groups are the above proposition, and the next theorem, which is due to
Serre. First recall that for any space X, the Hurewicz map is a homomorphism
h : πn(X) −→ Hn(X), natural in maps of spaces, and defined as follows. Notice that
an element of πn(X) is the homotopy class of some map f : Sn −→ X, and recall that

H̃i(Sn) ∼=

Z if i = n, and

0 otherwise.

Choose a generator ξn of H̃n(Sn), and define the Hurewicz map by setting
h([ f ]) = f∗(ξn) ∈ Hn(X). This is well defined, since the induced map f∗ depends only
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on the homotopy class [ f ]. In some circumstances, we will require some particular
good behaviour from the Hurewicz map, and this will be achieved by careful choice of
the generators ξn.

In [Ser53b], Serre develops the notion of a class C of abelian groups. A collection of
groups C is said to be a class if C is closed under isomorphism and

1. C contains the trivial group,

2. C is closed under quotients and subgroups, and

3. C is closed under extensions.

Serre proves a ‘Hurewicz theorem mod-C ’, which is as follows.

Theorem 1.14. [Ser53b] Let X be a simply connected space. If the homology groups Hi(X)

belong to C for 0 < i < n, then the homotopy groups πi(X) belong to C for 0 < i < n, and
the kernel and cokernel of the Hurewicz map πn(X) −→ Hn(X) belong to C .

One recovers the ordinary Hurewicz theorem by taking C to be the class containing
only the trivial group. We are concerned only with the following corollary.

Corollary 1.15. [Ser53b] Let X be a simply connected finite CW-complex. Then the homotopy
groups πi(X) are finitely generated for each i ∈N.

Proof. Since X is a finite CW-complex, all homology groups of X are finitely
generated. The result then follows from Theorem 1.14 with C equal to the class of
finitely generated abelian groups.

By Proposition 1.13 and Corollary 1.15, given a simply connected finite CW-complex
X, the homotopy groups πn(X) are all finitely generated abelian. For p prime, and
r ∈N, we may therefore speak of ‘the number of Z/pr-summands’ occurring in some
homotopy group πn(X) (Definition 1.5) and this number will be well-defined and
finite.

Another important result is Whitehead’s so-called second theorem, which we now
state.

Theorem 1.16. [Whi49] Let f : X −→ Y be a map between simply connected CW-complexes.
If f∗ : Hi(X) −→ Hi(Y) is an isomorphism for each i, then f is a homotopy equivalence.

As an example, we have the following proposition, which gives a kind of ‘prime
power factorization’ for Moore spaces.
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Proposition 1.17. Let n ≥ 3. If ` ∈N has a prime power factorization ` = pr1
1 pr2

2 . . . prm
m

then
Pn(`) ' Pn(pr1

1 ) ∨ Pn(pr2
2 ) ∨ · · · ∨ Pn(prm

m ).

Proof. Define a map f : Pn(pr1
1 ) ∨ Pn(pr2

2 ) ∨ · · · ∨ Pn(prm
m ) −→ Pn(`) which is given on

the wedge summand Pn(pri
i ) as degree 1 on the top cell and degree `

p
ri
i

on the bottom

cell; that is, according to the following diagram of defining cofibrations.

Sn−1 p
ri
i // Sn−1

`

p
ri
i��

// Pn(pri
i )

f |
Pn(p

ri
i )

��
Sn−1 ` // Sn−1 // Pn(`)

By the Chinese Remainder Theorem, f induces an isomorphism on integral homology.
Thus, by Whitehead’s theorem (Theorem 1.16), f is a homotopy equivalence.

In both Papers 2 and 3 we will make use of the so-called stable homotopy groups. The
existence of these groups is justified by the Freudenthal Suspension Theorem, which
we now state. First, note that by [Ark11, Lemma 5.6.3] suspension gives a
homomorphism Σ : πi(X) −→ πi+1(ΣX) for all spaces X.

Theorem 1.18. [Fre38] Let X be an (r− 1)-connected space for r ≥ 2. The suspension
homomorphism

Σ : πi(X) −→ πi+1(ΣX)

is an isomorphism for i < 2r− 1 and an epimorphism for i = 2r− 1.

Consider the sequence πn+k(ΣkX) as k→ ∞. Letting r− 1 be the connectivity of X, we
have that the connectivity of ΣkX is (r + k)− 1. Thus, the suspension map
πn+k(ΣkX) −→ πn+k+1(Σk+1X) is an isomorphism, provided n + k < 2(r + k)− 1.
This condition rearranges to n < 2r + k− 1, which holds for large k, since r and n are
fixed. Assuming that X is connected, we have r ≥ 0, so the suspension map will
certainly be an isomorphism for n < k− 1. In particular, for k > n + 1, the
isomorphism type of the group πn+k(ΣkX) is independent of k (and these groups are
identified by canonical isomorphisms). We may therefore make the following
definition.

Definition 1.19. Let X be a space. The n-th stable (integral) homotopy group of X is the
group

πS
n(X) := πn+k(ΣkX) (k > n + 1).
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1.4 Localization

Localization provides a way to do homotopy theory ‘one prime at a time’. In this
subsection we record the basic theory, following [HMR75].

First, let P be a set of primes. The integers localized at P, denoted ZP, is the subring of Q

consisting of those rationals a
b where b is not divisible by any prime p ∈ P.

Two cases deserve particular emphasis. Firstly, if P = {p} consists of only a single
prime, then we write Z(p) = ZP. This ring is called the integers localized at p. If P = ∅,
then the localization ZP is equal to the whole of Q.

Following [HMR75], we will write P′ for the collection of primes not in P, and if some
integer n is a product of primes in P′, we will abuse notation to write n ∈ P′.

Definition 1.20 (P-local groups and spaces). Let P be a set of primes. A group G is
said to be P-local if the map G −→ G given by x 7−→ xn is an isomorphism for all
n ∈ P′. A simply connected CW-complex X is said to be P-local if the homotopy
groups of X are all P-local.

To say that a space is P-local is therefore to say that it carries only homotopy
information corresponding to the set of primes P. Localizing a space at P is the
process of stripping away all of the information corresponding to primes not in P to
obtain a P-local object, as follows.

Definition 1.21. Let f : X −→ Y be a map of simply connected CW-complexes. We
say that f P-localizes X if

1. Y is P-local, and

2. f ∗ : [Y, Z] −→ [X, Z] is an isomorphism for all P-local simply connected
CW-complexes Z.

This definition is really saying that a P-localizing map is universal with respect to
maps from X to P-local spaces. We expect objects satisfying universal properties to be
unique up to an appropriate notion of isomorphism, and in this case we have the
following.

Proposition 1.22. [HMR75, Chapter II] If the maps f1 : X −→ Y1 and f2 : X −→ Y2 both
P-localize X, then there is a homotopy equivalence h : Y1 −→ Y2 with h ◦ f1 ' f2, and these
properties uniquely determine the homotopy class of h.

Uniqueness is all very well, but is not terribly helpful without existence. The next
theorem gives us existence.
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Theorem 1.23. [HMR75, Theorem II.1.1A] Every simply connected CW-complex X admits a
P-localization. We write X −→ XP for a fixed choice of P-localization of X.

In the case that P = {p}, we will write X(p) = XP. In the case that P = ∅, we will
write XQ = XP, and call this the rationalization of X.

Definition 1.24. Let X and Y be simply connected CW-complexes, and let P be a set of
primes. If the P-localizations XP and YP are homotopy equivalent, then we say that X
and Y are P-locally equivalent, and write X 'P Y.

The next theorem is the way that we recognise P-localizations in practice. We first
need to know what it means to P-localize an abelian group. A homomorphism of
abelian groups e : A −→ AP is said to be P-localizing if AP is P-local (Definition 1.20)
and the pullback map e∗ : Hom(AP, B) −→ Hom(A, B) is an isomorphism for all
P-local abelian groups B. For a given abelian group A, it is immediate that the natural
map A −→ A⊗ZP is a P-localizing map for A, so all P-localizing maps for A are
identified with this one, up to unique isomorphism.

Theorem 1.25. [HMR75, Theorem II.1.1B] Let f : X −→ Y be a map of simply connected
CW-complexes. The following are equivalent.

1. The map f P-localizes X.

2. The map f∗ : πn(X) −→ πn(Y) P-localizes for all n ≥ 1.

3. The map f∗ : Hn(X) −→ Hn(Y) P-localizes for all n ≥ 1.

In short, a map of spaces is a P-localization precisely when it looks like one from the
point of view of homology, or equivalently of homotopy. As a first application of this
theory, we have the following proposition, which complements Proposition 1.17.

Proposition 1.26. For primes q 6= p, and r ∈N, the q-localization of the mod-pr Moore
space (Pn(pr))(q) is contractible.

Proof. For q 6= p prime, the homology H∗(Pn(pr); Z(q)) is trivial. By the Universal
Coefficient Theorem, the group H∗(Pn(pr); Z)⊗Z(q) must also be trivial for each n,
and by Theorem 1.25 we have H∗(Pn(pr)(q); Z) ∼= H∗(Pn(pr); Z)⊗Z(q). The inclusion
of the basepoint of Pn(pr)(q) is therefore a homology isomorphism, and hence, by
Whitehead’s theorem (Theorem 1.16), is actually a homotopy equivalence.

Notice that for p prime, and r ∈N, the group Z/pr is p-local. By the Universal
Coefficient Theorem for homology, the homology H∗(X; Z/pr) depends only on the
p-localization X(p). Likewise, the Universal Coefficient Theorem for homotopy [Nei10,
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Theorem 1.3.1] implies that the homotopy π∗(X; Z/pr) depends only on the
p-localization X(p). That is, homotopy and homology with coefficients in Z/pr are
properly thought of as invariants of the p-local homotopy type of X.

Lastly, localization allows for the following reformulation of a classical theorem of
Serre.

Theorem 1.27. [Ser51a] When p is odd, there is a p-local homotopy equivalence

ΩS2n 'p S2n−1 ×ΩS4n−1.

1.5 Samelson and Whitehead Products

In this subsection we introduce Samelson and Whitehead products, following the
presentation in [Nei10].

Fix a space X, and let R be Z or Z/pr. Our main goal for this subsection is to define
the Samelson product, which will be a bilinear operation

πn(ΩX; R)× πm(ΩX; R) −→ πn+m(ΩX; R).

We will make much use of Samelson products in Papers 2 and 3. By applying the
adjunction isomorphism (Proposition 1.12) to all three groups, we will obtain a related
operation, the Whitehead product. This is a bilinear operation

πn(X; R)× πm(X; R) −→ πn+m−1(X; R),

which does not require that the space be a loop space.

Consider a loop space ΩX. The H-group commutator on ΩX is the map

c : ΩX×ΩX −→ ΩX

(γ, θ) 7−→ γθγ−1θ−1.

The restriction of c to the wedge ΩX ∨ΩX is nullhomotopic, so c descends to a map

c : ΩX ∧ΩX −→ ΩX.

Furthermore, by [Nei10, Proposition 6.6.3], the natural map

[ΩX ∧ΩX, ΩX] −→ [ΩX×ΩX, ΩX]

is an injection, so the homotopy class of c is uniquely determined.
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We may now define the external Samelson product. Suppose given maps
f : A −→ ΩX and g : B −→ ΩX. The external Samelson product c( f , g) is the composite

A ∧ B
f∧g−−→ ΩX ∧ΩX c−→ ΩX.

The homotopy class of the external Samelson product depends only on the homotopy
classes of f and g. If A = Sn and B = Sm are spheres, we have a natural
homeomorphism Sn+m ∼= Sn ∧ Sm (Proposition 1.2). In this case, f , g and c( f , g) may
all be regarded as elements of π∗(ΩX), in dimensions n, m, and n + m respectively.
With this in mind, we have the following definition.

Definition 1.28. Let X be a simply connected CW-complex, and let f ∈ πn(ΩX), and
g ∈ πm(ΩX). The integral Samelson product 〈 f , g〉 ∈ πn+m(ΩX) is the composite

〈 f , g〉 : Sn+m ∼= Sn ∧ Sm f∧g−−→ ΩX ∧ΩX c−→ ΩX.

In particular, the Samelson product may be regarded as an operation on π∗(ΩX)

which is additive on grading. We have the following basic properties.

Proposition 1.29. [Whi78] The Samelson product

〈 , 〉 : πn(ΩX)× πm(ΩX) −→ πn+m(ΩX)

satisfies the following properties, for all f ∈ πn(ΩX), g ∈ πm(ΩX), and h ∈ π`(ΩX).

1. It is bilinear.

2. 〈 f , g〉 = −(−1)nm〈g, f 〉.

3. 〈 f , 〈g, h〉〉 = 〈〈 f , g〉, h〉+ (−1)nm〈g, 〈 f , h〉〉.

Bilinearity means that we may equivalently think of the Samelson product as a graded
map π∗(ΩX)⊗ π∗(ΩX) −→ π∗(ΩX), and we will frequently do so. Recall that we
write f for the image of a map f under either the isomorphism of Proposition 1.12 or
the inverse of that isomorphism, and that we call this map the adjoint of f .

Definition 1.30 (Integral and external Whitehead products). Let X be a simply
connected CW-complex. Let f ∈ πn(X) and let g ∈ πm(X). The integral Whitehead
product [ f , g] ∈ πn+m−1(X) is the adjoint 〈 f , g〉 of the Samelson product of the adjoints
f and g.

In the external setting, let c : ΩX ∧ΩX −→ ΩX be as usual. Given maps f : ΣA −→ X
and g : ΣB −→ X, the external Whitehead product [ f , g]w : Σ(A ∧ B) −→ X is the adjoint
c( f , g) of the external Samelson product of the adjoints f and g.
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Setting up internal mod-pr Samelson products is more complicated, because
Pn+m(pr) 6' Pn(pr) ∧ Pm(pr) (for example, the two sides have different homology
with coefficients in Z/p). We will instead find a suitably canonical map
Pn+m(pr) −→ Pn(pr) ∧ Pm(pr) which we can compose with the external Samelson
product to obtain an operation on π∗(ΩX; Z/pr). Interestingly, this operation does
not behave in the same way for all prime powers pr.

Fix a prime p and r ∈N, and consider the homotopy cofibration

Sn−1 pr

−→ Sn−1 −→ Pn(pr) −→ Sn pr

−→ Sn

defining Pn(pr). Taking the smash product of a cofibration and a (locally compact)
space again yields a cofibration, so Pn(pr) ∧ Pm(pr) fits into a cofibration sequence

Sn−1 ∧ Pm(pr)
pr∧1−−→ Sn−1 ∧ Pm(pr) −→ Pn(pr) ∧ Pm(pr) −→ Sn ∧ Pm(pr)→ . . . ,

which, since Si ∧ Pn(pr) is just Pn+i(pr), is the same as

Pm+n−1(pr)
pr

−→ Pm+n−1(pr)
ι−→ Pn(pr) ∧ Pm(pr)

τ−→ Pm+n(pr)→ . . . ,

where we give the names ι and τ to the indicated maps.

Since the co-H-space structure on Pn+m−1(pr) comes from the fact that it is a
suspension, the map that we have labelled pr above really is pr times the identity in
the homotopy set [Pn+m−1(pr), Pn+m−1(pr)]. Now, Pn(pr) is a ‘mod-pr’ object, so one
might hope that pr times its identity map was nullhomotopic. This is almost always
true, as in the following proposition, in which different primes behave differently.

Proposition 1.31. [Nei10, Proposition 6.1.7] Let m ≥ 3, let p be prime, and let r ∈N. If
pr 6= 2, then pr : Pm(pr) −→ Pm(pr) is nullhomotopic.

Assume now that pr 6= 2. By [Nei10, Lemma 6.2.1], the fact that pr is nullhomotopic
implies that there exists a section for τ, that is, a map s such that τ ◦ s is homotopic to
the identity on Pn+m(pr). Since Pn(pr) ∧ Pm(pr) is a suspension, this implies the
existence of a homotopy equivalence

ι ∨ s : Pn+m−1(pr) ∨ Pn+m(pr)
'−→ Pn(pr) ∧ Pm(pr).

At this stage, it is convenient to reintroduce the dimensions n and m to the notation.
Write ∆n,m = s. Since ∆n,m is a choice of splitting, we might worry about whether it is
unique up to homotopy. In fact, it is not, but it is unique enough for our purposes. We
are assured of this by the next proposition.
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Recall first that H̃∗(Pn(pr); Z/pr) is a free Z/pr-module on two generators en and
sn−1, in dimensions n and n− 1 respectively. Recall the definition of the external
Whitehead product from Definition 1.30. For a space X, the Whitehead subgroup
Wh∗(X; Z/pr) is defined to be the subgroup generated by all compositions

P∗(pr)
f−→
∨

Σ(A ∧ B)
g−→ X,

where f is any map, and g is any bouquet of external Whitehead products.

Proposition 1.32. [Nei10, Corollary 6.4.5] In this proposition, homology is taken with
coefficients in Z/pr. Let p be an odd prime. The induced map

(∆n,m)∗ : H̃∗(Pn+m(pr))→ H̃∗(Pn(pr) ∧ Pm(pr)) ∼= H̃∗(Pn(pr))⊗ H̃∗(Pm(pr))

satisfies (∆n,m)∗(en+m) = en ⊗ em, and this condition characterizes ∆n,m uniquely up to
addition of elements of Whn+m(Pn(pr) ∧ Pm(pr); Z/pr).

We care about ∆n,m because it allows us to define mod-pr Samelson products, so the
ambiguity in the homotopy type of ∆n,m is tolerable as long as it does not produce any
ambiguity in the Samelson products. The following lemma is the key.

Lemma 1.33. Let Y and Z be simply connected CW-complexes. If ϕ : Y −→ ΩZ is any map,
then the Whitehead subgroup Wh∗(Y; Z/pr) is contained in the kernel of
ϕ∗ : π∗(Y; Z/pr) −→ π∗(ΩZ; Z/pr).

Proof. From the definition of the Whitehead subgroup, it suffices to show that the
composite

ΣA ∧ B
[ f ,g]w−−−→ Y

ϕ−→ ΩZ

of ϕ with any external Whitehead product is nullhomotopic. By Proposition 1.8, it
suffices to show that the adjoint of this composite is nullhomotopic.

One can show that the isomorphism of Proposition 1.8 is a categorical adjunction. This
entails certain naturality properties, sometimes called triangle identities. In particular,
the adjoint of the above map is (Ωϕ) ◦ [ f , g]w, which by definition of the external
Whitehead product (Definition 1.30) is the composite

A ∧ B
f∧g−−→ ΩY ∧ΩY c−→ ΩY

Ωϕ−→ Ω2Z.

Since Ωϕ is a loop map, we have a commutative diagram

ΩY ∧ΩY

c
��

Ωϕ∧Ωϕ// Ω2Z ∧Ω2Z

c
��

ΩY
Ωϕ // Ω2Z.
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Now, by definition, the map c is the unique map which has image c under the natural
pullback [Ω2Z ∧Ω2Z, Ω2Z] −→ [Ω2Z×Ω2Z, Ω2Z]. But c is the honest commutator of
the two projections in the group [Ω2Z×Ω2Z, Ω2Z]. By [Ark11, Proposition 2.3.8], the
double loop space Ω2Z is a homotopy-commutative H-space, so the group [X, Ω2Z] is
abelian for all spaces X. But this means that in particular c : Ω2Z×Ω2Z −→ Ω2Z is
nullhomotopic, so c : Ω2Z ∧Ω2Z −→ Ω2Z is also nullhomotopic. We have seen that
(Ωϕ) ◦ [ f , g]w factors through c, so this map is also nullhomotopic, as required.

We may now make the following definition.

Definition 1.34. Let p be an odd prime, and let r ∈N. Let X be a simply connected
CW-complex, and let f ∈ πn(ΩX; Z/pr), and g ∈ πm(ΩX; Z/pr). The mod-pr

Samelson product 〈 f , g〉 ∈ πn+m(ΩX; Z/pr) is the composite

〈 f , g〉 : Pn+m(pr)
∆n,m−−→ Pn(pr) ∧ Pm(pr)

f∧g−−→ ΩX ∧ΩX c−→ ΩX.

By Lemma 1.33 the homotopy type of 〈 f , g〉 is independent of our choice of the section
∆n,m. The requirement that p be odd is necessary for Proposition 1.31.

The basic properties of mod-pr Samelson products are as follows.

Proposition 1.35. [Nei10, Proposition 6.7.2] The Samelson product

〈 , 〉 : πn(ΩX; Z/pr)× πm(ΩX; Z/pr) −→ πn+m(ΩX; Z/pr)

satisfies the following properties, for all f ∈ πn(ΩX; Z/pr), g ∈ πm(ΩX; Z/pr), and
h ∈ π`(ΩX; Z/pr).

1. It is bilinear.

2. 〈 f , g〉 = −(−1)nm〈g, f 〉.

3. If p > 3, then 〈 f , 〈g, h〉〉 = 〈〈 f , g〉, h〉+ (−1)nm〈g, 〈 f , h〉〉.

We conclude this subsection by noticing that Proposition 1.31 has an important
corollary for the structure of mod-pr homotopy groups.

Corollary 1.36. If m ≥ 3 and pr 6= 2, then the homotopy group πm(Y; Z/pr) is a
Z/pr-module for all spaces Y.

Our inability to prove Corollary 1.36 when pr = 2 is a real phenomenon, rather than a
sign of inadequacy in the techniques. We do, however, have the following.

Proposition 1.37. [Nei80, Proposition 7.1] If m ≥ 3 then πm(Y; Z/2) is a Z/4-module.
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1.6 Lie algebras

For the sake of completeness, we follow Neisendorfer’s definition of a graded Lie
algebra [Nei10], in order to avoid having to insist that 2 be a unit in the ground ring.
We write deg(x) for the degree of a homogeneous element x in some graded module.

Definition 1.38. Graded Lie algebra Let R be a commutative ring. A graded Lie
algebra L over R is a graded R-module together with two operations:

1. bilinear pairings, called Lie brackets,

[ , ] : Lm ⊗ Ln −→ Lm+n,

and

2. a ‘quadratic’ operation, called squaring, defined on odd-dimensional classes,

( )2 : Lk −→ L2k,

such that (ax)2 = a2x2 and (x + y)2 = x2 + y2 + [x, y] for all a ∈ R and x, y ∈ L of
equal odd degree.

These operations must satisfy the following identities.

1. [x, y] = −(−1)deg(x) deg(y)[y, x] for all x, y ∈ L.

2. [x, [y, z]] = [[x, y], z] + (−1)deg(x) deg(y)[y, [x, z]], for all x, y, z ∈ L.

3. [x, x] = 0 for all x ∈ L with deg(x) even.

4. 2x2 = [x, x] and [x, x2] = 0 for all x ∈ L with deg(x) odd.

5. [y, x2] = [[y, x], x] for all x, y ∈ L with deg(x) odd.

As Neisendorfer remarks, if 2 is a unit in R, then by Identity 4 we have x2 = 1
2 [x, x], so

the squaring operation may be recovered from the Lie bracket. This vastly simplifies
the definition when 2 is a unit, removing the need for the squaring operation
altogether. Specifically, in the axioms, one may omit all reference to the squaring
operation, and add the requirement that [x, [x, x]] = 0 for all x of odd degree. Since 2 is
invertible, Identity 3 follows from Identity 1, and may be omitted. If 3 is also
invertible, the new requirement that [x, [x, x]] = 0 follows from Identity 2, and may be
omitted. These simplifications will apply in Subsection 3.2, when we work over Q.

Our first example is as follows. It forms much of the backbone of Paper 3.
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Example 1.39. Let X be any space, let r ∈N, and let p ≥ 5 be prime. By Corollary 1.36, the
homotopy groups π∗(ΩX; Z/pr) are Z/pr-modules, and by Proposition 1.35, Identities 1
and 2 are satisfied. Since 2 is invertible we need not define the squaring operation. By the
preceding remarks, since 2 and 3 are invertible, this suffices to establish that π∗(ΩX; Z/pr) is
a graded Lie algebra.

Our second example plays the analogous role in Paper 2.

Example 1.40. If all of the identities of Definition 1.38 are satisfied apart from [x, x2] = 0 for
odd-dimensional x, then Neisendorfer calls the resulting object a quasi-graded Lie algebra.
Localized away from 2, the integral homotopy groups of a loop space form a quasi-graded Lie
algebra under the Samelson product [Nei10, Chapter 8]. Again, since 2 is invertible we need
not define the squaring operation.

Lastly, we have an important algebraic example.

Example 1.41. A graded Lie algebra may be obtained from any graded associative algebra A
by taking L = A with the Lie bracket

[x, y] = xy− (−1)deg(x) deg(y)yx,

and squaring operation equal to the ordinary algebra squaring. In what follows, we take all
algebras to also carry the structure of Lie algebras in this way. This is what is meant, for
instance, if we say that a map L −→ A is a map of Lie algebras, for a Lie algebra L and an
associative algebra A.

The Universal enveloping algebra of a graded Lie algebra L is an algebra U(L), together
with a map of Lie algebras L −→ U(L) such that if A is any graded associative algebra
and L

ϕ−→ A is a map of Lie algebras, then there exists a unique map ϕ̃ such that the
following diagram commutes.

U(L)
ϕ̃ // A

L.

OO

ϕ

<<

2 Paper 1 in context

The broad goal of this paper is to bound the size of πq(Sn). Serre (Theorem 1.15)
showed that these groups are finitely generated abelian, and that they contain a single
Z-summand when q = n, or when n is even and q = 2n− 1, and are finite otherwise.
We may therefore restrict our attention to the p-torsion summand for each prime p.
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When p is odd it suffices to consider n odd, because, again by work of Serre (Theorem
1.27), we have a p-local equivalence

ΩS2n 'p S2n−1 ×ΩS4n−1.

For us, the rank of a finitely generated module will be the size of a minimal generating
set. Selick [Sel82] proved that the rank of πq(Sn

(p)), regarded as a Z(p)-module, is at

most 3q2
. Bödigheimer and Henn [BH83] prove that the base-p logarithm of the

cardinality of the p-torsion part of πq(Sn) is at most 3(q− n
2 ), for n odd and all primes p.

By the same method, they prove that the rank of πq(Sn
(p)) satisfies the same bound. In

[Hen86], Henn further improved this bound to 2q−n+1. In [Iri87], Iriye states the
bound 3

q−n
2p−3 , which is actually slightly better than our Theorem 2.1, but gives no proof.

For a prime p, let sp(n, q) denote the base-p logarithm of the cardinality of the
p-torsion part of πq(Sn).

Theorem 2.1 (Paper 1 [Boy20, Theorem 1.1]). For all natural numbers q, and n odd,

sp(n, q) ≤ 2
1

p−1 (q−n+3−2p).

If p = 2 then this bound holds also for n even.

As a corollary we obtain the weaker but simpler bound sp(n, q) ≤ 2
q−n
p−1 . The 3− 2p

which appears in Theorem 2.1 reflects the classical fact that the first p-torsion classes
appear in the (2p− 3)-rd stem. We can think of the bound as an exponential function
of the stem q− n in base 2

1
p−1 . The main advantage of this bound over its predecessors

is that as p becomes large, the base of the exponential approaches 1, so our bound
grows more slowly for larger primes.

As in [BH83], we also obtain a bound on the rank, but we prefer to regard it as
following from Theorem 1.1, by using that the rank of a finite p-torsion group is at
most logp of its cardinality.

Corollary 2.2 (Paper 1 [Boy20, Corollary 1.2]). For n odd and q ≥ 1, the rank of the
p-torsion part of πq(Sn) is at most 2

q−n
p−1 . If p = 2, this bound holds also for n even.

Our method follows that of the preceding papers on the topic; we analyse the
combinatorics of the EHP sequences of James and Toda [Jam57, Tod56]. This leads to
the following lemma, which was first proven in [BH83].

Lemma 2.3. For all q, and n odd:

1. sp(n, q) ≤ sp(p(n− 1) + 1, q) + sp(p(n− 1)− 1, q− 1) + sp(n− 2, q− 2) if
q 6= p(n− 1).
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2. sp(n, q) ≤ 1 + sp(n− 2, q− 2) if q = p(n− 1).

When p = 2, we no longer need to restrict to odd n, and the first inequality can be replaced by

s2(n, q) ≤ s2(2n− 1, q) + s2(n− 1, q− 1).

All of our bounds are stable; that is, they depend only on the difference q− n. The
stable homotopy groups of spheres have been computed up to the 90-stem with some
uncertainties, the most recent paper of this sort being that of Isaksen, Wang and Xu
[IWX20]. They make the following conjecture, which we give in a ‘stable’ version of
our notation. For a prime p, let sp(k) denote the base-p logarithm of the cardinality of
the p-torsion part of πn+k(Sn), for any k ≥ n + 2. This is well defined, since the
isomorphism type of πn+k(Sn) is independent of n in this range (see the discussion
preceding Definition 1.19).

Conjecture 2.4. [IWX20, Conjecture 1.5] There exists a nonzero constant C such that

lim
k→∞

∑k
i=1 s2(k)

k2 = C.

This suggests that, at least stably, much better bounds than Theorem 2.1 ought to be
possible. On the other hand, we have the following result, which makes precise the
intuition that one cannot do better than exponential by merely improving the
combinatorics; new input from topology is required.

Corollary 2.5 (Paper 1 [Boy20, Corollary 3.1]). Let Fn denote the n-th Fibonacci number.
Any bound on the base-p logarithm of the cardinality of the p-primary part of
π2p+j(4p+5)+n−3(Sn) (or the rank of that group) which can be obtained from Lemma 2.3 is
greater than or equal to F2j+1. In particular, any base for an exponential bound which can be

obtained from Lemma 2.3 is at least φ
2

4p+5 , where φ denotes the golden ratio.

We add as a footnote that it is very well possible that better bounds on the size of
homotopy groups of finite complexes are possible in the stable range than are possible
in general. In particular, the suspension of a Whitehead product is always trivial
[Whi46, Theorem 3.11], so none of the families of classes identified so far in the study
of local hyperbolicity (in the papers [HW20, ZP21] or in Papers 2 and 3) survives to
the stable range. This makes sense intuitively; the stable range consists of precisely
those dimensions which are too low to accommodate any nontrivial Whitehead
products, which are the essential scaffolding used so far to show that particular spaces
are locally hyperbolic.
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3 Background to Papers 2 and 3

Papers 2 and 3 concern local hyperbolicity; a new concept due to Huang and Wu
[HW20]. Local hyperbolicity is one approach to the study of the global properties of
homotopy groups, and there are many older results which are of interest in this
broader context. In this section, we collect some of these results, concluding with a
discussion of Huang and Wu’s work.

3.1 Classical results

In this subsection, we record some classical results on the structure of homotopy
groups. First of all, recall Corollary 1.15 from Subsection 1.3, which is due to Serre
[Ser53b], and tells us that the homotopy groups of any simply connected finite
CW-complex are finitely generated.

Next, we have the following theorem, which is due to Serre when p = 2 and Umeda
when p is odd.

Theorem 3.1. [Ser53a, Ume59] Let p be a prime, and let X be a simply connected space such
that

1. Hi(X; Z) is finitely generated for all i > 0,

2. Hi(X; Z/p) = 0 for all sufficiently large i, and

3. Hi(X; Z/p) 6= 0 for some i > 0.

Then there exist infinitely many values of i such that πi(X) has a subgroup isomorphic to Z or
Z/p.

Said another way, the conclusion of the theorem is that there are infinitely many values
of i such that πi(X) contains a summand isomorphic to Z or Z/pr for some r ∈N.

Thirty years later, this result was improved by McGibbon and Neisendorfer:

Theorem 3.2. [MN84] Let p be a prime, and let X be a simply connected space such that

1. Hi(X; Z/p) = 0 for all sufficiently large i, and

2. Hi(X; Z/p) 6= 0 for some i > 0.

Then there exist infinitely many values of i such that πi(X) has a subgroup isomorphic to
Z/p.
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Notice that if X is a finite CW-complex, then Hypothesis 1 is automatic. Consider the
inclusion of the basepoint of the p-localization ∗ −→ X(p). By Whitehead’s second
theorem (Theorem 1.16), if this map induces an isomorphism on integral homology,
then it must actually be a homotopy equivalence. The integral homology of X(p) is
isomorphic to H∗(X; Z)⊗Z(p) by Theorem 1.25, so, by the Universal Coefficient
Theorem, the inclusion of the basepoint will be an isomorphism if and only if the
reduced homology H̃∗(X; Z/p) vanishes. That is, the second hypothesis of McGibbon
and Neisendorfer’s result is equivalent to asking that the localization X(p) not be
contractible. We therefore have the following corollary.

Corollary 3.3. Let p be a prime, and let X be a simply connected finite CW-complex. Then
either

1. The localization X(p) is contractible (and hence πi(X) contains no summands
isomorphic to Z or Z/pr) or

2. there exist infinitely many values of i such that πi(X) has a summand isomorphic to
Z/pr for some r ∈N.

We will see that this corollary provides an interesting contrast with the rational
situation.

3.2 Rational homotopy theory

The program to which the work in this thesis belongs was initiated by Huang and Wu
[HW20]. Their inspiration came principally from rational homotopy theory. Rational
homotopy theory studies properties of spaces and maps that depend only on their
rational homotopy type. By Theorem 1.25 and the Universal Coefficient Theorem we
have

H∗(XQ; Z) ∼= H∗(X; Q)

and
π∗(XQ) ∼= π∗(X)⊗Q.

We will refer to the groups π∗(X)⊗Q as the rational homotopy groups of X. Note in
particular that the rational homotopy groups tell us where the Z-summands were in
the integral homotopy groups, since tensoring with Q kills torsion summands, and
turns copies of Z into copies of Q.

Dealing only with the rational information simplifies things in a way that is often
useful. A simple example is provided by the homotopy groups of spheres. By
Corollary 3.3, there are p-torsion summands in arbitrarily high dimension in the
homotopy groups of Sn (n ≥ 2) for every prime p. On the other hand, Serre [Ser53b]
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showed that the rational homotopy groups πq(Sn)⊗Q are isomorphic to Q when
q = n, or when n is even and q = 2n− 1, and are trivial otherwise. That is, rationally,
spheres ‘look finite’ in a way that they very much do not integrally. We can see already
here that rational homotopy retains information that the homology groups do not,
since π4n−1(S2n)⊗Q ∼= Q.

In fact, more can be said about the relationship between rational homotopy and
rational homology, thanks to the following theorem of Henn.

Theorem 3.4. [Hen83] Any co-H-space is rationally equivalent to a wedge of spheres.

Necessarily, one sphere appears in the wedge for each Q-summand appearing in
rational homology. In particular, any suspension is a co-H-space, so looks rationally
and stably like a wedge of spheres. Since the Hurewicz map is an isomorphism in the
stable range for wedges of spheres, we immediately obtain the following corollary.

Corollary 3.5. The rational stable Hurewicz map

πS
∗(X)⊗Q −→ H∗(X : Q)

is an isomorphism for all spaces X.

That is to say, after rationalizing and stabilising, homotopy no longer knows anything
that homology does not. From this point of view, one can see how rational homotopy
theory and stable homotopy theory come to be so powerful.

A great deal is known about the global structure of the rational homotopy groups of a
space, and this is what inspired Huang and Wu to investigate the corresponding
torsion situation, as we will see in Subsection 3.4.

In order to state the theorems which follow, we need the notion of rational
LS-category. Let X be a simply connected space. Recall that the ordinary
Lusternik-Schnirelmann category of X is the least m such that X is the union of m + 1
open subsets, each of which is contractible in X. We write cat(X) = m. Let the rational
Lusternik-Schnirelmann category, or rational category of X, denoted cat0(X), be defined
by

cat0(X) = min{cat(Y) | Y 'Q X, π1(Y) = 0}.

That is, cat0(X) is the least ordinary LS-category of a simply connected space which is
rationally equivalent to X. We have [FHT15, Proposition 28.1] that cat0(X) = cat(XQ).

From our point of view, the most important theorem of rational homotopy theory is
the following. Recall (Definition 1.1) that a sequence αk is said to grow exponentially if
there exists C > 1 such that for large enough k we have αk > Ck, or equivalently if
lim infk→∞

ln(αk)
k > 0.
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Theorem 3.6 (The rational dichotomy [FHT15, Theorem 33.2]). Let X be a simply
connected space with finite rational category and rational homology of finite type. Then either

1. π∗(X)⊗Q is finite dimensional, and X is said to be rationally elliptic, or

2. ∑k
i=1 dim(π∗(X)⊗Q) grows exponentially in k, and X is said to be rationally

hyperbolic.

Note that a finite CW-complex automatically has finite rational homology, and has
finite ordinary LS-category, hence finite rational category. Any simply connected finite
CW-complex, therefore, satisfies the dichotomy.

As a first example, we have seen that the rational homotopy of Sn has finite total
dimension, so Sn is rationally elliptic for each n. More generally, one checks whether a
space is elliptic or hyperbolic by means of the following results. The formal rational
dimension nX of a space X is the largest integer n such that Hn(X; Q) 6= 0.

Theorem 3.7. [FHT15, Theorem 33.3] Suppose that X is a simply connected topological space
with finite dimensional rational homology and formal rational dimension nX. Then either

1. πi(X)⊗Q = 0 for i ≥ 2nX, or else

2. for each k ≥ 1, there exists i with k < i < k + nX such that πi(X)⊗Q 6= 0.

Of course, in Case 1, X is rationally elliptic, and in Case 2, X is rationally hyperbolic.
This means that if we know the formal dimension of X, then X is elliptic if and only if
πi(X)⊗Q vanishes for 2nX ≤ i ≤ 3nX − 2. This is a big improvement, since we only
need to check a finite dimensional range.

Various results which add detail to Theorem 3.6 have been proven, and the remainder
of this section records some of them.

First, and most centrally, the relationship between homotopy and loop-homology is
very well behaved rationally. Recall the definition of a graded Lie algebra L, and of its
universal enveloping algebra UL, from Subsection 1.6. We do not need to know the
definition of a Hopf algebra - it will suffice to know that a Hopf algebra is in particular
an algebra, and that an isomorphism of Hopf algebras is an isomorphism of algebras
[MM65]. For a space Y, let

∆ : Y −→ Y×Y

be the diagonal, defined by ∆(y) = (y, y). Recall that the Künneth theorem identifies
H∗(Y×Y; Q) ∼= H∗(Y; Q)⊗ H∗(Y; Q). A homology class α ∈ H∗(Y; Q) is called
primitive if ∆∗(α) = α⊗ 1 + 1⊗ α under the Künneth identification. Recall the
definition of the integral Samelson product (Definition 1.28), and of the universal
enveloping algebra (Subsection 1.6). We then have the following structure theorem,
which is due to Milnor and Moore.
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Theorem 3.8. [MM65] If X is a simply connected space then

1. Samelson products make π∗(ΩX)⊗Q into a graded Lie algebra, denoted by LX.

2. The Hurewicz homomorphism for ΩX is an isomorphism of LX onto the Lie algebra
P∗(ΩX; Q) of primitive elements in H∗(ΩX; Q).

3. The Hurewicz homomorphism extends to an isomorphism of graded Hopf algebras

ULX
∼=−→ H∗(ΩX; Q).

The good behaviour of the Hurewicz homomorphism is now plain: by point 3, the
Hurewicz map for ΩX may be regarded as the natural inclusion of the Lie algebra
π∗(ΩX)⊗Q into its universal enveloping algebra H∗(ΩX; Q). This has an interesting
consequence for the dimensions of the rational homotopy groups. For a space X, let
PX be the power series in z given by ∑∞

n=0 dim Hn(X; Q). Then we have the following.

Theorem 3.9. [FHT15, Formula 33.7, Proposition 33.10] Let ri = dim(πi(X)⊗Q). Then

PΩX =
∏∞

i=1(1 + z2i+1)r2i+1

∏∞
i=1(1 + z2i)r2i

,

and furthermore, the power series PΩX and ∑∞
i=1 rizi have the same radius of convergence, R,

such that

1. R = 1 if X is rationally elliptic, and R < 1 if X is rationally hyperbolic.

2. If X is rationally hyperbolic and if Hi(X; Q) = 0 for i > nX then R < K < 1 for some
constant K depending only on nX.

As one might expect, this implies that loop homology suffices to determine whether a
space is elliptic or hyperbolic.

Theorem 3.10. [FHT15, Proposition 33.8] Suppose that Hi(X; Q) = 0 for i > nX. Then the
integers dim Hi(ΩX; Q) for 2nX − 1 ≤ i ≤ 3nX − 3 determine whether X is rationally
elliptic or rationally hyperbolic.

Finally, we have the following result, which describes qualitatively the growth of the
loop homology in the elliptic and hyperbolic cases. For a graded module M, Modd

denotes the direct sum of the components in odd gradings, and Meven denotes the
direct sum of the components in even gradings.

Theorem 3.11. [FHT15, Proposition 33.9]
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1. If X is rationally elliptic then there exist constants A < B ∈ R>0 such that

Anr ≤
n

∑
i=0

dim Hi(ΩX; Q) ≤ Bnr, n ≥ 1,

where r = dim(πodd(X)⊗Q).

2. If X is rationally hyperbolic and if Hi(X; Q) = 0 for i > nX then there exist constants
C > 1 and K ∈N such that

k+2(nX−1)

∑
i=k+1

dim Hi(ΩX; Q) ≥ Ck, k ≥ K.

3.3 Moore’s Conjecture and the exponent problem

In this subsection we discuss Moore’s conjecture and the exponent problem; two
topics which are intimately related to local hyperbolicity. We begin with a definition.

Definition 3.12. Let X be a space. The homotopy exponent of X at some prime p is the
smallest power of p which annihilates the p-torsion in π∗(X); if no such power exists
then we say that X has no homotopy exponent at the prime p.

For the avoidance of doubt, by the p-torsion in a group G we mean the subgroup
consisting of those elements whose order is a power of p.

Moore’s conjecture proposes that the behaviour of the rational homotopy groups of a
space is intimately related to the exponent.

Conjecture 3.13 (Moore’s conjecture). Let X be a simply connected finite CW-complex.
The following are equivalent.

1. X is rationally elliptic.

2. X has a finite homotopy exponent at some prime p.

3. X has a finite homotopy exponent at all primes p.

Resolving Moore’s conjecture even for spheres is challenging. Of course, in dimension
1, things are easy, since S1 is a K(Z, 1), but higher dimensional spheres present more
of a problem. We have seen that Serre showed that Sn is rationally elliptic, but does it
have finite exponent? The answer is yes, as in the following theorem, which is due to
James when p = 2, and to Toda when p is odd.

Theorem 3.14. [Jam57, Tod58] For all primes p, the p-primary homotopy exponent of the
sphere S2n+1 is at most p2n.
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There is no loss in treating only odd-dimensional spheres: by Serre’s p-local
decomposition of the loops on an even-dimensional sphere (Theorem 1.27), James and
Toda’s results imply that the exponent of S2n is at most p4n−2.

Now, suppose that p is odd. Gray [Gra69] showed that the homotopy groups of S2n+1

contain classes of order pn, which implies that the homotopy exponent of S2n+1 must
be at least pn. Selick [Sel78] showed that the homotopy exponent of S3 is p. These
results enabled Cohen, Moore, and Neisendorfer [CMN79b, CMN79a] to resolve the
exponent precisely;

Theorem 3.15. [CMN79a, Gra69] Let p be an odd prime. The p-primary homotopy exponent
of S2n+1 is precisely pn.

It now follows that the exponent of S2n is precisely p2n−1. Amusingly, Cohen, Moore,
and Neisendorfer did not set out to compute the exponents of spheres; they originally
intended to study the exponents of Moore spaces [CMN79b]. They do not resolve the
exponents of Moore spaces in those papers, but later, in [Nei87], Neisendorfer shows
that π∗(Pn(pr)) has exponent pr+1 for p ≥ 5. In fact, Neisendorfer claimed in [Nei87]
that this result also holds when p = 3, but later, with Gray, discovered some mistakes
in the proof (see the unpublished [Nei]). These mistakes were repaired apart from
when p = 3. In [Nei], Neisendorfer shows that the 3-primary exponent of Pn(3r) is
either 3r+1 or 3r+2. Theriault [The08] has shown that the exponent of Pn(2r) is 2r+1 for
r ≥ 6, that it is at most 2r+2 for 3 ≤ r ≤ 5, and that it is at most 32 when r = 2. These
results are summarised in the following theorem.

Theorem 3.16. [Nei87, Nei, The08] The homotopy exponent of the Moore space Pn(pr) is

• pr+1 when p ≥ 5,

• either pr+1 or pr+2 when p = 3,

• pr+1 when p = 2 and r ≥ 6,

• at most pr+2 when p = 2 and 3 ≤ r ≤ 5, and

• at most 32 when p = 2 and r = 2.

Moore spaces Pn(pr) are contractible after localization at a prime different from p
(Proposition 1.26) hence are rationally contractible. Moore spaces (with pr 6= 2) are
therefore a second class of spaces which is known to satisfy Moore’s conjecture. When
pr = 2, no exponent is known.

Question 3.17. Does the Moore space Pn(2) have a 2-primary homotopy exponent?
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Moore’s conjecture remains open, but various partial results are known. Perhaps most
notably, we have the following theorem of McGibbon and Wilkerson, where by
‘almost all primes’ we mean ‘all but perhaps finitely many primes’ or equivalently ‘all
sufficiently large primes’.

Theorem 3.18. [MW86] Let X be a simply connected finite CW-complex. Suppose that X is
rationally elliptic. Then, for almost all primes p, there is a p-local homotopy equivalence

ΩX 'p ∏
i

S2mi−1 ×∏
j

ΩS2nj−1.

We have known since James and Toda’s work (Theorem 3.14) that spheres have finite
exponents, so this implies the following partial resolution of Moore’s conjecture.

Corollary 3.19. Let X be a simply connected finite CW-complex. If X is rationally elliptic,
then X has a homotopy exponent at almost all primes.

On the hyperbolic side, we have for example the following result of Selick, which
resolves one direction of Moore’s conjecture for suspensions whose homology is
torsion-free.

Theorem 3.20. [Sel83] Let p be an odd prime, and let X be a finite CW-complex with H∗(X)

torsion-free. If ΣX is rationally elliptic, then ΣX has no homotopy exponent at p.

The reason for including this result in particular is that Selick’s methods provide the
blueprint for the methods of Paper 2.

3.4 Local hyperbolicity

The study of local hyperbolicity was initiated by Huang and Wu in [HW20]. Their
goal was to investigate the torsion analogues of the theorems of Section 3.2, especially
the rational dichotomy of Theorem 3.6. Recall (Definition 1.1) that a sequence αm is
said to grow exponentially if there exists C > 1 such that for large enough m we have
αm > Cm, or equivalently if lim infm→∞

ln(αm)
m > 0.

Definition 3.21. [HW20, Definition 1.2] Let X be a space, and let p be a prime. Let Tm

be the number of p-torsion summands in
⊕

i≤m πi(X). We say that X is p-hyperbolic if
Tm grows exponentially in m.

The above definition counts Z/pr-summands for all values of r. It is also possible to
consider only a single r, and by doing so we obtain the definition of
Z/pr-hyperbolicity.
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Definition 3.22. [HW20, Definition 1.1] Let X be a space, let p be a prime, and fix
r ∈N. Let tm be the number of Z/pr-summands in

⊕
i≤m πi(X). We say that X is

Z/pr-hyperbolic if tm grows exponentially in m.

When there is no ambiguity, in either case we may say that the space X is locally
hyperbolic. This terminology is justified, since both above definitions depend only on
the p-localization X(p) of X. Note that Z/pr-hyperbolicity for any particular r implies
p-hyperbolicity.

Selick and Wu [SW00, SW06] introduced a family of functors Q̃max
n for n ≥ 2, together

with a functor Ãmin. These functors allow a general functorial decomposition of the
loop-suspension ΩΣX of any path-connected CW-complex X as

ΩΣX ' Ãmin(X)×Ω(
∞∨

n=2

Q̃max
n (X)).

In terms of these functors, Huang and Wu sketch a theorem statement which
illustrates their approach.

Theorem 3.23. [HW20, Theorem 1.5] Suppose X is the p-localization of a path-connected
finite CW-complex. If

1. Σ∗X is a homotopy retract of Q̃max
∗ (X),

2. there exists a map Σ∗X ∨ Σ∗X −→ Σ∗X∧∗ which admits a left homotopy inverse, and

3. there is a Z/pr-summand in each π∗(Σ∗X),

then ΣX is Z/pr-hyperbolic. The symbol ∗ here refers to various arithmetic sequences which
Huang and Wu define precisely later in the paper; they must satisfy some mild arithmetic
conditions.

The functorial decomposition of ΩΣX allows for this general statement, but in practice
one needs only to know some adequate decomposition of the space in question; it is
not important to know its relation to this very sophisticated and general
decomposition.

Huang and Wu establish the first example satisfying their definitions, as follows.

Theorem 3.24. Let n ≥ 3 and r ≥ 1. The Moore space Pn(pr) is Z/pr and
Z/pr+1-hyperbolic. Additionally, Pn(2) is Z/8-hyperbolic.

Theorem 3.24 fits into the general pattern that Huang and Wu set out in Theorem 3.23.
The main ingredient necessary for this is a loop-decomposition; and these are known
for Moore spaces. Since at this stage we are only sketching the situation, for brevity
we give only the even-dimensional odd-primary decomposition.
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Theorem 3.25. [CMN79b, Theorem 1.1] Let p be an odd prime, and let n > 0. Then

ΩP2n+2(pr) ' S2n+1{pr} ×Ω
∞∨

m=0

P4n+2mn+3(pr).

Notice that this is of the same form as Selick and Wu’s general decomposition. When
pr = 2 no analogous decomposition is known.

The second paper dealing with local hyperbolicity is that of Zhu and Pan [ZP21]. Zhu
and Pan are concerned with the category of A2

n-complexes; that is, (n− 1)-connected
finite CW-complexes of dimension at most n + 2. Any A2

n-complex necessarily has a
cell-structure which has cells only in dimensions n, n + 1, and n + 2. We say that
X ∈ A2

n is indecomposable if whenever X ' A ∨ B for A2
n-complexes A and B, then

either A or B is contractible. The indecomposable complexes in A2
n were classified by

Chang [Cha50], and are as follows.

• Spheres Sn, Sn+1, and Sn+1.

• Moore spaces Pn(pr) and Pn+1(pr), for p prime and r ∈N.

• The elementary Chang complexes:

– Cn+2
η = Sn ∪η CSn+1,

– Cn+2,s = (Sn ∨ Sn+1) ∪( η
2s

) CSn+1,

– Cn+2
r = Sn ∪( 2r η ) C(Sn ∨ Sn+1), and

– Cn+2,s
r = (Sn ∨ Sn+1) ∪( 2r η

0 2s

) C(Sn ∨ Sn+1).

In the above, η is an appropriate suspension of the Hopf map, and the matrix
( fi,j) :

∨n
i=1 Xi −→

∨m
j=1 Yj represents the map whose composition with the

inclusion of Xi and the projection onto Yj is fi,j. Such maps exist whenever the Xi

are co-H-spaces.

Most of the complexity of Chang’s classification arises at the prime 2: after localization
at an odd prime, each indecomposable complex in A2

n is homotopy equivalent to a
sphere or a Moore space. Zhu and Pan therefore begin by studying 2-primary
hyperbolicity of the elementary Chang complexes, proving the following two
theorems.

Theorem 3.26. [ZP21, Theorem 1.2] The Chang complexes Cn+2,r
r (n ≥ 4) are

Z/2i-hyperbolic for i = 1, r, r + 1.

Theorem 3.27. [ZP21, Theorem 1.3] Let C be either Cn+2
η , Cn+2

r , Cn+2,s, or Cn+2,s
r with

r 6= s. Suppose that n ≥ 4.
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Let uC =



1 if C = Cn+2
η ,

r if C = Cn+2
r ,

s if C = Cn+2,s, and

min(r, s) if C = Cn+2,s
r .

Then C is Z/2-hyperbolic if uC = 1 and Z/2i hyperbolic for i = 1, uC, uC + 1 if uC > 1.

With this understanding of the 2-primary behaviour, Zhu and Pan are able to prove
the following theorem, which reduces the question Z/p-hyperbolicity in An

2 to the
question of whether the spheres Sn, Sn+1, and Sn+2 are Z/p-hyperbolic.

Theorem 3.28. [ZP21, Theorem 1.4] Let A be an A2
n complex, and let p be a prime. Then

either

1. A is Z/p-hyperbolic,

2. there is a p-local equivalence A 'p Sm for m = n, n + 1, or n + 2, or

3. A is p-locally contractible.

However, the question of whether Sn is Z/p-hyperbolic, or even p-hyperbolic, is very
hard - so hard, in fact, that Huang and Wu state it as a question.

Question 3.29. [HW20, Question 1.7] Is Sn (n ≥ 2) p-hyperbolic?

To answer this question in the negative, it would suffice to prove a subexponential
bound for the quantity sp(n, q) of Paper 1, and as we saw in our discussion of that
paper, it seems likely from computations that a subexponential bound is possible
(Conjecture 2.4), but will require new techniques (Corollary 2.5). Of course, it follows
from Serre and Umeda’s work (Theorem 3.1) that there are infinitely many p-torsion
classes in the homotopy groups of Sn, so the answer is certainly more complicated
than the rational one.

3.5 Relationship of local hyperbolicity to work of Henn and Iriye

In a pair of papers in the 1980s, Henn [Hen86], and Iriye [Iri87], studied the radii of
convergence of certain power series which are related to the ideas of Huang and Wu.
This section summarises their results and explores the connection.

Let Rπ∗(X;Z/p) and RH∗(ΩX;Z/p) be the radii of convergence of the power series in t
given by

∞

∑
n=1

dim(πn(X; Z/p)⊗Z/p)tn
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and
∞

∑
n=1

dim Hn(ΩX; Z/p)tn

respectively. The reason for tensoring with Z/p in the first case is that homotopy
groups with coefficients in Z/2 are only Z/4-modules in general (Corollary 1.36 and
Proposition 1.37). Henn and Iriye prove complementary bounds relating these
quantities, as follows.

The radius of convergence R of a power series ∑ anzn is the least upper bound of the
nonnegative numbers r such that ∑|an|rn converges. The radius of convergence
satisfies R−1 = lim sup|an|

1
n [FHT15, Section 33].

Theorem 3.30. [Hen86] Let X be a simply connected space of finite type, and let p be a prime.
Then

Rπ∗(X;Z/p) ≥ min(RH∗(ΩX;Z/p), cp),

where cp is a constant depending only on p and cp ≥ 1
2 for all p.

Theorem 3.31. [Iri87] Let X be a simply connected space of finite type, and let p be a prime.
Then

RH∗(ΩX;Z/p) ≥ min(Rπ∗(X;Z/p), 1).

Firstly, it is convenient to introduce notation for the number of Z/pt-summands in a
module. Let M be a Z-module, let p be a prime and let t ∈N. The Z/pt-dimension of
M, denoted dimZ/pt (M), is the number of Z/pt-summands in M. The p-dimension of
M is dimp(M) = ∑∞

t=1 dimZ/pt (M); this is the number of p-torsion summands in M.
Similarly, let rk(M) denote the rank of M, that is, the number of Z-summands in M, or
equivalently dim(M⊗Q).

For a space X, Henn and Iriye’s work concerns the ordinary dimensions
an = dim(πn(X; Z/p)⊗Z/p), while Huang and Wu’s p-hyperbolicity (Definition
3.21) concerns the quantities bn = dimp(πn(X)). For the sake of simplicity, suppose
that p is odd, so that πn(X; Z/p)⊗Z/p ∼= πn(X; Z/p). For each n, we have a
universal coefficient sequence [Nei10, Theorem 1.3.1]

0 −→ πn(X)⊗Z/p −→ πn(X; Z/p) −→ Tor(πn−1(X); Z/p) −→ 0.

We are dealing here with a sequence of vector spaces, which is automatically split.
Writing cn = rk(πn(X)), we have

an = dim πn(X; Z/p) = dimp(πn(X)) + rk(πn(X)) + dimp(πn−1(X))

= bn + cn + bn−1.
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Now, Rπ∗(X;Z/p) is the radius of convergence of the power series ∑∞
n=1 antn. Write Rb

for the radius of convergence of ∑∞
n=1 bntn, and write Rc for the radius of convergence

of ∑∞
n=1 cntn. Shifting indices does not affect radius of convergence, so the radii of

convergence of ∑∞
n=1 bntn and ∑∞

n=1 bn−1tn are equal. Furthermore, the radius of
convergence of a termwise sum of power series is the minimum of the radii of
convergence of the summands, so we have

Rπ∗(X;Z/p) = min(Rb, Rc).

The point is that Rc belongs to rational homotopy, while Rb is closely related to
p-hyperbolicity.

Since cn = dim(πn(X; Q)), it follows from Theorem 3.9 that Rc is precisely the radius
of convergence of the power series PΩX = ∑∞

n=1 dim(Hn(ΩX; Q))tn; in particular it is
determined by rational loop homology. Leaving the rational part aside, we certainly
have that

Rπ∗(X;Z/p) ≤ Rb.

The following simple one-directional relationship exists between p-hyperbolicity and
Rπ∗(X;Z/p).

Lemma 3.32. Let lim infn
ln(Tn)

n = d, where the sequence Tn is as in Definition 3.21. Then
Rπ∗(X;Z/p) ≤ exp(−d).

The bound can only be one-directional, because lim inf is essentially a lower bound,
while the radius of convergence is essentially an upper bound.

Proof. Suppose that lim infn
ln(Tn)

n = d. We have seen that it suffices to show that
Rb ≤ e−d, where Rb is the radius of convergence of the power series

∑∞
n=1 dimp(πn(X))tn.

Certainly, for any ε < d, once n is large we have ln(Tn)
n > ε, so Tn > (eε)n. By definition,

Tn = ∑n
i=1 dimp(πi(X)), so there must be infinitely many n for which

dimp(πn(X)) > 1
n (eε)n. If the power series ∑∞

n=1 dimp(πn(X))tn converges, then
certainly it cannot have infinitely many terms which are greater than 1, so we must
have 1

n (eε)ntn < 1 for sufficiently large values of n. Rearranging, we must have
t < ( 1

n )
1
n 1

(eε)
< 1

(eε)
, as required.

It would be interesting to explore the relationship between the work of Huang and
Wu and that of Henn and Iriye further.
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4 Papers 2 and 3 in context

Papers 2 and 3 follow the same basic pattern. Each paper consists of two main
theorems; the first treating a specific example, and the second giving a general
criterion for local hyperbolicity. Both results of Paper 2 concern wedges of spheres,
while both results of Paper 3 concern Moore spaces. We will consider the first theorem
of each paper in Subsection 4.1, and the second in Subsection 4.2. Examples are
collected at the end of each subsection.

4.1 Direct calculation

As part of their paper, Zhu and Pan [ZP21] showed that the wedge of two spheres
Sn ∨ Sm (for n, m ≥ 2) is Z/p-hyperbolic. Our first theorem extends that result to
cover all powers of p.

Theorem 4.1 (Paper 2 [Boy21b, Theorem 1.3]). Let n, m ≥ 2. Then Sn ∨ Sm is
Z/pr-hyperbolic for all primes p and all r ∈N.

Huang and Wu [HW20] showed that Moore spaces Pn(pr) are Z/pr and
Z/pr+1-hyperbolic, while Zhu and Pan showed that they are Z/p-hyperbolic. Our
second theorem fills in the gap.

Theorem 4.2 (Paper 3 [Boy21a, Theorem 1.3]). Let p be a prime, and r ∈N. If n ≥ 3, then
Pn(pr) is Z/ps-hyperbolic for all s ≤ r such that ps 6= 2.

Combined with Huang and Wu’s results, we may conclude that Pn(pr) is
Z/ps-hyperbolic for all s ≤ r + 1 such that ps 6= 2. These results are close to complete,
since for p ≥ 5 the homotopy exponent of Pn(pr) is pr+1 (Theorem 3.16). By
Propositions 1.17 and 1.26, we therefore have the following.

Corollary 4.3. For p 6= 2, 3 prime, s, ` ∈N and n ≥ 3, the following are equivalent:

1. Pn(`) is Z/ps-hyperbolic.

2. π∗(Pn(`)) contains a class of order ps.

3. pmax(s−1,1)|`.

Wedges of spheres (Theorem 4.1) and Moore spaces Pn(`) with ` not divisible by 2 or 3
(Corollary 4.3) therefore provide the first two families of spaces for which the
questions of local hyperbolicity are totally resolved within Huang and Wu’s
definitions.
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These examples are suggestive: both spaces are Z/pr-hyperbolic for each prime
power pr for which there is a Z/pr-summand in their homotopy groups. We might
therefore ask whether we can find a finite CW-complex which is not locally hyperbolic
without being contractible.

Question 4.4. Does there exist a simply connected finite CW-complex X and a prime p, such
that X is not p-locally contractible, but X is not Z/pr-hyperbolic for some pr less than the
homotopy exponent of X?

One can think of this question as asking whether there exist any ‘locally elliptic’
spaces other than the trivial example. We have already expressed a suspicion that
homotopy groups of the sphere Sn grow slower than exponentially, but it might well
be easier to show that other examples have this property.

Many spaces are known to contain either a wedge of two spheres or a Moore space as
a p-local retract, perhaps after looping. To conclude, we collect some examples of this
sort.

• For n, k ≥ 3, the configuration space Confk(Rn) is Z/pr-hyperbolic for all p and
r (Paper 2, Example 2.1).

• An (n− 1)-connected 2n-manifold M, where Hn(M) is of rank at least 3, is
Z/pr-hyperbolic for all p and r (Paper 2, Example 2.2).

• An (oriented) (n− 1)-connected (2n + 1)-manifold M, where Hn(M) is of rank
at least 1, is Z/pr-hyperbolic whenever pr−1 divides the order of the torsion part
of Hn(M), and if Hn(M) is of rank at least 2 then M is Z/pr-hyperbolic for all p
and r (Paper 3, Example 2.1).

• A 5-dimensional spin manifold M with H2(M; Z) isomorphic to a direct sum of
copies of Z/ps is Z/pr-hyperbolic for all 1 ≤ r ≤ s (Paper 3, Example 2.2). This
provides an example

• A generalized moment-angle complex on a simplicial complex having two
minimal missing faces which are not disjoint is Z/pr-hyperbolic for all p and r
(Paper 2, Example 2.3).

• Suspended complex projective space ΣCP2 is Z/pr-hyperbolic for all p 6= 2 and
all r, and ΣHP2 is is Z/pr-hyperbolic for all p 6= 2, 3 and all r (Paper 2, Example
2.4).
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4.2 Homological results

Generally, homological methods are more robust than homotopical ones, at least in the
context of finite CW-complexes. It is therefore desirable to have some homological
criteria for local hyperbolicity.

For a space X, let K̃∗(X) denote complex topological K-theory of X. In Paper 2, we
show the following.

Theorem 4.5 (Paper 2 [Boy21b, Theorem 1.4]). Let X be a path connected space having the
homotopy type of a finite CW-complex, and let p be an odd prime. Suppose that there exists a
map

µ : Sn+1 ∨ Sm+1 → ΣX

with n, m ≥ 1, such that the map

K̃∗(ΣX)⊗Z/p
µ∗−→ K̃∗(Sq1+1 ∨ Sq2+1)⊗Z/p ∼= Z/p⊕Z/p

is a surjection. Then ΣX is p-hyperbolic.

In order to state the homological result of Paper 3 in full generality, we must introduce
some new definitions.

Firstly, recall from Subsection 3.5 that, for a Z-module M, the Z/pt-dimension of M,
dimZ/pt (M), is the number of Z/pt-summands in M.

Definition 4.6. Let M be a graded Z-module, Let p be a prime, and let S ⊂N. We say
that X is p-hyperbolic concentrated in (the set of exponents) S if the sequence

am := ∑
t∈S

dimZ/pt (
m⊕

i=1

Mi)

grows exponentially. For a space X we will say that X is p-hyperbolic concentrated in S if
π∗(X) is p-hyperbolic concentrated in S.

Definition 4.6 subsumes Definitions 3.21 and 3.22: Z/ps-hyperbolicity is precisely
p-hyperbolicity concentrated in the singleton set {s}, and p-hyperbolicity is precisely
p-hyperbolicity concentrated in N.

Our purpose here is twofold. Firstly, the new definitions recognise that hyperbolicity
is most immediately a property of graded modules, and only becomes a property of
spaces by taking homotopy groups. It is convenient at various points in Paper 3 to be
able to speak of various algebraic objects as being hyperbolic; for example a graded
Lie algebra, or the loop homology H∗(ΩX). Secondly, these definitions reflect well
what we were actually able to show, namely that the number of Z/pt-summands for t



38 Chapter 0. Background

in some finite range s ≤ t ≤ r grew exponentially. This is both importantly stronger
than p-hyperbolicity and importantly weaker than Z/pt-hyperbolicity.

These definitions allow for a slight improvement in the statement of Theorem 4.5 - one
could show p-hyperbolicity concentrated in the set of exponents ≥ n for any n ∈N,
but we do not know a means of producing an upper bound for the orders of the
torsion we detect.

With these definitions in hand, we may state the second theorem of Paper 3.

Theorem 4.7 (Paper 3 [Boy21a, Theorem 1.6]). Let X be a connected CW-complex, let
p 6= 2 be prime, and let s ≤ r ∈N. If there exists a map

µ : Pn+1(pr) −→ ΣX

such that
µ∗ : H̃∗(Pn+1(pr); Z/ps) −→ H̃∗(ΣX; Z/ps)

is an injection, then ΣX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r. In particular
if s = r then ΣX is Z/pr-hyperbolic.

Theorems 4.5 and 4.7 are in many ways analogous. The main difference is that the
Hurewicz map is enough to detect pr-torsion in the homotopy groups of the Moore
space Pn(pr). In contrast, one needs more sophisticated machinery to see pr-torsion in
a wedge of spheres; we used Adams’ e-invariant. This is the reason that Theorem 4.5
is stated in terms of K-theory, rather than ordinary (co)homology. There is a further
apparent difference; Theorem 4.5 uses a cohomology theory, and demands a
surjection, while Theorem 4.7 uses a homology theory, and demands a injection. In
fact, this no difference; dualising either statement yields something ‘of the same form’
as the other.

We deduce Theorem 4.7 from the following theorem, which removes the requirement
that the space in question be a suspension, provided that the loop homology can be
shown to behave appropriately. This generalisation is not possible in Paper 2, because
of the need to restrict to a finite stage of the James construction, so that the Adams
operations have bounded eigenvalues.

Theorem 4.8 (Paper 3 [Boy21a, Theorem 1.5]). Let Y be a simply connected CW-complex,
let p 6= 2 be prime, and let s ≤ r ∈N. If there exists a map

µ : Pn+1(pr) −→ Y

such that the induced map

(Ωµ)∗ : H∗(ΩPn+1(pr); Z/ps) −→ H∗(ΩY; Z/ps)
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is an injection, then Y is p-hyperbolic concentrated in exponents s, s + 1, . . . , r. In particular if
s = r then Y is Z/pr-hyperbolic.

Theorem 4.7 is derived from Theorem 4.8 by means of Proposition 10.12 of Paper 3,
which, as one might expect, says that when Y = ΣX is a suspension, injectivity of µ∗

implies injectivity of (Ωµ)∗.

The prime 2 is excluded in both papers, but for different reasons. It is possible in both
cases that with more care, analogous results can be obtained at the prime 2, although
they may differ slightly from the odd-primary cases.

Since these results are homological, we automatically get a sort of stability, in the
following way. If the map µ of Theorem 4.5 induces a surjection on K̃∗( )⊗Z/p, then
so does its suspension Σµ. Likewise, if the map µ of Theorem 4.7 induces an injection
on H̃∗( ; Z/ps), then so does its suspension Σµ. The conclusion of both theorems
may therefore be strengthened in the following way.

Corollary 4.9. With the hypothesis of Theorem 4.5, ΣnX is p-hyperbolic for all n ≥ 1. With
the hypothesis of Theorem 4.7, ΣnX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r
for all n ≥ 1.

We conclude this subsection by recording some examples of these theorems. Firstly, by
Theorem 4.5, the following spaces are p-hyperbolic for p 6= 2.

• Suspended complex projective space ΣCPn for n ≥ 2 (Paper 2, Example 2.5).

• More generally, the suspended complex Grassmannian ΣGrk,n for n ≥ 3 and
0 < k < n (Paper 2, Example 2.6).

• The suspended Milnor Hypersurface ΣHm,n for m ≥ 2 and n ≥ 3 (Paper 2,
Example 2.7).

• The suspended unitary group ΣU(n) for n ≥ 3 (Paper 2, Example 2.8).

The easiest way to use Theorem 4.7 is by means of the following corollary.

Corollary 4.10 (Paper 3 [Boy21a, Corollary 2.4]). Let n be the least natural number for
which H̃n(ΣX; Z) is nontrivial. If H̃n(ΣX; Z) contains a Z/ps-summand, for p an odd
prime and s ∈N, then ΣX is Z/ps-hyperbolic.

From this corollary, we obtain the following examples.

• Let p be an odd prime, and let s ∈N. The suspended Eilenberg-MacLane space
ΣK(Z/ps, n) is Z/ps-hyperbolic (Paper 3, Example 2.5).
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• Let G be a finite group of odd order. The suspended Eilenberg-MacLane space
ΣK(G, 1) is Z/ps-hyperbolic for some ps dividing the order of G (Paper 3,
Example 2.6).

• If G is the alternating group A6 or A7, or the Suzuki group Suz, then ΣK(G, 1) is
Z/3-hyperbolic (Paper 3, Example 2.6).

These examples highlight how dramatic the effect of suspending on homotopy groups
can be: by definition K(Z/ps, n) has only a single nontrivial homotopy group, but
ΣK(Z/ps, n) is Z/ps-hyperbolic. It would be interesting to obtain an example of
Theorem 4.8 which is not a suspension, but we do not presently have such an example.
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[Ati62] , Vector bundles and the Künneth formula, Topology 1 (1962), 245–248.

[Bar60] M. G. Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford Ser. (2) 11
(1960), 124–136.

[Bas19] S. Basu, The homotopy type of the loops on (n− 1)-connected
(2n + 1)-manifolds, Algebraic topology and related topics, Trends Math.,
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Paper 1
Bounding size of homotopy groups of spheres

Guy Boyde

ABSTRACT. Let p be prime. We prove that, for n odd, the p-torsion part of πq(Sn)

has cardinality at most p2
1

p−1 (q−n+3−2p)

, and hence has rank at most 2
1

p−1 (q−n+3−2p). For
p = 2 these results also hold for n even. The best bounds proven in the existing
literature are p2q−n+1

and 2q−n+1 respectively, both due to Hans-Werner Henn. The
main point of our result is therefore that the bound grows more slowly for larger
primes. As a corollary of work of Henn, we obtain a similar result for the homotopy
groups of a broader class of spaces.

1 Introduction

Our goal is to bound the size of πq(Sn). Serre [9] showed that these groups are
finitely generated abelian, and that they contain a single Z-summand when q = n, or
when n is even and q = 2n− 1, and are finite otherwise. We may therefore restrict our
attention to the p-torsion summand for each prime p. When p is odd it suffices to
consider n odd, because, again by work of Serre [8] ,

πq(S2n
(p))
∼= πq−1(S2n−1

(p)
)⊕ πq(S4n−1

(p)
),

where X(p) denotes the localisation of the space X at p.

For us, the rank of a finitely generated module will be the size of a minimal generating
set. Selick [7] proved that the rank of πq(Sn

(p)), regarded as a Z(p)-module, is at

most 3q2
. Bödigheimer and Henn [1] prove that the base-p logarithm of the

cardinality of the p-torsion part of πq(Sn) is at most 3(q− n
2 ), for n odd and all primes p.

By the same method, they prove that the rank of πq(Sn
(p)) satisfies the same bound. In

[3] , Henn further improved this bound to 2q−n+1. In [5] , Iriye states the bound 3
q−n

2p−3 ,
which is similar to our Theorem 1.1, but gives no proof.

We will use the same machinery as all three of those papers, namely the EHP
sequences of James [6] and Toda [10] . In particular, the new ideas in this paper are
primarily combinatorial. A sub-exponential bound is not known, and Bödigheimer
and Henn note that to produce such a bound one would have to introduce additional
information from topology.

Our main result is as follows. Denote by sp(n, q) the base-p logarithm of the
cardinality of the p-torsion part of πq(Sn).

Theorem 1.1. For all natural numbers q, and n odd,

sp(n, q) ≤ 2
1

p−1 (q−n+3−2p).
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If p = 2 then this bound holds also for n even.

As a corollary we obtain the weaker but simpler bound sp(n, q) ≤ 2
q−n
p−1 . The 3− 2p

which appears in the original statement reflects the classical fact that the first p-torsion
classes appear in the (2p− 3)-rd stem. We can think of the bound as an exponential
function of the stem q− n in base 2

1
p−1 . The main advantage of this bound over its

predecessors is that as p becomes large, the base of the exponential approaches 1, so
our bound grows more slowly for larger primes.

As in [1] , we also obtain a bound on the rank, but we prefer to regard it as following
from Theorem 1.1, by using that the rank of a finite p-torsion group is at most logp of
its cardinality.

Corollary 1.2. For n odd, the rank of the p-torsion part of πq(Sn) is at most 2
q−n
p−1 . If p = 2,

this bound holds also for n even.

The bound proven by Henn in [3] was a lemma used to establish results about the
rank of the p-torsion part of πq(X) for X any simply connected space of finite type.
Our improvement to the bound feeds directly into the main theorem of that paper to
give that a certain constant cp which appears there may be assumed to be at least

( 1
2 )

1
p−1 (Henn shows that it is at least 1

2 ). This has the following corollary.

Corollary 1.3. Let X be a simply connected space of finite type, and suppose that the radius of
convergence of the power series ∑∞

q=1 dimZ/p(Hq(ΩX; Z/p)) · xq is 1. Then

∑∞
q=1 dimZ/p(πq(X; Z/p)⊗Z/p) · xq has radius of convergence at least ( 1

2 )
1

p−1 . In

particular, the rank of the p-torsion part of πq(X) is at most 2
q

p−1 for all but perhaps finitely
many q.

The hypotheses of the above corollary are satisfied if, for example, the dimension of
Hq(ΩX; Z/p) is bounded above by a polynomial in q.

I would like to thank my supervisor, Stephen Theriault, for all of his help and support.
I would also like to thank Hans-Werner Henn for his helpful correspondence - in
particular for drawing my attention to the methods of his paper [3] , and for making
me aware of the paper [2] of Flajolet and Prodinger, which lead indirectly to the idea
for this paper.

2 Approach

It will be convenient for us to think of a stem in the homotopy groups of spheres as a
combinatorial object, so we say that the k-th stem is the set
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{(n, q) ∈N×N | q− n = k}. The negative stems, for example, are those for which
k < 0.

Fix a prime p, and assume henceforth that all spaces are localized at p. For a space X,
let Jk(X) denote the k-th stage of the James Construction on X. For n odd, we have the
following (p-local) fibrations, from [10] and [6] :

Jp−1(Sn−1) −→ ΩSn −→ ΩSp(n−1)+1, and

Sn−2 −→ ΩJp−1(Sn−1) −→ ΩSp(n−1)−1.

The long exact sequences on homotopy groups induced by these fibrations are called
EHP-sequences. The following inequalities are proven in the first lemma of [1] . The
first inequality is obtained by considering the EHP-sequences, assuming that all
groups are finite, and the second inequality accounts for the possibility that one of the
groups is not finite, using knowledge of the relative homotopy groups πq(Ω2Sn, Sn−2),
as in for example Appendix 2 of [4] . When p = 2 the situation is simpler: the above
fibrations are just the odd and even cases of

Sn−1 −→ ΩSn −→ ΩS2n−1.

Lemma 2.1. For all q, and n odd:

1. sp(n, q) ≤ sp(p(n− 1) + 1, q) + sp(p(n− 1)− 1, q− 1) + sp(n− 2, q− 2) if
q 6= p(n− 1).

2. sp(n, q) ≤ 1 + sp(n− 2, q− 2) if q = p(n− 1).

When p = 2, we no longer need to restrict to odd n, and the first inequality can be replaced by

s2(n, q) ≤ s2(2n− 1, q) + s2(n− 1, q− 1).

These inequalities will be used to prove Theorem 1.1. It is worth noting that the extent
to which the inequalities fail to be equalities is measured by the size of the images of
the boundary maps (equivalently, the kernels of the suspensions) in the EHP
sequences. In some sense, therefore, the extent to which our bound fails to be sharp is
measuring the aggregate size of the images of EHP boundary maps.

3 Limitations of our approach

If in Lemma 2.1, one replaces the inequalities with equalities, and regards this as an
inductive definition of integers tp(n, q), then necessarily tp(n, q) is the best upper
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bound that can be obtained for sp(n, q) using that lemma. In [3] , Henn defines
inductively integers b2(n, k). He shows that t2(n, q) = b2(q− 2, n) (note that n has
switched roles). In [2] , Flajolet and Prodinger study a combinatorially defined
sequence Hn. By definition, t2(2, q) = b2(q− 2, 2) = Hq−2, a fact I was made aware of
by Henn. Flajolet and Prodinger obtain an asymptotic estimate Hq ∼ K · νq, giving
formulas for K and ν and computing both to 15 decimal places. To 3 decimal places, K
is 0.255, and ν is 1.794. They remark that Hq (which is equal to t2(2, q + 2)) is at least
Fq, where Fq is the q-th Fibonacci number. We will not do so here, but one can show by
induction that tp(3, 2p + j(4p + 5)) ≥ F2j+1 for j ≥ 0. Inductively applying
tp(n− 2, q− 2) ≤ tp(n, q) then gives that tp(n, 2p + j(4p + 5) + n− 3) ≥ F2j+1 for all
odd n ≥ 3. We therefore have the following.

Corollary 3.1. Any bound on the base-p logarithm of the cardinality of the p-primary part of
π2p+j(4p+5)+n−3(Sn) (or the rank of that group) which can be obtained from Lemma 2.1 is
greater than or equal to F2j+1. In particular, any base for an exponential bound which can be

obtained from Lemma 2.1 is at least φ
2

4p+5 , where φ denotes the golden ratio.

4 Proof of Theorem 1.1

Proof of Theorem 1.1. We will actually prove the slightly stronger result that
sp(n, q) ≤ 2b

1
p−1 (q−n+3−2p)c. The floor function forces the exponent to be an integer,

which will be useful in the proof. We will use a (slightly modified) strong double
induction over stems. More precisely, the proof of the result for (n, q) will use the
result for all (m, r) with r−m < q− n (that is, on lower stems) and for (1, q− n + 1)

(that is, the entry at the base of the stem on which (n, q) lies). A proof using the other
lower entries on the same stem in the induction is possible, but results in a more
unwieldy inductive hypothesis. The case p = 2, n even will be treated at the end.

Suppose first that q ≤ n. In this case, πq(Sn) is torsion free (indeed, it is zero for q < n)
so sp(n, q) = 0. This proves the result for all non-positive stems. The higher homotopy
groups of S1 are trivial (since it has a contractible universal cover) so sp(1, q) = 0 for
all q. This proves the base case of each stem.

It remains only to treat an inductive step on a positive stem. Thus, let (n, q) ∈N×N

with n odd, and suppose that the result is proven for all (m, r) with r−m < q− n.
Consider the two inequalities of Lemma 2.1. We wish to apply the first inequality
inductively down the stem to bound sp(n, q) by a sum of terms on lower stems and
sp(1, q− n + 1), which is zero by the discussion above. The only complicating factor is
the second inequality, which may require us to add one to our bound at certain steps.
However, the second case of Lemma 2.1 can occur at most once per stem, so at worst
we will have to add one to the bound that we would obtain if the first case of the
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Lemma held everywhere. More precisely, we obtain

sp(n, q) ≤ 1 +

1
2 (n−3)

∑
i=0

(sp(p(n− 2i− 1) + 1, q− 2i) + sp(p(n− 2i− 1)− 1, q− 2i− 1)).

Each sp(m, r) is an integer. Therefore, for those (m, r) for which we inductively have

sp(m, r) ≤ 2b
1

p−1 (r−m+3−2p)c, we actually have the sightly stronger statement that

sp(m, r) ≤ b2b
1

p−1 (r−m+3−2p)cc. Including this fact into the above inequality, we find
that

sp(n, q) ≤ 1 +

1
2 (n−3)

∑
i=0

(b2b
1

p−1 (q−2i−(p(n−2i−1)+1)+3−2p)cc

+ b2b
1

p−1 (q−2i−1−(p(n−2i−1)−1)+3−2p)cc). (∗)

Notice that the value of the floor function on an integer power of 2 is given by

b2ic =

2i i ≥ 0

0 i < 0.

We now bound this summation by another where the nonzero exponents are distinct
integers. More precisely, adding 1− 1

p−1 to the exponent of the second term in (∗)
(inside the floor function) gives that

sp(n, q) ≤ 1 +

1
2 (n−3)

∑
i=0

(b2b
1

p−1 (q−2i−(p(n−2i−1)+1)+3−2p)cc

+ b2b
1

p−1 (q−(2i+1)−(p(n−(2i+1)−1)+1)+3−2p)cc)

= 1 +
n−2

∑
i=0

(b2b
1

p−1 (q−i−(p(n−i−1)+1)+3−2p)cc.

In particular, sp(n, q) is at most one greater than a sum of powers of 2. It suffices to
show that those powers of 2 that are not killed off by the outer floor function are all
distinct and strictly smaller than 2b

1
p−1 (q−n+3−2p)c, because ∑k−1

i=0 2i = 2k − 1.

To see that they are distinct, notice that changing i by 1 changes the exponent by 1. To
see that they are strictly smaller than 2b

1
p−1 (q−n+3−2p)c, consider the largest power

occurring in the summation, which is the i = n− 2 term. Its exponent rearranges to
b 1

p−1 (q− n + 3− 2p)− 1c = b 1
p−1 (q− n + 3− 2p)c − 1, as required. This completes

the proof for n odd.
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It remains to treat the case p = 2, n even. Since the simplification at p = 2 in Lemma
2.1 holds for all n, the above proof may be repeated without restricting to n odd, and
doing so gives the result for all n.
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Paper 2
p-hyperbolicity of homotopy groups via K-theory

Guy Boyde

ABSTRACT. We show that Sn ∨ Sm is Z/pr-hyperbolic for all primes p and all r ∈ N,
provided n, m ≥ 2, and consequently that various spaces containing Sn ∨ Sm as a p-
local retract are Z/pr-hyperbolic. We then give a K-theory criterion for a suspension
ΣX to be p-hyperbolic, and use it to deduce that the suspension of a complex Grass-
mannian ΣGrk,n is p-hyperbolic for all odd primes p when n ≥ 3 and 0 < k < n. We
obtain similar results for some related spaces.

1 Introduction

A space X is called rationally elliptic if π∗(X)⊗Q is finite dimensional, and rationally
hyperbolic if the dimension of

⊕
i≤m πi(X)⊗Q grows exponentially in m. It was

proved in [13, Chapter 33] that simply connected CW-complexes with rational
homology of finite type and finite rational category are either rationally elliptic or
rationally hyperbolic. In order to study the p-torsion analogue of this dichotomy,
Huang and Wu [21] introduced the definitions of Z/pr- and p-hyperbolicity.

For p prime, by a p-torsion summand in an abelian group A, we mean a direct
summand isomorphic to Z/pr for some r ≥ 1.

Definition 1.1. Let X be a space, and let p be a prime. We say that X is p-hyperbolic if
the number of p-torsion summands in π∗(X) grows exponentially, in the sense that

lim inf
m

ln(Tm)

m
> 0,

where Tm is the number of p-torsion summands in
⊕

i≤m πi(X).

The above definition counts Z/pr-summands for all values of r. It is also possible to
consider only a single r, and by doing so we obtain the definition of
Z/pr-hyperbolicity.

Definition 1.2. Let X be a space, let p be a prime, and fix r ∈N. We say that X is
Z/pr-hyperbolic if the number of Z/pr-summands in π∗(X) grows exponentially, in
the sense that

lim inf
m

ln(tm)

m
> 0,

where tm is the number of Z/pr-summands in
⊕

i≤m πi(X).

Note that Z/pr-hyperbolicity for any r implies p-hyperbolicity. It follows immediately
from a result of Henn [19, Corollary of Theorem 1] that the lim infs appearing in the
above definitions must be finite if X is a simply connected finite CW-complex.
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Huang and Wu show that for n ≥ 3, r ≥ 1 and p any prime, the Moore space Pn(pr) is
Z/pr-hyperbolic and Z/pr+1-hyperbolic, and that Pn(2) is also Z/8-hyperbolic [21,
Theorem 1.6] . More generally, they give criteria in terms of a functorial loop space
decomposition due to Selick and Wu [29, 30] for a suspension ΣX to be
Z/pr-hyperbolic.

More recently, Zhu and Pan [37] use a classification of (n− 1)-connected
CW-complexes of dimension at most n + 2, due to Chang [11] , to show that, for
n ≥ 4, such a complex is Z/p-hyperbolic, provided that it is not contractible or a
sphere after p-localization. They also prove hyperbolicity results for several
complexes that have become known as elementary Chang complexes.

This paper studies p- and Z/pr-hyperbolicity of certain suspensions. Our first result is
as follows.

Theorem 1.3. Let q1, q2 ≥ 1. Then Sq1+1 ∨ Sq2+1 is Z/pr-hyperbolic for all primes p and all
r ∈N.

Let p be a prime. If a space X contains a wedge of two spheres as a p-local retract, then
Theorem 1.3 implies that X is Z/pr-hyperbolic for all r. Various spaces have been
shown to contain such a wedge - examples of this sort are given in Section 2.1. A
summary is as follows:

• for n, k ≥ 3, the configuration space Confk(Rn) is Z/pr-hyperbolic for all p and r
(Example 2.1);

• an (n− 1)-connected 2n-dimensional manifold M, where Hn(M) is of rank at
least 3, is Z/pr-hyperbolic for all p and r (Example 2.2);

• a generalized moment-angle complex on a simplicial complex having two
minimal missing faces which are not disjoint is Z/pr-hyperbolic for all p and r
(Example 2.3);

• ΣCP2 is Z/pr-hyperbolic for all p 6= 2 and all r, and ΣHP2 is is Z/pr-hyperbolic
for all p 6= 2, 3 and all r (Example 2.4).

Our other result is as follows.

Theorem 1.4. Let X be a path connected space having the homotopy type of a finite
CW-complex, and let p be an odd prime. Suppose that there exists a map

µ1 ∨ µ2 : Sq1+1 ∨ Sq2+1 → ΣX

with qi ≥ 1, such that the map

K̃∗(ΣX)⊗Z/p
(µ1∨µ2)∗−−−−−→ K̃∗(Sq1+1 ∨ Sq2+1)⊗Z/p ∼= Z/p⊕Z/p
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is a surjection. Then ΣX is p-hyperbolic.

This criterion is quite different to that given by Huang and Wu [21, Theorem 1.5] .
Their criterion is homotopical, using hypotheses on X to produce retracts of ΩΣX,
wheras ours is cohomological, which makes it easier to check. On the other hand, their
criterion is stronger, since it gives Z/pr-hyperbolicity, rather than just p-hyperbolicity.
The examples they give, primarily various Moore spaces, differ from those we obtain,
which are the suspensions of spaces related to complex projective space. More
precisely, in Section 2.2, we show that the following spaces are p-hyperbolic for all
p 6= 2:

• suspended complex projective space ΣCPn for n ≥ 2 (Example 2.5), and more
generally;

• the suspended complex Grassmannian ΣGrk,n for n ≥ 3 and 0 < k < n (Example
2.6);

• the suspended Milnor Hypersurface ΣHm,n for m ≥ 2 and n ≥ 3, (Example 2.7);

• the suspended unitary group ΣU(n) for n ≥ 3 (Example 2.8).

Both Theorem 1.3 and Theorem 1.4 will be proven by constructing an exponentially
growing family of classes which generate summands in the relevant homotopy
groups. We think of this family as ‘witnessing’ the hyperbolicity. For Theorem 1.3, one
can proceed directly from the Hilton-Milnor decomposition of Sn ∨ Sm [20] . For
Theorem 1.4, we employ K-theoretic methods originally used by Selick [28] to prove
one direction of Moore’s conjecture for suspensions having torsion-free homology.

If the map µ1 ∨ µ2 of Theorem 1.4 induces a surjection on K̃∗( )⊗Z/p, then so does
its suspension Σµ1 ∨ Σµ2. The conclusion of Theorem 1.4 may therefore be
strengthened in the following way.

Corollary 1.5. With the hypothesis of Theorem 1.4, ΣnX is p-hyperbolic for all n ≥ 1.

One might be motivated by this observation to ask whether, in the circumstances of
Theorem 1.4, the stable homotopy groups of X satisfy the growth conditions of
Definition 1.1 or 1.2. In the proofs of both Theorem 1.3 and 1.4, the classes that witness
the hyperbolicity are composites involving Whitehead products. The suspension of a
Whitehead product is always trivial [34, Theorem 3.11] , so the classes we detect
cannot be stable. Therefore, Corollary 1.5 does not suggest that the stable homotopy of
ΣX should be p- or Z/pr-hyperbolic. On the other hand, it follows from our methods
that, under the hypotheses of Theorem 1.4, ΩΣX is stably p-hyperbolic.
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By a result of Henn [18] , any co-H space, and in particular any suspension,
decomposes rationally as a wedge of spheres. It then follows from the Hilton-Milnor
theorem [20] and the computation of the rational homotopy groups of spheres [31]
that such a suspension is rationally hyperbolic precisely when there are at least two
spheres (of dimension ≥ 2) in this decomposition.

We will see in Corollary 7.12 that if ΣX satisfies the hypotheses of Theorem 1.4 for any
prime (including 2), then ΣX is rationally hyperbolic, hence is rationally a wedge of at
least two spheres by the preceding discussion. This rational equivalence is a local
equivalence at all but perhaps finitely many primes, so by Theorem 1.3, ΣX is Z/pr

hyperbolic for all r at all but finitely many primes p. One might therefore conjecture
that the conclusion of Theorem 1.4 can be strengthened to give Z/pr-hyperbolicity for
all r rather than p-hyperbolicity, but we do not know whether this is possible.

We now discuss situations in which it is adequate to consider ordinary cohomology,
rather than K-theory. If ΣX has torsion-free integral (co)homology, or if its
cohomology is concentrated in even degrees, then the Atiyah-Hirzebruch spectral
sequence for K∗(ΣX) collapses on the E2 page [22] . It follows by naturality that the
image of the map induced by µ1 ∨ µ2 : Sq1+1 ∨ Sq2+1 → ΣX on K-theory is identified
with the image of the induced map on cohomology. We may therefore replace
K-theory with cohomology in Theorem 1.4, as follows.

Corollary 1.6. Let X be a path connected space having the homotopy type of a finite
CW-complex, such that the Atiyah-Hirzebruch spectral sequence for K∗(ΣX) collapses on the
E2 page. Let p be an odd prime. Suppose that there exists a map
µ1 ∨ µ2 : Sq1+1 ∨ Sq2+1 → ΣX with qi ≥ 1, such that the map induced by µ1 ∨ µ2 on
H̃∗( )⊗Z/p is a surjection. Then ΣX is p-hyperbolic.

One advantage of ordinary cohomology is that it is connected to the homotopy groups
integrally, via the universal coefficient theorem and Hurewicz map. We can exploit
this as follows.

Example 1.7. Suppose that the Atiyah-Hirzebruch spectral sequence for K∗(ΣX) collapses
(for example, if ΣX has torsion-free homology) and that there exists q ∈N so that
H̃i(ΣX) = 0 for i ≤ q, and dimQ(H̃q+1(ΣX)⊗Q) ≥ 2. The Hurewicz map
πq+1(ΣX)→ H̃q+1(ΣX) is an isomorphism, so there exists a map
µ1 ∨ µ2 : Sq+1 ∨ Sq+1 → ΣX inducing the inclusion of a Z2-summand in H̃q+1(ΣX). By the
universal coefficient theorem relating ordinary homology and cohomology, µ1 ∨ µ2 induces a
surjection on integral cohomology, so by Corollary 1.6, ΣX is p-hyperbolic for all odd primes p.

I would like to thank my PhD supervisor, Stephen Theriault, for suggesting the
problems that this paper tries to address, and for many helpful conversations along
the way. From a technical point of view, much is owed to papers of Huang and Wu
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[21] , and of Selick [28] . Neil Strickland’s ‘Bestiary’ [33] was extremely helpful in
providing examples of Theorem 1.4. Conversations with Sam Hughes were very
useful in formulating Corollary 1.6.

2 Applications

2.1 Spaces having a wedge of two spheres as a retract

Theorem 1.3 immediately implies that any space X which has Sq1+1 ∨ Sq2+1 as a retract
after p-localization is Z/pr-hyperbolic for that p and all r. This implies that for all
n ≥ 1, ΣnX contains Sq1+n+1 ∨ Sq2+n+1 as a p-local retract, and so is Z/pr-hyperbolic
for all r. We first consider examples of this form.

Example 2.1. It is known [24, Section 3.1] that Confk(Rn), the ordered configuration space
of k points in Rn, contains

∨
k−1 Sn−1 as a retract. It follows that, when n, k ≥ 3, Confk(Rn)

is Z/pr-hyperbolic for all p and r.

Example 2.2. Let M be an (n− 1)-connected 2n-dimensional manifold. By the universal
coefficient theorem, there can be no torsion in Hn(M). Suppose that the rank of Hn(M) is at
least 3. By work of Beben and Theriault [10, Theorem 1.4] , ΩM contains a wedge of two
spheres as a retract after looping. Thus, M is again Z/pr-hyperbolic for all p and r.

Example 2.3. Let K be a simplicial complex on the vertex set [m] = {1, . . . , m}, and let
(X, A) be any sequence of pairs (Dni , Sni−1) with ni ≥ 2 for 1 ≤ i ≤ m. If there exist two
distinct minimal missing faces of K which are not disjoint, then by work of Hao, Sun and
Theriault [17, Theorem 4.2] the polyhedral product (X, A)K contains a wedge of two spheres
as a retract after looping, and hence is Z/pr-hyperbolic for all p and all r.

Example 2.4. Localized away from 2, ΣCP2 ' S3 ∨ S5. To see this, note that ΣCP2 has a
CW-structure consisting of one 3-cell and one 5-cell, and that π4(S3) ∼= Z/2 [14] . This
implies that the attaching map for the 5-cell is nullhomotopic after localization at an odd prime.
Thus, ΣCP2 is Z/pr-hyperbolic for all r when p 6= 2.

Similarly, ΣHP2 admits a cell structure with one 5-cell and one 9-cell, and π8(S5) ∼= Z/24.
Thus, ΣHP2 is Z/pr-hyperbolic for all r when p 6= 2, 3.

2.2 Suspensions of spaces related to CPn

Suppose that one has verified the hypotheses of Theorem 1.4 for a given space X and
odd prime p, using a map µ1 ∨ µ2 : Sq1+1 ∨ Sq2+1 → ΣX. If another space Y admits a
map σ : ΣX → ΣY which induces a surjection on K̃∗( )⊗Z/p, then it is immediate
that σ ◦ (µ1 ∨ µ2) satisfies the hypotheses of Theorem 1.4, and hence that ΣY is
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p-hyperbolic. The slogan is that K-theory surjections allow us to generate new
examples from old ones.

In this section, we will apply this idea. We will first show that ΣCP2 satisfies the
hypotheses of Theorem 1.4 at all odd primes p. We will then consider spaces X which
are known to admit maps CP2 → X which induce surjections on integral K-theory,
and hence on K̃∗( )⊗Z/p for all odd p. It follows in each case that ΣX is
p-hyperbolic, and further by Corollary 1.5, that ΣnX is p-hyperbolic for all n ≥ 1.

To start, let η be the Hopf invariant one class which is the attaching map for the top
cell of CP2. Since Ση lies in π4(S3) ∼= Z/2, we have that 2Ση = 0. This gives the
following map of cofibre sequences.

S4 Ση // S3 // ΣCP2 // S5 // S4

S4

2

OO

∗ // S3 // S3 ∨ S5

µ

OO

// S5

2

OO

∗ // S4.

Let the restrictions of µ to S3 and S5 be µ1 and µ2 respectively, so that µ = µ1 ∨ µ2. The
map Ση induces zero on reduced integral K-theory for degree reasons, so we obtain a
diagram of short exact sequences:

0 K̃∗(S3)oo K̃∗(ΣCP2)oo

(µ1∨µ2)∗

��

K̃∗(S5)oo

2
��

0oo

0 K̃∗(S3)oo K̃∗(S3)⊕ K̃∗(S5)oo K̃∗(S5)oo 0.oo

We have obtained a map µ1 ∨ µ2 : S3 ∨ S5 → ΣCP2 which induces a surjection on
K̃∗( )⊗Z/p for all odd primes p. We now seek maps of spaces which allow us to
extend to ΣCPn.

The inclusion of CPn into CPn+1 induces a surjection on K-theory, so it must still
induce a surjection after suspending. Composing these inclusions with µ1 ∨ µ2 gives,
for each n ≥ 2, a map S3 ∨ S5 → ΣCPn which still induces a surjection on K̃∗( )⊗Z/p
for all odd primes p. Applying Theorem 1.4 to this map gives the following.

Example 2.5. For n ≥ 2, ΣCPn is p-hyperbolic for all p 6= 2.

Now let Grk,n be the Grassmannian of k-dimensional complex subspaces of Cn. First
note that orthogonal complement gives a homeomorphism Grk,n

∼= Grn−k,n. In
particular Grn−1,n

∼= Gr1,n
∼= CPn−1, so ΣGrn−1,n is p-hyperbolic. Other

Grassmannians can be treated more uniformly, as follows.
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Let γk,n denote the tautological bundle over Grk,n. Consider the inclusion

ιn : Cn → Cn+1

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, 0).

This inclusion induces a map ik,n : Grk,n → Grk,n+1, defined on V ∈ Grk,n by
V 7→ ιn(V). It follows from this definition that the pullback bundle i∗k,n(γk,n+1) is
isomorphic to γk,n. Letting ei denote the i-th standard basis vector in Cn, we also have
a map jk,n : Grk,n → Grk+1,n+1, defined on V = Span(v1, v2, . . . , vk) ∈ Grk,n by
V 7→ Span(ι(v1), ι(v2), . . . , ι(vk), en+1). It follows from this definition that
j∗k,n(γk+1,n+1) = γk,n ⊕C1, where C1 is the 1-dimensional trivial bundle.

Since K∗(CPn) is generated by the class of the tautological bundle, composing the
maps ik,n and jk,n for different values of k and n will give maps CP2 = Gr1,3 → Grk,n

for all 1 ≤ k ≤ n− 2 and n ≥ 3 which induce surjections in integral K-theory. As in
Example 2.5, this implies the following (the case k = n− 1 is Grn−1,n, which was
treated first).

Example 2.6. For n ≥ 3 and 0 < k < n, the suspended complex Grassmannian ΣGrk,n is
p-hyperbolic for all p 6= 2.

For m ≤ n, the Milnor Hypersurface Hm,n is defined by

Hm,n = {([z], [w]) ∈ CPm ×CPn |
m

∑
i=0

ziwi = 0}.

Suppose that m ≥ 2 and n ≥ 3. Then there is an inclusion ι : CP2 → Hm,n, defined by

ι([z0 : z1 : z2]) = ([z0 : z1 : z2 : 0 : · · · : 0], [0 : · · · : 0 : 1]).

Write π1 for the projection Hm,n → CPm. Then the inclusion CP2 → CPm factors as

CP2

##

ι // Hm,n

π1

��
CPm.

This implies that ι induces a surjection on integral K-theory, so we obtain the
following.

Example 2.7. For m ≥ 2 and n ≥ 3, the suspended Milnor Hypersurface ΣHm,n is
p-hyperbolic for all p 6= 2.
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Let U(n) denote the unitary group. There is a well-known map r : ΣCPn−1 → U(n)

(see for example [35] ) which induces a surjection on K-theory. From this we obtain

Example 2.8. For n ≥ 3, the suspended unitary group ΣU(n) is p-hyperbolic for all p 6= 2.

2.3 Quantitative lower bounds on growth

In Section 4, we will derive the following simple lower bound for the lim inf in the
definition of Z/pr-hyperbolicity, for the space Sq1+1 ∨ Sq2+1.

Corollary 2.9. Let p be a prime and r ∈N. Let tm be the constants of Definition 1.2 for
X = Sq1+1 ∨ Sq1+1. Then

lim inf
m

ln(tm)

m
≥ ln(2)

max(q1, q2)
.

This implies that the tm eventually exceed ((1− ε)2)
m

max(q1,q2) for any ε > 0. The
constant 2 reflects the number of wedge summands. Note that this bound is
independent of p and r.

Example 2.10. Taking ε = 1
4 , we find that for all r ∈N and all primes p the number of

Z/pr-summands in
⊕

i≤m πi(S2 ∨ S2) eventually exceeds ( 3
2 )m.

One can produce an analogous quantitative bound on the lim inf in the case of
Theorem 1.4, but this bound is very weak. In particular, it depends on knowledge of
the Adams operations on K∗(X), and is at best ln(2)

2(p−1)
.

3 Preliminary results

Both Theorem 1.3 and Theorem 1.4 will be proven by means of Lemma 3.3. Our first
goal is to establish this lemma.

Let L be the free Lie algebra over Q on basis elements x1, . . . , xn. Write Lk for the
subset of L consisting of the basic products of the xi of weight k, in the sense of [20] ,
where the basic products of weight 1 are taken to be the xi, ordered by
x1 < x2 < · · · < xn. The union L =

⋃∞
k=1 Lk is a vector space basis for L (see for

example [32, Theorem 5.3] , but note that what we call basic products, Serre calls a
Hall basis).

Let µ : N −→ {−1, 0, 1} be the Möbius inversion function, defined by

µ(s) =


1 s = 1

0 s > 1 is not square free

(−1)` s > 1 is a product of ` distinct primes.
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The Witt Formula Wn(k) is then defined by

Wn(k) =
1
k ∑

d|k
µ(d)n

k
d .

Theorem 3.1. [20, Theorem 3.3] Let L be the free Lie algebra over Q on basis elements
x1, . . . , xn. Then |Lk| = Wn(k).

Lemma 3.2. [8, Introduction] The ratio

Wn(k)
1
k nk

tends to 1 as k tends to ∞. �

In particular, this implies that for n ≥ 2, the Witt function Wn(k) grows exponentially
in k. It should follow that if the number of p-torsion summands in

⊕
i≤k πi(Y) exceeds

W2(k), then Y is p-hyperbolic. The following lemma makes a slightly generalised form
of this idea precise.

Lemma 3.3. Let Y be a space. Suppose that there exist a, b ∈N such that the number of
p-torsion summands (respectively, Z/pr-summands) in

⊕
i≤ak+b πi(Y) exceeds W2(k), for all

k large enough. Then Y is p-hyperbolic (respectively, Z/pr-hyperbolic).

Proof. The proofs for p- and Z/pr-hyperbolicity are identical, so we give only the
former. Reframing the hypothesis in terms of the sequence Tm of Definition 1.1, we are
assuming precisely that Tak+b > W2(k) for sufficiently large k. We then have that

lim inf
m

ln(Tm)

m
= lim inf

k

ln(Tak+b)

ak + b
≥ lim inf

k

ln(W2(k))

ak + b
.

It then follows from Lemma 3.2 that if 1 > ε > 0, once k is large enough, we have

W2(k) > (1− ε)
1
k

2k.

This implies that

lim inf
k

ln(W2(k))

ak + b
≥ lim inf

k

ln((1− ε) 1
k 2k)

ak + b
,

and since this holds for all ε > 0,

lim inf
m

ln(Tm)

m
≥ lim inf

k

ln(W2(k))

ak + b
≥ lim inf

k

ln( 1
k 2k)

ak + b
= lim inf

k

ln( 1
k ) + k ln(2)

ak + b
=

ln(2)

a
,

which is greater than zero, as required.
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3.1 Existence of summands in the stable stems

We write πS
j for the j-th stable stem in the homotopy groups of spheres, that is

πS
j := lim

n→∞
πn+j(Sn).

The proof of Theorem 1.3, depends on having, for each p and r, some j such that πS
j

contains a Z/pr-summand. The purpose of this subsection is to show that the
existence of such a j follows from existing work of Adams and others.

Lemma 3.4. For any prime p and any r ∈N, there exists j such that Z/pr is a direct
summand in πS

j . That is, for a fixed choice of such a j, Z/pr is a direct summand in πn+j(Sn)

for all n ≥ j + 2.

Proof. We write νp(s) for the largest power of p dividing the integer s.

CASE 1 (p odd): Set t := pr−1(p− 1), and notice that, since (p− 1) is even, j := 4t− 1
is congruent to 7 mod 8. Theorem 1.6 of [2] , and the discussion immediately
following it, then tells us that πS

j contains a direct summand isomorphic to Z/m(2t),
for a function m which Adams defines. By decomposing this subgroup into direct
summands of prime power order, it suffices to show that νp(m(2t)) = r.

The discussion after Theorem 2.5 in [1] gives that since t ≡ 0 mod (p− 1),

νp(m(2t)) = 1 + νp(2t).

Now, νp(2t) is equal to (r− 1), by definition of t, so νp(m(2t)) = r, as required.

CASE 2 (p = 2, r ≥ 3): Set t := 2r−3, and set j := 4t− 1. From Theorem 1.5, and the
discussion following Theorem 1.6 in [2] , πS

j has a direct summand isomorphic to
Z/m(2t), regardless of whether j is congruent to 3 or 7 mod 8. Again, referring to the
discussion after Theorem 2.5 of [1] , we see that

ν2(m(2t)) = 2 + ν2(2t) = 3 + ν2(t) = r,

as required.

CASE 3 (pr = 2 and pr = 4): It is known from [14] that πS
1
∼= Z/2, and from [9] that

πS
34
∼= Z/4⊕ (Z/2)3.
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4 Proof of Theorem 1.3

In this section we prove Theorem 1.3, which says that the wedge of two spheres is
Z/pr-hyperbolic for all p and r. We also prove Corollary 2.9, which extracts some
simple quantitative information from the proof of Theorem 1.3. We first record the
following simple observation.

Remark 4.1. Let k1, . . . , kn and q1, . . . qn be non-negative integers. Suppose that
q1 ≤ q2 ≤ · · · ≤ qn, and let k = ∑n

i=1 ki. Then

kq1 ≤
n

∑
i=1

kiqi ≤ kqn.

Proof of Theorem 1.3. Assume without loss of generality that q1 ≤ q2. By Lemma 3.3 It
suffices to show that there exist constants a and b such that the number of
Z/pr-summands in ⊕

i≤ak+b

πi(Sq1+1 ∨ Sq2+1)

exceeds W2(k), for k large enough.

We first apply the Hilton-Milnor Theorem. Since we are dealing with spheres, we
need only the original form, due to Hilton in [20] :

Ω(Sq1+1 ∨ Sq2+1) ' ΩΣ(Sq1 ∨ Sq2) ' Ω ∏
B∈L

Sk1q1+k2q2+1,

where, as in Section 3, L =
⋃∞

k=1 Lk is Hilton’s ‘basic product’ basis for L, the free Lie
Algebra over Q on two generators x1 and x2, and ki is the number of occurrences of
the generator xi in the bracket B. Recall also from Section 3 that the weight k of a
bracket B is equal to k1 + k2, and that the cardinality of Lk is given by the Witt formula
W2(k) by Theorem 3.1.

For fixed k ∈N, consider the factor in the above product corresponding to Lk ⊂ L :

Fk := Ω ∏
B∈Lk

Sk1q1+k2q2+1.

The associated subgroup of π∗(Sq1+1 ∨ Sq2+1),

⊕
B∈Lk

π∗(Sk1q1+k2q2+1),

is a direct summand.

We will first find a Z/pr-summand in the homotopy groups of each of the spheres
appearing in Fk. Since q1 ≤ q2, Remark 4.1 applies, and we may lower bound the
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dimensions of spheres appearing in Fk by k1q1 + k2q2 + 1 ≥ kq1 + 1. By Lemma 3.4,
there exists j ∈N such that πj+`(S`) has a direct summand Z/pr for ` ≥ j + 2.
Therefore, if k is large enough that kq1 ≥ j + 1, then k1q1 + k2q2 + 1 ≥ j + 2 - that is, the
j-th stem is stable on all of the spheres occurring in Fk. Thus, for k large enough, there
is a Z/pr summand in πj+k1q1+k2q2+1(Sk1q1+k2q2+1) whenever k1 + k2 = k.

We now upper bound the dimension of the homotopy groups in which these
summands appear. Since q1 ≤ q2 we have by Remark 4.1 that
j + k1q1 + k2q2 + 1 ≤ kq2 + 1 + j, so each of the Z/pr-summands we have identified is
a distinct direct summand in

⊕
i≤kq2+1+j

⊕
B∈Lk

πi(Sk1q1+k2q2+1),

hence in ⊕
i≤kq2+1+j

πi(Sq1+1 ∨ Sq2+1).

We have identified one such summand for each B ∈ Lk, so the number of
Z/pr-summands in

⊕
i≤kq2+1+j πi(Sq1+1 ∨ Sq2+1) is at least |Lk| = W2(k). Thus, taking

a = q2 and b = 1 + j in Lemma 3.3 suffices.

Proof of Corollary 2.9. The last line of the proof of Lemma 3.3 shows that
lim infm

ln tm
m > ln 2

a . The last line of the proof of Theorem 1.3 implies that a may be
taken to be q2, under the assumption that q1 ≤ q2, which implies the result.

5 K-theory and K-homology of ΩΣX

The remainder of this paper proves Theorem 1.4. Sections 5 and 6 assemble necessary
background, which we will use in Section 7 to prove the result.

When studying the homotopy groups of a suspension ΣX, as in Theorem 1.4, the
following approach is natural. Since π∗(ΣX) ∼= π∗−1(ΩΣX), we may instead study
ΩΣX. This is useful because ΩΣX is well understood homologically via the
Bott-Samelson theorem, which decomposes its homology as the tensor algebra on
H̃∗(X). Because we will need to use Adams’ e-invariant, which is defined in terms of
K-theory, we wish to replace ordinary homology with K-homology.

The purpose of Section 5 is to record the version of the Bott-Samelson theorem which
applies to (torsion-free) K-homology, along with a universal coefficient theorem for
passing between K-theory and K-homology. All of the material here is already known
(in particular much of it is in [28] ) so its summary here is for convenience and clarity.
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Our conventions on definition of K̃∗(X) are those of [7] . In particular, we define
K̃−1(X) := K̃0(ΣX), and set K̃∗(X) := K̃0(X)⊕ K̃−1(X). We regard K̃∗(X) and K̃∗(X)

as being Z/2-graded. It is shown in [7] that K̃∗(X) is a Z/2-graded ring.

We will wish to work with K-theory and K-homology modulo the torsion subgroup.
For a space X, write K̃TF

∗ (X) and K̃∗TF(X) for the quotients of the reduced K-homology
and K-theory of X by their torsion subgroups. The same convention applies in the
unreduced case.

5.1 Künneth and universal coefficient theorems

The universal coefficient theorem for K-theory first appears in some unpublished
lecture notes of Anderson [4] , and is first published by Yosimura [36] .

Theorem 5.1 (Universal coefficient theorem). For any CW-complex X and each integer n
there is a short exact sequence

0→ Ext(Kn−1(X), Z)→ Kn(X)→ Hom(Kn(X), Z)→ 0.

In the torsion-free case, the universal coefficient theorem simplifies as follows.

Corollary 5.2. Let Y be a finite CW-complex. Then we have a natural isomorphism which
descends from the second map in the theorem above,

Kn
TF(Y)

∼=−→ Hom(KTF
n (Y), Z).

There is an analogous isomorphism for the reduced theories:

K̃n
TF(Y)

∼=−→ Hom(K̃TF
n (Y), Z).

Proof. Firstly, since Y is assumed to be a finite complex, the group Kn−1(Y) is finitely
generated abelian, so Ext(Kn−1(Y), Z) is torsion. Secondly, for any group G,
Hom(G, Z) is torsion-free. Together, these observations show that the exact sequence
of Theorem 5.1 has first term torsion and last term torsion-free. That means that it
induces an isomorphism Kn

TF(Y)
∼=−→ Hom(Kn(Y), Z). Any homomorphism

Kn(Y)→ Z is zero on the torsion subgroup of Kn(Y), so the injection
Hom(KTF

n (Y), Z) ↪−→ Hom(Kn(Y), Z) is an isomorphism, and the unreduced result
follows. The reduced statement follows immediately from the unreduced one.

Selick [28] deduces the following from work of Atiyah [6] , Mislin [25] and Adams
[3] .
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Theorem 5.3 (Künneth theorem for K-homology). Let X and Y be of the homotopy type of
finite complexes. Then there is an isomorphism of Z/2-graded Z-modules:

K̃TF
∗ (X ∧Y) ∼= K̃TF

∗ (X)⊗ K̃TF
∗ (Y).

Remark 5.4. It follows immediately from Corollary 5.2 (and knowledge of K̃∗(Sq)) that
K̃TF
∗ (Sq) ∼= Z. We write ξq for the generator of K̃TF

∗ (Sq). By the Künneth Theorem 5.3,
we may choose the ξq so that ξn ⊗ ξm is identified with ξn+m under the
homeomorphism Sn ∧ Sm ∼= Sn+m.

In the case of K-theory, the analogous result follows directly from [3] .

Theorem 5.5 (Künneth theorem for K-theory). Let X and Y be of the homotopy type of
finite complexes. Then the external product on K-theory defines an isomorphism of
Z/2-graded rings:

K̃∗TF(X)⊗ K̃∗TF(Y)
∼=−→ K̃∗TF(X ∧Y).

5.2 The James construction

For a space X, let Xs denote the product of s copies of X. Let ∼ be the relation on Xs

defined by

(x1, . . . , xi−1, ∗, xi+1, xi+2, . . . xs) ∼ (x1, . . . , xi−1, xi+1, ∗, xi+2, . . . xs).

Let Js(X) be the space Xs
�∼. There is a natural inclusion

Js(X) ↪−→ Js+1(X)

(x1, . . . , xs) 7→ (x1, . . . , xs, ∗).

The James construction JX is defined to be the colimit of the diagram consisting of the
spaces Js(X) and the above inclusions. Write is : Js(X)→ JX for the map associated to
the colimit. Notice that JX carries a product given by concatenation, which makes it
into the free topological monoid on X, and that a topological monoid is in particular
an H-space.

Let X∧i denote the smash product of i copies of X, and let η : X → ΩΣX be the unit of
the adjunction Σ a Ω. Explicitly, η(x) = (t 7→ 〈x, t〉 ∈ ΣX).

Theorem 5.6. [23]

1. There is a homotopy equivalence JX '−→ ΩΣX which respects the H-space structures
and identifies i1 with η.
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2. There is a homotopy equivalence
∨∞

i=1 ΣX∧i '−→ ΣJX which restricts to a homotopy
equivalence

∨s
i=1 ΣX∧i '−→ ΣJs(X) for each s ∈N.

Lemma 5.7. [28, Lemma 7] Let X have the homotopy type of an (r− 1)-connected
CW-complex.

1. (is)∗ : πN(Js(X))→ πN(JX) is an isomorphism for N < r(s + 1)− 1.

2. Let x ∈ πN(Js(X)) for any N. If Σx is nontrivial then (is)∗(x) is also nontrivial.

Proof. The first part follows by cellular approximation from the observation that Js(X)

contains the (r(s + 1)− 1)-skeleton of JX. The second part follows from the
observation that Σis has a retraction by Theorem 5.6.

For spaces X and Y, let X ∗Y denote the join, which we define to be the homotopy
pushout of the projections X×Y → X and X×Y → Y. The join is naturally a quotient
of X× I ×Y, where I denotes the unit interval. Following the treatment in [5] , let C1

denote the subspace of X ∗Y consisting of points of the form (x, t, ∗), for t ∈ I and
x ∈ X, and let C2 be the subspace consisting of points of the form (∗, t, y). The
subspace C1 ∪ C2 ∼= CX ∪ CY is contractible, so the quotient map
q : X ∗Y → X ∗Y�C1 ∪ C2

is a homotopy equivalence. The quotient X ∗Y�C1 ∪ C2
is

homeomorphic to ΣX ∧Y. The suspended product Σ(X×Y) is also a quotient of
X× I ×Y, and this quotient lies between X ∗Y and X ∗Y�C1 ∪ C2

.

This gives a factorization of q as X ∗Y → Σ(X×Y)→ Σ(X ∧Y). Let q−1 denote any
choice of homotopy inverse to q; all possible choices are homotopic. We may form a

new map δX,Y as the composite Σ(X ∧Y)
q−1

−→ X ∗Y → Σ(X×Y). It is automatic that
δX,Y splits the quotient map π : Σ(X×Y)→ ΣX ∧Y. The homotopy class of δX,Y is
well-defined, and we will call δX,Y the canonical splitting of π. Note that δX,Y is natural
in maps of spaces in the sense that given f : A→ X and g : B→ Y we obtain a
commutative diagram

ΣA ∧ B
δA,B //

Σ( f∧g)

��

Σ(A× B)

Σ( f×g)
��

ΣX ∧Y
δX,Y // Σ(X×Y).

For s ≥ 3, consider the quotient map ΣXs → ΣX∧s. We define the canonical splitting of
this quotient to be the composite of canonical splittings

ΣX∧s → Σ(X× X) ∧ X∧(s−2) → Σ((X× X)× X) ∧ X∧(s−3) → · · · → ΣXs.

Of course, we chose an order of multiplication here. This canonical splitting is natural
as before.
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Definition 5.8. For a Z-graded (respectively Z/2-graded) module M, let
T(M) =

⊕∞
k=1 M⊗k denote the tensor algebra on M. The product is given by

concatenation. We refer to M⊗k as the weight k component of the tensor algebra T(M).
We define a Z-grading (respectively Z/2-grading) on T(M) by setting
|x1 ⊗ x2 ⊗ · · · ⊗ xk| = ∑k

i=1 |xi|.

Definition 5.9. For a space Y, let σ : K̃TF
∗ (Y)

∼=−→ K̃TF
∗+1(ΣY) be the suspension

isomorphism. Let ϕ : K̃TF
∗ (ΣY)→ K̃TF

∗ (ΣY) be a homomorphism of graded groups, not
necessarily induced by a map of spaces. We call the composite σ−1 ◦ ϕ ◦ σ the
desuspension of θ, denoting it by S−1ϕ.

Write ms : (ΩΣX)s → ΩΣX for the map given by iteratively performing the standard
loop multiplication on ΩΣX in any choice of order. Up to homotopy, ms is
independent of this choice of order, since ΩΣX is homotopy associative.

Theorem 5.6 gives the existence of a homotopy equivalence Γ :
∨∞

i=1 ΣX∧i → ΣΩΣX.
There are many choices of Γ, up to homotopy. The next lemma asserts that Γ can be
chosen in a way which suits our purpose. Selick [28] describes the composite∨∞

i=1 ΣX∧i Γ−→ ΣΩΣX '−→ ΣJX of Γ with the homotopy equivalence of Theorem 5.6 (1).
This immediately implies the following description of Γ.

Lemma 5.10. [28] Let X be a finite CW-complex. The homotopy equivalence
Γ :
∨∞

i=1 ΣX∧i → ΣΩΣX may be chosen such that:

1. S−1(Γ∗) : T(K̃TF
∗ (X))

∼=−→ KTF
∗ (ΩΣX) is an isomorphism of algebras;

2. the restriction of Γ to ΣX∧s is homotopic to the composite

ΣX∧s → ΣXs Σ(η)s

−−−→ Σ(ΩΣX)s Σms−−→ ΣΩΣX,

where the unlabelled arrow is the canonical splitting.

The description of the map Γ in Lemma 5.10 has the following consequence. For a
space Y, let ev : ΣΩY → Y be the evaluation map, which may be described explicitly
by ev(〈γ, t〉) = γ(t) for γ ∈ ΩY.

Lemma 5.11. Let Γ :
∨∞

i=1 ΣX∧i → ΣΩΣX be the homotopy equivalence of Lemma 5.10. The
composite ev ◦ Γ is homotopic to the projection onto the first wedge summand.

Proof. Let ιs : ΣX∧s → ∨∞
i=1 ΣX∧i be the inclusion of the s-th wedge summand. We

must show that

ev ◦ Γ ◦ ιs '

1ΣX if s = 1, and

∗ otherwise.

The following diagram commutes up to homotopy
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ΣX
Ση //

1ΣX $$

ΣΩΣX

ev
��

ΣX.

By Lemma 5.10, Ση = Γ ◦ ι1, which implies the s = 1 statement.

Now let s ≥ 2. Ganea [15, Theorems 1.1 and 1.4] shows that the homotopy fibre of ev
is given by

Σ(ΩΣX ∧ΩΣX)
v−→ ΣΩΣX ev−→ ΣX,

where the map v is equal to the composite

Σ(ΩΣX ∧ΩΣX)→ Σ(ΩΣX×ΩΣX)
Σm2−−→ ΣΩΣX

of Σm2 with the canonical splitting. We will show that Γ ◦ ιs factors through v, and
hence composes trivially with ev. Consider the following diagram, where the
unlabelled arrows are all canonical splittings:

Σ(ΩΣX ∧ΩΣX) //

v
,,

Σ(ΩΣX×ΩΣX)
Σm2

// ΣΩΣX

Σ(ΩΣX)∧s // Σ((ΩΣX)(s−1) ∧ΩΣX)

Σ(m(s−1)∧1)

OO

// Σ(ΩΣX)s

Σ(m(s−1)×1)

OO

Σms

// ΣΩΣX

ΣX∧s

Ση∧s

OO

// Σ(X(s−1) ∧ X)

Σ(η(s−1)∧η)

OO

// ΣXs.

Σηs

OO

The composite along the bottom of the diagram is Γ ◦ ιs, so to obtain the desired
factorization of Γ ◦ ιs through v, it suffices to show that the diagram commutes up to
homotopy.

The top right square commutes because m2 ◦m(s−1) ' ms, by homotopy associativity
of the H-space ΩΣX. The remaining three squares commute by naturality of our
canonical splitting. This completes the proof.

Let ρk be the projection T(K̃TF
∗ (X))→ K̃TF

∗ (X)⊗k. The next corollary is immediate from
Lemma 5.11.

Corollary 5.12. S−1(ev∗ ◦ Γ∗) = ρ1 : T(K̃TF
∗ (X))→ K̃TF

∗ (X).

5.3 Primitives and commutators

It follows from the Künneth Theorem (Theorem 5.3), and the fact that
Σ(Y×Y) ' ΣY ∨ ΣY ∨ Σ(Y ∧Y), that KTF

∗ (Y×Y) ∼= KTF
∗ (Y)⊗ KTF

∗ (Y). We may
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therefore make the following definition. A class y ∈ K̃TF
∗ (Y) is called primitive if

∆∗(y) = y⊗ 1 + 1⊗ y, where ∆ : Y → Y×Y is the diagonal, defined by ∆(y) = (y, y).

The comultiplication Y → Y ∨Y on a co-H-space Y is a factorization of ∆ via the
inclusion Y ∨Y ↪−→ Y×Y. From this point of view, the following lemma is immediate.

Lemma 5.13. If Y is a co-H-space, then all elements in K̃TF
∗ (Y) are primitive.

If Y is an H-group, then the multiplication m : Y×Y → Y induces a map
K̃TF
∗ (Y)⊗ K̃TF

∗ (Y)→ K̃TF
∗ (Y). We will denote this map by juxtaposition, so that

m∗(y1 ⊗ y2) = y1y2. Furthermore, the commutator Y×Y → Y descends to a map
c : Y ∧Y → Y. Expanding the definition of the commutator in terms of the
K-homology Künneth Theorem (Theorem 5.3) gives the following lemma.

Lemma 5.14. Let Y be an H-group, and let c : Y ∧Y → Y be the commutator. If y1 and
y2 ∈ K̃TF

∗ (Y) are primitive, then c∗(y1 ⊗ y2) = y1y2 − (−1)|y1||y2|y2y1.

6 The category of ψ-modules

In [2] , Adams defines an abelian category which we will follow Selick [28] in calling
ψ-modules. The e-invariant, which is our central tool, is defined by Adams in terms of
ψ-modules. The purpose of this section is to record results about ψ-modules for later
use.

A ψ-module consists of an abelian group M, with homomorphisms

ψ` : M→ M (` ∈ Z)

satisfying the axioms of [2, Section 6] . If X is a space then the group K̃0(X), together
with its Adams operations, is a ψ-module. Since we defined K̃−1(X) by setting
K̃−1(X) = K̃0(ΣX), it too has the structure of a ψ-module. Maps of spaces induce
maps of ψ-modules. The Adams operation ψ` on K̃0(S2n) is multiplication by `n, so in
particular Adams operations do not commute with the Bott isomorphism.

For graded ψ-modules M and N we will write Homψ−Mod(M, N) for the abelian
group consisting of graded ψ-module homomorphisms. The unadorned notation
Hom(M, N) will mean homomorphisms of the underlying graded abelian groups.

Lemma 6.1. Let M and N be ψ-modules, with N torsion-free. The inclusion of Z-modules
Homψ−Mod(M, N) ↪−→ Hom(M, N) is an injection onto a summand.

Proof. Let ϕ : M→ N be a homomorphism of underlying Z-modules. If, for some
k ∈ Z \ {0}, k · ϕ is a ψ-module homomorphism, then, since N is torsion-free, ϕ is also
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a ψ-module homomorphism. This implies that
coker(Homψ−Mod(M, N) ↪−→ Hom(M, N)) is torsion-free, which implies the result.

For the avoidance of doubt, by the e-invariant we will always mean the map that
Adams calls the complex e-invariant eC [1, 2] .

Definition 6.2 (Adams’ e-invariant). Suppose that f : X → Y induces the trivial map
on K̃∗. Then the cofibre sequence of f gives a short exact sequence of ψ-modules

0← K̃0(Y)← K̃0(C f )← K̃0(ΣX)← 0.

The e-invariant of f is the element of Extψ−Mod(K̃0(Y), K̃0(ΣX)) represented by this
exact sequence.

The e-invariant does not commute with the Bott isomorphism, but the interaction
between the Bott isomorphism and the Adams operations is easy to describe, as
follows. Let ψ`

Y be the homomorphism ψ` : K̃0(Y)→ K̃0(Y). Then, modulo the Bott
isomorphism, we have ψ`

Σ2X = ` · ψ`
X. That is ‘upon double suspending, the Adams

operations gain a factor `’. In terms of the e-invariant, all we need to know is the
following.

Lemma 6.3. [2, Proposition 3.4b)] There is a homomorphism
T : Extψ−Mod(K̃0(Y), K̃0(ΣX))→ Extψ−Mod(K̃0(Σ2Y), K̃0(Σ3X)), such that
T(e( f )) = e(Σ2 f ).

We will be concerned only with the e-invariants of maps whose domain is a sphere.
One of the two K-groups of a sphere vanishes, in the dimension matching the parity of
the sphere, but the e-invariant, as defined above, lives only in K0. In order to detect
maps regardless of the parity of the sphere on which they are defined, we will need to
keep track of the e-invariants of f and Σ f , so we will use the following modified
e-invariant.

Definition 6.4 (Double e-invariant). Let

Extψ−Mod(K̃∗(Y), K̃∗(ΣX)) := Extψ−Mod(K̃0(Y), K̃0(ΣX))

⊕ Extψ−Mod(K̃−1(Y), K̃−1(ΣX)).

Suppose that f : X → Y induces the trivial map on K̃∗. Then the double e-invariant of f
is e( f ) = (e( f ), e(Σ f )) ∈ Extψ−Mod(K̃∗(Y), K̃∗(ΣX)).

Pullback of an extension along a homomorphism defines a map

Homψ−Mod(M, B)⊗ Extψ−Mod(B, A)→ Extψ−Mod(M, A).
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If g : Y → Z then e(g ◦ f ) is represented by the pullback of e( f ) and
g∗ : K̃0(Z)→ K̃0(Y) [2, Proposition 3.2 b)] . To describe e(g ◦ f ) we need only apply
this result degree-wise, as follows. For convenience, we write g∗ · e( f ) for the pullback
of g∗ and e( f ). Define the map

θ0( f ) : Homψ−Mod(K̃0(Z), K̃0(Y))→ Extψ−Mod(K̃0(Z), K̃0(ΣX))

θ0( f )(x) = x · e( f ).

Likewise, define

θ−1( f ) : Homψ−Mod(K̃−1(Z), K̃−1(Y))→ Extψ−Mod(K̃−1(Z), K̃−1(ΣX))

θ−1( f )(x) = x · e(Σ f ).

Combining these, let

θ( f ) : Homψ−Mod(K̃∗(Z), K̃∗(Y))→ Extψ−Mod(K̃∗(Z), K̃∗(ΣX))

be the direct sum θ0( f )⊕ θ−1( f ). These definitions, together with Adams’ above
result, give the following lemma.

Lemma 6.5. For a map f : X → Y, the following diagram commutes:

[Y, Z]
f ∗ //

deg
��

[X, Z]

e
��

Homψ−Mod(K̃∗(Z), K̃∗(Y))
θ( f ) // Extψ−Mod(K̃∗(Z), K̃∗(ΣX)).

Following [28] , write Z(n) for the ψ-module K̃0(S2n). Explicitly, Z(n) has underlying
abelian group Z, and ψ` acts by multiplication by `n. It follows that
K̃−1(S2n+1) := K̃0(S2n+2) ∼= Z(n + 1).

Lemma 6.6. [2, Proposition 7.8, 7.9] If n < m then Extψ−Mod(Z(n), Z(m)) injects into
Q�Z. The e-invariant of a map f : S2m−1 → S2n may therefore be regarded as an element of
Q�Z. Furthermore, the value e( f ) in Q�Z satisfies e(Σ2 f ) = e( f ), so in particular, when f is
a map between spheres, e( f ) depends only on the stable homotopy class of f .

The following theorem is the main technical component of Selick’s paper [28] .

Theorem 6.7. [28, Theorem 6] Let f ′ : S2m−1 → S2n be such that pt−1e( f ′) 6= 0 in Q�Z, for
p prime and some t ∈N. Let Y have the homotopy type of a finite CW-complex and let
g : S2n → Y be such that Im(g∗ : K̃0(Y)→ K̃0(S2n)) contains upsK̃0(S2n), for s ∈N and u
prime to p. If s < t, and there exists some ` ∈N for which

ψ` ⊗Q : K̃0(Y)⊗Q→ K̃0(Y)⊗Q
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does not have `m as an eigenvalue, then e(g ◦ f ′) 6= 0.

The following theorem of Gray [16] will provide the map f ′ for Theorem 6.7.
Specifically, this theorem provides a linearly spaced family of stems, each of which has
a stable p-torsion class which is born on S3 and detected by the e-invariant.

Theorem 6.8. [16, Corollary of Theorem 6.2] Let p be an odd prime and let j ∈N. Then
there exists a class fp,j ∈ π2j(p−1)+2(S3) with e( fp,j) = −1

p ∈ Q�Z.

The corresponding 2-primary result is as follows. Adams [2, Theorem 1.5 and
Proposition 7.14] shows that, for j > 0, the (8j + 3)-rd stem contains a direct
summand whose 2-primary component has order 8, and that on this component the
e-invariant is a surjection onto Z/4. The sphere of origin of the classes in this
component was deduced by Curtis in [12] .

Theorem 6.9. [2, Cur69] Let j ∈N. Then there exists a class f2,j ∈ π8j+6(S3) of order 4,
with e( f2,j) = −1

2 ∈ Q�Z.

7 Main construction

Having assembled preliminaries in Sections 5 and 6, we can begin to work towards
the proof of Theorem 1.4. Our approach is as follows. From the data of Theorem 1.4,
we will construct a commutative diagram of (roughly) the following form, where B is
a set and the other objects are Z-modules.

Bk

��

// π∗(ΩΣX)

��
Ik // Extψ−Mod(K̃∗TF(ΩΣX), K̃∗TF(S∗)).

We will argue that

• The image of the top map consists of classes of order dividing p.

• The image of the left vertical map generates a submodule isomorphic to the
weight k component of the free graded Lie algebra over Z/p on two generators.

• The bottom map is injective.

Together, these facts imply that there is a submodule of π∗(ΩΣX) ∼= π∗+1(ΣX),
consisting of classes of order dividing p, and surjecting onto a module isomorphic to
the weight k component of the free graded Lie algebra over Z/p on two generators.
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This submodule (which is necessarily a Z/p-vector space) must therefore have
dimension at least W2(k) (Theorem 7.5), which will imply that ΣX is p-hyperbolic
(Lemma 3.3).

The diagram will be obtained by juxtaposing three squares. Subsections 7.1, 7.2, and
7.3 each construct one of these squares. In Subsection 7.4 we put them together and
prove Theorem 1.4. Roughly speaking, the top map of the diagram should be thought
of as first taking a family of Samelson products and then pulling them back along
some suitable map f coming from Gray’s work (Theorem 6.8). The vertical maps
should be thought of as passing from maps of spaces to K-theoretic invariants, and the
bottom map (therefore) should be thought of as tracking the effect of the top map on
these invariants.

Because of the need to work with a finite CW-complex in Selick’s Theorem (Theorem
6.7) we will restrict the right hand side of the diagram to instead refer to some finite
skeleton Js(X) of the James construction.

7.1 Samelson products and their Hurewicz images in K-homology

Let R be a commutative ring with unit. We take a graded Lie algebra over R to be
defined as in [26] . For a non-negatively graded R-module V, let L(V) denote the free
graded Lie algebra [26, Section 8.5] . Write Lk(V) for the submodule of L(V) generated
by the brackets of length k in the elements of V. We will call Lk(V) the weight k
component of L(V). Note that this convention differs from Neisendorfer’s - he writes
L(V)k for the weight k component.

Definition 7.1. Let Y be an H-group, and let c : Y ∧Y → Y be the commutator of
Lemma 5.14. Let α ∈ πN(Y), and let β ∈ πM(Y). The Samelson product of α and β,
written 〈α, β〉 ∈ πN+M(Y), is the composite

〈α, β〉 : SN+M ∼= SN ∧ SM α∧β−−→ Y ∧Y c−→ Y.

Samelson products fail to make π∗(Y) into a graded Lie algebra over Z [27, Section 7]
, but they do define the structure of a graded magma. In fact, they define a sort of
‘pseudo-Lie algebra’ structure, since they are graded anticommutative and satisfy the
graded Jacobi identity. One could define an appropriate notion of ‘free graded
pseudo-Lie algebra’, and proceed as follows with that in place of the magma we will
use, but we prefer the more lightweight approach.

For a graded R-module V, let U(V) denote the graded set of homogeneous elements
in V. Let B(V) be the free magma on U(V), where we write the product as a bracket
[x, y]. We think of B as the ‘set of brackets of homogeneous elements in V’. Elements
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of B(V) are nonassociative words in the elements of U(V), so we may define a
grading on B(V) which extends the grading on U(V) via |[x, y]| = |x|+ |y|. The
weight of an element of B(V) is its word length. Write BN(V) for the subset of
elements in degree N, Bk(V) for the subset of elements of weight k, and set
Bk

N(V) = Bk(V) ∩BN(V).

Let ν : A→ ΩΣX be a map. By the universal property of the free magma B(π∗(A)),
there exists a map

Φπ
ν : B(π∗(A))→ π∗(ΩΣX)

which extends ν∗ and satisfies Φπ
ν ([x, y]) = 〈Φπ

ν (x), Φπ
ν (y)〉 for all x, y ∈ B(π∗(A)).

For a Z/2-graded Z-module V, we define a non-negatively graded Z-module
Hom(K̃TF

∗ (S∗), V), by setting

Hom(K̃TF
∗ (S∗), V)N =

Hom(K̃TF
∗ (SN), V) if N > 0, and

0 if N ≤ 0,

where the homomorphisms are understood to respect the Z/2-grading on K̃∗ and V.

In the case that V = L is a Z/2-graded Lie algebra over Z, Hom(K̃TF
∗ (S∗), L) inherits a

non-negatively graded Lie algebra structure as follows. Let the generators ξN of
K̃TF
∗ (SN) be as in Remark 5.4. Then the bracket [ f , g] of f ∈ Hom(K̃TF

∗ (SN), L) and
g ∈ Hom(K̃TF

∗ (SM), L) is the homomorphism K̃TF
∗ (SM)→ L carrying ξN+M to

[ f (ξN), g(ξM)] ∈ L. The squaring operation is defined in the same way. Likewise, if V
is a Z/2-graded associative algebra over Z, then Hom(K̃TF

∗ (S∗), V) inherits the
structure of a non-negatively graded associative algebra.

Let ν : A→ ΩΣX be a map. There is a composition

L(K̃TF
∗ (A))→ T(K̃TF

∗ (A))→ K̃TF
∗ (ΩΣX),

where the first map is the natural map which is the identity on K̃TF
∗ (A) and satisfies

[x, y] 7→ xy− (−1)|x||y|yx, and the second map is obtained by applying the universal
property of the tensor algebra to ν∗. Let

ΦK
ν : Hom(K̃TF

∗ (S∗), L(K̃TF
∗ (A)))→ Hom(K̃TF

∗ (S∗), K̃TF
∗ (ΩΣX))

be the pushforward along the above composite. It is then automatic that ΦK
ν is a map

of non-negatively graded Lie algebras over Z, where the structures are defined as
above.

We write deg : πN(Y)→ Hom(K̃TF
∗ (SN), K̃TF

∗ (Y)) for the map f 7→ f∗. Let
deg′ : B(π∗(A))→ Hom(K̃TF

∗ (S∗), L(K̃TF
∗ (A))) be the unique map which restricts to
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deg : π∗(A)→ Hom(K̃TF
∗ (S∗), K̃TF

∗ (A)) ⊂ Hom(K̃TF
∗ (S∗), L(K̃TF

∗ (A))) and carries
brackets to brackets. The above maps are related as follows.

Lemma 7.2. Let ν : A→ ΩΣX, for spaces A and X having the homotopy type of finite
CW-complexes. The following diagram commutes:

B(π∗(A))
Φπ

ν //

deg′
��

π∗(ΩΣX)

deg
��

Hom(K̃TF
∗ (S∗), L(K̃TF

∗ (A)))
ΦK

ν // Hom(K̃TF
∗ (S∗), K̃TF

∗ (ΩΣX)).

Proof. By the universal property of the free magma B(π∗(A)), it suffices to show that
the restriction of the diagram to the weight 1 component B1(π∗(A)) = π∗(A)

commutes, and that all maps respect the bracket operations. By definition,
L1(K̃TF

∗ (A)) = K̃TF
∗ (A). It then follows immediately from the definitions of Φπ

ν and ΦK
ν

that restricting the left hand side of the diagram to weight 1 components gives the
diagram

π∗(A)
ν∗ //

deg
��

π∗(ΩΣX)

deg
��

Hom(K̃TF
∗ (S∗), K̃TF

∗ (A))
ν∗ // Hom(K̃TF

∗ (S∗), K̃TF
∗ (ΩΣX)),

which commutes, since it just expresses naturality of deg.

It remains to show that all maps respect bracket operations. The maps Φπ
ν and deg′

respect the bracket operations by definition, and ΦK
ν respects bracket operations by

construction. We therefore only need show that deg respects brackets. Let
f ∈ πN(ΩΣX), and let g ∈ πM(ΩΣX). We must show that deg(〈 f , g〉) is the
commutator deg( f )deg(g)− (−1)NMdeg(g)deg( f ) with respect to the algebra
operation on Hom(K̃TF

∗ (S∗), K̃TF
∗ (ΩΣX)).

Since K̃TF
∗ (SN+M) ∼= Z, it suffices to show that the two homomorphisms agree on the

generator ξN+M (Remark 5.4). By Definition 7.1 and the Künneth Theorem (Theorem
5.3),

deg(〈 f , g〉)(ξN+M) = c∗ ◦ ( f∗ ⊗ g∗)(ξN ⊗ ξM) = c∗ ◦ ( f∗(ξN)⊗ g∗(ξM)).

Spheres of dimension at least 1 are co-H spaces, so by Lemma 5.13, ξN and ξM are
primitive. By naturality of the diagonal f∗(ξN) and g∗(ξM) are still primitive, so by
Lemma 5.14,

c∗ ◦ ( f∗(ξN)⊗ g∗(ξM)) = f∗(ξN)g∗(ξM)− (−1)NMg∗(ξM) f∗(ξN),



7. Main construction 77

which by definition of the multiplication on Hom(K̃TF
∗ (S∗), K̃TF

∗ (ΩΣX)) is the result of
evaluating deg( f )deg(g)− (−1)NMdeg(g)deg( f ) on ξN+M, as required.

We now lift the previous result to Js(X), thereby producing the first square of the
diagram promised at the start of this section. Recall that we write is : Js(X)→ JX for
the inclusion, and that by Theorem 5.6 we have a homotopy equivalence JX '−→ ΩΣX.
We will abuse notation and also write is for the composite Js(X)→ JX '−→ ΩΣX.

Corollary 7.3. Let ν : A→ ΩΣX, for spaces A and X having the homotopy type of finite
CW-complexes, with X (r− 1)-connected for r ≥ 1. If N, s ∈N satisfy N < r(s + 1)− 1,
then (is)∗ : πN(JsX)→ πN(ΩΣX) is an isomorphism and for each k ≤ s there exists a
commutative diagram:

Bk
N(π∗(A))

Φ̃π
ν //

deg′
��

πN(JsX)

deg
��

Hom(K̃TF
∗ (SN), Lk(K̃TF

∗ (A)))
Φ̃K

ν // Hom(K̃TF
∗ (SN), K̃TF

∗ (JsX)),

with (is)∗ ◦ Φ̃π
ν = Φπ

ν and Hom(K̃TF
∗ (SN), (is)∗) ◦ Φ̃K

ν = ΦK
ν .

Proof. Consider the diagram of Lemma 7.2. Lemma 5.7 shows that (is)∗ is an
isomorphism on πN , so let Φ̃π

ν be the unique map such that the condition
(is)∗ ◦ Φ̃π

ν = Φπ
ν holds. By Theorem 5.6 (2) and Lemma 5.10, the map

(is)∗ : K̃TF
N (Js(X))→ K̃TF

N (ΩΣX) is the inclusion of the tensors of length at most s.
Since k ≤ s, we may therefore define Φ̃K

ν to be the unique map such that the condition
Hom(K̃TF

∗ (SN), (is)∗) ◦ Φ̃K
ν = ΦK

ν holds. Commutativity then follows from Lemma 7.2
by naturality of deg, since Hom(K̃TF

∗ (SN), (is)∗) is injective.

Lemma 7.4. Let V be a non-negatively- or Z/2-graded Z-module which is free and finitely
generated in each dimension. Then

• L(V) and T(V) are free Z-modules in every dimension.

• The natural map L(V)→ T(V), [x, y] 7→ xy− (−1)|x||y|yx is an injection onto a
summand.

Proof. The non-negatively graded case is immediate from [26] , Proposition 8.3.1 and
p282. For the Z/2-graded case, first observe that there is a forgetful functor U from
Z-graded modules to Z/2-modules which carries Z-graded (Lie) algebras to
Z/2-graded (Lie) algebras, and a functor C from Z/2-graded modules to Z-modules
which puts V0 in any even dimension and V1 in any odd dimension. Both C and U
respect freeness and split injections, and there are natural isomorphisms
UT(CV) ∼= T(V) and UL(CV) ∼= L(V). This implies the Z/2-graded result.
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The graded version of Theorem 3.1 now follows immediately from Hilton’s paper:

Theorem 7.5. [20, Theorem 3.2, 3.3] Let V be a torsion-free Z- or Z/2-graded Z-module of
total dimension n. Then the total dimension of Lk(V) is Wn(k).

Let R be a commutative ring with unit. Let M be an R-module, and as usual let T(M)

denote the tensor algebra on M. Let ιk : M⊗k → T(M) be the inclusion, and let
ρk : T(M)→ M⊗k be the projection. Let τ : T(M)→ T(M) be the composite ι1 ◦ ρ1.
Given an R-algebra A, and a map ϕ : M→ A, we write ϕ̃ for the induced map
T(M)→ A, that is, the unique map of algebras such that ϕ̃ ◦ ι1 = ϕ.

Now, let M and N be R-modules, and let ϕ : M→ T(N) be a map. In the proof of
Theorem 7.7, we will wish to make a ‘leading terms’ style argument. This is made
precise in the next Lemma, which compares ϕ̃ with τ̃ ◦ ϕ. Informally, we think of τ̃ ◦ ϕ

as the ‘leading terms part’ of ϕ̃.

Lemma 7.6. Let R be a commutative ring with unit. Let M and N be Z- or Z/2-graded
R-modules. Let ιk : M⊗k → T(M) be the inclusion, let ρk : T(N)→ N⊗k be the projection,
and let τ : T(N)→ T(N) be as above. Let ϕ : M→ T(N) be a map. Then
ρk ◦ ϕ̃ ◦ ιk = ρk ◦ τ̃ ◦ ϕ ◦ ιk.

Proof. It suffices to check equality on basic tensors. Let v ∈ M⊗k be a basic tensor, so
that v = v1 ⊗ v2 ⊗ · · · ⊗ vk, for vi ∈ M. Then

ϕ̃ ◦ ιk(v) = ϕ̃(v1 ⊗ v2 ⊗ · · · ⊗ vk) = ϕ(v1)⊗ ϕ(v2)⊗ · · · ⊗ ϕ(vk)

= τ(ϕ(v1))⊗ τ(ϕ(v2))⊗ · · · ⊗ τ(ϕ(vk)) + terms of weight > k.

Applying ρk to both sides yields the result.

Theorem 7.7. Let F = Q or Z/p for p prime. Let ν : A→ ΩΣX, for spaces A and X
having the homotopy type of finite CW-complexes. Let ν : ΣA→ ΣX be the adjoint of ν. If

ν∗ ⊗F : K̃TF
∗ (ΣA)⊗F→ K̃TF

∗ (ΣX)⊗F

is an injection, then

ΦK
ν ⊗F : Hom(K̃TF

∗ (S∗), L(K̃TF
∗ (A)))⊗F→ Hom(K̃TF

∗ (S∗), K̃TF
∗ (ΩΣX))⊗F

is also an injection.

Remark 7.8. In the case where ν is a suspension Σζ, we have a diagram

ΩΣA Ων // ΩΣX

A

η

OO
ν

::

ζ // X,

η

OO
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so in particular ν∗ factors through the weight 1 component K̃TF
∗ (X) of the tensor

algebra decomposition of K̃TF
∗ (ΩΣX). This dramatically simplifies the proof, removing

the need for Lemma 7.6. In practice this is not a reasonable assumption - for example,
the map µ : S3 ∨ S5 → ΣCP2 of Example 2.5 (which plays the role of ν) does not
desuspend.

Proof. In this proof, for a space Y, we will identify the algebras T(K̃TF
∗ (Y)) and

K̃TF
∗ (ΩΣY), omitting the isomorphism S−1Γ∗ of Lemma 5.10. We defined ΦK

ν to be the
pushforward along a certain map L(K̃TF

∗ (A))→ K̃TF
∗ (ΩΣX). Call this map ΦK

ν
′. It

suffices to prove that ΦK
ν
′ ⊗F is an injection.

The triangle identities for the adjunction Σ a Ω give a commutative diagram

ΩΣA Ων // ΩΣX

A.

η

OO
ν

::

Since ΦK
ν
′is the unique map of Lie algebras extending ν, we have a commuting

diagram

T(K̃TF
∗ (A)) ∼= K̃TF

∗ (ΩΣA)
(Ων)∗ // K̃TF

∗ (ΩΣX)

L(K̃TF
∗ (A)),
?�

OO

ΦK
ν
′

55

where we note that that by Lemma 7.4, the natural map L(K̃TF
∗ (A))→ T(K̃TF

∗ (A)) is an
injection onto a summand. It therefore suffices to show that (Ων)∗ ⊗F is an injection.

Let (̃ν∗) denote the extension of ν∗ to T(K̃TF
∗ (A)), so that (̃ν∗) = (Ων)∗ (modulo the

isomorphism S−1Γ∗, as above). Since (ρi ◦ (̃ν∗) ◦ ιk) = 0 for i < k, it further suffices to
show that (ρk ◦ (̃ν∗) ◦ ιk)⊗F is an injection for each k. By Lemma 7.6, with

M = K̃TF
∗ (A) and N′ = K̃TF

∗ (X), we have that ρk ◦ (̃ν∗) ◦ ιk = ρk ◦ ˜(τ ◦ ν∗) ◦ ιk.

As previously, let ev : ΣΩY → Y denote the evaluation map. The following diagram
commutes:

ΣA

ν $$

Σν // ΣΩΣX

ev
��

ΣX.
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The hypothesis therefore implies that the composite (ev∗ ◦ Σν∗)⊗F is an injection.
Desuspending and applying Lemma 5.12 gives that

(ρ1 ◦ ν∗)⊗F : K̃TF
∗ (A)⊗F→ K̃TF

∗ (X)⊗F

is an injection of F-vector spaces. Thus, the image
(ρ1 ◦ ν∗)(K̃TF

∗ (A))⊗F ⊂ K̃TF
∗ (X)⊗F is a direct summand. Thus, the extension

˜(τ ◦ ν∗)⊗F is an injection, and ˜(τ ◦ ν∗)K̃TF
∗ (A)⊗k ⊂ K̃TF

∗ (X)⊗k for each k. This implies

that ρk ◦ ˜(τ ◦ ν∗) ◦ ιk is an injection for each k, as required.

The following corollary, which lifts the injectivity back to Js(X), is immediate from
Theorem 7.7 and Lemma 7.3.

Corollary 7.9. Let F = Q or Z/p for p prime. Let ν : A→ ΩΣX, for spaces A and X
having the homotopy type of finite CW-complexes, with X (r− 1)-connected for r ≥ 1.
Suppose that N, s, k ∈N satisfy k ≤ s, so that the map Φ̃K

ν is as in Corollary 7.3. If

ν∗ ⊗F : K̃TF
∗ (ΣA)⊗F→ K̃TF

∗ (ΣX)⊗F

is an injection, then

Φ̃K
ν ⊗F : Hom(K̃TF

∗ (SN), Lk(K̃TF
∗ (A)))⊗F→ Hom(K̃TF

∗ (SN), K̃TF
∗ (JsX))⊗F

is also an injection.

We have now established all that we will need to know about this ‘first square’. Before
we move on, we will prove that a space satisfying the hypotheses of Theorem 1.4 at
any prime must be rationally hyperbolic. We will do so as Corollary 7.12, but we first
require two lemmas. The first is needed because the hypotheses of Theorem 1.4 and
Corollary 7.12 are given in terms of surjections on K-theory, but the machinery we
have built so far deals with injections on K-homology.

Lemma 7.10. Let X be a space, and let F = Q or Z/p for p prime. Let
µ : Sq1+1 ∨ Sq2+1 → ΣX be a map with qi ≥ 1, such that the map

K̃∗(ΣX)⊗F
µ∗⊗F−−−→ K̃∗(Sq1+1 ∨ Sq2+1)⊗F ∼= F⊕F

is a surjection. Then µ∗ ⊗F : K̃TF
∗ (Sq1+1 ∨ Sq2+1)⊗F→ K̃TF

∗ (ΣX)⊗F is an injection.

Proof. Because K̃∗(Sq1+1 ∨ Sq2+1) is torsion-free, the hypothesis implies that the map

K̃∗TF(ΣX)⊗F
µ∗⊗F−−−→ K̃∗TF(Sq1+1 ∨ Sq2+1)⊗F ∼= F⊕F
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is also a surjection. Thus, there exist elements x and y in K̃∗TF(ΣX)⊗F with
(µ∗ ⊗F)(x) and (µ∗ ⊗F)(y) linearly independent in K̃∗TF(Sq1+1 ∨ Sq2+1)⊗F. Via the
Universal Coefficient Theorem (Corollary 5.2) we may regard x and y as elements of
Hom(K̃TF

∗ (ΣX), Z)⊗F ∼= Hom(K̃TF
∗ (ΣX)⊗F, F), with x ◦ (µ∗ ⊗F) and y ◦ (µ∗ ⊗F)

linearly independent. This implies that Im(µ∗ ⊗F) has dimension at least 2. Since
K̃TF
∗ (Sq1+1 ∨ Sq2+1) (the domain of µ∗) has dimension 2, it follows that µ∗ ⊗F is

injective, as required.

Some preamble to the second lemma is necessary. Let h : π∗(A)→ K̃TF
∗ (A) be the

K-homological Hurewicz map, which sends f ∈ πN(A) to f∗(ξN) ∈ K̃TF
∗ (A). As with

deg′, let h′ : B(π∗(A))→ L(K̃TF
∗ (A)) be the unique map which restricts to

h : π∗(A)→ K̃TF
∗ (A) ⊂ L(K̃TF

∗ (A)) and respects brackets.

Let M be a Z/2-graded Z-module. Let χ : Hom(K̃TF
∗ (S∗), M)→ M be the map which

carries ϕ ∈ Hom(K̃TF
∗ (SN), M) to ϕ(ξN) ∈ M (Remark 5.4). If M = L is a Z/2-graded

Lie algebra, then it follows immediately from the definition of the bracket in
Hom(K̃TF

∗ (S∗), L) that χ is a map of Lie algebras.

Lemma 7.11. For any space A, there is a commuting diagram

B(π∗(A))
deg′ //

h′
��

Hom(K̃TF
∗ (S∗), L(K̃TF

∗ (A)))

χuu
L(K̃TF

∗ (A)).

Proof. Commutativity of the diagram

π∗(A)
deg //

h
��

Hom(K̃TF
∗ (S∗), K̃TF

∗ (A))

χ
vv

K̃TF
∗ (A).

follows from the definitions. Commutativity of the diagram from the lemma statement
then follows from the universal property of B(π∗(A)), since χ respects brackets.

We are now ready to prove that a space satisfying the hypotheses of Theorem 1.4 at
any prime must be rationally hyperbolic.

Corollary 7.12. Let X be a path connected space having the homotopy type of a finite
CW-complex. Suppose that there exists a map

µ1 ∨ µ2 : Sq1+1 ∨ Sq2+1 → ΣX
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with qi ≥ 1, such that the map

K̃∗(ΣX)⊗Z/p
(µ1∨µ2)∗⊗Z/p−−−−−−−−→ K̃∗(Sq1+1 ∨ Sq2+1)⊗Z/p ∼= Z/p⊕Z/p

is a surjection for some prime p (not necessarily odd). Then ΣX is rationally hyperbolic.

Proof. Set µ = µ1 ∨ µ2. By Lemma 7.10 we have that µ∗ ⊗Z/p is injective. The
codomain of µ∗ is torsion free, so µ∗ ⊗Q is also injective. Theorem 7.7 (with
A = Sq1 ∨ Sq2 and ν = µ) then implies that Hom(K̃TF

∗ (S∗), L(K̃TF
∗ (Sq1 ∨ Sq2)))⊗Q

injects into Hom(K̃TF
∗ (S∗), K̃TF

∗ (ΩΣX))⊗Q via the map ΦK
ν ⊗Q.

The Hurewicz map h is a surjection π∗(Sq1 ∨ Sq2)→ K̃TF
∗ (Sq1 ∨ Sq2), so the submodule

generated by the image of h′ : B(π∗(Sq1 ∨ Sq2))→ L(K̃TF
∗ (Sq1 ∨ Sq2)) is precisely the

submodule generated by the image of h under the bracket operation. By Theorem 7.5,
this submodule is certainly infinite dimensional, so by Lemma 7.11 the image of deg′

is also infinite dimensional. Thus, the image of (ΦK
ν ◦ deg′)⊗Q is also infinite

dimensional.

By Lemma 7.2, the image of deg : π∗(ΩΣX)→ Hom(K̃TF
∗ (S∗), K̃TF

∗ (ΩΣX)) contains
the image of ΦK

ν ◦ deg′. Thus, π∗(ΩΣX)⊗Q ∼= π∗+1(ΣX)⊗Q surjects onto an infinite
dimensional rational vector space, and hence also has infinite rational dimension, and
thus ΣX is rationally hyperbolic, as required.

7.2 Maps derived from the universal coefficient isomorphism

In this subsection we will build the second square of our diagram. This square is
really just the Universal Coefficient theorem (Corollary 5.2) in a different form. We
will write deg for both K-homological and K-theoretic degree.

Lemma 7.13. Let Y be a space having the homotopy type of a finite CW-complex. There exists
an isomorphism U making the following diagram commute.

πN(Y)

deg
��

πN(Y)

deg
��

Hom(K̃TF
∗ (SN), K̃TF

∗ (Y))
U // Hom(K̃∗TF(Y), K̃∗TF(SN)).

Proof. For β : K̃TF
∗ (SN)→ K̃TF

∗ (Y), let U (β) be the unique map making the following
diagram commute
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K̃∗TF(Y)

U (β)
��

∼= // Hom(K̃TF
∗ (Y), Z)

Hom(β,Z)
��

K̃∗TF(SN)
∼= // Hom(K̃TF

∗ (SN), Z)

where the isomorphisms are those of Corollary 5.2. Since K̃TF
∗ (Y) is a finitely

generated free Z-module, β 7→ Hom(β, Z) is an isomorphism, so U is also an
isomorphism. Commutativity of the diagram from the statement of this lemma is by
naturality of Lemma 5.2.

Corollary 7.14. Let Y be a space having the homotopy type of a finite CW-complex. For a
Z-module M, let τp : M→ M⊗Z/p be the natural map. There exists an injection U ′

making the following diagram commute.

πN(Y)

deg
��

��

πN(Y)

deg
��

��

Hom(K̃TF
∗ (SN), K̃TF

∗ (Y))

τp

��

Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))

τp

��

Im(τp ◦ deg)
H h

uu

U ′
// Im(τp ◦ deg)
K k

xx
Hom(K̃TF

∗ (SN), K̃TF
∗ (Y))⊗Z/p Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p.

Proof. By Lemma 7.13, we have a commutative diagram

πN(Y)

deg
��

πN(Y)

deg
��

Hom(K̃TF
∗ (SN), K̃TF

∗ (Y))
U // Hom(K̃∗TF(Y), K̃∗TF(SN)).

with U an isomorphism, so U ⊗Z/p is also an isomorphism. By Lemma 6.1, the map

Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p→ Hom(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p

is an injection. Maps of spaces induce maps of ψ-modules on K-theory, so the image of
U ◦ deg is contained in Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN)), and hence there exists a map
U ′ making the following diagram commute:

Im(τp ◦ deg)
� _

��

U ′
// Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p

� _

��
Hom(K̃TF

∗ (SN), K̃TF
∗ (Y))⊗Z/p

U ⊗Z/p ∼=// Hom(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p.
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Both vertical maps are injections, so U ′ has the required properties.

7.3 Pulling back along classes defined on S3

Let f ∈ πj(S3), and let N ≥ 3. Then, for ω ∈ πN(Y), the composite

SN+j−3 ΣN−3 f−−−→ SN ω−→ Y

is defined. The class ω ◦ ΣN−3 f lies in πM−1(Y), where M− 1 = N + j− 3.

Thus motivated, we define the map f ∗Σ : π∗(Y)→ π∗(Y) on ω ∈ πN(Y) by setting
f ∗Σ(ω) = (ΣN−3 f )∗ω = ω ◦ ΣN−3 f . In words, f ∗Σ pulls classes back along the
appropriate suspension of f . Strictly speaking, f ∗Σ is only a partial map, because it is
undefined on πN for N ≤ 2, but this will be unimportant.

Recall the definition of the double e-invariant e (Definition 6.4). On πN(Y), we have by
definition that f ∗Σ = (ΣN−3 f )∗. By Lemma 6.5 we have a commuting square:

πN(Y)
f ∗Σ //

deg
��

πN+j−3(Y)

e
��

Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))
θ(ΣN−3 f ) // Extψ−Mod(K̃∗TF(Y), K̃∗TF(SN+j−2)).

Mimicking the convention for f ∗Σ, let

θΣ( f ) : Homψ−Mod(K̃∗TF(Y), K̃∗TF(S∗))→ Extψ−Mod(K̃∗TF(Y), K̃∗TF(S∗+j−2))

be the map which is defined to be equal to θ(ΣN−3 f ) on the degree N component
Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN)) of Homψ−Mod(K̃∗TF(Y), K̃∗TF(S∗)).

Lemma 7.15. Let p be a prime, and let f ∈ πj(S3) with e( f ) defined. If p f = 0, then there
exists a map θ

p
Σ( f ) making the following diagram commute for all N:

πN(Y)

deg
��

f ∗Σ // πN+j−3(Y)

e
��

Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))

τp

��

θΣ( f ) // Extψ−Mod(K̃∗TF(Y), K̃∗TF(SN+j−2))

Homψ−Mod(K̃∗TF(Y), K̃∗TF(SN))⊗Z/p.

θ
p
Σ( f )

33

Proof. Since p f = 0, we have that pe(ΣN−3 f ) = 0 for all N, which implies that θΣ( f )

vanishes on p-divisible elements, so there exists a unique map θ
p
Σ( f ) making the

diagram commute, as required.
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Lemma 7.16. Let X be a finite CW-complex. Let λX
` be the largest eigenvalue of the rational

Adams operation
ψ` ⊗Q : K̃0(X)⊗Q→ K̃0(X)⊗Q.

Then, for i ≥ 0

• the largest eigenvalue of ψ` ⊗Q on K̃0(Σ2i Js(X))⊗Q is `i(λX
` )s, and

• the largest eigenvalue of ψ` ⊗Q on K̃0(Σ2i+1 Js(X))⊗Q is `iλΣX
` (λX

` )s−1.

Proof. When i ≥ 1, Theorem 5.6 gives that ΣJs(X) ' Σ
∨s

t=1 X∧t, so
Σ2i Js(X) ' S2i ∧∨s

t=1 X∧t, and Σ2i+1 Js(X) ' S2i ∧ ΣX ∧∨s−1
t=1 X∧t. By the Künneth

theorem (Theorem 5.5), this implies isomorphisms of rings

K̃0
TF(Σ2i Js(X)) ∼=

s⊕
t=1

K̃0
TF(S2i)⊗ K̃0

TF(X)⊗t, for i ≥ 1,

and

K̃0
TF(Σ2i+1 Js(X)) ∼=

s−1⊕
t=0

K̃0
TF(S2i)⊗ K̃0

TF(ΣX)⊗ K̃0
TF(X)⊗t for i ≥ 0.

The Künneth isomorphism of Theorem 5.5 is given by the external product on
K-theory. Since the Adams operations are ring homomorphisms, the above
isomorphisms are also isomorphisms of ψ-modules. In particular, the Adams
operations on the left are the tensor product of the corresponding operations on the
right.

These decompositions hold for K̃0
TF, so they also hold for Q⊗ K̃0, and the remaining

problem is to determine the largest eigenvalue of the relevant tensor products of
Adams operations. The eigenvalues of a tensor product of linear endomorphisms are
precisely the products of the eigenvalues. The operation ψ` acts on S2i by
multiplication by `i. Together, these observations imply the result.

Lemma 7.17. Let p be an odd prime. Let X be an (r− 1)-connected finite CW-complex. Let
N, s ∈N. Consider the diagram of Lemma 7.15 for Y = Js(X) and
f = fp,j ∈ π2j(p−1)+2(S3), the map of Theorem 6.8:

πN(Js(X))

deg
��

f ∗Σ // πN+2j(p−1)−1(Js(X))

e
��

Homψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN))

τp

��

θΣ( f ) // Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+2j(p−1)))

Homψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN))⊗Z/p.

θ
p
Σ( f )

33
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For ` ∈N, let λY
` be the largest eigenvalue of ψ` ⊗Q on K̃0(Y)⊗Q, and let

λ` = max(λX
` , λΣX

` ). If there exists ` ∈N such that `j(p−1)+ N−1
2 > λs

` then
Ker(e ◦ f ∗Σ) ⊂ Ker(τp ◦ deg), and hence the restriction of θ

p
Σ( f ) to Im(τp ◦ deg) is an

injection.

Proof. First note that p f = 0 by Theorem 6.8, so θ
p
Σ( f ) is well-defined by Lemma 7.15.

Let ω ∈ πN(Js(X)). Suppose that ω ∈ Ker(e ◦ f ∗Σ), that is, that the e-invariant of the
composite

SN+2j(p−1)−1 ΣN−3 f−−−→ SN ω−→ Js(X)

is trivial. By Lemma 6.3, this implies that Σi(ω ◦ ΣN−3 f ) has trivial e-invariant for all i.
In particular, e(Σω ◦ ΣN−2 f ) and e(ω ◦ ΣN−3 f ) are both 0.

By Lemma 7.16, the largest eigenvalue of ψ` ⊗Q on K̃0(Js(X))⊗Q is at most λs
`, and

the largest eigenvalue of ψ` ⊗Q on K̃0(ΣJs(X))⊗Q is also at most λs
`. We now divide

into cases, based on the parity of N.

CASE 1 (N even): Write N = 2n. Let f ′ = ΣN−3 f and g = ω in Theorem 6.7. The
domain of ω ◦ ΣN−3 f is SM−1, where M− 1 = N + 2j(p− 1)− 1, so M is even, as is
required. To check the eigenvalue hypothesis of Theorem 6.7, write M = 2m. By
Lemma 7.16, the largest eigenvalue of ψ` ⊗Q on K̃0(Js(X))⊗Q is at most λs

`, and
`m = `j(p−1)+n > `j(p−1)+ N−1

2 , which we assumed was greater than λs
`. This means that

`m cannot be an eigenvalue of ψ` ⊗Q on K̃0(Js(X))⊗Q. Now, e( f ) 6= 0 by
construction (Theorem 6.8), so e(ΣN−3 f ) 6= 0 by stability (Lemma 6.6). Since
e(ω ◦ ΣN−3 f ) = 0, the contrapositive of Theorem 6.7 gives that ω∗ has p-divisible
image in K̃0(SN). Since N is even, this implies that τp ◦ deg(ω) = 0, as required.

CASE 2 (N odd): Write n = 2n + 1. Let f ′ = ΣN−2 f and g = Σω in Theorem 6.7, and
proceed similarly to case 1. The domain of Σω ◦ ΣN−2 f is SM−1, where
M− 1 = N + 2j(p− 1), so M is even, as is required. To check the eigenvalue
hypothesis of Theorem 6.7, write M = 2m. By Lemma 7.16, the largest eigenvalue of
ψ` ⊗Q on K̃0(ΣJs(X))⊗Q is at most λs

`, and `m = `j(p−1)+n = `j(p−1)+ N−1
2 , which we

assumed was greater than λs
`. This means that `m cannot be an eigenvalue of ψ` ⊗Q

on K̃0(ΣJs(X))⊗Q. As in the previous case, e(ΣN−2 f ) 6= 0. Since e(Σω ◦ ΣN−2 f ) = 0,
the contrapositive of Theorem 6.7 gives that (Σω)∗ has p-divisible image in K̃0(SN+1).
Since N is odd, this implies that τp ◦ deg(ω) = 0, as required. This completes the case,
and hence the proof.

7.4 Proof of Theorem 1.4

Construction 7.18. Let p be an odd prime. Let ν : A→ ΩΣX, for spaces A and X having
the homotopy type of finite CW-complexes, with X (r− 1)-connected for r ≥ 1. Let
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f ∈ πi(S3) with e( f ) defined. Suppose that N, k, s ∈N satisfy N < r(s + 1)− 1 and k ≤ s.
The diagrams of the preceding subsections may be combined as follows.

Recall the definition of deg′ from the preamble to Lemma 7.2. Let I(A) be the submodule of
Hom(K̃TF

∗ (S∗), L(K̃TF
∗ (A)))⊗Z/p generated by Im(τp ◦ deg′). The same grading

conventions as usual apply: we write Ik(A) for the weight k part, we write IN(A) for the
degree N part, and let Ik

N(A) = Ik(A) ∩ IN(A).

From Corollary 7.3, using the assumptions that N < r(s + 1)− 1 and k ≤ s (which make Φ̃π
ν

and Φ̃K
ν well-defined) we obtain the following diagram, where the images of the vertical maps

have been ‘popped out’ to their right.

Bk
N(π∗(A)) πN(Js(X))

Ik
N(A) Im(τp ◦ deg)

Hom(K̃TF
∗ (SN), Lk(K̃TF

∗ (A)))⊗Z/p Hom(K̃TF
∗ (SN), K̃TF

∗ (Js(X)))⊗Z/p.

Φ̃π
ν

τp◦deg′

τp◦deg

Φ̃K
ν⊗Z/p

Next, from Corollary 7.14 (with Y = Js(X)) we have a diagram

πN(Js(X)) πN(Js(X))

Im(τp ◦ deg) Im(τp ◦ deg)

Hom(K̃TF
∗ (SN), K̃TF

∗ (Js(X)))⊗Z/p Homψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN))⊗Z/p.

τp◦deg

τp◦deg
U ′

Lastly, we obtain the following diagram from Lemma 7.15:

πN(Js(X))

deg
��

f ∗Σ // πN+i−3(Js(X))

e
��

Homψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN))

τp

��

θΣ( f ) // Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+i−2))

Homψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN))⊗Z/p.

θ
p
Σ( f )

33

Concatenating these diagrams gives a diagram as follows:
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Bk
N(π∗(A))

f ∗Σ◦Φ̃π
ν //

τp◦deg′

��

πN+i−3(Js(X))

e
��

Ik
N(A)

θ
p
Σ( f )◦U ′◦(Φ̃K

ν⊗Z/p)
// Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+i−2)).

In this subsection, we combine the results of the previous subsections to produce
results about this diagram.

Theorem 7.19. Let p be an odd prime. Let ν : A→ ΩΣX, for spaces A and X having the
homotopy type of finite CW-complexes, with X (r− 1)-connected for r ≥ 1. Let N, k, s ∈N

with N < r(s + 1)− 1 and k ≤ s. Let f = fp,j ∈ π2j(p−1)+2(S3), the map of Theorem 6.8.

For ` ∈N, let λY
` be the largest eigenvalue of ψ` ⊗Q on K̃0(Y)⊗Q, and let

λ` = max(λX
` , λΣX

` ). If

• ν∗ ⊗Z/p : K̃TF
∗ (ΣA)⊗Z/p→ K̃TF

∗ (ΣX)⊗Z/p is an injection, and

• there exists ` ∈N such that `j(p−1)+ N−1
2 > λs

`,

then θ
p
Σ( f ) ◦U ′ ◦ (Φ̃K

ν ⊗Z/p) : Ik
N(A)→ Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+2j(p−1))) is an

injection.

Proof. By Corollary 7.9, since ν∗ ⊗Z/p is an injection, Φ̃K
ν ⊗Z/p is also an injection.

By Corollary 7.14 U ′ is an injection. By Lemma 7.17 the hypothesis on ` implies that
the restriction of θ

p
Σ( f ) to Im(τp ◦ deg) is an injection. The map

θ
p
Σ( f ) ◦U ′ ◦ (Φ̃K

ν ⊗Z/p) is thus a composite of injections, hence an injection, as
required.

In the proof of Theorem 1.4, we will wish to restrict attention to those elements of
B(π∗(A)) who are brackets of classes in π∗(A) in some dimensional range
qmin ≤ n ≤ qmax. All such classes lie in dimensions kqmin ≤ N ≤ kqmax. Said more
precisely, we have an inclusion Bk(

⊕qmax
n=qmin πn(A)) ⊂ ⋃kqmax

N=kqmin
Bk

N(π∗(A)). We will
now study the diagram of Construction 7.18 in this dimensional range.

Construction 7.20. Let p be an odd prime, ν : A→ ΩΣX for finite CW-complexes A and X
with X (r− 1)-connected for r ≥ 1, and f ∈ πi(S3) with e( f ) defined. Let qmax > qmin be
natural numbers. Fix k ∈N, and let s = kqmax + 1. For N ∈N with kqmin ≤ N ≤ kqmax,
we have that N < r(s + 1)− 1 and k ≤ s. Combining the diagrams obtained from
Construction 7.18 for this range of values of N gives the following diagram:

⋃kqmax
N=kqmin

Bk
N(π∗(A))

f ∗Σ◦Φ̃π
ν //

τp◦deg′

��

⊕kqmax
N=kqmin

πN+i−3(Js(X))

e
��⊕kqmax

N=kqmin
Ik
N(A)

θ
p
Σ( f )◦U ′◦(Φ̃K

ν⊗Z/p)
//⊕kqmax

N=kqmin
Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+i−2)).
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We now show that by choosing a large enough c ∈N, and setting f = fp,ck, the
eigenvalue hypothesis of Theorem 7.19 may be satisfied across the dimensional range
of Construction 7.20 for all sufficiently large k.

Corollary 7.21. Let p be an odd prime. Let ν : A→ ΩΣX, for spaces A and X having the
homotopy type of finite CW-complexes, with X path-connected. Let qmax > qmin be natural
numbers. Let c, k ∈N. Let f = fp,ck ∈ π2ck(p−1)+2(S3) be the map of Theorem 6.8. If

ν∗ ⊗Z/p : K̃TF
∗ (ΣA)⊗Z/p→ K̃TF

∗ (ΣX)⊗Z/p

is an injection then there exists c ∈N such that for large enough k ∈N,

θ
p
Σ( f ) ◦U ′ ◦ (Φ̃K

ν ⊗Z/p) : Ik
N(A)→ Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+2ck(p−1)))

is an injection for kqmin ≤ N ≤ kqmax.

Proof. By Theorem 7.19, it suffices to show that for each N with kqmin ≤ N ≤ kqmax

there exists ` ∈N such that `ck(p−1)+ N−1
2 > λs

` = λ
kqmax+1
` . Take any ` ≥ 2. Since

N ≥ kqmin, it suffices to find c such that for large enough k we have
`ck(p−1)+

kqmin−1
2 > λ

kqmax
` . Taking logs on both sides, this is equivalent to

(ck(p− 1) +
kqmin − 1

2
) log(`) > kqmax log(λ`).

It is now clear that we may choose c large enough that this equation holds for large
enough k, in particular, any c ≥ 1

p−1 (qmax
log(λ`)
log(`)

− qmin
2 ) will do.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let µ = µ1 ∨ µ2, with adjoint µ : Sq1 ∨ Sq2 → ΩΣX. Let
f = fp,ck ∈ π2ck(p−1)+2(S3). Consider the diagram of Construction 7.20, with
A = Sq1 ∨ Sq2 , qmax = max(q1, q2), qmin = min(q1, q2), and ν = µ. We have such a
diagram for each k ∈N:

⋃kqmax
N=kqmin

Bk
N(π∗(Sq1 ∨ Sq2))

f ∗Σ◦Φ̃π
µ //

τp◦deg′

��

⊕kqmax
N=kqmin

πN+2ck(p−1)−1(Js(X))

e
��⊕kqmax

N=kqmin
Ik
N(Sq1 ∨ Sq2) //⊕kqmax

N=kqmin
Extψ−Mod(K̃∗TF(Js(X)), K̃∗TF(SN+2ck(p−1))).

By assumption, µ∗ ⊗Z/p : K̃∗(ΣX)⊗Z/p→ K̃∗(Sq1+1 ∨ Sq2+1)⊗Z/p is a surjection.
By Lemma 7.10 this implies that

µ∗ ⊗Z/p : K̃TF
∗ (Sq1+1 ∨ Sq2+1)⊗Z/p→ K̃TF

∗ (ΣX)⊗Z/p
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is an injection. Thus, by Corollary 7.21, we may fix c such that for large enough k,
θp( f ) ◦U ′ ◦ (Φ̃K

µ ⊗Z/p) is an injection.

The Hurewicz map h is a surjection π∗(Sq1 ∨ Sq2)→ K̃TF
∗ (Sq1 ∨ Sq2), so the submodule

generated by the image of the map h′ : B(π∗(Sq1 ∨ Sq2))→ L(K̃TF
∗ (Sq1 ∨ Sq2)) of

Lemma 7.11 contains the submodule generated by K̃TF
∗ (Sq1 ∨ Sq2) under the bracket

operation. In particular, it contains the weight k component Lk(K̃TF
∗ (Sq1 ∨ Sq2)) for

each k. By Theorem 3.1, dimZ(Lk(K̃TF
∗ (Sq1 ∨ Sq2))) = W2(k). Note that

Lk(K̃TF
∗ (Sq1 ∨ Sq2)) =

⊕kqmax
N=kqmin

Lk
N(K̃TF

∗ (Sq1 ∨ Sq2)).

It then follows from Lemma 7.11 that dimZ/p(
⊕kqmax

N=kqmin
Ik
N(Sq1 ∨ Sq2)) ≥W2(k). Since

θ
p
Σ( f ) ◦U ′ ◦ (Φ̃K

µ ⊗Z/p) is an injection for large enough k, it follows that the

dimension of e(
⊕kqmax

N=kqmin
πN+2ck(p−1)−1(Js(X))) is at least W2(k). By Corollary 7.3 (is)∗

is an injection, so the dimension of
(is)∗(

⊕kqmax
N=kqmin

πN+2ck(p−1)−1(Js(X))) ⊂ ⊕kqmax
N=kqmin

πN+2ck(p−1)−1(ΩΣX) is also at least
W2(k). Thus, ΣX satisfies the hypotheses of Lemma 3.3 with
a = 2c(p− 1) + qmax = 2c(p− 1) + max(q1, q2) and b = 0, and hence is p-hyperbolic.
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Paper 3
Z/pr-hyperbolicity via homology

Guy Boyde

ABSTRACT. We show that the homotopy groups of a Moore space Pn(pr) are Z/ps-
hyperbolic for s ≤ r and ps 6= 2. Combined with work of Huang-Wu and Neisendor-
fer, this completely resolves the question of when such a Moore space is Z/ps-
hyperbolic for p ≥ 5. We also give a homological criterion for a space to be Z/pr-
hyperbolic, and deduce some examples.

1 Introduction

Given a space X, one can ask about the behaviour of the partial sum of homotopy
groups

m⊕
i=1

πi(X) as m→ ∞.

Rationally, deep results have been obtained, notably the famous dichotomy of Félix,
Halperin and Thomas [14, Chapter 33] . Interpreted integrally, this dichotomy says
that if X is a simply connected finite CW-complex with finite rational category then
either

• the rank of
⊕∞

i=1 πi(X) is finite, and X is called rationally elliptic, or

• the rank of
⊕m

i=1 πi(X) grows exponentially with m, and X is called rationally
hyperbolic.

Study of the corresponding behaviour for the torsion parts of these groups, which is
the subject of this paper, was initiated by Huang and Wu in [19] .

Let M be a Z-module, let p be a prime and let t ∈N. The Z/pt-dimension or
Z/pt-rank of M, denoted dimZ/pt (M), is the greatest d ∈N∪ {0, ∞} such that there is
an isomorphism M ∼= (Z/pt)d ⊕ C for some complementary module C. Said another
way, dimZ/pt (M) is the number of Z/pt-summands in M.

Definition 1.1. Let M be a graded Z-module, Let p be a prime, and let S ⊂N. We say
that X is p-hyperbolic concentrated in (the set of exponents) S if

am := ∑
t∈S

dimZ/pt (
m⊕

i=1

Mi)

grows exponentially, in the sense that

lim inf
m

ln(am)

m
> 0.
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For a space X we will say that X is p-hyperbolic concentrated in S if π∗(X) is
p-hyperbolic concentrated in S. If X is p-hyperbolic concentrated in N then we will
say simply that X is p-hyperbolic.

This definition generalises and interpolates between two definitions due to Huang
and Wu [19] . Namely, their Z/ps-hyperbolicity is precisely our p-hyperbolicity
concentrated in the singleton set {s}, and their p-hyperbolicity is precisely our
p-hyperbolicity concentrated in N, as defined above.

Definition 1.2. Let Pn(`) denote the mod-` Moore space, which we take to be the cofibre

Sn−1 `−→ Sn−1 −→ Pn(`)

of the degree ` map.

Huang and Wu show that for p prime, n ≥ 3, and r ≥ 1 the Moore space Pn(pr) is
Z/pr and Z/pr+1-hyperbolic, and additionally that Pn(2) is Z/8-hyperbolic. In [32] ,
Zhu and Pan show that Pn(pr) is also Z/p-hyperbolic. Our first main result fills in the
gap between these exponents:

Theorem 1.3. Let p be a prime, and r ∈N. If n ≥ 3, then Pn(pr) is Z/ps-hyperbolic for all
s ≤ r such that ps 6= 2.

The key is to show that the stable homotopy of Pn(pr) contains a Z/ps-summand for
each s ≤ r. This follows from work of Adams on the J-homomorphism [1, 2] , which
allows us to find such summands in the stable homotopy of spheres, and classical
work of Barratt [7] allows us to transplant these summands to Moore spaces. Once
this is done, the proof follows the same lines as those in [19] and [32] .

For p > 3 Huang and Wu’s results and Theorem 1.3 together are best possible, in the
following sense. In [25] , Neisendorfer shows that π∗(Pn(pr)) contains no element of
order ps for s > r + 1. In fact, Neisendorfer claimed in [25] that this result also holds
when p = 3, but later, with Brayton Gray, discovered some mistakes in the proof (see
the unpublished [24] ). These mistakes were repaired apart from when p = 3. In [24] ,
Neisendorfer shows that the 3-primary exponent of Pn(3r) is either 3r+1 or 3r+2.

Neisendorfer’s result allows us to combine Huang and Wu’s result with Theorem 1.3
to obtain the following (using Proposition 3.1):

Corollary 1.4. For p 6= 2, 3 prime, s, ` ∈N and n ≥ 3, the following are equivalent:

1. Pn(`) is Z/ps-hyperbolic.

2. π∗(Pn(`)) contains a class of order ps.
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3. pmax(s−1,1)|`.

Our second main result is a homological criterion for hyperbolicity:

Theorem 1.5. Let Y be a simply connected CW-complex, let p 6= 2 be prime, and let
s ≤ r ∈N. If there exists a map

µ : Pn+1(pr) −→ Y

such that the induced map

(Ωµ)∗ : H∗(ΩPn+1(pr); Z/ps) −→ H∗(ΩY; Z/ps)

is an injection, then Y is p-hyperbolic concentrated in exponents s, s + 1, . . . , r. In particular if
s = r then Y is Z/pr-hyperbolic.

The point is that Z/pr-hyperbolicity of Pn+1(pr) can be detected in
H∗(ΩPn+1(pr); Z/pr), and under the hypotheses of the theorem, the exponential
family of classes which gives the hyperbolicity can be composed with µ to give classes
in the homotopy groups π∗(ΩY) ∼= π∗+1(Y) with orders in the set {ps, ps+1, . . . pr}.

We will see (using Proposition 10.12) that the hypotheses of Theorem 1.5 simplify in
the case that Y = ΣX is a suspension, as follows:

Theorem 1.6. Let X be a connected CW-complex, let p 6= 2 be prime, and let s ≤ r ∈N. If
there exists a map

µ : Pn+1(pr) −→ ΣX

such that
µ∗ : H̃∗(Pn+1(pr); Z/ps) −→ H̃∗(ΣX; Z/ps)

is an injection, then ΣX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r. In particular
if s = r then ΣX is Z/pr-hyperbolic.

Together, Theorems 1.3 and 1.6 may be thought of as doing for Moore spaces what
[10] did for wedges of spheres. The main difference between the homological results
of that paper and this is that the Hurewicz map is enough to detect pr-torsion in the
homotopy groups of the Moore space Pn(pr). In contrast, one needs more
sophisticated machinery to see pr-torsion in a wedge of spheres; [10] used Adams’
e-invariant. This meant that the theorems of that paper had to be stated in terms of
K-theory, rather than ordinary homology.

This document is organized as follows. The proof of Theorem 1.3 may be read
independently of the proof of Theorems 1.5 and 1.6, and vice versa. Section 2 contains
applications of our results. Section 3 contains definitions needed throughout. Sections
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4, 5 and 6 prove Theorem 1.3, while Sections 7, 8, 9 and 11 prove Theorem 1.5, and
Section 10 shows that Theorem 1.5 implies Theorem 1.6.

I would like to thank my PhD supervisor, Stephen Theriault, for many helpful
conversations and much encouragement. Changes to the proof of Theorem 1.3 which
make the result work for powers of 2 are due to him.

2 Applications

2.1 Spaces containing a Moore space as a retract

Various spaces have been shown to contain wedges of Moore spaces and spheres as
p-local retracts after looping. This section collects some examples of this form.

Example 2.1. Let M be an (oriented) (n− 1)-connected (2n + 1)-manifold for n ≥ 2. By
Poincaré duality, the homology of M is determined entirely by

Hn(M) ∼= Zr ⊕
⊕̀
i=1

Z/pri
i .

When r ≥ 1, Basu [8, Theorem 5.4] gives a decomposition of ΩM, which shows in particular
that ΩM contains a retract Ω(

∨
r−1 Sn ∨∨r−1 Sn+1 ∨∨`

i=1 Pn(pri
i )). By Theorem 1.3 and the

work of Huang-Wu [19] and Zhu-Pan [32] , it follows that M is Z/ps-hyperbolic whenever
ps−1 divides the order of the torsion part of Hn(M). In fact, if r ≥ 2 then ΩM contains
Ω(Sn ∨ Sm) as a retract, so is Z/ps-hyperbolic for all p and s by [10] . Conversely, if M is
not Z/ps hyperbolic for any p and s (and is not the sphere S2n+1) then we must have
Hn(M) ∼= Z. An example of such a manifold is Sn−1 × Sn, whose homotopy groups satisfy
πi(Sn−1 × Sn) ∼= πi(Sn−1)× πi(Sn). Determining hyperbolicity for these examples is
therefore as difficult as determining hyperbolicity of Sn.

In order to use Basu’s result, we require that there be a Z-summand in Hn(M). In
contrast, our next example has Hn(M) a torsion group.

Example 2.2. Let p be an odd prime, let r ∈N, and let M be a 5-dimensional spin manifold
with H2(M; Z) isomorphic to a direct sum of copies of Z/pr. In [30] Theriault notes that his
Theorem 1.3, together with a classification of simply connected 5-dimensional Poincaré duality
complexes by Stöcker [29] , gives a decomposition of ΩM. This decomposition shows that ΩM
contains ΩP3(pr) as a retract. In particular, by Theorem 1.3, M is Z/ps-hyperbolic for all
1 ≤ s ≤ r.
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2.2 Suspensions

This section deduces some examples of Theorem 1.6. As a first example, note that the
identity map on the Moore space Pn(pr) satisfies the hypotheses of that theorem, and
so we recover the s = r case of Theorem 1.3.

Let h : πn(Y) −→ Hn(Y; Z) be the Hurewicz map, which sends a homotopy class
f : Sn −→ Y to the image f∗(ξn) of a generator ξn of Hn(Sn; Z) under the map induced
on homology by f .

Corollary 2.3 (of Theorem 1.6). Let p be an odd prime and let s ∈N. Suppose that
Hn−1(ΣX; Z) contains a Z/ps-summand, generated by a class z ∈ Im(h). Let
ν : Sn−1 −→ ΣX be a map with h(ν) = z, and let r ∈N be such that the order of ν is equal to
prc, for c prime to p. Then ΣX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r.

Before proving this Corollary, we note that by the Hurewicz Theorem it immediately
implies the following.

Corollary 2.4. Let n be the least natural number for which H̃n(ΣX; Z) is nontrivial. If
H̃n(ΣX; Z) contains a Z/ps-summand, for p an odd prime and s ∈N, then ΣX is
Z/ps-hyperbolic.

Proof of Corollary 2.3. By replacing ν with cν (and z with cz) we may assume without
loss of generality that c = 1. Since ν has order pr, it extends to a map
µ : Pn(pr) −→ ΣX.

Let x generate Hn(Pn(pr); Z/ps), and let y generate Hn−1(Pn(pr); Z/ps). The
Bockstein β satisfies β(x) = y. We have µ∗(y) = h(ν) = z, and
β(µ∗(x)) = µ∗(β(x)) = µ∗(y) = z. This implies that µ∗(x) and µ∗(y) must both have
order ps, hence that

µ∗ : H∗(Pn(pr); Z/ps) −→ H∗(ΣX; Z/ps)

is an injection. Thus, by Theorem 1.6, ΣX is p-hyperbolic concentrated in exponents
s, s + 1, . . . , r, as required.

A first example of this sort highlights how much bigger the homotopy of an
Eilenberg-MacLane space becomes upon suspending.

Example 2.5. The least-dimensional homology of ΣK(Z/ps, n) is isomorphic to Z/ps, so
Corollary 2.4 implies that ΣK(Z/ps, n) is Z/ps-hyperbolic for p odd.

More generally, we have:
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Example 2.6. Let G be a finite group. Atiyah [5, Theorem 13.1] has shown that the
cohomology of G (which is the cohomology of K(G, 1)) is nonvanishing in infinitely many
degrees. Since the cohomology of G is annihilated by multiplication by |G| [3, Corollary
II.5.4] the lowest-dimensional nontrivial cohomology Hn(K(G, 1); Z) must contain a
Z/ps-summand for some ps dividing |G|. By the universal coefficient theorem, the least
nontrivial homology is Hn−1(K(G, 1); Z), which must also contain such a summand. By the
suspension isomorphism and Corollary 2.4, ΣK(G, 1) is Z/ps-hyperbolic, provided that
p 6= 2. In particular, this means that if |G| is odd, then ΣK(G, 1) is Z/ps-hyperbolic for some
ps dividing the order of G.

If the (co)homology of G is known in least nontrivial dimension, then we can be more precise.
Algebraic interpretations exist for the first few nontrivial homology groups: H1(K(G, 1), Z) is
the abelianization Gab, and H2(K(G, 1), Z) is known as the Schur multiplier. Consider the
Alternating groups An. These are simple, hence have trivial abelianization, and the Schur
multiplier is Z/2 unless n = 6, 7, in which case it is Z/6 [26] . In particular, Corollary 2.4
implies that the suspended Eilenberg-MacLane spaces of A6 and A7 are Z/3-hyperbolic.
Another example is the Suzuki group Suz, which is one of the sporadic simple groups, and has
Schur Multiplier Z/6 [15] , so again ΣK(Suz, 1) is Z/3-hyperbolic.

3 Common preamble

This section collects some foundational material which will be used in the proofs of
both main results. First, we have the following well-known proposition, which we use
to deduce Corollary 1.4 from Theorem 1.3.

Proposition 3.1. Let n ≥ 3. If ` ∈N has a prime power factorization ` = pr1
1 pr2

2 . . . prm
m then

Pn(`) ' Pn(pr1
1 ) ∨ Pn(pr2

2 ) ∨ · · · ∨ Pn(prm
m ),

and furthermore Pn(pr) is q-locally contractible for any prime q 6= p.

Proof. Define a map f : Pn(pr1
1 ) ∨ Pn(pr2

2 ) ∨ · · · ∨ Pn(prm
m ) −→ Pn(`) which is given on

the wedge summand Pn(pri
i ) as degree 1 on the top cell and degree `

p
ri
i

on the bottom

cell; that is, according to the following diagram of defining cofibrations.

Sn−1 p
ri
i // Sn−1

`

p
ri
i��

// Pn(pri
i )

f |
Pn(p

ri
i )

��
Sn−1 ` // Sn−1 // Pn(`)

By the Chinese Remainder Theorem, f induces an isomorphism on integral homology.
Thus, by Whitehead’s theorem [31] , f is in fact a homotopy equivalence.
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To see that Pn(pr) is contractible after localization at q 6= p, note that the homology
with coefficients in the integers localized at q, H∗(Pn(pr); Z(q)), is trivial, and thus by
Whitehead’s theorem, the inclusion of the basepoint is a homotopy equivalence.

3.1 The Witt Formula and the Hilton-Milnor Theorem

We will be interested in counting the dimension of various ‘weighted components’ of
free Lie algebras. These Lie algebras will be ungraded in the proof of Theorem 1.3 and
will be graded for the proof of Theorems 1.5 and 1.6. In both cases, the quantities we
wish to count are determined by the Witt formula, which we now define.

Let µ : N −→ {−1, 0, 1} be the Möbius inversion function, defined by

µ(s) =


1 s = 1

0 s > 1 is not square free

(−1)` s > 1 is a product of ` distinct primes.

The Witt Formula Wn(k) is then defined by

Wn(k) =
1
k ∑

d|k
µ(d)n

k
d .

The Witt formula feeds into the proof of Theorem 1.3 via Theorem 3.3, and into the
proof of Theorems 1.5 and 1.6 via Theorem 8.3. The asymptotics of the Witt formula
are as follows:

Lemma 3.2. [6, Introduction] The ratio

Wn(k)
1
k nk

tends to 1 as k tends to ∞.

We now introduce the Hilton-Milnor Theorem. Let L be the free (ungraded) Lie
algebra over Z on basis elements x1, . . . , xn. For an iterated bracket B of the elements
xi, let ki(B) ∈N∪ {0} be the number of instances of the generator xi occurring in B.
The sum k(B) = ∑n

i=1 ki(B) is called the weight of B, following Hilton [18] . By
induction on k, Hilton defines a subset Lk of the brackets of weight k, which he calls
the set of basic products of weight k. The basic products of weight 1 are precisely the xi.
The union L =

⋃∞
k=1 Lk is a free basis for L (see for example [28, Theorem 5.3] , but

note that what we call basic products, Serre calls a Hall basis).
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Theorem 3.3. [18, Theorems 3.2, 3.3] Let L be the free Lie algebra over Z on basis elements
x1, . . . , xn. Then the cardinality |Lk| of the set of basic products of weight k is equal to
Wn(k).

We are now ready to state the Hilton-Milnor Theorem. Write X∧k for the smash
product of k copies of the space X.

Theorem 3.4. [18, 21] Let X1, X2, . . . , Xn be connected CW-complexes. There is a homotopy
equivalence

ΩΣ(X1 ∨ · · · ∨ Xn) ' ∏
B∈L

ΩΣ(X∧k1(B)
1 ∧ · · · ∧ X∧kn(B)

n ),

where the right hand side is the weak infinite product.

4 Decompositions of Moore spaces

In this section we make the first step in the proof of Theorem 1.3. Namely, we will see
that it follows from work of Cohen, Moore, and Neisendorfer that a Moore space
Pn(pr) with pr 6= 2 contains Pn1(pr) ∨ Pn2(pr) as a retract after looping, and so it
suffices to prove that Pn1(pr) ∨ Pn2(pr) is Z/ps-hyperbolic. We will also record
Corollary 4.6, which describes the behaviour of Moore spaces under iterated smash
products.

When p is odd, the loop-decomposition of Pn(pr) depends on the parity of n. We have
the following three theorems, which give the three cases of the decomposition.

Theorem 4.1. [12, Theorem 1.1] Let p be an odd prime, and let n > 0. Then

ΩP2n+2(pr) ' S2n+1{pr} ×Ω
∞∨

m=0

P4n+2mn+3(pr).

Theorem 4.2. [13] Let p be an odd prime, and let n > 0. Then there is a space T2n+1{pr} so
that

ΩP2n+1(pr) ' T2n+1{pr} ×ΩΣ
∨
α

Pnα (pr),

where
∨

α Pnα (pr) is an infinite bouquet of mod-pr Moore spaces, and each nα satisfies
nα ≥ 4n− 1.

Lemma 4.3. [11, Lemma 2.6] Let n ≥ 3 and r ≥ 2. Then there exist spaces Tn{2r} such that

ΩPn(2r) ' Tn{2r} ×Ω
∨
α

Pmα (2r),

where
∨

α Pmα (2r) is an infinite bouquet of mod-2r Moore spaces, and each mα satisfies
mα ≥ n.
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Theorems 4.1 and 4.2, together with Lemma 4.3 immediately imply the following
corollary.

Corollary 4.4. Let p be prime and let r ∈N. Suppose that pr 6= 2, and let n ≥ 3. Then
ΩPn(pr) has Ω(Pn1(pr) ∨ Pn2(pr)) as a retract for some n1, n2 ≥ n.

Smash powers of Moore spaces are well-understood, by means of the following
Lemma.

Lemma 4.5. [22] Let p be prime, and let r ∈N, with pr 6= 2. For n, m ≥ 2,

Pn(pr) ∧ Pm(pr) ' Pm+n(pr) ∨ Pm+n−1(pr).

For a space X, write X∨i for the wedge sum of i copies of X. Applying Lemma 4.5
repeatedly gives the following binomial-type formula.

Corollary 4.6. Let p be prime, and let r ∈N, with pr 6= 2. For n, m ≥ 2, and k1, k2 ∈N.
Letting k = k1 + k2, we have

Pn(pr)∧k1 ∧ Pm(pr)∧k2 '
k−1∨
i=0

(Pk1n+k2m−i(pr))∨(k−1
i ).

5 Classes in the homotopy groups of Pn(pr)

In this section, we identify some stable classes in the homotopy groups of Pn(pr). The
identification of these classes is the way in which we go beyond Huang and Wu’s
work. We will transfer known classes from the stable homotopy groups of spheres
(Lemma 5.4) into the stable homotopy groups of Moore Spaces by means of the stable
homotopy exact sequence of the cofibration defining the Moore space. To show that
the resulting classes have the correct order, we need assurances about the maximum
order of the torsion in the stable homotopy groups of Moore spaces, and these
assurances are provided by Corollary 5.2.

Cohen, Moore, and Neisendorfer have shown that the homotopy groups of Pn(pr)

contain classes of order pr+1 [12] . However, these classes are all outside the stable
range; the stable homotopy groups of Pn(pr) were already known to be annihilated by
multiplication by pr. The proof of this fact is due to Barratt.

Lemma 5.1. [7] Let A be (n− 1)-connected, and let p be a prime. Suppose that we have
psidΣA ' ∗ in the group [ΣA, ΣA], for some s ∈N. Then psπn+j(ΣA) = 0 for
j ≤ (p− 1)n.

Corollary 5.2. Let p be prime, and let s ∈N such that ps 6= 2. Then we have
psπn+j(Pn(ps)) = 0 for j ≤ (p− 1)(n− 2)− 2.
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Proof. By definition, Pn(ps) ' ΣPn−1(ps), and Pn−1(ps) is (n− 3)-connected. By
Lemma 5.1 the result therefore follows from the fact that the identity map on Pn(ps)

has order ps [23, Proposition 6.1.7] .

We continue in a similar vein. In general, the degree ` map on Sn does not induce
multiplication by ` on homotopy groups. However, it follows from the Hilton-Milnor
Theorem (Theorem 3.4) that it must do so in the stable range, as in the next lemma.

Lemma 5.3. The degree ` map Sn `−→ Sn induces multiplication by ` on πj(Sn) for
j ≤ 2n− 2.

Proof. Write n = m + 1 and i = j− 1. By the adjoint isomorphism, it suffices to show
that Ω` induces multiplication by ` on πi(ΩSm+1) for i < 2m. The map ` is the
composition

Sm+1 c−→
∨̀
i=1

Sm+1 ∇−→ Sm+1

of the `-fold suspension comultiplication c on Sm+1 with the fold map ∇. Let L be the
free Lie algebra on ` generators, as in Subsection 3.1. The Hilton-Milnor Theorem
(Theorem 3.4) gives a decomposition

Ω
∨̀
i=1

Sm+1 ' Ω ∏
B∈L

Skm+1,

where k is the weight of B ∈ L , so in particular is implicitly a function of B.

Let f ∈ πi(ΩSm+1). Applying the above decomposition to (Ω`)∗( f ) = (Ω`) ◦ f gives
factorizations ϕ and θ as in the following diagram

ΩSm+1 Ωc // Ω
∨`

i=1 Sm+1 Ω∇ // ΩSm+1

Si ϕ //

f

OO

Ω ∏B∈L Skm+1.

'

OO
θ

77

We must show that θ ◦ ϕ ' ` f . Since i < 2m, cellular approximation tells us that ϕ

factors through the sub-product Ω ∏`
i=1 Sm+1 consisting of those terms where k = 1.

Hilton [18] tells us that the restriction of the Hilton-Milnor map to these summands is
given by the product under the loop multiplication of the looped wedge factor
inclusions ΩSm+1 −→ Ω

∨`
i=1 Sm+1. Thus, the restriction of θ to these summands is the

`-fold loop multiplication map

m : Ω
`

∏
i=1

Sm+1 −→ ΩSm+1.
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This map is a left homotopy inverse to the looped inclusion
Ωι : Ω

∨`
i=1 Sm+1 −→ Ω ∏`

i=1 Sm+1 of the wedge into the product, so ϕ is homotopic to
Ωι ◦Ωc ◦ f .

We may now modify our diagram to obtain

ΩSm+1 Ωc // Ω
∨`

i=1 Sm+1

Ωι
��

Ω∇ // ΩSm+1

Si ϕ //

f

OO

Ω ∏`
i=1 Sm+1.

OO
m

88

To finish, we note that by the axiomatic definition of a comultiplication [4] we have
that Ωι ◦Ωc = ∆, the diagonal map into the `-fold product, and the composition m ◦ ∆
is by definition the map inducing multiplication by ` in the group structure on
[Si, ΩSm+1] = πi(ΩSm+1) coming from the fact that ΩSm+1 is an H-group. But this
group structure coincides with that of the homotopy group [4] , and so we are
done.

Let πS
j denote the j-th stable homotopy group of spheres. Work of Adams on the

J-homomorphism [1, 2] implies that any cyclic group of prime power order occurs as
a summand in some πS

j :

Lemma 5.4. [10, Lemma 3.4] For any prime p and any s ∈N, there exists j such that Z/ps

is a direct summand in πS
j . That is, for a fixed choice of such a j, Z/ps is a direct summand in

πn+j(Sn) for all n ≥ j + 2.

These summands can be transplanted to Pn(pr) as follows.

Corollary 5.5. Let p be prime, and let r ≥ s ∈N. If ps 6= 2, then there exists j such that
Z/ps is a direct summand in πn+j(Pn(pr)) for all n > j + 3.

Proof. The cofibration Pn(pr) −→ Sn pr

−→ Sn gives a truncated long exact sequence on
homotopy groups [17] :

π2n−3(Pn(pr)) −→ π2n−3(Sn) −→ π2n−3(Sn) −→ π2n−4(Pn(pr)) −→ . . .

· · · −→ πn(Pn(pr)) −→ πn(Sn) −→ πn(Sn) −→ πn−1(Pn(pr)) −→ 0.

By Lemma 5.4, there exists j such that Z/ps is a direct summand in πn+j(Sn) for all
n ≥ j + 2. Fix n ≥ j + 4, and let f : Sn+j −→ Sn generate a Z/ps-summand. By Lemma
5.3, since we are in the stable range, the composite ps ◦ f is homotopic to ps f , and by
assumption f has order ps. Thus, since n ≥ j + 3, the exact sequence applies, and
taking r = s we obtain a lift f̃ ∈ πn+j(Pn(ps)) making the following diagram
commute.
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Pn(ps) // Sn ps
// Sn

Sn+j.

f

OO

'∗

==

f̃

dd

We also have, for each r ≥ s, a diagram

Sn−1 pr
// Sn−1

Sn−1 ps
// Sn−1.

pr−s

OO

Extending the rows of this diagram to cofibre sequences and combining with the
previous one gives a diagram

Sn−1 // Pn(pr)
ρ

// Sn pr
// Sn

Sn−1

pr−s

OO

// Pn(ps)
ρ

//

ϕ

OO

Sn ps
// Sn

pr−s

OO

Sn+j,

f

OO

'∗

==

f̃

cc

We have that ρ∗(ϕ ◦ f̃ ) = f , so the image of ρ∗ : πn+j(Pn(pr)) −→ πn+j(Sn) contains f .
Since f generates a Z/ps-summand, this gives a surjection πn+j(Pn(pr)) −→ Z/ps,
and it suffices to argue that this surjection is split. From the diagram, it further suffices
to do so in the case r = s.

By Corollary 5.2, since n ≥ j + 4 we have psπn+j(Pn(ps)) = 0. This means that the
above surjection πn+j(Pn(ps)) −→ Z/ps is a map of Z/ps-modules with free
codomain, so is split, as required.

6 Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. In Section 4, we reduced the problem to
showing Z/ps-hyperbolicity of the wedge Pn(pr) ∨ Pm(pr). By the Hilton-Milnor
Theorem (Theorem 3.4) and Corollary 4.6, we will see that each of the stable classes
identified in Section 5 will give exponentially many summands in the homotopy
groups of Pn(pr) ∨ Pm(pr), which will suffice.

Proof of Theorem 1.3. By Corollary 4.4, it suffices to prove that if n, m ≥ 2 then
Ω(Pn+1(pr) ∨ Pm+1(pr)) is Z/ps-hyperbolic for all s ≤ r. Let L be the free ungraded
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Lie algebra over Z on two generators. The Hilton-Milnor theorem (Theorem 3.4) gives

Ω(Pn+1(pr) ∨ Pm+1(pr)) ' ΩΣ(Pn(pr) ∨ Pm(pr)) ' ∏
B∈L

ΩΣPn(pr)∧k1 ∧ Pm(pr)∧k2 ,

where we have written ki = ki(B), leaving the fact that ki is a function of B implicit.
Applying Lemma 4.6 factor-wise, this last is homotopy equivalent to

Ω ∏
B∈L

Σ
k−1∨
i=0

(Pk1n+k2m−i(pr))∨(k−1
i ) ' Ω ∏

B∈L

k−1∨
i=0

(Pk1n+k2m+1−i(pr))∨(k−1
i ),

where k = k1 + k2 is also implicitly a function of B.

By Corollary 5.5, let j be such that πN+j(PN(pr)) contains a Z/ps-summand for all
N > j + 3. For each B ∈ L , the associated factor of the above decomposition contains
2k−1 Moore spaces. Supposing without loss of generality that n ≤ m, the dimensions
of these Moore spaces are at least k(n− 1) + 2. Thus, for k > j+1

n−1 , the homotopy
groups of each factor

k−1∨
i=0

(Pk1n+k2m+1−i(pr))∨(k−1
i )

contain 2k−1 summands isomorphic to Z/ps in dimensions at most km + 1 + j.

The number of factors for which the weight of B is k is equal to W2(k) (Theorem 3.3),
so we may conclude that

km+1+j⊕
i=1

πi(Pn+1(pr) ∨ Pm+1(pr))

contains at least 2k−1W2(k) summands isomorphic to Z/ps. The sequence 2k−1W2(k)

certainly grows exponentially in k (in fact, by Lemma 3.2, it grows like 1
2k 4k) and this

completes the proof.

7 Modules over Z/ps

The purpose of this section is to prove various elementary facts about modules over
Z/ps which we will use later. These facts are mostly intuitively clear, so we
recommend that the reader skip this section on first reading, referring back only as
necessary.
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7.1 Injections

The main point of this subsection is to develop the ‘linear algebra’ to prove Lemma
7.4, which says that injections from free Z/ps-modules are split, and that therefore the
‘dimension’ of the codomain must be at least the ‘dimension’ of the domain.

Let p be prime and let s ∈N. Let M be a finitely generated module over Z/ps. By the
structure theorem for finitely generated Z-modules (for example as in [20, Theorem
7.5] ) M decomposes as a direct sum

M ∼=
n⊕

i=1

Z/psi ,

where each si satisfies 1 ≤ si ≤ s. Further, if we order the summands so that si+1 ≥ si,
then the sequence (si | 1 ≤ i ≤ n) is uniquely determined. In particular, if we fix
t ∈N, then the number of values of i for which si = t is uniquely determined. This
number is then precisely the Z/pt-dimension dimZ/pt (M) of Definition 1.1. We will
often use without comment the fact that a Z/ps-module is equivalently a Z-module
M satisfying ps M = 0.

We will wish to mimic the approach of ordinary linear algebra as far as possible. We
will wish to be able to ‘change basis’, and to do so we need a notion of basis, which
must generalize the idea of a free basis in that our elements may have variable order.

Definition 7.1. Let M be a Z/ps-module. A basis of M is a list

((ei, si) ∈ M×N | 1 ≤ i ≤ n),

such that the following conditions are satisfied:

• Each x ∈ M is expressible as x = ∑n
i=1 λiei for λi ∈ Z/ps (spanning).

• ∑n
i=1 λiei = 0 if and only if psi |λi for each i (linear independence).

Lemma 7.2. Any finitely generated Z/ps-module has a basis. Conversely, if
((ei, si) | 1 ≤ i ≤ n) is a basis of M, then the map

n⊕
i=1

Z/psi −→ M

defined by sending the generator of the i-th summand to ei is an isomorphism.

Proof. To see that M has a basis write M ∼=
⊕n

i=1 Z/pti , taking ei to be a generator of
the i-th summand, and taking si = ti. It follows immediately that this is a basis.
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Conversely, let ϕ :
⊕n

i=1 Z/psi −→ M be as in the theorem statement. By linear
independence of the basis, psi ei = 0 for each i, so ϕ is well-defined. Surjectivity of ϕ

follows immediately from the spanning condition, while injectivity follows
immediately from linear independence. Thus, ϕ is an isomorphism, as required.

Lemma 7.3. Let ((ei, si) | 1 ≤ i ≤ n) be a basis of M.

• If λ is a unit in Z/ps, then replacing the basis element (ek, sk) with (λek, sk) again
yields a basis.

• If j 6= k and sj ≤ sk, then replacing the basis element (ek, sk) with (ek + µej, sk) for any
µ ∈ Z/ps again yields a basis.

Proof. We will show only that the basis obtained by the second replacement is linearly
independent; the other parts are similar.

Write (e′i, si) for the new basis, and suppose that ∑n
i=1 λie′i = 0. We must show that psi

divides λi for each i. Substituting in, we have (∑i 6=j,k λiei) + λjej + λk(ek + µej) = 0.
Since the original basis was linearly independent, we have that psi |λi for i 6= j. In
particular, psk |λk. We also have psj |(λj + µλk). Since sj ≤ sk we have psj |λk, so psj |λj.
Thus, psi |λi for all i, and thus the (e′i, si) form a basis, as required.

It is always true that a surjection onto a free module splits; over Z/ps, it is
additionally true that an injection from a free module splits.

Lemma 7.4. Let M and N be finitely-generated Z/ps-modules, with M free. The image of
any injection of Z/ps-modules ϕ : M −→ N is a summand, and
dimZ/ps (N) ≥ dimZ/ps (M).

Proof. Let (x1, t1), . . . , (xm, tm) be a basis of M, and let

(e1, s1), . . . , (en, sn), (e′1, s′1), . . . (e′n′ , s′n′)

be a basis of N, such that each si = s and each s′i < s.

Thus we have f (x1) = ∑n
i=1 λiei + ∑n′

i=1 λ′ie
′
i for some coefficients λi and λ′i. In

particular, since f (x1) has order ps, there must be some λi which is not divisible by
p.By repeated use of Lemma 7.3 we may therefore change basis in M by replacing ei

by ∑n
i=1 λiei + ∑n′

i=1 λ′ie
′
i. After this change we have f (x1) = ei, and by renumbering we

may assume that i = 1.

We repeat this procedure inductively: at the j-th stage we have f (xi) = ei for all i < j
and we wish to arrange that f (xj) = ej. We have that f (xj) = ∑n

i=1 λiei + ∑n′
i=1 λ′ie

′
i for

some coefficients λi and λ′i, and the set f (x1), . . . , f (xj−1) spans the submodule
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〈e1, . . . , ej−1〉 ⊂ M. By changing basis according to Lemma 7.3, we may arrange that
λi = 0 for i < j, and this does not change the fact that f (xi) = ei for these values of i.
Again, f (xj) has order ps, so there must be i ≥ j with λi not divisible by p, and by
renumbering we may assume that i = j. By changing basis we may arrange that
f (xj) = ej. This completes the inductive step, hence the proof that Im( f ) is a
summand. Since after this procedure we have f (xi) = ei for i = 1, . . . , m we must have
n ≥ m, which is the other part of the theorem statement.

We also have the following technical lemma, which will be used in the proof of
Proposition 10.12.

Lemma 7.5. Let X, A, B, and Y be Z/ps-modules, with X free and ps−1B = 0. Let
f : X −→ A⊕ B and g : A⊕ B −→ Y be homomorphisms. Let iA be the inclusion of A in
A⊕ B, and let πA be the projection A⊕ B −→ A. If g ◦ f is injective, then the composite
g ◦ iA ◦ πA ◦ f is also injective.

Proof. Since X is free, a map defined on X is an injection if and only if its restriction to
ps−1X is an injection. It therefore suffices to show that if g ◦ iA ◦ πA ◦ f (ps−1x) = 0
then ps−1x = 0.

Thus, suppose that g ◦ iA ◦ πA ◦ f (ps−1x) = 0. Write f (x) = a + b ∈ A⊕ B, for a ∈ A
and b ∈ B. Then f (ps−1x) = ps−1a, since ps−1B = 0. In particular,
f (ps−1x) = iA ◦ πA ◦ f (ps−1x). Thus, g ◦ f (ps−1x) = 0, and g ◦ f is an injection, so
ps−1x = 0, as required.

7.2 Surjections

The main result of this subsection is Lemma 7.9, which is the basic algebraic
scaffolding for the proof of Theorem 1.5.

Lemma 7.6. Let ϕ : M −→ N be a surjection of Z/ps-modules. Then

dimZ/ps (M) ≥ dimZ/ps (N).

Proof. Write N = F⊕ C, where F is free over Z/ps, and the complementary module C
satisfies ps−1C = 0. Let π : N −→ F be the projection. The map π ◦ ϕ is a composite of
surjections, hence a surjection, so is split by freeness of F. Thus, we have an
isomorphism M ∼= F⊕ D for some complementary module D, so

dimZ/ps (M) ≥ dimZ/ps (F) = dimZ/ps (N),

as required.
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Lemma 7.7. Let A be a submodule of a Z/ps-module N, such that A + pN = N. Then
A = N.

Proof. Because N is a Z/ps-module, we have psN = 0, so certainly A ⊃ psN. We will
now show that if A ⊃ pkN then A ⊃ pk−1N. By induction, this implies that
A ⊃ p0N = N, which suffices.

Assume that A ⊃ pkN, and let z ∈ N. We have by assumption that z = x + py for
x ∈ A and y ∈ N. Thus, pk−1z = pk−1x + pky. But now, pky ∈ pkN, which by
induction is a subset of A, so pk−1z ∈ A, and since z is an arbitrary element of N, this
implies that pk−1N ⊂ A. This completes the inductive step, hence the proof.

Lemma 7.8. Let M, M′, N be Z-modules. Let p be prime and let s ≤ r ∈N. Suppose that
pr M = 0, so M may be regarded as a module over Z/pr, and that psN = 0. Let
ϕ : M −→ N be a surjection which admits a factorization

M′
ϕ̃

!!
M

ϕ //

ι

OO

N.

Then ∑r
t=s dimZ/pt (M′) ≥ dimZ/ps (N).

Proof. We will first argue that we may assume pr M′ = 0 without loss of generality.
Write M′ = A⊕ B, where pr A = 0, and B is a direct sum of copies of Z, Z/qt for
various q 6= p and t ∈N, and Z/pt for t > r. This gives a decomposition
M = ι−1(A)⊕ ι−1(B). The restriction of ι to ι−1(B) must have image contained in pB,
so the same restriction of ϕ̃ ◦ ι has image contained in pN. Furthermore, since ϕ̃ is a
surjection, we have that Im(ϕ̃ ◦ ι|ι−1(A)) + Im(ϕ̃ ◦ ι|ι−1(B)) = N, so in particular
Im(ϕ̃ ◦ ι|ι−1(A)) + pN = N. By Lemma 7.7 we then have Im(ϕ̃ ◦ ι|ι−1(A)) = N. We may
therefore restrict M′ to A and M to ι−1(A) in the diagram without affecting the
hypotheses. In particular, since pr A = 0 it suffices to prove the lemma in the case that
pr M′ = 0.

We now tensor the diagram with Z/ps; since psN = 0, we have N ⊗Z/ps ∼= N. Since
pr M′ = 0, we have dimZ/ps (M′ ⊗Z/ps) = ∑r

t=s dimZ/pt (M′). By Lemma 7.6, since
ϕ̃⊗Z/ps is a surjection we have dimZ/ps (M′ ⊗Z/ps) ≥ dimZ/ps (N ⊗Z/ps), which
completes the proof.

By applying Lemma 7.8 in each degree we immediately obtain the following.

Corollary 7.9 (The ‘Sandwich’ Lemma). Let M, M′, N be graded Z-modules. Let p be
prime and let r ≥ s ∈N. Suppose that pr M = 0 and that psN = 0. Let ϕ : M −→ N be a
surjection which admits a factorization
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M′

!!
M

ϕ //

OO

N.

If N is Z/ps-hyperbolic then M′ is p-hyperbolic concentrated in exponents s, s + 1, . . . , r.

Lemma 7.10. Let ϕ : M −→ N be a map of Z/ps-modules, with N free. Then
dimZ/ps (Im(ϕ)) = dimZ/p(Im(ϕ⊗Z/p)).

Proof. Let (e1, s1), . . . , (em, sm), (e′1, s′1), . . . , (e′m′ , s′m′) be a basis of M, where si = s and
s′i < s. Let S be a maximal subset of the ei such that the restriction of ϕ to the
submodule of M generated by S is an injection. Denote this submodule by 〈S〉. By
renumbering we may assume that S = {e1, . . . ek} for some k ≤ n. We clearly have
Im(ϕ|〈S〉) ⊂ Im(ϕ), and we will now show that Im(ϕ) ⊂ Im(ϕ|〈S〉) + pN.

Since N is assumed free, and the elements e′i have order psi for si < s, we must have
ϕ(e′i) ∈ pN. Now consider ej, for k + 1 ≤ j ≤ m. By construction of S, the restriction of
ϕ to 〈S ∪ {ej}〉 is not injective, so there exist λ1, . . . λk, λ ∈ Z/ps with λ 6= 0 such that
ϕ(∑k

i=1 λiei + λej) = 0. This implies that λϕ(ej) ∈ Im(ϕ|〈S〉). Thus, pt ϕ(ej) ∈ Im(ϕ|〈S〉)
for some t < s. By Lemma 7.4 we may write N = Im(ϕ|〈S〉)⊕ C for some
complementary module C, and under this correspondence we have ϕ(ej) = (β, γ) for
γ ∈ C and β ∈ Im(ϕ|〈S〉). Since pt ϕ(ej) ∈ Im(ϕ|〈S〉), we have ptγ = 0, so by freeness of
N, t < s implies that γ ∈ pN, so ϕ(ej) ∈ Im(ϕ|〈S〉) + pN. We have now shown that all
elements of the basis of M are carried under ϕ to Im(ϕ|〈S〉) + pN, so
Im(ϕ) ⊂ Im(ϕ|〈S〉) + pN, as claimed.

Now, ϕ|〈S〉 is split by Lemma 7.4, so dimZ/ps (Im(ϕ|〈S〉)) = k. Furthermore, by taking
the inclusion on each summand there is a surjection
Im(ϕ|〈S〉)⊕ pN −→ Im(ϕ|〈S〉) + pN ⊂ N, and pN is annihilated by multiplication by
ps−1, so by Lemma 7.6 dimZ/ps (Im(ϕ|〈S〉) + pN) ≤ k. Since
dimZ/ps (Im(ϕ|〈S〉) + pN) ≥ dimZ/ps (Im(ϕ|〈S〉)), this implies that the former is equal
to k. Thus, since

Im(ϕ|〈S〉) ⊂ Im(ϕ) ⊂ Im(ϕ|〈S〉) + pN

applying Lemma 7.4 to the inclusions gives

k = dimZ/ps (Im(ϕ|〈S〉)) ≤ dimZ/ps (Im(ϕ)) ≤ dimZ/ps (Im(ϕ|〈S〉) + pN) = k,

so dimZ/ps (Im(ϕ)) = k.

To finish the proof we must show that dimZ/p(Im(ϕ⊗Z/p)) = k. Since the images of
ϕ and ϕ|〈S〉 differ only by at most pN, we have Im(ϕ⊗Z/p) = Im(ϕ|〈S〉⊗Z/p). Since
ϕ|〈S〉 is split injective, ϕ|〈S〉⊗Z/p is injective, so dimZ/p(ϕ|〈S〉⊗Z/p) = k, which
completes the proof.
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7.3 Tor and the Universal Coefficient Theorem

The purpose of this section is to prove that for t < s a map inducing an injection on
homology with Z/ps-coefficients also induces an injection on homology with
Z/pt-coefficients (Lemma 7.13) provided that the domain is free. This follows
straightforwardly from the Universal Coefficient Theorem for homology, where we
regard Z/pt as a module over Z/ps. The inclusion of the bottom cell of a Moore space
provides an easy counterexample to the converse; the algebraic point being that the
converse of Lemma 7.12 is false.

Lemma 7.11. For any finitely generated Z/ps-modules M, N we have

ps−1TorZ/ps (M, N) = 0,

and furthermore if M or N is free then TorZ/ps (M, N) = 0.

Proof. For any ring R and R-module M we have TorR(R, M) = 0, since R is free as an
R-module. If 1 ≤ t < s, then a free resolution of Z/pt over Z/ps is given by

0 −→ Z/ps ·p
t

−→ Z/ps −→ 0,

so, for any Z/ps-module M, TorZ/ps (Z/pt, M) = Ker(M
·ps

−→ M), which is annihilated
by multiplication by pt, hence in particular is annihilated by multiplication by ps−1.
Since any Z/ps-module decomposes as a direct sum of modules isomorphic to Z/pt

for 1 ≤ t ≤ s, both parts of the Lemma now follow by additivity of Tor.

Lemma 7.12. Let ϕ : M −→ N be a map of Z/ps-modules, with M free. Let t < s. If ϕ is
injective then ϕ⊗Z/pt : M⊗Z/pt −→ N ⊗Z/pt is injective.

Proof. Note that M⊗Z/pt is a free Z/pt-module. Suppose that ϕ⊗Z/pt is not
injective. Then there exists x ∈ M which is not divisible by pt such that ϕ(x) is
divisible by pt. By freeness of M, ps−tx is not divisible by ps, hence is nonzero, but
ϕ(ps−tx) = ps−t ϕ(x) is divisible by ps, hence is zero. That is, ϕ is not injective.

Lemma 7.13. Let t < s ∈N. Let f : X −→ Y be a map of spaces, and suppose that
H∗(X; Z/ps) is a free Z/ps-module. If

f∗ : H∗(X; Z/ps) −→ H∗(Y; Z/ps)

is injective then
f∗ : H∗(X; Z/pt) −→ H∗(Y; Z/pt)

is injective.
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Proof. Write f t
∗ for the induced map on homology with Z/pt-coefficients, and likewise

f s
∗. Applying the universal coefficient theorem for the module Z/pt over the ring

Z/ps we get a map of short exact sequences

0 // Hn(X; Z/ps)⊗Z/pt //

f s
∗⊗Z/pt

��

Hn(X; Z/pt) //

f t
∗
��

0

��

// 0

0 // Hn(Y; Z/ps)⊗Z/pt // Hn(Y; Z/pt) // Tor(Hn−1(Y; Z/ps), Z/pt) // 0.

The Tor term in the top row vanishes by the freeness hypothesis on H∗(X; Z/ps).
Since the first map in each exact sequence is an injection, f t

∗ is injective if and only if
f s
∗ ⊗Z/pt is injective. By Lemma 7.12, if f s

∗ is injective, then f s
∗ ⊗Z/pt is injective, so

f t
∗ is injective, as required.

8 Free differential Lie algebras

In this section we will show that the module of boundaries BL(x, dx) in the free
differential Lie algebra L(x, dx) over Z/pr is Z/pr-hyperbolic. In the situation of
Theorem 1.5 we will obtain a factorization of the tensor map

BL(x, dx) −→ π∗(ΩY) −→ BL(x, dx)⊗Z/ps,

which will imply by Corollary 7.9 (The ‘Sandwich’ Lemma) that ΩY must be
p-hyperbolic concentrated in exponents s, s + 1, . . . , r. The desired Z/pr-hyperbolicity
of BL(x, dx) will follow from Cohen, Moore, and Neisendorfer’s description of the
homology of L(x, dx), which is Proposition 8.4.

Throughout this section we work over a ground ring R = Z/pr for p 6= 2. The next
definitions are as in [12] .

Definition 8.1. A graded Lie algebra is a graded Z/pr-module L, together with a
Z/pr-bilinear pairing

[ , ] : Ln × Lm −→ Ln+m,

called a Lie bracket which satisfies the relations of

• (antisymmetry): [x, y] = −(−1)deg(x)deg(y)[y, x] for all x and y in L.

• (the Jacobi identity): [x, [y, z]] = [[x, y], z] + (−1)deg(x)deg(y)[y, [x, z]] for all x, y,
and z in L.

• [x, [x, x]] = 0 for all x of odd degree.
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Let V be a graded Z/pr-module. Denote by L(V) the free Lie algebra on V. There is a
linear map j : V −→ L(V) and L(V) is characterized up to canonical isomorphism as
follows. For any map f : V −→ L where L is a graded Lie algebra, there is a unique
map g : L(V) −→ L so that g ◦ j = f . The Lie algebra L(V) may be constructed as
follows.

Let L′(V) be the free nonassociative graded algebra on V, where we think of the
operation as a bracket. Precisely, let Bk be the set of bracketings of a string of k
symbols. Concatenation of bracketings gives an operation Bk1 × Bk2 −→ Bk1+k2 , which
makes B =

⋃∞
i=1 Bi into a magma. As a module,

L′(V) =
∞⊕

k=1

(
⊕
b∈Bk

V⊗k),

where we think of each copy of V⊗k as being bracketed according to b. The bracket
operation on L′(V) is obtained by extending the operation on B bilinearly.

The free Lie algebra L(V) is obtained as the quotient of L′(V) by the relations of
Definition 8.1, and automatically has the desired universal property. Denote by θ the
quotient map L′(V) −→ L(V). It follows that for s < r, we have
L(V ⊗Z/ps) = L(V)⊗Z/ps.

Note also that any map from V into a graded Z/pr-module A with a bilinear
operation (that is to say, a nonassociative Z/pr-algebra) extends uniquely to a map of
graded nonassociative algebras L′(V) −→ A. The map θ is a map of nonassociative
algebras, hence is uniquely determined by its effect on V, and we will call it the natural
quotient.

Definition 8.2. A differential Lie algebra is a graded Lie algebra together with an
Z/pr-linear map d : L −→ L of degree −1, which

• is a differential: d2(x) = 0 for all x in L.

• is a derivation: d[x, y] = [dx, y] + (−1)deg(x)[x, dy] for all x and y in L.

If V carries a differential d, then we may define a differential on L′(V) which is the
unique derivation extending d. This differential can be seen to satisfy the relations of
Definition 8.1, and therefore descends to give a differential on L(V), which makes
L(V) into a differential Lie algebra.

When p = 3, Samelson products in π∗(ΩX; Z/3r) fail to satisfy the Jacobi identity, so
L′(V) will also serve as a version of L(V) which does not satisfy the Jacobi identity.
For p 6= 3, L′(V) may be replaced with L(V) everywhere in this paper, which slightly
simplifies things [12, Remark 6.3] .
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Write L(V)k for the weight-k component of L(V), that is, the submodule generated by
brackets of length k in the elements of V. It follows from our construction of the free
Lie algebra L(V) that L(V) ∼=

⊕∞
k=1 L(V)k, so weight gives a second grading on L(V),

and we shall write wt(x) = k whenever x ∈ L(V)k. We will use subscripts (as in L(V)i)
for ordinary grading, and superscripts (as in L(V)k) for weight. The dimension of the
weighted components is given by the Witt formula, which we defined in Section 3.

Theorem 8.3. [18, Theorems 3.2, 3.3] Let V be a free graded Z- or Z/ps-module of total
dimension n. Then the total dimension of L(V)k is Wn(k).

8.1 Homology and boundaries

Let x be an even-dimensional class in a graded Lie algebra L over Z/pr for p 6= 2. Let

τk(x) = adpk−1(x)(dx),

so deg(τk(x)) = pk deg(x)− 1

and let

σk(x) =
1
2

pk−1

∑
j=1

1
p

(
pk

j

)
[adj−1(x)(dx), adpk−1−j(x)(dx)],

so deg(σk(x)) = pk deg(x)− 2,

where we understand the coefficients 1
p (pk

j ) to be computed in the integers and then
reduced mod p.

Proposition 8.4. [12, Proposition 4.9] Let V be an acyclic differential Z/p-vector space.
Write L(V) ∼= HL(V)⊕ K, for an acyclic module K. If K has an acyclic basis, that is, a basis

{xα, yα, zβ, wβ},

where α and β range over index sets I and J respectively, and we have

d(xα) = yα, deg(xα) even,

d(zβ) = wβ, deg(zβ) odd,

then HL(V) has a basis
{τk(xα), σk(xα)}α∈I ,k≥1.

Remark 8.5. An acyclic basis for K may always be chosen, by the following inductive
procedure. Write Ki for the i-th graded component of K. Then d : Ki+1 −→ Ki, and
since K is acyclic we have Im(d) = Ker(d) in each Ki. Assume that we have a basis of
Ker(d) ⊂ Ki. Because Ker(d) = Im(d), d induces an isomorphism
Ki+1�Ker(d) −→ Im(d). Choose representatives of this basis in Ki+1, and choose a
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basis of Ker(d) ⊂ Ki+1. Combining these two sets gives a basis of Ki+1, and the subset
which forms a basis of Ker(d) is precisely what we need to continue the induction.
The induction can be started using the fact that K−1 = 0.

Recall that we write L(V)k for the weight-k component of L(V), that is, the submodule
generated by brackets of length k in the elements of V, and recall also that weight
defines a grading. Note that the differential d preserves weight. The operations τk and
σk satisfy

wt(τk(x)) = pkwt(x),

wt(σk(x)) = pkwt(x).

We will use weight to produce a modified dimension function which makes precise
the idea that ‘most’ of the decomposition of L(V) in Proposition 8.4 consists of the
summand K; the summand HL(V) is comparatively small.

Definition 8.6. Let M be a Z/pr-module, together with a grading wt, which we think
of as a weight, such that each weight-component Mi is free and finitely generated.
Define dimk(M) ∈ R by setting

dimk(M) =
k

∑
i=1

dim(Mi)

i
.

It follows immediately from the definition that

dimk(A⊕ B) = dimk(A) + dimk(B).

We will be concerned with evaluating the functions dimk on submodules of the free
Lie algebra L(V). We write BM for the module Im(d) of boundaries in a differential
module (M, d).

Lemma 8.7. Let V be an acyclic differential Z/p-vector space. For all k ∈N we have:

• dimk(HL(V)) < 1
p dimk(L(V)), and

• dimk(BL(V)) > p−1
2p dimk(L(V)).

Proof. Decompose L(V) ∼= HL(V)⊕ K as in Proposition 8.4, and choose a basis
{xα, yα, zβ, wβ} of K as in Remark 8.5, where α and β run over indexing sets I and J

respectively. The differential preserves weight, so by choosing such a basis in each
weighted component separately, we may assume that the basis vectors are
homogenous in weight. Let Sk be the set of those α ∈ I with wt(xα) ≤ k. Proposition
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8.4 gives that

dimk(HL(V)) < ∑
α∈Sk

∞

∑
j=1

1
wt(τj(xα))

+
1

wt(σj(xα))
= ∑

α∈Sk

∞

∑
j=1

1
pjwt(xα)

+
1

pjwt(xα)

= ∑
α∈Sk

2
wt(xα)

∞

∑
j=1

1
pj =

1
p− 1 ∑

α∈Sk

2
wt(xα)

.

On the other hand, the contribution of the xα and yα to the dimension of K gives that

dimk(K) ≥ ∑
α∈Sk

2
wt(xα)

,

so
dimk(K) > (p− 1) dimk(HL(V)).

Since L(V) ∼= HL(V)⊕ K, we have that dimk(L(V)) = dimk(K) + dimk(HL(V)), so

dimk(L(V)) > p dimk(HL(V)),

which proves the first inequality. This also implies that dimk(K) > p−1
p dimk(L(V)),

and since K is acyclic, we must have

dimk(BL(V)) ≥ 1
2

dimk(K).

Combining these proves the second inequality and completes the proof.

All we will require for our application is the case when V is the free Z/pr-module on
two generators x and y satisfying d(x) = y. In this case we will write L(x, dx) = L(V)

and L′(x, dx) = L′(V). Note that L(x, dx)⊗Z/ps is the free Lie algebra on V ⊗Z/ps.

Lemma 8.8. Let V be a graded acyclic Z/pr-module, free and finitely generated in each
dimension, of total dimension at least 2. Then the module of boundaries BL(V) is
Z/pr-hyperbolic. In particular, the module of boundaries BL(x, dx) in the free differential Lie
algebra L(x, dx) is Z/pr-hyperbolic.

Proof. Since L(V)⊗Z/p is the free Lie algebra over Z/p on V ⊗Z/p, by Lemma 7.10
applied to the differential d it suffices to prove the r = 1 case, for which we can use
Proposition 8.4, in the guise of Lemma 8.7.

By Lemma 8.7, we know that

dimk(BL(V)) >
p− 1

2p
dimk(L(V)).
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Thus,

k

∑
i=1

dim(BL(V)i) ≥
k

∑
i=1

dim(BL(V)i)

i
>

p− 1
2p

k

∑
i=1

dim(L(V)i)

i
≥ p− 1

2p

k

∑
i=1

dim(L(V)i)

k
.

Let n be the maximum i for which Vi 6= 0. The leftmost term is equal to
dim(

⊕k
i=1 BL(V)i), and BL(V)i ⊂ L(V)i ⊂ L(V)ni, so we have

dim(
nk⊕

j=1

BL(V)j) >
p− 1
2pk

k

∑
i=1

dim(L(V)i) ≥ p− 1
2pk

dim(L(V)k) =
p− 1
2pk

W`(k),

by Theorem 8.3, where we let ` = dim(V), so

dim(
k⊕

i=1

BL(V)i) >
p− 1

2pb k
nc

W`(b
k
n
c) ∼ p− 1

2pb k
nc2

`b
k
n c

by Lemma 3.2. Now, ` is assumed greater than 1, so

p− 1
2pb k

nc2
`b

k
n c ≥ p− 1

2p( k
n )2

`
k
n−1,

so for any ε > 0, once k is large enough we have dim(
⊕k

i=1 BL(V)i) > (`
1
n − ε)k. That

is, dim(
⊕k

i=1 BL(V)i) grows faster than an exponential in any base smaller than `
1
n . In

particular, if dim(V) = ` ≥ 2, then BL(V) is Z/p-hyperbolic, as required.

Since θ : L′(V) −→ L(V) is surjective and commutes with d, we immediately obtain
the following corollary.

Corollary 8.9. The submodule Im(θ ◦ d) in the free differential Lie algebra L(x, dx) is
Z/pr-hyperbolic.

9 Loop-homology of Moore spaces

In this section we will study the question ‘what part of H∗(ΩPn+1(pr); Z/pr) can be
shown to consist of Hurewicz images?’ The answer is ‘the module of boundaries in a
differential sub-Lie algebra isomorphic to L(x, dx)’. In Section 8 we have seen that
such a module is Z/pr-hyperbolic. The hypotheses of Theorem 1.5 are really
conditions under which the image of this module under the map (Ωµ)∗ remains
Z/ps-hyperbolic, and we thus obtain a Z/ps-hyperbolic submodule of the image of
the Hurewicz map.

We follow the notation from Neisendorfer’s book [23] . Let p be a prime and let
s ≤ r ∈N. For a space Y, recall that the homotopy groups of Y with coefficients in Z/ps,
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denoted πn(Y; Z/ps) are the based homotopy sets [Pn(ps), Y], which are groups for
n ≥ 3. There are a number of useful operations relating the integral and mod-ps

homotopy groups, which we introduce next.

Let βs : Sn−1 −→ Pn(ps) be the inclusion from the cofibration sequence of Definition
1.2. This defines a map of degree −1

βs : πn(Y; Z/ps) −→ πn−1(Y)

f 7−→ f ◦ βs.

Similarly, let ρs : Pn(ps) −→ Sn be the pinch map, which is obtained by extending the
cofibration sequence of Definition 1.2 to the right. This defines a map of degree 0

ρs : πn(Y) −→ πn(Y; Z/ps)

f 7−→ f ◦ ρs.

Lastly, let redr,s : Pn(ps) −→ Pn(pr) be the map defined by the diagram of cofibrations

Sn−1 ps
// Sn−1 //

pr−s

��

Pn(ps)

redr,s

��
Sn−1 pr

// Sn−1 // Pn(pr),

and let
redr,s : πn(Y; Z/pr) −→ πn(Y; Z/ps)

f 7−→ f ◦ redr,s.

It follows from the definitions that βs, ρs and redr,s are all natural in Y.

We will now use these operations to produce elements u and v of
π∗(ΩPn+1(pr); Z/ps). The Hurewicz images of v and u will play the roles of the
elements x and dx of Section 8. Although these elements are easily described in terms
of things we already have, we will give them new names for clarity.

Let
v′ : Pn(ps) −→ Pn(pr)

be equal to redr,s.

Let
u′ : Pn−1(ps) −→ Pn(pr)
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be the composite

Pn−1(ps)
ρs

−→ Sn−1 βr

−→ Pn(pr).

Recall that for any space X there is a natural map η : X −→ ΩΣX, which is the unit of
the adjunction Σ a Ω and sends x ∈ X to the loop γx = (t 7−→ 〈t, x〉) on ΣX. Let
v = η ◦ v′ : Pn(ps) −→ ΩPn+1(pr), and let u = η ◦ u′ : Pn−1(ps) −→ ΩPn+1(pr).

Now let G be an H-group, and suppose that the prime p is odd. As in the integral
setting, the homotopy groups with coefficients π∗(G; Z/ps) carry a Samelson product; a
bilinear operation which resembles a Lie bracket [12] . Loop spaces are in particular
H-groups, so we have Samelson products in π∗(ΩX; Z/ps) for any X.

Lemma 9.1. Let p be an odd prime. The map

π∗(ΩX; Z/ps)
βs

−→ π∗(ΩX)
ρs

−→ π∗(ΩX; Z/ps)

is a differential (that is, (ρs ◦ βs)2 = 0) of degree −1, which satisfies the Leibniz identity
relative to Samelson products.

Proof. By [12, Section 7] , we have the Leibniz identity. To see that it is a differential,
note that βs ◦ ρs = 0, so (ρs ◦ βs)2 = ρs ◦ (βs ◦ ρs) ◦ βs = 0.

By construction of u and v we have (ρs ◦ βs)(v) = pr−su in π∗(ΩPn+1(pr); Z/ps). Let
L′(x, dx) and L(x, dx) be as in Section 8, where we let deg(x) = n and deg(y) = n− 1.
Let 〈x, dx〉 be the free graded Z/pr-module of dimension 2 on basis {x, dx}, so that
L(x, dx) = L(〈x, dx〉), and with this notation note that
L′(x, dx)⊗Z/ps = L′(〈x, dx〉 ⊗Z/ps), the analogous construction over Z/ps.

We define a map of Z/ps-modules φr,s
π : 〈x, dx〉 ⊗Z/ps −→ π∗(ΩPn+1(pr); Z/ps) by

sending x 7−→ v and dx 7−→ u. Samelson products in π∗(ΩPn+1(pr); Z/ps) are
bilinear, so by the universal property of L′(x, dx)⊗Z/ps, φr,s

π extends to a map

Φr,s
π : L′(x, dx)⊗Z/ps −→ π∗(ΩPn+1(pr); Z/ps)

of graded (nonassociative) Z/ps-algebras.

The following lemma relates Φr,s
π to Φr,r

π .

Lemma 9.2. If s ≤ r then pr−sΦr,s
π ◦ d = ρs ◦ βs ◦Φr,s

π . In particular, if s = r, then
Φr,s

π = Φr,r
π is a map of differential Lie algebras.

Proof. It suffices to show that the composites pr−sΦr,s
π ◦ d and ρs ◦ βs ◦Φr,s

π agree on
brackets of length k in L′(x, dx)⊗Z/ps for each k ∈N. We will do this by induction.
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In the case k = 1, the restriction of Φr,s
π to brackets of length 1 is φr,s

π . By construction of
u and v we have (ρs ◦ βs)(v) = pr−su in π∗(ΩPn+1(pr); Z/ps), so φr,s

π satisfies
pr−sφr,s

π ◦ d = ρs ◦ βs ◦ φr,s
π , as required.

Now let a ∈ L′(x, dx)⊗Z/ps be a bracket of length k > 1. We have a = [b, c] for
brackets b, c of lengths i and j respectively with i + j = k, i < k, j < k. Thus

ρs ◦ βs ◦Φr,s
π (a) = ρs ◦ βs ◦Φr,s

π ([b, c]) = ρs ◦ βs([Φr,s
π (b), Φr,s

π (c)])

= [ρs ◦ βs ◦Φr,s
π (b), Φr,s

π (c)] + (−1)deg b[Φr,s
π (b), ρs ◦ βs ◦Φr,s

π (c)],

where the last equality is by Lemma 9.1. By induction we have
ρs ◦ βs ◦Φr,s

π (b) = pr−sΦr,s
π ◦ d(b) and ρs ◦ βs ◦Φr,s

π (c) = pr−sΦr,s
π ◦ d(c), so the above is

equal to
[pr−sΦr,s

π ◦ d(b), Φr,s
π (c)] + (−1)deg b[Φr,s

π (b), pr−sΦr,s
π ◦ d(c)]

= pr−sΦr,s
π ([d(b), c] + (−1)deg b[b, d(c)]) = pr−sΦr,s

π ◦ d([b, c]).

This completes the induction, and hence the proof.

Lemma 9.2 identifies a factor of pr−s. The next lemma makes precise the idea that this
factor comes from the map βs, rather than the map ρs, by relating each Φr,s

π to Φr,r
π .

Lemma 9.3. The following diagram commutes:

L′(x, dx)

d

��

Φr,r
π // π∗(ΩPn+1(pr); Z/pr)

βr

��
π∗(ΩPn+1(pr))

ρs

��
L′(x, dx)⊗Z/ps Φr,s

π // π∗(ΩPn+1(pr); Z/ps).

In particular, Im(ρs) ⊃ Im(Φr,s
π ◦ d).

Proof. By Lemma 9.2, the top face of the following diagram commutes, and the bottom
face commutes up to a factor of pr−s, in the sense that pr−sΦr,s

π ◦ d = ρs ◦ βs ◦Φr,s
π :
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L′(x, dx)

L′(x, dx) L′(x, dx)⊗Z/ps π∗(ΩPn+1(pr); Z/pr)

π∗(ΩPn+1(pr))

L′(x, dx)⊗Z/ps π∗(ΩPn+1(pr); Z/pr) π∗(ΩPn+1(pr); Z/ps)

π∗(ΩPn+1(pr))

π∗(ΩPn+1(pr); Z/ps).

quotient
Φr,r

π

d

quotient
d

Φr,s
π

redr,s

βr

ρr

Φr,s
π

Φr,r
π

redr,s

βs

ρs

Commutativity of the back left face is clear. We now check commutativity of the front
left and back right faces, which are identical. Since the reduction map red is a map of
Lie algebras, both composites are maps of nonassociative algebras, and by the
uniqueness part of the universal property of L′(x, dx), it suffices to show that the
restrictions to 〈x, dx〉 agree, and this is easily seen by direct calculation.

We now turn to the front right face. The square involving ρs commutes, since the
composite

Pm(ps)
redr,s

−−→ Pm(pr)
ρr

−→ Sm

is equal to ρs : Pm(ps) −→ Sm. For the square involving βs, we have that the composite

Sm−1 βs

−→ Pm(ps)
redr,s

−−→ Pm(ps)

is equal to pr−sβr : Sm−1 −→ Pm(pr).

Putting all of this together, we have that

Φr,s
π ◦ d ◦ quotient = redr,s ◦Φr,r

π ◦ d = redr,s ◦ ρr ◦ βr ◦Φr,r
π = ρs ◦ βr ◦Φr,r

π ,

as required.



122 Paper 3.

Let s ≤ r. The homology H̃∗(Pm(pr); Z/ps) is free over Z/ps; in particular we have

H̃i(Pm(pr); Z/ps) =

Z/ps i = m, m− 1,

0 otherwise.

Write em for a choice of generator of Hm(Pm(pr); Z/ps), and sm−1 = β(em), where β is
the homology Bockstein. The group Hm−1(Pm(pr); Z/ps) is generated by sm−1.

The Pontrjagin product makes H̃∗(ΩPn+1(pr); Z/ps) into a Z/ps-algebra. Any graded
associative algebra carries a Lie bracket, defined by setting
[x, y] = xy− (−1)deg(x) deg(y)yx, and this is what will be meant by ‘the bracket on
H∗(ΩPn+1(pr); Z/ps)’.

Recall that an element of πm(Y; Z/pr) is a homotopy class of maps Pm(pr) −→ Y. Let
h : π∗(Y; Z/ps) −→ H∗(Y; Z/ps) be the Hurewicz map, which sends f ∈ π∗(Y; Z/ps)

to f∗(em) ∈ H∗(Y; Z/ps). By [12, Proposition 6.4] , the generators em may be chosen so
that h carries Samelson products to commutators; that is, so that
h([ f , g]) = [h( f ), h(g)] ∈ H∗(ΩPn+1(pr); Z/ps).

Thus, the composition h ◦Φr,s
π respects brackets, and the codomain,

H∗(ΩPn+1(pr); Z/ps) carries a Lie algebra structure. We therefore obtain a
factorization of h ◦Φr,s

π through θ to give a map of Lie algebras Φr,s
H which satisfies the

following lemma:

Lemma 9.4. The following diagram commutes:

L′(x, dx)⊗Z/ps Φr,s
π //

θ
��

π∗(ΩPn+1(pr); Z/ps)

h
��

L(x, dx)⊗Z/ps Φr,s
H // H∗(ΩPn+1(pr); Z/ps).

9.1 Tensor algebras and the Bott-Samelson Theorem

The purpose of this section is to introduce some notation for dealing with tensor
algebras, and to recall the Bott-Samelson Theorem (Theorem 9.5). We define the tensor
algebra on a graded R-module V to be T(V) =

⊕∞
k=1 V⊗k, where V⊗k is the tensor

product of k copies of V. Note in particular that this definition is ‘reduced’ since we do
not insert a copy of R in degree 0. The multiplication is given by concatenation of
tensors, and makes T(V) into the free graded associative algebra on V. Let A be an
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algebra and let ϕ : V −→ A be a homomorphism. We write ϕ̃ : T(V) −→ A for the
map of algebras induced by ϕ. Let

ιi : V⊗i −→ T(V)

be the inclusion, and let
ζi : T(V) −→ V⊗i

be the projection.

Bott and Samelson first proved their theorem in [9] ; we give the formulation from
Selick’s book [27] .

Theorem 9.5 (Bott-Samelson). Let R be a PID, and let X be a connected space with
H̃∗(X; R) free over R. Then H̃∗(ΩΣX; R) ∼= T(H̃∗(X; R)) and η : X −→ ΩΣX induces the
canonical map H̃∗(X; R) −→ T(H̃∗(X; R)).

The Bott-Samelson Theorem immediately allows us to find a free Lie algebra in the
loop-homology of a Moore space.

Lemma 9.6. The map Φr,s
H : L(x, dx)⊗Z/ps −→ H∗(ΩPn+1(pr); Z/ps) is an injection.

Proof. Since r ≥ s, the module H∗(Pn(pr); Z/ps) is free over Z/ps. By the
Bott-Samelson Theorem 9.5, H̃∗(ΩPn+1(pr); Z/ps) ∼= T(x, dx)⊗Z/ps, and this
isomorphism identifies Φr,s

H with the natural map
L(x, dx)⊗Z/ps −→ T(x, dx)⊗Z/ps. But this latter map is an injection by
Proposition 2.9 and Corollary 2.7 of [12] .

We have the following corollary, which will be the main ingredient in the proof of
Theorem 1.5.

Corollary 9.7. Let Y be a simply connected CW-complex, let p be an odd prime, and let
r ∈N. Let µ : Pn+1(pr) −→ Y be a continuous map. If the induced map

(Ωµ)∗ : H∗(ΩPn+1(pr); Z/ps) −→ H∗(ΩY; Z/ps)

is an injection, then the module Im((Ωµ)∗ ◦Φr,s
H ◦ θ ◦ d) is Z/ps-hyperbolic.

Proof. By Lemma 9.6, Φr,s
H is an injection, and by Corollary 8.9, the module Im(θ ◦ d) is

Z/ps-hyperbolic. It follows that (Ωµ)∗ ◦Φr,s
H (Im(θ ◦ d)) = Im((Ωµ)∗ ◦Φr,s

H ◦ θ ◦ d) is
also Z/ps-hyperbolic.
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10 The suspension case

The purpose of this section is to show that Theorem 1.5 implies Theorem 1.6. This will
be accomplished by means of Proposition 10.12, whose proof is the goal of this section.
The main point is that even if H̃∗(X; Z/ps) is not free over Z/ps, the canonical map of
the Bott-Samelson Theorem (Theorem 9.5) is still an injection. That is, the homology
H̃∗(ΩΣX; Z/ps) always contains the tensor algebra on H̃∗(X; Z/ps), but if
H̃∗(X; Z/ps) is not free then it will contain other things too.

In Subsection 10.1, we recall the James splitting ΣΩΣX ' ∨∞
k=1 ΣX∧k. This gives us

Proposition 10.5, which describes the structure of the Pontrjagin algebra
H̃∗(ΩΣX; Z/ps), in particular identifying the tensor algebra T(H̃∗(X; Z/ps)) as a
subalgebra. Subsection 10.2 proves Lemma 10.9, which describes the effect of a certain
evaluation map on H∗(ΩΣX; Z/ps). Subsection 10.3 draws these ingredients together
to prove Proposition 10.12.

Let σ : H̃∗(Y) −→ H̃∗+1(ΣY) denote the suspension isomorphism. For a space X, let
Xk denote the product of k copies of X, and let X∧k denote the smash product. Let ∼
be the relation on Xk defined by

(x1, . . . , xi−1, ∗, xi+1, xi+2, . . . xk) ∼ (x1, . . . , xi−1, xi+1, ∗, xi+2, . . . xk).

Let Jk(X) be the space Xk
�∼. There is a natural inclusion

Jk(X) −→ Jk+1(X)

(x1, . . . , xk) 7→ (x1, . . . , xk, ∗).

The James construction JX is defined to be the colimit of the diagram consisting of the
spaces Jk(X) and the above inclusions. Notice that JX carries a product given by
concatenation, which makes it into the free topological monoid on X, and that a
topological monoid is in particular an H-space.

The adjunction isomorphism [ΣX, Y] ∼= [X, ΩY] will be written in both directions as
f 7−→ f . We write η for the unit of the adjunction, which is the map X −→ ΩΣX
sending x ∈ X to (t 7→ 〈t, x〉) ∈ ΩΣX. We will write ev for the evaluation map; the
counit ΣΩY −→ Y, which sends 〈t, γ〉 ∈ ΣΩY to γ(t) ∈ Y.

10.1 The tensor algebra inside H∗(ΩΣX)

In this section we will generalise the Bott-Samelson theorem to suit our purpose.
Specifically, the map η : X −→ ΩΣX induces a map η∗ : H̃∗(X) −→ H̃∗(ΩΣX) on
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homology. By the universal property of the tensor algebra, η∗ extends to a map of
algebras

η̃∗ : T(H̃∗(X)) −→ H̃∗(ΩΣX).

The Bott-Samelson Theorem (Theorem 9.5) says that if the homology H∗(X; Z/ps) is
free then η̃∗ is an isomorphism. We will show that even if H∗(X; Z/ps) is not free, the
map η̃∗ is still an injection. This is by no means new, but follows reasonably easily
from better-known results, so we shall derive it in this way. In this section homology
is taken with Z/ps-coefficients (unless otherwise stated).

Lemma 10.1. The cross product map H̃∗(X)⊗k ×−→ H̃∗(X∧k) is injective, split (although not
naturally) and its cokernel C satisfies ps−1C = 0.

Proof. For spaces A and B The Künneth Theorem gives an exact sequence

0 −→ H∗(A)⊗ H∗(B)
×−→ H∗(A× B) −→ Tor(H∗(A), H∗−1(B)) −→ 0,

where the Tor is taken over Z/ps, and this sequence is (unnaturally) split. By Lemma
7.11 we have ps−1Tor(H∗(A), H∗−1(B)) = 0.

Let a0 : pt −→ A denote the inclusion of the basepoint of A and let b0 denote the
inclusion of the basepoint of B. Let j : H∗(A)⊕ H∗(B) −→ H∗(A)⊗ H∗(B) be the
composite

H∗(A)⊕ H∗(B)

∼=
��

j

,,
H∗(A)⊗ H∗(pt)⊕ H∗(pt)⊗ H∗(B)

(idA)∗⊗(b0)∗⊕(a0)∗⊗(idB)∗
// H∗(A)⊗ H∗(B).

To relate the reduced and unreduced situations we have the following diagram (which
we take to define the reduced cross product) where i, i1 and i2 are the inclusions and p
is the quotient.

0 // H∗(A)⊕ H∗(B)� _

j
��

(i1)∗⊕(i2)∗// H∗(A ∨ B)� _

i∗
��

// 0

��

// 0

0 // H∗(A)⊗ H∗(B)
× //

��

H∗(A× B) //

p∗
��

Tor(H∗(A), H∗−1(B)) // 0

0 // H̃∗(A)⊗ H̃∗(B)
× // H̃∗(A ∧ B) // Tor(H∗(A), H∗−1(B)) // 0.

The top map is an isomorphism, so the bottom row is exact, and it therefore suffices to
check that the top two squares commute. We first check that the top left square
commutes. It suffices to check commutativity on each summand of the domain
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individually. We will do so for H∗(A); the case of H∗(B) is analogous. Identifying
H∗(A) with H∗(A)⊗ H∗(pt), the restriction of j becomes (idA)∗ ⊗ (b0)∗. The
composite with the cross product is written (idA)∗ × (b0)∗, and by bilinearity of cross
product this is the same as (idA × b0)∗, where now the product is taken in spaces. But
under the identification A ∼= A× {pt}, this is just the inclusion A −→ A× B, which is
the map obtained by going the other way round the square, as required.

The top right square commutes because the map (i1)∗ ⊕ (i2)∗ is an isomorphism, so,
by commutativity of the top left square, the composite of i∗ with the map into the Tor
term factors through two terms of an exact sequence, hence is zero, as required.

To finish, we note that since the middle row is split, the bottom row is also split.

The understanding of the cross product from Lemma 10.1 allows us to understand
part of the homology of JX, by constructing a map ϕ as in the following lemma.

Lemma 10.2. The maps

H̃∗(X)⊗k −→ H∗(X)⊗k ×−→ H∗(Xk) −→ H∗(Jk(X)) −→ H∗(J(X))

define an injection of algebras T(H̃∗(X))
ϕ−→ H̃∗(J(X)). Furthermore, Im(ϕ) is a direct

summand, and we may write H̃∗(J(X)) ∼= T(H̃∗(X))⊕ C such that the complementary
module C satisfies ps−1C = 0.

Proof. We use a modified version of the argument in [16, Proposition 3C.8] . First, ϕ is
a ring homomorphism, because the product in J(X) descends from the natural map
Xi × X j −→ Xi+j. To see that we have an injection, we consider the following
diagram, where we follow Hatcher’s notation and set Tk(M) =

⊕k
i=1 M⊗i:

0 // Tk−1(H̃∗(X))

ϕ

��

// Tk(H̃∗(X))

ϕ

��

// (H̃∗(X))⊗k

×
��

// 0

0 // H̃∗(Jk−1(X)) // H̃∗(Jk(X)) // H̃∗(X∧k) // 0.

Commutativity of the diagram follows from the definition of ϕ. Exactness of the top
row is clear. The bottom row is obtained from the long exact sequence of the pair
(Jk(X), Jk−1(X)), applying excision to pass to the quotient Jk(X)/Jk−1(X) ' X∧k. This
sequence is split because the quotient Xk −→ X∧k factors through the map
Jk(X) −→ X∧k, and the former map is split after suspending. Thus we get that
H̃∗(Jk(X)) ∼= H̃∗(Jk−1(X))⊕ H̃∗(X∧k). Lemma 10.1 tells us that
H̃∗(X∧k) ∼= (H̃∗(X))⊗k ⊕ C with ps−1C = 0, so the result follows immediately by
inducting over k.
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Our next job is to translate this understanding of JX into an understanding of ΩΣX. It
is well-known that the two are homotopy equivalent, but we wish to be precise about
the maps. For a based space Y, let Ω′Y denote the space of loops of any length in Y, so
that ΩY is the subspace of Ω′Y consisting of loops of length 1. We will write γ1#γ2 for
the concatenation of loops γ1 and γ2. For γ ∈ Ω′Y and ` ∈ R>0, let γ` denote the
linear reparameterization of γ which has length `. Note that γ 7−→ γ1 is a continuous
map Ω′Y −→ ΩY, which is a retraction for the inclusion ΩY ⊂ Ω′Y. For x ∈ X, let
γx ∈ ΩΣX be the loop defined by γx(t) = 〈t, x〉, which is equal to η(x).

Now let X be a connected CW-complex, which we take without loss of generality to
have a single 0-cell, which is the basepoint. Let d : X −→ [0, 1] be any continuous map
such that d−1(0) = {∗}. Define a map

λ : J(X) −→ ΩΣX

(x1, . . . xk) 7−→ (γ
d(x1)
x1 #γ

d(x2)
x2 # . . . #γ

d(xk)
xk )1.

The reparameterization is necessary so that λ is well-defined when some xi = ∗.

Hatcher proves the following as [16, Theorem 4J.1] .

Lemma 10.3. The map λ is a weak homotopy equivalence for any connected CW-complex X.
Furthermore, λ is an H-map, so it induces a map of algebras on homology.

The following lemma is immediate from the definition of λ.

Lemma 10.4. The composite

Xk → Jk(X)→ J(X)
λ−→ ΩΣX

is homotopy equivalent to m ◦ ηk, where m is any choice of k-fold loop multiplication on
ΩΣX.

Recall from Subsection 9.1 that ιk : V⊗k −→ T(V) is the inclusion.

We are now ready to prove the main result of this subsection, which is what we will
use later.

Proposition 10.5. The map

η̃∗ : T(H̃∗(X)) −→ H∗(ΩΣX)

is an injection onto a summand, each restriction η̃∗ ◦ ιk is equal to

H̃∗(X)⊗k ×−→ H̃∗(Xk)
(ηk)∗−−→ H̃∗((ΩΣX)k)

m∗−→ H̃∗(ΩΣX),
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and we may write
H∗(ΩΣX) ∼= T(H̃∗(X))⊕ C

such that the complementary module C satisfies ps−1C = 0.

Proof. By Lemmas 10.2, 10.3 and 10.4, it suffices to show that λ∗ ◦ ϕ = η̃∗. Since both
maps are algebra maps, by the universal property of the tensor algebra it further
suffices to show that the composite

H̃∗(X)
ι1−→ T(H̃∗(X))

ϕ−→ H̃∗(JX)
λ∗−→ H̃∗(ΩΣX)

is equal to η∗.

To see this, first note that the composite H̃∗(X)
ι1−→ T(H̃∗(X))

ϕ−→ H̃∗(JX) is equal to the
map induced by the inclusion X −→ J1(X) ⊂ J(X) which carries x ∈ X to the
equivalence class of x in J(X). By definition of λ we then have λ(x) = γx, which by
definition is η(x), as required.

10.2 The effect of the evaluation map

The goal of this section is to prove Lemma 10.9, which says that up to suspension
isomorphisms, the evaluation map ev : ΣΩΣX −→ ΣX induces the projection onto the
tensors of length 1. Our strategy is to first prove Lemma 10.6, the point of which is
that when one evaluates a concatenation of k loops at some time t, the result only
depends on one of the loops - this is the i appearing in the proof of Lemma 10.6. We
will then see that this, together with simple formal properties of the cross product, is
enough to prove Lemma 10.9.

In this section, for a co-H-space Y, c : Y −→ Y ∨Y denotes the comultiplication, and
for a product ∏k

i=1 Xi, the map πi is the projection onto the i-th factor.

Lemma 10.6. The following diagram commutes up to homotopy.

ΣXk

c
��

Σηk
// Σ(ΩΣX)k Σm // ΣΩΣX

ev
��

(ΣXk)∨k

∨k
i=1 Σπi
��

ΣX

(ΣX)∨k fold // ΣX
Ση // ΣΩΣX.

ev

OO

Proof. It suffices to show that the diagram commutes strictly if we take c and m to both
be parameterized so as to spend equal time on each component. We will do so by
evaluating both composites explicitly.
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A point of ΣXk may be written in suspension coordinates as 〈t, x1, x2, . . . , xk〉, for t ∈ I
and xi ∈ X. There exists some integer i with 1 ≤ i ≤ k so that i−1

k ≤ t ≤ i
k .

For the top right composite,

ev ◦ Σm ◦ Σηk〈t, x1, . . . , xk〉 = ev〈t, m(γx1 , . . . , γxk )〉

= (γx1# . . . #γxk )(t)

= γxi (kt− (i− 1)).

For the bottom left composite, we first introduce some notation. For a point y of a
space Y, we write (y)i for the image of y under the inclusion of the i-th wedge
summand in Y −→ Y∨k. With this notation, taking Y = ΣXk, we have
c〈t, x1, . . . , xk〉 = (〈kt− (i− 1), x1, . . . , xk〉)i. Therefore,

ev ◦ Ση ◦ fold ◦ (
k∨

i=1

Σπi) ◦ c〈t, x1, . . . , xk〉 = ev ◦ Ση ◦ fold(〈kt− (i− 1), xi〉)i

= ev ◦ Ση〈kt− (i− 1), xi〉 = γxi (kt− (i− 1)),

as required.

Lemma 10.7. Let X be a space. The composite

H̃∗(X)⊗k ×−→ H̃∗(Xk)
(πi)∗−−→ H̃∗(X)

of the cross product with any projection is trivial for k ≥ 2.

Proof. Up to homeomorphism, X may be regarded as the space ∏k
j=1 Yj, where Yj = ∗

for j 6= i and Yi = X. Under this identification, πi is identified with the map

∏k
j=1 f j : Xk −→ ∏k

j=1 Yj, where f j is the identity on X when j = i, and is the trivial
map otherwise.

The composite of maps (∏k
j=1 f j)∗ ◦ × is the cross product of homomorphisms

( f1)∗ × ( f2)∗ × · · · × ( fk)∗. Cross product of homomorphisms is k-multilinear, and
since k ≥ 2 there is at least one j with f j equal to the constant map, hence ( f j)∗ = 0.
This means that (∏k

j=1 f j)∗ ◦ × is trivial for k ≥ 2, as required.

Corollary 10.8. Let X be a space. The composite

H̃∗(X)⊗k ×−→ H̃∗(Xk)
σ−→ H̃∗(ΣXk)

c∗−→ H̃∗((ΣXk)∨k)
(
∨k

i=1 Σπi)∗−−−−−−→ H̃∗((ΣX)∨k)

is trivial for k ≥ 2.
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Proof. For a space Y, let pi : Y∨k −→ Y be the projection onto the i-th wedge summand.
The comultiplication c satisfies pi ◦ c ' idΣXk for each i, so on homology we have

c∗ : H̃∗(ΣXk) −→ H̃∗((ΣXk)∨k) ∼=
k⊕

i=1

H̃∗(ΣXk)

x 7−→ (x, x, . . . , x).

That is, c∗ may be identified with the diagonal map ∆ : H̃∗(ΣXk) −→ ⊕k
i=1 H̃∗(ΣXk).

Thus,

(
k∨

i=1

Σπi)∗ ◦ c∗ ◦ σ ◦ ×(x1 ⊗ · · · ⊗ xk) = (
k∨

i=1

Σπi)∗ ◦ c∗(σ(x1 × · · · × xk))

=
k⊕

i=1

(Σπi)∗ ◦ ∆(σ(x1 × · · · × xk)) = 0,

since by Lemma 10.7 we have

(Σπi)∗(σ(x1 × · · · × xk)) = σ ◦ (πi)∗(x1 × · · · × xk) = 0.

This completes the proof.

Lemma 10.9. The composite

T(H̃∗(X))
η̃∗−→ H̃∗(ΩΣX)

σ−→ H̃∗(ΣΩΣX)
ev∗−→ H̃∗(ΣX)

σ−1

−−→ H̃∗(X)

is equal to the projection ζ1.

Proof. Write Γ for the above composite. We must show that Γ ◦ ιk is the identity map
on H∗(X) when k = 1, and is 0 otherwise.

For the k = 1 statement, note that η̃∗ ◦ ι1 = η∗ (this is the definition of η̃∗). We may
therefore write

Γ ◦ ι1 = σ−1 ◦ ev∗ ◦ σ ◦ η̃∗ ◦ ι1 = σ−1 ◦ ev∗ ◦ σ ◦ η∗ = σ−1 ◦ ev∗ ◦ (Ση)∗ ◦ σ,

and by the triangle identities for the adjunction Σ a Ω we have a commuting diagram

ΣX
idΣX

$$

Ση // ΣΩΣX

ev
��

ΣX.
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Thus, Γ ◦ ι1 = σ−1 ◦ σ = idH∗(X), as we required.

Now let k > 1. Juxtaposing the diagram of Lemma 10.6 (after taking homology) with
the result of Corollary 10.8 gives a commuting diagram

H̃∗(X)⊗k × //

0

&&

H̃∗(Xk)
σ // H̃∗(ΣXk)

c∗
��

(Σηk)∗// H̃∗(Σ(ΩΣX)k)
(Σm)∗ // H̃∗(ΣΩΣX)

ev∗
��

H̃∗((ΣXk)∨k)

(
∨k

i=1 Σπi)∗
��

H̃∗(ΣX)

H̃∗((ΣX)∨k)
fold∗ // H̃∗(ΣX)

(Ση)∗ // H̃∗(ΣΩΣX).

ev∗

OO

The description of η̃∗ ◦ ιk of Proposition 10.5 implies that the top-right route round the
diagram is equal to σ ◦ Γ ◦ ιk. The diagram shows that this factors through the zero
map, so σ ◦ Γ ◦ ιk = 0, and since σ is an isomorphism, this implies that Γ ◦ ιk is itself
zero, which completes the k > 1 case and hence the proof.

10.3 Loops on homology injections

The goal of this section is to prove Proposition 10.12. We first prove two lemmas.
Recall that ιi : V⊗i −→ T(V) is the inclusion, and that ζi : T(V) −→ V⊗i is the
projection. Similarly, let ι≤k and ζ≤k be respectively the inclusion and projection
associated to the submodule

⊕k
i=1 V⊗i of T(V).

Lemma 10.10. Let a1, a2, . . . ak be elements of a tensor algebra T(V). We have that

ζi(a1 ⊗ · · · ⊗ ak) =

ζ1(a1)⊗ · · · ⊗ ζ1(ak) i = k

0 i < k.

Proof. The multiplication in T(V) repects weight, so we have the formula
ζk(a⊗ b) = ∑k−1

i=1 ζi(a)⊗ ζk−i(b), which we will use to induct.

When k = 1 the result is automatic. Assuming the result for k− 1, we have

ζ j(a1 ⊗ · · · ⊗ ak) =
j−1

∑
i=1

ζi(a1 ⊗ · · · ⊗ ak−1)⊗ ζ j−i(ak).

By induction ζi(a1 ⊗ · · · ⊗ ak−1) = 0 for i < k− 1, so the above is 0 when j < k and
when j = k it becomes

ζk−1(a1 ⊗ · · · ⊗ ak−1)⊗ ζ1(ak) = ζ1(a1)⊗ · · · ⊗ ζ1(ak−1)⊗ ζ1(ak),

by induction, as required.
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The following lemma does not depend on the algebra structure in the tensor algebras;
only on the fact that tensor algebras are graded by weight. Nonetheless, we will state
it only for tensor algebras because we already have the necessary notation. It
formalizes the sort of ‘leading terms’ argument that we wish to make in proving
Proposition 10.12.

Lemma 10.11. Let f : T(A) −→ T(B) be a homomorphism of Z/ps-modules (not
necessarily of algebras) with A free. Suppose that ps−1ζ j ◦ f ◦ ιk = 0 whenever j < k and that
for each k ∈N, the map ζk ◦ f ◦ ιk is an injection. Then f is also an injection.

Proof. Firstly, since T(A) is a free Z/ps-module, it suffices to show that if
f (ps−1x) = 0, for x ∈ T(A), then ps−1x = 0. This is precisely showing injectivity of the
restriction of f to ps−1T(A). The module T(A) is filtered by the submodules

⊕k
i=1 A⊗i

for k ∈N, so it further suffices to show that each map

ζ≤k ◦ f ◦ ι≤k : ps−1
k⊕

i=1

A⊗i −→ ps−1
k⊕

i=1

B⊗i

is injective.

We proceed by induction. The case k = 1 is immediate, so assume that the result is
known for k− 1. Write

⊕k
i=1 A⊗i ∼=

⊕k−1
i=1 A⊗i ⊕ A⊗k, so that ι≤k is identified with

ι≤(k−1) ⊕ ιk. Suppose that f (y) = 0 for y ∈ ps−1 ⊕k
i=1 A⊗i, so that there exists

x ∈ ⊕k
i=1 A⊗i with y = ps−1x. We must show that y = 0. Write x = x′ + xk, for

x′ ∈ ⊕k−1
i=1 A⊗i and xk ∈ A⊗k. Now,

ζ≤(k−1) ◦ f ◦ ι≤k(y) = ps−1ζ≤(k−1) ◦ f ◦ ι≤k(x)

= ps−1ζ≤(k−1) ◦ f (ι≤(k−1)x′ + ιk(xk)) = ζ≤(k−1) ◦ f (ps−1ι≤(k−1)x′),

since ps−1ζ j ◦ f ◦ ιk = 0 for j < k. By inductive hypothesis, this implies that ps−1x′ = 0,
so y = xk, and

ζk ◦ f ◦ ι≤k(y) = ζk ◦ f ◦ ιk(ps−1xk).

By assumption, ζk ◦ f ◦ ιk is an injection, so ps−1xk = 0, and therefore y = 0, as
required.

Proposition 10.12. Let X be a connected CW-complex, let p be an odd prime, and let
s ≤ r ∈N. Let µ : Pn+1(pr) −→ ΣX be a continuous map. If the induced map

µ∗ : H∗(Pn+1(pr); Z/ps) −→ H∗(ΣX; Z/ps)

is an injection, then

(Ωµ)∗ : H∗(ΩPn+1(pr); Z/ps) −→ H∗(ΩΣX; Z/ps)
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is also an injection.

The principal difficulty in the proof is that Im(µ∗) might not be contained in the tensor
algebra T(H̃∗(X; Z/ps)) inside H̃∗(ΩΣX; Z/ps). We deal with this using the
condition ps−1C = 0 of Proposition 10.5, which prevents the complementary part C
from interfering too much. This proposition is much simpler to prove if one assumes
that the map µ is a suspension, but this assumption is not necessary.

Proof. Homology is taken with Z/ps-coefficients throughout. By the Bott-Samelson
theorem (Theorem 9.5), we have an isomorphism

η̃∗ : T(H̃∗(Pn(pr))) −→ H∗(ΩPn+1(pr)),

so it suffices to show that (Ωµ)∗ ◦ η̃∗ is an injection. By definition, (Ωµ)∗ ◦ η̃∗ is the
unique map of algebras extending

(Ωµ)∗ ◦ η∗ : H̃∗(Pn(pr)) −→ H∗(ΩΣX),

and by the triangle identities for the adjunction Σ a Ω, we have that (Ωµ) ◦ η = µ.
Thus, (Ωµ)∗ ◦ η̃∗ is the unique map of algebras extending µ∗.

The other triangle identity tells us that we have a commuting diagram

Pn+1(pr)
Σµ //

µ
&&

ΣΩΣX

ev
��

ΣX.

By assumption, µ induces an injection on homology, so ev ◦ (Σµ) must also induce an
injection on homology.

The next step is to turn the problem into one about tensor algebras. By Proposition
10.5 we may choose a module decomposition of H̃∗(ΩΣX) as a direct sum
T(H̃∗(X))⊕ C with ps−1C = 0. Under this decomposition, the inclusion associated to
the factor T(H̃∗(X)) is η̃∗. Write τ for the projection. Consider the diagram

T(H̃∗(X))

σ◦η̃∗
��

H̃∗(Pn+1(pr))
(Σµ)∗ //

µ∗ ''

H̃∗(ΣΩΣX)

ev∗
��

τ◦σ−1

JJ

H̃∗(ΣX).
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The maps σ ◦ η̃∗ and τ ◦ σ−1 differ from η̃∗ and τ only up to suspension isomorphisms,
so they are the inclusion and projection associated to the decomposition of H̃∗(ΣΩΣX)

obtained by suspending that of Proposition 10.5. Lemma 7.5 (with g = ev∗, f = (Σµ)∗,
iA = σ ◦ η̃∗, and πA = τ ◦ σ−1) then tells us that the whole composite
ev∗ ◦ (σ ◦ η̃∗) ◦ (τ ◦ σ−1) ◦ (Σµ)∗ is an injection. Furthermore, by Lemma 10.9, the
composite ev∗ ◦ (σ ◦ η̃∗) is identified via suspension isomorphisms with the projection
ζ1 : T(H̃∗(X)) −→ H̃∗(X), so the composite ζ1 ◦ τ ◦ µ∗ is an injection.

Let a and b form a basis of the free Z/ps-module H̃∗(Pn(pr)). By Lemma 7.4, the
images of a and b under ζ1 ◦ τ ◦ µ∗ generate a summand isomorphic to (Z/ps)2 inside
H̃∗(X).

Since H̃∗(Pn(pr)) is free on a and b, a basis of T(H̃∗(Pn(pr))) consists of the elements
x1 ⊗ · · · ⊗ xk, for k ∈N, where each xi is equal to a or b. We will show that the image
of this basis under (Ωµ)∗ ◦ η̃∗ is the basis of a free Z/ps-submodule of H∗(ΩΣX),
which will imply the result. Firstly, since (Ωµ)∗ ◦ η̃∗ is the unique map of algebras
extending µ∗, we have

ps−1ζ j ◦ τ ◦ (Ωµ)∗ ◦ η̃∗(x1 ⊗ · · · ⊗ xk) = ps−1ζ j ◦ τ(µ∗(x1)⊗ · · · ⊗ µ∗(xk))

= ζ j ◦ τ(ps−1(µ∗(x1)⊗ · · · ⊗ µ∗(xk))).

By Proposition 10.5, we may write each µ∗(xi) as η̃∗(ti) + ci, for
ti = τ(µ∗(xi)) ∈ T(H̃∗(X)) and some ci with ps−1ci = 0. The above is therefore equal
to

ζ j ◦ τ(ps−1((η̃∗(t1) + c1)⊗ · · · ⊗ (η̃∗(tk) + ck)) = ζ j ◦ τ(ps−1(η̃∗(t1)⊗ · · · ⊗ η̃∗(tk)))

= ζ j(ps−1t1 ⊗ · · · ⊗ tk) =

ps−1ζ1(t1)⊗ · · · ⊗ ζ1(tk) j = k

0 j < k

by Lemma 10.10. Since ti = τ(µ∗(xi)), we have

ps−1ζ1(t1)⊗ · · · ⊗ ζ1(tk) = ps−1(ζ1 ◦ τ(µ∗(x1)))⊗ · · · ⊗ (ζ1 ◦ τ(µ∗(xk))).

Now, each xi is equal to a or b, and we have seen that the images of a and b under
ζ1 ◦ τ ◦ µ∗ generate a (Z/ps)2-summand inside H̃∗(X). It follows that the elements
ζ1 ◦ τ(µ∗(x1))⊗ · · · ⊗ ζ1 ◦ τ(µ∗(xk)) generate a copy of T((Z/ps)2) inside T(H̃∗(X)).

The above calculation therefore tells us that the map ζk ◦ τ ◦ (Ωµ)∗ ◦ η̃∗ ◦ ιk carries ps−1

times a basis of H̃∗(Pn(pr))⊗k ⊂ T(H̃∗(Pn(pr))) to ps−1 times a basis of
((Z/ps)2)⊗k ⊂ T((Z/ps)2) inside T(H̃∗(X)). This implies that the restriction of
ζk ◦ τ ◦ (Ωµ)∗ ◦ η̃∗ ◦ ιk to ps−1H̃∗(Pn(pr))⊗k is an injection, so ζk ◦ τ ◦ (Ωµ)∗ ◦ η̃∗ ◦ ιk
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must itself be an injection and we have also seen that ps−1ζ j ◦ τ ◦ (Ωµ)∗ ◦ η̃∗ ◦ ιk = 0
for j < k

Thus, by Lemma 10.11, τ ◦ (Ωµ)∗ ◦ η̃∗ is an injection, so (Ωµ)∗ ◦ η̃∗ is an injection, as
required.

11 Proof of Theorems 1.5 and 1.6

In this section we will prove Theorem 1.5, and then from that, together with
Proposition 10.12, deduce Theorem 1.6.

Proof of Theorem 1.5. By Lemma 7.13 it suffices to prove the theorem when t = s.
Combining Lemmas 9.3, 9.4, and naturality of the maps βr, ρs, and h with respect to
the map of spaces Ωµ, we obtain the following commuting diagram:

L′(x, dx)

d

��

Φr,r
π // π∗(ΩPn+1(pr); Z/pr)

βr

��

(Ωµ)∗ // π∗(ΩY; Z/pr)

βr

��
π∗(ΩPn+1(pr))

ρs

��

(Ωµ)∗ // π∗(ΩY)

ρs

��
L′(x, dx)⊗Z/ps Φr,s

π //

θ
��

π∗(ΩPn+1(pr); Z/ps)

h
��

(Ωµ)∗ // π∗(ΩY; Z/ps)

h
��

L(x, dx)⊗Z/ps Φr,s
H // H∗(ΩPn+1(pr); Z/ps)

(Ωµ)∗ // H∗(ΩY; Z/ps).

By Corollary 9.7, Im((Ωµ)∗ ◦Φr,s
H ◦ θ ◦ d) is Z/ps-hyperbolic. By commutativity of the

diagram, (Ωµ)∗ ◦Φr,s
H ◦ θ ◦ d = h ◦ ρs ◦ (Ωµ)∗ ◦ βr ◦Φr,r

π , so the image of the latter map
is also Z/ps-hyperbolic.

We thus obtain a diagram

π∗(ΩY)
h◦ρs

++
Im((Ωµ)∗ ◦ βr ◦Φr,r

π )
h◦ρs

//
?�

OO

Im((h ◦ ρs) ◦ ((Ωµ)∗ ◦ βr ◦Φr,r
π )).

The bottom map is a surjection by choice of codomain, and we have shown above that
this codomain is Z/ps-hyperbolic. The domain of (Ωµ)∗ ◦ βr ◦Φr,r

π is L′(x, dx), which
is a Z/pr-module, hence is automatically annihilated by multiplication by pr.
Therefore, the group in the bottom left, Im((Ωµ)∗ ◦ βr ◦Φπ), is also annihilated by
multiplication by pr. The group in the bottom right, Im((Ωµ)∗ ◦ βr ◦Φπ), is contained
in H∗(ΩY; Z/ps), hence is annihilated by multiplication by ps. This means that we can
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apply Corollary 7.9 (The ‘Sandwich’ Lemma) to see that π∗(ΩY) ∼= π∗+1(Y) is
p-hyperbolic concentrated in exponents s, s + 1, . . . , r, so by definition Y is
p-hyperbolic concentrated in exponents s, s + 1, . . . , r, which completes the proof.

Theorem 1.6 now follows.

Proof of Theorem 1.6. By Proposition 10.12, (Ωµ)∗ is an injection, so by Theorem 1.5,
ΣX is p-hyperbolic concentrated in exponents s, s + 1, . . . , r, as required.
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